
Gender Identification Bias Induced with Texture Images on a Life Size
Retro-Projected Face Screen

1Takaaki Kuratate, 2Marcia Riley, 3Brennand Pierce and 4Gordon Cheng

Abstract— A retro-projected face display system has great
advantages in being able to present realistic 3D appearances to
users and to easily switch the appearance of the humanoid robot
heads animated on the display. Therefore, it is useful to evaluate
how effectively users can perceive various information from
such devices and what type of animation is suitable for human-
robot interaction – in particular, face-to-face communication
with robots. In this paper, we examine how facial texture images
affect people’s ability to identify the gender of faces displayed
on a retro-projected face screen system known as Mask-bot.
In an evaluation study, we use a female face screen as the
3D output surface, and display various face images morphed
between male and female. Subjects are asked to rate the gender
of each projected face. We found that even though the output
3D mask screen has a female shape, gender identification is
strongly determined by texture images, especially in the case
of high-quality images.

I. INTRODUCTION
Faces are one of the major modalities used in daily

human communication, and as such are an essential topic
for developing socially aware, interactive humanoid robots.
Humans are instinctively and sensitively tuned to faces, and
even newborns can detect faces almost instantly [1], [2]. Var-
ious realistic robotic heads have been developed, including
those with articulated faces. Robot heads by Hanson [3]
and Ishiguro [4], and the Jules robot at Bristol labs [5]
achieved in collaboration with Hanson are among the best
of these realistic articulated faces. However, robotic heads
suffer from an important limitation. Because their appearance
is fixed after instantiating the design, re-design based on
new information is costly, as developers must re-build these
mechanically-sophisticated heads.

In contrast to such traditional robotic approaches, various
retro-projected face systems have been developed recently
[6], [7], [8], [9], including our Mask-Bot shown in Figure 2.
These systems bring with them several advantages. They
can easily change the appearance of the head along two
dimensions: 1) model realism; and 2) model selection. Thus,
models can switch along one axis from abstract simplicity
to detailed realism obtained by scanning human subjects;
and for the same level of realism, different face models can
be selected for display. Also, their communication abilities
include the capacity to express more nuanced, subtle gestures
often missing from today’s robot faces. Lastly, the systems
are generally lighter and less complicated than their mechan-
ical counterparts, comprised of just a small projector, optics
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Fig. 1. Mask-bot with different face appearances: Mask-bot without
rear-projection (top, left), average face obtained from low quality faces
(top, right), male examples in the middle row (Caucasian – left, Asian –
right, both in high-quality texture) and female examples in the bottom row
(Caucasian with high-quality – left, Asian with low-quality – right).

2012 IEEE RO-MAN: The 21st IEEE International Symposium on
Robot and Human Interactive Communication.
September 9-13, 2012. Paris, France.

978-1-4673-4605-4/12/$31.00 ©2012 IEEE 43



Pan Axis

LED Projector

Fish-eye
Lens

Mount base

Mask
Screen

Ti lt Center

Tilt motor

Pan motor

Control box

Pan-Tilt Unit

Pr
oj
ec
tio
n
Ar
ea

Fig. 2. Example of a retro-projected face - our Mask-bot.

and a face screen, with the face screen yielding better 3D
appearance results than flat computer screens.

However, in the current versions of retro-projected face
systems, there is one major hardware drawback: it is not easy
to replace the display mask for 3D face screens, thus making
it difficult to test different screen geometries for compatibility
with the source image. We address this drawback in order to
make full use of these systems’ advantages by considering
the balance between output face screen shape and facial
appearance. Specifically, we wish to determine which type
of 3D facial content is effective for a particular output shape.

Figure 1 shows sample Mask-bot faces. From these exam-
ples, we see that the system can project various calibrated
face models with the same female screen, and, as seen from
examples in the middle row, displaying male faces on a
female screen still results in a strong male impression. These
observations led us to explore more closely how people
identify gender from such retro-projected faces. Various psy-
chological studies on perception of gender report that facial
features, skin textures and 3D structure of faces contribute
to the classification of gender. Bruce et al. demonstrate that
nose/chin protuberance is an important cue in 3/4 views [10],
while the eye and brow region become particularly important
in front views [11]). These perception experiments used
conventional media such as photographs, TV or computer
screens to present stimuli. As a new human-robot interface,
the retro-projected screen systems need to be examined not
only for gender studies, but also more generally on how they
can be used effectively as a social tool in human-machine
interaction [12].

In the work presented here, we investigate the question of
gender identification in a 3D physical head using Mask-bot
as our experimental platform. More precisely, we examine
the role of texture as a cue for gender discrimination while
maintaining a constant output mask shape. In this study,
we utilise a female face screen as the 3D output geometry,
and display various face images morphed between male
and female. Subjects are asked to judge the gender of
heads projected via the Mask-bot system. We ascertain the
effectiveness of texture as a gender cue, and ask whether
texture alone is sufficient to change the perception of gender
in a projected 3D head.

II. EXPERIMENT SETUP

A. Mask-bot display and texture image

The Mask-bot system is a life-size, retro-projected face
shape display system with the ability to show realistic talking
head animation and auditory and speech motion output [9],
[12] (Figure 2). The current Mask-bot system uses pre-
calibrated 3D face models for animation: each 3D face model
is carefully aligned and calibrated for distortion resulting
from a fisheye lens and projection onto a 3D mask surface.
Replacing the texture image of one of these calibrated 3D
face models will enable us to change face appearance quite
easily without calibrating the face model each time, at the
cost of possibly loosing an exact match between facial
features of target 3D face models and the final output on the
mask. In fact, the current output 3D mask shape is fixed, and
there is always some error caused by a mismatch between
between calibrated face model features and 3D mask features
(unless the 3D face model is the same as the 3D mask). We
discovered that in most cases, though, these errors are not
perceived unless they are sought out with careful observation.

Mask-bot also currently uses specific text-to-speech output
which may also cause a mismatch for different face models
and morphed faces. For this reason, we use still images
without head motion for stimuli in the experiment presented
here.

B. Face images from 3D face data

We provide morphed face images obtained from a 3D face
database to present on the Mask-bot screen. The following
two types of 3D face databases are used to obtain 3D face
data:

ATR 3D face database: This database contains ∼500
subjects (adults, some with 9 face postures each, and
others with 25 postures) scanned with a Cyberware
4020 and 3030 RGB/PS color digitizer (Cyberware, Inc.,
www.cyberware.com) and stored in Cyberware ECHO
format[13]. Most face data were scanned in 480x450 res-
olution in both range data and texture image. The effective
pixels around the face area is roughly 260x220 pixels, which
provides quite a good resolution for 3D shape (in Cylindrical
coordinates, 0.7 mm of resolution for the polar axis direction,
and 0.75 deg for the angular direction), but not enough for
surface texture. Specific face features were annotated for 200
subjects for various statistical analyses and applications. We
selected 40 faces from these annotated faces (10 faces from
each subgroup: Caucasian male, Caucasian female, Asian
male and Asian female) to create an average face.

MARCS 3D face database: This database was collected
at MARCS Auditory Laboratories, University of Western
Sydney and contains data from ∼200 subjects (babies to
adults: from 1 to 50 postures, depending on the sub-
ject) scanned with a 3dMDface system with two camera
heads (3dMD, www.3dMD.com). Most data were scanned
in 1200x1600 pixel resolution for the texture image from
each camera, and include the subjects’ face and torso. Final
3D output data with combined texture images yield roughly
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Fig. 3. Sample 3D face data from the ATR 3D face database (left) and the
MARCS 3D face database (right): texture mapped image (top) and polygonal
image (bottom) show differences in texture quality and 3D resolution. For
the polygonal image from the ATR database (left-bottom), only 1/4 of the
actual 3D points were used in this image.

500x400 effective pixels for the face area. Although the
texture quality is very high and the reconstructed 3D surface
can adequately capture details of the face structures, its
spatial resolution is usually not as dense as Cyberware data,
but still high enough for 3D face geometry analysis.

In order to use the same processing method used on
the ATR 3D face database, the 3D data stored in TSB
format from this database were resampled and converted
to Cyberware ECHO format in 960x900 resolution, and the
same face features were annotated. From the data we selected
5 adult faces (2 Caucasian male, 2 Caucasian female and 1
Asian male) for this experiment.

Figure 3 shows sample data of the same subject from each
database. The left column shows the sample from the ATR
database, and the right column corresponds to the MARCS
database data. As you can see from images in the top row,
texture quality is much better in the MARCS database. On
the other hand, the number of 3D surface polygons and points
is much higher in the ATR database: the left-bottom image
shows only 1/4 of the original 3D points to visualize triangle
polygons, whereas the right-bottom image shows all original
3D points and polygons.

To obtain a face image for Mask-bot, we apply the
following steps. For each face we:

1) convert to a common mesh structure by adapting it to
a generic mesh model[14]

2) render the adapted face model in the generic mesh
coordinates and create an image (800x640 pixels)

3) synthesize morphed texture images between two ren-
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Fig. 4. Overview of the Mask-bot display with morphed face image texture
from different texture groups

dered face images using alpha blending
4) redefine the morphed texture image as an image ap-

plied to a pre-calibrated average face (made from 40
faces from the ATR face database)

5) display on Mask-bot.
Since we use still images as stimuli for this experiment (no

movement nor speech), the last step, which is normally con-
trolled by the talking head animation pipeline used for nor-
mal operation of the Mask-bot system, is instead controlled
in one of two ways: by an image browser, or by DMDX, a
standard psychological experiment presentation tool used for
detailed response measurements[15]. (The DMDX control
replaced the image browser when it was ready. Therefore,
5 subjects viewed the stimuli via the image browser, and
10 later subjects via the DMDX. Viewing conditions were
identical for the two response conditions.)

C. Stimuli Synthesis

Using selected faces from two database, the following
three groups of 3D face data are prepared:

• A high-quality texture face group from the MARCS 3D
face database

• A low-quality texture face group from the ATR 3D face
database

• An averaged face group using low-quality texture (6
average faces from: all male faces; all female; Caucasian
male; Caucasian female; Asian male; Asian female).

In each group, single faces (or a single average face from
the 3rd group) from each gender are selected, and used to
synthesize morphed image with ratios of 0.00, 0.25, 0.50,
0.75 and 1.0 (0.0=female, 1.0=male). Finally, we create 30
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Fig. 5. Experiment setup: the Mask-bot display is located in front of a
seated subject at a similar height to the subject’s face.

(3 male x 2 female x 5 morphs), 2000 (20x20x5), and
45 (3x3x5) images for each group respectively. However,
presenting all images would require a very long participation
time for subjects, so we decided to use 30, 185 (randomly
selected), and 45 images respectively,for a total of 260
images. These 260 images were randomly separated into
26 blocks consisting of 10 faces each. Also, 10 faces were
randomly chosen as a practice block from the same 260
images.

D. Experiments

N = 15 subjects (age 23 to 53, average age = 30, gender
= 12 males, 3 females) were asked to evaluate the gender of
faces on a scale from 0 to 4 (0=female, 1=may be female,
2=Middle/Ambiguous, 3=may be male, 4=male). We decided
to use such a scale rather than a binary male / female decision
because we would like to know if subjects can identify
synthesized morphed faces correctly. The Mask-bot display
was located in front of a seated subject across a small desk at
a similar height to the subject’s face. The distance between
the Mask-bot and the subject’s face was ∼1m. Figure 5
shows the actual configuration of the experiment. The first 5
subjects were asked to tick responses on evaluation sheets.
For the next 10 subjects, the integration of DMDX was ready,
so input for identical visual stimuli was done via a keyboard.

A total of 26 blocks of 10 faces were presented after 1
block of practice for each subject. Each block of presented
stimuli was designed as

1) 2.5 seconds of text fixation (to focus subjects at the
middle of where the face appears)

2) sequential presentation of face images - 1 face every
2.5 seconds for a block of 10 faces (no blank interval)

3) 7.5 seconds of blank interval.

All communication functions of Mask-bot were disabled - it
was used as a display without any head motion.

III. RESULTS

Figure 6 shows averaged gender identification results with
standard errors from all subjects for (a) high-quality texture
stimuli, (b) low quality texture stimuli and (c) average face
stimuli obtained from low quality texture faces. As a guide to
ideal response to the morph ratio, a solid blue line is plotted
in each graph. From these results, we can see that gender
identification responses show slightly different properties in
each case.

(a) High-Quality Texture
For all morph ratios except 0.0 (100% female)
the results show a good trend matching the ideal
response, but with a slight offset toward male-
ness. (Of course the 1.0 morph is capped to the
highest value of 4.0.) These results indicate that
subjects can identify the gender correctly almost
always, including the in-between faces generated
by morphing. This also means that male texture
cues can override the female mask shape cues
and be perceived correctly as male. The remaining
questions which we discuss later revolve around the
slightly sub-par performance for female face cate-
gorization. (For the 100% female case, responses
indicate an average of slightly female.)

(b) Low-Quality Texture
The response is almost linear with respect to the
morph ratio, excluding the 100% female case.
However, the slope is less steep than the ideal
response. As the maleness increases, we see a
slight increase in male responses. Female gender
is harder to correctly identify, even more so in the
low quality texture images than the high quality
images, with averaged responses near neutral for
the 100% and 75% female morphs. These results
indicate that more relevant gender texture cues are
better preserved in the high quality images.

(c) Average Face Texture
Here, the responses follow the general trend of the
data, but with a suppressed response that hovers
more toward neutral. That is, there is a slight in-
crease from female to male response as images be-
come more male. However, responses have moved
closer to neutral, with female faces slightly below 2
(the neutral case), and male faces slightly above 2,
and the 50% case falling almost exactly on neutral.
Note that female categorization with these average
face morphs is slightly better than in the low-quality
individual case.

A. Discussion

These results could be explained by:
• Strong male texture cues: The scope of the face texture

preserves strong male features (sideburns, beard or
mustache shadows – even though male subjects were
asked to shave prior to being scanned) that help in
gender identification (case a,b).
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Fig. 6. Gender identification results (averaged values with standard error)
for (a) high-quality texture, (b) low-quality texture and (c) average face
texture obtained from low quality texture faces. Solid blue lines indicate
the ideal response (closer to this line means gender is identified correctly).

• Absence of strong societal female cues: Subjects in
both databases are not wearing makeup. Therefore,
female faces may look slightly less feminine than in
usual social circumstances. Also, hair, another important
social gender cue, is absent from the stimuli. This may
result in underperformance for female gender catego-
rization (slightly seen in case a, strongly seen in case
b). In the case of low quality or ambiguous information,
these social cues may increase in importance as gender
markers.

• Missing details: Low quality images lose information
that may serve as valuable cues to gender identification,
thus causing a mixed response (case b).

• Ambiguous information: Averaged faces become
blurred, leaving the skin looking smoother, giving a
feminine impression. Also, in the absence of strong fea-
tures, the shape of the output device may have a greater
influence on the decision of gender identification. Or,
the absence of strong features may lead to ambiguity
across responses. Thus, faces tend to be identified as
less male than they are, and females are less female
(case c).

Surprisingly, there is no clear evidence that 3D mask
shape affects the gender identification, although there is
some support for it as a possible contribution to case (c).
Smooth skin could still be the dominant cue, however. We
need a larger subject group and more high quality texture
with average face information to help discern what cues
are influential. As a conclusion, texture images and texture
quality are stronger cues in gender identification than 3D
mask shape. But there is support for possible 3D shape
influence when these other cues are minimized. To explore
this further, we would like to run the experiment with a male
mask as the output screen.

For applications using Mask-bot the 3D shape becomes
important for more personalized models and personal iden-
tification purposes. These situations may require us to pay
careful attention to the type of 3D representations used with
a particular face.

Finally, we wish to investigate if there is a difference
between male and female subjects for gender identification
on the Mask-bot. We currently have tested only 3 female
subjects, so we need to recruit more female subjects.

IV. CONCLUSIONS

We tested how people identify gender from various mor-
phed and original face images which are presented on a
Mask-bot display system. Even though the output 3D ge-
ometry is female, most people identified gender correctly in
cases where the images contained good texture cues (e.g.,
high quality texture). Also high quality texture shows better
identification results than low quality texture. We noted a
slight underperformance for female gender identification,
particularly in the low-quality case.

The current system uses a fixed female mask and requires
significant calibration effort for each face model (e.g., 30
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minutes per model) in order to make use of the Mask-
bot’s current talking head animation engine. To improve
this, we are developing a new system which can replace
face masks easily and can obtain calibration parameters
for any new mask automatically in a few minutes. We are
also developing a new animation engine which can apply
calibration parameters to 3D face models directly.

We expect that this new system can help us explore not
only further gender identification issues but also support
other studies, such as personal identification, likability, un-
canny valley effects, and so on.
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