Technische Universitat Miinchen

Institut fiir Informatik

Counterexample Generation for
Higher-Order Logic

Using Functional and Logic Programming

Lukas Bulwahn

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen

Universitdt Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Andrey Rybalchenko
Priifer der Dissertation:
1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Prof. Colin Runciman
The University of York, UK

Die Dissertation wurde am 08.10.2012 bei der Technischen Universitat Miinchen

eingereicht und durch die Fakultét fiir Informatik am 11.02.2013 angenommen.

Abstract

This thesis presents a counterexample generator for the interactive theorem prover
Isabelle/HOL that uncovers faulty specifications and invalid conjectures using
various testing methods.

The primary contributions are two novel testing strategies: exhaustive testing
with concrete values; and symbolic testing, evaluating conjectures with a nar-
rowing strategy. Orthogonally to the strategies, this work addresses two general
issues: First we extend the class of executable conjectures and specifications. One
main aspect are techniques to improve the capabilities of the code generator to ex-
tend it to Isabelle’s logic programs and to turn non-executable specifications into
executable ones by automatic transformations. Second, we present techniques to
deal with conditional conjectures, i.e., conjectures with restrictive premises. This
thesis includes a novel approach to synthesize test data generators based on an
extended mode analysis that creates data derived from the premise’s definition.
When the tool applies these techniques, testing requires a much smaller number
of test cases to find errors in specifications.

The testing strategies and techniques are evaluated on numerous existing spec-
ifications developed in Isabelle/HOL, covering such areas as semantics of pro-
gramming languages, efficient functional data structures, cryptographic protocols
and graph theory.

iii

Zusammenfassung

Diese Dissertation beschreibt einen Gegenbeispielgenerator fiir den interaktiven
Theorembeweiser Isabelle/HOL, der fehlerhafte Spezifikationen und ungiiltige
Hypothesen durch verschiedene Testmethoden aufdeckt.

Der primére Beitrag dieser Arbeit sind zwei neue Teststrategien: erschopfendes
Testen mit konkreten Werten und symbolisches Testen, bei dem Hypothesen mit
einer Narrowing-Strategie evaluiert werden. Orthogonal zu den Strategien adres-
siert diese Arbeit noch weitere Aspekte: Zum einen wird die Klasse der aus-
fiihrbaren Hypothesen und Spezifikationen erweitert. Ein Hauptaspekt sind Tech-
niken, um Fihigkeiten der Codegenerierung zu erweitern, und um unausfiihrbare
Spezifikationen in ausfiihrbare durch automatische Transformationen umzuwan-
deln. Zum anderen beschreiben wir Techniken, um mit bedingten Hypothesen—
Hypothesen mit restriktiven Pramissen—umzugehen. Die Arbeit beinhaltet einen
neuen Ansatz, um Testdatengeneratoren zu synthetisieren, die Daten erzeugen,
die aus der Definition der Bedingung hergeleitet werden. Der Ansatz basiert dabei
auf einer erweiterten Modusanalyse. Durch Anwendung dieser Techniken werden
wesentlich weniger Testfdlle benétigt, um Fehler in Spezifikationen zu finden.

Wir evaluieren die Teststrategien und Techniken auf zahlreichen existieren-
den Spezifikationen in Isabelle/HOL aus Bereichen wie Semantik von Program-
miersprachen, effizienten funktionalen Datenstrukturen, kryptographischen Pro-
tokollen und Graphentheorie.

Acknowledgment

First of all, I am indebted to my supervisor Tobias Nipkow who guided me
through my research and inspired me to work on counterexample generation.
I express my gratitude to Tobias, Larry Paulson and Makarius Wenzel for their
continuous work on Isabelle and providing a software system that served as an
excellent platform for my research.

I am delighted that Colin Runciman accepted the invitation to referee this
thesis. I gratefully thank the head of our doctorate program Helmut Seidl to
create a great working environment for research of formal methods, and allowing
me to receive a broad education in this field.

I want to thank all present and former members of the Isabelle group at the
Technische Universitdt Miinchen for making our research group such a friendly
place of mutual support: Jasmin Christian Blanchette, Stefan Berghofer, Sascha
Bohme, Florian Haftmann, Johannes Holzl, Brian Huffman, Cezary Kaliszyk, Ale-
xander Krauss, Ondfej Kuncar, Peter Lammich, Lars Noschinski, Andrei Popescu,
Dmitriy Traytel, Thomas Tiirk, Christian Urban and Makarius Wenzel.

I owe a debt of gratitude to Jasmin and Ondfej for reading my thesis in their
spare time and suggesting several textual improvements in this thesis.

Jasmin and Andrei deserve special thanks for being my office roommates and
helping me throughout the day with many questions. Jasmin motivated and in-
spired me to develop the tool with focus on Isabelle’s users and to address many
technical limitations that users encounter when using the developed tool. Andrei
gave me constant advice and pushed me to complete this thesis on every occasion.

Andreas Lochbihler was the first using many new developments and provided
valuable feedback. I am thankful for his effort and his explanations, which have
driven numerous improvements in our development. Thomas Genet uses the tool
extensively in his teaching courses and pointed out some bugs in the tool.

I had the pleasure to have great companions in the doctorate program: Chih-
Hong (Patrick) Cheng, Jan Hoffmann, Andreas Gaiser, Ruslan Ledesma Garza,
Ashutosh Gupta, Johannes Holzl, Christian Kern, Maté Kovéacs, Markus Latte,
Bogdan Mihaila, Andreas Reufs, Dulma Rodriguez and Markus Weissmann.

I thank Katharina Spiess for inviting me to join the staff of the Marktoberdorf
summer school in 2011. The participation in the summer school gave me enlight-
enment in other research topics and served as a great platform for communicating
with other PhD students in the field of formal methods.

My research was financed by the German Research Council under the doctor-
ate program Program and Model Analysis (DFG-GRK 1480).

vii

Contents

1 Introduction
1.1 Motivation e
1.2 Contributionso
1.3 Publications
1.4 Structureof ThisThesis
2 Background
2.1 Interactive Theorem Proving
2.1.1 Isabelle/HOL
2.1.2 Definitional Principles
213 TypeClasses. i
22 CodeGeneration
22.1 Program Refinement
222 DataRefinement
2.2.3 Execution of Inductive Specifications
2.2.4 Contributions to Isabelle’s Code Generation
3 Random and Exhaustive Testing
3.1 From Conjectures to Test Programs
3.2 TestData Generators
3.2.1 Nondeterministic Computations
3.2.2 Basic Random Generators
3.2.3 Basic Exhaustive Generators
3.24 Generators for Inductive Datatypes
3.2.5 Generators for Arbitrary Type Definitions
3.3 Extensions of the Infrastructure
3.3.1 Parametrized Conjectures
3.3.2 Conjectures with Type Classes
3.3.3 Polymorphic Conjectures
334 Reification
3.3.5 Underspecified Functions
3.4 Simple Treatments
3.4.1 Quantifier Massaging
3.4.2 Equality Optimization
3.5 Datatype Refinements

3.5.1 Finitely Representable Relations

ix

352 FiniteFunctions.

3.5.3 Automatic Data Refinements
3.6 Related Work
Conditional Conjectures
41 Custom Generators e
42 Smart Generators e
421 Architecture
422 Processing of Definitions to Horn Clauses
423 Function Flattening
424 Mode Analysis o Lo
425 Generator Compilation
426 Extensions e
43 Related Work

Narrowing-Based Testing

51 Introduction to Narrowing
5.2 Existing Narrowing Implementations
5.3 Abstract Description of the Narrowing Implementation
54 Implementation
541 Basic Data Structures
542 Refinement Algorithm
5.4.3 Basic Evaluation Mechanism
54.4 Presentationof Results.
55 Related Work oo
56 Discussion e

Empirical Results and Applications

6.1 Evaluation on Theorem Mutations
6.2 Evaluation on Conditional Conjectures
6.3 CaseStudies e
6.3.1 Functional Data Structures
6.3.2 Hotel Key Card System
6.3.3 Needham-Schroeder Security Protocol
6.4 Applications Lo
6.4.1 Synthesis of Conjectures
6.4.2 Detection of Superfluous Assumptions
Conclusion
701 Resultso
72 Future Work e

43
44
44
46
47
47
49
52
55
56

Chapter 1

Introduction

The thesis describes Quickcheck, a counterexample generator for Isabelle/HOL
that uncovers faulty specifications and invalid conjectures using various testing
methods.

1.1 Motivation

Writing programs and specifications is an error-prone business, and testing is com-
mon practice to find errors and validate software. As computer scientists are aware
that testing alone cannot prove the absence of errors, formal methods are applied
for safety- and security-critical systems. To ensure the correctness of programs,
critical properties are guaranteed by a formal proof. Interactive theorem provers
are used to develop a proof with trustworthy logical inferences. Once one has
completed the formal proof, the proof assistant certifies that the program meets
its specification. But in the process of proving, errors could still be revealed and
tracking these down by failed proof attempts is a tedious task for the user.

Common user experience with interactive theorem provers suggests that most
conjectures initially stated in an interactive theorem prover do not hold. Typically,
errors in conjectures and specifications are due to typos or missing assumptions,
but sometimes they are owing to fundamental flaws in the specifications.

Modern interactive theorem provers therefore provide not only means to prove
properties, but also to disprove properties with counterexample generators. The
interactive theorem prover Isabelle [119] provides counterexample generators that
uncover invalid conjectures by two means:

e Refute [117, 118] searches for finite countermodels by reducing a conjecture
to boolean satisfiability directly. Its successor Nitpick [21] reduces to boolean
satisfiability in two steps: It first reduces the conjecture in higher-order logic
to first-order relational logic, and then employs the tool Kodkod [112], har-
nessing its optimized reduction from first-order relational logic to boolean
satisfiability.

e Quickcheck searches for counterexamples by testing the conjecture. With-
out specifications, it is common practice to write manual test suites to check

properties. However, having a formal specification at hand, we can automat-
ically generate test data and check if the program fulfills its specification.
Quickcheck tests a conjecture by assigning values to the free variables of the
conjecture and evaluating it. To evaluate the conjecture efficiently, Quick-
check translates the conjecture and related definitions to an ML or Haskell
program, exploiting Isabelle’s code generation infrastructure [54]. This al-
lows Quickcheck to test a conjecture with millions of test cases within sec-
onds.

Although the counterexample generators are built with the same motivation
in mind, their abilities are disjoint: Refute and Nitpick can explore large abstract
relational specifications, whereas Quickcheck’s strategies are lost rather fast in the
large search space. When the specifications and conjectures are closer to functional
programs, Refute and Nitpick are usually limited to programs with a few lines of
code, but Quickcheck can be successfully applied to find errors in large functional
programs and software systems.

Novices profit a lot from counterexample generators. Counterexample genera-
tors give them the necessary feedback to learn writing correct specifications. They
also provide means to make proving a trial-and-error experience until novices
reach a better understanding how to work with an interactive theorem prover.

Nonetheless, even long-standing users benefit from the counterexample gen-
erators. They regularly do not know all details of the formalized theories by
heart. As formalizations deliberately move away from common intuitions and
descriptions in textbooks to simplify definitions or proofs in the formal system,
even experts can err and counterexample generators provide an elegant way to
check their intuitions against the formalizations. Especially when experts build
formalizations on top of existing theories from others, they learn the peculiarities
of a formalization with small concrete examples provided by the counterexample
generators.

1.2 Contributions

Our primary contribution is the continued integration of testing methods in Isa-
belle under the hood of the existing tool Quickcheck.

In earlier work [14], Quickcheck was originally modeled after the QuickCheck
tool for Haskell [33], which tests user-supplied properties of a Haskell program
with randomly generated values. Our first contribution is to extend Quickcheck
with exhaustive testing to complement random testing. Exhaustive testing checks
the formula for every possible set of values up to a given bound, and hence finds
small counterexamples that random testing might miss.

The two testing approaches above are limited to evaluations with ground val-
ues. Our second contribution is to extend Quickcheck with a symbolic, narrowing-
based testing approach. The narrowing-based testing approach evaluates the for-
mula symbolically rather than evaluating with a finite set of ground values. There-
fore, it can be more precise and more efficient than the other approaches.

A well-known problem of testing are conditional conjectures, especially those

2

with very restrictive premises. These conjectures are problematic because when
testing naively, for the vast majority of variable assignments the premise is not
tulfilled, and the conclusion is left untested. Clearly, it is desirable to take the
premise into account when generating values. Our third contribution is to present
three solutions for Quickcheck to generate only appropriate variable assignments:

e Custom generators: Derivation of custom test data generators from user
declarations

e Smart testing: Automatic synthesis of test data generators that take the
premise’s definition into account

e Symbolic evaluation: Search space pruning by refining variable assignments
symbolically

Last, the new implementation of Quickcheck supports many specific features
of Isabelle, notably parametrized conjectures, polymorphic conjectures and under-
specified functions.

In total, Quickcheck incorporates four testing approaches: random, exhaus-
tive, smart and symbolic testing. To illustrate the different testing approaches, we
consider how they check the following conjecture about take n xs, which computes
the prefix of length n of the list xs.

Vamxs.n <m A m < length xs => take n (take m xs) = take n xs

Figure 1.1 shows the first test cases of the different testing approaches in Isabelle’s
Quickcheck. A test case consists of an assignment of the universal quantified
variables n, m, xs. The elements of list xs are distinct atoms a7, a; and as.

The testing approaches differ in the choice and order of test cases. We present
the advantages and disadvantages of the testing approaches by viewing the test
cases of each approach for this conjecture. In this example, we want to check the
validity of the conjecture and for possible errors in the function take, but we know
that the other functions, such as length, are implemented correctly. We also note
that test cases that do not fulfill the premises of the conjecture trivially make the
conjecture true without checking the conclusion and the function under test and
therefore are considered superfluous.

With random testing, three test cases are superfluous. The first two test cases
do not fulfill the premise n < m, the fourth test case violates the premise m <
length xs. Only the third test case checks the conclusion and could reveal the
conjecture to be invalid. Although generating the test cases is simple, some test
cases obviously violated the premises.

Exhaustive testing suffers from this drawback in a similar way. For example,
its second and third test case violate the premise as well. Furthermore when we
test exhaustively, we test with many small values before we test with larger ones;
indeed, in the first four test cases there is not a single test case that tests the
conjecture with a list of length 2.

The third approach, smart testing, employs a special generator for the less-
or-equal relation and lists of fixed length. It also determines a reasonable order
for the generation. First, we generate numbers n and m with n < m, and then

3

Random Testing;: Exhaustive Testing:

1.n=2, m=3, xs=lay,a1] 1.n=0, m=0, xs=]]
2.n=4, m=1, xs=1] 2.n=1, m=0, xs=1[]
3.n=1, m=2, xs= a3 ay,a] 3.n=0, m=1, xs=1[]
4. n=2, m=4, xs=[aa] 4. n=0, m=0, xs=[aq]

Smart Testing;: Symbolic Testing:
1.n=0, m=0, xs=|] 1. n=0 m=M, xs=XS
22.n=0, m=0, xs=[a] 2.n=SucN, m=0, xs=XS
3.n=0, m=1, xs=[ay] 3. n=SucN, m=SucM, xs=|]
4. n=1, m=1, xs=[aq] 4. n=Suc0, m=SucM, xs =X-XS

Figure 1.1: Test cases of Quickcheck’s testing approaches for the conjecture
Vnmxs.n <m A m < length xs => take n (take m xs) = take n xs

we generate a list xs that has a length greater than m. In this approach, we test
exhaustively, but avoid the superfluous test cases.

Finally, we describe the test cases of the symbolic testing. In the presentation,
variables with capital letters N, M, X and XS denote symbolic values. The first
symbolic test case chooses 0 for 1, but keeps the value of xs and m purely symbolic.
If n is 0, the conjecture’s evaluation exhibits the same behavior for any xs and m,
and hence can be covered with this one symbolic test. As we explored the case that
n is 0, we continue with test cases where 7 is not 0, i.e, n is instantiated to Suc N
for some fresh symbolic value N. The second test case checks the conjecture with
a symbolic value with n = Suc N and m = 0. This test violates the premise n < m.
All further test cases of this form can be discarded. In the next test case, we choose
n >1and m > 1 and check with the instantiation xs = [|. This time, the second
premise m < length xs is violated. Hence, testing continues with xs = X - XS
and instantiates N = 0. Remarkably, a single symbolic evaluation can cover many
symmetric evaluations with concrete values. In the presence of premises, symbolic
evaluation can discard many further instantiations and symbolic tests, and thus
can prune the search space.

After the presentation of this example, one might be tempted to draw prema-
ture conclusions. For example, one could think that smart testing must be more
efficient than the naive approaches, as it takes premises into account, or that sym-
bolic testing outperforms testing with ground values because it can possibly cover
many concrete tests with one symbolic test. However, only a thorough investiga-
tion with examples and case studies will show if these hypotheses are true. This
is our last contribution in this thesis: shedding some light on the performance of
the different testing approaches.

Traditionally testing methods can be divided into white-box and black-box

4

testing, according to the point of view that one takes to choose test cases:

¢ Black-box testing treats the object under test, e.g., software, specifications or
conjectures, as a black box, without taking the knowledge about the internal
structure of the object into account. Random and exhaustive testing choose
the values independent of the property under test and lie in the category of
black-box testing.

e White-box testing in contrast takes an internal perspective on the object.
Our smart testing technique follows this idea of white-box testing, as the
test cases are generated taking the definition of premises into account.

The symbolic testing generates test values without taking the internal structure
into account. However, the choice of test cases is driven by the result of previous
evaluations and these results can depend on the internal structure. Hence, it seems
inappropriate to classify the symbolic testing in Quickcheck as black-box or white-
box testing.

1.3 Publications

Most of the contributions described here have been presented at international con-
ferences. This thesis was accompanied by the following papers:

1. L. B. Smart test data generators via logic programming. In: John Gal-
lagher and Michael Gelfond, editors, Technical Communications of the 27th
International Conference on Logic Programming (ICLP 2011), pages 139-150, vol-
ume 11 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2011.

2. J. C. Blanchette, L. B.,, and T. Nipkow. Automatic proof and disproof
in Isabelle/HOL. In C. Tinelli and V. Sofronie-Stokkermans, editors, Fron-
tiers of Combining Systems (FroCoS 2011), volume 6989 of LNAI, pages 12-27.
Springer, 2011.

3. L. B. Smart testing of functional programs in Isabelle. In N. Bjerner and
A. Voronkov, editors, 18th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR-18), volume 7180 of LNCS, pages
153-167. Springer, 2012.

4. L. B. The New Quickcheck for Isabelle: random, exhaustive and symbolic
testing under one roof. Accepted at The Second International Conference on
Certified Programs and Proofs (CPP 2012).

Some of our effort to improve code generation in Isabelle, which was done as part
of the Ph.D., is described in this joint work with Andreas Lochbihler:

4. A. Lochbihler and L. B. Animating the formalised semantics of a Java-like
language. In: M. van Eekelen and H. Geuvers and J. Schmalz and F. Wiedijk,
editors, Interactive Theorem Proving (ITP 2011), pages 216-232, volume 6898
of LNCS, Springer, 2011.

1.4 Structure of This Thesis

The thesis is structured as follows:

e Chapter 2 briefly introduces higher-order logic, Isabelle’s definitional princi-
ples and code generation.

e Chapter 3 mainly describes random and exhausting testing, but also a col-
lection of techniques integrated in Quickcheck.

e Chapter 4 presents two techniques to handle conditional conjectures.
e Chapter 5 describes symbolic testing by narrowing.

e Chapter 6 presents the evaluation of the testing approaches on various case
studies.

e Chapter 7 summarizes our results and gives directions for future work.

As the syntax in this thesis largely adheres to standard Isabelle notation, an expert
Isabelle user can skip chapter 2 and directly start with the subsequent chapters.
Chapter 4 relies on some parts of chapter 3. Chapter 5 can be read independently
of the previous chapters, but it requires to follow some references to chapter 3
and chapter 4 for the introduction of some examples. In any case, if parts in
subsequent chapters relate to previous descriptions in other chapters, we point to
the subsection for further reading. Related work is considered at the end of each
chapter 3 to 5. To follow the evaluation of chapter 6, readers need not to know
the technical details of the testing approaches. However, further explanations for
their behavior is only understood with some knowledge of the previous chapters.

Chapter 2

Background

This chapter introduces interactive theorem proving, higher-order logic and the
definitional mechanisms in the interactive theorem prover Isabelle. After this gen-
eral introduction, we focus on Isabelle’s code generation, which provides the basic
infrastructure for the Quickcheck tool.

2.1 Interactive Theorem Proving

Interactive theorem proving acknowledges that humans and computers capitalize
their abilities together best through interaction. Humans capture ideas with their
intuition and are gifted with creativity, whereas machines can reliably check the
correctness of human deductions and can aid the human on various computational
tasks with proof automation and decision procedures.

Interactive theorem provers or proof assistants are systems that provide means
for this type of interaction. Typical systems of this kind are ACL2 [73], Coq [18],
HOLA4 [51], HOL Light [55], Mizar [86], PVS [96] and Isabelle [93, 98, 119], which
serves as platform for this work.

2.1.1 Isabelle/HOL

Isabelle is a generic interactive theorem prover, and can be instantiated with dif-
ferent logics. Isabelle’s most widely used logic is Isabelle/HOL. It provides clas-
sical higher-order logic with rank-1 polymorphism and axiomatic type classes.
Isabelle/HOL's types and terms are based on the simply typed A-calculus [32].
Types are constructed by type variables @ and type constructors « with fixed ari-
ties:

T o= al| (r,...,T0) K

For type constructors with arity 1, we omit the parentheses and write 7 x. We
use the Greek letters «, B, y for type variables and 7 for types. Isabelle/HOL is
equipped with two special types, the type of boolean values bool and the type of
functions =, commonly used infix as in & = S.

Terms are typed variables, typed constants, applications or typed A-abstractions:

tu=x"|c" || AXt

A sequence of terms is denoted by f. Terms are generally viewed under the equiv-
alence of a-renaming, S-reduction, and n-reduction.

The type system of Isabelle/HOL is the Hindley-Milner type system extended
with type classes [116], similar to the original Haskell type system [60]. Through-
out the presentation, we assume that all terms are well-typed. Whenever the type
of a term is not clear by the given context, we annotate a term ¢ by 7:: 7 to denote
that it is of type 7.

Isabelle/HOL supplies meta-operators such as an universal quantifier and an
implication with its meta-logic, and copies of those two operators with higher-
order logic (object operators). For our presentation, the distinction between the
meta-operators and the object operators is not relevant and we employ only the
object operators V :: (& = bool) = bool and = : bool = bool = bool.! Mimicking
mathematical syntax, V(Ax. P x) is written as Vx. P x.

2.1.2 Definitional Principles

Isabelle/HOL provides two basic means to extend a theory development con-
sistently: simple definitions for constants and Gordon’s HOL type definitions.
Grounding on these two theory extensions, Isabelle/HOL provides many other
means to introduce new constants and type constructors.

Simple Definitions

With definition c:: 7 where c X = 1, Isabelle defines the constant ¢ by introducing
the axiom c = AX. t. It ensures that the definition is conservative by some syntactic
checks. Isabelle checks that the constant ¢ has not been declared before, and that
the closed term ¢ refers only to existing constants and free variables in X. Fur-
thermore, the variables x must be distinct and all type variables in must occur
in .

Type Definitions

Given a non-empty subset of an existing type, a new type can be defined by
creating an isomorphic copy of the given subset. For example, to obtain a type of
three elements, we define a type three as a copy of a subset of the natural numbers:

typedef three = {0,1,2}

The typedef command axiomatizes the type and provides a bijection between the
new type and the set {0,1,2} with Rep,,,,, :: three = nat and Absyy : nat = three.
With these bijections, we refer to the values of type three by Absyyee 0, Absyyee 1 and
Absree 2. The command lift-definition and the transfer proof method [62] support
to declare definitions and theorems on the new type. The command lift-definition
spares users to employ the bijections for their definitions. For example, we define
constants zero, one and the function shift with

1Readers that have been heavily exposed to Isabelle’s notation should be aware that the symbol
= denotes the object logic implication in this thesis and not the meta-implication as in Isabelle.
Hence, unlike in Isabelle, the scope of V¥ ranges over this implication symbol.

lift-definition zero : three is 0
lift-definition one :: three is 1
lift-definition shift :: three = three is Ax. if x <2 then x+ 1 else 0

Internally, the command defines zero, one and shift as Absyee 0, Absye 1 and
Ay. Absyyee ((Ax. if x < 2 then x + 1 else 0) (Repy,,, ¥)), respectively. Given the
theorem (Ax. if x < 2 then x+ 1 else 0) 0 = 1 on the existing type, the transfer proof
method allows us to derive shift zero = one.

Although the two theory extensions, constant and type definitions, suffice to
work with the system, it is convenient to have further derived mechanisms.

Inductive Datatypes

Inductive datatypes [15] define a new type by providing constructors Cy,...,C,
with recursive types 71, ..., 7,. They are defined with the command

datatypeak=Cy 71| - | Cp 7y

The types 74, ..., 7, are restricted to involve recursive occurrences of the type @ «
only on the right-hand side of function types and only nested under previously de-
fined datatypes. We heavily employ some basic datatypes, such as products, sums,
the option type, the list type and the type of natural numbers. These datatypes are
defined with

datatype a x 8 = Pair a B

datatype a +pB =1Inl a | Inr B
datatype a option = None | Some «
datatype a list = Nil | Cons @ (a list)
datatype nat = 0 | Suc nat

All datatypes are equipped with associated case expressions. For example, the
case expressions for the product and sum types are defined such that

(case Pair x y of Pairab = fab) = fxy,
(caseInl xof Inll= f1|Inrr=gr)=fxand
(case Inryof Inll = f1|Inrr= gr)=gyholds.

A pair with values a and b is written more readably as (a,b). The selectors on
pairs fst and snd follow the law fst (a,b) = a and snd (a,b) = b. We often employ
(A(a, b). f a b) as notation for (case (x,y) of (a,b) = f ab).

For lists, we use these common notations: [| and x - xs denote the two list con-
structors Nil and Cons x xs. Longer lists such as (x - (y - (z- Nil))) are conveniently
written as [x,y,z|. The selectors of Cons, head and tail, are denoted by hd and
tl. The hd function is only specified for non-empty lists, i.e., hd (x - xs) = x. The
tail function is also defined for non-empty lists with the equations ¢t [| = [] and
tl (x - xs) = xs. For natural numbers, we use numerals as abbreviations for nested
Suc terms, e.g.,, 1 = Suc 0 and 2 = Suc 1. Isabelle/HOL also allows mutually
recursive datatypes, but we do not use them in the presentation of the thesis.

9

Inductive Predicates

An inductive predicate P is the the least predicate closed under a given set of
introduction rules. It is defined by

inductive P : 7 = bool
where
Q11 11 = -+ = Q1 U1m, = P h
| Qn,l ﬁn,l = = Qn/mn ﬁn,mn =P E"

Isabelle ensures that the introduction rules are monotonic to guarantee the existence
and uniqueness of the least fix point. For example, the inductive predicate listrel
lifts a given relation on elements 7 point-wise onto lists:

inductive listrel :: (&« = a = bool) = a list = a list = bool
where
listrel v [] []
| ¥ x y == listrel r xs ys == listrel r (x - xs)(y - ys)

Isabelle also allows inductive predicates to be mutually recursive. For example,
consider the predicates even and odd:

inductive even :: nat = bool and odd :: nat = bool
where
even 0
| odd n = even (Suc n)
| even n = odd (Suc n)

Foundationally, they are defined via a conjoined least fixed point and suitable
projections. Besides the introduction rules, Isabelle provides an elimination and
induction rule for every inductive predicate.

Recursive Functions

Recursive functions can be defined by recursive equations. If the recursive equa-
tions are not restricted, the definitions can easily lead to inconsistencies, e.g., the
“definition” f x = f x 4 1 is inconsistent with n # n + 1. Therefore, recursive func-
tion definitions are only allowed if the recursive calls induce some well-founded
ordering.

Two simple examples of recursively defined functions on lists are append and
rev. The append function is written infix as ++.

fun append : « list = « list = a list
where
append Nil ys = ys
| append (Cons x xs) ys = Cons x (append xs ys)

fun rev: a list = « list
where
rev Nil = Nil
| rev (Cons x xs) = rev xs ++ [x]

10

To find the well-founded ordering in these cases is simple, as both functions are
primitive recursive on the first argument.

2.1.3 Type Classes

As type classes play a prominent role in the implementation of the counterexample
generators, we illustrate the usage of type classes in Isabelle with a simple exam-
ple. We consider type classes with a programming language’s point of view: Type
classes describe collections of types that provide operations of certain names and
types. Classes are defined with the command class naming their associated oper-
ations. The membership of type 7 in the class c is given by providing operations
in the context of an instantiation 7:: c.

Whereas in a programming language like Haskell, the semantic properties of
the operations are only implicit, an interactive theorem prover allows making se-
mantic properties explicit by augmenting the classes with class axioms. Therefore,
class instances not only declare operations with certain names, but also provide
proofs that the operations respect the stated class axioms. For example, the class
order states that types of this class provide a partial order <:

class order =
fixes < 17 = 17 = bool
assumes x < x
andx<y=—=y<x=x=y
andx<y=—=y<z=x<z

As stated by the three class axioms, the relation should be reflexive, antisymmetric
and transitive. Choosing the ordering on natural numbers, we declare the type nat
a member of the type class order:

instantiation nat :: order
begin
fun <,;; = nat = nat = bool
where
0 <yat m <— True
Sucn <pgu Sucm+—n <,y m

instance (proof)
end
The boundary of a context is indicated by keywords begin and end. The notation
(proof) is placeholder for the proof of the class axioms for <. The actual proof is

of no interest here. Isabelle also allows parametric instances. For example, the order
on « list can be defined extending the order on « to a point-wise order on « list:

instantiation list :: (order) order
begin

definition < : a list = a list = bool
where xs <ji; ys <— listrel (Ax y. x <y) xs ys

11

instance (proof)

end

Similarly one can provide instantiations for other type constructors, like the prod-
uct and sum type.

Note that there is at most one instantiation for each type constructor. Con-
sequently, once the class order on lists is instantiated to point-wise ordering, it
permits us to redefine the ordering to be the lexicographic ordering on lists. Type
classes enable us to define constants by primitive recursion over types, e.g., the
order on lists is defined recursing on the order of the list’s type arguments. We
use type classes for definitions with primitive recursion over types heavily in this
thesis. Throughout the presentation, we denote the instance of a class operation c
with type 7 by c;.

2.2 Code Generation

With all the definitional principles and type classes at hand, HOL provides every-
thing to serve as an adequate functional programming language and specification
language, as suggested by Nipkow’s slogan [93, ch. 1.1]:

HOL = Functional Programming + Logic

However, one should be aware of subtle differences between the HOL logic and a
functional programming language: HOL does not mandate any fixed evaluation
order. Furthermore, as HOL allows us to define non-computable functions, the
definitions in HOL may not even have a counterpart in a functional programming
language.

Isabelle’s code generator [53, 54] views a subset of HOL as a functional pro-
gramming language and turns a set of equational theorems (code equations) into
a functional program with the same equational rewrite system. As it builds on
equational logic, the translation guarantees partial correctness and allows the user
to refine programs and data. The code generator supports the target languages
Standard ML, OCaml, Haskell and Scala.

For example, Isabelle’s code generator produces the following Standard ML
code for the append function:

structure List : sig
datatype 'a list = Nil | Cons of 'a * 'a list
val append : ’'a list -> ’a list -> 'a list
end = struct

datatype 'a list = Nil | Cons of 'a * ’a list;

fun append Nil ys = ys
| append (Cons (x, xs)) ys = Cons (x, append Xxs ys);

end;

12

In a first approximation, code generation might be considered a simple syntactic
transformation of the function’s definition. In the next section, we see that the
generated code can tremendously differ from the definition in HOL.

Type classes are eliminated by expressing them with suitable notions of the
target language. In Haskell, they are expressed by the built-in type classes. For
target languages that do not support type classes, like Standard ML, they can be
expressed by a dictionary construction.

221 Program Refinement

Program refinement is a technique that enables us to separate code generation issues
from the rest of the formalization. As any executable equational theorem suffices
for code generation, users can locally derive new equations to be used for code
generation. Hence, existing definitions and proofs remain unaffected, while still
providing an efficient implementation.

The Standard ML code for the rev function above can be generated using these
two theorems as code equations:

rev Nil = Nil
rev (Cons x xs) = rev xs ++ [x]

However, the code equations are exchangeable. We can also employ other derived
equations for code generation. This mechanism is called program refinement. We
show a simple example here. We implement list reversal with an optimized tail-
recursive function. At first, we simply define an additional constant prepend-rev
that prepends the reverse of a list to another list:

definition prepend-rev :: a list = « list = « list
where
prepend-rev xs ys = (rev xs) ++ ys

Intuitively, this constant captures the intermediate states in the execution of the
list reversal. From this definition, we can derive the following two equations for
prepend-rev:

lemma [code]:
prepend-rev Nil ys = ys
prepend-rev (Cons x xs) ys = prepend-rev xs (Cons x ys)

The annotation [code] registers these equations as code equations for the constant.
Instead of the definitional equations, the code generator now use the alternative
ones. The rev function is also expressed by the alternative equation

lemma [code]:
rev xs = prepend-rev xs Nil

Putting everything together, we obtain a Standard ML program that uses the tail-
recursive prepend-rev function for list reversal:

13

structure List : sig
datatype 'a list = Nil | Cons of 'a * 'a list
val prepend_rev : 'a list -> ’'a list -> 'a list
val rev : 'a list -> 'a list

end = struct

datatype ’'a list = Nil | Cons of ’'a x 'a list;
fun prepend_rev (Cons (x, xs)) ys =
prepend_rev xs (Cons (x, ys))
| prepend_rev Nil ys = ys;

fun rev xs = prepend_rev xs Nil;

end;

2.2.2 Data Refinement

Data refinement enables the user to replace constructors of a datatype by other
constants and derive equations that pattern-match on these new (pseudo-)con-
structors. The new constructors neither need to be injective and pairwise disjoint,
nor exhaust the type. Again, this affects only code generation, but not the logical
properties of the type.

We illustrate data refinement with a simple example. In a strict language, such
as Standard ML, functions are executed eagerly. In this example, we set up the
code generator to represent lists in such a way that list functions are executed
lazily using a standard idiom [99]. The refinement step does not affect the defi-
nition of lists in HOL, but for code generation, we view lists as a datatype with
alternative constructors.

In a first step, we define the constant LCons, the constructor Cons with a se-
mantically vacuous unit closure for its tail:

definition LCons : @ = (unit = a list) = « list
where
LCons x Ixs = Cons x (Ixs ())

The purpose of the unit closure is that list functions are executed lazily in the eager
language, as the closure enforces that the inner evaluation is delayed until the unit
value is applied to the closure. With the following command, code generation
views the constants Nil and LCons as constructors for the list type:

code-datatype Nil LCons
Finally, the simple program refinement
lemma [code]:

append Nil ys = ys
append (LCons x Ixs) ys = LCons x (Au. append (Ixs ()) ys)

14

for the append function allows us to execute the function lazily. We inspect lazy
lists with the retrieve function, which returns the list’s element with a given index
and evaluates the list only as far as necessary:

fun retrieve :: @ list = nat = « option
where
retrieve Nil i = None
| retrieve (Cons x xs) 0 = Some x
| retrieve (Cons x xs) (Suc n) = retrieve xs n

lemma [code]:
retrieve Nil i = None
retrieve (LCons x xs) 0 = Some x
retrieve (LCons x Ixs) (Suc n) = retrieve (Ixs ()) n

Provided with this setup, the code generator produces the Standard ML program
with lazy lists:

structure List : sig
datatype nat = Zero | Suc of nat
datatype ’'a list = Nil | LCons of 'a * (unit -> 'a list)
val append : ’'a list -> ’'a list -> 'a list
val retrieve : ’'a list -> nat -> ’'a option
end = struct

datatype nat = Zero | Suc of nat;
datatype ’'a list = Nil | LCons of 'a * (unit -> 'a list);

fun append (LCons (x, 1xs)) ys =
LCons (x, (fn _ => append (lxs ()) ys))
| append Nil ys = ys;

fun retrieve (LCons (x, 1xs)) (Suc n) = retrieve (1xs ()) n
| retrieve (LCons (x, lxs)) Zero = SOME x
| retrieve Nil i = NONE;

end;

As the resulting source code in the target language largely reflects the code equa-
tions, we omit the presentation of generated code in the rest of this thesis.

2.2.3 Execution of Inductive Specifications

The code generator is limited to purely equational specifications by its design.
However, Isabelle also provides means to define constants by inductive predi-
cates (§2.1.2). For the execution of inductive predicates, we must turn an inductive
specification into an executable equational one. In the following, we present two
techniques to do this.

15

Unfolding Equations

We have contributed a tool that provides a simple equational description for every
inductive predicate: the one-step unfolding of the least-fixed point equation. For
example, the predicates even and odd are equipped with the unfolding equations

evenn=(n=0V (Im.n=Sucm A odd m))
odd n = (3Im. n = Sucm N even m)

As these equations contain unbounded existential quantifiers, they are not exe-
cutable directly. However, if we instantiate the right-hand sides adequately and
simplify the equations, the resulting equations do not contain any existential quan-
tifiers and can be used for code generation. In our example, instantiating even and
odd with patterns even 0, even (Suc n), odd 0 and odd (Suc 0), we automatically
obtain simple executable equations:

even 0 = True odd 0 = False
even (Suc n) = odd n odd (Suc n) = even n

This simple method yields an executable equation if all existential quantifiers in
the equations are eliminated. The existential elimination succeeds only in special
cases, e.g., if the variables of the right-hand sides are a subset of the left-hand
sides. If this condition is not met, we must employ a more sophisticated method,
which is integrated in the predicate compiler.

Predicate Compiler

Another contribution is the predicate compiler [16], which translates specifications of
inductive predicates (the introduction rules) into executable equational theorems
for Isabelle’s code generator. The translation is based on the notion of modes.
A mode partitions the arguments into input and output. For a given predicate,
the predicate compiler infers the set of possible modes such that all terms are
ground during execution. The code equations implement a Prolog-style depth-
first execution strategy. Lazy sequences are used to express the nondeterministic
behavior of the execution in the functional language.

For example, the predicate append, of type a list = « list = « list = bool
corresponding to the function append is defined by the two rules, append,, [| ys ys
and append,, xs ys zs = appendp, (x - xs) ys (x - zs). This predicate supports several
modes:

e From the first two arguments xs ys, we can compute the third argument,
essentially evaluating xs ++ ys. This corresponds to the mode i = i = 0 =
bool where i denotes input and o output.

o Inversely, we can enumerate the set of the first two lists given the third list
zs, i.e., compute {(xs,ys). xs ++ ys = zs}: 0 = o = i = bool.

¢ Given all three arguments, we can check whether the first two lists appended
equal the third: i = i = i = bool.

16

e Or we can allow other modes that combine computing and checking, e.g.,
modes i = 0 = i = bool and o0 = i = i = bool.

Since its initial description [16], we improved the compiler in various aspects.

First, we have enriched modes to handle the ubiquitous product types in a
finer-grained manner. For example, given a relation R of type a X 8 = bool it
previously was restricted to two possible modes: The argument was considered as
either input or output. Our new implementation also allows modes, where some
components of a tuple are input and others output, which enables us to enumerate
{y- R (x,y)} for some relation R.

Second, we also improved the compilation scheme. The previous one sequen-
tially checked which of the introduction rules were applicable. Hence, the input
values were repeatedly matched against the patterns of the terms in the conclu-
sion of each introduction rule. This compilation scheme is fairly simple, but often
rather inefficient: Given an inductive predicate with » introduction rules, the in-
put arguments underwent pattern-matching n times. For large specifications, such
as a full-fledged Java semantics [78] with 88 rules, this naive compilation made
execution virtually impossible due to the large number of rules. To obtain an effi-
cient code expression, we modified the compilation scheme to partition the rules
by patterns of the input values first and then only compose the matching rules.
This resembles similar techniques in Prolog compilers, such as clause indexing
and switch detection. We achieved dramatic performance improvements with this
modification in various applications.

Third, the predicate compiler was originally limited to the restricted syntactic
form of introduction rules. We added some preprocessing that transforms defi-
nitions in predicate logic to a set of introduction rules. Thus the predicate com-
piler becomes applicable to predicates specified by other means than inductive
definitions. Furthermore, (recursive) functions can be automatically preprocessed
to (inductively-defined) relations by flattening nested function terms into a set of
premises. We describe this improvement in more detail in sections 4.2.2 and 4.2.3.

Fourth, the predicate compiler now offers program refinement similar to the
code generator.

Last, mode annotations restrict the generation of code equations to modes of
interest. This is useful because the set of modes is exponential in the number of
arguments of a predicate. Therefore, the space and time consumption of the un-
derlying mode inference algorithm grows exponentially in that number. For larger
applications, the plain construction of this set of modes demands all available re-
source of memory. To sidestep this limitation, modes can be declared and hence
they are not inferred, but only checked to be consistent.

2.2.4 Contributions to Isabelle’s Code Generation

The main purpose of this chapter was to provide a gentle introduction to the
Isabelle system and its code generation facilities, upon which Quickcheck builds.
One of the key points for the added value of Quickcheck in Isabelle is the code
generator’s ability to generate executable code for many specifications.

17

This ability is thanks to numerous improvements to the code generation setup
in Isabelle/HOL in the scope of this thesis. We just scratch the surface of some
improvements of different character here:

o Correcting the type erasure in the serialization.

We lifted a previously existing limitation of the code generator, concerning
the type erasure in the serialization phase for Haskell code [53, §3.4]. Se-
rialization is the last phase where the generated code in an intermediate
language is turned into concrete source code. During the translation pro-
cess, the expressions in the intermediate language are annotated with ex-
plicit types. However when printing the concrete source code, the types are
usually omitted, as they can be commonly inferred by the compiler after-
ward and the generated code resembles more closely to a human-written
style. Unfortunately, in the presence of type classes in Haskell source code,
omitted types cannot be not re-inferred in general. Here is a contrived ex-
ample to show the problematic case.

class c =
fixes f:a
instance nat:c |...|
definition g : nat
where ¢ = (let x = (f:nat) in 1)

If the definition of g is used for code generation, the annotation for f in the
definition must be preserved in the generated code, because the type is re-
quired to disambiguate the instance of f, but it cannot be inferred from g’s
type alone. Previously, the serializer to Haskell code had a simple incom-
plete heuristics to add types in some special cases [53, §3.4.2], but it missed
cases such as the one above. Quickcheck’s intensive application of the code
generator forced us to replace the incomplete heuristics by a solution to han-
dle all cases correctly. The new solution applies type inference on the whole
expression after the types are erased. It then compares the expression with
inferred types against the original expression with the known types and adds
a minimal number of type annotations to the Haskell code to ensure that the
Haskell compiler is never confronted with ambiguous expressions.

o Adding a code preprocessor for set comprehensions

Sets are refined by lists for code generation. This representation requires
sets to be constructed by some basic operations, e.g., union, intersection or
Cartesian product, but disallows general set comprehensions {x. P x} for
some arbitrary boolean predicate P.

However, many set comprehensions can be expressed by the implemented
basic operations. For example, {x. (x € A A x € B) V x € C} is equivalent to
(ANB)UC. A less constructed example is the definition of the concatenation
of two formal languages A and B:

conc AB={xs +ys|xsys.xs € A A ys € B}

18

This definition can also be expressed with the executable operations as

conc A B = (A(xs,ys). xs ++ ys) * (A x B)
wheref “A={fx|x€A}and AxB={(xy).x€A ANy € B}

A proof procedure in the code preprocessor automatically rewrites set com-
prehensions to expressions built from the basic operations. This makes many
set comprehensions executable.

Refinement of existing specifications towards executability.

A further step was to improve code generation setup of specific concepts
to enable their evaluation or to improve the evaluation’s performance. We
just mention two of these refinement here: For refutation of conjectures
about multisets, we provided setup that allows us to execute the common
set operations on multisets, e.g., union, intersection and set difference. We
also inspected existing setup for code generation for possible performance
improvements. For example, the predicate identity-on, which expresses the
identity relation over a predicate P, is defined in a way that makes the eval-
uation of this constant very slow:

definition identity-on :: (@ = bool) = a x @ = bool
where identity-on P = (ly. 3x. P x A\ y = (x,x))

By simply stating the alternative equivalent definition,
identity-on P = (/l(y1,y2). yi=y2 A Pyl),

and employing it for the evaluation increased the evaluation’s performance
of identity-on dramatically.

19

Chapter 3

Random and Exhaustive Testing

This chapter describes Quickcheck’s main infrastructure and two of four testing
approaches: random and exhaustive testing.

Figure 3.1 depicts Quickcheck’s main components and artifacts during an in-
vocation. Quickcheck takes the user’s conjecture as input and returns a falsifying
assignment of the free variables as counterexample if the conjecture is found to
be invalid. Most workload of this task is delegated to Isabelle’s code generator
and the ML interpreter. Quickcheck’s main responsibility is to transform the con-
jecture into a test program that attempts to refute the conjecture. Isabelle’s code
generator is responsible to produce the ML source code of this program; the ML
interpreter evaluates this program and directly returns the counterexample.

Delegating the task to the code generator and the interpreter makes Quick-
check lightweight and simple to implement. For example, as Quickcheck shares
Isabelle’s code generation with other applications, it adopts all the specific config-
uration of the code generator. Furthermore, it does not need to take care of many
technical issues: As it only processes the conjecture, it never needs to compute
the call graph and retrieve the code equations of functions that are used in the
conjecture. At the same time, Quickcheck’s reliance on the code generator impairs
its ability to do specific program transformations.

3.1 From Conjectures to Test Programs

Given a conjecture, Quickcheck builds a test program that combines the conjec-
ture’s evaluation with the generation of test values. This test program is then
passed to Isabelle’s code generator, which executes it efficiently within Isabelle’s
underlying ML run-time system. Turning the conjecture into a test program is a
step common to both random and exhaustive testing.

Quickcheck creates a test program for a given conjecture by enclosing its eval-
uation with test data generators for its free variables. The test program returns
the counterexample as an optional value: It either returns Some x, where x is a
counterexample, or None. Both testing approaches define test data generators. A
generator creates a finite domain of values and performs a test for a given conjec-
ture to all elements of that domain. Our presentation here focuses on exhaustive
testing. The construction for random testing is analogous.

21

conjecture specification

Jis turned into

passed to
test program

l executed b
ML program 4 ML interpreter g Counterexample

Figure 3.1: Main components and constructed artifacts of Isabelle’s Quickcheck

is retrieved by

code generator

compiles

Given a function c that checks the conjecture for a single value, the genera-
tor exhaustive c yields a function that checks the conjecture for all values up to a
given bound. For further user interaction, a counterexample of type 7 is mapped
to a fixed type result using the function reify = v = result. We describe the gener-
ators and the reification in detail in §3.2 and §3.3.4. A simple test program for a
conjecture C with a single variable x can be expressed as

exhaustive (Ax. if C x then None else Some (reify x))

Test programs are improved by taking the common structure of conjectures into
account, as a list of premises and a conclusion. If a premise does not depend on a
free variable, the generation of values for this free variable can be postponed until
after checking the premise. Thus, Quickcheck optimizes the test program so that
it generates the values for each variable as late as possible. This improvement is in
particular important for exhaustive testing, as it turns the brute force enumeration
into a backtracking one, in which a large number of candidates are avoided by a
single test.

For example, consider the function insort, which inserts an element into a
sorted list in such a way that it remains sorted. If insort is implemented correctly,
the following property should hold:

sorted xs == sorted (insort x xs)

Quickcheck generates values for xs and checks the premise sorted xs. Now only
for values fulfilling the premise, Quickcheck proceeds generating values for x,
and checks the conclusion insort x xs. Consequently, Quickcheck produces this
optimized test program:

exhaustive (Axs. if - sorted xs then None
else exhaustive (Ax. if sorted (insort x xs) then None
else Some (reify (x,xs))))

22

In the presence of (multiple) premises, this interleaving of generation and evalua-
tion already improves its performance dramatically. In chapter 4, we optimize the
generation and evaluation of this kind of conjecture further.

3.2 Test Data Generators

Quickcheck defines test data generators for random and exhaustive testing (§3.2.2
and §3.2.3). For both strategies, Quickcheck supports the definition of generators:
Generators of inductive datatypes (§3.2.4) are defined automatically, and genera-
tors of arbitrary type definitions (§3.2.5) require some guidance from the user.

Both approaches build on a family of test data generators. These test data
generators are type-based, i.e., there is exactly one generator for each type. Gener-
ators for a complex type 7 are constructed following its structure, which is nicely
described using type classes in Isabelle [120]. For example, given a generator for
polymorphic lists « list and a generator for the type of natural numbers (type nat),
the generator for nat list is implicitly composed from those two generators by the
type class mechanism (cf. §2.1.3).

Generators are combined by chaining and choosing between alternatives. The
generators express a nondeterministic (branching) computation. The generators’
operations are closely related to operations on a plus monad, a generalization of
the ideas for nondeterministic computations in [114].

3.2.1 Nondeterministic Computations

Nondeterministic computations provide a general basis for the specific purpose
of test data generation. We give an overview how nondeterministic computations
are expressed in a functional language. This summarizes some descriptions dis-
tributed over a number of papers [45, 56, 109, 114].

Monads [115] are used to express computational effects in a functional pro-
gramming language. A type constructor M forms a monad if it is equipped with
the two operations, return:a = « M and bind, (=)za M = (e = B M) = B M,
and satisfies the monad laws:

returna>=f =fa
m >= return =m
(m >=ky)>=ky =m>= (Aa. ky a>=kp)

The monad laws express that return is left and right unit and bind is associative.
Monads are widely used to express computations with state, exceptions or output.
As we focus on nondeterministic computations, we also employ two further oper-
ations for failure and choice: mzero is the computation with no successful results,
i.e., a failing computation; and mplus combines two alternative computations, i.e.,
we allow branching computations:

mzero:a M
mplus:a M = aM=a M

The two functions mzero and mplus (with @ as infix notation) form a monoid:

23

mzerom =m
m @ mzero = m
my @ (my ©m3z) = (my O my) ®ms

Together with return and bind, the four operations form a plus monad if the laws

zero >== f = zero, and either
(my @& my) >= f = (my>=f)d (my>=f) (left distribution) or
(return a) & m = return a (left catch) hold.!

Nondeterministic computations are expressed employing these four primitives.
For example, the function any chooses nondeterministically one among a list of
alternative values for some plus monad M:

any:alist = a M
any [] = mzero
any (x - xs) = return x @ any xs

A simple implementation of a plus monad is the list monad. In this monad, alter-
native values of the computations are expressed by a list of successes:

return x = [x]

xs >= f=[y.y < fx, x< xs|=concat (map f xs)
mzero = |]

mplus xs ys = xs + ys

where concat :: a list list = « list is defined by
concat [] =]
concat (xs - xss) = xs + (concat xss)

Although the list monad suffices to express nondeterministic behavior, its behavior
(in a strict language) is very inefficient because the list of all possible alternatives is
stored in the memory. In our application, testing a conjecture exhaustively with a
million test cases is expressed as a computation with a million alternatives. In the
case of such a computation, modeling the computation with the list monad would
quickly take up all physical memory. To obtain an appropriate and efficient model
for nondeterministic computations, we make use of two other plus monads, the
option monad and the continuation monad. The option monad only returns the first
successful computation:

return x = Some x

(Some x) >= f=fx
None >= f = None

mzero = None

mplus (Some x) y = Some x
mplus Noney =y

IFor our purposes, we assume that if one of the two laws holds, we call it a plus monad. In a
more refined view of plus monads [121], a structure is called a plus monad if left distribution holds
and an or monad if left catch holds.

24

For more efficient backtracking, we write our nondeterministic programs with
continuation-passing style. A function in continuation-passing style does not re-
turn its result to its caller, but takes as an additional argument the continuation,
which takes the computed result as argument and continues the computation. A
continuation monad can be combined with different computations. To describe
a continuation monad in its full generality requires rank-2 polymorphism. As
Isabelle’s logic HOL is limited to rank-1 polymorphism, we present continuation
monads in a restricted setting, but expressible in HOL. We assume 7 to be some
fixed type. A continuation can be described as datatype cont with one constructor
Cont: ((¢ = 1) = 1) = «a cont and its destructor run:a cont = (@ = 1) = 7,
such that run (Cont ¢) = ¢. The monad operations are then defined by

return x = Cont (Af. f x)
m>=f = Cont (Ac. run m (Ax. run (f x) c))

If we are given two operations, failure and choice, on type 7, we can define a con-
tinuation plus monad:

mzero = Cont (Af. failure)
mplus my my = Cont (Af. choice (run my f) (run my f)

The functions failure and choice resemble mzero and mplus but do not require 7 to
be a monad. This forms the basis for expressing nondeterministic computations.

The test programs have a special characteristic compared with nondetermin-
istic computations, which motivates the chosen plus monads employed in our
exhaustive generators (§3.2.3).

3.2.2 Basic Random Generators

Random generators are provided by the type class random, which defines a func-
tion random of type nat = seed = 7 x seed for type 7 in this class. The generator
yields one value of type 7, and is parametrized by the size of values to be gener-
ated. The state seed is used for the underlying random engine. Random generators
are chained together by the return and bind (>==) operators on an open state monad:

returna = o= a X o

return x s = (x,s)
=:(c=>aex0o)=(a=>0=pX0)=>0=BX0
(f>=g)s=gxs where (x,s') =fs

In this setting, the random generator for product types is built from generators for
its type constructor’s arguments, where i denotes the size:

randoma g i = random, i >= (Ax. randomg i >= (Ay. return (x,y)))

Given a list of generators with associated weights, select yields a random generator
that chooses one of the generators (randomly using the seed value). The weights
are used to give a non-uniform probability distribution to the alternatives. The
random generator for the sum type a + 8 (with constructors Inl and Inr) illustrates
selecting of alternative generators:

25

randomy.yp i = select [(1, random, i >= (Ax. return (Inl x))),
(1, randomg i = (Ax. return (Inr x)))])

Given a random seed, the test program with random generators produces one
random value, tests the conjecture with this value and returns the evaluation’s
result and the next random seed. Quickcheck calls this test program for a fixed
number of times and if it finds a counterexample, it returns this counterexample
to the user. Otherwise, it continues checking the conjecture with increasing size
and a fixed number of tests, until the user-provided limit for the size is reached.

3.2.3 Basic Exhaustive Generators

Similar to random generators, exhaustive generators are provided by the type
class exhaustive with a function exhaustive of type (r = result option) = nat =
result option. In contrast to random generators, which only yield one value, the
exhaustive generators produce many values with a nondeterministic computation.
To make this computation efficient, the exhaustive generators are expressed with
continuations: They take a continuation (which ultimately checks the conjecture),
and evaluate it with all values of type 7 up to the given size.

Generators are chained by nesting the continuations. For example, for a given
continuation ¢ and size i, the generator for product types is defined by

exhaustive, g ¢ i = exhaustive, (Ax. exhaustiveg (y. ¢ (x,y)) i) i

Since only the order of alternatives, but not their weights, is relevant for exhaustive
testing, generators can be simply combined with the binary operation LI, which
chooses the first Some value when evaluating from left to right:

U« option = « option = a option
(Some x) U y = Some x
None Ll y=y

The generator for a + § joins the two exhaustive generators for types a and
employing the operator LI:

exhaustive, g c i =
exhaustive, (Ax. ¢ (Inl x)) i U exhaustiveg (Ax. ¢ (Inr x)) i

If we evaluate the definition of the LI operation in a strict language with call-
by-value strategy, the second argument y is evaluated even if it is not required.
However, Quickcheck expresses the LI operation with the case expression

x U y = (case x of Some x' = Some x' | None = y)

and inlines this definition, and hence creates a test program that evaluates the
alternatives only if required.

Relating to the descriptions in §3.2.1, the exhaustive generators can be de-
scribed as a continuation plus monad combined with the option monad, but for
the definition of the generators, we omitted wrapping the continuation construc-
tor Cont. For the nondeterministic computation of the test program, we view a

26

property’s evaluation that returns true and hence does not yield a counterexample,
as a failing computation. Chaining of two generators and choosing between two
generators essentially implement the operations bind and mplus, but the operations
for exhaustive generators take the size as further argument.

3.2.4 Generators for Inductive Datatypes

Commonly, new types are defined by datatype declarations. For these types,
Quickcheck automatically constructs random and exhaustive generators upon the
type’s definition. The construction of random generators has been described
in [14], so we only sketch the construction of exhaustive generators here.

We view a datatype as a recursive type definition of a sum of product types.
For example, the datatype « list can be seen as least fixed point of the equation
a list = unit + o x (e list). Following the scheme of exhaustive generators for
product and sum type, the exhaustive generator for lists is defined recursively:

exhaustive, it ¢ i = if i = 0 then None else (¢ Nil U
exhaustive, (Ax. exhaustive, jjsy (Axs. ¢ (Cons x xs)) (i —1)) i)

Generalizing this example to an arbitrary datatype is straightforward; only recur-
sion through functions takes some care.

Completeness of the Generators

As the test data generators are defined in the logical framework, we can prove the
completeness of the test data generators, i.e., we can prove that generators test a
given property for all possible values up to a given bound.

To express this property, we first must make the notion of size more explicit.
We define a type class size equipped with a function size : T = nat, which captures
the maximal depth of constructors of the value. For example, the size of lists
defined as

sizeq st [| = 1
Size, rist (X - x8) = max (size, x) (sizey jist XS)

We now would like to show the following property:

(Fv. size; v < n Nis-some (f v)) «— is-some (exhaustive, f n)
where is-some (Some x) = True, is-some (None) = False

The function exhaustive checks the function f for all values whose size is less than
or equal to n. In other words, the function exhaustive covers the domain of small
values completely.

We would like to prove this property for all datatypes 7 in Isabelle once and for
all. However, this is not possible, because the logic permits to express this prop-
erty in this full generality. Although the construction of the exhaustive generators
follows a fixed scheme, this scheme is only defined on the metalevel. In the logical
system, Quickcheck only provides the concrete instances for every datatype when
the datatype is declared. Nevertheless, we can show the property for every de-
clared datatype with a proof procedure that proves the property after the datatype’s
definition. For this purpose, we capture the property by the type class complete:

27

class complete = exhaustive + size +
assumes (3Jv. size; v < n Ais-some (f v)) <— is-some (exhaustive, f n)

By showing that the type constructor list is an instance of this class, we prove the
completeness of the test data generator for polymorphic lists. The instance proof
for lists yields no surprises: It is proved by induction on n and deploys the type
class axiom of complete and the size definitions.

A general proof procedure for arbitrary datatypes would essentially follow
the lines of the instance proof for the list type constructor, although it might be
technically challenging to implement. As this is only of minor benefit for the
counterexample generator, we did not pursue this any further. The formalization
of the presented example can be inspected at src/HOL/Quickcheck_Examples/
Completeness.thy in the Isabelle repository.

3.2.5 Generators for Arbitrary Type Definitions

Beyond inductive datatypes, types can also be defined by other means, e.g., by
HOL-style type definitions. For such types, code generation requires special setup
by the user. Quickcheck provides a simple interface for registering custom gener-
ators. One simply lists the constructing functions for values of this type. Generators
are then built using these functions, as if they were datatype constructors for this
type. For example, red-black trees are binary search trees with a sophisticated
invariant. The type (,8) rbt contains all binary search trees with keys of type «
and values of type g fulfilling the invariant. Values of this type can be generated
with the invariant-preserving operations

empty = (a,B) rbt

insert o= B = (a,pB) rbt = (e,B) rbt
Accepting these non-free constructors of (a,B) rbt as constructing functions, Quick-
check provides random and exhaustive generators for («,8) rbt that produce val-
ues starting with the empty tree and executing a sequence of insert operations.
The random generator chooses the key and value for the insert operation ran-
domly from the set of possible values, whereas the exhaustive generator enumer-
ates all possible keys and values (up to a given size) for the insert operations. Since
Quickcheck does not take the equivalence classes of the non-free constructors into
account, the generator might produce many identical values. For example, the
equation insert ki vy (insert ky vo empty) = insert ky vy (insert ki v; empty) holds
if ki # kp. Ignoring this equivalence, the generator produces some trees at least
twice: once when engaging the sequence of two insert operations with (k,v;) and
(k2,v2), and for a second time, engaging the sequence of the two insert operations
swapped. Furthermore, there is no guarantee that the generator covers all values
of the underlying representation type up to the given size.

Generators for Functions

For random testing, the generator for functions employs a special construction.
As only a fraction of the domain of the generated function is queried, the func-
tion’s return values are generated only when the function is called. To keep the

28

 src/HOL/Quickcheck_Examples/Completeness.thy
 src/HOL/Quickcheck_Examples/Completeness.thy

function’s return values consistent, previously generated return values for func-
tions are stored. At the beginning of each test case, Quickcheck creates a reference
value that stores an empty table and a random seed. Every time, the generated
function is called, Quickcheck either returns the value that has been stored in the
table for some previous function call with the same argument or generates a fresh
random value using the stored random seed and stores it in the table. This im-
plementation in Standard ML is then combined with the test program generated
from Isabelle.

For exhaustive testing, function values are generated by constructing constant
functions and applying a sequence of function updates:

exhaustive’ (c: (@ = B) = result option) i j = (if i = 0 then None
else exhaustiveg (Ab. ¢ (Ax. b)) j) U
(exhaustive’ (Af. exhaustive, (Aa. exhaustiveg

(. c (fla:=10))) j) Jj) (i=1))

exhaustive,—p c i = exhaustive’ c i i
where f(a:=b) = (Ax. if x = a then b else f x)

In contrast to the function generator for random testing, the function generator
for exhaustive testing eliminates the need to tie some ML implementation with
the generated code.

3.3 Extensions of the Infrastructure

So far, we presented the core parts of Quickcheck. In this section, we touch on
further aspects: testing of parametrized and polymorphic conjectures and con-
junctures with type classes, reification of results, and underspecified functions.

3.3.1 Parametrized Conjectures

Locales [9] in Isabelle allow us to prove theorems abstractly, relative to a set of
fixed parameters and assumptions. Interpretation of locales transfers theorems from
their abstract context to other (concrete) contexts by instantiating the parameters
and proving the assumptions.

For example, the locale antisym captures that a relation R is antisymmetric:

locale antisym = fixes R assumes R xy = Ryx = x =1y

Two concrete examples of the antisym locale are the polymorphic equality relation
on any type @ and the order relation on natural numbers. When the user provides
a proof that these relations are antisymmetric, the system registers the two inter-
pretations of the locale antisym, so that all facts derived in the locale context are
available for the two concrete examples.

Quickcheck has two strategies to refute a conjecture in a locale context:

o Instantiate to known interpretations. Quickcheck instantiates the conjecture to
all interpretations that have been declared by the user, and then tests the
resulting conjectures sequentially.

29

o Expand the parameters and axioms. Quickcheck tries to refute the abstract con-
jecture by adding all locale assumptions to the abstract conjecture. As a con-
sequence, the test programs first search for variable assignments that fulfill
the locale assumptions, and then check the conjecture.

As an example, we conjecture that every antisymmetric relation is transitive, i.e.,
Vxy.R xy = Ry z = R x zholds in antisym.

Following the first approach, Quickcheck instantiates the conjecture to the two
interpretations, and checks the two conjectures Vx y. x = y = y = x = x =z,
and Vx:nat yznat. x <y = y < x = x = z. Following the second approach,
Quickcheck also tests the expanded conjecture:

VR. (Vxy.Rxy=—=Ryx=—x=y) = Vxy.Rxy=—=Ryz=—Rxz

Coincidentally, the conjecture holds on the two interpretations; however for the
expanded conjecture, Quickcheck finds the counterexample, R = (Ax y. (x = ap A
y=a3)V(x=aAy=ay)), x=ay, y=a3 z=aj.

The two options complement each other: The first option only uses the de-
clared interpretations, and can easily miss simple counterexamples, as we have
seen in the example. The second option is more general and can be applied even
if no interpretations in the development were declared. However, searching for
models by testing can be cumbersome, as the testing methods are inappropriate
to find functions given a set of constraints. Therefore, the second option only
succeeds if small models exist. In contrast, choosing declared interpretations ren-
ders the search for models unnecessary and reduces the search space significantly,
making Quickcheck also applicable for large models.

In Isabelle, it is still technically very complicated to obtain an executable speci-
fication for interpretations. This spoils the otherwise overall impression of Quick-
check’s enhancements with parametrized conjectures. Unfortunately, Quickcheck
is inherently limited by this weakness of the Isabelle system.

3.3.2 Conjectures with Type Classes

Polymorphic conjectures can also be restricted by sort constraints, i.e., the property
is only stated for types with specific classes. For example, one might believe that
any order is linear and state the conjecture

(azazorder) <b Nb<c=a<c

Although type classes and locales serve a very similar purpose, they are encoded
differently in the system. In particular, the code generator translates type classes,
but is unaware of the locale mechanism. This circumstance allows Quickcheck to
follow only an approach, similar to the first approach of parametrized conjectures.
Quickcheck instantiates the conjecture with all types that fulfill the sort constraints
and have been registered in the development.

The second approach for parametrized conjectures suggests to enumerate all
small types and the type classes” operations that fulfill the class constraints. How-
ever, enumerating types is not possible naively as this enumeration is not express-
ible in the logic. If Quickcheck could choose an alternative translation of types and

30

type classes, it could express the enumeration of types in the test program. How-
ever, as Quickcheck’s translation relies heavily on the code generator’s translation,
we cannot modify the translation for types and type classes.

To strengthen Quickcheck on conjectures with type classes nonetheless, Isa-
belle provides a special library of small types for some of the typical classes arising
in formalizations. This improves the situation with type classes to some extent, but
handling conjectures with type classes still remains a weak point of Quickcheck.

3.3.3 Polymorphic Conjectures

If the conjecture is polymorphic, we can instantiate the type variables with any
concrete type for refuting it. Older versions of Quickcheck instantiated type
variables with the type of integers (if possible depending on the type class con-
straints), and tested the conjecture with increasing integer values. Lately, Quick-
check prefers to use a set of small finite types instead, so that conjectures with
quantifiers, e.g., existential conjectures dx: a. P x, can be refuted by a small finite
number of P tests.

The implementation for refuting quantified formulas over a finite type is based
on the type class enum. Type classes allow us to obtain implementations for more
complex types by composition. For example, the type @ X § = vy is finite if @, 8 and
y are finite types. The type class enum provides three operations for every finite
type 7: The operation univ:t list enumerates the finite universe; the operations
all : (t = bool) = bool and ex :: (t = bool) = bool check universal and existential
properties. The existential and universal quantifiers could be expressed just with
univ 7 list, i.e., Vx 1. P x = list-all P (univ: 7 list). Due to the strict evaluation of
ML, this would be rather inefficient: The evaluation would first construct a finite
(but potentially large) list of values, and then check them sequentially. To avoid
the large intermediate list, we implement the quantifiers using continuations, sim-
ilar to the construction of the exhaustive generators (cf. §3.2.3). For example, the
universal quantifiers for product and sum type are implemented by

allywp P =ally (Adaz:a.allg (Ab:p. P (a,b)))
ally13 P =ally (Adaza. P (Inl a)) A allg (Ab:B. P (Inr b))

For most types, the implementation is straightforward. For the function type, it is
a bit more involved. To construct the set of all functions @ = 8, we must create all
possible mappings, i.e., all lists of type g list with the same length as univ: « list,
and transform those lists into functions. The function fun-of dom range defines a
function that maps the values in the list dom to their corresponding value in the
list range. This can be defined with Isabelle’s standard operations by

definition fun-of :a list = Blist = a =
where fun-of dom range = the (map-of (zip dom range))

The function nlists n xs defines the set of all lists with length » and values from xs.
We check statements Vxs € nlists n enum. P xs and dxs € nlists n enum. P xs
efficiently by iterating over all possible values employing the basic all and ex com-
binators using the following equations:

31

definition ex-nlists = ((8:enum) list = bool) = nat = bool
where ex-nlists P n = (3xs € set (nlists n univg). P xs)

lemma [code]: ex-nlists P n =
(if n = 0 then P [] else exg (Ax. ex-nlists (Axs. P (x-xs)) (n—1)))

definition all-nlists = ((8:: enum) list = bool) = nat = bool
where all-nlists P n = (Vxs € set (nlists n univg). P xs)

lemma [code]: all-nlists P n =
(if n = 0 then P [] else allg (Ax. all-nlists (Axs. P (x - xs)) (n—1)))

Combining fun-of and all-nlists and ex-nlists, we finally obtain quantifiers for finite
functions:

ally—p P = all-nlists (Abs :: B list. P (fun-of univ, bs)) (card «)
eXq—p P = ex-nlists (Abs : B list. P (fun-of univ, bs)) (card «)

The test data generators for functions @ = S with infinite types @ and g were
presented in §3.2.5. However, if the types a@ and g are finite, Quickcheck uses
another exhaustive test data generator for functions @ = g, which follows the
enumeration scheme of univ,—z and all,—p. Similarly to univ,—z and all,—g, it
provides a complete enumeration of all functions over a finite type. In contrast
to all,—p, the test data generator also returns the counterexample as an optional
value. It is implemented with the type class check-all:

class check-all = enum +
fixes check-all :: (o = result option) = result option

To enumerate all finite functions, we use the functions fun-of and checkall-nlists:

checkall-nlists :: ((a :: check-all) list = result option) = nat = result option
checkall-nlists f n = if n = 0 then f []
else check-all (Ax. checkall-nlists (Axs. f (x-xs))(n—1)))

check-ally—p f =
checkall-nlists (Ays =B list. f (fun-of univg jis; ys)) (card «)

3.3.4 Reification

To present the counterexample to the user with proper Isabelle term syntax, the
counterexample must be displayed with Isabelle’s pretty printer. To employ the
pretty printer, the execution’s result must be transformed into an Isabelle term.
One option for the implementation would be that the test program prints the
counterexample as a string and Quickcheck employs a parser to construct the
term. However, as the ML environment, in which the test program runs, is tightly
integrated with Isabelle, it is not necessary to make the detour by printing and
parsing. Instead, the test program itself is able to return an Isabelle term, which is
passed directly to the pretty printer. To generate an ML test program that returns
an Isabelle term, we must encode Isabelle’s internal type and term representations
within the logic. The necessary datatypes to encode monomorphic types and
ground terms are defined by

32

datatype type = Type string (type list)
datatype term = App term term | Const string type

The two type classes typerep and term-of

class typerep = fixes typerep : a it = type
class term-of = typerep + fixes term-of : « = term

provide functions to obtain the type and term representation of a value, where
the phantom type « it with the single value T is used to embed types as terms.
Instances of typerep are automatically derived for all types, and instances of term-of
for all inductive datatypes. The construction of those functions is straightforward.
For example, for the boolean and product type, these functions are

typerep,,,, (T :bool it) = Type “bool” ||
typerep,,.5 (T (a X B) it) = Type “prod” [typerep (T = ait), typerep (T = B it)]
term-of,,,, False = Const “False” (Type “bool” [])
term-of,,,, True = Const “True” (Type “bool” [])
term-of,, 5 (a,b) = App (App
(Const “Pair” (typerep (T :: (¢ = B = a x B) it))) (term-of a)) (term-of b)

The result type and the reify function, introduced in §3.1, are simply abbreviations
for this presentation: result abbreviates term list, and given a conjecture with free
variables x1, ..., x,, reify abbreviates [term-of x1, ..., term-of x,].

3.3.5 Underspecified Functions

Even though HOL is a logic of total functions, users can give underspecified func-
tion definitions. The results are total functions, but equations only exist for some
subset of possible inputs. A prominent example here is the head function on lists.
It is specified by hd (x - xs) = x, but no equation is given for the Nil construc-
tor. Some facts only hold on the domain where the function is specified, while
others may hold in general, even on values where the function has no specifying
equations. For example, the conjecture about hd and append,

hd (append xs ys) = (if xs = [| then hd ys else hd xs),

is valid for all lists xs and ys, even if xs and ys are Nil. In this special case, left-
hand and right-hand side are equal because they reduce to the same term hd []. In
contrast, the conjecture hd (map f xs) = f (hd xs) is valid only if xs # [], because
for xs = [], as the left-hand and right-hand sides can evaluate to different values:
For the constant function f = (Ax. ¢) with ¢ # hd [], the right-hand side reduces
to f (hd []) = ¢, which is unequal to the value of the left-hand side hd []. Hence,
this conjecture is invalid.

To uncover counterexamples with underspecified functions, we slightly change
the test programs. The evaluation of underspecified functions in Standard ML
yields a match exception if it encounters a call to such a function and no pattern
matches the given arguments. The test program catches this exception. If we are
interested in possible counterexamples due to underspecification, we return the

33

values that yield the exception as counterexample. Alternatively, if we are only
interested in genuine counterexamples, we continue to search for other values. In
the presence of underspecified function definitions, Quickcheck cannot determine
if a counterexample is genuine or spurious if it was found by the evaluation where
exception values occurred. Therefore, it marks the counterexample as potentially
spurious. On the two conjectures above, Quickcheck returns the potentially spuri-
ous counterexamples xs = [|,ys = [] and xs = [|, f = Ax. a;. Nevertheless, these
potentially spurious counterexamples are useful in two ways: First, it makes users
aware that the choice? how the underspecified function is turned into a total func-
tion might be crucial for the validity of this conjecture; second, when users know
that the property only holds on values where the function is fully specified, they
can validate that the given assumptions suffice to restrict the values to the defined
part of the function by observing that no potentially spurious counterexample is
found.

In the implementation, we extend the test program as follows: The match
exceptions are caught with a special constant catch-match with a general type
@ = a = a. During the execution, the special constant catch-match returns its first
argument if no match exception occurs during the evaluation of its first argument;
otherwise it returns its second argument. As exception values are not modeled
in HOL, we provide no definition for this constant, but map catch-match v e to
the pattern (v handle Match = e) in the generated source code. Furthermore, to
indicate if the counterexample is genuine or potentially spurious due to a match
exception, we extend the return type for counterexamples by a boolean flag to
(bool x result) option. Hence, the scheme for a generated test program for a conjec-
ture C is

(if C x then None else Some (True, reify x))
handle Match = if genuineonly then None
else Some (False, reify x)

Quickcheck can search for potential and genuine counterexamples with the exe-
cution of the same test program. The test program queries the genuineonly flag
to enable the two execution modes, allowing or disallowing potentially spurious
counterexamples. As a result, Quickcheck compiles the test program for both
modes with only one invocation of the code generator. Consequently, search-
ing for potential counterexamples does not require any additional effort during
Quickcheck’s invocation.

Although successful in practice, both execution modes are somewhat dissat-
isfactory: The one mode is unsound but complete, because it can return spuri-
ous counterexamples, but does not miss any counterexample. The other mode is
sound but incomplete, because all counterexamples are genuine, but it could miss
some counterexamples.

A sound and complete code generation would of course be desirable. This
can be achieved by the following construction, exploiting the specific behavior of

2The implementations of the definition mechanisms use different means to make the function’s
definition total.

34

the current function package: First of all, we observe that the underlying func-
tion definition, which is hidden from the user, is crucial to actually find genuine
counterexamples. The current function definition packages totalize partial func-
tions by using some default value, typically the constant undefined. The constant
undefined is a polymorphic constant in HOL without any axioms. Now, to obtain
a sound counterexample generator, we must find a counterexample for some pos-
sible value for undefined in the domain of the type. To obtain a complete counter-
example generator, we have to try all possible values for undefined to ensure that
we checked all possible models.

One way to achieve this behavior is by the following steps: We create copies
of the functions, which are extended by a further argument that passes around
the chosen value for undefined. These functions are total by adding equations for
the partial patterns that simply return the value of the new argument as result.
For example, to the partial function hd : « list = @, we obtain a function hd' = a =
a list = a with the two equations, hd' undef (x-xs) = x, hd' undef || = undef.
Then, we rewrite the conjecture under test. For example, the two conjectures,

hd (append xs ys) = (if xs = [| then hd ys else hd xs) and
hd (map f xs) = f (hd xs),

are transformed to

hd' undef (append xs ys) = (if xs = [] then hd’ undef ys else hd’ undef xs)
and hd'" undef (map f xs) = f (hd' undef xs).

After this processing, Quickcheck would try all possible values for the free vari-
able undef as part of its testing. As expected, on the first transformed conjec-
ture, Quickcheck finds no counterexample, as the previous potentially spurious
counterexample, xs = [] and ys = [|, was in fact spurious. On the second conjec-
ture, we obtain the genuine counterexample, xs = [|, f = Ax. a1, undef = a,.

Unfortunately, the transformations described above require large modifications
of the specification under test, which is technically difficult to achieve.

An alternative is to generate a fixed value for the constant undefined at its first
occurrence in the evaluation, and then memorize it. This could be implemented
without modifying the complete specification under test, but only modifying the
code equation for the constant undefined. Nonetheless, the alternative also requires
us to modify the code generation’s setup globally. Therefore the implementation of
Quickcheck does not perform those transformation, but instead seeks for the more
minimal invasive method to extend the test programs with exception handling.

An Executable Definite Description Operator for Finite Types
Russell’s definite description operator ¢ :: (@ = bool) = « is axiomatized by
t (Ax.x =a) =a,

which specifies the value of ¢ P for single-valued predicates P:a = bool, i.e.,
predicates that only hold for exactly one value of type a. If the predicate P is not
single-valued, the value of ¢ P is unspecified. Like any underspecified function,

35

the definite description operator poses a challenge for code generation [52, §5],
because its axiomatization is not an unconditional equation. Hence, we must
derive such an equation from the axiomatization via some refinement. To preserve
partial correctness of the code generator’s evaluation, the expression ¢ P is only
allowed to be evaluated to some definite value if the predicate P is single-valued.
For other predicates, the value of ¢ P is underspecified, and the implementation
must abort or diverge.

We provide an executable implementation for ¢ if « is a finite type. We evaluate
t P as follows: We enumerate all values of the finite type and check the predicate
P. If there is exactly one value for which P holds, we return it; otherwise, we
throw an exception. This is implemented by the code equation

t P = (case filter P univ of [x] = x | _ = The’ P)

where the constant The’ P is defined as ¢ P, but the evaluation of The’ P raises an
exception when evaluated.

If Quickcheck is applied to a conjecture with ¢ P, we obtain a genuine counter-
example for single-valued predicates P, otherwise if P is not single-valued and the
exception is raised, we obtain only a potential one.

3.4 Simple Treatments

Quickcheck incorporates two basic but useful treatments: Conjectures are massaged
in a preprocessing step and test programs are optimized if the conjectures contain
premises with equalities.

3.4.1 Quantifier Massaging

So far in our presentation, we assumed that conjectures were universally quan-
tified statements of the form Ay = ... = A, = C. We extend the range
of formulas by rewriting them to obtain formulas of a suitable form. We apply
various rewrite rules

e to move universal quantifiers to the front of the formula,

(Vx. Px) NQ~Vx. PxNQ PA(Vx.Qx)~Vx. PAQ x
(Vx. Px)VQ~Vx.PxVQ PV (Vx.Qx)~Vx. PV Qx
(Ix.Px) = Q0~Vx.Px—Q P— (Vx.Qx)~VYx.P=—=Qx

e to move quantifiers through negations,
=(3x. Px) ~ VxoPx —(Vx. Px)~ Jx.mP x
e to split conjunctive premises into multiple premises,
(PNQ=R)~ (P= Q=—R)
e and to check equalities on functions by extensionality.

(fra=B)=g~Vx. fx=gx

36

3.4.2 Equality Optimization

For most premises, Quickcheck generates values and then tests the premise. This
behavior is typical for black-box testing tools. However, equational premises, i.e.,
premises of the form ¢t = u, can be optimized. Consider the (invalid) conjecture
about the concatenation of two maps, i.e., functions with type @ = g option:

my k = Some v = (m1 ® my) k = Some v,
where m; @ my = (Ax. case my x of None = my x | Some y = Some y)

Testing the conjecture naively would require us to generate values for all variables
freely. However, the premise m; k = Some v indicates how to compute the value
for v: If m; k is a defined value, i.e., a value with constructor Some, then v can be
obtained by destructing the value m; k. Taking this idea into account, a special
treatment of equational premises leads to an improved test program:

exhaustive (A(mq, k).
case my k of None = None
| Some v = if (m1 ® my) k = Some v then None
else Some (reify (my,k,v,my)))

In general, we analyze the left-hand and right-hand side of the equation and gen-
erate a case-expression to obtain the values of fresh variables on either side of the
equation. If variables occur multiple times, the test program is extended with an
if-expression with some further equality checks.

3.5 Datatype Refinements

Some conjectures cannot be refuted by Quickcheck because they are not executable
due to an inappropriate representation for the values in the conjecture. For exam-
ple, to the invalid conjecture3

(x,y) € (RUS)* = (x,y) ER*UST,

Quickcheck finds the counterexample x = a1, y = a3, R = {(a1,a2)},S = {(az,a3)}
for a type with three elements aj, ap, az. After instantiating the polymorphic
conjecture to relations on natural numbers, it remains invalid: A similar counter-
example, x =1, y = 3, R = {(1,2)}, S = {(2,3)}, would show the invalidity
for relations on natural numbers quickly. Unfortunately, the conjecture on natural
numbers is not refutable with Quickcheck, because it is not executable employing
the default representation for sets. In the target language, sets are represented
by lists applying a simple datatype refinement. Hence, only finite and cofinite*
sets are representable, but the identity relation, which immediately appears in the
execution of the reflexive transitive closure, is not finite or cofinite.
Similarly, the conjecture about function composition

fog=foh=g=h

3R* denotes the reflexive transitive closure of the relation R.
4A cofinite set is a set whose complement is finite.

37

is refutable with Quickcheck only if the domain type of the functions ¢ and h
is finite. As code generation maps functions in HOL directly to functions in the
target language Standard ML, it is impossible to check equality of two functions
with an infinite domain type.

To make these conjectures executable, we require alternative datatype refine-
ments. In the following subsections, we present two useful refinements for rela-
tions and functions and discuss how to automatically obtain suitable representa-
tions.

3.5.1 Finitely Representable Relations

To refute the conjecture about the distributivity of union and reflexive transitive
closure on relations over natural numbers, we must choose a suitable represen-
tation to execute the operations on relations. For example, it must allow us to
express reflexive transitive relations over an infinite type. We choose to represent
a relation with two finite sets: The first set describes all entries on the diagonal,
the second set describes the non-diagonal entries of the relation. This representa-
tion for relations is by no means an universal representation, but it is practical for
a number of conjectures about relations and relational dataflow dependencies in
imperative programs. In this subsection, the example illustrates how Quickcheck
can take advantage of data refinements.

The datatype refinement requires lifting constants and transferring theorems
(cf. §2.1.2, [62]). First, we define the type « rel for relations on type «, i.e., sets
of @ x a, and lift the necessary set operations, i.e., membership, union, and the
reflexive transitive closure:

typedef « rel = UNIV : ((a X @) set) set

lift-definition mem = a X @ = a rel = bool is Set.member
lift-definition union :: @ rel = « rel = « rel is Set.union
lift-definition rtrancl : a rel = « rel is Transitive-Closure.rtrancl

Now, we choose the representation for relations. The constant Rel serves as con-
structor for our finitely representable relations:

lift-definition Rel :: @ set = (a X @) set = a rel is AX R. (Id-on X) UR
where Id-on X = {(x,x) | x € X}

code-datatype Rel

With this representation, we can obtain values for the type « rel that we cannot
express on the type (a x @) set during the evaluation. For example, the identity
relation is represented with Rel Univ {} on a rel. For the new representation, we
now simply derive new code equations for the lifted operations:

mem (x,y) (RelXR) = ((x=yAx€X)V(x,y) €R)
union (Rel X R) (Rel Y S) = Rel (XUY)(RUS)
rtrancl (Rel X R) = Rel UNIV (R™)

38

Checking relation membership reduces to an equality check and membership tests
on the diagonal and non-diagonal part of the relation. The code equations for
the union and the reflexive transitive closure reflect the insight that the Rel op-
erator and union are distributive, and that the reflexive transitive closure can be
expressed as composition of reflexive and transitive closure.

As a last step, we define generators for abstract type « rel employing the gen-
erator for sets and pairs. After this setup, Quickcheck finds the aforementioned
counterexample, when transferring the original conjecture to

mem (x,y) (rtrancl (union RS)) = mem (x,y) (union (rtrancl R) (rtrancl S))

3.5.2 Finite Functions

For an executable equality on functions, we must refine function values to val-
ues with a data representation, for which we can implement function equality. In
general, equality of two HOL functions is undecidable, but if we restrict ourselves
to refute the conjecture on a reasonable subset of the function space, the counter-
example on this subset also serves as counterexample on the full function space.
One such subset of the function space is Lochbihler’s formalization of finite func-
tions [79]. By restricting functions to be constant except for finitely many points,
we can represent them by association lists and an explicit default value. On these
finite functions, we can check the equality of two finite functions with a simple
implementation that compares the two association lists and default values.

The implementation is almost straightforward. It must take one specialty into
account: The behavior depends on the universe of the function’s domain being
finite or infinite, which can be nicely expressed with type classes. As the initial
formalization is Lochbihler’s contribution, we do not go into details here, but refer
the reader to [79].

The initial formalization required the user to modify an existing specification
extensively, or decide at the beginning of his formalization to use finite func-
tions. Our contribution simplified the formalization employing the new lifting
and transfer mechanism [62], following similar lines to the formalization of finitely
representable relations. This engineering effort integrates finite functions with the
system smoothly, and now enables us to transfer conjectures on functions to con-
jectures on finite functions before trying to refute them.

3.5.3 Automatic Data Refinements

For the two examples, we came up with the representations by human insight, and
informally argued why they are suitable representations. However in general, a
suitable representation varies from one conjecture to another. For most examples,
representing sets by finite lists is preferred to represent them as membership func-
tions. However, the set representation with finite lists permits to represent the set
{xs. length xs = 2}, but this can be easily expressed as a membership function di-
rectly. Even worse, although sets (@ set) and predicates (@ = bool) are isomorphic,
choosing one or the other influences whether the conjecture is within the exe-
cutable fragment. Hence, users must be aware of the code representation, which

39

is equipped with the various types.

The presented refinements provide only a partial solution: The chosen relation
representation cannot handle relations like {(x,y). x = ¢} and {(x,y). y = c}. At
the moment, the user still has to come up with a representation for code genera-
tion, for the specific class of functions, sets or relations he is interested in.

In larger specifications, choosing one representation uniformly for all set and
function types is often impossible, but one requires different representation for the
various types occurring in the specification. At the moment, this is only possible
by providing copies of the types with different representations, and manually
instructing the system with a mapping of types to its representations.

A next step is to automatically discover a suitable representation for code gen-
eration. In principle, a tool can also automatically discover that all occurring
functions can be finitely represented and obtain a suitable representation for code
generation. To do so, the tool must analyze the definitions with an appropriate
analysis, similar to the monotonicity analysis [20]. The inferred type annotations can
drive which representation for function must be chosen. Employing these analysis
abolishes the need to manually set up code generation and enables us to handle
specifications that are not based on the existing libraries. Future work must clarify
how to refine datatypes supported by such an analysis.

3.6 Related Work

There is huge amount of related work in the broad field of software testing [87].
Here we will focus the presentation of related work in the setting of functional pro-
gramming languages and interactive theorem provers. Haskell’s QuickCheck [33]
was the first to explore specification-based testing in functional programming lan-
guages. Its success story has led to many descendants in interactive theorem
provers and other (functional) programming languages. Besides Isabelle, PVS [95],
Agda [43], ACL2 [44] and ACL2 Sedan [28] include a random testing tool like
the original QuickCheck. Although Coq, HOL4, HOL-Light and Mizar have a
considerable user base, counterexample generators are conspicuously missing in
these systems. The integrated development environment Focal [7] also includes a
Quickcheck-like random testing tool [25].

One of the main concerns of a testing tool like Quickcheck is to automate the
construction of test data generators. Most Quickcheck-like systems are based on
a specification language with inductive datatypes, some also support further con-
structions, such as records or subtypes. The automation of the test-data-generator
construction usually focuses on inductive datatypes. As theorem provers are
equipped with a well-developed meta-language, i.e., functions to construct and
inspect types and terms, automated construction is technically simpler than in a
programming language: Besides Isabelle’s Quickcheck, PVS and ACL2 Sedan also
provide an automatic construction for datatypes. The construction essentially fol-
lows along similar lines, with minor variations due to the different type definition
mechanisms in the theorem provers.

Constructing test data generators in a programming language is technically
more involved, and requires an introspection mechanism. This can be provided

40

by generic programming frameworks (cf. [58] for an overview), such as Template
Haskell [106] and Generic Haskell [57]. Besides Haskell, other functional pro-
gramming languages also provide Quickcheck-like testing tools, e.g., Standard
ML [76], OCaml [108], Erlang [6] and Scheme. The tools are conceptionally very
similar to the Haskell version, but the implementations differ as the underlying
programming languages lack the concept of type classes. Due to this deficiency,
Quickcheck for Standard ML requires the user to explicitly write out test data
generators, essentially imitating the type class mechanism by creating dictionaries
manually. To overcome this deficiency, another Quickcheck for ML [85] deploys
a special reflection mechanism for types in a special ML dialect. The work [72]
describes some infrastructure for automating the construction of test data genera-
tors in Standard ML. Similar work [24] is also done for the language OCaml. This
work also extensively focuses on a uniform distribution of random values.

Our exhaustive testing is inspired by Haskell’s SmallCheck [105] but is target-
ing ML with its strict evaluation. The implementation of Haskell’s SmallCheck
takes advantage of its laziness, simplifying the definition of generators, while Isa-
belle’s tool takes the strictness of ML into account and uses continuations.

The Feat package [42] for Haskell allows us to enumerate values of algebraic
types and separates the enumeration of values from its strategy. Hence, we can
enumerate exhaustively, randomly or with various hybrid strategies by imple-
menting the strategies employing only a single family of generators. Its distribu-
tion for the exhaustive enumeration differs from the one in SmallCheck, which
was critically important while testing with large datatypes.

Gast [75] is an exhaustive testing tool for the programming language Clean.
As Clean supports generic programming, Gast can automatically construct the
test data generators for all datatypes when being invoked.

Beyond functional languages, Jhala and Majumdar [67, sect. 2] give an overview
of bounded software model checking with concrete values for imperative pro-
gramming languages, which is closely related to exhaustive testing.

Quickcheck has been successfully applied in a number of industrial applica-
tions [6, 34, 35, 39, 63, 64] and teaching [97].

In this work, we focused on the implementation aspects to check polymor-
phic conjectures to obtain test programs that check properties with finite domains
very efficiently. The theoretical work of testing polymorphic properties [17] ex-
ploits parametricity of the functions under test. It presents an analysis to compute
the monomorphic type that a polymorphic property should be tested on. Their
analysis gives an upper bound for cardinality of the monomorphic type, i.e., the
computed monomorphic type is sufficiently large to ensure that there exists a
counterexample to the polymorphic property if and only if there exists a counter-
example to the monomorphic instance.

Although the potential of this technique sounds promising, the analysis is only
applicable for checking (dis)equality of truly polymorphic functions, i.e., polymor-
phic functions that do not use equality in their definitions. Hence, this is only
applicable for very special conjectures and has not been implemented yet.

Isabelle’s counterexample generator Nitpick employs a monotonicity analysis
[20] to prune the search space for polymorphic conjectures with multiple type

41

variables. If a formula with n atomic types is monotonic, it suffices to check all
models in which all atomic types have cardinality &, instead of k" combinations of
cardinalities. For example, to check associativity of the concatenation of maps,

(my = a = Boption) & (my ®mz) = (my ®my) G ms,

the counterexample generator must choose types with a fixed cardinality for the
type variables @ and S. In general, one would have to check all combinations
of cardinalities for the types @ and 5. As the proposition is monotonic, one can
limit checking to the cases where « and B have the same cardinalities. Nitpick
employs an analysis to determine if the formula is monotonic. In contrast, Quick-
check chooses a and g with same cardinalities without a further analysis by de-
fault. Due to the lack of the monotonicity analysis, it is incomplete in theory.
However in practice, most conjectures are monotonic, as already pointed out by
Blanchette and Krauss [20]. We never observed missing a counterexample due to
this incompleteness—besides on especially constructed examples to illustrate the
weakness. In the future, one could integrate Nitpick’s monotonicity analysis into
Quickcheck to regain completeness in this respect, but this would put higher load
on its current architecture.

42

Chapter 4

Conditional Conjectures

Counterexample generators that test with random values or exhaustively with
small values, perform well on conjectures without premises. For example, for the
invalid conjecture about lists

reverse (append xs ys) = append (reverse xs) (reverse ys),

the counterexample generators provide the counterexample xs = [a;] and ys = [ap]
(for a; # ap) instantaneously. For conjectures of this kind, random and exhaustive
testing are perfectly suited.

The main weakness of both random and exhaustive testing, already mentioned
in the original QuickCheck for Haskell paper [33], is that they do not cope well
with hard-to-satisfy premises. For example, when testing our previous conjecture
about insort (cf. § 3.1),

sorted xs = sorted (insort x xs)

the conjecture is evaluated with all lists up to a given bound for xs. For all unsorted
lists, the premise is not fulfilled, and the conclusion is left untested. Clearly, it
is desirable to take the condition into account when generating values: In this
example, we would like to generate only sorted lists.

Often, these conditional conjectures arise in the verification of functional data
structures, e.g., red-black trees. A properly implemented delete operation for red-
black trees satisfies the following property:

is-rbt t = is-rbt (delete k 1)

The predicate is-rbt captures the invariant of red-black trees on the type of binary
search trees (e,f) tree.! Again, binary trees generated naively rarely satisfy the
premise, and we prefer to generate only trees satisfying the invariant.

In this chapter, we present two techniques to handle conditional conjectures:
custom and smart generators.

IThe type (a,) tree should not be confused with type (a,) rbt from § 3.2.5.

43

4.1 Custom Generators

The simplest solution to test conditional conjectures effectively is to let the user
provide a custom generator. Assuming the user provides a generator for some
type restricted by a predicate (cf. §3.2.5) that matches the condition, Quickcheck
automatically [ifts the conjecture to the restricted type. For example, the conjecture
about delete is automatically lifted to the type (e, 8) rbt, where Rep,; t' maps a red-
black tree t’ of type (a,B) rbt to its representative binary tree on type («,) tree:

is-rbt (Repyy ') == is-rbt (delete k (Repyy t'))

Note that ' is now of type (@, 8) rbt, unlike the original conjecture, where t has the
type (a,p) tree. As all representatives of type (a,) rbt satisfy the predicate is-rbt
(by the type’s construction), the premise is-rbt (Rep,y ') simplifies to true. This
way, Quickcheck obtains an unconditional conjecture, which it tests either with
the random or exhaustive generator of () rbt.

4.2 Smart Generators

Custom generators suffice to test conditional conjectures effectively. However to
employ them, users have to spend some effort to set them up. In the case of
the example with red-black trees, this might be an acceptable effort for users, as
they spend considerable time proving operations on red-black trees and invent
various conjectures for the operations with the premise is-rbt t. As users also
define operations to construct red-black trees, setting up a custom generator fits
naturally in the development process in this scenario.

In other scenarios, e.g., when stating the conjecture about sortedness, provid-
ing custom generators is more difficult. The function insort could serve as function
for constructing sorted lists, but this requires to have already proved that insort
preserves sortedness. When proving another conjecture with a premise sorted xs,
users do not want to pursue a number of steps just to obtain a more effective
test data generator.? Instead, users simply state the conjecture and hope that the
counterexample generator does its best, as custom generators are too laborious for
conjectures with premises that are unlikely to reoccur repeatedly in many other
conjectures.

A more sophisticated solution to test conditional conjectures effectively, is
smart test data generators that take the condition’s definition into account. These
test data generators construct values in a bottom-up fashion, simultaneously test-
ing the condition and generating appropriate values. In contrast to custom gen-
erators, they do not require any user setup. We present two examples for these
smart generators.

For further illustration, we focus on the valid conjecture about distinct lists:

distinct xs = distinct (tl xs).

2To obtain the generator, users would have to define the insort function, prove that it preserves
sortedness, define a new type of sorted lists, and set up a custom generator.

44

The counterexample generator that tests exhaustively employs the following test
program (cf. §3.1 and §3.2.3) to check the validity of the conjecture:

exhaustive,,; i (Axs. if — distinct xs then None
else if distinct (t xs) then None else Some xs) i

This test program implements a simple generate-and-test loop. It uses the function
exhaustive,,; i+ to generate all lists of natural numbers up to a given bound and
iteratively test the property at hand.

The smart generators interleave generation and checking in a way that avoids
generating lists that are not distinct. From the definition of the distinct predicate,

distinct [| = True
distinct (x - xs) = (x & set xs A distinct xs),

we can derive how to construct distinct lists: First, the empty list is distinct; sec-
ondly, larger distinct lists can be constructed taking a (shorter) distinct list and
prepending an element which is not in the list already. This insight is reflected in
the smart test data generator exhaustive-distinct for lists of type a:

exhaustive-distinct, 1 ¢ i = (if i = 0 then None else (¢ Nil L
(exhaustive-distinct, it (Axs. exhaustive,
(Ax. if x & set xs then ¢ (x - xs) else None) (i—1)) (i—1))))

The function exhaustive-distinct only generates and tests the given property with
distinct lists. It constructs lists by applying the two rules mentioned above. With
this generator, we can check the conclusion more efficiently with the test program

exhaustive-distinct,q ;i (Axs. if distinct (tl xs) then None else Some xs) i

For the conjecture about insort, Quickcheck can automatically derive a test data
generator that constructs only sorted lists. From the definition for sorted,

sorted Nil = True
sorted [x] = True
sorted (xq - (x2-xs)) = (x1 < xp A sorted (xp - xs)),

we obtain an exhaustive generator that constructs sorted lists from either Nil or
a singleton list [x], or by prepending an element to a sorted list if the element is
smaller than the list’s head:

exhaustive-sorted,, js; ¢ i = (if i = 0 then None else (¢ Nil U
exhaustive, (Ax.c [x]) (i—1) U
exhaustive-sorted, js; (Axs'. case xs’ of Nil = None
| X - xs = exhaustive, (Ax. if x; < xp then ¢ (x7 - (x2 - x5))
else None) (i—1)) (i—1)))

The counterexample generators in the previous chapter test the conjecture with
concrete values. Testing with concrete values has the clear advantage of being
natively supported by the targeted functional programming language and hence
is executed very fast, but it has the drawback that a large set of test inputs may

45

exhibit indistinguishable executions. For example, in our example about distinct
lists, the lists [1,1,2], [1,1,3], [1,1,4], ... are all non-distinct because of the non-
distinct prefix [1,1], and hence they exhibit the same execution in the test program.

The smart test data generators aim to find a balance between fast execution with
concrete values and avoiding symmetric executions. They produce concrete values
during the execution, so that it can be translated directly into the target functional
programming language.

For conjectures without premises, we enumerate all possible concrete values.
This is fairly effective, because usually there are only very few symmetric exe-
cutions in that case. When premises occur in conjectures, the smart test data
generators only produce values fulfilling the condition, and then test the conclu-
sion. We generate values fulfilling the premises with a program that queries the
premises’ predicate. This generator enumerates values by considering all deriva-
tions for the predicate, similar to a query in Prolog, but in contrast to Prolog, the
generator returns only ground solutions but does not use schematic variables. The
query is integrated in a lightweight fashion into the test program by a compilation.
Throughout this section, we use the term compilation to designate our translation of
Horn clauses to programs written in Isabelle’s functional programming language.

More specifically, Quickcheck synthesizes these generators by reformulating
the definitions as a set of Horn clauses and computing its dataflow dependencies.
The smart test data generator for a given predicate is produced by a compiler
that analyzes the predicate’s definition and synthesizes a purely functional pro-
gram that serves as generator. For this purpose, the compiler reformulates the
predicate’s definition as logic programs by translating formulas in predicate logic
with quantifiers and recursive functions to Horn clauses. The compiler analyzes
the Horn clauses with a dataflow analysis, which determines which values can
be computed from other values and which values must be generated. From this
analysis, the compiler constructs the desired generators.

Using these generators reduces the number of tests, and as our evaluation (§6.2)
shows, this allows us to explore test values of larger sizes where exhaustive test-
ing cannot cope with the explosion of useless test values. More precisely, in our
simple example with distinct lists, naive exhaustive testing cannot check all lists
of size 15 within one hour, where the smart generator can easily explore all the
lists up to this size within 30 seconds.

Smart generators also address an issue with conditional conjectures that are
expressed as a conjunction of conditions, such as

length xs = length ys A\ zip xs ys = zs = map fst zs = xs Amap snd zs = ys
sorted xs Ni < jAj <length xs = nth xs i < nth xs j

At first sight, it is not clear in which order the conjuncts should be checked. Smart
generators attempt to reorder conjecture’s premises based on the findings of its
dataflow analysis.

4.2.1 Architecture

The counterexample generator performs these steps: As the original specification
can be defined using various definitional mechanisms, the specification is prepro-

46

cessed by a few simple syntactic transformations (§4.2.2) to Horn clauses. The core
component, which was previously described in [16], consists of a static dataflow
analysis, i.e., the mode analysis (§4.2.4), and the code generator (§4.2.5). This core
component only works on a syntactic subset of the Isabelle language, namely Horn
clauses of the following form:

Onm— - -—Q,u,— Pt

In a premise Q; u;, Q; must be a predicate defined by Horn clauses and the terms
u; must be constructor terms, i.e., only contain variables or datatype constructors.
Furthermore, we allow negation of atoms, assuming the Horn clauses to be strat-
ified. If a premise obeys these restrictions, the core compiler infers modes and
compiles functional programs for the inferred modes. If a premise has a differ-
ent form, e.g., the terms contain function symbols, or a predicate is not defined
by Horn clauses, the core compiler treats them as side conditions. Enriching the
mode analysis, we mark unconstrained values to be generated. Once we have in-
ferred modes for the Horn clauses, these are turned into test data generators using
nondeterministic executions and type-based generators.

4.2.2 Processing of Definitions to Horn Clauses

A definition in predicate logic is transformed to a system of Horn clauses, based
on the observation that a definition of the form Px = 3y. Q1 u1 A - - - A Q,, u, can be
soundly under-approximated by a Horn clause Q1 1 = -+ = Q, u, = P x.
Predicate logic formulas in a different form are transformed into the form above
by a few logical rewrite rules in predicate logic. We rewrite universal quantifiers to
negation and existential quantifiers, put the formula in negation normal form, and
distribute existential quantifiers over disjunctions. In the process of creating Horn
clauses, it is necessary to introduce new predicates for subformulas, as our Horn
clauses do not allow disjunctions within the premises or nested expressions under
negations. Furthermore, we take special care of if, case and let-constructions.

Example 1. The distinct predicate on lists is defined by the two equations,

distinct [| = True
distinct (x - xs) = (x ¢ set xs A distinct xs)

In the preprocessing step, these are made to fit the syntactic restrictions of the core
component, yielding the two Horn clauses

distinct []
distinct xs == x & set xs == distinct (x - xs)

4.2.3 Function Flattening

To enable inversion of functions, we preprocess n-ary functions to (n+ 1)-ary pred-
icates defined by Horn clauses, which enables the core compilation to inspect the
definition of the function and leads to better synthesized test data generators. This
is achieved by flattening a nested functional expression to a flat relational expres-
sion, i.e., a conjunction of premises in a Horn clause.

47

Basic terms
flatten ¢ = {(¢,@)} for any constant ¢

flatten x = {(x,@)} for any free variable x
flatten (Ax. 1) = {(Ax. 1, D)}

Special function application
flatten (if b then x else y) =
{(r,{b} UP). (r, P) € flatten x} U {(r, {—b} UP). (r, P) € flatten y}

flatten (case r of C1 y1 = rhsy| ...| Cp yu = rhs,) =
L A{r=Ciyi}UPUQ). (¥, P)€ flatten rhs;, (r, Q) € flatten 1}

flatten (let x =rinu x) =
{(+,PUQ). (r,Q) eflatten (ur),(r,P) € flatten ¢}
General function application

If for the function f a predicate fp is defined:
flatten (f uy...u,) =

{(r,{fp resi...res, r} UUL,P;). (res1, P1) € flatten uy, ...
..., (res,, Py) € flatten u, }

otherwise:
flatten (f uy...u,) =

{(f res1...res,,U_1P;). (res1, P1) € flatten uy, ..., (res,, P,) € flatten u, }

Figure 4.1: Definition of function flattening

Example 2. The length of a list is defined by length [] = 0, and length (x - xs) =
Suc (length xs). We derive a corresponding relation lengthp with two Horn clauses:

lengthp [] 0
lengthp xs n = lengthp (x - xs) (Suc n)

The premise length xs = length ys is then transformed into
lengthp xs n A lengthp ys n

In the new formulation, the constraint of the two lists having the same length is
expressed by their shared variable n. This relational description helps our mode
analysis to find a more precise dataflow.

Commonly, recursive functions in Isabelle are specified by equations, f 7 = rhs
where 7 are constructor patterns. For every function f, we define a predicate f,
such that f, 7 res holds if f 1 = res. Right-hand sides of equations are flattened
into a set of pairs with a result expression and set of premises by the function
flatten :: term = (term x premise set) set (see figure 4.1). For every equation f 7 = rhs
and for every pair of result expression and premises (r, P) € flatten rhs, we derive
a Horn clause Py =— P, — ... = P, = fpirwith {Py,..., P,} € P.

48

This well-known technique of flattening has been described previously in the
literature, e.g., by Naish [89] and Rouveirol [104]. Our implementation also sup-
ports flattening of higher-order functions, which allows inversion of higher-order
functions if the function argument is invertible.

4.2.4 Mode Analysis

For the execution of a predicate P, the predicate’s arguments are classified as in-
put or output, made explicit by means of modes.> Modes can be inferred using a
static analysis on the Horn clauses. Our mode analysis is based on Mellish [84].
There are more sophisticated mode analysis approaches, e.g., by using abstract
domains [107] or by translating to a boolean constraint system [94]. For our pur-
pose, it suffices to apply the simple mode analysis, because if the analysis does
not discover a dataflow due to its imprecision, the overall process still leads to a
test data generator.

Modes. For a predicate P with k arguments, a mode is a particular dataflow as-
signment which follows the type of the predicate and annotates all arguments as
input (i) or output (o), e.g., for lengthp, 0 = i = bool denotes the mode where the
tirst argument is output, the last argument is input.

A mode assignment for a given clause Q1 uy = -+ = Q, u, = P tis a list
of modes M, My, ... M, for the predicates P, Q1,...,Q,. Let FV(¢) denote the set
of free variables in a term ¢. Given a vector of arguments 7 and a mode M, the
projection expression 7(M) denotes the list of all arguments in 7 (in the order of
their occurrence) which are input in M.

Mode Consistency. Given a clause Qq #; = - - - = Q, u, = P 1, a correspond-
ing mode assignment M, M,,... M, is consistent if the chain of sets of variables
vo C -+ C v, defined by (1) vo = FV(1(M)) and (2) v; = v;,_1 UFV(u;) obeys the
conditions (3) FV(#;(M;)) C v;_1 and (4) FV(7) C v,. Mode consistency guarantees
the possibility of a sequential evaluation of premises in a given order, where v; rep-
resents the known variables after the evaluation of the j-th premise. Without loss
of generality, we can examine clauses under mode inference modulo reordering of
premises. For side conditions R, condition (3) has to be replaced by FV(R) C v;_1,
i.e., all variables in R must be known when evaluating it. This definition yields a
check whether a given clause is consistent with a particular mode assignment.

Example 3. Consider the predicate append,, which is obtained by flattening the
append function, with its two Horn clauses

append, [] ys ys
append , xs ys zs = append (x - xs) ys (x - zs)

The modes i = i => 0 = bool and 0 = 0 = i = bool for the predicate append, admit
a consistent mode assignment for the two Horn clauses. For the first clause and
the two modes, the four conditions are respected as vop = {ys} = v,. For the
second clause and M = i = i = o = bool, we choose M; = i = i = o0 = bool

3Modes were already introduced in §2.2.3. For a self-contained presentation, we recap parts
from §2.2.3, but present the mode analysis in more detail.

49

and meet the four conditions, as vo = {x,xs,ys}, FV(u1(M1)) = {xs,ys} C wo
and vi = {x,xs,ys,zs} D FV(i) holds. Similarly for M = 0 = 0 = i = bool, we
choose M; to be 0 = 0 = i = bool and meet the four conditions, as vo = {x,zs},
FV(u1(M1)) = {zs} Cvpand v; = {x,xs,ys,zs} O FV(7) holds.

Generator Mode Analysis. To generate values that satisfy a predicate, we extend
the mode analysis: If the mode analysis cannot detect a consistent mode assign-
ment because the values of some variables are not constrained after the evaluation
of the premises, we allow the use of generators. The values for these variables
are constructed by an unconstrained enumeration. The overall resulting generator
enumerates values either driven by the computation of a predicate or by generation
based on its type. More specifically, the mode with all arguments classified as
output describes a dataflow in the Horn clauses that generates values satisfying
the predicate. For example, the generator mode analysis for the predicate distinct
with mode o =>bool infers how to generate distinct lists.

Example 4. Given the predicate op ¢ in x € set xs has one mode i = i = bool
only, the classical mode analysis fails to find a consistent mode assignment for the
predicate distinct with mode o= bool due to its second Horn clause

distinct xs = x ¢ set xs = distinct (x - xs).

To generate values for x and xs fulfilling distinct (x - xs), we combine computation
and generation of values as follows: The values for variable xs are built using
distinct with My = o =>bool; values for x are built by a generator and undergo the
check of x & set xs with mode M, = i=i=>bool for predicate op ¢.

This extension gives rise to a number of possible modes, because we omit the
conditions (3) and (4) for the mode analysis. Instead, we use a heuristic to find
an appropriate dataflow by locally selecting the optimal premise Q; and mode M;
with respect to the following criteria:

1. minimize missing values, i.e., have |FV(u;(M;)) — v;_1| be minimal;

2. prefer functional predicates with their functional mode;

3. prefer predicates and modes that do not require generators themselves;
4. minimize number of output positions;

5. prefer recursive premises.

Next, we motivate and illustrate these five criteria. In general, we would like
to avoid generation of values and computations that could fail, and to restrain
ourselves from enumerating any values that could possibly be computed. Hence,
the first priority is to use modes where the number of missing values is minimal.
This way, we partly recover conditions (3) and (4) from the mode analysis.

Example 4 (continued). A priori, the mode analysis has two alternatives for the
mode M; to the premise distinct xs: generating values for xs and then testing
distinct xs with mode i =>bool, or only generating values for xs using distinct with

50

0 = bool. The first choice generates values and rejects them by testing; the latter
only generates fulfilling values and is preferable. The analysis favors o = bool to
i=bool thanks to criterion 1: for vo = {}, u; = xs and My = i=-bool, FV (uy (M7)) —
vo = {xs}; whereas for My = o=-bool, FV (u1(M1)) —vo = {}. |FV(u1(M7)) — vo| is
minimal for M; = o= bool.

Due to the second criterion, the mode analysis prefers functional predicates
with their functional mode. This criterion attempts to reduce the number of pos-
sible intermediate solutions: The evaluation of predicates with functional modes
cannot fail, returns exactly one value and can be implemented more efficiently.

Example 5. Consider a clause R x y = F x y = P x y where F is functional.
R and F both allow modes i = 0 = bool and i = i = bool. For M = i = 0 =
bool, R x y and F x y can be evaluated in either order. Our criterion 2 induces
preference for computing y with the functional computation F x y and checking
R x y, i.e.,, whether the one value for y can fulfill R x y or not. In contrast, the
opposite order, i.e., computing y with R x y and then checking F' x y could lead to
generating many values for y, where at most one is fulfilled by F x y.

Criterion 3 induces avoiding the generation of values in the predicate to be
invoked. Furthermore, we minimize output positions, e.g., we prefer checking a
predicate (no output position) before computing some solution (one output posi-
tion) as we illustrate by the following example:

Example 6. In a clause R x y = Q x = P x y with mode i= 0= bool for R and
P, and i = bool for Q, we prefer Q x to R x y, since computing values for y would
be useless if Q x fails. This ordering is enforced by criterion 4.

Finally, we prefer recursive premises. This commonly leads to a bottom-up
generation of values.

Example 7. In a clause P xs = C xs = P (x - xs), where P and C admit both
modes i = bool and o = bool, the mode analysis could choose one of the two
alternatives: The mode assignment o = bool for P xs and i = bool for C xs yields
a dataflow that generates values fulfilling P and checks the condition C. The
alternative assignment i = bool for P xs and o = bool for C xs leads to generate
values for xs from the premise C xs and checks P xs. The mode analysis prefers
the first mode assignment to the second due to criterion 5. Here, generators should
exploit the recursion in the predicate’s definition: Given a recursive definition of a
predicate, the corresponding generator attempts to generate values by recursively
generating smaller values, for which the predicate holds. In our example, values
fulfilling P (x - xs) are generated by prepending values for x to all values generated
for P xs and fulfilling C xs.

This generator mode analysis results in mode-annotated Horn clauses, where
annotations mark which values are enumerated by exhaustive generators. In sum-
mary, it not only discovers an existing dataflow, but helps to create a dataflow by
filling the gaps with the type-based test data generators.

51

4.2.5 Generator Compilation

In this section, we discuss the translation of the compiler from mode-annotated
Horn clauses to functional programs. The central idea underlying the compila-
tion of a predicate P is to generate a function PM for each mode M of P that,
given a list of input arguments, enumerates all tuples of output arguments. The
dataflow given by the mode-annotated Horn clauses allows the compiler to gen-
erate a functional program with nondeterministic computations. The function P¥
for the mode M with all arguments as output serves as test data generator for
predicate P.

First, we discuss the execution mechanism based on nondeterministic com-
putations. Then, we sketch the compilation scheme and its applications to the
introductory examples.

Monads for Nondeterministic Computations

We use continuations to enumerate the (potentially infinite) set of values fulfilling
the involved predicates.

Employing the plus monad operations describing nondeterministic computa-
tions. Depending on our enumeration scheme, we employ three different plus
monads: one for unbounded computations, and two others for depth-limited com-
putations within positive and negative contexts, respectively.

The continuation plus monad supports four operations: return, bind, mzero and
mplus. Their definitions and properties have been provided in §3.2.1.

If we employ these operations in Standard ML to compute solutions to query a
predicate, the execution reflects a Prolog-like execution strategy with a depth-first
search. This strategy is fine for user-initiated evaluations, but for counterexample
generation, automatically generated values might cause infinite computations es-
caped from the control of the user. To avoid that the execution is stuck in such
a computation, we employ a plus monad that limits the computation by a depth
limit. As the evaluation answers negative queries with a negation-by-failure se-
mantics, it must take special care of negation when evaluating predicates with
a depth-limited computation. We implement different behaviors for queries in
different contexts: for positive contexts, the implementation computes an under-
approximation; for negative contexts, an overapproximation.

More specifically, the plain continuations without the depth limit have type
(¢ = result option) = result option. For a depth-limited computation in posi-
tive contexts, we provide an extended continuation plus monad with type (« =
result option) = int = result option. The bind"* operation checks the depth limit and
if reached, it behaves like a failing computation; otherwise it passes a decreased
depth limit to its argument. This yields a sound underapproximation of the query.
The other three plus monad operations pass around the additional argument and
behave like the usual continuation monad operations:

mzerot = (Ac i. None)
return™ x = (Aci. ¢ x)
bind* m f = (Aci. if i = 0 then None else (m (Aa. (f a) ci) (i —1)))

52

mplus™ ¢ ¢ = (Ac i. case ¢1 ¢ i of None = ¢, ¢ i | Some x = Some x)

In negative contexts, we must explicitly distinguish failure (no solution found)
from reaching the depth limit. To signal reaching the depth limit, we include an
explicit element to model an Unknown value, and continue the computation with
this value.

datatype a unknown = Unknown | Known a

A negative computation can yield None or Some x, but it can also yield the un-
known value. We encode the possible results in the ext-option type:

datatype a ext-option = Unknown-value | Some « | None

For the negative depth-limited computation, the type of the continuation plus
monad is (@ unknown = result ext-option) = int = result ext-option.

The monad operations mzero™, return~ and mplus~ do not consider the depth
limit and are similar to their counterparts for positive contexts:

mzero~ = (Ac i. None)
return~ v = (Ac i. ¢ (Known v))
mplus™ ¢ ¢ = (Ac i. case ¢ ¢ i of
None = ¢y ci | Some x = Some x | Unknown-value = Unknown-value)

The bind~ operation implements the conjunction of two computations and handles
the conjunction of a computation reaching the depth limit and failing computation
special: If one computation reaches the depth limit and the continuation fails,
then the overall computation fails; in other words failure absorbs the unknown value
(which is consistent with a Kleene three-valued logic interpretation).

bind~ m f = (Ac i. if i = 0 then ¢ Unknown
else m (Aa. case a of Unknown = ¢ Unknown
| Known a' = fa' ci) (i—1))

Because negative and positive occurrences of predicates are intermixed, actual
enumerations combine the positive and negative monads: The bridge between
them is performed by not-operations that handle the unknown value depending
on the context. For instance, when applied to a solution enumeration of a negated
premise, unknown is mapped to true; this reflects the intuition that if we were not
able to prove a negated premise —Q x within a given depth limit for x, then all we
can soundly assume is that Q x may hold; hence the overall computation cannot
proceed further.

The compilation scheme in the next subsection builds on the interface of plus
monad structure and hence is employed for all three monads uniformly. For the
rest of the presentation, we only employ the depth-limited monad for positive
contexts and write mplus* and bind™" infix as Ll and >=.

53

Compilation of Mode-Annotated Clauses

The functional equation for PM is the union of the output values generated by
the characterizing clauses. Employing the dataflow from the mode inference, the
expressions for the clauses are essentially constructed as chains of type-based gen-
erators and function calls for premises, connected through bind and case expres-
sions. All functions PM are executable in Standard ML, because they only employ
the monad operations and pattern matching. A formal description of the compi-
lation scheme is provided in [16]. For the extended compilation with generators,
we only had to extend it such that the exhaustive type-based generators (cf. §3.2.3)
are included if they are necessary. To give the reader some intuition of the com-
pilation, we provide two examples of the compiled programs and show another
example in §6.3.2.

Example 8. For the predicate distinct, we can infer the mode o = bool: The first
clause distinct [] allows the mode o =>bool, as the empty list is just a constant value.
The second clause allows the mode o = bool by choosing modes for its premises,
i.e., distinct xs with mode o = bool and x ¢ set xs with mode i = i = bool. This is
then compiled to a test data generator distinct’ for lists of type a:

distinct’ = return™ [] U
(distinct’ >= (Axs. exhaustive, >= (Ax. if x ¢ set xs then return™ (x - xs)
else mzero™)))

Instantiating « to the natural numbers and unfolding the plus monad operators in
the definition of distinct’, we obtain the test data generator exhaustive-distinct from
section 4.2.

Example 9. For the premise length xs = length ys A zip xs ys = zs, we obtain the
following mode-annotated clause:

o lengthp xs n with mode o= o0=>bool,
e lengthp ys n with mode o= i=>bool,
e zipp xs ys zs with its functional mode i =i =0 = bool

In other words, we enumerate lists with their corresponding length, and as we
know the length of xs, we only enumerate lists ys of equal length, and finally we
obtain zs by executing zip xs ys. The generator for this premise then is

lengthp® >= (A(xs,n). lengthp® n
= (Ays. return™ (zip xs ys) >= (Azs. return™ (xs,ys,zs))))

Unfolding the definitions of the plus monad operators and reducing the syntactic
clutter, we obtain

Acd.if d =0 then None .
else lengthp® (d—1) (A(xs, n). lengthp® n (d — 1) (Ays. ¢ (xs,ys, zip xs ys))

The arguments c and d make the continuation and the depth limit explicit, which
are implicitly passed around by the monad operations.

54

4.2.6 Extensions

The mode analysis and the compilation is extended in two simple ways:

Simple support for arithmetic. For addition and subtraction on natural numbers
and integers, we have special support, so that the mode analysis utilizes that these
operations are invertible. For example, for a premise a + b = ¢, the analysis is
aware that one can compute a given values for » and ¢ by a = ¢ — b. For subtraction
on natural numbers, we must take special care of the case where the result value
is zero: If a — ¢ = 0 holds, we only know that the value a is in the interval of
0 < a < ¢. For such intervals on natural numbers, we can enumerate all numbers
within their bounds. This simple support for arithmetic operations suffices to
obtain smart test data generators for various conjectures, e.g., conjectures about
operations on indices in lists, because the conjectures contain only very simple
arithmetical constraints. For intricate arithmetic constraints one would need to
employ a constraint solver and dedicated decision procedures.

Specialization. Often, some crucial modes cannot be inferred because the mode
analysis is too imprecise. For example, the function lookup returns the value of a
key k from an association list.

lookup [] k = None
lookup ((k,v) - kvs) k' = if (k = k) then Some v else lookup kvs k'

For a predicate with the premise lookup kvs k = Some v/, the evaluation must
enumerate all possible values for k and v given kvs. By flattening the function
(§4.2.3), we obtain the premise lookup, kvs k (Some v'), where the predicate lookup,
has the Horn clauses

lookup, [] k None
k =k = lookup, ((k,v) - kvs) k' (Some v)
lookupp, kvs k' v/ = k # k' = lookup, ((k,v) - kvs) k' ¢’

For enumerating all possible values for k and v given kvs, lookup, must allow the
mode i = 0 = o0 = bool. The first Horn clause lookup, [] k None disallows this
mode. However, for all results (k,v) due to this Horn clause, v is None. Hence,
they do not match the premise lookup, kvs k (Some v)—they lead only to failing
computations for this premise. Here, the mode analysis is too imprecise to detect
that if the third argument should only match the pattern Some ¢/, the first Horn
clause of lookup, provides no results.

If we define a specialized predicate lookup-Some,, kvs k v defined by the formula
lookup kvs k = Some v, and derive the specialized Horn clauses,

k = k' = lookup-Some, ((k,v) - kvs) k' v
lookup-Some,, kvs k' v' = k # k' = lookup-Some, ((k,v) - kvs) k' V',

it allows us to enumerate all possible values for k and v given kvs, as the mode
analysis now infers mode i = 0 = 0 = bool for lookup-Some,. In general, Quick-
check can derive new predicates with specialized Horn clauses, and refine some
premises. As this specialization can give rise to a greater number of modes, it
selectively enhances the employed mode analysis.

55

4.3 Related Work

We have already described some related work for testing functional programs in
the related work section of the previous chapter. In this section, we keep our focus
on white-box testing approaches for functional and logic programs.

Closely related to our work is the glass-box testing by Fischer and Kuchen [47]
for functional logic programs in Curry. They take advantage of narrowing and
natively supported nondeterministic executions in Curry. In their setting, test
cases are generated with respect to some selected coverage criteria. To record the
covered branches of the test case execution, the original functional programs are
transformed to return the function’s result and the branch decisions. Other related
work based on symbolic evaluations is described in §5.5.

Another approach to finding values that fulfill the premises is to use a CLP(FD)
constraint solver, as done by Carlier et al. [26, 27] for functional programs. Using
constraint solving to find values for logic programs in Mercury is described in [38].

The work of Cheney and Momigliano [29] tests specifications in aProlog [30].
One of their key features is to eliminate negations in premises. If the negation
elimination is applied successfully, negative occurrences of a predicate are turned
into positive occurrences of a derived predicate. If predicates only occur positively
in the Horn clauses, the test data generation is simplified because it does not need
to handle negation by failure.

Related work to the compilation of inductive specifications to functional pro-
grams is described in [16].

56

Chapter 5

Narrowing-Based Testing

The random and exhaustive strategies suffer from two important limitations: They
cannot refute propositions that existentially quantify over infinite types, and they
often repeatedly test formulas with values that checks essentially the same execu-
tions (e.g., because of symmetries).

Both issues arise from the use of ground values and can be addressed by eval-
uating the formula symbolically. The technique we use is called narrowing and is
well known from term rewriting. The main idea is to evaluate the conjecture with
partially instantiated terms and to progressively refine these terms as needed. The
following simple conjecture illustrates the benefit of the narrowing approach:

Inunat. Vminat. n =m

To disprove it, we must show for every natural number n that Im. n # m. Taking
a symbolic view, if n = 0, we can choose any m # 0 and if n > 0, then 0 can serve
as a witness for m.

The above example is perhaps too simple to be convincing. A more realistic
example is based on the observation that the palindrome [a, b, b, a] can be split into
the list [4,b] and its reverse [b,a]. Generalizing this to arbitrary lists, we boldly
conjecture that

rev Xs = Xs == JYS. XS = Ys++rev ys.

The narrowing approach immediately finds the counterexample xs = [a1], infer-
ring that there is no witness for ys in the infinite domain of lists: If ys is empty,
ys+rev ys = [] # [a1], and if ys is not empty, ys++rev ys consists of at least two
elements and hence cannot be equal to [a1].

Narrowing also deals very well with conditional conjectures. In our example
with the delete operation on red-black trees (cf. chapter 4),

is-rbt t = is-rbt (delete k t)

the premise is-rbt t ensures that the tree t has a black root node, and in fact, after a
few refinements, narrowing will only test symbolic values satisfying this property,
already pruning away about half of the overall test cases. Further refinements
prune the search space even further, enabling us to find unique counterexamples
in faulty implementations (§6.3.1).

57

5.1 Introduction to Narrowing

In this section, we give a short introduction to narrowing, as it forms the theoret-
ical foundations for the evaluation mechanism of functional logic programming
languages and our Quickcheck tool. We make use of this common notation from
term rewriting (cf. [8]): 7|, denotes the subterm of ¢ at position p, o-(¢) denotes
the application of an substitution o to a term 7, and t[r|, denotes replacing the
subterm 7|, with the term r in 7. In our examples, we only need very specific posi-
tions: e denotes the root position of a term, / and r denote the position of the first
and second argument applied to a binary function symbol, i.e., f a b|; = a and
f a b|, = b. With this notation at hand, we define a term rewrite step.

Definition 1. For a term ¢, 1 =, ¢ is a rewrite step if
1. a position p isint,
2. | — ris a rewrite rule (with fresh variables w.r.t. 1),

3. and there exists a substitution o with ¢|, = o*(I) and 7 = t[o"(r)].

Term rewriting allows us to describe the evaluation of functional programs
in a formal manner. A functional program is described as term rewrite system,
which is defined by a set of rewrite rules. The term rewrite system for the append
function is given by the two rewrite rules

| +ys' = s (Ri)
(x-xs) +ys — x-(xs+ys) (Ry)

With this term rewrite system, the term [a, b]++[c, d] is rewritten to [a, b, ¢, d] with
the intermediate steps

[a, b]++[c,d] —er, a- ([b]++[c,d]) =1k, a- (b- ([J[++[c, d]) —r, [a,b,c,d].

An evaluation by narrowing combines the facets of functional and logic program-
ming and is an interesting model for functional, logic and declarative program-
ming. More precisely, narrowing allows us to apply rewrite rules to expressing
containing logical uninstantiated variables. Hence, we can solve equations ¢ ~ ¢
by finding all possible substitutions o such that o-(¢) and o (¢') are reducible to the
same ground constructor term.

In general, programmers benefit from narrowing most because it adds value to
various function definitions. For example, splitting a list can be expressed using
the append function and solving the equation xs++ys ~ zs for some given list
zs. For zs = [a,b], we obtain the solutions {xs — [|,ys — [a,b]}, {xs — [a],ys —
[b]}, {xs — [a,b],ys — []}. Functions to compute the prefix or suffix of a list can be
expressed similarly using the append function. Instead of spending time to write
these related functions to append, programmers can simply employ the append
function for those purposes.

More specifically for our objective, counterexample generation benefits from
narrowing by computing a substitution in a conjecture ¢ that is reducible to false.
This substitution serves directly as a counterexample to the conjecture.

Formally, a narrowing step extends a rewrite step by an instantiation of vari-
ables in ¢.

58

Definition 2. For a term 7, 1 ~,, ;. ' is a narrowing step if
1. pis a non-variable position, and
2. o(t) =p—r t', where o is a unifier of 7|, and [, and 1" = o (¢[r])).

For rewrite rules for append, the two possible narrowing steps for xs++ys are
XSHYS ~2 ¢ Ry (x| ys' —ys} Y5 and xs++ys 7 €.Ry, {xs—x xs ys'—ys} x' (XS/'H':VS) where ¥/,
xs' and ys’ are the fresh variables of the rule R;.

A narrowing strategy selects the rewrite rule to be applied and its position
in the term for its reduction. A strategy can be defined with different (possi-
bly competing) criteria in mind, e.g., the strategy should be easy to implement
or it should avoid unnecessary rewrite steps. There are a number of narrowing
strategies, e.g., basic narrowing [65], innermost narrowing [49, 59], lazy narrow-
ing [50, 71, 101] and needed narrowing [4]. Needed narrowing is Curry’s evalua-
tion mechanism [3] and it is roughly simulated by our Quickcheck tool.

5.2 Existing Narrowing Implementations

Evaluating a term by narrowing can be implemented in at least three different
ways:

1. Target a language that natively supports narrowing, such as the functional-
logical language Curry, instead of ML.

2. Simulate narrowing by generating a functional program that includes its
own refinement algorithm [105].

3. Simulate narrowing by embedding the narrowing-based execution with a
library of combinators [48, 77] in a functional language.

We tried out the first two approaches: For our experiments, we extended the code
generator to produce source code for Curry with type-class support, which can
be executed by the Miinster Curry compiler [82]. However, we found that the
Curry execution is prohibitively slow, and the second approach using Haskell and
a refinement algorithm is considerably faster than the Curry execution. The third
approach looks promising but would require a more involved translation.

5.3 Abstract Description of the Narrowing Implementation

In this section, we give an abstract description of the implemented narrowing
evaluation mechanism.

At its core, the mechanism evaluates boolean expressions where free variables
are replaced by partially instantiated terms. These terms are constructor terms, i.e.,
they are built from datatype constructors and distinct variables, e.g., Suc n, Zero
and Cons x; (Cons xp x3). Exploiting evaluations in Haskell, an expression with
partial terms is evaluated to head normal form as far as possible: The execution
either returns the ground reduct if it is reduced despite variables in the initial

59

X< A4
1 Y o
x cH™cla
X x| =
- == A=
< oAl
cC CcH|c
< = A=

Table 5.1: Conjunction and disjunction truth tables

term, or it indicates which variable is critical for the evaluation. For the evaluation
of a boolean expression, it yields ground values true or false, if the expression is
true or false for all substitutions of the free variables, resp., or it indicates the
critical variable. For example, the execution determines that Zero # Suc n is true
for all natural numbers 7, but the value of Suc Zero # Suc n depends on the value
of n.

On top of this evaluation for partial terms, there is a refinement algorithm that
refutes formulas in prenex normal form.! It uses a refinement tree that records
the results of the evaluation with partial terms and keeps track of refinements.
The tree is used to determine the formula’s truth value and successive evaluations
with partial terms. Figure 5.1 shows the refinement tree during the refutation of
the conjecture 3n = nat. Vm = nat. m = n.

Leafs of the tree carry the evaluation’s result: initially unevaluated (X), and after
the evaluation, the definite results true (T) or false (F). If the evaluation required
a further refinement beyond the maximal bound, the leafs are annotated with
unknown (U). Inner nodes carry a variable and are classified as universal or exis-
tential. Each branch assigns a single constructor with fresh variables as arguments
to its parent’s variable. A path from the root to a leaf represents an assignment
of partial terms by composing the substitutions along the path. For example, the
path to the node annotated with T in figure 5.1d assigns Zero to n and m.

The truth value of a tree is defined recursively: The leafs’ values are given by
their annotations; the value of a universal node is the conjunction of the values of
its subtrees; dually for existential nodes, it is the disjunction of its subtrees. Con-
junction and disjunction are defined by truth tables in table 5.1. On the boolean
domain, the operators behave as their boolean counterparts. For conjunction, fal-
sity has priority over unevaluated, and unevaluated has priority over truth. Dis-
junction is defined dually.

Starting with an initial tree with no refinements, the refinement algorithm per-
forms the following three steps:

1. It finds by depth-first search a leaf that makes the tree’s truth value uneval-
uated, and evaluates the property with the partial terms associated with this
leaf.

2. If the evaluation yields a boolean truth value, the algorithm updates the
leaf’s annotation with the boolean value. If the evaluation calls for a refine-

1A formula is in prenex normal form if it has a prefix of universal and existential quantifiers
followed by a quantifier-free part.

60

(a) The initial tree

(e) After the second ground evaluation (f) After the third ground evaluation

Figure 5.1: Refinement tree for the evaluation of dn:nat. Vm:nat. m = n

61

ment, the algorithm alters the refinement tree reflecting a case distinction on
the critical variable.

3. If the new tree’s truth value is false, the algorithm has found a counter-
example to the conjecture. If the new tree’s truth value remains unevaluated,
the algorithm continues with the first step. If the tree’s truth value is un-
known as the evaluation requires too many refinement steps, the algorithm
aborts. In rare cases, the tree’s truth value might be true, indicating that the
conjecture is a theorem.

The illustrated evaluation in figure 5.1 starts with an initial tree that repre-
sents the quantifier part of the formula above and one leaf annotated with X (fig-
ure 5.1a). The first evaluation of m = n with symbolic values m and n yields to
refine m. The top-most constructor of m can either be Zero or Suc (figure 5.1b).
The next evaluation with m +— Zero requires a refinement of n, resulting in the
state of figure 5.1c. Now, the evaluation with n +— Zero, m — Zero yields true (fig-
ure 5.1d), and for n — Zero,m — Suc m’ with some fresh variable m’ yields false
(figure 5.1e). As the truth value of the upper branch n — Zero is false, we continue
with the lower branch n — Suc n’. The last evaluation for n — Suc n’,m — Zero
yields false, and thus shows the invalidity of the formula (figure 5.1f). We note
that the refutation never evaluated n — Suc n’,m — Suc m’.

Our refinement algorithm is designed for counterexample generation in con-
trast to proving. This choice plays a role in the chosen semantics of the two opera-
tors conjunction and disjunction on the values unknown and unevaluated. As we
are interested in finding counterexamples, we define UV X = U and U A X = X.
These choices are justified as follows. Our goal is to find if the formula could
possibly evaluate to false. For a formula A with the truth value U, and a formula
B that has not been evaluated (truth value X) the formula A V B can be found to
be true if B is true. It remains unknown otherwise. For finding A V B to be false,
the evaluation of B is pointless. We avoid it by choosing U V X = U. On the other
hand, A A\ B becomes false if the truth value of B turns out to be false through its
evaluation. For A A B, we do not omit the evaluation of B. We choose U AX = X. If
we were interested in proving properties, we would invert the two choices, i.e., de-
fine UANX = U, and U V X = X. In actual developments, it is rather unlikely that
proofs are found by narrowing, as it is limited to equational rewriting with the
constants” definitions, and structural case distinctions for the occurring variables.
In other words, narrowing is limited to proofs with do not require any induction
step or any derived property of the functions.

5.4 Implementation

Technically, the implementation consists of two parts. One part of the implemen-
tation generates the Haskell program under test employing Isabelle’s code genera-
tor. Similar to the random and exhaustive testing, the generators for narrowing are
defined for each type of the variables in the conjecture. As the types are defined
in Isabelle, Quickcheck can inspect the type’s definition and automatically define

62

these generators. The generators, the conjecture and all definitions necessary for
the conjecture’s evaluation are then transformed into Haskell source code.

The other part of the implementation provides the narrowing-based evaluation
with its refinement algorithm. This part is independent of the conjecture under test
and was directly implemented in Haskell. The Quickcheck tool combines the code
generated by Isabelle and the Haskell source code, compiles it with the Haskell
compiler, executes the compiled program, and reads back the program’s result.
Despite being implemented in Isabelle and Haskell, we focus on the presentation
of the combined source code in Haskell’s syntax in this section. As Haskell’s
syntax is similar to Isabelle/HOL’s syntax, we introduce Haskell by pointing out
the main differences from Isabelle.

In Haskell, types are composed from type variables denoted with lowercase
letters, and type constructors are capitalized. Haskell provides among others the
boolean type Bool, the product type (a, b) and the polymorphic list type [al
with elements of type a. Haskell’s lazy datatypes are declared with data, type
abbreviations with type. Signatures, such as f :: [a] -> [b], declare the type of
functions.

In expressions, constructors are capitalized; all other values start with a lower-
case letter. For example, True and False are the two boolean constructors, and not
negates a boolean value. Haskell’s notation \ x -> f x stands for Ax. f x. We use
an underscore in an abstraction if the bound variable is not used, asin _ -> True.
Furthermore, [] and (:) are the two list constructors Nil and Cons.

Haskell provides syntax to define local functions, as in f x = y where y = x
where y is defined locally in the function f. We use the 10 monad with the return
function and infix notation (>>=) for the bind function and employ Haskell’s do
notation, which makes do y <- f x; g yashortcutforf x >>= (\y -> g vy).

We use common Prelude functions without further explanations (cf. [69] for
their definitions). To avoid CamelCase and underscores in this presentation, we
relax Haskell’s syntax and allow identifiers to contain hyphens.

5.4.1 Basic Data Structures

Partial terms are represented by the two datatypes Type and Term:

type Position = [Int]
data Type = T [[Typell
data Term = Var Position Type | Ctr Int [Term]

Given a datatype, the Type datatype reflects the type’s structure as a sum of prod-
ucts. For example, Haskell’s boolean type with two nullary constructors True and
False is isomorphic to a sum type of two nullary products (two unit types). Hence,
its type valueis boolT = T [[], [1]. Analogously, the Haskell type (Bool, Bool)
is built from the single binary constructor Pair and hence has the type value
T [[boolT, boolT]]. We can also express recursive datatypes with infinite val-
ues: The value for the type of natural numbers with constructors Zero and Suc is
natT = T [[], [natTl].In 5.4.3, we describe the construction of type values for
all datatypes in more detail.

63

Partial terms can either be a variable with some type and a specific position,
or a constructor applied to a list of argument terms. Given a mapping from inte-
gers to constructors for every datatype, constructors in partial terms are identified
by an index. In §5.3, variables were referenced by names, and we invented fresh
names during the refinement step. In the actual implementation, we use the po-
sitions in the term as names. Positions are simply encoded as a list of integers
that describe the path in the tree-shaped term. For example, given the Nat type
has constructors Zero with index 0 and Suc with index 1, the abstract partial term
Suc n' (' has position [0, 0]) obtained after refinement of variable n (position [0])
has the Haskell value Ctr 1 [Var [0, 0] natT].

For a fixed conjecture, the basic evaluation function eval takes a list of partial
terms as input and returns an Answer value: When the conjecture’s evaluation
with the partial terms results a boolean value b, it returns Known b. Otherwise if
position p must be refined, it returns Refine p. As the evaluation uses exceptions,
we must employ the IO monad:

data Answer = Known Bool | Refine Position
eval :: [Term] -> IO Answer

We present the implementation of the evaluation mechanism later in §5.4.3. For
now, we consider the function eval as a black box.

The central data structure of the refinement algorithm is the refinement tree,
which is defined by three datatypes. The tree has three different nodes: leafs that
carry truth values, variable nodes with only one branch, and constructor nodes
with one branch for each constructor.

data Quantifier = Existential | Universal
data Truth = Evaluated Bool | Unevaluated | Unknown
data Tree = Leaf Truth |
Variable Quantifier Truth Position Type Tree |
Constructor Quantifier Truth Position [Tree]

The variable nodes correspond to inner non-branching nodes in §5.3. The con-
structor nodes correspond to the inner branching nodes that are obtained by re-
finement steps. The variable and constructor nodes originated from an universally
or existentially quantified variable. This origin is stored as part of the node with
the value of type Quantifier. The variable nodes carry the information about their
variable’s type structure and position. Although the truth values in the leafs suf-
fice to determine the tree’s truth value, the inner nodes also carry the truth value
of their subtree to quickly find the leaf that makes the tree’s truth value unevalu-
ated. The truth values of inner nodes are kept consistent whenever the truth value
of some leaf is changed. As a result, the tree’s truth value can always be retrieved
from the truth value in the root node:

value-of :: Tree -> Truth

value-of (Node v) = v

value-of (Variable _ v _ _ _) =v
value-of (Constructor _ v _ _) =v

64

The trees in figure 5.1a and figure 5.1b depict the values a and b:

a = Variable Existential Unevaluated [0] natT
(Variable Universal Unevaluated [1] natT (Leaf Unevaluated))
b = Variable Existential Unevaluated [0] natT
(Constructor Universal Unevaluated [1] natT
[Leaf Unevaluated, Leaf Unevaluated])

5.4.2 Refinement Algorithm

The refinement algorithm iteratively modifies the refinement tree. It finds the
next leaf in the tree (which is addressed by its path) and evaluates the conjecture
with the partial term corresponding to the selected path (functions find, terms-of
and eval). Depending on the answer of the basic evaluation, the tree is refined.
Answers of the form Known b are recorded in the refinement tree. The position
for an answer Refine p is used to refine the tree. As the algorithm checks the
position’s length, it stops the refinement at a fixed depth. As long as there are
some leafs to be visited, the algorithm continues the refinement with the updated
tree:

refute :: Tree -> I0 Tree
refute t =
do
path <- return (find t);
a <- eval (terms-of [] path);
t’' <- case a of
Known b -> return (update path (Evaluated b) t))
| Refine p ->
if length p < maximal-depth then
return (refine-tree path p t)
else return (update path Unknown t));
case value-of t' of
Unevaluated -> refute t’
| - -> return t’

Besides addressing leafs in the tree, the path also carries all information to con-
struct the partial terms, i.e., the positions, the node’s kind and the type of a vari-
able or the constructor’s index.

data Edge = V Position Type | C Position Int
type Path = [Edgel]

The functions find and update are easy to implement (listing 5.1). When we
update a truth value, we recompute the cached truth value of the nodes along
the path to ensure their consistency. Functions ball and bexists, which compute
the new truth value from the given subtrees, are omitted from listing 5.1. They
basically encode the truth tables of table 5.1. The function refine-tree finds the
node with the critical position on the selected path and replaces the variable node
by a constructor node with a forest of fresh variable nodes. This replacement is
expressed with the refine function.

65

refine (Variable quant truth pos (T typss) t) =
Constructor quant truth pos [foldr
(\(i,typ) t -> Variable quant truth (pos++[i]) typ t) t
(zip [0..] typs) | typs <- typss]

The functions replace and refine-tree are then straightforward (listing 5.1).

Listing 5.1: Auxiliary Functions for the Refinement Algorithm

position-of :: Edge -> Position
position-of (V p _) =p
position-of (C p _) =p

term-of :: Position -> Path -> Term
term-of p (C []1 i : es) = Ctr i (terms-of p es)
term-of p [V [] ty] = Var p ty

terms-of :: Position -> Path -> [Term]
terms-of p es = terms-of’ 0 es
where

terms-of’ i [] = []
terms-of’ 1 (e : es) = (t : terms-of’ (i + 1) rs)
where
(ts,rs) = partition (\e -> head (position-of e) == 1) (e : es)
t = term-of (p ++ [i]) (map (map-pos tail) ts)
map-pos f (V p ty) =V (f p) ty

map-pos f (C p ts) = C (f p) ts
find :: Tree -> Path
find (Leaf Unevaluated) = []
find (Variable _ _ p ty t) =V p ty : (find t)
find (Constructor _ _ p ts) = Cp i : find (ts !! i)

where
Just i = findIndex (\t -> value-of t == Unevaluated) ts

update :: Path -> Truth -> Tree -> Tree
update [] v (Leaf _) = Leaf v

update (V _ _ : es) v (Variable g r p ty t) =
Variable q (value-of t’') p ty t’
where

t’ = update es v t
update (C _ i : es) v (Constructor q r p ts) = Constructor q r’ p ts’
where
(xs, y : ys) = splitAt i ts
y' = update es v y
ts’ = xs ++ (y' : ys)
r' = val ts’
val = case q of { Universal -> ball; Existential -> bexists}

replace :: (Tree -> Tree) -> Path -> Tree -> Tree
replace f [] t = (f t)
replace f (V _ _ : es) (Variable q v p ty t) =

Variable q v p ty (replace f es t)
replace f (C _ i : es) (Constructor q v p ts) = Constructor q v p ts’

where
(xs, y : ys) = splitAt i ts
ts’ = (xs ++ (replace f es y : ys)

66

refine-tree :: [Edge] -> Position -> Tree -> Tree
refine-tree es p t = replace refine (path-of-position p es) t
where
path-of-position p es = takeWhile (\e -> position-of e /= p) es
refine (Variable q r p (T tss) t) =
Constructor q r p
[foldr (\(i,ty) t -> Variable q r (p++[i]) ty t) t
(zip [0..] ts) | ts <- tss]

5.4.3 Basic Evaluation Mechanism

To evaluate the conjecture with partial terms, term representations are turned into
Haskell terms with exception values at the variable positions using Haskell’s na-
tive error function [70]. Due to Haskell’s lazy evaluation, the conjecture can be
evaluated with partially-defined values. Hence, the exception values at variable
positions are not raised as long as their evaluation is not needed, i.e., evaluation
does not pattern-match against the value. E.g., [1 = (error 'a’ : error 'b’)
evaluates to False despite of the exception values on the right-hand side. Thanks
to this feature in Haskell, our symbolic evaluations can be mapped to Haskell eval-
uations. The mechanism ensures that when an exception is raised, the exception
value returns the position of the variable in the input term.

For example, the abstract partial term Suc n’ where ' is the variable at position
[0,0] is represented as Haskell term

Suc (error (marker : map toEnum [0, 0]))

where marker distinguishes the refinement exception values from other ones, and
Prelude functions toEnum and fromEnum convert between positions and strings.
For the conversion from the partial term datatype to Haskell values, we use a list
of constructor functions. For each constructor, the constructor function takes partial
terms for the constructor’s arguments as input and returns the Haskell value of the
constructor applied to the arguments that correspond to the given partial terms:

conv :: [[Term] -> a] -> Term -> a;
conv ¢cs (Var p uu) = error (marker : map toEnum p);
conv ¢s (Ctr i xs) = (cs !! i) xs;

For example, conv csnat converts the partial term Ctr 1 [Var [0, 0] natT] to
Suc (error (marker : map toEnum [0, 0])), where csnat are the constructor func-
tions for the Nat type:

csnat = [\[] -> Zero, \[t] -> Suc (conv csnat t)]

Employing this conversion function, we convert values of the partial term datatype
and apply them as arguments to the boolean expression that is the quantifier-free
part of the property under test. This boolean value is evaluated with the answer
function. The function employs Haskell’s native functions try and evaluate. The
function evaluate :: a -> IO a forces its argument to be evaluated to weak head
normal form. We can catch exception values with try. The expression try x

67

returns Right r if no exception was raised and the evaluation of x resulted in
value r. If an exception was raised, the expression try x returns Left e where e
is the exception value. The answer function evaluates the boolean value, catches
the refinement exception values and converts them into refinement answers that
carry the position of the critical variable:

answer :: Bool -> IO Answer;
answer a =
do res <- try (evaluate a)
case res of
Right b -> Known b
Left (ErrorCall (marker : p)) -> Refine (map fromEnum p)
Left e -> throw e

The dedicated type class Narrowing provides the constructor functions for the
conversion and the description of the type’s structure for every datatype:

data N a = N Type [[Term] -> a]
class Narrowing a where narrowing :: N a;

For example, the narrowing instance for the natural numbers could be defined by
the values natT and csnat from our previous examples. Borrowing the terminol-
ogy from the other testing approaches, we call values of type N a the (narrowing)
generator for type a. We define generators for all datatypes with three basic com-
binators. Given a datatype constructor of type a, the cons combinator builds the
associated conversion and the type description, wrapping it into N a. The sec-
ond combinator apply applies a generators to another. The third combinator sum
creates the union of two generators.

cons :: a -> N a
cons a =N (T [[1]) [(\ _ -> a)]

apply :: N (a ->b) ->Na ->Nb
apply (N (T p s) cfs)) (N t cs) =
N (T (map (\ ts -> t : ts) ps))
map (\ cf (x : xs) -> cf xs (conv cs x)) cfs
sum :: Na ->Na ->Na
sum (N (T ta) ca) (N (T tb) cb) = N (T (ta ++ tb)) (ca ++ cb)

For a given datatype, generators are composed following the datatype’s structure.
For example, the generator for type Nat is built from cons Zero :: N Nat and
cons Suc :: N (nat -> nat). To the latter expression, we must apply the genera-
tor for type Nat. The entire generator, called narrowing-nat, is defined as the sum
of those two expressions.

narrowing-nat :: N nat
narrowing-nat = sum (cons Zero) (apply (cons Suc) narrowing-nat)

68

Similarly for lists, the generator is expressed as sum of constructor Nil and the
constructor Cons with two values applied. As we require a generator for the list’s
element type, the type for a must belong to the Narrowing class.

narrowing-1list :: Narrowing a => N [a]
narrowing-1list = sum (cons [])
(apply (apply (cons (\ a b -> a : b)) narrowing) narrowing-list)

Following the scheme of these examples, Quickcheck automatically derives in-
stances for all datatypes.

Finally, values of type Property encode formulas in prenex normal form. The
Property constructor wraps the quantifier-free part of the formula. Quantifiers of
the formula are expressed with the functions exists and forall.

data Property =

UniversalP Type (Term -> Property)
| ExistentialP Type (Term -> Property)
| Property Bool;

exists :: Narrowing a => (a -> Property) -> Property
exists f = ExistentialP ty (\ t -> f (conv cs t))
where

N ty cs = narrowing;

forall :: Narrowing a => (a -> Property) -> Property
forall f = UniversalP ty (\ t -> f (conv cs t))
where

N ty cs = narrowing;

For example, the conjecture Jn:nat. Vm:nat. m = n corresponds to this expres-
sion:

exists (\ n -> forall (\ m -> Property (m = n))

Given a property P, functions tree-of and eval-of extract the initial refinement
tree and the evaluation function, respectively (cf. listing 5.2). The refute function
actually takes the aforementioned eval function as argument. Now, checking a
property p is expressed by

check p = refute (\ts -> answer (eval-of p ts)) (tree-of 0 p)

Before we present the last aspect of the implementation (§5.4.4), we must draw
some attention to a delicate issue in this tool. In the beginning of this section,
we pointed out that parts of the implementation are formulated in Isabelle/HOL
and turned into Haskell code by Isabelle’s code generator. More specifically, the
narrowing instances of all datatypes are defined in Isabelle. In case of recursive
datatypes, the description of the type’s structure is an infinite tree, not repre-
sentable by an inductive datatype, but only by a coinductive datatype. However
at the time of its development, Isabelle/HOL only supported the definition and

69

code generation of inductive datatypes. To define coinductive datatypes, one must
derive the type, the constructors and its properties manually with the basic defi-
nition mechanisms. As this is laborious, the narrowing instances are axiomatized
in Isabelle without providing a proper definition, but only with axioms that allow
code generation in Haskell. The consistency of the logical system is not in danger,
as the axioms are used only in Quickcheck and are not leaked to the user. The
newly introduced support of codatatypes in Isabelle [113] would allow a proper
and simple definition of the narrowing generators and make the axioms obsolete.

Listing 5.2: Auxiliary Functions for the Evaluation Mechanism

eval-of :: Property -> [Term] -> Bool

eval-of (Property b) = (\[] -> b)

eval-of (UniversalP _ f) = (\(t : ts) -> eval-of (f t) ts)
eval-of (ExistentialP _ f) = (\(t : ts) -> eval-of (f t) ts)

tree-of :: Int -> Property -> Tree

tree-of n (Property _) = Leaf Unevaluated

tree-of n (UniversalP ty f) = Variable Universal Unevaluated [n] ty
(tree-of (n + 1) (f undefined))

tree-of n (ExistentialP ty f) = Variable Existential Unevaluated [n] ty
(tree-of (n + 1) (f undefined))

5.4.4 Presentation of Results

After the execution of the refutation algorithm, we must extract the variable assign-
ment of the counterexample from the resulting refinement tree. If the property
only uses universally quantified variables, we simply extract the partial terms of
the variables from the refinement tree. In the presence of existential quantifiers,
the counterexamples are not just a single assignment of partial terms, but rather
the relevant subtree of the refinement tree. As for the other strategies, we present
the counterexample as an assignment of the universally quantified variables, but
the variable assignment might depend on the values of the existential quantified
variables. These dependencies can entail case distinctions, which are presented by
case expressions in the counterexample. To our example Jn :nat. Vm::nat. m = n,
Quickcheck returns the counterexample

m = case n of Zero = Suc _ | Suc _ = Zero.

5.5 Related Work

There are a number of tools that implement or employ narrowing with the goal
of counterexample generation. EasyCheck [31] and its successors [46] are testing
tools for Curry. As Curry supports narrowing directly, its testing tool can easily
employ narrowing for testing Curry programs. Lindblad’s work [77] implements
a narrowing-based counterexample generator that builds on a very basic com-
piler for narrowing. The implemented system shows the theoretical benefits for
counterexample generation by narrowing, but as the compiler is very rudimentary,
the practical benefits are only very moderate.

70

The program analysis Reach [90] computes values that causes the evaluation
of a functional program to reach explicitly marked target expressions using a
narrowing-based evaluation strategy.

The tool LazySmallCheck [105] uses Haskell’s evaluation mechanism, which
makes the implementation lightweight and the evaluation fast. Our approach
builds on the same evaluation mechanism. However to support existential quanti-
tiers, the necessary refinement algorithm is considerably more involved than Lazy-
SmallCheck’s refinement algorithm. Recently, LazySmallCheck has been success-
tully applied in a larger application [102], which tests the correctness of compiler
implementations and optimizations.

We chose to implement narrowing by the simulating it in Haskell instead of
using a direct translation to Curry as in our experiments executing Curry pro-
grams were slower than executing it by simulation (as done by LazySmallCheck).
In the meantime, there have been further steps to improve the performance of
Curry programs: Various techniques to embed nondeterministic computations
into functional programs [2, 48] and the implementation of the Curry compiler
KiCS2 [22, 23] have shown very promising results to improve the run time of
functional logic programs.

Independently of the work in functional languages, Darga and Boyapati [36,
103] have discovered model checking techniques that are very similar to narrowing
for testing data structures and type systems written in object-oriented program-
ming languages.

5.6 Discussion

Combining narrowing and data refinement allows us to evaluate the conjecture
with abstractions that are dynamically refined during the evaluation. For exam-
ple, let us assume that we express the arithmetic operations on real numbers by
operations on intervals, i.e., an upper and lower bound approximating the real
number. With a suitable datatype refinement, partially instantiated values rep-
resent intervals with fuzzy bounds. As a result, a narrowing-based execution
evaluates conjectures starting with a large (fuzzy) interval and refinement steps
tighten those bounds if needed for the conjecture’s evaluation.

To refute conjectures with functions, we already employ a simple data refine-
ment. Functions are approximated by finite functions defined by a simple datatype

datatype (a,) ffun = Constant B | Update a B (e, B) ffun
For example, the conjecture over functions f and g

Y f gxs.map g (map f xs) = map (f o g) xs

is rewritten to a conjecture over the dedicated datatype (e,) ffun,
V f & xs. map (evalg,, §) (map (evalg, f) xs) = map ((evalg,, f) o (evalgy, g)) xs,
with
fun evalg,, : (@, B) ffun = a = B
where

71

evalg,, (Constant c) x = c
| evalg,, (Update x" y f) x = (if (x = x’) then y else evalg,, f x)

The evalg,,, function requires the values on the domain to allow an equality check.
If this is not possible, e.g., for types such as (nat = nat) = nat, we employ a
reduced datatype with the Constant constructor only.

The functions produced by these simple data refinements were sufficient to
refute most invalid conjectures about functions in Isabelle. However, this data
refinement cannot express simple functions such as

(Ax. case x of Inl | = True | Inr r = False) :: nat + nat = bool

To cover a large set of functions, one could use a tree structure as representation
and evaluation functions that turn these trees into functions built by nested case-
expressions. However for the current applications, we expect small gains.

Although we can handle existential and universal quantifiers, there are still
even very simple conjectures that the narrowing-based evaluation cannot refute,
essentially because it is limited to finitely many refinements. For example, the
conjecture Jx. x = Suc x is invalid. However, narrowing refines the values for the
variable x repeatedly, but it cannot ultimately refute the conjecture. A simple dis-
unification check could easily determine that there no value for which x = Suc x
holds. Undoubtedly, refuting conjectures with existential quantifiers can be very
difficult. It could require to derive some sophisticated proof that employs interme-
diate lemmas and induction. For such conjectures, a narrowing-based evaluation
alone might not be powerful enough.

The technique of narrowing and smart generators (§4.2) share the motivation
to handle hard-to-satisfy premises. Both techniques reduce the search space of
test values by rather different ways. In general, it is very difficult to compare
the two techniques. For a given premise, smart generators are constructed after
inspection of the premise. The dataflow analysis reorders the original program’s
dataflow for generating values. Hence typically, smart generators construct values
in a bottom-up fashion. Narrowing constructs partial values and refines them,
leading to construct values in a top-down fashion. Smart generators are restricted
to fully instantiated values. In contrast to narrowing, possible symmetries in the
conjecture’s conclusion are not exploited by the smart generators. It is interesting
to investigate how to combine ideas from these two approaches: Smart generators
could construct partial values, or narrowing could employ the mode analysis to
reorder premises before evaluating them symbolically.

Once future Curry implementations are still immature; should newer versions
perform better, we could consider integrating code generation to Curry in Isabelle.
Although Curry’s syntax closely follows Haskell’s syntax, Curry still lacks the
support of type classes. Hence, Isabelle’s code generator would have to resolve
type classes by a dictionary construction. The evaluation with Curry allows us
to execute programs with distinguished features, such as existential quantification
and unification constraints, and it offers a new method for executing inductive
predicates.

72

Chapter 6

Empirical Results and
Applications

In the previous chapters, we have presented various techniques in Quickcheck to
refute conjectures. In this chapter, these techniques are compared on a large set of
benchmarks and a number of representative case studies of Isabelle formalizations.
In the second part, we describe further applications of Quickcheck.

6.1 Evaluation on Theorem Mutations

To obtain a large set of non-theorems in Isabelle, we derive formulas by mutat-
ing existing theorems, as in [14, 21]. The formulas are constructed by replacing
constants and swapping arguments in the existing theorems. Table 6.1 shows the
results of running the counterexample generators on 400 mutated theorems of 13
theories with a liberal time limit of 30 seconds. The chosen set of theories focuses
on executable ones, and leaves out those that are obviously not executable. For ex-
ample, theories with axiomatic definitions or with coinductive datatypes are not
executable with Isabelle’s code generation. Conjectures in these theories can be
checked only by Nitpick. The first nine are basic theories in Isabelle from three
different domains: arithmetics (Divides, GCD, MacLaurin), set theory (Fun, Re-
lation, Set, Wellfounded), and simple inductive datatypes (List, Map). The last
four theories selected from the Archive of Formal Proofs [74] and cover these do-
mains: graph theory (Max-Card-Matching), formal language theory (Regular-Set)
and data structures (Huffman, List-Index).

The four columns show the absolute number of genuine counterexamples of
the different approaches: random testing, exhaustive testing, narrowing-based
testing, and Nitpick. We omit Refute from this evaluation as it has been su-
perseded by Nitpick. In a cell with values A/B, A is the number of mutants
that exhibit a genuine counterexample and B the number of mutants that are
executable by the corresponding counterexample generator. As Nitpick is not
restricted to a clearly specified fragment, it is in principle able to check all 400
mutants. Quickcheck can use finite types or integers to instantiate polymorphic
conjectures (cf. §3.3.3). For theories with polymorphic conjectures, we show both
modes separately in the table, indicated with [fin] and [int]. Using finite types for

73

polymorphic conjectures makes almost all conjectures in the set theory domain
amenable to Quickcheck, closing the previously existing gap between Quickcheck
and Nitpick in this domain. The narrowing-based testing can execute more con-
jectures than concrete testing with random and exhaustive testing. We gain most
on the Regular-Sets theory, increasing from 304 to 368.

We also compared the tools against each other, and measured the number
of counterexamples that can be found uniquely by one tool compared with an-
other. Table 6.2 shows the comparison of random against exhaustive (Ran./Exh.),
exhaustive against narrowing (Exh./Nar.), narrowing against Nitpick (Nar./Nit.)
and exhaustive against Nitpick (Exh./Nit.). Exhaustive testing slightly outper-
forms random testing. Narrowing often finds a few more counterexamples than
exhaustive testing, but this is mainly due to the larger set of executable formu-
las. The exceptions, i.e., Fun [fin] and Wellfounded [fin], reveal a weakness with
narrowing-based testing: They contain conjectures with many quantifiers over
some large finite domains. Exhaustive testing can evaluate ground formulas faster
than narrowing, and thus also explores the large finite domains faster. In a few
cases, exhaustive testing finds the counterexample where narrowing reaches the
time limit. Narrowing and Nitpick complement each other to some extent, as wit-
nessed most prominently by Isabelle’s GCD theory. In absolute numbers, narrow-
ing and Nitpick find 228 and 216 counterexamples, respectively; hence differing
only by 12. However, they succeed on different conjectures—narrowing finds 23
counterexamples where Nitpick fails, Nitpick finds 11 where narrowing fails—
meaning that employing them in combination yields 239 counterexamples.

Quickcheck’s major strength—already acknowledged by its name—is its high
reactivity. Although the counterexample generators could search for thirty sec-
onds, almost all counterexamples are found by any counterexample generator
within the first four seconds. Figure 6.1 shows the total number of refuted conjec-
tures on all theories on a time line. On the large collection of mutated theorem:s,
the counterexample generator mainly respond with different reactivity due to their
individual system architectures, but not due to their individual techniques.

Random and exhaustive testing require no external system calls, and imme-
diately respond with counterexamples. Within half a second, both strategies are
close to their asymptotic bound. Nitpick requires a fixed start-up time of half a
second to start its back-end tool. Then, the number of refuted counterexamples
slowly increases while Nitpick steadily increases the scope of its finite approxi-
mations, but after two seconds, Nitpick is also close to its bound. The system
architecture of Narrowing requires to compile a Haskell program. The compila-
tion for Haskell takes about one second and all refutations are found within the
next two seconds.

Nevertheless, the evaluation on automatically generated mutants has to be
taken with a grain of salt: Mutating theorems at arbitrary term positions can
break very natural abstractions. Some mutants are terms that users cannot even
input. For example, in mutants of the arithmetical theories, some arbitrary part of
the internal representation of numerals is replaced by a variable, and Quickcheck
and Nitpick deal with these obscure terms very differently. Sometimes these con-
jectures appear executable to Quickcheck at first, but then produce strange errors

74

3000

0 —t
g

2

& 2000 - —— Random

§ —— Exhaustive
2 10001 —— NfirrF)w1ng
2 —— Nitpick

k)

~

0 s | |
0 1 2 3 4

Time in seconds

Figure 6.1: Responsiveness of the counterexample generators

during the execution, hindering Quickcheck from refuting those conjectures. Some
heuristics in the mutation generation tries to reduce these obscure examples, but
still some fraction of the mutants which can be genuinely solved by only one of
the tools is due to these candidates.

If all constants of the theory are executable, Quickcheck performs equally well
or sometimes even better than Nitpick. As Quickcheck is more responsive than
Nitpick, users normally prefer Quickcheck in that case. To illustrate the differences
in strength between testing with Quickcheck and model finding with Nitpick, we
show two interesting examples of our evaluation. On the one hand, consider one
of the monotonicity lemmas for integer division:

b-g+r=b-gd+r" NO<b -¢d+F AN <b ANO<r AO<D A
b <b=—qg<q

For Quickcheck, it is no problem to detect two typos that change the second
premise to 0 < &’ - b’ 4 1 and the fifth premise to 0 < ¢’. It produces the counter-
example b = =2, ¢ =3, r =1, b/ = —2; ¢ = 1; ¥ = —3 instantaneously, while
Nitpick replies after seven minutes with a similar counterexample.

On the other hand, in the theory of maximal matchings in graphs (Max-Card-
Matching), a certain invalid conjecture is refuted by constructing a graph with
four vertices and a matching with two edges. Owing to the power of its SAT
solver, Nitpick finds this matching within a few seconds. Exhaustive testing tries
to enumerate all graphs and searches for matchings naively. Thus, Quickcheck
needs roughly a minute to find a counterexample. Random testing does not find
the counterexample, even with 100,000 iterations for each size and testing a few
minutes—a matching for a valid graph is unlikely to be obtained by randomly
chosen values. Narrowing prunes the search space before evaluating the conjec-
ture with all possible concrete values, and finds a counterexample in about thirty
seconds.

These two examples demonstrate the strength of both tools: Quickcheck is
strong on arithmetics, while Nitpick handles boolean constraints over finite do-
mains well.

75

Counterexample generators

Theory Random Exhaustive Narrowing Nitpick
Arithmetics

Divides [fin] 199/318 212/318 221/343 2597400
Divides [int] 224/369 239/369 248/394

GCD 203/294 203/294 228/336 216/400
MacLaurin [fin] 44/61 44/61 45/77 19,/400
MacLaurin [int] 55/79 55/79 56/95

Set Theory

Fun [fin] 214/394 215/394 201/396 235,400
Fun [int] 146 /254 144 /254 161/326

Relation [fin] 248/395 251/395 248/395 247 /400
Relation [int] 139/230 155/230 160/258

Set [fin] 246/395 246/395 249 /395 260,400
Set [int] 205/329 206/329 220/369

Wellfounded [fin] 229/372 233/372 232/373 2497400
Wellfounded [int] 45/94 47/94 51/122

Datatypes

L¥st ['fm] 197/319 197/318 215/354 245,400
List [int] 191/312 193/312 212/351

Map [fin] 257 /400 257/400 257/400 258,400
Map [int] 146/221 148/221 160/248

AFP Theories

Huffman 244 /399 248/399 246/399 251/400
List-Index 256/399 256/399 263/399 271/400
Max-Card-Matching [fin] 152/345 212/345 212/345 214/400
Max-Card-Matching [int] 4/11 4/11 4/11

Regular-Sets 154 /304 152/304 210/368 142 /400

Table 6.1: Results for running counterexample generators on mutated theorems
with a time limit of 30 seconds

76

Relative comparison

Theory Ran./Exh. Exh./Nar. Nar/Nit. Exh./Nit.
Arithmetics

Divides [fin] 0/13 0/9 8/46 5/52
Divides [int] 0/15 0/9 19/30 16/36
GCD 0/0 0/25 23/11 13/26
MacLaurin [fin] 0/0 0/1 26/0 26/1
MacLaurin [int] 0/0 0/1 37/0 37/1
Set Theory

Fun [fin] 0/1 18/4 1/35 0/20
Fun [int] 9/7 0/17 0/74 0/91
Relation [fin] 0/2 3/0 8/7 8/4
Relation [int] 0/15 1/6 8/95 8/100
Set [fin] 0/0 0/3 3/14 0/14
Set [int] 0/1 0/14 2/42 0/54
Wellfounded [fin] 1/4 4/4 5/22 5/22
Wellfounded [int] 0/2 2/6 2/200 2/204
Datatypes

List [fin] 1/1 1/31 11/29 6/54
List [int] 0/2 0/23 10/39 6/58
Map [fin] 0/0 0/0 0/1 0/1
Map [int] 1/3 0/12 0/98 0/110
AFP Theories

Huffman [fin] 0/4 3/1 0/7 0/5
Huffman [int] 5/6 0/10 2/9 0/17
List-Index [fin] 0/0 0/7 0/8 0/15
List-Index [int] 0/3 0/7 0/8 0/15
Max-Card-Matching [fin] 0/60 0/0 16/18 16/18
Max-Card-Matching [int] 0/0 0/0 0/210 0/210
Regular-Sets 2/0 0/58 85/17 39/29

Table 6.2: Relative comparison of the counterexample generators on mutated the-
orems

77

6.2 Evaluation on Conditional Conjectures

To evaluate exhaustive testing, the smart generators (§4.2) and narrowing-based
testing (§5), we compared their performance against each other on some condi-
tional conjectures. We compare their performance validating conjectures up to a
given size. As random testing checks the conjecture in an incomplete manner, it
does not make sense to compare its run time against the other approaches in this
setting.

Table 6.3 shows the number of test cases up to a given size, and the number of
test cases (for that size) for which the premises distinct and sorted hold. In other
words, we measured the density of the search space if restricted by some premise,
compared with the unrestricted search space. For example, testing the proposition
distinct xs == distinct (tl xs), the table shows how many test cases are generated
by the naive exhaustive testing and by the smart test generators. This already
gives a rough estimate of the possible improvement avoiding vacuous tests.

Table 6.4 shows the run time! to validate properties with values up to a given
size on some representative conjectures from Isabelle’s library with the premise
distinct (D1, Dy, D3) and sorted (S, Sy, S3):

e D;: distinct xs = distinct (¢l xs)

e Dy: distinct xs = distinct (removel x xs)

Ds: distinct xs == distinct (zip xs ys)

Sy: sorted xs = sorted (remdups xs)

Sy: sorted xs = sorted (insort-insert x xs)
o S3:sorted xs Ni < jA j<length xs = nth xsi < nth xs j

For the premise distinct xs and sorted xs, employing the smart generators with the
depth limit i covers the same set of values as employing the exhaustive generators
and narrowing with the size i. In general, the distribution of enumerating values
with smart generators up to some depth can differ significantly from enumerating
values up to some size. For distinct and sorted, the depth limit and size coincide
and one can compare the run time meaningfully.

The numbers of D, indicate the improvement using the smart test generators
for distinct. In the case of D,, a more representative conjecture of the Isabelle’s the-
ory of lists, we observe a similar behavior. In the case of D3, the exhaustive testing
does not enumerate all pairs of lists for xs and ys, but only generates lists ys if the
generated list xs is distinct. This simple optimization (cf. §3.1) already reduces the
number of useless tests dramatically. With this optimization, only 0.025 percent of
all tests are rejected by the premise. As a result, using the smart generator does
not add any further significant improvement in the run time behavior. Hence the
smart generators perform practically the same to the exhaustive testing. Symbolic

LAl tests ran on a Pentium DualCore P9600 2.6GHz with 4GB RAM using Poly/ML 5.4.1 and
Ubuntu GNU/Linux 11.04.

78

execution with narrowing performs worst due to its overhead in the execution in
all three cases.

On the very sparse premise, sorted xs, the improvements with smart test data
generators are even more apparent. For example, in the case of S;, naive exhaus-
tive testing times out at size 15 (with a time limit of one hour), where the smart
generators can still enumerate lists up to size 20 within a second. Narrowing per-
forms better than exhaustive testing, but is still slower than the smart generators.
These numbers show that the test data generators outperform the naive exhaustive
testing and the symbolic narrowing-based testing.

79

size

predicate 5 6 7 8 9 10 11 12 13 14
- 24 89 425 2,373 16,072 125,673 1,112,083 10,976,184 119,481,296 1,421,542,641
distinct 16 39 105 315 1,048 3,829 15,207 65,071 297,840 1,449,755
sorted 15 31 63 127 255 511 1,023 2,047 4,095 8,191

Table 6.3: Number of test cases for given sizes and premise

80

WIT) UNI }S9MO] S} 93eDIPUL SIdqUINU P[Oq ‘YT I9}Je Jnosawr) 230uap s[a0 Aydws ‘swr oG > awm
sajouap () “dsar ‘s1ojerausd jrews pue ‘Surmorreu “3unsad) SATSNEUXD 9JOUdP § ‘N ‘J — SOZIS UDAIS I0J SPUO0IdS Ul dWr) uny :§'9 d[qeL,

80Z TIE 9¢T 65 9T 4} TS T 60 70 T0 10 0 0 0 0 0 0 S
F90T 29F ¥0¢ /8 8¢ 91 69 6T €1 G0 0 10 10 0 0 N ¢s

££€ yxd €T 0 0 0 0 q

762 GeL 19 8T 41 GG ST 1 S0 0 o 10 0 0 0 0 0 0 S
€901 98T 81¢ 86 4% 0T 88 6€ 81 80 70 0 10 10 10 10 0 N <&

8¢ 6¢ od 0 0 0 0 q1

9¢ LT 8L 9¢ LI 80 €0 T0 0 0 0 0 0 0 0 0 0 0 S
8€TT 995 Yierd GIT 4 €T 01 9¥ 0T 60 70 0 10 10 10 0 0 0 N s

014 53 LT 4] 0 0 0 q1

28T ¥ 10 S
9F¥ L1 60 N ta

6ST ¥ 10 q

129 86 91 ST $0 10 0 0 0 S
G6E L€ 0¥ G0 10 0 N <a

689 Gy 8¢ 70 0 0 0 q1

798 Ger w 8¢ L0 T0 0 0 0 0 S
¥9¢ 43 g 70 10 0 N 'a

609 8¢ 43 €0 0 0 0 q1

o ¥ €C @ |14 0C 61 8T L1 91 GI F1 €1 4! 1T 01 6 8

9718

81

6.3 Case Studies

In the evaluation on theorem mutations, we were interested in many conjectures
that were simple to refute. The presented case studies have a different flavor:
Here, we are interested in the refutation of a few conjectures of some skewed
formalization. The formalizations and their intricate conjectures are difficult to
refute and allow us to show the benefits of the new techniques.

6.3.1 Functional Data Structures

We evaluated the different testing approaches on faulty implementations of typical
functional data structures. We injected faults by adding typos into the correct
implementations of the delete operation of AVL trees, red-black trees, and 2-3
trees. By adding typos, we create 10 different (mostly incorrect) versions of the
delete operation for each data structure.

On 2-3 trees, we check two invariants of the delete operation, keeping the tree
balanced and ordered, i.e., balanced t = balanced (delete k t), and ordered t —>
ordered (delete k t). We check two similar properties for AVL trees, and three sim-
ilar properties for red-black trees. With the 10 versions, this yields 20 tests each
for 2-3 and AVL trees, and 30 tests for red-black trees, on which we apply vari-
ous counterexample generators. In this setting, we compare how the techniques
deal with conditional conjectures. Random testing is applied with 2,000 and 20,000
iterations for each size (abbreviated Rk, Rypk). Furthermore, we used exhaus-
tive testing (Exh.), custom generators (Cu.G., §4.1), smart generators (Sm.G., §4.2),
narrowing (Nar.) and Nitpick (Nit.).

Table 6.5 summarizes the results. Overall, narrowing, smart, and custom gen-
erators beat exhaustive testing, which itself performs better than random testing
and Nitpick. Nitpick struggles with large functional programs and is limited to
shallow errors in the smaller implementations of AVL and red-black trees. In-
creasing the number of iterations for random testing helps, but in our experience,
it does not find any error that was not also found by testing exhaustively. For
the 2-3 trees, the smart generators and narrowing find errors in 5 more cases than
exhaustive testing. In principle, exhaustive testing should find the errors even-
tually. Thus, in these more intricate cases, we increased the time for the naive
exhaustive testing to finally discover the fault. Even after one hour of testing, ex-
haustive testing was not able to detect a single one. This shows that using the test
data generators and narrowing-based testing in this setting is clearly superior to

Rok Rook Exh. CuG. SmG. Nar. Nit.

AVL trees 5 7 7 9 9 11 4
Red-black trees 10 18 21 22 19 26 11
2-3 trees 5 5 7 11 12 12 0

Table 6.5: Number of counterexamples on faulty implementations of functional
data structures (time limit: 30 s for AVL and red-black trees; 120 s for 2-3 trees)

82

naive exhaustive testing. The smart generators and narrowing find 12 errors in 20
conjectures. In the eight cases where they did not find anything within the time
limit, even testing more thoroughly for an hour did not reveal any further errors.
There are two possibilities: Either Quickcheck is not able to reveal the invalidity
of the property, or the property still holds, as the randomly injected faults do not
necessarily affect the invariant.

6.3.2 Hotel Key Card System

As a further case study, we checked a hotel key card system by Nipkow [92]. The
faulty system contains a man-in-the-middle attack that is only uncovered by a
trace of length 6.

It models a digital key card system, similar to existing ones in many hotels.
We describe a hotel key card system where every room is secured by a digital
lock. Every guest of the hotel receives a card at the reception. The locks at the
rooms can read the cards from the guest, and open the door if it is the card of the
owner. In the decentralized key card system, the locks cannot communicate with
each other or the reception. Nevertheless, only guests that check in for a room
should be allowed to enter, and previous guests should not have further access to
the room once they checked out.

Safety is achieved by the following protocol: Upon check-in, a new guest gets
a card at the reception which carries two keys, the old key of the previous guest
of the room and his own new key. The locks only store their current key, i.e., the
key of the latest guest the lock has been aware of. When a new guest enters the
room, the lock checks if the old card key matches its current key, and if so discards
the old key and stores the new key as its new current key. Once the lock has been
recoded, it allows access only to the card with the current key until the next guest
enters the room. This recoding ensures that the previous guest cannot enter the
room after the new guest has been in his room.

Nipkow [92] gives a formalization of this hotel key card system in Isabelle,
which itself was inspired by a model by Jackson [66]. The safety property of the
hotel key card system is: Once the owner of the room, i.e., the guest who was the
last to check in, entered his room, no previous guest can enter the room (even if
they have kept or copied their cards).

In Isabelle, the hotel key card system is formalized as follows: We consider
three events, a guest ¢ checking in for a room r where he gets a card with keys
(k,k") from the reception, a guest ¢ entering a room r with a card with keys
(k,k'), or a guest g leaving a room r. We model the events Checkin g r (k, k'),
Enter g r (k, k'), and Exit ¢ r with the event datatype.

datatype event =
Checkin guest room (key x key) | Enter guest room (key x key) | Exit guest room

A trace, represented as a list of events, describes the temporal order of events
taking place. Given a trace evs, a room r and a guest g, the functions currentkey evs r
and roomkey evs r denote the key that is currently recorded at the reception for the
room r and the last key that the room was entered with, respectively. The functions

83

issued evs, cards evs g, isin evs r, owner evs r denote the set of already issued keys,
the set of cards of a guest g, the guests in a room r, and the owner of a room r. The
set of possible and valid traces in a hotel is given by the functional description of
the predicate hotel.

hotel || = True

hotel (e - evs) = (hotel evs A (case e of
Checkin g r (k, k') = k = currentkey evs r N\ k' & issued evs |
Enter g r (k, k') = (k,k') € cards evs g N\ (roomkey evs r € {k,k'}) |
Exit gr = g € isinevs 1))

This reflects the explanation above: An empty trace is valid; the card that the new
guest receives when checking in contains the key k of the previous guest and a
fresh key k’; a guest can only enter a room if one of the two keys k or k' on a card
he owns matches the current room key; and to exit a room, the guest must have
been in the room before.

A guest might feel safe in room r if he was the last person to check in and the
room was empty when he entered the room after his check-in.

safe evs r = (Jevs; evs; evsz g ¢ .
evs = evss ++ (Enter ¢ r ¢ - evsy ++ Checkin g r ¢’ - evsy) A
noCheckin (evss ++ Enter ¢ v ¢ - evsp) 1 A
isin (evsy + Checkin g r ¢’ -evsy) r = {})

where noCheckin evs r = —(3g c. Checkin g r ¢ € evs).
The safety property is formally
hotel evs N safe evs r \ g € isin evs r = owner evs r = g.

When checking the validity of this property, the random and exhaustive testing
face two problems: Firstly, the naive black-box testing generates many traces for
which the hotel predicate evaluates to false. Secondly, the safe predicate cannot be
executed (without refinement) because it contains unbounded existential quanti-
fiers (over an infinite type) for evsy, evsy, evss.

The smart generators tackle the two problems, generating test data that fulfills
the premise, and eliminating the existential quantifiers by its dataflow analysis.
For this example, the smart generators find the man-in-the-middle attack within a
few seconds.

In this paragraph, we describe the function hotel” with mode o = bool that
serves as smart test data generator for values of the predicate hotel. The necessary
notions are introduced in chapter 4.

hotel’ = (return™ [|) U .
(hotel® >= (Aevs. hotely ' evs >= (Ae. return™ (e- evs)))))

i0o

hotel,, " evs = (return™ evs >= (Aevs. currentkeyp'”” evs = (A(r, k). exhaustivey,,
>= (Ako. not (issued" evs kp) >= (A(). exhaustivegest
>= (Ag. return™ (Checkin g r (k,k2)))))))) U
(return™ evs = (Aevs. cards™ evs >= (A(g, (ky,k2)). hotely2™" evs ky ky

84

>= (Ar. return™ (Enter g r (ky,k2)))))) U
(return™ evs >= (JAevs. isin' evs >= (A(r,g). return™ (Exit g 1))))

hotel 0™ evs ky ky = N
(return™ (evs, (k1,k2)) >= (A(evs, (k1,_)). roomkeyp"” evs ky >= (Ar. return™ r))) U
(return™ (evs, (k1,k2)) >= (A(evs, (_ k2)). roomkeyp' evs ky = (Ar. return™ r)))

The generator hotel” constructs hotel traces in a bottom-up fashion. hotel " adds
a new event as prefix to shorter hotel traces. hotel " can either prefix a trace by
Checkin, Enter, or Exit events; the conditions for these events, i.e., restriction on the
values of these constructors, are fulfilled by either computing values using further
generating functions or are generated unrestrictedly based on their type. An in-
stance of computation is the call isin™ evs to construct Exit events; an instance of
generation is gerg,.s; to enumerate all guests for Checkin events.

Applying the smart generators to the safety property results in the following
counterexample trace:

Enter g1 ro (k1,kz) - Enter g1 ro (ko, k1) - Checkin g ro (kz, k3)
- Checkin g1 ro (ky,ky) - Checkin go ro (ko, k1)

This resembles the following situation in a hotel with one room ry:

1. Joe (Guest go) checks in and gets a card (ko, k7).
2. Eve (Guest g1) checks in and gets a card (kq, k2).
3. Joe checks in again and gets a card (ko, k3).

4. At this point, Joe has two cards for the room: He tries the newest card (k», k3),
but as it does not open the door, so he uses the card from his last stay (ko, k1)
which unlocks the door.

5. At night, Eve enters the room with card (kj, k).

A subtle error in the key card system causes this jeopardy and can be resolved if
Joe would have followed a reasonable safety policy and used only his recent card.
Adding this safety policy, Nipkow proved the safety of the key card system.

While the smart generators excel at this conjecture, the other testing approaches
perform poorly or need some manual refinements. After refining the formalization
and removing the existential quantifiers, the naive random and exhaustive testing
fail to find the counterexample within ten minutes of testing, as the search space
remains too large. Narrowing-based testing can handle the existential quantifiers
in principle, but in practice it performs badly with the deeply nested existential
quantifiers in the specification. This renders it impossible to find the counter-
example with narrowing. After eliminating the existential quantifiers manually,
we also obtain a counterexample with narrowing within a few seconds.

On this trace-based version of the hotel key card system, Nitpick fails to find
the counterexample with a time limit of ten minutes. However, Nitpick finds
the counterexample on a state-based reformulation of the hotel key card system
(cf. [21], §6.2). This indicates that Quickcheck and Nitpick excel on formalizations
with different specification styles: Nitpick on relational descriptions, Quickcheck
on realistic functional programs and trace-based descriptions.

85

6.3.3 Needham-Schroeder Security Protocol

We show how Quickcheck is used to find a man-in-the-middle attack to the faulty
Needham-Schroeder security protocol, based on the formalization of Bella and
Paulson [12, 100]. The Needham-Schroeder protocol [91] based on public key
encryption consists of three steps:?

1. A—> B: {NA/A}KPB
2. B—A: {NA/NB}KPA
3. A— B: {NB}KPB

A and B denote the two agents Alice and Bob, Kps and Kpp are the public keys
of Alice and Bob. The agents use asymmetric public key encryption for sending
secret messages. The agents initially know their own private key and the public
keys of all agents. We assume that the public keys were distributed via some
public key infrastructure beforehand. Assuming that the private keys of the agents
are never compromised, only Alice can decrypt a message that was encrypted with
her public key, i.e., only Alice can obtain the plain message X from an encrypted
message {X},,. Alice initiates a communication with Bob sending an encrypted
message for Bob with a nonce N4 and her name. Bob invents a nonce N, and
sends a encrypted message with Alice’s nonce N4 and a fresh nonce Ny for Alice.
Sending back Nj, he proves his authenticity to Alice, as Bob is the only one that
could have decrypted the initial message. Finally, Alice authenticate herself by
sending back Bob’s nonce Np to Bob. At the end of the protocol, only Alice and
Bob know the two nonces N4 and N, but they are not known to eavesdroppers.
The two nonces N4y and Np can be used as a secret session key for subsequent
communication between those two agents. However, the protocol is vulnerable to
a well-known man-in-the-middle attack, initially found by Lowe [80].

We present a simplified formalization in Isabelle, based on Paulson’s formal-
ization [100]. On the original formalization, none of the testing approaches can
find the attack due to various definitions that cause an explosion of the search
space. We removed and simplified some definitions, e.g., some definitions that
serve as common basis for several security protocols, but are unnecessary for the
specific Needham-Schroeder protocol. We then employed Quickcheck on this sim-
plified formalization to gain some insight about the performance of the testing
approaches.

In the formalization, there are three agents, Alice, Bob and the attacking spy:

datatype agent = Alice | Bob | Spy

A basic message is an agent’s identifier, a key or some unguessable nonce. Mes-
sages can also be composed or encrypted with a key:

datatype key = pubK agent | priK agent
datatype msg = Agent agent | Nonce nat | MPair msg msg | Crypt key msg

2We use here the common security protocol notation.

86

We use {|m1, my|} = MPair m; my for pairing two messages m; and my.

The communication of agents adheres to the assumptions of the Dolev-Yao
model [41]. The only event in the network is sending messages from one agent to
another:

datatype event = Says agent agent msg

We assume that messages cannot be lost in the network, but agents are free to
choose whether they react to a message or not. Furthermore, agents cannot distin-
guish the sender, and the spy can see all messages of the network. In Isabelle, we
encode the trace of events in the Needham-Schroeder protocol using an inductive
predicate:

inductive needham :: event list = bool
where
needham ||

| needham evs = Nonce N ¢ used evs
= needham (Says A B (Crypt (pubK B) {|Nonce N4, Agent Al}) - evs)

| needham evs = Nonce Ng ¢ used evs
= Says A’ B (Crypt (pubK B) {|Nonce N4, Agent Al}) € set evs
= needham (Says B A (Crypt (pubK A) {|Nonce N4, Nonce Ngl}) - evs)

| needham evs
= Says A B (Crypt (pubK B) {|Nonce Na, Agent Al}) € set evs
= Says B' A (Crypt (pubK A) {|Nonce N4, Nonce Np|}) € set evs
= needham (Says A B (Crypt (pubK B) (Nonce Ng)) - evs)

The first rule provides a starting point for deriving valid protocol runs by defin-
ing the empty trace as a valid run. The other three rules encode the three steps
of the Needham-Schroeder protocol. They are mainly reflecting our description
above, but make some assumptions about the messages sent over the network
more explicit. Note that the needham predicate describes arbitrarily many protocol
interactions between any agents. When checking the conjecture

needham evs = Says A B (Crypt (pubK B) (Nonce Ng)) & set evs

with Quickcheck, it returns a counterexample that provides a valid run of the
protocol in which Alice witnesses Bob that they share the common secret nonces.
Random, exhaustive, and narrowing-based testing cannot find such a run of the
protocol within one hour. Smart testing performs great by enumerating only valid
traces and finds the valid protocol trace within a tenth of a second.

Determining that the protocol is productive with Quickcheck is pleasant, but
the real scenario for a counterexample generator is to detect the man-in-the-middle
attack. In the model, the attacker has no ability to send messages to interfere with
Alice’s and Bob’s communication. Following [100], the general rule for the spy

needham evs = M € synth (analz (spies evs))
= needham (Says Spy B M - evs)

87

expresses the spy’s ability to send fake messages to other participants. Given a
set of messages M, the functions synth and analz describe the messages one can
synthesize and analyze from M, respectively. The function spies describes the spy’s
knowledge after the trace of events evs (i.e., the set of all messages sent over the
network in a trace of events evs). Its combination synth (analz (spies evs)) describes
the (infinite) set of messages the spy can synthesize after analyzing all messages
that the spy has seen in the trace of events evs. By adding this rule to the definition
of the inductive predicate needham, we model the spy’s ability to interfere in the
protocol.

The secrecy theorem states that if the second message of the protocol with nonces
N4 and Np is sent from the honest agent B to the honest agent A, then the spy
cannot determine the nonce Nz with his ability to analyze the messages that were
sent over the network:

needham evs N A # Spy N B# Spy N A# B A
Says B A (Crypt (pubK A) {|Nonce N4, Nonce Ng|}) € set evs
= Nonce Np ¢ analz (spies evs)

Unsurprisingly, random, exhaustive, and narrowing-based testing cannot find the
man-in-the-middle attack, but even the smart testing does not succeed within one
hour. The general rule for the spy is difficult to handle because it allows the spy
to send infinitely many different messages with a large degree of branching. Thus
the search space of the needham predicate explodes and makes it infeasible to find
the attack. Quickcheck is not directly applicable.

At this point, we reformulate the general rule to direct the search for test
cases to some extent based on the following insight: Although the spy can send
many different messages, only very few messages can confuse other participants
in the protocol. Hence we restrict the spy to only fake messages that the other
participants would react to: The faked messages must match the format of first or
second message of the Needham-Schoeder protocol. This is done by replacing the
general rule by these two rules:

needham evs =
needham (Says Spy B (Crypt (pubK B) {|Nonce Na, Agent Al}) - evs)

needham evs =
needham (Says Spy A (Crypt (pubK A) {|Nonce N4, Nonce Ng|}) - evs)

After replacing the rule, the testing with smart generators finds Lowe’s attack as
a counterexample within thirty seconds:?

evs = [Says Alice Spy (Crypt (pubK Spy) (Nonce 1)),

Says Bob Alice (Crypt (pubK Alice) {|Nonce 0, Nonce 1[}),
Says Spy Bob (Crypt (pubK Bob) {|Nonce 0, Agent Alice|}),
Says Alice Spy (Crypt (pubK Spy) {|Nonce 0, Agent Alice|})]
A = Alice, B= Bob,Ny = 0,Ng =1

3To read the trace in its chronological order, it must be read from back to front.

88

To test the specification, we must do some manual work to provide implementa-
tions of the inductive sets analz and parts. We show the necessary refinement for
analz. The steps for parts are analogous. The set analz is defined inductively, where
invKey K stands for the key to decrypt a message encrypted with key K:

inductive-set analz :: msg set = msg set
where
X € H= X canalzH
| {{X, Y]} € analz H = X € analz H
| {{X, Y[} €analz H =Y € analz H
| Crypt K X € analz H = Key (invKey K) € analz H = X € analz H

To enumerate this set, we compute the least fix-point by tabulation. This is guaran-
teed to terminate, as the set operators preserve finiteness and the set of messages
sent over the network is finite. For this example, we just provide a simple but
inefficient implementation of the fix-point equation:

analz H = (let
step = (Am. case m of
XY} = {x,Y}
Crypt K X = if Key (invKey K) € H then X else { } |
—={}
H' = HUJ(step’H)
in if H' = H then H else analz H')

Harvesting the library for computing transitive closures [110], one could provide
a more efficient implementation by reusing general work-list algorithms, but the
performance improvements in this case study would be minor because the com-
puted sets remain small.

Although we fell short of reaching the goal of finding the counterexample
in the original formalization, the restricted formulation shows the benefit of the
smart testing approach compared with previously existing ones. It gives a dra-
matic improvement compared with random or exhaustive testing and also outper-
forms narrowing testing.

However, it was not our main goal to develop a tool that checks security pro-
tocols for errors. There are other tools [5, 19, 81] already existing with much
more developed techniques. Nevertheless, it is nice to see that our general testing
tools can also handle checking security protocols. Finding the man-in-the-middle
attack on the original specification in Isabelle remains a challenge. It motivates fu-
ture work to either integrate helpful analysis for the search and the enumeration
of test cases, or to exploit external tools that already incorporate such analyses
and transformations.

6.4 Applications

Although counterexample generators cannot prove conjectures, they certainly can
bring some evidence for the validity of conjectures: If the counterexample gener-
ator does not find a counterexample after checking for a large number of variable

89

assignments, the conjecture is probably valid—even if we have not found a proof
for it. We show two applications of Quickcheck, in which we take advantage of
this circumstance.

6.4.1 Synthesis of Conjectures

The tool IsaCoSy [68], a program for inductive theory formation, synthesizes con-
jectures and tries to prove them automatically. To make this process tractable,
a sophisticated constraint mechanism generates conjectures and employs Quick-
check to reduce the number of conjectures that are then passed to the automatic
inductive prover IsaPlanner [40]. The authors noted “that many of the conjectures
in this theory which pass counter-example checking, but are not proved by Isa-
Planner, appear to be theorems. A random selection of 20 out of the 46 unproved
conjectures were proved by hand, and no non-theorems were found, which sup-
ports our confidence in Isabelle’s counter-example checker for simple equational
theories” [68].

By our collaboration, we improved the performance of the synthesis of conjec-
tures. The main bottleneck of the synthesis was the large number of code generator
invocations while employing Quickcheck heavily. As generating the test program
with the code generator takes about 100 ms (for the typical conjectures) and most
non-theorems can be refuted with very few test cases, the generation of a single
test program commonly took more time than the actual testing.

To improve its performance, Quickcheck provides a special compilation, in
which Quickcheck compiles test programs for multiple conjectures with one in-
vocation of the code generator. When generating test programs for multiple con-
jectures with one code generator invocation, the overall run time for generating
the test programs conjoined is lower than generating the test programs individ-
ually. Furthermore, we are not interested in the counterexample, but only if a
counterexample exists or not. This allows us to simplify the test programs and re-
duces the size of the generated code. Overall, our experience showed that the run
time reduced by at least one order of magnitude when using the special-purpose
compilation in this application.

As the synthesized conjectures are simple equational theorems, the random
testing approach suffices to refute the non-theorems. In the future, synthesized
theorems with premises for larger development could benefit from the more so-
phisticated testing approaches.

6.4.2 Detection of Superfluous Assumptions

In a theory that serves as library for further developments, general theorems are
more useful than specialized ones. There are many ways in which a theorem
can be more specialized than necessary. We focus on the existence of superfluous
assumptions.

For example, given sets A and B, a function f is injective on AN B, if f is
injective on A or B. However, Isabelle’s library only provided the overspecialized
theorem

90

inj-on f A A inj-on f B= inj-on f (AN B)

with superfluous assumptions inj-on f A and inj-on f B, whereas either one of
those would suffice. To apply the theorem, users would need to clutter their proof
with unnecessary steps to discharge the superfluous assumption.

Another example is found in the theory about lists, which provided the fol-
lowing property of tl and replicate:

n # 0 = tl (replicate n x) = replicate (n — 1) x

At first sight, the assumption seems to be necessary: If n = 0, the list replicate n x
is Nil, and it does not have a tail. However, tI Nil is defined as Nil, and hence both
sides on the equation are equal, even for the case n = 0. Again, the assumption is
this property is superfluous.

Isabelle’s library also contained a theorem about uniqueness of remainder for
integer division, where divmod-int-rel a b (g, r) holds if and only if a divided by b
is ¢ with remainder r:

divmod-int-rel a b (q,r) N divmod-int-relab (¢',r') N b#0=r=7r

The first two premises are essential for stating uniqueness, while the third premise
seems to be a side condition for the theorem to hold. However in this case, the
definition of divmod-int-rel ensures the property’s validity even for b = 0. These
three examples already suggest that theorems with superfluous assumptions occur
in many theories.

There are various reasons why theory developments might provide a more
specific theorem than the most general one:

e Proving a specialized theorem is simpler than proving a more general one. Consider
this overspecialized theorem about lists and mappings:

length ys = length xs N\ length zs = length xs N\ x & set xs A
map-of (zip xs ys)(x +— y) = map-of (zip xs zs)(x — z)
= map-of (zip xs ys) = map-of (zip xs zs)

The stated fact also holds for lists of unequal lengths, i.e., length ys = length xs
and length zs = length xs are superfluous assumptions. However, proving
this fact requires more effort than the one with the assumptions that the lists
are equal length. In the latter case specialized induction and simplification
rules can be applied, while for the general theorem more case distinctions
are required.

o The theorems were stated with only one concrete application in mind. Commonly
during a proof development, users notice that theorems about basic func-
tions are missing in the library. Users then prove those theorems as they
require them for their own proofs. At that point, they might not be the most
general statement.

Eventually if they are of general interest, these theorems are integrated back
to the library theories. Even though the theory development of the libraries is
done with great care and attention, an overspecialized theorem occasionally
slips into the library theories.

91

o They evolve by generalizing definitions. The library theories in Isabelle are sub-
ject to frequent changes by various developers. Definitions are often gen-
eralized, and theorems adapted to those generalizations. Modifications of
library theories are checked by ensuring that existing developments remain
intact. However, this does not guarantee that existing theorems are general-
ized after the definitions were changed.

o Users are not aware of the corner cases in some definitions. In our example above
about t/ and replicate, some user might have been misled by the relationship
of hd and replicate, that holds only if n # 0:

n #0 = hd (replicate n x) = x

Such confusions about corner cases of definitions frequently occur with func-
tions that are intuitively partial function, but made total in Isabelle/HOL
choosing some reasonable value. Examples of such functions are the already
seen tl for lists, and the division operation for arithmetic domains, i.e., in
contrast to common mathematics, x divided by zero is defined to be zero in
Isabelle/HOL.*

Irrespective of the reasons they arise, it is usually preferable to remove the needless
assumptions. We provide a tool that allows users to check if theorems of a theory
have superfluous assumptions. It removes assumptions and checks if Quickcheck
can find a counterexamples to those modified conjectures. If it finds a counter-
example to such a conjecture, the assumptions that were removed are essential
for the validity of the original theorem. If it does not find a counterexample, it is
likely that the conjecture also holds without the removed assumptions. The tool
returns the largest sets of assumptions that can be removed. A largest set of su-
perfluous assumption is not uniquely determined, e.g., it might be possible that
two disjoint sets of assumptions can be removed. For example, a conjecture with
three assumptions A, A;, and Az might be valid with the single assumption Aj,
or Az. Removing A; and A3, or removing A; and A; is an option, but removing all
three assumptions would be invalid.

A naive solution to find all maximal sets of superfluous assumptions is to
check for counterexamples for all possible subsets of assumptions. However, this
would lead to 2" many checks for a theorem with n assumptions. Assuming that
superfluous assumption are rather rare, we pursue another strategy. Given a theo-
rem with n assumptions, we first check all conjectures where one assumption has
been removed. This yields a set of superfluous assumptions for this theorems,
which we denote by §1. We then proceed to check for larger sets of superfluous
assumptions. Then we check all conjectures where two assumptions have been
removed. The sets of cardinality 2 are constructed by taking two elements of S;.
Assuming that we found conjectures with 2 superfluous assumptions, we proceed
building sets of 3, taking the sets of cardinality 2 and adding an element from
S1. We continue this process iteratively for larger sets, until all assumptions are
removed, or we find counterexamples for all sets of a given cardinality.

41t is debatable whether superfluous assumptions in these theorems should be removed.

92

Of course, the tool is approximative and it can report false positives, i.e., non-
theorems for which Quickcheck cannot find a counterexample after an essential
assumption has been removed. This is mainly due to two reasons:

e Checking the conjecture times out before encountering a counterexample.

e The representation of values inherently limits Quickcheck to find a counter-
example to an invalid conjecture.

Table 6.6 shows the results of this tool on a few theories, that serve as libraries
for other developments. The columns show the total number of theorems, the
number of theorems with assumptions, the number of theorems where the tool
found superfluous assumptions. By manual investigation, we found them to be
essential assumptions (false positives reported by the tool) or we were able to
make the theorems more precise. This is indicated by the last two columns (false
pos. and fixed).

Our experience suggests that once the unnecessary assumptions of a theorem
are identified, it is usually easy to modify the existing proof to a similar one
which does not rely on the premise: After removing the assumption, the proof
remains either unchanged as it never relied on the assumption, or one adds a case
distinction on this assumption in the proof, where the new case is usually trivial
to prove. For some cases (i.e., two cases in Divides, six cases in GCD, one case in
RComplete and three cases in Map), we did not improve the theorems as they were
either only for internal use of another proof tool or modifying the proof such that
it did rely on the assumption was too difficult to be done within a few minutes.
For example, the very specific theorem about maps obtained from zipped lists and
updating maps,

map-of (zip xs ys)(x — y) = map-of (zip xs zs)(x — z) A x & set xs A
length ys = length xs A length zs = length xs
= map-of (zip xs ys) = map-of (zip xs zs),

is valid without the last two assumptions, but the existing proof uses the assump-
tions heavily and a proof without those assumptions requires a much longer proof
compared with the existing one. For such theorems, we did not consider the im-
provement worth the effort.

The benefits were already palpable, as we could simplify a few proofs in fur-
ther developments and sustain theorems free from superfluous assumptions after
major modifications in the system [61].

The presented tool was built to show a simple useful application of Quick-
check. For further research, there are many directions one could take from here:

e Currently, it only finds counterexamples using Quickcheck, but it could also
employ Nitpick if Quickcheck fails to find a counterexample quickly. This
could help reduce the number of false positives in a few cases.

e Once a premise of a theorem has been removed, a further step would be
to automatically find proofs that relied on the overspecialized theorem and
detect if they can be simplified, as some parts of the proof were only required
to prove the assumption of the overspecialized theorem.

93

Theory total w.assms sf.assms false pos. fixed

Arithmetics

Divides 313 142 15 0 13
GCD 255 106 7 1 0
RealDef 253 56 4 0 4
RComplete 103 47 4 0 3
Set Theory

Fun 155 91 1 0 1
Relation 193 59 4 4 0
Set 471 176 1 0 1
Wellfounded 114 68 3 3 0
Datatypes

List 844 308 8 1 7
Map 133 59 6 1 3
AFP Libraries

List-Index 35 16 2 0 2
Regular-Sets 44 15 0 0 0
Matrix 126 63 3 2 1

Table 6.6: Detected superfluous assumptions in Isabelle’s libraries

Automatic detection of such “smells” is just the first step in the process of
improving the quality of theories. A next step is to automatically refactor
the proof document, as known from modern integrated development envi-
ronments for programming languages.

Unnecessary premises is just one of many possible over-specializations. One
could also extend the tool to detect other over-specializations. For example,
users frequently state theorems with overly strict arithmetic bounds, e.g., a
theorem with a premise i < j might also be valid for i < j.

An alternative approach to detect unnecessary premises is to automatically
inspect the proof term of theorems [13], and this way find assumptions that
were not used in the proof. Analyzing the proof term is limited to find super-
fluous assumptions based on a syntactic criterion, but the proof term analysis
ensures that the existing proof is still appropriate. However, it cannot detect
superfluous assumptions if the existing proof requires the assumption, but
there exists a proof that does not require the assumption. In contrast, em-
ploying counterexample generators detects superfluous assumptions based
on semantic observations: It can potentially provide false positives, does not
yield a fixed proof, but can detect superfluous assumptions beyond the syn-
tactic criterion of the proof term analysis. It would be interesting to see how
the results of these two approaches differ on Isabelle’s current theories.

94

Chapter 7

Conclusion

7.1 Results

Earlier versions of Quickcheck, which test with random values only, were already
very useful. Although exhaustive testing is limited to explore the property with
very small values, we have seen that counterexamples are often found before one
reaches larger values. In our benchmarks and case studies, exhaustive testing
slightly outperformed random testing. For the programs and properties that one
encounters in Isabelle, we have come to the conclusion that exhaustive testing is
better suited than random testing. In general, it certainly depends on various
factors of the program, e.g., its size and its complexity, and the property to check.
Isabelle’s users benefit from having both strategies at their disposal: they can
choose the best for their actual development.

When random and exhaustive testing fail to find an existing counterexample
within reasonable time, other methods are unlikely to help. The reasons are com-
monly that the problem’s nature entails a huge, asymmetric search space or that
the naive methods do not take an important facet into account, e.g., the existence
of a premise or many symmetric evaluations. We could address the latter with
two further testing approaches, testing with specialized generators (smart testing)
and symbolic evaluation. Especially in case of the smart testing approach, getting
from the principal idea to the actual implementation was not just an engineering
effort, but required some research and many experiments to obtain a competitive
testing technique.

Many further improvements in this thesis are related to making larger parts
of Isabelle’s theories executable. This was certainly beneficial for all testing ap-
proaches.

7.2 Future Work

In the introduction, we have mentioned that counterexample generation in Isabelle
is split into two camps, led by the tools Nitpick and Quickcheck. Both counter-
example generators have gathered a set of techniques for refuting conjectures in
the past years. A next logical step is to combine their techniques.

95

Taking a high level view of Nitpick and Quickcheck, they differ in two main
aspects, the evaluation order and the representation of values. Nitpick is more
flexible in these two aspects than Quickcheck. It has no fixed evaluation order, as
the evaluation order is dynamically determined by the underlying boolean satisfi-
ability solver. Furthermore, it applies various encodings for boolean values (either
as two-valued type or approximated with a three-valued type), sets, predicates
and functions.

Quickcheck has a fixed evaluation order dominated by the evaluation order
of the employed programming language. Furthermore, Quickcheck globally fixes
the representation for every type, which is mainly determined by user’s setup of
the code generator. To make Quickcheck in these two aspects more like Nitpick,
we could provide different data and program refinements for the code generator
that allow more flexible representations of values, similar to the different encod-
ings in Nitpick. However datatype and program refinement is technically much
more involved than Nitpick’s translation. Isabelle’s code generator requires to ex-
tend theories by defining new constants and proving theorems for the translation.
Another difficulty is that Nitpick’s translation performs global optimizations, but
the code generation’s optimizations must be local ones to combine them with the
current code generation process.

Equipping the code generator with other execution principles would allow
different evaluation orders in Quickcheck. One such example is providing auto-
matic compilation techniques to tabulate sets efficiently. However, a compilation
that naively enumerates all values of a set probably quickly exhibits a large set
of values that exhausts all available physical memory. Tabled Prolog systems,
such as XSB [111], and Datalog systems show that the enumeration of sets is
manageable if one employs further techniques, such as the magic set transforma-
tion [10]. By integrating this technique, one could enumerate sets up to a suitable
size for counterexample generation. Combining this with functional executions
and lazy enumerations might allow us to check further specifications. Instead
of targeting a functional programming language, an alternative is to translate to
languages with different evaluation mechanisms. Suitable candidates are the func-
tional logic programming language Curry [3] and logic programming languages
XSB and AProlog [88].

Further good targets are satisfiability-modulo-theories (SMT) solvers [11, 37].
SMT solvers drive the evaluation by the underlying boolean satisfiability solver
and integrate further mechanisms elegantly. For example, functional programs
could be evaluated with the built-in equational reasoner and sets could be enu-
merated with the built-in Datalog engine.

An alternative is to provide a dedicated model finder for higher-order logic,
similar to first-order model finders SEM [122] and Mace4 [83]. This model finder
would eliminate the need for a translation to other paradigms. To compete against
the existing counterexample generators, it must be fairly scalable and efficient.
We could implement such a model finder by combining evaluation mechanisms
with different embeddings, i.e, the evaluation would combine ground execution,
symbolic evaluation, such as normalization by evaluation [1] and narrowing, and
Isabelle’s provers, such as the simplifier and the tableau reasoner.

96

Bibliography

[1]

(2]

[3]

[4]

[5]

Klaus Aehlig, Florian Haftmann, and Tobias Nipkow. A compiled imple-
mentation of normalization by evaluation. In Otmane Ait Mohamed, César
Muiioz, and Sofiene Tahar, editors, Proceedings of the 21th International Con-

ference on Theorem Proving in Higher Order Logics (TPHOLs 2008), volume 5170

of Lecture Notes in Computer Science, pages 352-367. Springer, 2008.

Abdulla Algaddoumi, Sergio Antoy, Sebastian Fischer, and Fabian Reck. The
pull-tab transformation. In Preproceedings of the Third International Workshop
on Graph Computation Models (GCM 2010), 2010.

Sergio Antoy and Michael Hanus. Functional logic programming. Commu-
nications of the ACM, 53:74-85, 2010.

Sergio Antoy, Rachid Echahed, and Michael Hanus. A needed narrowing
strategy. Journal of the ACM, 47:776-822, 2000.

Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier, Luca
Compagna, Jorge Cuellar, Paul Hankes Drielsma, Pierre-Cyrille Hedm, Ja-
copo Mantovani, Sebastian Modersheim, David von Oheimb, Michaél Rusi-
nowitch, Judson Santiago, Mathieu Turuani, Luca Vigano, and Laurent Vi-
gneron. The AVISPA tool for the automated validation of internet security
protocols and applications. In Kousha Etessami and Sriram K. Rajamani, ed-
itors, Proceedings of the 17th International Conference on Computer Aided Verifi-
cation (CAV 2005), volume 3576 of Lecture Notes in Computer Science. Springer,
2005.

Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing tele-
coms software with quviq QuickCheck. In Proceedings of the 2006 ACM SIG-
PLAN workshop on Erlang (Erlang 2006), pages 2-10. ACM, 2006.

Philippe Ayrault, Matthieu Carlier, David Delahaye, Catherine Dubois,
Damien Doligez, Lionel Habib, Thérese Hardin, Mathieu Jaume, Charles
Morisset, Francois Pessaux, Renaud Rioboo, and Pierre Weis. Trusted soft-
ware within Focal. In Computer & Electronics Security Applications Rendez-vous
(CESAR 2008), pages 162-179, 2008.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

97

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Clemens Ballarin. Interpretation of locales in Isabelle: Theories and proof
contexts. In the 5th International Conference on Mathematical Knowledge Man-
agement (MKM 2006), volume 4108 of Lecture Notes in Artificial Intelligence,
pages 31-43. Springer, 2006.

Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman.
Magic sets and other strange ways to implement logic programs (extended
abstract). In Proceedings of the 5th ACM SIGACT-SIGMOD symposium on Prin-
ciples of database systems (PODS 1986), pages 1-15. ACM, 1986.

Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Her-
manns, editors, Proceedings of the 19th International Conference on Computer
Aided Verification (CAV 2007), volume 4590 of Lecture Notes in Computer Sci-
ence, pages 298-302. Springer, 2007.

Giampaolo Bella. Inductive Verification of Cryptographic Protocols. PhD thesis,
University of Cambridge, 2000.

Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed higher
order logic. In Proceedings of the 13th International Conference on Theorem Prov-
ing in Higher Order Logics (TPHOLs 2000), Lecture Notes in Computer Sci-
ence, pages 38-52. Springer, 2000.

Stefan Berghofer and Tobias Nipkow. Random testing in Isabelle/HOL. In
J. Cuellar and Z. Liu, editors, 2nd IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2004), pages 230-239. IEEE Computer
Society, 2004.

Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL — lessons
learned in formal-logic engineering. In Yves Bertot, Gilles Dowek, André
Hirschowitz, C. Paulin, and Laurent Théry, editors, Proceedings of the 12th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs
1999), volume 1690 of Lecture Notes in Computer Science, pages 19-36, 1999.

Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. Turning inductive
into equational specifications. In Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel, editors, Proceedings of the 22th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 2009), volume
5674 of Lecture Notes in Computer Science, pages 131-146. Springer, 2009.

Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing poly-
morphic properties. In Andrew D. Gordon, editor, 19th European Symposium
on Programming, Programming Languages and Systems (ESOP 2010), volume
6012 of Lecture Notes in Computer Science, pages 125-144. Springer, 2010.

Yves Bertot and Pierre Castéran. Interactive theorem proving and program de-
velopment: Coq’Art: the calculus of inductive constructions. Texts in theoretical
computer science. Springer, 2004.

98

[19]

[20]

[21]

[25]

[27]

(28]

Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog
rules. In 14th IEEE Computer Security Foundations Workshop (CSFW-14 2001),
pages 82-96. IEEE Computer Society, 2001.

Jasmin Christian Blanchette and Alexander Krauss. Monotonicity inference
for higher-order formulas. Journal of Automated Reasoning, 47(4):369-398, De-
cember 2011.

Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterexample
generator for higher-order logic based on a relational model finder. In Matt
Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem Proving
(ITP 2010), volume 6172 of Lecture Notes in Computer Science, pages 131-146.
Springer, 2010.

Bernd Braflel, Michael Hanus, Bjorn Peemoller, and Florian Reck. KiCS2: a
new compiler from Curry to Haskell. In Proceedings of the 20th International
Workshop on Functional and (Constraint) Logic Programming (WFLP 2011), vol-
ume 6816 of Lecture Notes in Computer Science, pages 1-18. Springer, 2011.

Bernd Brafsel, Sebastian Fischer, Michael Hanus, and Fabian Reck. Trans-
forming functional logic programs into monadic functional programs. In
Proceedings of the 19th International Workshop on Functional and (Constraint)
Logic Programming (WFLP 2010), volume 6559 of Lecture Notes in Computer
Science. Springer, 2011.

Benjamin Canou and Alexis Darrasse. Fast and sound random generation
for automated testing and benchmarking in objective Caml. In Proceedings
of the 2009 ACM SIGPLAN Workshop on ML (ML 2009), pages 61-70. ACM,
2009.

Matthieu Carlier and Catherine Dubois. Functional testing in the focal en-
vironment. In Bernhard Beckert and Reiner Hahnle, editors, Tests and Proofs
(TAP 2008), volume 4966 of Lecture Notes in Computer Science, pages 84-98.
Springer, 2008.

Matthieu Carlier, Catherine Dubois, and Arnaud Gotlieb. Constraint Rea-
soning in FocalTest. In 5th International Conference on Software and Data Tech-
nologies (ICSOFT 2010), 2010.

Matthieu Carlier, Catherine Dubois, and Arnaud Gotlieb. A first step in
the design of a formally verified constraint-based testing tool: FocalTest. In
Achim D. Brucker and Jacques Julliand, editors, Tests and Proofs (TAP 2012),
volume 7305 of Lecture Notes in Computer Science, pages 35-50. Springer, 2012.

Harsh Raju Chamarthi, Peter C. Dillinger, Matt Kaufmann, and Panagiotis
Manolios. Integrating testing and interactive theorem proving. In David
Hardin and Julien Schmaltz, editors, Proceedings of the 10th International
Workshop on the ACL2 Theorem Prover and its Applications, volume 70 of Elec-
tronic Proceedings in Theoretical Computer Science, pages 4-19, 2011.

99

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

James Cheney and Alberto Momigliano. Mechanized metatheory model-
checking. In Principles and Practice of Declarative Programming (PPDP 2007),
pages 75-86. ACM, 2007.

James Cheney and Christian Urban. Alpha-Prolog: A logic programming
language with names, binding and alpha-equivalence. In 20th International
Conference on Logic Programming (ICLP 2004), volume 3132 of Lecture Notes in
Computer Science, pages 269-283, 2004.

Jan Christiansen and Sebastian Fischer. EasyCheck — test data for free. In
Jacques Garrigue and Manuel Hermenegildo, editors, 9th International Sym-
posium on Functional and Logic Programming (FLOPS 2008), volume 4989 of
Lecture Notes in Computer Science, pages 322-336. Springer, 2008.

Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5(2):56-68, 1940.

Koen Claessen and John Hughes. QuickCheck: A lightweight tool for ran-
dom testing of Haskell programs. In Martin Odersky and Philip Wadler,
editors, Proceedings of the 5th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP 2000), pages 268-279. ACM, 2000.

Koen Claessen, Michal Palka, Nicholas Smallbone, John Hughes, Hans
Svensson, Thomas Arts, and Ulf Wiger. Finding race conditions in Er-
lang with QuickCheck and PULSE. In Graham Hutton and Andrew P. Tol-
mach, editors, Proceedings of the 14th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2009), pages 149-160. ACM, 2009.

Koen Claessen, Nicholas Smallbone, and John Hughes. QuickSpec: guessing
formal specifications using testing. In Tests and Proofs (TAP 2010), Lecture
Notes in Computer Science, pages 6-21. Springer, 2010.

Paul T. Darga and Chandrasekhar Boyapati. Efficient software model check-
ing of data structure properties. In Proceedings of the 21st ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages and Applications
(OOPSLA 2006), pages 363-382. ACM, 2006.

Leonardo De Moura and Nikolaj Bjerner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Proceedings of the 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2008), volume 4963 of Lecture Notes in Computer Science, pages 337—
340. Springer, 2008.

Francgois Degrave, Tom Schrijvers, and Wim Vanhoof. Automatic generation
of test inputs for Mercury. In Michael Hanus, editor, Logic-Based Program
Synthesis and Transformation, volume 5438 of Lecture Notes in Computer Science,
pages 71-86. Springer, 2009.

John Derrick, Neil Walkinshaw, Thomas Arts, Clara Benac Earle, Francesco
Cesarini, Lars-Ake Fredlund, Victor Gulias, John Hughes, and Simon

100

Thompson. Property-based testing — the ProTest project. In Frank de Boer,
Marcello Bonsangue, Stefan Hallerstede, and Michael Leuschel, editors, For-
mal Methods for Components and Objects, volume 6286 of Lecture Notes in Com-
puter Science, pages 250-271. Springer, 2010.

[40] Lucas Dixon and Jacques D. Fleuriot. IsaPlanner: A prototype proof plan-
ner in Isabelle. In Franz Baader, editor, Proceedings of the 19th International
Conference on Automated Deduction (CADE-19), volume 2741 of Lecture Notes
in Computer Science, pages 279-283, 2003.

[41] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key
protocols. IEEE Transactions on Information Theory, 29(2):198-207, 1983.

[42] Jonas Duregard, Patrik Jansson, and Meng Wang. Feat: Functional enumer-
ation of algebraic types. In Proceedings of the 5th ACM SIGPLAN Symposium
on Haskell (Haskell 2012), pages 61-72, 2012.

[43] Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. Combining testing and
proving in dependent type theory. In David A. Basin and Burkhart Wolff,
editors, Proceedings of the 16th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs 2003), volume 2758 of Lecture Notes in Computer
Science, pages 188-203. Springer, 2003.

[44] Carl Eastlund. Doublecheck your theorems. In 8th Int. Workshop On The
ACL2 Theorem Prover and Its Applications, 2009.

[45] Sebastian Fischer. Reinventing Haskell backtracking. In GI Jahrestagung 2009,
pages 2875-2888, 2009.

[46] Sebastian Fischer. On Functional Logic Programming and its Application to Test-
ing. PhD thesis, Christian-Albrechts-Universitadt zu Kiel, 2010.

[47] Sebastian Fischer and Herbert Kuchen. Systematic generation of glass-box
test cases for functional logic programs. In Principles and Practice of Declara-
tive Programming (PPDP 2007), pages 63-74. ACM, 2007.

[48] Sebastian Fischer, Oleg Kiselyov, and Chung-chieh Shan. Purely functional
lazy non-deterministic programming. In Graham Hutton and Andrew P.
Tolmach, editors, Proceedings of the 14th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP 2009), pages 11-22. ACM, 2009.

[49] Laurent Fribourg. SLOG: A logic programming language interpreter based
on clausal superposition and rewriting. In IEEE International Symposium on
Logic Programming (SLP 1985), pages 172-184, 1985.

[50] Elio Giovannetti, Giorgio Levi, Corrado Moiso, and Catuscia Palamidessi.
Kernel-LEAF: a logic plus functional language. Journal of Computer and Sys-
tem Sciences, 42(2):139-185, 1991.

[51] Michael Gordon and Tom Melham. Introduction to HOL: A theorem proving
environment for Higher Order Logic. Cambridge University Press, 1993.

101

[52] Florian Haftmann. Data refinement (raffinement) in Isabelle/HOL. This is a
draft of an envisaged publication still to be elaborated which, applying the
usual rules of academic confidentiality, can be inspected at http://www4.
in.tum.de/~haftmann/pdf/data_refinement_haftmann.pdf.

[53] Florian Haftmann. Code Generation from Specifications in Higher Order Logic.
PhD thesis, Technische Universitit Miinchen, 2009.

[54] Florian Haftmann and Tobias Nipkow. Code generation via higher-order
rewrite systems. In 10th International Symposium on Functional and Logic Pro-
gramming (FLOPS 2010), volume 6009 of Lecture Notes in Computer Science,
pages 103-117. Springer, 2010.

[55] John Harrison. HOL Light: A tutorial introduction. In Mandayam Srivas and
Albert Camilleri, editors, Formal Methods in Computer-Aided Design, volume
1166 of Lecture Notes in Computer Science, pages 265-269. Springer, 1996.

[56] Ralf Hinze. Deriving backtracking monad transformers. In Martin Oder-
sky and Philip Wadler, editors, Proceedings of the 5th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP 2000), pages 186-197.
ACM, 2000.

[57] Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and theory. In
Generic Programming, volume 2793 of Lecture Notes in Computer Science, pages
1-56. Springer, 2003.

[58] Ralf Hinze, Johan Jeuring, and Andres Loh. Comparing approaches to
generic programming in Haskell. In ICS, Utrecht University, pages 72-149.
Springer, 2006.

[59] Steffen Holldobler. Foundations of Equational Logic Programming, volume 353
of Lecture Notes in Computer Science. Springer, 1989.

[60] Paul Hudak, Philip Wadler, Arvind Brian, Boutel Jon Fairbairn, Joseph Fasel,
Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur
Nikhil, Simon Peyton Jones, Mike Reeve, David Wise, and Jonathan Young.
Report on the programming language Haskell: A non-strict, purely func-
tional language. ACM SIGPLAN Notices, 27, 1992.

[61] Brian Huffman. personal communication, 2012.

[62] Brian Huffman and Ondfej Kuncar. Lifting and transfer: A modular design
for quotients in Isabelle/HOL. In Isabelle Users Workshop, 2012.

[63] John Hughes, Ulf Norell, and Jérome Sautret. Using temporal relations to
specify and test an instant messaging server. In Proceedings of the 5th Work-
shop on Automation of Software Test (AST 2010), pages 95-102. ACM, 2010.

[64] John M. Hughes and Hans Bolinder. Testing a database for race conditions
with QuickCheck. In Proceedings of the 10th ACM SIGPLAN workshop on Er-
lang (Erlang 2011), pages 72-77. ACM, 2011.

102

http://www4.in.tum.de/~haftmann/pdf/data_refinement_haftmann.pdf
http://www4.in.tum.de/~haftmann/pdf/data_refinement_haftmann.pdf

[65] Jean-Marie Hullot. Canonical forms and unification. In Wolfgang Bibel and
Robert A. Kowalski, editors, Proceedings of the 5th International Conference
on Automated Deduction (CADE-5), volume 87 of Lecture Notes in Computer
Science, pages 318-334. Springer, 1980.

[66] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT
Press, 2006.

[67] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Comput-
ing Surveys, 41(4):21:1-21:54, October 2009.

[68] Moa Johansson, Lucas Dixon, and Alan Bundy. Conjecture synthesis for
inductive theories. Journal of Automated Reasoning, 47(3):251-289, October
2011.

[69] Simon L. Peyton Jones. Haskell 98: Standard prelude. Journal of Functional
Programming, 13(1):103-124, 2003.

[70] Simon L. Peyton Jones, Alastair Reid, Fergus Henderson, C. A. R. Hoare,
and Simon Marlow. A semantics for imprecise exceptions. In Barbara G.
Ryder and Benjamin G. Zorn, editors, Proceedings of the 1999 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 1999),
pages 25-36. ACM, 1999.

[71] Juan José Moreno-Navarro, Herbert Kuchen, and Rita Loogen. Lazy narrow-
ing in a graph machine. In Hélene Kirchner and Wolfgang Wechler, editors,
Algebraic and Logic Programming, volume 463 of Lecture Notes in Computer
Science, pages 298-317. Springer, 1990.

[72] Vesa A.]J. Karvonen. Generics for the working ML’er. In Proceedings of the
2007 ACM SIGPLAN Workshop on ML (ML 2007), pages 71-82. ACM, 2007.

[73] Matt Kaufmann, Panagiotis Manolios, and] Strother Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, 2000.

[74] Gerwin Klein, Tobias Nipkow, and Larry Paulson. The Archive of Formal
Proofs. http:/ /afp.sf.net/.

[75] Pieter Koopman, Artem Alimarine, Jan Tretmans, and Rinus Plasmeijer.
Gast: generic automated software testing. In Revised Selected Papers of the 14th
international Workshop on Implementation of functional languages (IFL 2002), vol-
ume 2670 of Lecture Notes in Computer Science, pages 84-100. Springer, 2003.

[76] Christopher League. QCheck/SML. http://contrapunctus.net/league/
haques/qcheck/.

[77] Fredrik Lindblad. Property directed generation of first-order test data. In
Marco Morazén, editor, The Eigth Symposium on Trends in Functional Program-
ming (TFP 2007), pages 105-123. Intellect, 2008.

103

http://afp.sf.net/
http://contrapunctus.net/league/haques/qcheck/
http://contrapunctus.net/league/haques/qcheck/

[78] Andreas Lochbihler. Jinja with threads. In Gerwin Klein, Tobias Nip-
kow, and Lawrence Paulson, editors, The Archive of Formal Proofs. http:
/ /afp.sourceforge.net/entries/JinjaThreads.shtml, 2007. Formal proof de-
velopment.

[79] Andreas Lochbihler. Formalising FinFuns — generating code for functions
as data from Isabelle/HOL. In Stefan Berghofer, Tobias Nipkow, Chrsitian
Urban, and Makarius Wenzel, editors, Proceedings of the 22nd International
Conference of Theorem Proving in Higher Order Logics, volume 5674 of Lecture
Notes in Computer Science, pages 310-326. Springer, 2009.

[80] Gavin Lowe. An attack on the Needham-Schroeder public-key authentica-
tion protocol. Information Processing Letters, 56:131-133, 1995.

[81] Gavin Lowe. Casper: A compiler for the analysis of security protocols. In
Journal of Computer Security, pages 53-84. Society Press, 1998.

[82] Wolfgang Lux. Implementing encapsulated search for a lazy functional logic
language. In Aart Middeldorp and Taisuke Sato, editors, Functional and Logic
Programming, volume 1722 of Lecture Notes in Computer Science, pages 100—-
113. Springer, 1999.

[83] William McCune. Mace4 reference manual and guide. CoRR, ¢s.5C/0310055,
2003.

[84] Christopher S. Mellish. The automatic generation of mode declarations for
Prolog programs. Technical Report 163, Department of Artificial Intelli-
gence, 1981.

[85] Louis Morgan. Random Testing of ML Programs. Master’s thesis, School of
Informatics, University of Edinburgh, 2010.

[86] Michal Muzalewski. An outline of PC Mizar. Technical report, Fondation
Philippe le Hodey, Brussels, 1993.

[87] Glenford]J. Myers, Corey Sandler, and Tom Badgett. The Art of Software
Testing. John Wiley & Sons, 2011.

[88] Gopalan Nadathur and Dale Miller. An overview of AProlog. In 5th Interna-
tional Logic Programming Conference (ICLP 1988), pages 810-827. MIT Press,
1988.

[89] Lee Naish. Adding equations to NU-Prolog. In Jan Maluszynski and Martin
Wirsing, editors, 3rd International Symposium on Programming Language Imple-
mentation and Logic Programming (PLILP 1991), volume 528 of Lecture Notes in
Computer Science, pages 15-26. Springer, 1991.

[90] Matthew Naylor and Colin Runciman. Finding inputs that reach a target
expression. In Proceedings of the Seventh IEEE International Working Confer-
ence on Source Code Analysis and Manipulation (SCAM 2007), pages 133-142,
Washington, DC, USA, 2007. IEEE Computer Society.

104

http://afp.sourceforge.net/entries/JinjaThreads.shtml
http://afp.sourceforge.net/entries/JinjaThreads.shtml

[91] Roger M. Needham and Michael D. Schroeder. Using encryption for au-
thentication in large networks of computers. Communications of the ACM, 21
(12):993-999, December 1978.

[92] Tobias Nipkow. Verifying a hotel key card system. In 3rd International Col-
loguium on Theoretical Aspects of Computing (ICTAC 2006), volume 4281 of
Lecture Notes in Computer Science. Springer, 2006. Invited paper.

[93] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[94] David Overton, Zoltan Somogyi, and Peter J. Stuckey. Constraint-based
mode analysis of Mercury. In Principles and Practice of Declarative Program-
ming (PPDP 2002), pages 109-120. ACM, 2002.

[95] Sam Owre. Random testing in PVS. In Workshop on Automated Formal Methods
(AFM 2006), 2006.

[96] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype veri-
fication system. In Deepak Kapur, editor, Proceedings of the 11th International
Conference on Automated Deduction (CADE-11), volume 607 of Lecture Notes in
Computer Science, pages 748-752. Springer, 1992.

[97] Rex Page. Property-based testing and verification: a catalog of classroom ex-
amples. In Andy Gill and Jurriaan Hage, editors, Proceedings of the 23rd Sym-
posium on Implementation and Application of Functional Languages (IFL 2011),
volume 7257 of Lecture Notes in Computer Science. Springer, 2012.

[98] Lawrence C. Paulson. Isabelle — A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer, 1994.

[99] Lawrence C. Paulson. ML for the working programmer (2. ed.). Cambridge
University Press, 1996.

[100] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6(1-2):85-128, January 1998.

[101] Uday S. Reddy. Narrowing as the operational semantics of functional lan-
guages. In International Symposium on Logic Programming, pages 138-151,
1985.

[102] Jason S. Reich, Matthew Naylor, and Colin Runciman. Lazy generation of
canonical test programs. In Proceedings of the 23rd Symposium on Implementa-
tion and Application of Functional Languages. To appear.

[103] Michael Roberson, Melanie Harries, Paul T. Darga, and Chandrasekhar Boy-
apati. Efficient software model checking of soundness of type systems. In
Proceedings of the 23rd ACM SIGPLAN Conference on Object-oriented Program-
ming Systems, Languages and Applications (OOPSLA 2008), pages 493-504.
ACM, 2008.

105

[104] Céline Rouveirol. Flattening and saturation: Two representation changes for
generalization. Machine Learning, 14(2):219-232, 1994.

[105] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. SmallCheck and
Lazy SmallCheck: automatic exhaustive testing for small values. In Pro-
ceedings of the 1th ACM SIGPLAN Symposium on Haskell (Haskell 2008), pages
37-48, 2008.

[106] Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. SIGPLAN Notices, 37(12):60-75, December 2002.

[107] Jan-Georg Smaus, Patricia M. Hill, and Andy King. Mode analysis domains
for typed logic programs. In Sel. papers from the 9th Int. Workshop on Logic
Programming Synthesis and Transformation, pages 82-101. Springer, 2000.

[108] Roma Sokolov. Ocaml-QuickCheck. https://github.com/camlunity/
ocaml-quickcheck.

[109] Michael Spivey. Combinators for breadth-first search. Journal of Functional
Programming, 10(4):397—408, July 2000.

[110] Christian Sternagel and René Thiemann. Executable transitive closures
of finite relations. In Gerwin Klein, Tobias Nipkow, and Lawrence Paul-
son, editors, The Archive of Formal Proofs. http:/ /afp.sourceforge.net/entries/
Transitive-Closure.shtml, 2011. Formal proof development.

[111] Terrance Swift and David S. Warren. XSB: Extending Prolog with tabled
logic programming. Theory and Practice of Logic Programming, Special Issue, 12
(1-2):157-187, 2012.

[112] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In
Orna Grumberg and Michael Huth, editors, 13th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2007),
volume 4424 of Lecture Notes in Computer Science, pages 632—647. Springer,
2007.

[113] Dmitriy Traytel, Andrei Popescu, and Jasmin Christian Blanchette. Founda-
tional, compositional (co)datatypes for higher-order logic: Category theory
applied to theorem proving. In Proceedings of the 27th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS 2012), pages 596—605. IEEE, 2012.

[114] Philip Wadler. How to replace failure by a list of successes. In Functional Pro-
gramming Languages and Computer Architecture, volume 201 of Lecture Notes
in Computer Science, pages 113-128. Springer, 1985.

[115] Philip Wadler. Monads for functional programming. In Johan Jeuring and
Erik Meijer, editors, Advanced Functional Programming, volume 925 of Lecture
Notes in Computer Science, pages 24-52. Springer, 1995.

[116] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad hoc. In Proceedings of the 16th ACM Symposium on Principles of Programming
Languages (POPL 1989), pages 60-76. ACM, 1989.

106

https://github.com/camlunity/ocaml-quickcheck
https://github.com/camlunity/ocaml-quickcheck
http://afp.sourceforge.net/entries/Transitive-Closure.shtml
http://afp.sourceforge.net/entries/Transitive-Closure.shtml

[117]

[118]

[119]

[120]

[121]

[122]

Tjark Weber. Bounded model generation for Isabelle/HOL. In Wolfgang
Ahrendt, Peter Baumgartner, Hans de Nivelle, Silvio Ranise, and Cesare
Tinelli, editors, Selected Papers from the Workshops on Disproving and the Sec-
ond International Workshop on Pragmatics of Decision Procedures (PDPAR 2004),
volume 125(3) of Electronic Notes in Theoretical Computer Science, pages 103—
116. Elsevier, 2005.

Tjark Weber. SAT-based Finite Model Generation for Higher-Order Logic. PhD
thesis, Institut fiir Informatik, Technische Universitdt Miinchen, April 2008.

Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle
framework. In Otmane Ait Mohamed, César Mufioz, and Sofiene Tahar,
editors, Proceedings of the 21th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs 2008), volume 5170 of Lecture Notes in Computer
Science, pages 33-38. Springer, 2008.

Markus Wenzel. Type classes and overloading in higher-order logic. In
Elsa L. Gunter and Amy Felty, editors, Proceedings of the 10th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 1997), volume
1275 of Lecture Notes of Computer Sciences, pages 307-322, 1997.

Ashley Yakeley. MonadPlus reform proposal. http://www.haskell.org/
haskellwiki/MonadPlus_reform_proposal, 2006. [Online; accessed 24-July-
2012].

Jian Zhang and Hantao Zhang. SEM: a system for enumerating models.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI 1995), pages 298-303. Morgan Kaufmann, 1995.

107

http://www.haskell.org/haskellwiki/MonadPlus_reform_proposal
http://www.haskell.org/haskellwiki/MonadPlus_reform_proposal

	Introduction
	Motivation
	Contributions
	Publications
	Structure of This Thesis

	Background
	Interactive Theorem Proving
	Isabelle/HOL
	Definitional Principles
	Type Classes

	Code Generation
	Program Refinement
	Data Refinement
	Execution of Inductive Specifications
	Contributions to Isabelle's Code Generation

	Random and Exhaustive Testing
	From Conjectures to Test Programs
	Test Data Generators
	Nondeterministic Computations
	Basic Random Generators
	Basic Exhaustive Generators
	Generators for Inductive Datatypes
	Generators for Arbitrary Type Definitions

	Extensions of the Infrastructure
	Parametrized Conjectures
	Conjectures with Type Classes
	Polymorphic Conjectures
	Reification
	Underspecified Functions

	Simple Treatments
	Quantifier Massaging
	Equality Optimization

	Datatype Refinements
	Finitely Representable Relations
	Finite Functions
	Automatic Data Refinements

	Related Work

	Conditional Conjectures
	Custom Generators
	Smart Generators
	Architecture
	Processing of Definitions to Horn Clauses
	Function Flattening
	Mode Analysis
	Generator Compilation
	Extensions

	Related Work

	Narrowing-Based Testing
	Introduction to Narrowing
	Existing Narrowing Implementations
	Abstract Description of the Narrowing Implementation
	Implementation
	Basic Data Structures
	Refinement Algorithm
	Basic Evaluation Mechanism
	Presentation of Results

	Related Work
	Discussion

	Empirical Results and Applications
	Evaluation on Theorem Mutations
	Evaluation on Conditional Conjectures
	Case Studies
	Functional Data Structures
	Hotel Key Card System
	Needham-Schroeder Security Protocol

	Applications
	Synthesis of Conjectures
	Detection of Superfluous Assumptions

	Conclusion
	Results
	Future Work

