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Abstract— In this paper, we present a twofold, open-loop
method to explore, model and calibrate articulated robots
equipped with artificial skin. We do so, using a 3-axis ac-
celerometer per artificial sensor skin unit (SU) and special
excitation pattern on every actuated degree of freedom (DoF)
of the robotic joints. The first algorithm extracts the kinematic
dependencies in between segments, equipped with artificial skin
units, and joints, featuring one or multiple rotatory DoFs. A
second algorithm uses this structural knowledge to automati-
cally build and estimate kinematic models in between a static
reference and an end effector segment. We show experimental
results for the structural exploration with a KUKA light weight
robotic arm equipped with our own SU prototypes. Additional
simulation results, supporting our approach on estimating the
kinematic parameters of the robot, are also presented.

I. INTRODUCTION

1) Motivation: In comparison to a robot purely relying
on joint information (position and/or force), a robot equipped
with sensitive skin has a much richer information set. It
can not only classify different touch events, e.g. temper-
ature changes or impacts, but also accurately localize the
origin of the sensations and act meaningfully. In order to
do so, integrative control algorithms need information on
the relative location and orientation of every sensor and
actuator. Manually providing this information is infeasible,
due to the possible high number of sensors and actuators.
Such a process would also be erroneous and exclude non-
specialist users. To overcome this, automated calibration
routines can be realized on robots equipped with artificial
sensor skins. The robot can utilize its own sensors and
actuators to explore, model and calibrate itself. This is
especially useful when a sensory system is not designed for a
single robot, but applicable across multiple robotic platforms.
The system should then only use general physical means for
its calibration, instead of robot specific a-priori knowledge,
and apply simple constraints that a non-specialist user can
understand and establish. An easy re-exploration mechanism
is also useful to accommodate hardware failure or hard resets
with autonomous robots. Here we are motivated to handle
the available sensors and actuators in a single approach, to
cope with sensor, actuator and structural changes at once. We
are also specifically interested in a contact free, open loop
method, as this provides a fast, safe and unambiguous way
to generate the necessary actuator to sensor excitation.

2) Related Works: In [1] we introduced a new artificial
skin which we had to manually provide with information
in order to react on touch stimulation. We then presented a
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Fig. 1. Problem set - Unknown physical distribution of artificial sensor
skin units (SU) and degrees of freedom (DoF) with an articulated robotic
arm. Accelerations acting on a SU when a single, rotatory DoF is being
excited, while one reference segment (RS) is kept static.

method [2] to automatically acquire and store local reaction
behaviors for a varying number of distributed sensors and
actuators. This approach is only feasible with a limited
number of actuators and/or limited workspace, as it has to
a-priori explore every pose it needs to react in, or utilize a
’similar’ one from memory. In this paper, we focus on the
next step, building and estimating a more general model.

Related approaches, such as motion capture systems, have
been largely used to automatically build and estimate kine-
matic models. Most systems track active [3] or passive [4]
visual markers/features. Such approaches can be extremely
fast and can robustly adapt to structural changes [5]. Mag-
netic motion capture systems perform better when occlusion
is a problem but have problems when utilized on metal frame
robots [6]. All of these systems rely on a globally accurate,
calibrated external sensor system and the availability of
robust markers/features to track. Wearable motion capture
systems in contrast, like the XSens MVN [7], come with a
specific underlying body model of which several parameters
have to be given manually and others are found, matching
known postures. Classic robot calibration methods, where
the robot model is known, but subject to imperfections in
fabrication and/or wear and tear, split into closed and open
loop approaches [8]. Most open loop approaches require a
calibrated external metrology system, of which the noise



plays a significant role [8]. Closed loop measurements profit
from the accuracy of the fixation point to the environment
or another manipulator. Their precision stands and falls with
this fixation accuracy. With over constrained closed loops
additional sensors have to be provided, like a force torque
sensor at the endpoint in [9].

Different methods of sensor skin based self-exploratory
learning have been reported in simulations [10], as well
as practical implementations [11]. Visual information is
commonly used, along with a strongly constrained and time
consuming probing of each individual sensor.

A special form of open loop calibration, which is closely
related to our work, has been presented in [12]. Canepa et
al. use a 3-axis accelerometer on the end effector to conduct
a circle point analysis [13]. However, their approach is based
on a first order integration of the accelerometer data and large
movements. This requires high integrity of the accelerometer
data, which can normally only be achieved with large and
expensive high grade devices. Here, we make use of many
small, low-cost devices distributed over the robot, in order
to estimate both, structure and kinematic parameters without
any integration of the signals.

We concur with a statement of Hoffmann et al. in [14]
that the work on models in robotics is heavily biased toward
manipulator arms observed by a camera, which is lacking
the integration of multiple modalities as demonstrated by
biological agents. In contrast to biological agents using
implicit models, we focus here on an explicit model. Explicit
models according to Hoffmann et al. are easier to debug, to
link to common control theory and provide valid data also
in previously unseen situations.

3) Our Approach: In this paper, we utilize one of the
multiple sensing modalities located on every unit cell that
our artificial skin consists of – a three-axis accelerometer.
Given that a central segment of the robot can remain static
during exploration, it is possible to directly evaluate motion
pattern of the robot with these distributed accelerometers.

Algorithm 1 Structural Exploration (whole robot)
1: Detect number of available SUs (U) and DoFs (D)
2: Move one DoF a time, sampling all SU gravity vectors
3: Create activity matrix AU×D, thresholding the samples
4: Merge SUs with similar row vectors in A to segments
5: Merge DoFs with similar column vectors in A to joints
6: Extract connection sequences from row vectors
7: Detect the reference segment (RS)
8: Determine available end-effector segments
9: Assemble a serial sequence for a robotic limb

The first step of our algorithm (see Alg.1) analyses the
structural dependency of the robot. By applying excitation
pattern to all degrees of freedom (DoFs), one after the other,
the robot detects which sensor unit (SU) reacts towards
which DoF. Given that each segment of the robot is equipped
with at least one SU, our new method is then able to
merge DoFs to joints, SUs to segments and discriminate the

kinematic dependency of joints and segments. This method
provides us with information on how many body parts there
are, which SUs belong to which body part, how joints,
combining one or more DoFs, connect the body parts and
which body parts are end effectors, located at the end of a
serial chain.

Algorithm 2 Kinematic Estimation (selected limb)
1: Instantiate serial chain model of selected limb (Alg.1)
2: Generate training data in (P) randomized poses
3: Optimize parameters of model to best fit training set

In the second step, our algorithm (see Alg.2) uses this
structural knowledge to build a kinematic model for the
DoFs and SUs located on the same limb. What we refer
to as robotic limb is the connection of joints and segments
in between the stationary segment and one end effector
segment. The robot then generates a training data set for
every limb, moving and sampling the related DoFs and SUs.
Every training set contains measurements of the static gravity
vector, as well as the dynamic acceleration on isolated DoF
motion pattern, for multiple random DoF poses. A global
optimization algorithm then minimizes the error in between
readings generated by the kinematic model and the training
data set.

The advantage of our approach is that we require only
minimal, robot independent a-priori knowledge – a physical
model relating actuation and sensation. Only few constraints
have to be taken into account: one SU per segment, one
static segment, no closed loop is required during calibration.
Using an internal observer we are not limited by occlusion
or any external components. Our method is able to acquire
the information in a short time, which is especially useful
for ongoing autonomous re-calibration.

II. SYSTEM DESCRIPTION

A. Robotic System

In this section, we first describe our artificial sensor skin.
We then summarize the constraints our method assumes.
Finally, we describe the physical effects every accelerometer
is exposed to, given these constraints (see Fig. 1).

1) Artificial Skin: What we refer to as HEX-O-SKIN
sensor unit, is a rigid, hexagonal shaped printed circuit board
(PCB), with multiple sensors on the front side, emulating
human cues of touch, and a local controller on the back side,
converting, processing and forwarding sensor signals in an
arbitrary configuration of units (refer to [1]).

In this paper, we make use of the 3-axis accelerometer
available on every SU. Currently this is a BMA150 from
BOSCH with 10 bit resolution, set at ±2g range and a sample
rate of 1 kHz. The alignment of the accelerometer coordinate
system towards all other modalities, located on the same SU,
is known and static. Consequently, it is sufficient to estimate
the kinematic relations towards the accelerometer coordinate
systems.



2) Constraints: First of all we assume rigid body kine-
matics, joints with one or more DoFs are connected by non-
deformable segments. During the whole calibration process
one reference segment on the robot has to remain static in
world coordinates. With a robotic arm or wheeled robotic
platform this constraint is naturally given by the base or
chassis. For a humanoid robot the torso is considered best,
as it is a casual point to fix a humanoid, is located close
to the center of mass and is a relatively central point in
the kinematic tree. Choosing the static segment has a large
influence on the outcome of our method, as it serves as
root to the structural exploration as well as the kinematic
models. It is necessary that every degree of freedom (DoF)
can be actuated freely. Impacts with the DoF limits and any
objects surrounding the robot would interfere with the motion
generation and sensory sampling. Closed loop and under-
actuated kinematics can not be handled with our method.
We also assume that we can control the robot with velocity
commands and the position sensors are calibrated. The robot
needs to be equipped with at least one SU per segment.
Only then is it possible to unambiguously discriminate the
sequence of joints and segments of the robot’s kinematic tree.
So far the kinematic model estimation only features joints
with a single DoF. Multi-DoF joints in robots can be built
either by a close sequence of DoFs or a complex driving
mechanism. Identifying and parameterizing these is part of
our future work.

3) Sensor Actuator Relation: Neglecting skin deforma-
tions, every SU follows the acceleration of its mounting
point. Given a static reference segment like in Fig. 1, the
acceleration of all mounting points can be directly con-
trolled by actuating the related DoFs. A change in velocity
( d
dt
RSωd(t) = RSαd(t)) of a revolute DoF (d) has a direct

influence on the acceleration of the SU (u), which composes
from three different effects:

(a) The tangential acceleration (RS a⃗tanu,d
), which is de-

pendent on the rotatory acceleration of the DoF (RSα⃗d) and
the vector (RS r⃗u,d), in between the DoF axis (d) and the
mounting point of SU (u):

RS a⃗tanu,d
= RSα⃗d × RS r⃗u,d (1)

(b) The centripetal acceleration RS a⃗cpu,d
, which is dependent

on the angular velocity RSω⃗d as well as the vector RS r⃗u,d:
RS a⃗cpu,d

= RSω⃗d × (RSω⃗d × RS r⃗u,d) (2)

(c) And the gravity vector RS g⃗.
An accelerometer does not distinguish, but senses all

effects at the same time, in its local coordinate system:
SUu a⃗u,d = SUuRRS ⋅ (RS g⃗ + RS a⃗tanu,d

+ RS a⃗cpu,d
) (3)

The rotation matrix SUuRRS in between the static refer-
ence frame and the SU, as well as the vector RS r⃗u,d, are
dependent on the unknown kinematics of the robot.

B. Structural Exploration
1) Activity Matrix Generation: What we refer to as

activity matrix is a binary matrix with the following entries:
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Fig. 2. Steps of the structure exploration algorithm for an activity matrix
representing a “simulated” humanoid robot (our test case). Available SUs
and DoFs, as well as detected body segments and joints are automatically
labeled with consecutive identification numbers (IDs).

1) a ‘1’ when a SU can be moved by a DoF during
calibration; 2) a ‘0’ when no or only minor motion is
detected. In II-A.3 we summarized the three effects we
are able to measure with the accelerometer on moving a
rotatory DoF. Both dynamic effects are dependent on the
radial distance (RS r⃗u,d). When the absolute of this vector
is close to zero, both effects vanish. Dynamic motions also
induce other sources of noise, like vibrations on the robot
and coupling effects in between DoFs. These would make the
separation in between the two binary states a very difficult
task. However, the correct generation of the activity matrix is
crucial to the structural exploration as well as the kinematic
estimation that builds on it. This is why the third static effect
is utilized. Changing a DoF from one to another position
changes the orientation of all related segments in the same
way (rigid body kinematics). It thus also rotates the gravity
vector (SUu g⃗) in accelerometer coordinates in the same way.
Fixed thresholds can thus be applied for every SU. Since the
gravity vector can be measured statically in both poses, no
additional care has to be taken regarding dynamic problems
like DoF coupling or vibrations on the robot. Problems arise
when some of the DoF axes are aligned close to or exactly
vertical, as the gravity vector then only rotates around its
own axis and the accelerometer values do not change. An
attribute of the activity matrix can be used to prevent this
case. Multiple activity matrices of the same robot can be
easily combined by an element wise logical ‘or’ function.
The most secure approach to generate two complementary
activity matrices is to rotate the static segment of the robot
90 degrees around one of the horizontal axes. This ensures



that no rotation axis is aligned close to vertical with both
matrices and a matrix entry is falsely set ‘0’.

2) Segment and Joint Merging: SUs that are located
on the same segment encounter the same ‘activity’ (refer
to Section II-B.1) and should thus ideally have identical row
vectors in the activity matrix. Consequently, all identical row
vectors of the activity matrix can be merged into segments
(see Fig. 2). A similar principle applies to DoFs, which are
located closely – for example the three DoFs in a shoulder
joint. DoFs that are located closely have identical column
vectors in the activity matrix. Consequently, all identical
column vectors of the activity matrix can be merged into
joints. This finally leads to a merged activity matrix, setting
joint and segment activities into a context. The number
of rows gives the number of detected segments while the
number of columns the number of joints. Here the number
of segments must always be one higher than the number of
joints. This is natural for a tree like robotic structure, where
an additional joint always connects an already existing body
segment with a new one.

3) Joint Segment Connectivity: The merged activity
matrix can now to be sorted to a lower triangular form.
Only a strictly lower triangular form, the secondary diagonal
(l(n+1)(n), n ∈ N) must only contain ‘1’ as entries and the
dimension of the matrix must be ((n) × (n + 1)), provides
the necessary input for the following algorithm step. If this
should not be the case, one of the given constraints has
been violated (refer to II-A.2). This could be for example
a missing static reference segment or end effector segments
without SUs, leading to (super-) diagonal elements. The
algorithm now progresses along the secondary diagonal
(l(n+1)(n), n ∈ N) – going from low to high indices. While
stepping through the merged and sorted activity matrix (see
Fig. 2) the algorithm searches rows that are identical except
for the current secondary diagonal element. This current
diagonal element is in fact a joint, related to the current
column index, which connects the two segments related to
the row indices.

4) Segments and Limbs: The joint segment connectivity
extracted in Section II-B.3 represents a hierarchical kine-
matic tree. The static reference segment (root) of the robot is
the null row vector of the merged activity matrix (see Fig.2).
‘True’ end effector segments (leaves), like the finger tips of
a humanoid, exactly connect to a single joint. Segments that
connect to more than two joints, like the palm of a humanoid,
are ‘false’ end effectors (inner nodes) and could be used as
reference segments for sub-limbs, like the fingers attached to
the palm of a humanoid hand. What we actually refer to as
limb, is a sequence of segments connected by joints, starting
from a reference segment and ending at a ‘true’ or ‘false’
end effector. With the KUKA light weight robotic arm the
kinematic tree is trivial, featuring a single limb (one branch
and one leaf) (see Fig.1).

C. Kinematic Estimation
In this section, we describe how we automatically build

and estimate kinematic models for robotic limbs (refer to

Section II-B.4). Due to the explicit model and the type of
sensor we are using, a 3-axis accelerometer, in comparison
to the result we wish to achieve, a kinematic model, we
need to provide additional information to the system. Here,
we provide additional information in the form of an error
function, part of which is an explicit serial chain model.
With a global optimization algorithm we then minimize the
error in between a training data set and the predictions from
the parameterized model.

(4 + 2)(4) (...)

N
dN

Serial Chain Model~✓pose

~✓0, ~d,~a, ~↵

✓acc, dacc

A, f RS

SUN~aN,dN

RSRSUN

Fig. 3. I/O Schema of the serial chain model.

1) Serial Chain Model: The serial chain model (see
Fig. 3) describes the sensor/actuator relationship in between
the static reference segment and one accelerometer coordi-
nate system on the (Nth) segment within the serial chain
of a robotic limb. Here we use Denavit-Hartenberg (DH)
parameters to specify the transformations in between DoF
axes along the way from the reference, as well as the last
transformation to the accelerometer coordinate system. The
serial chain model always refers to the static segment, as
it is the only known (static) reference point in the system.
DH parameters represent axis-axis transformations with a
minimal number of four parameters (θ, d, a,α), which is
especially useful when parameters need to be reduced for a
global optimization algorithm (refer to Section II-C.4). With
only four parameters it is however not possible to represent
the free position and orientation of the accelerometer coor-
dinate system. Also with other representations, e.g. screw
theory – using 4 independent plucker vector components
along with 1 rotation angle and 1 linear slide, 6 parameters
are necessary to describe a free translation and rotation. We
therefore introduced two additional parameters, a rotation
(θacc) and translation (dacc) along the z-axis for the last
transformation in between a virtual DoF axis (accelerom-
eter z-axis) and the free accelerometer coordinate system.
Our model takes a variable array of (N ) DH parameters
(θ⃗0, d⃗, a⃗, α⃗), the two additional parameters (θacc and dacc)
and the partial robotic limb pose (θ⃗pose) as input. From this
input it assembles a transformation matrix in between the
reference and accelerometer coordinate system:

SUNTRS = SUNTDoFN+1 ⋅ (
N

∏
d=1

DoF(d+1)TDoF(d))
DoF1TRS (4)

The transformation (DoF1TRS) in between the static refer-
ence coordinate system and the first DoF axis can not be
found (refer to Section II-C.5). Here we initialize it with the
identity matrix (I). The following matrices are DH transfor-
mations in between (N +1) consecutive DoFs, including the



final virtual DoF axis aligned with the accelerometer z-axis:

DoF (d+1)TDoF (d) =
⎛
⎜⎜⎜
⎝

cθd −sθdcαd sθdsinαd adcθd
sθd cθdcαd −cθdsinαd adsθd
0 sαd cαd dd
0 0 0 1

⎞
⎟⎟⎟
⎠

(5)

The parameter (θd) hereby composes of the DH offset (θ0d ),
the DoF position (θposed ) and a motion pattern (θpattd ):

θd = θ0d + θposed + θpattd (6)

The last transformation enables the free placement and
orientation of the (Nth) accelerometer frame relative to the
virtual DoF axis:

SUNTDoFN
=
⎛
⎜⎜⎜
⎝

cθacc −sθacc 0 0
sθacc cθacc 0 0
0 0 1 dacc
0 0 0 1

⎞
⎟⎟⎟
⎠

(7)

The serial chain model also contains a model of the motion
pattern (see Section II-C.2), we excite on every DoF during
exploration. Here we can control the amplitude (A) and fre-
quency (f ), as well as the DoF (dN ) the pattern is generated
on. One output of the model is the rotation matrix (RSRSUN

)
in between the accelerometer coordinate system and the
static reference segment for the current pose (θ⃗pose), which
is the transposed rotation matrix (SUNRRS), contained in
(SUNTRS). The second output is the maximum acceleration
(SUN a⃗N,dN ) of the accelerometer on the (Nth) segment,
measured in accelerometer coordinates, due to an exploration
pattern on the selected DoF (dN ). The model calculates
this value, rotating the second numerical differentiation of
the accelerometer position (RS p⃗N,dN(t)) in (SUNTRS), in
reference coordinates, back to accelerometer coordinates:

SUN a⃗N,dN = SUNRRS ⋅ RS a⃗N,dN (8)

SUN a⃗N,dN = (RS p⃗N,dN(h) + RS p⃗N,dN(−h) − 2 ⋅ RS p⃗N,dN(0)) /h2 (9)

The value is taken around the expected maximum acceler-
ation time point (t = 0) of the excitation pattern (refer to
II-C.2) with a differentiation time step of h = 1/(1000 ⋅ f).

2) Automated Training Data Generation: In order to
find significant model parameters it is necessary to generate
a descriptive set of measurements, in a number (P ) of
different poses (θ⃗posep ) of the (D) DoFs of a robotic limb.
We propose to randomly generate the DoF positions for
every pose within the rotatory range [−π,π]. With a real
robot the available workspace is of course constrained by
self-collision and motor range. As described in Section II-
A.3 we can measure static and dynamic effects with every
accelerometer in the current pose (p). Here we statically
sample the gravity vector (SUu g⃗u,p) of every accelerometer
(u) in every pose (p). In order to measure a dynamic effect
it is necessary for the robot to apply isolated motion pattern
to all of its DoFs (d). It is important to only move one
DoF at a time, in order to be able to directly separate
the information. Since we use an accelerometer, the robot
must generate DoF motion pattern (θpattd(t)) that the sensor

can measure. Here we optimized the generation towards
the tangential acceleration (SUu a⃗tanu,d

) which is directly
dependent on the angular acceleration (αpattd(t)). The cen-
tripetal acceleration (SUu a⃗cpu,d

) in contrast asks for a high
angular velocity (ωpattd(t)). With a natural limit in angular
acceleration, the robot can only achieve higher velocities
after some time, leading to dangerous high speed motions
with large angular range (△ϕpattd ). In order to maximize the
tangential acceleration, the angular acceleration (αpattd(t))
has to be high. To avoid oscillations, it is advisable to smooth
the commanded angular velocity (ωpattd(t)) as well as the
induced acceleration (αpattd(t)) and jerk ( d

dt
αpattd(t)). At

the same time we need to return to the same DoF position
(θpattd(T )), once the exploration pattern on the particular
DoF (d) stops and is shifted to the next DoF (d + 1). One
possible DoF pattern (θpattd(t)) that fulfills all requirements
is a sine wave with the first and second derivatives:

θpattd(t) =
A

2πf
(1 − cos(2πft)) (10)

ωpattd(t) = Asin(2πft) (11)
αpattd(t) = 2πfAcos(2πft) (12)

These equations give us a guideline how to dimension the
pattern parameters (f and A). The selection of (A) is limited
by the maximum DoF velocity of the robot. (2πfA) has to
be lower than the maximum DoF acceleration and below a
value that shows excessive coupling between the DoFs due to
the distributed mass. ( A

2πf
) has to be small enough to be able

to neglect the influence of the rotating gravity vector. Still
(2πfA), has to be sufficiently large so that the effect of a
DoF pattern towards the measurement of the accelerometer
(SUu a⃗u,d) stands out from the sensor noise. Since endless
sinusoidal DoF pattern would not allow to switch the pattern
between DoFs, we additionally need a windowing function
(F (t)). The actual commanded motor pattern (θpattcomd

(t))
thus is:

θpattcomd
(t) = θpattd(t) ⋅ F (t) (13)

Actually this commanded pattern and the related dervivatives
have to meet the desired constraints with a real robot. In
this paper we focus on simulated measurements generated
by the serial chain model itself. Neglecting the influence
of the window function, the simulator numerically provides
the maximum of the dynamic acceleration (SUu a⃗dynu,d,p

) for
every SU (u), in every pose (p) for a pattern (θpattd(t)) on
every DoF (d) at (t = 0).

3) Error Function: The error function has access to
the training data (refer to Section II-C.2) as well as the
serial chain model (refer to Section II-C.1). On every call
of the error function, the optimizer passes a current set of
serial chain model parameters (refer to Section II-C.1) for
a partial chain of (N ≤ D) DoFs. The error function then
evaluates the serial chain model in every partial pose (θ⃗posep )
of the (P ) poses of the training set. We only evaluate and
compare acceleration values on DoF pattern for up to three
DoFs directly before the accelerometer (refer to Section II-
C.4). Finally, the error function returns a positive, single



dimensional total error (eT ) which builds from two parts:

eT = e1 + e2 , eT ≥ 0 (14)

The first part (e1) is a measure of deviation of the (P ) gravity
vectors (SUN g⃗N,p) rotated back into the static reference
coordinates by the rotation matrix (RSRmod,pSUN

) of the current
serial chain model:

e1 =
P

∑
p=1

∣RS g⃗N,p −
1

P

P

∑
p=1

RS g⃗N,p∣2 (15)

RS g⃗N,p = RSRmod,pSUN
⋅ SUN g⃗N,p (16)

The second part (e2) is a mismatch in between the acceler-
ations (SUN a⃗ mod

dynN,d,p
) calculated by the serial chain model

with motion pattern on the last three DoFs, in comparison to
the accelerations (SUN a⃗ train

dynN,d,p
) sampled during training:

e2 =
P

∑
p=1

N

∑
d>0

d=N−3

∣SUN a⃗ mod
dynN,d,p

− SUN a⃗ train
dynN,d,p

∣2 (17)

(4) + (4 + 2) = (10)

(4-2) + (4 + 2) = (8)

(4 - 2 + 2) = (4)

(4) + (4 + 2) = (10)

(4) + (4 + 2) = (10)

(4 - 2)

(4 - 2)

(4 - 2)

(4)

(4) (4)

Sensor Unit

Pattern

No Pattern

Known

Unknown

1.

2.

3.

4.

5.

RS

RS

RS

RS

RS

Fig. 4. Progressive estimation of serial chain parameters from static
reference to end effector segment, showing the number of re-utilized and
newly estimated parameters, as well as the DoFs to be excited in each step.

4) Parameter Optimization: The parameter optimization
algorithm minimizes the value (eT ) of the error function
(refer to Section II-C.3) by tuning (D) DH parameter sets
(θ⃗0, d⃗, a⃗, α⃗). Since we can not provide a derivative of the
algorithmic error function, we use a randomized global opti-
mization algorithm (MLSL LDS)1 together with a derivative
free local optimizer (LN NELDERMEAD)2 of the NLopt
library3. Finding the global minimum of a function is a dif-
ficult task, becoming exponentially harder with the number
of parameters. We can be certain on finding a true global
minimum when (eT ) is close to zero (refer to Section II-
C.3). However, it turned out that the error function is badly
conditioned, in the sense that the local minimizer easily gets
stuck in a local minimum. This made a one step approach,
estimating all kinematic parameters of a serial chain at
once, impossible. We explicitly make use of the distributed
accelerometer located on every segment in order to reduce
the number of parameters that need to be estimated at the
same time. In Fig. 4 we show how we reuse already estimated

1A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization
methods”, Mathematical Programming, vol. 39, p. 27-78 (1987)

2J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion”, The Computer Journal 7, p. 308-313 (1965)

3Steven G. Johnson, NLopt V2.2.4, http://ab-initio.mit.edu/nlopt

kinematic parameter in between real DoF axes. Starting from
the static reference segment, the optimization algorithm only
has to estimate the parameter for new transformations. These
are the transformation in between the previous and new real
DoF axis, as well as the virtual DoF axis and the additional
parameters we use for the accelerometer coordinate system
(refer to Section II-C.1). For the first two DoFs the amount
of parameters is further reduced due to additional constraints
(refer to Section II-C.5). From three DoFs on, the amount of
new parameters stays a constant of (10), (4) for the real DH
transformation and (4 + 2) for the accelerometer coordinate
system. Another advantage of the incremental approach is
that we do not need to excite motion pattern with all DoFs
on every call of the error function. Actuating the last three
DoFs before the current accelerometer is enough for most
robot configurations. Two additional, non-trivial axes help
to align the estimation of the third axis, under evaluation,
with an already existing structure. This significantly reduces
the function call time and seems to also reduce the amount
of local minima. Actuating all DoFs every time also makes
the global termination criterion difficult, as estimation errors
accumulate with a growing chain. We use a global stop
criterion (eT ≤ eTstop ) and a local relative stop criterion
(△eT /eT ≤ eTftolrel

) to prevent time wasted in local minima.
Boundaries and start values have to be given to the global
optimization algorithm. We defined the boundaries as follows
and initialized the start value to the middle of each boundary:

θ0d ∈ [−π;π], dd ∈ [−1; 1], ad ∈ [0; 1], αd ∈ [−π;π] (18a)
θacc ∈ [−π;π], dacc ∈ [−1; 1] (18b)

5) Limitations: The approach presented in Section II-
C is limited to the following extent. It is only possible to
independently estimate the kinematic parameters for each
identified robotic limb. The transformations in between the
first DoF of a limb and an unique coordinate system on the
reference segment (DoF1TRS) can not be estimated as the
static segment can not be moved. Due to the same reason,
two parameters (θ01 and d1) of the first transformation
(DoF2TDoF1

) are arbitrary. In certain robotic configurations
the true Denavit-Hartenberg (DH) parameters (dd and ad),
as well as the extension (dacc), can not be determined by
purely analyzing accelerometer data. This is for example the
case when all DoF axes of a limb are aligned.

III. EXPERIMENTS
In this section, we present experimental results for the

structural exploration and supporting simulation results for
the kinematic estimation.

Structural Exploration: Fig. 5 shows results we maintain
when performing our structure exploration algorithm on the
real KUKA light weight robotic arm shown in Fig. 1. As ex-
plained in Section II-B.1 we need to generate a valid activity
matrix. We subtracted 1000 accelerometer values, sampled at
1 kHz in a static pose of the robot, from 1000 samples taken
at 1 kHz during a commanded motion (ωd(t) = 0.5 rad

s
) on

every DoF (d). The robot excites every known DoF after the
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Fig. 5. Result of the structure exploration algorithm for the configuration
shown in Fig. 1. Joint 2 and Segment 5 are highlighted in both figures.

other and automatically returns to the initial position after
every DoF motion. We then compared the absolute difference
of the mean values of the three accelerometer axes with a
constant threshold of (0.05g), setting the activity value to ‘1’
when the difference was larger. This method gave reliable
results for most of the robot poses.

DoF 1-2 DoFDoF 1-2 DoF DoF 2-3 DoFDoF 2-3 DoF DoF 3-4 DoFDoF 3-4 DoF DoF 4-5 DoFDoF 4-5 DoF DoF 5-6 DoFDoF 5-6 DoF DoF 6-7 DoFDoF 6-7 DoF
real est real est real est real est real est real est

0.100 0.000 0.200 0.203 -0.100 -0.113 0.300 0.303 -0.400 -0.423 0.100 0.117
0.100 0.000 -0.100 -0.101 0.000 -0.004 0.100 0.096 0.100 0.104 -0.300 -0.298
0.200 0.204 0.300 0.298 0.200 0.206 0.300 0.302 0.200 0.198 0.300 0.297
1.570 1.552 1.570 1.574 1.570 1.572 1.570 1.568 1.570 1.585 1.570 1.570

DoF 1-1 SUDoF 1-1 SU DoF 2-2 SUDoF 2-2 SU DoF 3-3 SUDoF 3-3 SU DoF 4-4 SUDoF 4-4 SU DoF 5-5 SUDoF 5-5 SU DoF 6-6 SUDoF 6-6 SU DoF 7-7 SUDoF 7-7 SU
real est real est real est real est real est real est real est

0.130 0.000 0.220 0.261 -0.130 -0.320 0.270 0.329 -0.200 -0.205 0.140 0.155 0.150 0.158
0.050 0.000 0.100 0.137 0.050 0.665 -0.050 -0.055 0.060 0.064 -0.070 -0.067 0.040 0.043
0.110 0.119 0.120 0.115 0.150 0.151 0.090 0.089 0.110 0.108 0.150 0.152 0.070 0.067
1.000 0.983 0.000 0.017 0.050 0.048 -0.070 -0.066 1.570 1.573 -1.580 -1.582 2.000 1.996
0.100 0.067 -0.110 -0.150 0.200 0.396 0.200 0.134 -0.130 -0.135 -0.160 -0.169 0.400 0.409
0.050 -0.099 0.100 0.067 0.050 -0.115 -0.050 0.107 0.060 0.064 -0.070 0.127 0.040 0.162dacc

✓acc

DoF-DoF Transformation Parameters

DoF-SU Transformation Parameters

✓0

✓0

↵

↵

d

d

a

a

1-7 2-7 3-7 4-7 5-7 6-7 7-7 Total
iterations 255 1018 2825 455 2297 301 521 7672
time [s] 0.528 5.532 28.363 5.416 31.842 4.758 9.426 85.87

eT 0.055 0.076 0.099 0.090 0.075 0.096 0.094 -

Optimization Steps

Fig. 6. Results of the kinematic parameter estimation based on a
training set, compared with the true simulation parameters. We highlighted
deviations larger than ±0.1 (radian or meter) in the estimation.

Kinematic Estimation: In order to validate our kinematic
estimation approach we used the serial chain model to gener-
ate simulated training sets for different robot configurations.
Here we present one case with the number of (D = 7) DoFs
like with a KUKA light weight robotic arm. The simulator
automatically creates (P = 20) pseudo random poses ( ⃗θpose)
with a range of (±2.62rad). The serial chain model then
generates the static gravity measurements (SUu g⃗u,p), as well
as the dynamic acceleration measurements (SUu a⃗dynu,d,p

) in
every pose (p). In order to simulate sensor noise and other
imperfections like offsets, we add pseudo random values with
an amplitude of (±0.01g) to every measurement. The training
set is then passed to the optimization algorithm. We used a
global stop criterion of (eTstop = 0.1) and a local relative stop
criterion of (eTftolrel

= 1−6). After a total of 7672 iterations
in 86 seconds4, the algorithm returned the estimated values,
listed and compared with the originals in Fig.6. It is clearly
visible that there are no major deviations with the DoF-DoF
transformation parameters besides the known limitations
with (θ00 and d0). Deviations in the DoF-SU transformation
parameters show the presence of ambiguity with the notation
chosen to describe the accelerometer coordinate system with
extended DH parameters.

4MacBook Pro - 2.26 GHz Core 2 Duo, 4GB RAM, Lion

IV. CONCLUSION
In this paper we demonstrated that it is possible to discrim-

inate the structural dependencies of an open loop, articulated
robot with a minimum of one 3-axis accelerometer per
segment. We presented results that support our approach,
to utilize structural and additional physical knowledge, in
order to build and estimate kinematic models of robotic limbs
based on distributed accelerometers.

6) Contribution: Our contribution is towards the facilita-
tion of using large numbers of distributed SUs on articulated
robots – especially with artificial sensor skins. The presented
open-loop method provides a synergistic calibration of sensor
and actuator kinematics, within a short time, and applies only
few controllable constraints. The presented method works as
an internal observer and thus does not suffer from occlusion,
like vision based systems and or is in need of external
components.
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