
3D Surface Reconstruction for Robotic Body Parts with Artificial Skins

Philipp Mittendorfer and Gordon Cheng

Abstract— In this paper, we present a new approach to
reconstruct the 3D surface of robotic body parts equipped
with artificial skins. We do so by fusing static knowledge
on the shape, size and tessellation capabilities of the uniform
cell our skin consists of, together with dynamic knowledge on
its neighbors and measurements from its orientation sensor
– a 3-axis accelerometer. Our approach makes it possible to
reconstruct the 3D surface of robotic body parts equipped with
a patch of skin in a very short time, providing the location and
orientation of every unit in a patch relative to an automatically
chosen origin on the patch, utilizing no external sensors and
only robot independent information. We show experimental
results on the 3D reconstruction of different skin patches.

I. INTRODUCTION
A. Motivation

Artificial skins provide direct feedback on the interaction
of a robot – with itself or the environment. But without
knowledge on the location/orientation of the sensors, and
the shape of the surface, this feedback is meaningless.
Deploying high resolution, whole body artificial skins on
a robot, it will no longer be feasible to manually provide
the complete location information. A manual process would
be error prone, time consuming and inhibit the robot to
autonomously cope with system changes and/or failure. It
is thus desirable that the robot takes advantage of its own
sensors and actuators, to calibrate itself in an acceptable
amount of time, with little or no external support. To be able
to transfer artificial skin hardware and software in between
a variety of robots, the artificial skin system should only
utilize common, but no robot specific a-priori knowledge,
and impose little constraints on the robotic platform at hand.

B. Related Works
Spatial calibration of robotic body parts with artificial

skins relates to the more general topic of body schema in
robotics, which has been recently reviewed in depth in [1].
Here, we only highlight some of the related works.

In [2] a simulated robot visually learns the local kinematics
of its hand. It then probes the position of tactile sensors on
its face through the known hand position. Such an approach
is limited to the reachable range and the accuracy of the
local kinematics. In [3] De Prete et al. utilize a force/torque
sensor in the upper arm of an iCub robot and a completely
initialized kinematic chain, in order to estimate the location
of skin force cells on the lower arm or hand, touching
an external point probe. The approach fails when there
is no force torque sensor in the given kinematic chain,
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Fig. 1. 3D Reconstruction of a skin patch placed on a KUKA LWR arm

preceding the body part under evaluation. In [4] a simulated
baby body performs random movements in water, extracting
topological structures with spatio-temporal correlation. This
approach has been extended to provide 3D sensor position
estimates [5]. Modayil uses high correlations, limited to k-
nearest neighbors, to establish local distance constraints. A
global optimization algorithm then unfolds the 3D space,
maximizing the unconstrained sensor distances. Implicitly
given a global shape, the estimate only vaguely resembles the
original. Hoshi et al. utilize a fixed lattice structure of rigid
links, equipped with triaxial accelerometers, to reconstruct
the shape of a cloth-like sheet [6]. As the missing yaw angles
are only estimated from assumptions on the elemental loops
of the lattice, this accelerometer based approach suffers from
singular configurations. Hoshi et al. extended the sensing
capabilities of each link by a triaxial magnetometer [7],
which can be considered infeasible for an artificial skin for a
robot. Besides cost and space constraints, metallic structures
and the electromagnetic noise distort the magnetic field close
to every robot. Additionally, a fixed lattice grid also does not
account for the flexibility of placing skin on a robot.

C. Our Approach
In this paper, we present a new approach to reconstruct

the 3D surface of robotic body parts equipped with artificial
skins (please see Fig. 1). We do so by fusing static knowledge
on the shape, size and tessellation capabilities of the uniform
unit cells our skin consist of (please refer to [8]) together
with dynamic knowledge about its neighbors, and measure-
ments from its orientation sensor – a 3-axis accelerometer.
Our approach makes it possible to reconstruct the 3D surface
of robotic body parts equipped with a patch of skin in a
very short time, providing the location and orientation of
every unit in a patch relative to an automatically chosen
origin on the patch. In comparison to [6] our approach
does not suffer from singularities in the rotation estimation.



Algorithm 1 3D Reconstruction of multiple skin patches
1: Detection of (U) available sensor units
2: Creation of a skin graph with (U) vertices
3: Exploration of unit network neighbors = neighbor list
4: Creation of directed port edges from neighbor list
5: Deletion of non-direct edges e.g. across body parts
6: Analysis of connected components = skin patches
7: while reconstruction loop do
8: Sampling of gravity vectors in multiple poses (P)
9: Estimation of edge rotations from gravity and port vectors

10: Calculation of edge weights from estimation errors
11: Find unit with shortest accumulated path for every patch
12: Set these units as patch origins and memorize paths
13: Default position and orientation of patch origins
14: Update remaining unit orientations along calculation paths
15: Update remaining unit positions along calculation paths
16: end while

We sample a complementary set of gravity vectors, actively
or passively driving the robotic body parts into a variable
number of different poses, while the skin remains unde-
formed. Our approach explicitly makes use of the intelligent
networking capabilities of our artificial skin, able to explore
the connectivity in between the nearest neighbors. Shifting
the problem to graph theory and applying local, instead of
global optimization the system can quickly adapt to changes,
e.g. delete non-physical relations when body structure in-
formation becomes available (please refer to [9]). Utilizing
no external sensors, and only little robot independent a-
priori knowledge, the algorithms can be quickly transferred
between robots. This touchless skin calibration approach
saves time and enables fast initial or re-calibration.

II. SYSTEM DESCRIPTION

In this section, we first describe our artificial skin. We
continue with a mathematical formulation of the problem,
state our assumptions and present our solution. Finally, we
address the scalability of our approach.

A. Artificial Skin
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Fig. 2. The sensor unit – uniform building block of the artificial skin

Our artificial skin builds from thin, hexagonal shaped,
rigid unit cells (see Fig. 2) placed next to each other in
a deformable elastomer mold (see Fig. 1). In comparison
to rhomboids and triangles, we consider the hexagonal unit
shape optimal for a uniform surface sensor network (see
[8] for details). Every sensor unit (SU) features a set of
multi-modal sensors on the front side, emulating human cues
of touch – such as light touch, temperature and vibration

(refer to [10]). In this paper, we make use of the triaxial
accelerometer – a BOSCH BMA150 – set at ±2g range
and 1kHz output rate. A local controller on the back side
of every SU allows to locally convert, pre-process and
forward sensor signals, and to organize an arbitrary network
of units. Neighboring units are connected through four 4-
wire data and power ports (see Fig. 2), each providing a
bidirectional 12Mbit/s data link. Currently, only specific
port combinations can be connected, in order to obey the port
polarity pattern. At least one boundary port of a skin patch
(SP), defined as a closely connected network of neighboring
units, has to be connected to a computer interface. Executing
an automated network exploration algorithm (see result in
Fig. 3) the SU network discovers all (bidirectionally) avail-
able communication ports, sets up optimal routing pathways
to the computer, distributes unique IDs and explores the net-
work neighbors on every port. The position and orientation
of the sensors on a SU, the size of the hexagonal shape and
the port vectors, are known and static in respect to the local
SU coordinate system.
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Fig. 3. Automatic network exploration utilizing local communication

B. Problem Formulation
Our aim is to efficiently estimate the relative position and

orientation of uniform sensor units (SU), distributed on the
surface of robotic body parts, utilizing static a-priori and
dynamically generated on-line knowledge.
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Fig. 4. Model of the elastomer link in between two sensor units

As our artificial skin builds from an instantiation of
the same thin rigid unit cell, rigid body transformations,
featuring a rotation cRn and a translation ct⃗n, adequately
describe the connection in between two neighboring SUs
n and c (see Fig. 4). No scaling, shearing, reflection or
projection takes place in between the uniform unit cells:

cTn = [
cRn

ct⃗n
0 1

] (1)



We further assume that the link in between two units n
and c, directly connected through port lc and ln, can be
approximated, setting the link point of the extended port
vectors cp⃗lc,c and np⃗ln,n equal in common coordinates:

cTn ⋅ np⃗ln,n ≡ cp⃗lc,c (2)

This assumption is based on specific properties of our
artificial skin: 1) artificial skin cells do not overlap; 2) a
dense tessellation of thin hexagonal shaped unit cells on
a surface, constrains the local placement and alignment of
each cell; 3) ports have to be closely placed and initially
aligned, to be directly connected; 4) the average gap size for a
tessellation is known a-priori; 5) the translational component
of a relatively small elastomer gap in between thin, rigid
hexagonal cells can be neglected; 6) the point of rotation of
the elastomer gap is approximately in its center. Based on
these assumptions, we can neglect the change of the small
gap vectors (see Fig. 4) and add half of the known gap size
directly to each port vector - forming the four presented
extended port vectors up⃗lu,u, known in unit u coordinates.
Combining (1) and (2) leads to:

ct⃗n = cp⃗lc,c − cRn ⋅ np⃗ln,n (3)

This shows that the relative translation ct⃗n can be cal-
culated from the relative rotation cRn and the connected
ports. We utilize knowledge from the network exploration
to find directly connected ports and measurements from the
unit gravity vectors to estimate the relative rotation. When
all local transformations in a skin patch (SP) are known, the
orientation and position of every SU u, relative to a chosen
origin unit o, can be calculated as kinematic chain between
u and o, with a variable number of units x in between:

oTu = oT x ⋅ ... ⋅ xTu (4)

An error estimate allocated to every local transformation
allows to minimize the inherently accumulated error, search-
ing for an optimal kinematic chain for every skin patch.
The shape and size of the unit, as well as the position and
orientation of every sensor on a unit, are known in unit
coordinates. With Equation (4), it is possible to transform
these into common skin patch coordinates. This allows the
reconstruction of the partial shape of the carrier object, the
surface of the skin patch and the orientation and location of
every sensor in it, relative to the origin of each skin patch.

C. Problem Solution
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Fig. 5. Partial visualization of the X17 skin patch graph with GraphViz

1) Representation as Graph: We found that graph
theory (here implemented with BGL1) provides an ade-
quate representation for our artificial skin, and methods to
efficiently handle arbitrary configurations of sensor units
(SU). We begin with parsing the result of the automatic
network exploration (refer to II-A) into an empty graph (refer
to Alg. 1), attaching a property map to the graph, with a
variable for the number of skin patches and a vector to
memorize the origin of each skin patch. For every sensor
unit we create a vertex, attaching a property map with its
unique ID and placeholders for its skin patch ID, relative
orientation matrix and position vector. For every neighbor,
in the list of network neighbors, we create a directed edge,
attaching a property map with the ID of the source and the
target, as well as the source port and the target port, and
placeholders for the relative rotation matrix and the weight
related to the estimation error. As all available connections
are bidirectional, each adds two edges (see Fig. 5). For the
3D reconstruction of skin patches, only close connections are
of interest (refer to II-B). All others edges need to be deleted
or muted. Here, we implemented two methods: 1) we delete
edges to the computer interfaces, acting like units with top of
the range IDs; 2) we delete edges in between different body
parts (given knowledge from [8]), as so far, these can only be
connected by long cables. For the next steps, the relative edge
rotation estimation must be complete for all edges (refer to
II-C.2). First, we perform a connected components algorithm
on the whole graph. This algorithm returns the number of
skin patches S and assigns every unit to a patch s. Next, we
search the unit with the shortest accumulated path for every
skin patch, based on a Dijkstra shortest path algorithm, and
set it as origin os of the patch. As the positions w t⃗os and
orientations wRos of the skin patch origins are not defined,
we default them to:

w t⃗os = 0⃗ and wRos = I , s ∈ {1, ..., S} (5)

Starting from each origin os, we then propagate along the
shortest paths and update all relative unit orientations osRu
and positions os t⃗u along the kinematic chain:

osRn = osRc cRn (6a)
os t⃗n = os t⃗c + osRcct⃗n (6b)

2) Relative Rotation Estimation: The rotational compo-
nent cRn of the transformation cTn in between two directly
connected units n and c combines two subcomponents: 1)
the 2π

6
repetitive initial port alignment of the hexagonal

tessellation; 2) the deformation of the elastomer gap, sim-
plified as rotation around the link point (see Fig. 4). Due
to Equation (3) both can be estimated at the same time.
However, it is possible to add specific additional knowledge,
in case a subcomponent is not fully defined, which we
will show later. We estimate the rotation cRn based on

1J. G. Siek and L. Q. Lee and A. Lumsdaine, “The Boost Graph Library”,
Addison-Wesley, 2001, version 1.4.9



measurements of the time t dependent unit gravity vectors
cg⃗c(t) and ng⃗n(t) with the triaxial accelerometer on every
unit. This is possible as the gravitational field wg⃗(w r⃗ + ws⃗)
in world coordinates w, for a robot on the earth surface
(w r⃗ = 6371km, M = 5.9 × 1024kg, G = 6.7 × 10−11 m3

kg⋅s2
),

is independent of the sample point (ws⃗ << w r⃗), the mass of
the robot (m <<M ) and time t.

wg⃗(w r⃗ + ws⃗) = −G(M +m)
∣w r⃗ + ws⃗∣3 (w r⃗ + ws⃗) ≈ wg⃗ (7)

The relative (time dependent) rotation matrix cRn(t) thus
directly links the two local gravity vectors cg⃗c(t) and ng⃗n(t):

cRn(t)ng⃗n(t) = cg⃗c(t) (8)

As described in [6], a single measurement of the gravity
vectors is not sufficient to estimate the relative orientation
of rigid bodies. Here, we present a method to combine
a variable number of measurements of the gravity vectors
cg⃗c,p and ng⃗n,p in P different poses p, to gain the missing
complementary information. We therefore actively or pas-
sively drive the skin patches in different poses in between
two measurements. Active means that the robot actuates a
related, rotatory joint itself. Whereas passive specifies that
the operator changes the whole robot orientation or forces a
related rotatory joint to move. The method assumes that the
relative rotation cRn(t) changes only little over the lifetime
T of the reconstruction:

cRn(t) ≈ cRn, t ∈ [0, T ] (9)

This (quasi) rigid body assumption makes it possible to
continuously generate new sets of gravity vectors, changing
the orientation bRw(t) of the body part b the skin patch is
mounted on, in time t:

cRn
nRw(t)wg⃗ = cRw(t)wg⃗ (10a)

nRw(t) ≡ cRw(t) ≡ bRw(t) (10b)

Complementary information specifies that the following
system of equations, to solve the nine unknown elements of
the 3 × 3 rotation matrix cRn, has to be determined:

cRn
ng⃗n,p = cg⃗c,p (3 × P ) (11a)

det(cRn) = 1 (1) (11b)
cRTn = cR−1

n (3) (11c)

Equation (11a) can provide up to 9 independent equations
based on P = 3 orthogonal gravity vectors:

ug⃗Tu,1
ug⃗u,2 = ug⃗Tu,1ug⃗u,3 = ug⃗Tu,2ug⃗u,3 ≡ 0, u ∈ {n, c} (12)

Given the additional properties of the rotation matrix,
defined in Equations (11b) and (11c), it is sufficient to
provide the system with a set of P = 2 independent grav-
ity measurements, to maintain an overdetermined system.

Certain rotations of the body part, in order to reach new
poses, are excluded to obtain independent equations in (11a).
Rotations around the gravity vector itself or π repetitive
rotations around any axis, provide linearly dependent equa-
tions. We decided to utilize a constrained general solution
of the procrustes problem2, to find a rotation matrix cRn
that closely maps a variable set nNP×3 of P gravity vectors
ng⃗n,p to a variable set cCP×3 of P gravity vectors cg⃗c,p. The
actual solution of the mapping is thus shifted to a singular
value decomposition of the two sample sets nN and cC:

ncU ncΣ ncV
T = svd (nNT

cC) (13)

The rotation matrix cRn builds from the left singular
vectors in ncU , the right singular vectors in ncV and ncΣ

′:

cRn = ncU ncΣ
′

ncV
T (14)

Sigma ncΣ′ is a 3×3 identity matrix I3×3 with the location
of the lowest singular value at (3,3) replaced with the
determinant det(ncUncV T ), in order to enforce cRn to be
a special orthogonal matrix:

ncΣ
′ =

⎛
⎜
⎝

1 0 0
0 1 0

0 0 det(ncUncV T )

⎞
⎟
⎠

(15)

We only utilize the original singular values ncσ1 ≥ ncσ2 ≥
ncσ3 in ncΣ in order to evaluate the quality of the estimation.
In the following calculations we assume that all measured
gravity vectors are normalized:

∣g⃗∣ ≡ 1[g] (16)

Deviations of g⃗ from the local constant GM
r2

indicate
additional effects with the accelerometer (see Equ. (18)).
With the normalization, we make our approach independent
of the local constant. The estimation of cRn itself is not
affected by a normalization, as a rotation conserves the length
of a vector. Here, we only differentiate in four estimation
qualities, with the following edge weights ncw:

un- ncσ1 < 1,ncσ2 < 1 ncw = 3 (17a)
partially- ncσ1 ≥ 1,ncσ2 < 1 ncw = 2 (17b)

fully- ncσ1 ≥ 1,ncσ2 ≥ 1,ncσ3 < 1 ncw = 1 (17c)
over-defined ncσ1 ≥ 1,ncσ2 ≥ 1,ncσ3 ≥ 1 ncw = 1 (17d)

In case of an undefined or only partially defined estima-
tion, it is not possible to completely estimate the rotational
component around the link point in the elastomer gap.
However, the alignment of the connected ports can still be
enforced, appending a set of scaled (10% of unit length),
correctly signed (incoming or outgoing) gap axes (see Fig. 4)
to the data sets nN and cC. The influence of the support axes
vanishes when the gravity measurements (P unit vectors) are
well defined, but help to stabilize the system output in un-

2P. H. Schonemann, “A generalized solution of the orthogonal Procrustes
problem”, Psychometrika 31, pp. 1-10, 1966



or partially defined cases. Finally, we wish to describe the
sampling of the gravity vectors. We measure the the gravity
vectors ug⃗u,p of every unit u in a skin patch in different
poses p with an accelerometer aligned with the unit origin.
The accelerometer does not only measure a rotated version
of the world gravity vector wg⃗, but also the second time
derivative of position of the unit origin, transformed from
world wo⃗u(t) into unit uo⃗u(t) coordinates by the rigid body
transformation uTw,p(t) of pose p:

ua⃗u,p(t) =
d2

dt2
(uRw,p(t)wo⃗u,p(t) + w t⃗u,p(t))+

+ uRw,p(t)wg⃗ (18)

This shows that, in order to be able to extract the gravity
vector from the accelerometer data, the skin patch has to
maintain a static pose in world coordinates. We then average
K = 100 subsequent samples at 1kHz in every pose p to
decrease the influence of noise and vibrations on the robot:

ug⃗u,p =
1

K

S

∑
k=1

ua⃗u,p[k] (19)

Sampling a pose p thus currently takes 100ms.

D. Scalability
Every time a new, e.g. scaled unit version has to be

integrated, only the unit specific information must be up-
dated. A smaller size of the unit cell naturally increases
the number of consecutive transformations, which increases
the potential for propagation errors. However, we think that
the increasing number of alternate pathways, the decreasing
influence of a single (local) transformation and the denser
sampling of the surface will finally decrease the overall
error. A higher number of unit cells, and their subsequent
connections, will also increase robustness due to the manifold
of network redundancies. Erroneous connections or units
are automatically ignored during network calibration, only
connected components are automatically labeled as patches.
Shifting to flexible units, a smaller unit size would also allow
to neglect the unit deformation and to continue with the rigid
body assumption. As our approach only has to estimate the
relative rotation in between units, it could be implemented
with alternative sensors – e.g. direct 3D bending sensors in
the gap. In order to save high level processing time, most of
the relative computations can be shifted to the unit cells.
Finding direct neighbors through the network exploration
is a very fast method, it currently takes roughly 130ms to
power up and explore U = 31 units – most of which is static
waiting times. Still, we could generate edges with a different
method, using e.g. informational distances, for an artificial
skin that does not provide this feature. Regarding processing
power our approach is efficient. The rotation estimation is
calculated numerically with a singular value decomposition,
while the graph algorithms have known complexity. All test
patches shown in Section III can be reconstructed with f ≈
10Hz, in our automatically refreshing single pose test mode
(100ms sample time). Currently our approach is limited

to the reconstruction of skin patches. This is due to the
unknown transformations in between skin patch origins.

III. EXPERIMENTS
In this section, we provide experimental results on the 3D

reconstruction quality of exemplary test patches.

Fig. 6. 3D reconstruction of a cylindrical carrier with the X17 patch

1) Shape Reconstruction: In this experiment, we provide
qualitative results on the reconstruction quality of a carrier
object. To do this, we put a X-shaped skin patch, made from
U = 17 sensor units, on a geometrically known object, an
aluminium cylinder with a measured radius of rreal = 50.1mm
(see Fig. 6). We sample a minimal set of gravity vectors in
P = 2 orthogonal poses. The first pose with the cylinder
standing on a desk, the second held by hand as depicted
in Fig. 6, to account for vibrations. We then compare the
generated point cloud os t⃗u of the U = 17 unit origins u,
with the ground truth – the parameterized cylinder surface.
As we do neither exactly know the alignment of the x-
shaped patch on the cylinder, nor its axis or a point on it,
we start with a registration algorithm on the point cloud.
We utilize the fgcylinder function of the LSGE3 MATLAB
library. Besides the point cloud, fgcylinder requires rough
initial estimates on the cylinder axis (os h⃗init = [0; 1; 0]mm),
the radius (rinit = 15mm) and one point on the axis (os b⃗init =
[0; 0;−15]mm), which we provide. Starting from this input,
fgcylinder estimates the best fitting cylinder axis (os h⃗est =
[−0.02; 1.00; 0.01]mm), radius (rest = 49.80mm) and one
point on the axis (os b⃗est = [−3.11; 1.21;−49.64]mm), based
on a least squares algorithm. Additionally, it provides an
array dest[U] of the minimal radial distances, in between each
of the U unit origins and the parameterized surface model
(see Fig. 7). We utilize this array, along with the difference
in between the real rreal and estimated rest cylinder radii, in
order to build a quantitative reconstruction error εrecon metric:

△ = rest − rreal (20)

εrecon =

¿
ÁÁÀ 1

U

U

∑
u=1

(dest[u] +△)2 (21)

3“The least squares geometric elements library”, EUROMET Repository
of Software, version 0.7.6



For the experiment show in Fig. 6 we maintained a
difference of △ = −0.30mm and an error of εrecon = 1.62mm.

Unit ID
x
y
z
d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
39.5 43.2 37.1 21.9 0 23.0 40.6 48.9 46.1 -23.0 -41.6 -51.2 -49.7 -23.0 -42.5 -53.6 -52.2
57.1 43.2 29.0 14.6 0 -13.4 -26.4 -39.3 -52.0 14.1 28.1 41.8 54.5 -13.5 -27.2 -40.3 -51.6
-69.0 -45.8 -23.2 -6.2 0 -5.7 -21.5 -44.0 -67.8 -4.7 -18.7 -40.0 -64.1 -5.4 -19.1 -39.7 -64.2
-1.77 -2.52 -1.32 0.36 -0.06 -1.27 1.83 1.71 1.50 -0.89 -0.99 -1.62 -1.97 -1.06 0.66 2.52 2.35

Fig. 7. Comparison of the cylinder point cloud with ground truth

We did not take the thickness f ≈ 3.4mm of the skin into
account, statically modeled the elastomer gap as an extension
of the according port vectors by half of the gap ( 1.77

2
mm)

and did not calibrate the triaxial accelerometers. We are
aware that a selection of the unit origins, as sample points,
is optimal for a concave surface like the cylinder, whereas
points on the boundary of the rigid hexagonal shape would
be optimal for a convex surface. With a decrease of the unit
size, in comparison to the curvature of the robotic part, this
will no longer be relevant.

Fig. 8. Closed loop reconstruction of a skin patch with 8 units

2) Closed Loop Case: In this experiment, we provide
qualitative results on the closed loop test case. To do this,
we place a patch of U = 8 units in the longest configuration
- a straight line. We then tape the two unconnected ends
closely together, forming a ring (see Fig. 8). In order to
stabilize the shape between poses, we fix the patch on a
paper cup. We then sample P = 2 orthogonal poses, one
with the cup standing on the table, the other holding the
cup by hand, to account for vibrations. Fig. 9 depicts the
difference in between the link points os p⃗2,1 and os p⃗3,8 of the
unconnected, but closely placed ports 2 and 3, in between
the units with ID 1 and ID 8. In the given experiment the
difference vector δ⃗ = [−6.10;−2.36; 8.16]mm has a length of
∣δ⃗∣ = 10.46mm. Compared to the loop length L = 222.28mm
of the 16 accumulated port vectors, the error is 4.71%. The
curvature of the skin, and thus also the error of the simplified
gap model, is higher then in the previous experiment. Every

gap is prone to a 360/8 = 45○ rotation. The light cup also
makes it difficult to hold the second pose manually stable.
Both will be less problematic once we move onto the robot.
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Fig. 9. Deviation of link points in the closed loop experiment

IV. CONCLUSION
In this paper, we introduced a touch-less approach to

reconstruct the 3D shape of robotic body parts, based on
an internal observer with minimal a-priori information on
the elemental unit cell of our skin. Our algorithm poses
constraints on the design of the artificial skin and can
currently only reconstruct patches of skin. Accounting for
these limitations, our method provides a very fast (< 250ms)
and sufficiently accurate (< 5% error) procedure to gain parts
of the robot body schema - the shape of body parts and the
relative orientation and position of sensors on them.

Acknowledgment

This work was supported (in part) by the DFG cluster of
excellence ’Cognition for Technical systems - CoTeSys’.

REFERENCES

[1] M. Hoffmann, H. G. Marques, A. H. Arieta, H. Sumioka, M. Lun-
garella, and R. Pfeifer, “Body schema in robotics: A review,” IEEE
Transactions on Autonomous Mental Development, vol. 2, no. 4, pp.
304–324, December 2010.

[2] S. Fuke, M. Ogino, and M. Asada, “Body image constructed from mo-
tor and tactile images with visual information,” International Journal
of Humanoid Robotics, vol. 4, no. 2, pp. 347–364, March 2007.

[3] A. D. Prete, S. Denei, L. Natale, F. Mastrogiovanni, F. Nori, G. Can-
nata, and G. Metta, “Skin spatial calibration using force/torque mea-
surements,” IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 3694–3700, September 2011.

[4] Y. Kuniyoshi, Y. Yorozu, Y. Ohmura, K. Terada, T. Otani, A. Na-
gakubo, and T. Yamamoto, “From humanoid embodiment to theory of
mind,” Lecture Notes in Computer Science, pp. 202–218, 2004.

[5] J. Modayil, “Discovering sensor space: Constructing spatial em-
beddings that explain sensor correlations,” IEEE 9th International
Conference on Development and Learning, pp. 120–125, 2010.

[6] T. Hoshi and H. Shinoda, “Gravity-based 3d shape measuring sheet,”
SICE Annual Conference, pp. 2126 – 2131, September 2007.

[7] ——, “3d shape measuring sheet utilizing gravitational and geomag-
netic fields,” SICE Annual Conference, pp. 915–920, 2008.

[8] P. Mittendorfer and G. Cheng, “Uniform cellular design of artificial
robotic skin,” 7th German Conference on Robotics, pp. 145–149, May
2012.

[9] ——, “Open-loop self-calibration of articulated robots with artificial
skins,” IEEE International Conference on Robotics and Automation,
pp. 4539–4545, May 2012.

[10] ——, “Humanoid multi-modal tactile sensing modules,” IEEE Trans-
actions on Robotics, vol. 27, no. 3, pp. 401–410, June 2011.


