
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatik mit Schwerpunkt
Wissenschaftliches Rechnen

Parallelization Strategies for Density
Functional Software

Martin Wolfgang Roderus

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des Akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.–Prof. Dr. Hans Michael Gerndt

Prüfer der Dissertation: 1. Univ.–Prof. Dr. Hans–Joachim Bungartz

2. Univ.–Prof. Dr. Dr. h.c. Notker Rösch

Die Dissertation wurde am 05.10.2012 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Informatik am 25.10.2012 angenommen.

Abstract

Today, computational quantum chemistry is one of the most active fields of computa-
tional science. It allows to gain insight into the electronic structure of matter from first
principles, making it a key technology in a wide variety of chemical applications. How-
ever, the numerical treatment of large chemical systems is computationally expensive
and demands for the power of parallel supercomputers. But the design of efficient paral-
lel codes proves to be difficult: the diversity of involved data structures and algorithms,
as well as the frequently occurring inherent sequential control flow make an efficient use
of large processor numbers a challenging problem.

This thesis describes contributions to a collaborative work, which aims to improve the
parallel performance of the density functional quantum chemistry code ParaGauss on
today’s massively parallel supercomputer architectures. Therefore, a static malleable
scheduler for parallel eigenvalue computations was developed, which minimizes the ex-
ecution time of this central step and avoids, thus, severe bottlenecks in simulations of
large atomic systems. Furthermore, a high-level Fortran interface to parallel matrix
arithmetics was designed and implemented, which facilitates a clear and comprehensible
expression of relativistic transformations, while expensive operations are executed by
parallel, performance-optimized routines.

In summary, the presented results show better load balancing as well as improved
speedup and parallel efficiency for higher processor numbers. Thus, this work states
an important step towards the massively parallel computation of complex chemical
problems.

i

Contents

1. Introduction 3

2. Quantum Chemistry and Density Functional Theory 9
2.1. The Schrödinger Equation . 9
2.2. Determining the Ground State: Hartree–Fock and Kohn–Sham DFT . . . 13

2.2.1. The Hartree–Fock Approximation 13
2.2.2. Electron Density and the Kohn–Sham Approach 14

3. Kohn–Sham Implementation: A Parallel Computational Scheme 19
3.1. Orbital Representation: The LCGTO Ansatz 20

3.1.1. From the Kohn–Sham Equations to a Discrete Generalized Matrix
Eigenvalue Problem . 21

3.1.2. The Iterative SCF Algorithm . 23
3.1.3. Basis Sets . 24
3.1.4. The Coulomb Contribution J . 28
3.1.5. The Exchange–Correlation Contribution V XC 31

3.2. Symmetry Treatment . 37

4. Parallel Linear Algebra Operations in Relativistic Transformations 39
4.1. Relativistic Effects and their Treatment in Quantum Chemical Applications 39
4.2. Relativistic Transformations in ParaGauss 41
4.3. A Fortran Interface to Parallel Matrix Algebra 44

4.3.1. Design Criteria . 46
4.3.2. SIMD Programming Model . 47
4.3.3. Application Programming Interface 48

4.4. Interface Implementation . 54
4.5. Evaluation . 57

4.5.1. Code Evaluation . 57
4.5.2. Performance Results . 60

5. Scheduling Parallel Eigenvalue Computations in SCF 65
5.1. The Generalized Matrix Eigenvalue Problem 65
5.2. Previous Parallelization Strategy . 67
5.3. Malleable Parallel Task Scheduling . 68

5.3.1. Abstract Formulation and Notation 68
5.3.2. Related Work . 69

iii

Contents

5.4. The Employed MPTS Algorithm . 71
5.4.1. Phase 1: Processor Allotment . 71
5.4.2. Phase 2: The NPTS Problem . 73

5.5. Cost Function . 77
5.6. Implementation: Software Components 81

5.6.1. Cost Function Generator . 83
5.6.2. Eigenscheduler . 84

5.7. Performance Results . 85

6. Summary 91

A. Atomic Units 93

iv

Table of Abbreviations

API Application Programming Interface

BLAS Basic Linear Algebra Subprograms

CGTO Contracted Gaussian Type Orbitals

CPU Central Processing Unit

DFT Density Functional Theory

DKH Douglas–Kroll–Hess

DKS Dirac–Kohn–Sham

FLOP Floating Point Operation

GGA Generalized Gradient Approximation

GPU Graphics Processing Unit

GTO Gaussian Type Orbitals

HF Hartree–Fock

HPC High Performance Computing

IRREP Irreducible Representation

KS Kohn–Sham

LCAO Linear Combination of Atomic Orbitals

LCGTO Linear Combination of Gaussian Type Orbitals

LDA Local Density Approximation

LPT Longest Processing Time

LRZ Leibniz Rechenzentrum

MPI Message Passing Interface

MPTS Malleable Parallel Task Scheduling

NPTS Nonmalleable Parallel Task Scheduling

PGC Point Group Class

PW Plane Waves

SCF Self Consistent Field

SIMD Single Instruction Multiple Data

SPMD Single Program Multiple Data

STO Slater Type Orbitals

XC Exchange Correlation

1

1. Introduction

Computational science has become indispensable to numerous other sub-fields of science
and engineering. It is used to gain insight into real-world problems by means of numerical
simulation, which facilitates “virtual experiments” executed on a computer. Thus, com-
putational science was acknowledged the “third pillar of scientific enterprise” [1], next to
the two classical approaches – theoretical analysis and physical experiment. Theoretical
analysis is vital for the construction of mathematical models, which is the foundation of
almost all approaches to understand physical systems and predict observed processes and
phenomena. Their examples are countless, ranging from the Newton’s laws of motion,
established in the seventeenth century, to the fundamental physical laws at the “quantum
realm” of atomic and subatomic length scales, discovered in the early twentieth century
and formulated in the famous Schrödinger equation. Physical experiments are commonly
used to establish or validate existing models, but also to optimize processes, which is for
instance a common industrial application. A prominent example for the experimental
validation of a theoretical model is the recent discovery of the Higgs–Boson [2] at the
European Organization for Nuclear Research, CERN1. This discovery proved, at least to
a very high probability, that some predictions made by the Standard Model of particle
physics, formulated in the 1970s, hold. Yet, the experimental approach often entails
severe shortcomings: a physical experiment might be expensive, such as crash tests in
the automotive industry, or simply impossible – for example, how could one make two
galaxies collide? Furthermore, analytical solutions to complex problems often exist only
for very simple cases. Here, computational science offers an opportunity to fill these
gaps and facilitates, thus, applications and developments in a large variety of scientific
fields. This includes physics, chemistry, biology, human- and earth sciences as well as
engineering, however this list is by far not complete.

This thesis discusses advances in computational methods, which are applied in computa-
tional chemistry – a discipline that employs numerical simulation to solve problems aris-
ing in chemistry. The importance of chemical simulations has grown over recent years,
which is also reflected by the usage statistics of the national supercomputer HLRB II,
installed in the Leibniz Rechenzentrum, Germany2: in 2011, more than 16 % of the total
CPU-hours consumed was spent in chemical applications, which is the second largest of
all fields of application, see Table 1.1. In chemistry, there is a wide range of applications
where computational methods play a key role: studies on nano structures, catalysts,
chemical reactions, materials or drug design are just a few of the most important exam-

1www.cern.ch
2www.lrz.de

3

1. Introduction

Field of Application CPU-h share in %

Computational Fluid Dynamics 31.3

Chemistry 16.2

Astrophysics/Cosmology 12.8

Physics - High Energy Physics 11.1

Biophysics/Biology/Bioinformatics 8.8

Physics - Solid State 8.5

Meteorology/Climatology/Oceanography 3.7

Physics - others 2.7

Geophysics 2.4

Others 2.5

Table 1.1.: Usage statistics of the national supercomputer HLRB II, Leibniz Rechenzen-
trum, Munich, Germany, in 2011, listed by the field of application. Data
source: [3].

ples. Here, numerical software is commonly employed to determine important properties
of molecules, clusters and solids, such as energy levels, reaction barriers or geometric
structures.

A big majority of the methods used in computational chemistry are based on the quan-
tum mechanical model of atoms and molecules. This research field is commonly termed
computational quantum chemistry. The quantum mechanical model, discovered in the
early part of the twentieth century, is the prevalent model to describe matter at the
atomic and subatomic scale, where the laws of classical mechanics—the Newton’s laws
of motion—fail. A central part in the formalism of quantum mechanics plays the so-
called wave function, which is an abstract description of the quantum state of an atomic
system. It reveals all information of interest about the electronic properties of the
enclosed subatomic particles, especially of the electrons, and their dynamics. In this
context, the term electronic structure is often used. In quantum chemistry, the wave
function is also of central importance. It exposes all chemical properties of interest of a
chemical system, provided the appropriate operator is applied to it. Thus, the core prob-
lem of any quantum chemical study is the (approximate) determination of the electronic
structure of the observed chemical system, carried out in electronic structure calculations.

The theoretical foundation for the determination of the wave function is the Schrödinger
equation, published 1926 by Erwin Schrödinger [4], and reason for his award of the No-
bel Price in Physics in 1933. Chapter 2 introduces to its basic concepts. However, its
direct solution is only possible for very small systems with a single electron, such as the
Hydrogen atom H or the ionized Helium atom He+. For larger systems, approximate ab

4

initio methods, implemented in computer codes, are employed. The development of effi-
cient methods looks back at a long history, where the Hartree-Fock approximation (HF),
developed in the 1930s, provided the first practically usable method. HF is still in use
today, and also laid the foundation for the development of more elaborate methods later
on. The probably most important milestone in the history of this development states
the invention of the density functional theory (DFT), mainly shaped by Walter Kohn,
Pierre Hohenberg and Lu Jeu Sham in the 1960s. Density functional methods provide a
good ratio between accuracy and computational costs, which makes them the first choice
in the majority of quantum chemical applications today. The award of the Nobel Price
in Chemistry to Walter Kohn in 1998, together with John Pople for the development
of computational methods in DFT implementations, emphasizes the importance of this
contribution to modern chemistry.

Today, there is a variety of computer codes which implement the density functional the-
ory. An overview is given in Chapter 3. As the chapter also shows, most of the codes are
based on algorithms requiring O(N3) operations, where N is the number of electrons
comprised by the chemical system. An application which involves more than 100 atoms
can usually not be computed anymore by a sequential computer in reasonable time, and
requires parallel computing. Applications treating more than 200− 300 atoms demand
for parallel supercomputers, which provide a large amount of computing power. Today’s
supercomputers accommodate an enormous amount of computing resources. Some of
them are capable to process several, up to 20, petaFLOPS (1015 floating-point opera-
tions per second), and it is likely that the first exaFLOPS-machine will be built within
this decade [5]. These peak-performance rates are reached by employing massively par-
allel computer architectures, see also Figure 1.1. However, the parallelization of density
functional codes proves to be difficult. For example, the iterative self-consistent field
(SCF) procedure, requiring between 30 and 100 iterations in a typical electronic struc-
ture calculation, is the computationally prevalent part and has an inherently sequential
structure. Furthermore, the efficient parallel computation of some of the most expensive
numerical problems arising in an SCF cycle, such as the eigenvalue problem, are com-
monly acknowledged as one of the major challenges in computational science today [6].
And finally, many chemical applications involve geometry optimizations, which imply 50
to several hundred electronic structure determinations. Here, the possibility for an in-
dependent execution of the single determinations is typically limited and sometimes not
given at all. In total, this adds up to 103 − 105 SCF iterations in a typical application,
with very few potential for their concurrent execution. Thus, massive parallelism is ex-
tremely difficult to achieve. This lack of parallelism severely restricts the opportunities
to model large chemical systems, such as catalysts, nano-structured materials, as well
as large complexes in solution.

This thesis describes contributions to a collaborative work, which aims to improve the
parallel performance of the quantum chemistry code ParaGauss [8] on today’s mas-
sively parallel supercomputer architectures. ParaGauss implements the density func-
tional theory using localized Gaussian-type basis functions. Chapter 3 introduces to

5

1. Introduction

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

Jun’93

Jun’94

Jun’95

Jun’96

Jun’97

Jun’98

Jun’99

Jun’00

Jun’01

Jun’02

Jun’03

Jun’04

Jun’05

Jun’06

Jun’07

Jun’08

Jun’09

Jun’10

Jun’11

Jun’12

N
u

m
b

er
of

co
re

s

Figure 1.1.: The number of processor cores, comprised by all computer systems in the
TOP500 list. The TOP500 project maintains a list of the 500 most pow-
erful machines worldwide, according to their score in the LINPACK bench-
mark [7]. An updated list is released every six months, usually in June and
November. Data source: www.top500.org .

these concepts. Its development started in 1994, and was designed from the beginning
on for distributed memory architectures [9]. The programming language employed is
mostly Fortran 90/95, however in some parts FORTRAN 77 and C is used. Further-
more, for message-passing, it initially relied on the software tool PVM [10], which was
later replaced by the today prevalently used message passing interface (MPI) [11]. The
general parallelization paradigm in the ParaGauss project is to directly address the com-
putationally expensive sub-problems arising in an electronic structure calculation (see
Chapter 3), and establish new concepts, algorithms, and finally their implementations,
which facilitate an efficient parallel execution. This strategy is also followed by the novel
contributions to ParaGauss, which are presented in this work.

Thesis Structure

We start by familiarizing the reader with the theory behind quantum chemistry and
electronic-structure calculations in Chapter 2. This includes the important Schrödinger
equation, the density functional theory, and the Kohn–Sham formalism. Following
this, Chapter 3 discusses computational methods, which are commonly used to cast
the Kohn–Sham equations into a practical computer code. Here, the emphasis is on
methods using localized Gaussian-type functions for the representation of atomic or-
bitals, as implemented in ParaGauss. After this introduction to the most basic con-
cepts, we present our own contributions in the following two chapters: Chapter 4 de-

6

scribes a novel Fortran interface and its library implementation. This interface allows
to express matrix algebra directly in a high-performance Fortran code using a clear and
concise pseudo-mathematical syntax. Thus, the existing sequential implementation of
relativistic expressions in ParaGauss could be parallelized efficiently, requiring only mi-
nor modifications to the original program semantics. Furthermore, Chapter 5 discusses
the parallel computation of the generalized eigenvalue problem – an inherent step in
each SCF cycle. ParaGauss exploits the symmetry of a molecule to reduce the general
problem size. However, this problem reduction results in a symmetric block-diagonal
matrix structure, difficult to handle by existing parallel eigenvalue solvers. We present
a novel technique, which uses a sophisticated scheduling algorithm, to provide an ef-
ficient solution. And finally, Chapter 6 summarizes the achievements of the presented
contributions.

7

2. Quantum Chemistry and Density
Functional Theory

This chapter introduces to the most fundamental problem in quantum chemistry—the
solution of the Schrödinger equation—and how this problem can principally be solved
by applying the variational principle. As we will see, this approach to an exact solution
is of rather theoretical significance, but based on this theory there exist approximate
methods, which find common application in computational chemistry. The method
which is by far most used today is the Kohn–Sham formulation of density functional
theory (DFT), whose basic statements are also presented here. These methods facilitate
the development of computational schemes and finally practical computer codes, which
will be discussed in the next chapter.

2.1. The Schrödinger Equation

As already mentioned, the core problem of most quantum chemical approaches is the
solution of the time-independent, non-relativistic Schrödinger equation:

Ĥ Ψi(~X) = EiΨi(~X) . (2.1)

The equation states an eigenvalue problem with the Hamilton operator Ĥ, its eigenvalues
Ei, and eigenfunctions Ψi. Ĥ is a differential operator representing the total energy of
a molecular system of interest, which consists of M nuclei and N electrons, and will be
further described below.

~X is a multivariate vector and is defined as

~X := (~x1, ~x2, . . . , ~xN , ~R1, ~R2, . . . , ~RM) . (2.2)

The electron variable ~x is further defined as

~x :=

(
~r

σ

)
, (2.3)

and the vectors ~R and ~r represent the spatial coordinates of a corresponding nucleus
and electron, respectively:

9

2. Quantum Chemistry and Density Functional Theory

~R, ~r :=

 x

y

z

 . (2.4)

The electron spin σ has only two discrete states: spin up and spin down,

σ ∈ {↑, ↓} . (2.5)

The Hamilton operator Ĥ consists of two main components:

Ĥ = Ĥkin + v . (2.6)

Ĥkin is an operator representing the classical kinetic energy and is defined as

Ĥkin := −1

2

(
N∑
i

∇2
i +

M∑
A

1

MA

∇2
A

)
, (2.7)

where ∇2 is the Laplace operator dependent on the three spatial coordinates. The
Coulomb potential v of the molecular system splits up into three individual terms:

v = vnn + vne + vee

:=
M∑
A

M∑
B>A

ZAZB

|~RA − ~RB|
−

N∑
i

M∑
A

ZA

|~ri − ~RA|
+

N∑
i

N∑
j>i

1

|~ri − ~rj|
.

(2.8)

Here, vnn represents the Coulomb interaction between the nuclei, vne the nuclei-electron
interaction and vee the interaction between the electrons. ZA represents the charge of
nucleus A.

We note here that for the presentation of all equations, the system of atomic units (a.u.)
is employed. In this system, all physical quantities, such as mass, length or action, are
normalized to basic physical constants, such as the mass of an electron me, the Bohr
radius a0 or Planck’s constant divided by 2π, ~, respectively. This allows to write the
equations in a very compact form without units. A complete list of all relevant physical
constants is given in Appendix A.

The Schrödinger equation (2.1) yields the desired many-body wave function Ψi of the
i’th quantum state of the system as eigenfunction, as well as the corresponding energy
Ei as eigenvalue. Ψi is a direct representation of its electronic structure and holds all
desired chemical information about the system described by the Hamiltonian Ĥ. In prac-
tical applications, the ground state Ψ0 is often of special interest. It is the energetically
most stable state, in which molecules often appear in nature, and is indicated by the
lowest eigenvalue E0. Higher eigenvalues indicate excited states, often found in chemical
reactions. See Figure 2.1 for an example of the hydrogen atom in its ground state.

10

2.1. The Schrödinger Equation

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6

Ψ
(r

)

r in a.u.

(a) Wave function

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6

4π
r2
|Ψ

(r
)|2

r in a.u.

(b) Electron density

Figure 2.1.: One-dimensional plots showing the radial wave function of the hydrogen (H)
atom in its ground state (a), next to an alternative interpretation, which
shows the probability to find the electron on a spherical shell around the
nucleus (b). The radius r represents the distance from the nucleus, and is
measured in atomic units, see Appendix A. Note that the probability in
Figure (b) has its peak at exactly 1 a.u., which is the radius of the closest
s-orbit in the (simpler) Bohr model of the H-atom.

A direct analytic solution of Equation (2.1) is generally not possible, except for a few
cases1. The Schrödinger equation is thus more of theoretical relevance. However, there
exists a viable strategy to still achieve the ground state: one can obtain an expectation
value of the energy which corresponds to a valid function Ψtrial with the energy functional

E = E[Ψ] :=

∫
Ψ∗ Ĥ Ψd ~X∫
Ψ∗Ψd ~X

. (2.9)

Furthermore, the variational principle states that this expectation value can never be
lower than the energy value of the ground state:

Etrial = E[Ψtrial] ≥ E0 = E[Ψ0] . (2.10)

With Equation (2.10) it is now principally possible to search for the ground state Ψ0

within the functional space of valid wave functions. Valid means that these functions
must meet certain requirements in order to make physically sense. For example, Ψ must
be continuous everywhere, two times differentiable (Ψ ∈ C2) and square integrable.
Thus, this search can also be stated as a minimization problem:

E0 = min
Ψ∈C2

E[Ψ] . (2.11)

1To be precise, direct solutions exist for atoms with only one electron, such as hydrogen H or ionized
helium He+.

11

2. Quantum Chemistry and Density Functional Theory

However, as can be seen in Equations (2.2) to (2.5), Ψ(~X) is a multivariate function.
More accurately, the number of variables grows linearly with the number of involved
nuclei M and electrons N . This important attribute makes Equation (2.11) a high-
dimensional minimization problem, even for practical applications which involve only
few electrons.

Obviously, the above stated problem is very difficult to tackle. There exists a number of
approximate methods, which yield a wave function with energy close to E0. However,
there also exist simplifications to the model, which reduces the number of dimensions
and consequently the problem size. The most ubiquitous one, which is applied in the
majority of quantum chemical applications, is the Born–Oppenheimer approximation.
It is based on the fact that the mass of a nucleus is by several orders of magnitude
higher than that of an electron, and moves consequently much slower. For example,
only a single proton weights roughly 1800 times more than an electron. This allows—
without much loss of accuracy—to consider the nuclei to be fixed in space with zero
kinetic energy. As a result, this simplifies the first term in Equation (2.8), vnn, to a mere
constant Enuc, which can later be added to the total energy,

E = Enuc + Eelec , (2.12)

with

Enuc =
M∑
A

M∑
B>A

ZAZB

|~RA − ~RB|
. (2.13)

The simplified electronic Hamiltonian has now the form:

Ĥelec = Ĥkin + vne + vee

:= −1

2

N∑
i

∇2
i −

N∑
i

M∑
A

ZA

|~ri − ~RA|
+

N∑
i

N∑
j>i

1

|~ri − ~rj|
.

(2.14)

Another implication is that the spatial variables, assigned to the nuclei in the variable
vector ~X, are eliminated, which reduces the dimensionality of Ψ to 3N (spin variables
are neglected):

~Xelec := {~x1, ~x2, . . . , ~xj, . . . , ~xN} . (2.15)

Other than for the energies Ei, there is no direct physical interpretation for the wave
function Ψi. However, the square of the function,

|Ψ(~Xelec)|2d ~Xelec , (2.16)

12

2.2. Determining the Ground State: Hartree–Fock and Kohn–Sham DFT

yields the probability to find all N electrons simultaneously in volume element d ~Xelec.
Compare also to Figure 2.1b. An implication of the probability interpretation in Equa-
tion (2.16) is that Ψelec must be normalized :∫

. . .

∫
|Ψ(~Xelec)|2d ~Xelec = 1 . (2.17)

At this point we introduce another important property of the electronic wave function:
it is antisymmetric with respect to an interchange of the spatial and spin coordinates of
any two electrons2:

Ψ(~x1, ~x2, . . . , ~xi, ~xj, . . . , ~xN) = −Ψ(~x1, ~x2, . . . , ~xj, ~xi, . . . , ~xN) . (2.18)

This antisymmetry principle applies to all fermions. In contrast, the wave function of
bosons is symmetric.

The Born–Oppenheimer approximation states a significant simplification to the search
for the ground state, formally expressed in Equation (2.11). Based on this simplification,
there exists a variety of methods for the approximate determination of Ψ0. Among
the most used methods are the Hartree–Fock approximation and especially the density
functional theory, both of which are introduced in the next section.

2.2. Determining the Ground State: Hartree–Fock and
Kohn–Sham DFT

This section gives an introduction to the basic concepts of the two most common meth-
ods, used to achieve the (approximate) ground-state wave function Ψ0. The Kohn–Sham
approach to density functional theory (DFT) is given formally, however it is not intended
to be a comprehensive description. For further information we refer to [12, 13] or any
other standard textbook on density functional theory.

2.2.1. The Hartree–Fock Approximation

As already mentioned above, the Hartree–Fock approximation, short Hartree–Fock or
simply HF, developed in the 1930s, was the first practically useful and reasonably ac-
curate approach to determine the desired ground state Ψ0. Based on this approach,
researchers are able to design computational schemes, which eventually result in soft-
ware tools for practical applications.

The basic concept of HF is to replace the complicated N -electron wave function by the
so-called Slater determinant, which is an antisymmetrized product of a set of N one-
electron wave functions: the spin orbitals. These orbital functions are minimized in the
Hartree–Fock equations according to the total energy represented by the Slater deter-
minant. This scheme introduces the one-electron Fock operator, which is a replacement

13

2. Quantum Chemistry and Density Functional Theory

for the N -electron Hamilton operator. Its eigenvalues have the physical interpretation
of orbital energies, and its eigenfunctions correspond to the above described spin orbitals.

The HF approach states a practically useful scheme, which can be cast into an algebraic
form for its efficient treatment on computers. Typical implementations scale formally
as O(N4), N being the number of involved electrons. However, the Slater determinant
is a fairly inaccurate approximation of the real ground-state wave function – often too
imprecise for practical applications. The energy difference between the two functions
is called correlation energy. Consequently, a number of methods have emerged, which
augment HF by computing approximately the missing correlation energy and achieve,
thus, higher accuracy. These methods are also called Post–Hartree–Fock methods. As
few things in life are for free, they also imply higher computational costs: for example,
the expansions MP2 and MP4 scale as O(N5) and O(N7), respectively. Other common
(expensive) expansions are configuration interaction (CI) and coupled cluster (CC), the
latter being the most accurate method to date.

(Post–)Hartree–Fock had been the quasi-standard method for many years, until in the
1990s density-functional methods became accurate enough for practical applications.
The accuracy of today’s DFT-based methods is comparable to expensive wave function
methods, such as MP2, but are computationally much cheaper – typical implementations
scale as O(N3) and offer, thus, a superior ratio between accuracy and computational
effort. Some chemistry groups also use coupled cluster approaches—e.g. the NWChem
framework contains a popular implementation [14]—for applications which require very
high accuracy, but the vast majority of today’s software—such as ParaGauss—is based
on density functional methods. The rest of this work copes exclusively with DFT,
starting here with a brief introduction.

2.2.2. Electron Density and the Kohn–Sham Approach

Here we introduce the reader to the basic concepts of density functional theory (DFT),
and, based on it, the Kohn–Sham approach, which is a practical method for the de-
termination of the ground-state density. As the topic is very comprehensive, we will
only cover the fundamental statements necessary for the understanding of the following
computational schemes.

In DFT, the complicated high-dimensional wave function Ψ(~X) as central variable is
replaced by the electron density or charge density ρ(~r), which depends solely on the
spatial vector ~r ∈ R3. It is defined as the multiple integral

ρ(~r) = N

∫
. . .

∫
|Ψ(~X)|2dσ1d~x2 . . . d~xN . (2.19)

Here, Ψ refers to the normalized electronic wave function (see Equation (2.17)). The
electron density ρ represents a probability distribution, in which

14

2.2. Determining the Ground State: Hartree–Fock and Kohn–Sham DFT

ρ(~r)d~r (2.20)

indicates the number of electrons3 in the infinitesimal volume d~r. Furthermore, as a
consequence of Equation (2.19), the integral∫

ρ(~r)d~r = N (2.21)

yields the total number of electrons comprised by the Hamiltonian Ĥ.

In 1964, Walter Kohn and Pierre Hohenberg established the theoretical foundation for
the density functional theory in their two famous Hohenberg–Kohn theorems [15]. Specif-
ically, it was shown that

1. the electron wave function Ψ is a unique functional of the electron density ρ (to
within a constant);

2. the energy density functional FHK [ρ] yields its minimal value for the ground state
density ρ0: FHK [ρtrial] ≥ FHK [ρ0] = E0. Hence, the variational principle applies.

The explicit form of FHK is to date unknown – parts of the functional have to be mod-
eled approximately. See also the discussion later in this section.

In the following year, Walter Kohn and Lu Jeu Sham proposed a workable compu-
tational approach to determine the ground state density [16]: the Kohn–Sham (KS)
approach. Most of the DFT-implementations existing today are based on KS. In anal-
ogy to Hartree–Fock, it introduces a reference system of N non-interacting Kohn–Sham
orbitals (short KS orbitals) ϕi(~x). Recall the electron variable ~x from Section 2.1, which
embraces a spatial vector as well as a spin coordinate:

~x :=

(
~r

σ

)
. (2.22)

The ground state density is constructed from the KS orbitals as

ρ0(~r) =
N∑
i

∑
σ

|ϕi(~r, σ)|2 . (2.23)

According to Kohn–Sham, the functional, which yields the energy comprised by a given
electron density ρ, is given as:

3potentially all electrons existent in the molecular system

15

2. Quantum Chemistry and Density Functional Theory

E[ρ] = Ekin[ρ] + Ene[ρ] + Ecoul[ρ] + EXC[ρ] (2.24)

= Ekin[ρ] (2.25)

+

∫
Vneρ(~r)dr (2.26)

+
1

2

∫∫
ρ(~r)ρ(~r′)

|~r − ~r′|
d~rd~r′ (2.27)

+

∫
fxc(ρ(~r))d~r (2.28)

= −1

2

N∑
i

∫
ϕi∇2ϕid~r (2.29)

−
N∑
i

∫ M∑
A

ZA

|~r − ~R|
|ϕi(~r)|2d~r (2.30)

+
1

2

N∑
i

N∑
j

∫∫
|ϕi(~r)|2

1

|~r − ~r′|
|ϕj(~r′)|2d~rd~r′ (2.31)

+ EXC[ρ] . (2.32)

Note that this functional is given in its spin-independent form. Furthermore, it is subject
to the Born–Oppenheimer approximation (see Section 2.1), consequently the nucleus-
nucleus interaction is neglected and added later as a constant.

Equations (2.25) to (2.28) give the functionals depending on the density ρ, whereas
Equations (2.29) to (2.32) present the same terms, in a form dependent on the orbital
functions ϕi.

The kinetic energy functional Ekin in Equation (2.29) is exclusively given in its orbital-
dependent form. This functional yields the exact kinetic energy of a reference system
of non-interacting electrons. As electrons actually do interact by Coulomb correlation,
there is a difference between the energy of this reference system and the real kinetic
energy. This residual is treated in the XC-functional, explained later.

The second term, Ene in Equations (2.26) and (2.30), is the classical electrostatic nucleus-
electron attraction and is an exact representation of the ne-term in the original Hamil-
tonian in Equation (2.14).

Ecoul in Equations. (2.27) and (2.31) represents the classical electron-electron repulsion
due to the electrostatic force. It introduces an error, because it also implies that an
electron interacts with itself. This self-interaction is corrected later by the XC-term.

16

2.2. Determining the Ground State: Hartree–Fock and Kohn–Sham DFT

The exchange-correlation (XC) term in Equation (2.28) contains all parts which are not
known in their explicit form, such as the non-classical effects of exchange and correlation,
as well as the above mentioned residual of the kinetic energy and a correction term for
self-interaction, introduced in the Coulomb functional. To date, this term is not known
in its exact form, so quantum chemical applications have to resort to approximate repre-
sentations. It is the critical modeling part in density-functional methods, and the right
choice of the XC-potential is of crucial importance for the accuracy of the method.

The choice of a specific XC functional typically depends on the type of application, and
there exists a great amount of literature providing functionals for all kinds of common
applications. However, the development of accurate functionals is still one of the most
active fields of theoretical chemistry, and consequently the approximations are becoming
gradually better.

The energy functional EXC is formed from the energy density function fxc. In Equa-
tion (2.28), fxc is given in the so-called local density approximation (LDA) form, which
depends only on the total density4. Another class of representations is the general-
ized gradient approximation (GGA), which depends on different variables, such as the
spin-dependent density and its gradients:

EXC[ρ] =

∫
fxc(ρ〈↑〉, ρ〈↓〉,∇ρ〈↑〉,∇ρ〈↓〉, . . .)d~r . (2.33)

The latter is more complicated to evaluate and introduces additional computational ef-
fort (a constant factor) when implemented, but gives more accurate results in many
applications.

Given a feasible XC-functional, one can now apply the variational principle and minimize
the total energy E by variation of the spin orbitals ϕi. The orbitals which yield the
ground state energy E0 can be achieved by the Kohn–Sham equations (see [17] for a
detailed derivation)

(Hkin + Vne + Vcoul + VXC)ϕi

:=

(
−1

2
∇2 −

M∑
A

ZA

|~r − ~R|
+

∫
ρ(~r′)

|~r − ~r′|
d~r′ + VXC(~r)

)
ϕi

= εiϕi , (2.34)

or in its short form

f̂KS ϕi = εiϕi , (2.35)

4The corresponding spin-dependent representation is called local-spin-density approximation (LSDA).

17

2. Quantum Chemistry and Density Functional Theory

where the Kohn–Sham operator f̂KS comprises the terms in the parenthesis in Equa-
tion (2.34). The exchange-correlation potential VXC is defined as the functional deriva-
tive of EXC with respect to the density:

VXC :=
δEXC

δρ
. (2.36)

One important implication of the Kohn–Sham approach is that there exists a mutual
dependency: the KS equations are constructed from the electron density ρ, which is
constructed from the spin orbitals ϕi. However, the spin orbitals are in turn the outcome
of the KS equations:

ρ⇒ f̂KS ⇒ ϕi ⇒ ρ . (2.37)

Practically, this dependency is solved in the self-consistent field (SCF) procedure, intro-
duced in Section 3.1.2.

The Kohn–Sham approach provides a feasible strategy for the determination of the
ground state of a molecular system. The next chapter presents a scheme for its practical
implementation in a computer program.

18

3. Kohn–Sham Implementation: A
Parallel Computational Scheme

This chapter presents how the Kohn–Sham strategy for the determination of the ground
state, presented in the previous chapter, can be finally mapped onto a computational
scheme, feasible for the practical implementation in a density functional code to carry
out electronic structure calculations. Today there exist two main approaches, together
with several other techniques of minor importance, which all result in very different
numerical problems. This chapter focuses on one main branch, the LCGTO ansatz, as
implemented in ParaGauss and a great variety of other state-of-the-art chemistry codes.
Next to the basic idea of LCGTO, we give a discussion on the employed basis set, high-
light the most important computational problems, and show the involved costs along
with some parallelization strategies applied.

Throughout the chapter, we will use theO-notation to express computational costs. This
makes sense because in practical applications, high asymptotic costs are also reflected by
real execution times, even for “small” problem sizes. In other words, those tasks whose
asymptotic cost function exhibits the highest polynomial degree (here O(N3) with N
being the number of involved electrons) do usually also state the expensive parts in
practical applications. In this chapter, we will concentrate on these tasks.

As we will see, in a typical, non-relativistic, DFT-based electronic-structure calculation,
there exist three main computational steps: the generation of the Coulomb contribution
(Section 3.1.4), the generation of the exchange-correlation contribution (Section 3.1.5),
and the solution of a generalized matrix eigenvalue problem (Chapter 5). These steps
are expensive in terms of asymptotic costs of O(N3)1, as well as practical costs reflected
by the execution times of electronic structure calculations. What makes the efficient
(parallel) computation of those parts even more important is that they are part of the
iterative SCF routine, described in Section 3.1.2, meaning that these tasks need to be
solved several times (typically 20 up to 100) in an electronic structure calculation. If
geometry optimization is required by the application, the typical number of required
solutions adds up to 103 to 105. Furthermore, in case relativistic effects are considered
for higher accuracy, additional transformations of the Hamiltonian are necessary. This
requires linear algebra operations with O(N3) costs. Chapter 4 discusses this issue in
detail.

1The costs of a straightforward implementation of the Coulomb contribution actually scale as O(N4),
however we will discuss a technique in Section 3.1.4 which reduces this to O(N3).

19

3. Kohn–Sham Implementation: A Parallel Computational Scheme

The algorithms presented in this chapter are commonly used in a large variety of DFT
codes. However, besides this widely established class of O(N3)-algorithms, there is a
branch of theoretical chemistry, which strives to develop methods based on algorithms
with O(N) runtime. In chemistry, this field of research is commonly referred to as linear
scaling. These methods work well for atomic systems, which are expanded in space.
However, in this work we do not cover linear scaling methods, for more information we
refer to the review article [18].

As already mentioned in Chapter 1, the general parallelization paradigm in the ParaGauss
project is to directly address the computationally expensive sub-problems arising in an
electronic structure calculation. Practically, this concerns mostly the O(N3)-steps, pre-
sented in this chapter. Luckily, the two most expensive ones—the Coulomb contribution
and the exchange-correlation contribution—are relatively easy to parallelize2. However,
the relativistic transformations and especially the generalized eigenvalue problem require
more sophisticated techniques to achieve good scalability. The main contribution of this
work focuses on those two problems, which will be presented in Chapters 4 and 5, re-
spectively.

3.1. Orbital Representation: The LCGTO Ansatz

This section discusses how the theoretical formulations of the Kohn–Sham approach,
introduced in Chapter 2, can be finally cast into a computational algorithm for its
practical solution. The first essential step is to define a set of functions, which reproduce
the KS orbitals ϕi, introduced in Section 2.2.2. This set is commonly referred to as the
basis set, and the functions therein basis functions3. There are two predominant types
of approaches, implemented in a variety of codes. The first approach uses a linear
combination of Slater- or Gaussian-type functions, localized at the spatial coordinate of
the involved nuclei. This scheme is usually termed linear combination of atomic orbitals
(LCAO), or, if Gaussian-type functions are used, linear combination of Gaussian-type
orbitals (LCGTO). LCGTO bases are implemented in ParaGauss, as well as in the
codes Gaussian [19], TURBOMOLE [20] or the DFT-module of NWChem [14] (among
many others). Another popular approach is to use a finite number of plane waves
(PW), implemented e.g. in the chemistry codes VASP [21], NWChem [14] or Quantum
ESPRESSO [22].

These approaches result in numerical problems of very different characteristics. While
LCAO/LCGTO implementations typically yield compact, dense matrices, the matrix
representations of PW are rather large and sparse. On the application side, PW is

2This applies only if the chargefit technique is applied to the Coulomb contribution, see Section 3.1.4.
3The term “basis function” is not strictly correct in a mathematical sense, because the functions do

not span a vector space. Here, we refer to the functions comprised by a basis set.

20

3.1. Orbital Representation: The LCGTO Ansatz

especially favorable to model periodic systems, such as solids, whereas LCAO/LCGTO
is more suitable for finite systems, such as single molecules. For more information, please
refer to Chapter 4 of [23].

3.1.1. From the Kohn–Sham Equations to a Discrete Generalized
Matrix Eigenvalue Problem

The LCAO scheme introduces a set of L basis functions, ηµ, which, multiplied by co-
efficients cµi and linearly combined, model the original Kohn–Sham orbitals ϕi from
Equation (2.35):

ϕi =
L∑
µ=1

cµiηµ . (3.1)

Practically, Equation (3.1) is hard to comply with, as it requires either the basis functions
η to have the exact appearance of the orbitals, or L to be infinite. The first requirement
does obviously make no sense, since the orbital functions is what we are actually looking
for. And furthermore, L needs to be finite, unless we have an infinitely fast computer
available. A wise choice of η is crucially important, as it significantly impacts both the
accuracy and the costs of electronic structure computations. However, we postpone this
discussion to Section 3.1.3, for now let ηµ be an arbitrary real function.

In the LCAO scheme, one proceeds by inserting Equation (3.1) into Equation (2.35):

f̂KS

L∑
v=1

cviηv = εi

L∑
v=1

cviηv . (3.2)

We now multiply from the left with a basis function ηµ and integrate over space. The
resulting equation can be written as a sum of L equations:

L∑
v=1

cvi

∫
ηµ(~r) f̂KS(~r)ηv(~r) d~r = εi

L∑
v=1

cvi

∫
ηµ(~r)ηv(~r) d~r . (3.3)

The algebraic equations in (3.3) can also be cast into a matrix form. Therefore, we
introduce the real symmetric Hamilton matrix H ∈ RL×L, Hµv = Hvµ, as well as the
overlap matrix S ∈ RL×L, Sµv = Svµ, with matrix elements

Hµv =

∫
ηµ(~r) f̂KS(~r)ηv(~r) d~r , (3.4)

Sµv =

∫
ηµ(~r)ηv(~r) d~r . (3.5)

Furthermore, we introduce the coefficient matrix C ∈ RL×L, containing the coefficient
vectors to establish the orbital functions ϕi according to Equation (3.1) as columns

21

3. Kohn–Sham Implementation: A Parallel Computational Scheme

C =

c11 . . . c1L

...
. . .

...

cL1 . . . cLL

 , (3.6)

as well as the diagonal matrix E ∈ RL×L, which has the orbital energies εi as its diagonal
and zeroes as all other elements:

E = diag(ε1 . . . εL) . (3.7)

Using the here introduced matrices, we can rewrite Equation (3.3) in matrix notation:

HC = SCE . (3.8)

Equation (3.8) represents a generalized matrix eigenvalue problem, a well-known problem
from linear algebra. Chapter 5 elaborates on this topic in detail.

One usually proceeds by splitting up the entries of Hµv into several contributions, as the

different components of the Kohn–Sham operator f̂KS typically result in computational
problems of diverse characteristics. We therefore give Equation (3.4) in its explicit form:

Hµv =

∫
ηµ(~r) f̂KS(~r)ηv(~r) d~r (3.9)

=

∫
ηµ(~r)

(
−1

2
∇2 −

M∑
A

ZA

|~r − ~R|
+

∫
ρ(~r′)

|~r − ~r′|
d~r′ + VXC(~r)

)
ηv(~r) d~r (3.10)

= −1

2

∫
ηµ(~r)∇2ηv(~r) d~r (3.11)

−
∫
ηµ(~r)

ZA

|~r − ~R|
ηv(~r) d~r (3.12)

+

∫∫
ηµ(~r)

ρ(~r′)

|~r − ~r′|
ηv(~r) d~rd~r

′ (3.13)

+

∫
ηµ(~r)VXC(~r)ηv(~r) d~r . (3.14)

The first two terms, Equations (3.11) and (3.12), representing the kinetic energy and
the electron-nuclear interaction, are comprised into a contribution which we call W :

Wµv =

∫
ηµ(~r)

(
−1

2
∇2 +

ZA

|~r − ~R|

)
ηv(~r) d~r . (3.15)

Its computational steps—mostly multiplications and finding derivatives—can be done
efficiently and state a minor problem in the overall process (provided η is chosen wisely).

22

3.1. Orbital Representation: The LCGTO Ansatz

The second contribution to the Hamilton matrix is the Coulomb potential Jµv, given in
Equation (3.13). Applying the LCAO scheme, the equation evolves into

Jµv =
L∑
λ

L∑
σ

Pλσ

∫∫
ηµ(~r)ηv(~r)

1

~r − ~r′
ηλ(~r

′)ησ(~r′) d~r d~r′ . (3.16)

Here we introduce the density matrix P , constructed from the eigenvector matrix C:

Pλσ =
N∑
i

CλiCσi . (3.17)

The Coulomb contribution in Equation (3.16) is expressed as a four-center-two-electron
integral. Formally, the total number of two-electron integrals to be computed is about
L4/8 = O(N4), which makes the computation of J the asymptotically most expensive
step in the overall process of generating H. Fortunately, there exist simplifications,
which allow for a computationally less demanding complexity. More details will be pre-
sented in Section 3.1.4.

The last part refers to the exchange-correlation potential VXC. Its matrix contribution
is given by

V XC
µv =

∫
ηµ(~r)VXC(~r)ηv(~r) d~r . (3.18)

The definition from Equation (3.14) is left unchanged, since the explicit form of VXC is
not generally known. Here, practical applications employ approximate potentials, which
usually change from application to application. Their appearance can be complicated,
and does normally not allow for analytic integration. Thus, codes need to apply nu-
merical integration schemes to solve Equation (3.18), which will be further discussed
Section 3.1.5.

3.1.2. The Iterative SCF Algorithm

Here, the self-consistent field (SCF) algorithm is introduced, to overcome one inherent
problem of the Kohn–Sham approach, already mentioned in Section 2.2.2: the mutual
dependency between the density, the KS-operator and the orbital functions. This mutual
dependency, formally expressed in Equation (2.37), is also reflected in the LCGTO
scheme, where the matrix-equivalent is

P ⇒ H ⇒ C ⇒ P . (3.19)

In the SCF approach, one starts by constructing an initial Hamiltonian from density-
independent terms. A straightforward solution is to simply use the matrix contributions,
comprised in matrix W (see Equation (3.15)),

H〈0〉 = W , (3.20)

23

3. Kohn–Sham Implementation: A Parallel Computational Scheme

which however often results in poor SCF-convergence. To improve this situation, prac-
tical applications add a first heuristic “guess” of the Coulomb- and the exchange-
correlation terms.

From H〈0〉, the first approximate coefficient matrix C〈1〉 can be achieved by solving the
generalized eigenvalue problem in Equation (3.8). From C〈1〉 one constructs the density

matrix P 〈1〉, and subsequently the contributions J 〈1〉 and V
〈1〉

XC . These newly established
contributions can be comprised in a new Hamiltonian

H〈1〉 = W + J 〈1〉 + V
〈1〉

XC , (3.21)

from which C〈2〉 can be achieved in a new iteration. This procedure is repeated until
convergence is reached. One usually checks for convergence by means of difference
between the density matrices

γ〈k〉 = max
λσ
|P 〈k〉λσ − P

〈k−1〉
λσ | , k ≥ 1 , (3.22)

where one iterates until γ〈k〉 falls below some threshold γ∗. A typical value for γ∗ is
10−8. Figure 3.1 shows a flowchart of the overall SCF procedure. To further improve the
SCF-convergence, there exist more advanced techniques, such as to mix Hamiltonians
from different iterations, or the DIIS technique, see [24].

3.1.3. Basis Sets

The objective is to find a set of basis functions, whose linear combination provides a
good representation of the actual orbital functions. The functions should be chosen such
to allow the set to be as small as possible, while still providing an accuracy high enough
for practical applications. Large bases generally have a negative impact on the execu-
tion time of the electronic structure calculation, and may result in numerical instabilities.

A good approximation provide Slater type orbitals (STO), which are similar to the
hydrogen wave function, known in its explicit form (see Figure 2.1). STOs have the
general form

ηSTO
nlm = NYlm(~r)rn−1e−αr , (3.23)

where N is a normalization constant which ensures that
∫
η∗µηµ d~r = 1. The radius

r = |~r − ~R| is anchored at the atomic center ~R, and n, l and m are the basic quantum
numbers:
• n is the principal quantum number (electron shell or energy level; n = 1, 2, 3, . . .),
• l is the angular momentum number and describes the subshell: 0 ≤ l ≤ n − 1;

0:=s-orbital, 1:=p-orbital, 2:=d-orbital, 3:=f-orbital, etc. Finally,
• m is the magnetic quantum number (−l ≤ m ≤ l).

24

3.1. Orbital Representation: The LCGTO Ansatz

Start

Create H〈0〉

Eq. (3.20)

Coulomb
Integrals

Eq. (3.34)

Solve Eigen-
problem
Eq. (3.8)

Create den-
sity matrix
Eq. (3.17)

Convergence?
Eq. (3.22)

Construct J̃
Eq. (3.27)

Construct V XC

Eq. (3.37)

Stop

no

yes

Figure 3.1.: Flowchart of the overall SCF algorithm in its simplest form. Techniques
which improve the convergence are not considered here.

25

3. Kohn–Sham Implementation: A Parallel Computational Scheme

The fourth quantum number, the spin projection quantum number ms, does not have
any impact on the form of the orbitals. Ylm(~r) is a real solid spherical harmonic, whose
form is determined by l and m. The exponential expression e−αr is the actual Slater
function, whose shape is completely determined by α: small values (α � 1) result in
diffusive functions, whereas big values (α � 1) result in a more compact shape. STOs
are implemented e.g. in the DFT codes Siesta [25] or Amsterdam Density Functional
(ADF) [26], which is however rather an exception because they imply a major compu-
tational disadvantage: the numerous integrals, which have to be computed to establish
the Hamilton matrix H (especially for the Coulomb contribution J), can not be solved
analytically and require, thus, expensive numerical treatment.

A much more common approach is to employ Gauss-function based orbitals: Gaussian
type orbitals (GTO) of the common form

ηGTO
nlm = Nxlymzne−αr

2

. (3.24)

GTOs have the major advantage that integral expressions as in Equation (3.16) can be
evaluated either by use of analytic formulas or by relatively simple algorithms, depending
on the form of the subshell. This can speed up the integral evaluations, necessary for
the Coulomb contribution J , by several orders of magnitude, compared to the numerical
evaluation necessary for STOs, while avoiding undesired numerical noise. However,
compared to STOs, single GTOs provide a rather poor approximation to the actual
orbitals ϕi: close to the nucleus (r → 0) a GTO does not have the characteristic singular
cusp, and its carriers (r →∞) fall of too quickly. To achieve better, Gauss-based, basis
functions, the single Gaussian in Equation (3.24) is replaced by a superposition of several
Gaussians:

ηCGTO
nlm =

P∑
i

aiη
GTO
nlm . (3.25)

The coefficients {ai, αi} are usually “fitted” to a Slater function representing the ac-
cording orbital, e.g. by the least squares method, explained in detail in Chapter 15
of [27]. For a comparison of Slater- and Gauss-orbitals, see Figure 3.2. This kind of
basis function is commonly referred to as contracted Gaussian type orbital (CGTO). In
practice, typically between three and six primitive Gaussians are used for a feasible ap-
proximation. Compared to Slater type orbitals, this of course increases the total number
of (primitive) basis functions, however the computational advantages outbalance these
additional costs such that (C)GTO is by far the predominant basis function type imple-
mented in existing LCAO-based chemistry codes. In this case, LCAO should correctly
be termed linear combination of Gaussian-type orbitals (LCGTO).

A typical basis set for practical applications contains at least one basis function per
occupied shell. Often, several more bases for unoccupied valence shells are employed,
for more variational flexibility. For example, the DFT-based study reported in [28] uses a
total of 13 905 contracted Gaussian-type basis functions for the palladium metal cluster

26

3.1. Orbital Representation: The LCGTO Ansatz

0

0.1

0.2

0.3

0.4

0.5

0.6

-4 -2 0 2 4

η
(x
,0
,0

)

x

STO
3 GTO
1 GTO

(a) 1D manifold of a STO, a primitive GTO and
a superposition of three GTOs on the x-axis
(y=z=0)

-4 -2 0 2 4

x
-4

-2
0

2
4

y

0

0.1

0.2

0.3

0.4

0.5

0.6

η
(x
,y
,0

)

(b) 2D manifold of a STO on the x-y-plane (z=0)

-4 -2 0 2 4

x
-4

-2
0

2
4

y

0

0.1

0.2

0.3

0.4

0.5

0.6

η
(x
,y
,0

)

(c) 2D manifold of a contraction of three GTOs on
the x-y-plane (z=0)

-4 -2 0 2 4

x
-4

-2
0

2
4

y

0

0.1

0.2

0.3

0.4

0.5

0.6

η
(x
,y
,0

)

(d) 2D manifold of a primitive GTO on the x-y-
plane (z=0)

Figure 3.2.: One- and two-dimensional graphs of Slater- and (contracted) Gauss type
orbital functions, centered at the Cartesian origin. The functions model an
s-orbital in the first shell (n = 1). As the graphs demonstrate, a single
(primitive) Gauss function (1 GTO) gives a rather poor approximation of a
Slater function, especially close to the nucleus (x, y → 0). A contraction of
three Gauss functions (3 GTO) improves this approximation.

27

3. Kohn–Sham Implementation: A Parallel Computational Scheme

Pd309. The 309 atoms comprise a total of 14 214 electrons in 7 107 occupied orbitals,
hence, the calculation also included additional 6 798 unoccupied orbitals. The many-
atomic systems, presented in this publication, had a closed-shell electronic structure,
which means that the two possible electrons on each orbital (spin-up and spin-down)
are represented by a single basis function. Open-shell calculations, which consider these
electrons independently, result in a basis set of double size, which in turn results in two
equally sized instances of the Hamilton- and overlap matrix. However, we can generally
assume the number of required basis functions, L, to be proportional to the number of
involved electrons, L ∝ N .

3.1.4. The Coulomb Contribution J

Density Fit: Reducing the Computational Effort

As Section 3.1.1 shows, if J is to be computed exactly, the implied computational effort
scales as O(L4), which is the asymptotically most expensive step in the LCGTO ansatz.
A common strategy to reduce this cost is to employ a density in the Hartree potential
with a smaller (GTO) basis set, which is “fitted” to the density generated by the LCGTO
orbitals. This technique is commonly referred to as charge fit or density fit. This section
presents its basic machinery with a focus on its implementation. Fitting techniques are
crucial for the computational efficiency of the LCGTO approach, as discussed in [29, 30].
Therein, Section 2 of [29] and Section 3 of [30] review the theory behind the charge fit
technique. Furthermore, the latter reference introduces an error term which allows to
estimate the accuracy of the established fitted potential.

To create a fitted density, an additional set of Gaussian-type basis functions ωκ is in-
troduced. Their linear combination provides an approximation to the LCGTO electron
density ρ:

ρ̃(~r) =
K∑
κ

aκωκ(~r) ≈ ρ(~r) . (3.26)

(Please do not confuse ωκ with the basis functions ηµ which model the orbital functions
ϕi.) Substituted into Equation (3.13), the Coulomb contribution can be rewritten as

Jµv =

∫∫
ηµ(~r)ηv(~r)ρ(~r′)

|~r − ~r′|
d~rd~r′ ≈

K∑
κ

aκ

∫∫
ηµ(~r)ηv(~r)ωκ(~r

′)

|~r − ~r′|
d~rd~r′ = J̃µv . (3.27)

The integral expression in Equation (3.27) is also commonly referred to as three-center
integrals. This method reduces total number of integral evaluations to O(KL2), com-
pared to O(L4) if the complete set of four-center integrals is computed. Practically, the
number of basis functions K has to be 2− 3 times larger than the number of basis func-
tions of the LCGTO basis set L to give a good approximation [31]. Given the empiric
assumption that the relation between K and L is a mere constant (K ∝ L), the total

28

3.1. Orbital Representation: The LCGTO Ansatz

number of integrals to be evaluated can also be stated as O(L3).

As in the LCGTO approach, given a fixed set of basis functions, the variational freedom
now lies in the expansion coefficients aκ. The coefficients can be achieved by solving the
system of linear equations

G~a = ~b , (3.28)

where the determinant matrix G is symmetric and positive definite. Its elements are
defined as

Gκi :=

∫∫
ωκ(~r)ωi(~r

′)

|~r − ~r′|
d~rd~r′ , (3.29)

and the right hand side vector ~b as

bκ :=

∫∫
ωκ(~r)ρ(~r′)

|~r − ~r′|
d~rd~r′ =

∑
λ

∑
σ

Pλσ

∫∫
ωκ(~r)ηλ(~r

′)ησ(~r′)

|~r − ~r′|
d~rd~r′ . (3.30)

Finally, the solution vector ~a contains the expansion coefficients aκ.

Cholesky Decomposition

This charge fit procedure is part of the iterative SCF procedure, consequently Equa-
tion (3.28) needs to be evaluated several times with right-hand sides ~b〈k〉 changing over
the iterations. Thus, it is computationally beneficial to reformulate the equation by
factorizing G:

G = LLT , (3.31)

where L is a lower triangular matrix with strictly positive diagonal entries. This Cholesky
decomposition is a common problem in linear algebra and is efficiently implemented in the
numerical libraries LAPACK [32], ScaLAPACK [33], PETSc [34] and PLAPACK [35]
(among others). Except for LAPACK, all packages provide parallel implementations.
For numerical stability, it is common practice to compute an additional permutation
matrix, which is however neglected here for brevity. In an SCF cycle, the vector ~a〈k〉 is
achieved by solving the two systems of linear equations

L~y〈k〉 = ~b〈k〉 , (3.32)

U~a〈k〉 = ~y〈k〉 , (3.33)

which can be done by cheap forward- and backward substitution, respectively. In this
process, the decomposition in Equation (3.31) states the expensive step – common algo-
rithms require O(K3) operations. However, it needs to be executed only a single time,
e.g. before the SCF procedure. The substitutions in Equations (3.32) and (3.33), to be
solved in each SCF cycle, have an execution time of O(K2).

29

3. Kohn–Sham Implementation: A Parallel Computational Scheme

Integral Computation

If the here presented simplifying scheme is applied, the construction of J̃ still formally
involves the evaluation of O(L3) integrals, which is typically also a major portion of the
time, spent in an electronic structure calculation. To further reduce the execution time
of this step, an additional accelerating technique is applied here:

The computation of the Coulomb contribution in an SCF cycle is given in Equation (3.27).
The equation reveals that the variational freedom between the SCF cycles lies in the
coefficient vector ~a〈k〉, the basis functions and consequently the integral expressions∫∫

ηµ(~r)ηv(~r)ωκ(~r
′)

|~r − ~r′|
d~rd~r′ (3.34)

remain unchanged. Computationally, the integration is the most expensive step – once
the integral is computed, Equation (3.27) reduces to a simple scalar multiplication. Thus,
it is common practice to compute the integrals only a single time—usually before the
SCF—and store the results in the memory. During the SCF cycle, the routine streams
through the precomputed results and has to perform simple floating point multiplica-
tions. This approach can speed up the computation significantly, but requires additional
memory of size O(L3), which states the biggest data structure in the overall process of
an LCGTO electronic structure computation.

Computational Costs and Parallelization

Here we summarize again the major steps and their computational costs, involved in
the construction of the Coulomb contribution. Note that the costs refer to the complete
matrix J̃ , not just to a single element. Furthermore, we partition the steps into those
which are done a single time before the SCF (pre-SCF), and those which have to be done
more than once within the iterative scheme (SCF). Please recall that L represents the
size of the basis set for the orbital functions, K the size of the basis set for the density
fit, and N the number of involved electrons.

Pre-SCF:

• evaluate integrals, Eq. (3.34): O(KL2) plus O(KL2) memory requirement;

• construct G, Eq. (3.29): O(K2);

• LU-factorization of G, Eq. (3.31): O(K3).

SCF:

• construct ~b, Eq. (3.30): O(KL2);

• achieve ~a, Eqs. (3.32) and (3.33): O(K2);

• create J̃ , Eq. (3.27): O(KL2)

30

3.1. Orbital Representation: The LCGTO Ansatz

One can generally assume the relation

K ∝ L ∝ N , (3.35)

which allows to state the total computational costs of creating the Coulomb contribution
as O(N3), as well as the memory requirements as O(N3).

The data structure, which holds the precomputed three-center integrals, states the only
potential memory bottleneck in practical applications. Thus, for big problems, it is nec-
essary to parallelize the data and distribute it over several compute nodes. ParaGauss
partitions the integrals and, accordingly, the workload via the κ-index. Thus, Equa-
tion (3.27) becomes

J̃µv =
P∑
p

Kp∑
κp

aκp

∫∫
ηµ(~r)ηv(~r)ωκp(~r′)

|~r − ~r′|
d~rd~r′ , (3.36)

where P represents the total number of employed processes, p the process index, and
Kp and κp the process-specific equivalents to K and κ, according to a chosen distribu-
tion scheme. Generally, any kind of partitioning can be applied, because there are no
dependencies between the divided data.

3.1.5. The Exchange–Correlation Contribution V XC

The importance of the exchange-correlation potential in density-functional methods has
already been pointed out in Section 2.2.2. Here we present some important aspects of its
computational treatment in practical LCAO codes. Its contribution to the Hamilton ma-
trix is formally given by Equation (3.18). The equation contains the exchange-correlation
potential VXC, whose explicit form can vary significantly, depending on the type of ap-
plication and modeled atomic system, and can usually not be integrated analytically.
The integral expression requires, thus, a numerical quadrature scheme, which will be
elaborated on in this section.

As a first step, Equation (3.18) is mapped to the general numerical quadrature scheme

V XC
µv =

∫
ηµ(~r)VXC(~r)ηv(~r) d~r ≈

Ng∑
k

wk ηµ(~rk)VXC(~rk)ηv(~rk) , (3.37)

where wk are scalar quadrature weights, ~rk are points in space where the integrand
VXC(~r) is evaluated, and Ng is the total number of evaluations. One can now employ
a quadrature method, which distributes the vectors ~rk over the observed domain and
calculates the corresponding weights wk. Generally, the goal of any quadrature scheme
is to make an intelligent choice of the vectors, such to keep Ng is as small as possible
while a certain accuracy criterion is still met.

31

3. Kohn–Sham Implementation: A Parallel Computational Scheme

Numerical integration is a well-studied field, and a great variety of efficient methods for
all kinds of different function types can be found in the literature. Chapter 4 of the text-
book [27] gives an excellent introduction. However, the shape of a typical XC-potential
is somewhat “special”: the shape of the potential VXC(~r) is mainly determined by the
density ρ(~r), with characteristic cusps at the positions of the fixed nuclei (compare to the
Slater type function in Figure 3.2b), and high variation in the area close to the nucleus.
Thus, an efficient integration scheme would typically set the grid points in those areas to
high resolution, while in areas between the nuclei, where VXC is typically rather “plain”
and does not exhibit a lot of variation, a sparser mesh is usually sufficient. In [36], A.
D. Becke proposes such a scheme, which has proven successful over the last 20 years and
is still the most commonly used integration method for XC-potentials in LCAO codes
to date (with some consecutive modifications).

Its basic approach is to decompose the space into overlapping “cells”, centered at the
atomic nuclei, and to subsequently integrate each cell autonomously using polar coor-
dinates with the nucleus serving as origin. However, as we will later see, the mesh-
generation algorithm itself does also imply notable computational effort, as the profiling
work in the course of this work showed, and can easily be parallelized. We will therefore
give a brief overview of the employed integration scheme.

Following the notation of Becke, Equation (3.18) is replaced by the simple general form

I =

∫
F (~r)d~r . (3.38)

Each of the M nuclei is assigned a relative weight function, vi(~r), which defines the cell
of nucleus i. Within the defined cell of this nucleus, the function yields (almost) unity
(vi → 1), and vi → 0 inside the cell of other nuclei. All functions are normalized such
that their sum is unity,

M∑
i

vi(~r) = 1 . (3.39)

We will see later how these “cell functions” can be constructed. The functions are now
used to decompose the integrand F (~r) into the single-center components Fi(~r):

F (~r) =
M∑
i

Fi(~r) =
M∑
i

vi(~r)F (~r) . (3.40)

This decomposition principally allows to integrate the single components independently,
using a nucleus-centered integration scheme:

Ii =

∫
Fi(~r)d~r . (3.41)

The total integral I is a sum of all sub-integrals,

32

3.1. Orbital Representation: The LCGTO Ansatz

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 3.3.: A 2D Voronoi diagram of 10 sites, randomly sampled in the unit square.

I =
M∑
i

Ii . (3.42)

However, one should note that for numerical reasons, the weight functions wi(~r) need to
be continuous and well-behaved. We will see later how this requirement can be met.

An important aspect of the Becke scheme is the decomposition of the three-dimensional
molecular space into the above described cells. This decomposition step is realized by
means of so-called Voronoi polyhedra or Voronoi cells. To give a brief explanation: given
a set of objects in space (the “sites”), the Voronoi cell assigned to a site defines the a
discrete sub-space, whose spatial points are closer to this site than to any of the others.
Figure 3.3 shows a simplified two-dimensional plot of a Voronoi diagram. A special role
play the points which lay exactly between two nuclei. Those points form a bisecting
hyperplane, here referred to as the “face” between two nuclei. The cell of a nucleus is
the space which is bordered by all facing planes around the nucleus. In two-dimensional
space, these planes form a polygon, in three-dimensional space a polyhedron. The con-
struction of a Voronoi diagram is a common problem in computer graphics, see [37] for
more information.

In the Becke scheme, Voronoi cells are realized by employing weight functions v(~r).

Therefore, consider the two-center coordinate (the two centers are two nuclei at ~Ri and ~Rj)

33

3. Kohn–Sham Implementation: A Parallel Computational Scheme

µij(~r) =
ri − rj
Rij

, (3.43)

where ri and rj represent the distance of the point ~r from ~Ri and ~Rj, respectively

(ri = |~r− ~Ri|), and Rij the distance between those two nuclei (Rij = |~Ri − ~Rj|). µ(~r) is
a hyperbolic function and can have values in the range −1 ≤ µ ≤ 1: −1 at coordinate
~Ri, and 1 at coordinate ~Rj. Note also that the points in space where µ = 0 indicate the
face between the two nuclei. Furthermore, s defines a step function, which takes µ as
input argument:

s(µij) =

{
1, −1 ≤ µij ≤ 0

0, 0 < µij ≤ 1
. (3.44)

The Voronoi polyhedron Pi for nucleus i is then constructed by the product of M step
functions:

Pi(~r) =
M∏
i 6=j

s(µij(~r)) . (3.45)

So far, the functions Pi can principally be used as weight functions wi, which decompose
the space into discrete cells. Now, the “sharp” faces, imposed by the step function in
Equation (3.44), are replaced by continuous and well-behaved weight functions. Thus,
s is redefined as the alternative function

s(µ) =
1

2
(1− f(µ)) , (3.46)

where f is a function with the properties

f(−1) = −1,

f(1) = 1,

df

dµ
(−1) =

df

dµ
(1) = 0 .

(3.47)

The simplest function satisfying these boundary conditions is the polynomial

p(µ) =
3

2
µ− 1

2
µ3 , (3.48)

which makes however a too smooth intersection. A steeper cutoff function can be ob-
tained by iterations like

f1(µ) = p(µ),

f2(µ) = p(p(µ)),

f3(µ) = p(p(p(µ))),

. . . ,

(3.49)

34

3.1. Orbital Representation: The LCGTO Ansatz

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

s(
µ

)

µ

f1
f2
f3

Figure 3.4.: One-dimensional plots of “smooth” cutoff functions between the Voronoi
cells. With increasing polynomial degree (see Equation (3.49)), the functions
become steeper and provide thus a “sharper” cutoff.

making f “sharper” with increasing index, see also Figure 3.4. Becke suggests three
iterations for practical applications [36], which results in a polynomial of degree 33 = 27.

As a last step, one has to ensure that the normalization constraint in Equation (3.39) is
satisfied, which can be achieved by the following definition:

vi(~r) = Pi(~r)/
M∑
j

Pj(~r) . (3.50)

So far, the space has been decomposed into independent, nucleus-centered cells by em-
ploying continuous, well-behaved weight functions. The single integral contributions Ii
can now be numerically computed using standard integration schemes based on polar
coordinates,

Ii =

∞∫
0

π∫
0

2π∫
0

Fi(r, θ, φ) r2 sin θ dr dθ dφ . (3.51)

The paper proposes furthermore, to proceed by directly applying Gauss-type quadra-
ture formulas on spheres with different radii around the nucleus. For the 1-dimensional
grid along the radius r, a Gauss-Chebyshev quadrature is suggested, however Gaussian
for example employs a Euler-McLaurin scheme instead. For the angular part, θ and φ,
there exist efficient grid distribution schemes from V. I. Lebedev, see [38, 39]. For more
discussion on the numeric integration of the XC potential, we refer to [36] and references

35

3. Kohn–Sham Implementation: A Parallel Computational Scheme

therein, as well as Section 7.4 of [12].

The integration scheme described above generates a set of grid points with corresponding
weights, {(~rk, wr)}, which are used for the approximate evaluation of Equation (3.37).
The weights wr are a product of a cell weight vi(~rk) and a weight determined by the
quadrature scheme working on the corresponding cell.

Once the grid points and weights are generated, the quadrature scheme can be applied
to the evaluation of the XC integral. Recall the definition of the exchange-correlation
potential VXC:

VXC =
δEXC

δρ
=
∂fxc
∂ρ
−
(
∇ · ∂fxc

∂∇ρ

)
. (3.52)

Thus, the approximate XC–contribution from Equation (3.37) can be determined as

V XC
µv ≈

Ng∑
k

wk

[
ηµ(~rk)ηv(~rk)

∂fxc
∂ρ

(~rk) +

(
∂fxc
∂∇ρ

(~rk) · ∇ηµ(~rk)ηv(~rk)

)]
. (3.53)

The total contribution can also be expressed in a practical matrix notation

V XC ≈ 1

2
BaBT + (∇iB ·~bi)BT , (3.54)

with the matrix

Bµk = ηµ(~rk) , (3.55)

and three matrices for each spatial derivative

∇iBµk = ∇iηµ(~rk) . (3.56)

All matrices are usually dense and have the dimension L×Ng. Finally, vector ~a and the

three vectors ~bi are defined as

ak = wk(~rk) ·
∂fxc
∂ρ

(~rk) , (3.57)

bik = wk(~rk) ·
∂fxc
∂∇iρ

(~rk) . (3.58)

Computational Costs

There are two tasks which cause the main portion of the computational effort:

• each of the Ng Voronoi weights vi requires M2 steps: the construction of the
polyhedron P carries out M function multiplications, and the weight v requires
M polyhedrons, see Equations (3.45) and (3.50), respectively. Hence, the total
execution time scales as O(NgM

2);

36

3.2. Symmetry Treatment

• Equation (3.54) contains matrix-matrix multiplications, which can be done by in-
voking efficient BLAS level 3 routines. The asymptotic costs of a multiplication
depend on the implemented multiplication algorithm. Most implementations use
a straightforward algorithm with costs O(n3), where n refers to the matrix dimen-
sion. There also exist more efficient algorithms, such as Strassen’s Algorithm with
execution time O(nlog2 7), however those are rarely implemented. Therefore, we
declare the costs of this step as O(NgL

2).

One can generally assume that

Ng ∝ L ∝ N (3.59)

and

N ≥M , (3.60)

which allows the total computational costs to be stated as O(N3). However, since Ng

can be much larger than L in practical applications, the real time spent in the creation
of the XC–contribution is usually the greatest fraction of the total time of an electronic
structure calculation.

3.2. Symmetry Treatment

Molecules often show certain symmetry properties, which can be exploited to reduce
the computational effort of electronic structure calculations significantly. A detailed dis-
cussion is given in [40, 41, 42], in this section we briefly reiterate their most important
statements which lead to the computational problem discussed in Chapter 5.

In this technique, one proceeds by assigning the molecule of interest a symmetry group,
described in the mathematical field of group theory (see the textbook [43] for an intro-
duction). This subdivides the basis functions ηµ into groups of symmetry equivalent
orbitals: the irreducible representations (IRREPs) Γ. Furthermore, the existing bases
are transformed into delocalized, symmetry-adapted linear combinations (SALCs):

ηΓ
µ(~r) =

∑
i

sΓ
i ηi(~r − ~r′i) . (3.61)

These transformed functions have the property to be orthogonal between groups,∫
ηΓ(~r)ηΓ′

(~r)d~r ∝ δΓΓ′ , (3.62)

which divides the L-dimensional space, spanned by the original basis functions, into
several sub-spaces. This irreducible orthogonality of course also affects the interactions
comprised in the Hamilton- and overlap matrix,

37

3. Kohn–Sham Implementation: A Parallel Computational Scheme

(H) 7→ (
HΓ1

HΓ2

HΓ3

HΓ4

HΓ5

0

0

)
Figure 3.5.: Transformation of the dense Hamilton matrix into a block-diagonal form.

Gray blocks are dense (sub-)matrices, white parts consist of zero-elements.

Hµv =

∫
ηΓ
µ(~r) f̂KS ηΓ′

v (~r) d~r

Sµv =

∫
ηΓ
µ(~r)ηΓ′

v (~r) d~r

 = 0 for Γ 6= Γ′ , (3.63)

which transforms the Hamiltonian into a block-diagonal matrix form:

H = HΓ1 ⊕HΓ2 ⊕ · · · ⊕HΓn ,

S = SΓ1 ⊕ SΓ2 ⊕ · · · ⊕ SΓn ,
(3.64)

demonstrated in Figure 3.5. This transformation effectively divides the problem into n
smaller, independent, sub-problems, which can speed up the creation of the Hamiltonian,
as well as the computation of its eigenvectors, by factors of several magnitudes. How-
ever, this blocked form complicates the efficient parallel computation of the eigenvectors
significantly. Chapter 5 discusses this issue in detail.

38

4. Parallel Linear Algebra Operations
in Relativistic Transformations

The physical model, on which most ab-initio electronic structure calculations are based—
the Schrödinger equation—, accounts for the energy of a quantum mechanical system
due to particle movement and their electrostatic interactions. However, some chemical
applications also require the consideration of relativistic effects, briefly introduced in
Section 4.1, especially if heavy elements are involved. Their treatment in DFT codes,
often implemented in relativistic transformations, implies computationally expensive lin-
ear algebra operations, resulting from complicated algebraic expressions, see Section 4.2.
These operations include dense matrix multiplications and solutions of the generalized
eigenvalue problem, which require O(N3) time. Hence, relativistic transformations be-
long to the class of the computationally most expensive numerical problems typically
appearing in electronic structure codes (see Chapter 3). There exists a sequential im-
plementation in ParaGauss. However, its time-consuming operations in large-scale ap-
plications require parallel routines to avoid severe performance bottlenecks.

This chapter introduces a novel high-level Fortran interface to parallel matrix alge-
bra. Thus, complicated algebraic expressions from relativistic transformations can be
expressed directly in a parallel Fortran code, using a concise and comprehensible pseudo-
mathematical syntax, while expensive linear algebra operations are executed in the
back-end by performance-optimized parallel routines. Furthermore, the interface fa-
cilitates easy parallelization of the relativistic transformations, already implemented in
ParaGauss. In particular, the parallelization of the existing code requires only few ad-
ditional lines of code, while the actual mathematical semantics remain untouched. The
interface specification is introduced in Section 4.3. This specification is accompanied by
a library implementation, presented in Section 4.4. Finally, the approach is evaluated in
Section 4.5 by means of the ease of parallelizing the existing relativistic transformations,
resulting code quality, and parallel performance.

4.1. Relativistic Effects and their Treatment in
Quantum Chemical Applications

Relativistic effects occur when particles, such as electrons, move at velocities close to the
speed of light (see Appendix A). In the majority of chemical applications, these effects
account only for a very minor contribution to the relevant physics. This gives rise to

39

4. Parallel Linear Algebra Operations in Relativistic Transformations

the fact that relativism does not appear in the standard underlying physical model –
the Schrödinger equation in its original, non-relativistic, version, as presented in Chap-
ter 2.1 . However, the situation changes in heavy elements with high atomic numbers,
occurring in the later part of the periodic table: electrons close to the nucleus are ex-
posed a strong electrostatic field, which causes them to move at very high velocities.
For example, in the gold atom Au, the average speed of the electrons on the innermost
shell 1 s is about 60% of the speed of light [40]. As a consequence, the relativistic mass
of such an electron is higher than the standard electron mass me by about 25%, which
in turn reduces its average distance to the nucleus. This effect potentially also impacts
s- and p-electrons of higher principal quantum numbers, which are, on the contrary, less
bound to the nucleus as a result. This includes valence electrons, which are especially
important for chemical applications. See the references [40, 41, 44] for an in-depth dis-
cussion on relativism in quantum chemical applications.

A wave-function based physical model, which also accounts for relativistic effects, pro-
vides the Dirac equation [45]. This equation can be seen as an extended Schrödinger
equation. The relativistic extensions therein have been incorporated in the Hohenberg–
Kohn theorems and the Kohn–Sham equations, introduced in Section 2.2.2, as a rela-
tivistic version of density functional theory, see [40]. In these Dirac–Kohn–Sham (DKS)
equations,

h
(4)
DKSϕ

(4)
i = εiϕ

(4)
i , (4.1)

the DKS–Hamiltonian h
(4)
DKS is a 4 × 4 operator (indicated by the (4)-superscript), ϕ

(4)
i

its eigenfunctions, and εi the corresponding eigenvalues. In the DKS–Hamiltonian,

h
(4)
DKS = H

(4)
kin,rel + Vne + Vcoul + VXC , (4.2)

only the kinetic energy operator H
(4)
kin,rel has a nontrivial four-component structure. The

remaining terms resemble the electrostatic potential in the “classic” KS–formalism (com-
pare to Equation 2.34). In a complete relativistic description, the exchange-correlation
potential, VXC, also requires adaption. However, these contributions are usually of little
importance for the majority of chemical applications and are, thus, often neglected.

A popular approach to implement the formalism introduced in Equation (4.1) is to use
a common non-relativistic solution, and augment it with approximate relativistic cor-
rections. In this way, well-established electronic structure codes can be used with some
modifications, while the most essential physics due to relativistic effects are captured in
the final result. The theoretical basis for these corrections is given by the Douglas–Kroll
(DK) formalism [46], which facilitates the construction of an approximate, relativistic
two-component Kohn–Sham operator f̂KS. There are two approaches available to this
problem [47], however here we discuss only the one implemented in ParaGauss [40, 41].
Therefore, a series of DK–transformations are applied to the original DKS–Hamiltonian,
resulting in an effectively relativistic Hamiltonian. The Douglas–Kroll–Hess (DKH)

40

4.2. Relativistic Transformations in ParaGauss

method [48] provides a practical formulation of Douglas–Kroll, supporting discrete,
matrix-based, operators. The method allows to establish a DKH–Hamiltonian up to
any order and, thus, accuracy [49]. For most chemical applications, a second- or third
order transformation provides sufficiently accurate results, however, transformations up
to the fourteenth order on chemical benchmark systems have been reported [49, 50]. In
this work, these DKH–transformations are also referred to as relativistic transformations.
Relativistic transformations imply complicated algebraic expressions containing scalars
and diagonal- and dense matrices, as well as dense eigenvalue problems. The complexity
of the algebraic expressions increases with the order of the transformation, thus implying
not only additional computational effort, but also increased code complexity. See [41]
for a formal introduction to Douglas–Kroll and Douglas–Kroll–Hess.

In the Dirac formalism, relativistic effects primarily impact the kinetic energy operator,
see Equation (4.2). However, the DK–transformations effect all operators comprised in
the DK–Hamiltonian. For many chemical applications, a “simplified” DK–Hamiltonian
gives sufficiently accurate results [40, 51, 52]: here, one only applies the transformations

to the operators H
(4)
kin,rel and Vne. The remaining operators, Vcoul and VXC, are added

a posteriori. The work of A. V. Matveev and N. Rösch [53] introduces a formalism
which goes beyond this theory, including also the Coulomb potential Vcoul into the DK–
transformations. This improves the accuracy of relativistic approximations and, thus,
the spectrum of possible chemical applications. Furthermore, the work of A. V. Matveev
[41] presents the implementation of the resulting DKH–transformations into ParaGauss,
employing sequential BLAS- and LAPACK routines [32] for computational efficiency.
However, as we will see in Section 4.2, the transformations involve expensive O(N3)
operations, such as dense matrix multiplications and eigenvalue problems, which makes
an efficient treatment necessary. One goal of the work presented in this chapter is to
augment the approach by Matveev, by using parallel routines from the PBLAS- and
ScaLAPACK libraries [33], aiming thus at a higher (parallel) performance in large-scale
applications.

4.2. Relativistic Transformations in ParaGauss

For the construction of relativistic versions of matrix operators, ParaGauss requires four
input matrices:

• the overlap matrix S;

• the kinetic energy matrix T ;

• two matrices, which contain potential terms, V and O.

These matrices generally correspond to the single components of the Hamiltonian, in-
troduced in Section 3.1. Hence, they are dense and symmetric, but their dimension
is typically by several factors greater: the accuracy of the relativistic transformations

41

4. Parallel Linear Algebra Operations in Relativistic Transformations

strongly depends on the size and flexibility of the underlying finite basis. The common
way to achieve this is to carry out the transformations in a yet uncontracted Gaussian-
type basis (see Section 3.1.3), and contract the matrices afterward. As also mentioned
in Section 3.1.3, a contracted basis function typically consists of three to six primitive
Gaussians, which corresponds to the factor by which the matrices S, T , V and O are
greater than the dimension of the Hamilton matrix H, L. We will refer to this “uncon-
tracted dimension” as Lu.

A relativistic transformation proceeds in several steps. The first task is to solve the
generalized eigenvalue problem

TU = SUt , (4.3)

where T , S and U are dense symmetric matrices, and t is a diagonal matrix, such that
UTTU = t and UTSU = 1. The problem-specific function,

trel, e, a, b, r = factors(2t) , (4.4)

computes relativistic factors from the kinetic energy eigenvalues, stored on the diagonal
of t. All resulting factors are diagonal matrices of the same dimension as t, and required
later by the actual transformations.

The second major step is to transform the basis of the potential matrices, V and O, into
momentum space:

Ṽ = UTV U, Õ = UTOU . (4.5)

This representation of the DK–operators entails some beneficial properties: some of the
(intermediate) matrices, which are dense in real space, have a diagonal representation
in momentum space. Furthermore, the algebraic expressions, which transform the in-
volved matrix operators into their relativistic forms, are generally more concise. This
reduces the implied computational effort, which is especially important when Lu is large.

A second order transformation of the non-relativistic potential matrices V and O into
their relativistic counter-part states the following equation:

Ṽrel = aṼ a+ bÕb+RT er−2R + (eRT r−2R +RT r−2Re)/2 . (4.6)

Here, the intermediate matrix R is defined as

R = rpt(e, r2aṼ a− bÕb) , (4.7)

with the matrix-valued function

rpt : (e,X)→ Y, Ymn = Xmn/(em + en) . (4.8)

42

4.2. Relativistic Transformations in ParaGauss

1 ! kind of double precision numbers:

2 integer, parameter :: DP = kind(1.0d0)

3 real(DP) :: A(n, n), B(n, n)

4 ...

5 A = A + 2 * B

6 A = matmul(A, B - 2 * A)

Figure 4.1.: A Fortran 90 code snippet which shows simple matrix arithmetics. One can
see that the use of dedicated operators results in concise code, which clearly
exhibits the mathematical semantics.

The final step is a back-transformation of the relativistic operators into real space:

Trel = U−T trelU
−1, Vrel = U−T ṼrelU

−1 . (4.9)

This second order transformation is the most popular form of DKH transformations
in electronic structure codes. An alternative class of arbitrarily accurate implementa-
tions of a relativistic transformation is given by an iterative scheme with more compact
expressions. A crucial step is the recurrent evaluation of the intermediate matrix X(n):

X(n+1) = rpt(e, O −X(n)E11 + E22X
(n) −X(n)OTX(n)) , (4.10)

with E11 and E22 being also dense matrices. We will address this scheme only briefly in
this work, for the complete formalism see the parallel implementation in Figure 4.9 and
the publication [54].

Sequential Implementation in Fortran

From the revision 90 on, the Fortran standard provides an intrinsic programming model,
which allows to formulate basic matrix-algebra in a pseudo-mathematical notation. Here,
scalars, vectors and matrices are represented by numeric variables, and one- and two-
dimensional arrays, respectively. Operations between these data-objects can be ex-
pressed by the general form

[operand1] operator operand2 ,

using the common operators +, -, *, /, and **. The operators + and - can be used either
as unary or binary operators. Alternatively, these operations can also be expressed as
calls to intrinsic subroutines, such as matmul(A,B). Figure 4.1 shows an example. For
more details, please refer to the Fortran standard [55].

In ParaGauss, the relativistic transformations have been implemented using the Fortran
“operator syntax” described in the previous paragraph, see Section 2.2.2 of [41]. The use

43

4. Parallel Linear Algebra Operations in Relativistic Transformations

of this technique allows a short and concise representation of the transformations in the
source code, see Figure 4.2 for an example Fortran 90 implementation of a second order
transformation. As the figure shows, the algebraic expressions are almost equal to those
given in the introduction of the DKH–formalism at the beginning of this section. The
implementation of the relativistic transformation is very concise, revealing clearly the
intended mathematical semantics. At the same time, the compiler has the opportunity
to efficiently implement the implied numerical operations, e.g. by linking to optimized
BLAS routines [56].

The second order DKH–transformation introduced here involves several matrix-matrix
multiplications, as well as the solution of a generalized eigenvalue problem (among
other, less expensive, linear algebra operations). Formally, these operations require
O(L3

u) = O(N3) steps. Thus, the relativistic transformations belong to the same, most
expensive, computational category as the construction of the Coulomb1– and Exchange–
Correlation contribution (see Sections 3.1.4 and 3.1.5, respectively), as well as the so-
lution of the generalized Eigenvalue problem (see Chapter 5). The implementation
presented in Figure 4.2, as realized in ParaGauss, relies on the numerical routines pro-
vided by the employed, sequential, compiler. However, the implied computational costs
require parallelization of this expensive step, to avoid bottlenecks in large applications.
Furthermore, the involved matrix data structures occupy O(L2

u) = O(N2) space. They
are usually required before the SCF, when the transformations are applied, and after
the SCF. Thus, to avoid memory bottlenecks on single nodes, it is common practice in
ParaGauss to buffer the matrices on disc. As the matrices can become large, with their
dimension Lu being up to several thousand, the involved I/O operations also state a
potential bottleneck. The rest of this chapter presents a parallelization technique, which
overcomes these problems, while requiring only minimal changes to the original code.

4.3. A Fortran Interface to Parallel Matrix Algebra

The core contribution of this chapter is a novel Fortran interface, introduced in this sec-
tion, and its implementation to parallel matrix algebra, presented in Section 4.4. The
main motivation to develop this technique was to parallelize relativistic transformations,
implemented in ParaGauss and introduced in the previous section. We designed a paral-
lel library interface, which resembles the original, sequential, Fortran operator syntax as
good as possible. It augments the intrinsic Fortran arrays and the corresponding opera-
tor syntax with distributed data types as abstract matrix representations, and parallel
routines. In this way, the existing implementation in ParaGauss can be reused, while
only a few additional lines of code are necessary. After these changes, the expensive
linear algebra operations (mainly the matrix products and the generalized eigenvalue
problems) are executed by parallel routines. Furthermore, the distributed data objects
can be used to conveniently distribute the matrix structures over the existing compute

1Given the density fit technique is applied, see Section 3.1.4.

44

4.3. A Fortran Interface to Parallel Matrix Algebra

1 subroutine reltrans(S, T, V, O, T_rel, V_rel)

2 implicit none

3 real(DP), intent(in) :: S(:,:), T(:,:), V(:,:), O(:,:)

4 real(DP), intent(out) :: T_rel(:,:), V_rel(:,:)

5 real(DP) :: U, U_inv, R, V_mom, O_mom, aVa, aOa

6 type(rdmatrix) :: td, td_rel, e, a, b, r2

7

8 ! allocate the intermediate variables

9 ! U, td, td_rel, e, a, b, r2

10 allocate(U(size(S,1), U(size(S,2)))

11 ...

12

13 ! call the generalized eigenvalue solver

14 call geigs(T, S, td, U)

15

16 ! call the internal routine to compute the relativistic factors

17 call factors(2.0d0 * td, td_rel, e, a, b, r2)

18

19 ! transformation into momentum space

20 V_mom = tr(U) * V * U

21 O_mom = tr(U) * O * U

22

23 ! intermediate results

24 aVa = a * V * a

25 bOb = b * O * b

26 R = rpt(e, r2 * aVa - bOb)

27 W22 = tr(RW) * (0.5d0 * r2**(-1)) * RW

28 U_inv = tr(U) * S

29

30 ! transformation of V and O into V_rel

31 V_rel = aVa + bOb + tr(RW) * (e * r2**(-1)) * RW + e * W22 + W22 * e

32

33 !back-transformation into real space

34 T_rel = tr(U) * t_rel * U_inv

35 V_rel = tr(U) * V_rel * U_inv

36 end subroutine reltrans

Figure 4.2.: Fortran 90 implementation of a second order relativistic transformation.
The implementations of the functions geigs, factors, and rpt are omitted
for brevity, as well as the explicit array allocation, indicated by lines 8 to 11.
The function tr(A) returns the transpose of the matrix array A. The specific
data type rdmatrix represents diagonal matrix. The *-operator is overrid-
den by the intrinsic routine matmul for the dense matrix product, and by a
manually implemented routine for the product of a dense- and a diagonal
matrix.

45

4. Parallel Linear Algebra Operations in Relativistic Transformations

nodes. Thus, memory bottlenecks can be compensated by increasing the global mem-
ory space (i.e. the accumulated memory of all compute nodes), which can be achieved
by rising the number of employed nodes. This ensures an efficient use of the available
memory, and avoids slow I/O operations.

However, though this work was motivated by a specific problem, we would like to empha-
size that the developed library is not limited to this case. Scientific codes often contain
linear algebra expressions, such as vector- and matrix additions and multiplications,
systems of linear equations or eigenvalue problems. It is common practice to rely on
abstract matrix representations and appropriate operators, which model linear algebra
characteristics. Such abstractions facilitate a separation of concerns, where mathematics
is separated from technical implementation details. It allows a quick implementation of
matrix- and vector transformations, which contributes to the productivity of the develop-
ment of numerical routines. Furthermore, as these transformations have the appearance
of mathematical expressions, the application semantics are easily comprehensible, hence,
the readability of the code is improved.

There exist several languages or library extensions which provide such a functional-
ity. Matlab and Octave are high-level scripting languages, which operate mainly with
mathematical objects, but are usually not suitable for high performance codes and big
software projects. The C++ libraries Armadillo [57], uBLAS (as part of BOOST [58])
and MTL [59], among others, provide template-based matrix classes with comprehen-
sive functionality, and partially also advanced linear algebra operations, such as fac-
torizations or eigenvalue problems. As already mentioned, Fortran provides an intrin-
sic programming model, which has been applied for the implementation of relativistic
transformations in ParaGauss, see Section 4.2. The Matran library [60] provides further
matrix functionality for Fortran, together with advanced operations. However, except
for a commercial version of the MTL (called “Supercomputing Edition”), software or
literature about abstractions supporting parallelism and data distribution, especially for
Fortran, is difficult to find. Our interface specification, introduced in the next Section,
aims to fill this gap and provide a high-level matrix abstraction for Fortran, with an
opaque support for distributed memory parallelism.

Before introducing the actual application programming interface, we present some of the
criteria, based on which the API was designed.

4.3.1. Design Criteria

Separation of concerns. The high-level mathematical programming model, used to
express the relativistic transformations (see Figure 4.2), entails several benefits concern-
ing programming efficiency and code readability. Mathematical expressions can be typed
almost directly into the source code. This supports a separation of concerns : the mathe-
matical semantics are separated from technical implementation details. Thus, algebraic
expressions can be implemented quickly, while the resulting code is clear, concise, and

46

4.3. A Fortran Interface to Parallel Matrix Algebra

easily comprehensible. With our library API, this separation of concerns shall be re-
tained: the library itself is rather seen as an additional, intermediate, layer between the
code and the compiler. If used correctly, this layer is invisible in the actual program
semantics.

Re-usability of existing code. As already mentioned, the main motivation behind
this interface was to provide a parallel solution to the already implemented relativistic
transformations. We want to achieve this parallelization step with no or only minor
changes to the original code. One attribute to achieve this is to design the syntax of
this matrix abstraction as close to the original Fortran 90 syntax as possible. Another
attribute is the SIMD programming model, which is introduced in Section 4.3.2.

Distributed data and easy data management. Within this specification, we refer
to the data structures, which represent mathematical objects such as matrices as data
objects. In the original Fortran syntax, these objects are represented by standard ar-
rays. This API defines a new set of abstract matrix data objects, which refers to data,
physically distributed over the address spaces of the involved processes. One important
requirement is that the management of these objects shall be as easy as possible. Low-
level tasks, such as the physical distribution of the data, are hidden from the user and
be executed automatically in the background. Thus, separation of concerns—a main
design aspect—is facilitated.

Parallel performance. The relativistic transformations contain compute-intensive tasks,
especially matrix multiplications and generalized eigenvalue problems. Thus, high par-
allel performance is indispensable. For the execution of these expensive tasks, the incor-
poration of external, optimized, numerical libraries must be facilitated.

Technical dependencies. The interface must be implementable using standard tech-
niques for parallel codes: a Fortran compiler in combination with an MPI library [11].
However, an implementation is not limited to these technologies – as mentioned in the
previous paragraph, the use of additional libraries, e.g. high performance numerical
libraries, is desired.

4.3.2. SIMD Programming Model

Today, distributed memory architectures are most commonly programmed using a message-
passing paradigm, standardized e.g. in the widely used Message-Passing Interface
(MPI) [11]. Different from our approach, the MPI implements the Single Program Mul-
tiple Data (SPMD) programming model: as the name already indicates, in this model,
all involved processes execute the same program on different data. However, in those
programs, it is common practice to distinct between processes. For example, in the most
basic communication pattern, the send-receive operation, one process sends a message,
another process receives it. Obviously, at the time of this operation, both processes

47

4. Parallel Linear Algebra Operations in Relativistic Transformations

execute different branches of the code. Another example is the master-worker model,
frequently implemented in MPI codes: a dedicated process—the master—sends data to
the worker processes, which independently work on the data and send the results back to
the master. Also here, the master and the workers execute different branches of the code.
This SPMD programming style allows to express very detailed communication patterns,
offering thus a lot of space for optimizations. At the other hand, a lot of branches can
result in codes which are large, confusing, and difficult to maintain. Furthermore, the
parallelization of an existing, sequential, code typically requires a lot of refactorization.

Here we propose a different, more strict, approach. Different from MPI, the distributed
data object API implements the Single Instruction Multiple Data (SIMD) programming
model [61] on the code level: all routines and operators are collective, i.e. they must be
called by all involved processes, and in the same sequence. A distinction between the
processes is not possible, as it is often the case in message-passing codes. Instead, the
resulting code corresponds to a sequential code, parallelism is achieved by using parallel
data objects. In comparison with a typical message-passing code, this approach entails
some advantages:

• existing code can be adopted with very few changes;

• less code is necessary;

• the program semantics can be expressed deterministically, hence coherence prob-
lems can be avoided;

• the resulting code is clearer and more concise, hence the readability is improved.

A downside of this approach is that the user has few control over the physical data
distribution – he has to rely on the capabilities of the library implementation. In our
implementation (see Section 4.4), we choose a homogeneous block-cyclic data distribu-
tion. If, for example, the employed parallel computer had a heterogeneous architec-
ture, this distribution scheme might result in load-imbalance. In this case, a different,
architecture-specific, implementation would be necessary.

Another downside of the SIMD programming model is that independent operations can
not be executed simultaneously, e.g. to achieve a better parallel scalability. However,
our API does still allow a certain degree of concurrency between the operations, by
employing several communication contexts. Section 4.4 gives more details on this issue.

4.3.3. Application Programming Interface

Here we introduce the application programming interface (API) specification. It consists
of a collection of

• parallel data objects (“data types” in the Fortran syntax), representing mathe-
matical operands, and a supporting routine for technical reasons;

48

4.3. A Fortran Interface to Parallel Matrix Algebra

• support routines, necessary to manage the data objects (e.g. the physical data
distribution);

• operators and subroutines, which carry out parallel linear algebra operations on
or between the data objects.

We chose this set to solve our specific problem from relativistic quantum chemistry,
introduced in Section 4.2. As a consequence, “specialized” operands, such as diagonal
matrices, are also part of the specifications, whereas other, more common, linear algebra
operands, such as vectors, do not appear. The interface, as presented here, is not
intended to be complete for any problem at hand. However, we emphasize that this is
not a limitation, as the set of data objects to any other mathematical objects (subject
to a feasible technical realization).

Data Types

We define one auxiliary data type (communication object), and two data objects, repre-
senting mathematical operands:

• rmatrix (data object): represents a distributed real dense matrix.

• rdmatrix (data object): represents a distributed real diagonal matrix.

• pm_ctxt (communication object): the communication context. It represents a
set of processes, over which the data is distributed, and which are included into
parallel operations. Each data object needs to be assigned one context, and two
data objects are only compatible for operations if they are assigned the same
context.

Furthermore, the relativistic transformations contain scalar numbers. Here, a special,
distributed, type is not necessary – we simply utilize a standard (non-distributed) vari-
able of type real.

The data- and communication objects are Fortran data types, so variables are declared
by the standard type keyword. Before the declared variables can be used, they have
to be initialized (one could also refer to this as “instantiation”). This is done by the
auxiliary routines, introduced in the next section. See also the example in Figure 4.3.

Auxiliary Routines

The auxiliary routines provide the basic functionality, necessary for the organization of
the data types introduced in the previous section. In particular, the following three
routines are declared:

49

4. Parallel Linear Algebra Operations in Relativistic Transformations

context = pm create ctxt(system comm)

Arg. name direction type description:

system_comm IN integer A system communicator

context RET pm_ctxt A communication object

This function constructs a communication object (“context”). It requires a system
communicator – in our MPI-based implementation an MPI communicator, such as
MPI_COMM_WORLD. With the help of the MPI grouping functionality, the user can de-
termine, which processes are associated with a data object, and thus involved in its
parallel operations.

pA = matrix(sA[, context])

Arg. name Direction Type Description

sA IN real(:)/(:,:) A non-distributed array

context IN context (optional) A communication object

pA RET r(d)matrix A distributed (diagonal) matrix

This function handles the transitions from intrinsic Fortran arrays to distributed data
objects. It requires a real, sequential, array (indicated by sA) as input argument. An
optional input argument is a communication object (context). If this argument is omit-
ted, the routine uses a standard communication object, which represents all processes
– technically, this would refer to the MPI communicator MPI_COMM_WORLD. From these
input data, it creates a distributed matrix object (pA). The function is overloaded, so
dependent on the input type (one- or two-dimensional array), it returns a diagonal- or
dense distributed matrix, respectively. An important aspect is that the matrix objects
are only interoperable if they are created with the same communication object.

sA = array(pA)

Arg. name Direction Type Description

pA IN r(d)matrix Distributed (diagonal) matrix

sA RET real(:)/(:,:) Non-distributed output array

This function handles the reverse transition of the function matrix: it converts a dis-
tributed data object into an intrinsic Fortran array. It requires a data object of type
rdmatrix or rmatrix as input argument, and returns a one- or two-dimensional array,
respectively, of type real.

Operators

Fortran defines a fixed set of unary and binary operators, to be applied on intrinsic data
types. For the relativistic transformations, we override some of them, to make them
compatible with the distributed data types (symbol):

50

4.3. A Fortran Interface to Parallel Matrix Algebra

• +: addition, binary

• −: binary subtraction, unary negation

• *: matrix multiplication

• **: exponentiation

Furthermore, we define one function and one subroutine:

AT = tr(A)

Arg. name Direction Type Description

A IN rmatrix A distributed dense matrix

AT RET rmatrix The transpose of A

This function returns the transpose of a distributed dense matrix object, given as input
argument. It is only defined for data objects of type rmatrix, the usage with diagonal
matrices of type rdmatrix is undefined.

geigs(A, B, E, C)

Arg. name Direction Type Description

A IN rmatrix The first dense input matrix

B IN rmatrix The second dense input matrix

E OUT rdmatrix The matrix containing the eigenvalues

C OUT rmatrix The matrix containing the eigenvectors

This routine solves the dense generalized eigenvalue problem AC = BCE . The com-
puted eigenvalues are stored on the diagonal of E, so the data type of this output
argument is a distributed diagonal matrix. The eigenvectors are stored as columns of
the distributed dense matrix C.

Example

Figure 4.3 gives a simple example of how the API can be used to execute parallel matrix
algebra. Note that the algebraic expressions in Subroutine arithmetics1 could also be
expressed using the intrinsic Fortran operator syntax. A parallelization of this routines
only requires few changes in the code – see therefore also the caption of Figure 4.3.
The second example, shown in Figure 4.4, demonstrates how two different branches of
parallel matrix algebra can be executed. Here, the API allows to deviate from the SIMD
programming model, introduced in Section 4.3.2, however SIMD is still enforced within
a branch. Thus, the parallel scalability of a code can be improved, with the cost of a
slightly more complicated program structure.

51

4. Parallel Linear Algebra Operations in Relativistic Transformations

1 program matrix_example1

2 use matrix_parallel

3 implicit none

4 real(DP) :: A(n)

5 real(DP) :: B(n, n), C(n, n)

6 type(rdmatrix) :: pdA

7 type(rmatrix) :: pB, pC

8 type(pm_ctxt) :: ctxt

9

10 ! distributed data object creation

11 pdA = matrix(A)

12 pB = matrix(B)

13

14 ! call a subroutine which does the matrix computation

15 call arithmetics1(pdA, pB, pC)

16

17 ! transition from a data object to an array

18 C = array(pC)

19 end program matrix_example1

20

21 contains

22 subroutine arithmetics1(A, B, C)

23 use matrix_parallel

24 implicit none

25 type(rdmatrix), indent(in) :: A, B

26 type(rmatrix), indent(in) :: B

27 type(rmatrix), indent(out) :: C

28

29 ! parallel matrix algebra

30 C = A * B * 2.0d0B

31 end subroutine arithmetics1

Figure 4.3.: A demonstration of the API usage. The example application is written in
Fortran 90, and is split up into a program and a subroutine. Thus, a
separation of concerns is complied with: the mathematical semantics are
formulated in line 30 of the subroutine arithmetics1 using a clear pseudo-
mathematical syntax, whereas the management of the data objects is ex-
ecuted in the calling program. In this subroutine, parallelism can only be
concluded from the invocation of the module matrix parallel in line 23,
and the data types of the operands (lines 25 to 27). The algebraic expres-
sion in line 30 is equal in both, the sequential Fortran 90 version, and in
the parallel version using our API. Thus, a parallelization of this subroutine
would only require an additional use-parameter, and different data types.

52

4.3. A Fortran Interface to Parallel Matrix Algebra

1 program parallel_example

2 use mpi

3 use matrix_parallel

4 implicit none

5 real(DP) :: A, B

6 integer :: comm1, comm2, myrank, ierror

7 type(pm_ctxt) :: ctxt1, ctxt2

8 type(rmatrix) :: pA, pB, pC

9 type(rmatrix) :: pdE

10

11 ! fill arrays A, B with data

12 ...

13

14 ! create two independent MPI communicators

15 ! from MPI_COMM_WORLD and store them in ctxt1, ctxt2

16 ...

17

18 ! transition of the MPI contexts into API-specific contexts

19 ctxt1 = pm create ctxt(comm1)

20 ctxt2 = pm create ctxt(comm2)

21

22 call MPI_Comm_rank(comm1, myrank, ierror)

23 if(myrank != MPI_UNDEFINED) then

24 pA = matrix(A, ctxt1)

25 pB = matrix(B, ctxt1)

26 call arithmetics1(pA, pB, pC)

27 end if

28 call MPI_Comm_rank(comm2, myrank, ierror)

29 if(myrank != MPI_UNDEFINED) then

30 pA = matrix(A, ctxt2)

31 pB = matrix(B, ctxt2)

32 call arithmetics2(pA, pB, pC)

33 end if

34 ...

35 end program parallel_example

Figure 4.4.: An example application, written in Fortran 90, which demonstrates how
the API can be used to execute two independent branches. The MPI group-
ing facilities [11] allow the organization of the available MPI processes into
groups, represented by MPI communicators, and assign them to different
tasks which can be executed in parallel. This MPI grouping must be done
before the data object creation. In this example, the grouping is indicated
by the comment in lines 14 and 15 (for the explicit syntax please refer to the
MPI standard [11]), and the object creation is executed in lines 24, 25, 30 and
31. The two branches—in this example the bodies of the two if-statements
in lines 23 and 29—call the two independent routines arithmetics1 and
arithmetics2, respectively, which contain algebraic expressions. The for-
mer routine links to the subroutine given in Figure 4.3, the latter links to
another, independent, routine, which is not given here explicitly for brevity.)

53

4. Parallel Linear Algebra Operations in Relativistic Transformations

4.4. Interface Implementation

The API, specified in Section 4.3.3, has been implemented as a library with Fortran 90
bindings. A complete description of the implementation would exceed the scope of this
work, instead we present some technical details, important for the implementer of this
interface.

The implementation language is Fortran 95. For the communication infrastructure, we
use a standard MPI library. Additionally, we invoke performance optimized routines
from the library PBLAS/ScaLAPACK [33] for the numerically expensive operations:

1. PDGEMM for the dense matrix multiplication;

2. PDSYGVX for the dense generalized eigenvalue problem;

3. PDTRAN for the matrix transpose.

There exist various parallel library implementations, which accomplish these tasks.
See therefore the discussion in Section 5.1. Among the available libraries, we chose
ScaLAPACK for practical reasons: it is a wide-spread standard, and as a consequence,
it is part of many commonly used high-performance mathematical libraries, such as
Intel MKL. Furthermore, it belongs to the standard software repository of many high-
performance computing centers. This makes it easier to port the application to other
machines, which might also be installed at other computing centers, and avoids technical
difficulties due to library dependencies.

A technical constraint is that the employed compiler has to implement the Fortran 95
standard, together with the enhanced data type facilities (EDF), documented in the
technical report TR15581 [62]. Features documented in this report became a part of the
subsequent Fortran 2003/2008 standards and are implemented in most modern compil-
ers, including GFortran and Intel Fortran Compiler.

Technically, the abstract data objects are represented by data types. The objects are
opaque, enforced by the private-modifier, so they are only accessible by defined auxil-
iary routines. Internally, the data types contain an array which holds the actual data,
and implementation-specific meta data, necessary for MPI communication, and PBLAS-
and ScaLAPACK usage. See Figure 4.5 for the explicit implementation.

As the figure shows, the data type representing a dense matrix, rmatrix, contains the
two-dimensional array m(:,:), which holds the matrix elements. These data are dis-
tributed over the involved processes, defined by the MPI communicator stored in the
field mpi_comm. Here, we decided for a block-cyclic distribution scheme, which is also
the native distribution scheme of PBLAS and ScaLAPACK (see the ScaLAPACK user’s
guide [33]). This has the advantage that the distributed arrays can be handed over

54

4.4. Interface Implementation

1 type, public :: rmatrix

2 private

3 integer :: mpi_comm = MPI_COMM_NULL

4 integer :: desc(9) = -1

5 real(DP), allocatable :: m(:, :)

6 end type rmatrix

7

8 type, public :: rdmatrix

9 private

10 integer :: mpi_comm = MPI_COMM_NULL

11 integer :: blacs_ctxt = -1

12 real(DP), allocatable :: d(:)

13 end type rdmatrix

Figure 4.5.: Declaration of the opaque rmatrix and rdmatrix data types, in Fortran
notation. Integer array of length 9 is used by ScaLAPACK for a matrix
descriptor and holds, among other data, matrix dimensions and a BLACS
communicator.

directly to the routines PDGEMM, PDSYGVX and PDTRAN, without any additional commu-
nication. With this data distribution scheme, the array constructor function array is
the only auxiliary routine that requires communication. The associated data collection
algorithm has been implemented by hand, basically by using nested loops and the col-
lective MPI_Bcast function. However, it is planned to replace this implementation by
employing the distributed array data type, specified by the MPI 2.2 standard (see Sec-
tion 2.5 of [11]).

The data type representing a diagonal matrix, rdmatrix, holds the one-dimensional ar-
ray d(:), which contains the diagonal matrix elements. We decided not to distribute
this data, but to hold a complete copy of this array in each process. As the memory
requirement for a diagonal matrix is far less demanding than that for a dense matrix, we
believe that the potential memory savings in case of a distributed data structure would
not outbalance the implied communication overhead and implementation effort.

For arithmetic operations between these data types, we overload the existing intrinsic
operators with the interface construct. Figure 4.6 demonstrates this for the multipli-
cation operator *. At compile time, the compiler does a static type check and resolves
an operation to a specific function call, see Figure 4.7. Technically, each arithmetic op-
eration creates a new data object as (intermediate) result. An example is the result of
mult r r(A, B) in Figure 4.7. The allocation of this data object is not managed by the
compiler automatically, hence, this has to be done explicitly in the function body of all
operator routines. At the other hand, the deallocation of the intermediate objects can
obviously not be done by the programmer. We therefore rely on a feature of the above
mentioned EDF: allocatable components of a data type are automatically deallocated
when its scope is lost, i.e. when the reference to the data type is overwritten by another

55

4. Parallel Linear Algebra Operations in Relativistic Transformations

data object or the declaring routine terminates [62]. This important feature facilitates
arithmetic expressions between self-defined data types containing allocatable compo-
nents, without introducing memory leaks.

1 interface operator(*)

2 ! dense * dense:

3 module procedure mult_r_r

4 ! diagonal * diagonal:

5 module procedure mult_d_d

6 ! dense * diagonal:

7 module procedure mult_r_d

8 ! diagonal * dense:

9 module procedure mult_d_r

10 ! dense * scalar:

11 module procedure mult_r_0

12 ...

13 end interface operator(*)

Figure 4.6.: Multiplication Fortran operator interface.

1 type(rmatrix) :: A, B, D

2 type(rdmatrix) :: C

3

4 D = A * B * C

Figure 4.7.: Example code snippet. The arithmetic expression in line 4 translates into
D = mult r d(mult r r(A, B), C).

The distinction between physically distributed and non-distributed data objects requires
also a distinction between local and global indices to ensure interoperability. The diag-
onal matrix is a data type, which is specific to our domain problem, thus usually not
part of standard numerical libraries such as LAPACK. We therefore implemented the
operations which involves diagonal matrices manually. Here, the most expensive oper-
ation is the product of a dense rmatrix and a diagonal rdmatrix as implemented in
the routines mult_r_d and mult_d_r (see Figure 4.6). Formally, this multiplication is
defined as follows:

C = A ·D ⇔ Cij = Aij · dj ,
C = D · A⇔ Cij = di · Aij ,

(4.11)

where A,C ∈ Rm×n, D = diag(d), d ∈ Rm or d ∈ Rn, as appropriate. A favorable
property of this operation is that the total m ·n multiplications can be executed without
communication. Still, one has to distinguish between the indices of a distributed and a
non-distributed array. We therefore introduce the local indices {iloc, jloc} for distributed

56

4.5. Evaluation

arrays, and the global indices {iglob, jglob} for non-distributed arrays. The multiplication
can thus be defined as:

C = A ·D ⇔ Cilocjloc = Ailocjloc · djglob ,
C = D · A⇔ Cilocjloc = diglob · Ailocjloc .

(4.12)

For the implementation, a function is required which maps a local index to a global
index. The ScaLAPACK library provides the function INDXL2G, which can be used to
do this translation.

4.5. Evaluation

We evaluate the proposed library API and its implementation by means of two factors:
the readability of the resulting code and its parallel performance. The former point has
a special focus on existing Fortran 90 code which is parallelized, to accomplish a main
objective of this API.

4.5.1. Code Evaluation

The code in Figure 4.2, which shows a sequential Fortran 90 implementation of a sec-
ond order relativistic transformation, has been parallelized using our newly established
library, introduced in Section 4.3. The explicit source code is listed in Figure 4.8. The
listing shows that for the parallelization step, only the following three changes to the
original code were necessary:

• inclusion of the statement use matrix parallel;

• change of the dense matrix data types to rmatrix;

• the array allocation is not necessary anymore.

Note that all lines of code which contain mathematical semantics (lines 10 to 31) are
completely unchanged. The sequential Fortran code is augmented by parallelism almost
invisibly, and with very few changes to the original source code.

Figure 4.9 shows the Fortran 90 listing of the alternative iterative procedure for rela-
tivistic transformations, briefly introduced in Equation (4.10). This implementation is
parallelized using the distributed matrix library, and part of ParaGauss. Together with
the listing for the second order transformation in Figure 4.8, already discussed in the
previous paragraph, it shows how our API facilitates the expression of mathematical
semantics in a pseudo-mathematical notation, directly in a parallel high-performance
Fortran 90 code. By our subjective metric, the mathematical statements are as close to
the abstract mathematical expressions, introduced in Section 4.2, as it could get with

57

4. Parallel Linear Algebra Operations in Relativistic Transformations

1 subroutine reltrans_parallel(S, T, V, O, T_rel, V_rel)

2 use matrix_parallel

3 implicit none

4 type(rmatrix), intent(in) :: S, T, V, O

5 type(rmatrix), intent(out) :: T_rel, V_rel

6 type(rmatrix) :: U, U_inv, R, V_mom, O_mom, aVa, aOa

7 type(rdmatrix) :: td, td_rel, e, a, b, r2

8

9 ! call the generalized eigenvalue solver

10 call geigs(T, S, td, U)

11

12 ! call the internal routine to compute the relativistic factors

13 call factors(2.0d0 * td, td_rel, e, a, b, r2)

14

15 ! transformation into momentum space

16 V_mom = tr(U) * V * U

17 O_mom = tr(U) * O * U

18

19 ! intermediate results

20 aVa = a * V * a

21 bOb = b * O * b

22 R = rpt(e, r2 * aVa - bOb)

23 W22 = tr(RW) * (0.5d0 * r2**(-1)) * RW

24 U_inv = tr(U) * S

25

26 ! transformation of V and O into V_rel

27 V_rel = aVa + bOb + tr(RW) * (e * r2**(-1)) * RW + e * W22 + W22 * e

28

29 !back-transformation into real space

30 T_rel = tr(U) * t_rel * U_inv

31 V_rel = tr(U) * V_rel * U_inv

32 end subroutine reltrans_parallel

Figure 4.8.: The parallel version of the sequential routine reltrans, listed in Figure 4.2.
Here, the data object creation of the intermediate results (U, td, . . .) has
been moved to the respective routines, e.g. factors. Note that the input-
and output data objects have to be created explicitly by the calling routine.
Thus, the only differences to the sequential version in Figure 4.2 are the data
type of the dense matrices (rmatrix), the use matrix parallel-statement,
and the missing allocate-statements. All expressions containing algebraic
expressions are unchanged, and are displayed in a comprehensible pseudo-
mathematical notation.

58

4.5. Evaluation

1 function rico_parallel(e, O, E1, E2) result(X)

2 use matrix_parallel

3 implicit none

4 type(rdmatrix), intent(in) :: e

5 type(rmatrix), intent(in) :: O, E1, E2

6 type(rmatrix) :: X

7 ! *** end of interface ***

8

9 integer :: iter

10 type(rmatrix) :: O1, X1

11 real(DP) :: cond, tol

12

13 X = rpt(e, O)

14

15 cond = maxabs(X)

16

17 if (cond == 0) return

18

19 tol = huge(tol)

20 iter = 0

21 do while (tol / cond > 10 * epsilon(tol))

22 iter = iter + 1

23

24 O1 = O - X * E1 + E2 * X

25

26 if (iter > 1) then

27 O1 = O1 - X * tr(O) * X

28 end if

29

30 X1 = X

31 X = rpt(e, O1)

32 tol = maxabs(X - X1)

33 end do

34 end function rico_parallel

Figure 4.9.: Fortran code for the iterative procedure along the lines of Eq. (4.10) illus-
trating the use of the matrix algebra library in an imperative code with
multiple assignments to the same structure. The domain specific function
maxabs(X) returns a max |Xmn| for a matrix X.

59

4. Parallel Linear Algebra Operations in Relativistic Transformations

the Fortran syntax. There is obviously no “abstraction leaking”: none of the implemen-
tation details of the distributed data objects and corresponding operations is exposed.
At the other hand, all computationally expensive operations are executed by highly
optimized parallel routines, invisibly in the background. Thus, our library facilitates
clear, concise, and comprehensible code at a very high level of mathematical abstrac-
tion, which is executed fast and efficiently, as the performance evaluation in Section 4.5.2
shows. This generally contributes to the implementation efficiency and the code quality
in high-performance scientific Fortran codes.

Note that declarations of distributed matrices do not reserve space for actual data. It
is the responsibility of the primitive operations, introduced in Section 4.3.3, to reserve
space, initialize and finally fill the structure with data. Upon return from the subroutine,
all intermediate structures declared in the scope of the subroutine, will be automatically
freed by a standard conforming compiler. This makes explicit deallocation dispensable
and simplifies, thus, the introduced programming model further.

4.5.2. Performance Results

The run time performance has been evaluated on the supercomputer system SuperMIG,
built by IBM, and installed at the Leibniz Rechenzentrum (LRZ)2. The machine con-
tains 205 nodes, each hosting four 10-core Intel Xeon Westmere-EX processors. The
nodes are equipped with 256 GB of memory and interconnected by an Infiniband QDR
network. With this topology calculations involving, for example, 36, 64 and 81 processor
cores were scheduled on one, two, or three nodes, respectively. For the benchmarks we
employed the default vendor supplied MPI library implementation, IBM MPI v5.2, and
BLACS/ScaLAPACK v1.8, linking to the highly optimized BLAS library distributed
with Intel’s MKL v10.3.

The two graphs in Figure 4.10 demonstrate the scaling behavior of a single dense ma-
trix product as one of the primitive linear algebra operations. The parallel efficiency is
limited by the underlying PBLAS implementation [33], provided by the LRZ. For a typ-
ical matrix dimension of 2000 to 4000, the available implementation shows an efficiency
above 50% for a processor core number below 100. For higher matrix dimensions one
may expect the parallel efficiency to degrade slower with the number of processors. A
noteworthy observation in both graphs is the “jump” in the graph related to the array-
curve. This jump is accompanied with a slight “bend” in the scalability curve related
to the parallel matrix multiplication. This jump happens when the total processor core
count crosses the number of cores comprised in a shared memory node—in this case
40—and communication over the physical network is starting to be involved.

For the matrix dimensions used in Figure 4.10, the overhead implied by the use of
distributed data objects—in this example case the execution of the auxiliary routine

2www.lrz.de

60

4.5. Evaluation

0.05

1.8

0.01

0.1

1

10

1 10 100

ti
m

e
in

se
co

n
d

s

number of processor cores

C = A * B
D = array(C)

linear scaling

(a) n = 2000

0.2

13.9

0.1

1

10

100

1 10 100
ti

m
e

in
se

co
n

d
s

number of processor cores

C = A * B
D = array(C)

linear scaling

(b) n = 4000

Figure 4.10.: Log-log parallel time diagrams of a single dense matrix product (labeled
“C = A * B”), opposed to the overhead implied by the creation of a non-
distributed array from a distributed data object (labeled “D = array(C)”).
We considered two cases, involving test matrices of dimensions 2000 and
4000, respectively. The graphs demonstrate, how much distribution over-
head is produced by the auxiliary routine array, and how this compares
to the desired parallel matrix multiplication. With growing processor core
numbers, we can see a clear decrease of time for the matrix multiplication,
which is the desired performance improvement, and a slight increase of the
distribution overhead.

array—becomes comparable with the costs of a single matrix multiplication at about
40 involved cores. Of course, this number depends heavily on the underlying network
infrastructure. A real-world application typically involves considerably more arithmetic
operations, which amortizes this overhead quicker and allows, thus, the use of higher
processor numbers in an efficient way. However, this demonstration should also be seen
as a hint to the programmer, to apply transitions from and to native arrays wisely and,
if possible, sparsely.

The graphs in Figure 4.12 show the scalability of the two parallelized routines for rel-
ativistic transformations, reltrans parallel and rico parallel, see listings 4.8 and
4.9, respectively. The transition costs from- and especially to native arrays are not con-
sidered in these values. We evaluated two different problem sizes: the involved matrix
dimensions n = 2000 and n = 4000. The scalability of the transformation routines
is determined by the underlying parallel numerical routines, mainly the PBLAS im-
plementation, as well as the eigensolver from ScaLAPACK in the case of the routine

61

4. Parallel Linear Algebra Operations in Relativistic Transformations

reltrans parallel. Their execution involves O(n3) FLOPs, and intensive communica-
tion. The impact of the self-implemented routine, responsible for the operation “diago-
nal matrix * dense matrix”, should be minor: its execution involves O(n2) FLOPs, and
no communication, see Section 4.4. The graphs show that the execution time of both
routines are reduced significantly, by employing our distributed matrix library at high
processor numbers. For example, the execution time of the routine rico parallel with
input matrices of dimensions n = 4000 could be reduced from about 194 seconds down to
5.5 seconds, which is a speedup factor of roughly 35. Note also the characteristic “bend”
in Graphs 4.11b and 4.11d, when the processor core count crosses the “40”-barrier, as
already discussed in earlier in this Section.

The parallel efficiency of the performance runs is given by the graphs in Figure 4.12.
One can observe that the routine rico parallel has generally a better scalability be-
havior than the routine reltrans parallel: for n = 4000, rico parallel still has an
efficiency of roughly 0.6 when employing 81 processor cores, whereas the efficiency of
reltrans parallel drops down to 0.45. This effect is mostly imposed by the parallel
eigensolver, which scales typically worse than a parallel matrix multiplication.

To briefly summarize what the results from this Evaluation section show: the proposed
library specification for distributed matrices, which states the central point of the work
presented in this chapter, facilitates an easy parallelization of the existing routines re-
sponsible for the relativistic transformations in ParaGauss. The entailed API retains
the intrinsic Fortran 90 syntax for linear algebra operations, which allows for a clear,
concise, and comprehensible expression of mathematical semantics. Thus, with very
few changes to the original code, our test runs could be accelerated up to a factor of
35. Furthermore, memory-intensive data objects can now be distributed over the global
memory of potentially all involved processor nodes. Apart from this specific application
from quantum chemistry, we would like to emphasize that the use of the this library
is also suitable for new developments of parallel codes: its pseudo-mathematical syntax
allows for a quick implementation, while producing high-quality source code. Thus, it
contributes to the programming productivity in scientific high-performance applications.

62

4.5. Evaluation

26.6

1

10

100

1 10 100

ti
m

e
in

se
co

n
d

s

number of processor cores

meassured time
linear scaling

(a) reltrans parallel, n = 2000

194

1

10

100

1000

1 10 100

ti
m

e
in

se
co

n
d

s

number of processor cores

meassured time
linear scaling

(b) reltrans parallel, n = 4000

42.8

1

10

100

1 10 100

ti
m

e
in

se
co

n
d

s

number of processor cores

meassured time
linear scaling

(c) rico parallel, n = 2000

304

1

10

100

1000

1 10 100

ti
m

e
in

se
co

n
d

s

number of processor cores

meassured time
linear scaling

(d) rico parallel, n = 4000

Figure 4.11.: Log-log time diagrams of the routines reltrans parallel ((a) and (b))
and rico parallel ((c) and (d)). The source codes of the routines are
listed in Figures 4.8 and 4.9, respectively. Considered is the wall-clock
time of one call to a routine, labeled “meassured time”,using test matrices
of dimensions 2000 and 4000.

63

4. Parallel Linear Algebra Operations in Relativistic Transformations

0

0.2

0.4

0.6

0.8

1

1 10 100

p
ar

a
ll

el
effi

ci
en

cy

number of processor cores

meassured eff.
linear scaling

(a) reltrans parallel, n = 2000

0

0.2

0.4

0.6

0.8

1

1 10 100

p
a
ra

ll
el

effi
ci

en
cy

number of processor cores

meassured eff.
linear scaling

(b) reltrans parallel, n = 4000

0

0.2

0.4

0.6

0.8

1

1 10 100

p
ar

al
le

l
effi

ci
en

cy

number of processor cores

meassured eff.
linear scaling

(c) rico parallel, n = 2000

0

0.2

0.4

0.6

0.8

1

1 10 100

p
ar

al
le

l
effi

ci
en

cy

number of processor cores

measured eff.
linear scaling

(d) rico parallel, n = 4000

Figure 4.12.: Semi-log efficiency diagrams of the routines reltrans parallel ((a) and
(b)) and rico parallel ((c) and (d)). The curves labeled “measured eff.”
show the parallel efficiency of the executed routine, and correspond to the
times exhibited in Figure 4.12.

64

5. Scheduling Parallel Eigenvalue
Computations in SCF

The solution of the generalized matrix eigenvalue problem,

HC = SCE , (5.1)

is a central step of the LCGTO-formalism, presented in Chapter 3. It gives an approxi-
mate solution of the Schrödinger equation in each iteration of the SCF algorithm. Next
to the computation of the Coulomb- and exchange-correlation contributions, this linear
algebra problem states a major computational step of existing density functional codes.
Within the LCGTO-formalism, the Hamilton- and overlap-matrix, H and S, respec-
tively, are symmetric real and can be assumed to be dense in most applications. Their
dimensions correspond to the number of employed basis functions, L, and add up to ten
thousand in large applications. The problem in Equation (5.1) is well studied, see [63, 64]
for a collection of standard numerical algorithms. However, the special block-symmetric
matrix structure, implied by the basis transformations introduced in Section 3.2, make
the efficient parallel computation difficult. In this chapter we present a novel technique
and its implementation, which employs a malleable parallel task scheduling (MPTS) al-
gorithm to make most efficient use of existing parallel eigenvalue solvers in this special
matrix problem. Thus, we provide a scalable solution, which reduces the time spent in
this important step significantly, especially in large chemical applications. Therefore, we
first introduce the standard approaches to solve dense matrix eigenvalue problems, and
give common parallel implementations in Section 5.1. Then, Section 5.2 presents the
previous parallelization strategy, which exhibits very limited parallel scalability. There-
after, in Sections 5.3 and 5.4, we establish a scheduling algorithm, which is the core
component of our novel approach. Furthermore, in Section 5.5 we give a technique for
the practical implementation of a cost function, required by the algorithm. Section 5.6
shows some details of the implemented ParaGauss module and its software structure.
Finally, in Section 5.7 we evaluate the parallel performance of our implementation in
real chemical applications.

5.1. The Generalized Matrix Eigenvalue Problem

In common approaches, the first step to solve Equation (5.1) is to compute the Cholesky
factorization S = GGT . By applying A = G−1HGT , the generalized symmetric eigen-
value problem is transformed into a standard symmetric eigenvalue problem of the form

65

5. Scheduling Parallel Eigenvalue Computations in SCF

AC = CE , (5.2)

where CTAC = E = diag(λk) , k = 1 . . . L . Here, L is the matrix dimension, λk are
the eigenvalues of the matrix A, and the columns of C constitute the corresponding
eigenvectors: AC[:, k] = λkC[:, k]. To tackle the problem in Equation (5.2) efficiently,
most approaches compute a matrix Q such that

QTAQ = T , (5.3)

where T has a tridiagonal band form. This tridiagonalization step is usually done by
applying subsequent Householder transformations to A and has an overall runtime of
O(N3) (recall that L ∝ N). A common method to compute the eigenvalues of T , which
equal the eigenvalues of A, is the iterative QR algorithm (see Section 8.3 of [63]), which
requires O(N2) operations for this task. If additionally all eigenvectors, here stored in
the columns of the matrix VT , are required, the costs expand to O(N3) steps. Recently,
the Multiple Relatively Robust Representations (MRRR) algorithm [65] has gained pop-
ularity, which computes all eigenvectors from T in O(N2) steps at the cost of lower
accuracy for some matrix structures.

Finally, the eigenvectors of the original matrix H, stored in the columns of C, can be
achieved by the back-transformation

C = Q−1VT . (5.4)

The overall process requires O(N3) operations, and represents, as already indicated, a
major computational step of existing density functional codes. Thus, an efficient and
scalable parallelization strategy is of crucial importance to avoid computational bottle-
necks in large-scale applications. This performance issue becomes even more important
if one considers that the generalized eigenvalue problem is part of the SCF, therefore the
eigenvalue solution is computed up to a hundred times in a single electronic structure
calculation. In case the molecule geometry is optimized, the electronic structure has
to be determined up to several hundred times, which adds up to 103 − 105 eigenvalue
computations in a typical quantum chemical application.

Note that different discretization approaches than LCGTO, such as plane waves, usu-
ally cope with sparse matrices, so corresponding codes resort to iterative methods, such
as the Davidson algorithm [66]. These iterative algorithms are very different from the
ones introduced in the first part of this section. For more information, please refer to
Chapter 5 of [23].

Linear algebra problems, such as the dense eigenvalue problem, appear in a large variety
of applications from scientific computing. Hence, much effort has been invested in the
design of parallel libraries and their efficient implementation. The two most common
libraries for distributed memory architectures are ScaLAPACK [33] (a parallel version

66

5.2. Previous Parallelization Strategy

of the popular LAPACK library [32]), and PLAPACK [35]. Both were developed in
the 1990s when supercomputers started to comprise more and more massive parallelism.
Their use is widely spread, consequently, library installations belong to the standard
software repository of most supercomputing centers. More recent developments are the
ELPA library [6], which has a special focus on the symmetric eigenvalue problem. Fur-
thermore, the Elemental Framework [67] aims at hybrid supercomputer architectures
(clusters of multicore CPUs). Different from that, the FLAME - [68] and the PLASMA
project [69] both develop scalable linear algebra routines for single-chip environments,
especially for many-core CPUs, by employing dependency-aware dynamic schedulers.
However, their library implementations are still actively developed and do not yet pro-
vide full functionality – especially the latter one does not yet compute eigenvectors.
Another interesting project is the MAGMA project [69], closely related to PLASMA,
which develops high-performance routines for emerging massively parallel SIMD hard-
ware accelerators, such as GPUs.

However, the direct application of existing parallel eigenvalue solvers (abbreviated:
eigensolvers) to H and S is only possible to a very limited extent when the spatial
symmetry of a molecule is exploited as described in Section 3.2. The transformation of
the basis functions into a symmetry adapted form gives rise to a transformation of the
dense structure of the two matrices into a special block-diagonal form,

H = HΓ1 ⊕HΓ2 ⊕ · · · ⊕HΓn ,

S = SΓ1 ⊕ SΓ2 ⊕ · · · ⊕ SΓn .
(5.5)

The blocks on the diagonal correspond to the irreducible representations (IRREPs) Γ of
the molecule, and add up to 4 and 10 in typical applications. They are real, dense, and
symmetric, as the original matrices, and can vary in size up to one order of magnitude.
The great advantage of this method is that the space spanned by the L basis functions is
split into several smaller sub-spaces, which reduces the problem size significantly. Thus,
electronic structure calculations can be sped up by several orders of magnitude.

5.2. Previous Parallelization Strategy

This section describes the previous approach, implemented in ParaGauss, to parallelize
the blocked generalized eigenvalue problem.

The sub-spaces, in their discrete form represented by the sub-matrices HΓ and SΓ, can
be treated independently. This important property offers a first straightforward paral-
lelization strategy, in which the single matrix blocks are distributed over the available
processing units and diagonalized independently by a sequential eigensolver, e.g. the
routine DSYEV from LAPACK. Here it is important to choose an appropriate scheduling
scheme, which distributes the matrix blocks in a way that provides good load-balancing

67

5. Scheduling Parallel Eigenvalue Computations in SCF

and minimizes, thus, the makespan (the overall time to process all blocks). A com-
mon scheme is given by the LPT algorithm [70] as a special form of list scheduling [71].
Practically, the algorithm can be implemented by using the master-worker model : a
dedicated process—the master—holds a list of tasks. In our case, a task represents the
diagonalization of a sub-matrix. The tasks are sorted by the size of the sub-matrices in
descending order, with a pointer to the first (largest) task. Next to the master, there
is a set of worker processes, responsible for the execution of the tasks. In the initial
status of the master-worker-model, the master is waiting for queries from the workers.
Each time the master receives a request, he responds with the task the pointer points
to, and sets the pointer to the next-largest task. These steps are repeated until the
pointer reaches the end of the list: all tasks are sent to the workers for their execution.
All subsequent queries are answered with a termination signal, until the signal has been
sent to all workers. The workers start by querying the master for a task. Once they
receive a task, they execute it (diagonalize the sub-matrix), and when finished, send a
query to the master again. This is repeated until they receive a termination signal.

However, this approach shows very limited scalability: the sequential execution time for
the largest matrix is a lower bound on the overall execution time, and the number of
matrices is an upper bound on the number of processors which can be used. Further-
more, due to the variation of block-sizes, the workload is often poorly balanced and the
available computing resources are used inefficiently. The example in Figure 5.1 demon-
strates this behavior. Although exploiting the symmetry reduces the total problem size
significantly, the dimension of the sub-matrices still grows proportionally to the number
of involved electrons, LΓ ∝ N . Accordingly, the blocked eigenvalue problem still is a
O(N3)-problem, which requires more elaborate parallel treatment to avoid bottlenecks
in large applications.

5.3. Malleable Parallel Task Scheduling

5.3.1. Abstract Formulation and Notation

Here we present a technique, which improves the previous LPT-approach by employing
existing parallel eigensolvers for the diagonalization of the sub-matrices HΓ. This tech-
nique has been reported in [72]. Therefore, we define a set of tasks T = {T1, . . . , Tn},
where a task represents the—possibly parallel—execution of computing all generalized
eigenvalues and -vectors of a sub-matrix HΓ with corresponding overlap sub-matrix SΓ.
(For a better readability we switch to the number-based indices i ∈ N instead of the
group-specific identifier Γ, with the relation Γ 7→ i.) For the computation, there is a set
P = {P1, . . . , Pm} of m identical processors Pj available. The tasks are independent and
nonpreemptable (i.e. not interruptible). Furthermore they are malleable: a task may be
executed by a number of processors p ≤ m, resulting in different execution times.

We define the cost function as

68

5.3. Malleable Parallel Task Scheduling

makespan
t

idle
time

P8
T9
T8

P7 T7

P6 T6

P5 T5

P4 T4

P3 T3

P2 T2

P1 T1

Figure 5.1.: Example of an LPT scheduling of the tasks T1, . . . , T9 on 8 processors. Each
gray bar represents a task, with the width being its execution time. One
can easily see that the makespan is determined by the largest task, here
scheduled on P1.

t : (Ti, p) 7→ ti,p . (5.6)

It predicts the execution time of task Ti, based on its size and the number of processors
p, used to execute the task. The total time required to process all tasks is denoted as the
makespan. The goal of the malleable parallel task scheduling (MPTS) technique is to
minimize the makespan, by parallelizing single tasks and scheduling the workload over
the available processor resources. This guarantees:

• a most efficient use of the available computing resources,

• overall scalability of the blocked eigenvalue step, and

• minimal time spent in this significant computational step.

This minimization problem is well studied, see the discussion in the next section. Fig-
ure 5.2 shows an illustration of an MPTS example.

5.3.2. Related Work

MPTS is a common scheduling problem and has been subject of frequent discussion
over the last decades [73, 74, 75]. It is a generalization of a sequential scheduling prob-
lem, which has been proven to be NP-complete in the strong sense [76]. Therefore, a
variety of approximation algorithms exist. Approximation algorithms are used to give

69

5. Scheduling Parallel Eigenvalue Computations in SCF

makespan
t

idle
time�

��	

P8

P7

P6

P5

P4

P3

P2

P1

T9

T8

T7

T6

T5T4

T3

T2T1

Figure 5.2.: Example of an MPTS scheduling of the tasks T1, . . . , T9 on 8 processors.
The tasks are equivalent to those from the LPT-example in Figure 5.1. In
contrast to the LPT-scheduler, here the tasks are considered “malleable”,
i.e. can be executed by more than one processor at the same time.

near-optimal solutions to NP-problems in polynomial time. Their quality is mainly de-
termined by the approximation factor, which is an upper bound on how much worse
the approximate solution can be, compared to the optimal solution. Another criterion
is the (asymptotic) time required by the algorithm to generate the approximate solution.

A common approach to this solution is based on a two-phase strategy, first introduced
by Turek et al. [77]. The idea is to find a processor allotment for each task in the first
step and to solve the resulting nonmalleable parallel task scheduling (NPTS) problem
in the second step. Ludwig and Tiwari [78] suggested such an algorithm with an ap-
proximation factor of 2. This algorithm is also the basis of the strategy proposed here.
Mounié et al. [79] followed a different approach by formulating a Knapsack problem
as the core component. They provide the currently best practical algorithm with an
approximation factor of 3

2
+ ε for any fixed ε > 0. When the tasks have to be executed

on processors with successive indices, Steinberg [80] proposed an adapted strip-packing
algorithm with an approximation factor of 2. Furthermore, Jansen [81] gave an approx-
imation scheme with makespan at most 1 + ε for any fixed ε > 0. There exist other
algorithms for special cases of the MPTS with approximation factors close to one (e.g.
[82] for identical malleable tasks), but those do not apply for our case.

70

5.4. The Employed MPTS Algorithm

5.4. The Employed MPTS Algorithm

The problem stated in Section 5.3.1 is a standard MPTS problem, so the algorithms
mentioned above can in principle be applied. However, as will be shown, the limited
number of tasks allows us to modify the algorithm by Ludwig and Tiwari [78] in order
to get an improved solution.

The algorithm proceeds in a two-phase approach. The first phase generates a proces-
sor allotment : it assigns each task a fixed number of processors. Thus, the malleable
scheduling problem is transformed into a nonmalleable one (MPTS ⇒ NPTS). In the
second phase, we construct an optimal solution for the NPTS problem by using a com-
binatorial approach. At this point, our approach differs from the originally proposed
algorithm in [78], which constructs an approximate solution.

5.4.1. Phase 1: Processor Allotment

Here we present the basic statements of the first phase of the algorithm presented in
[78], necessary for practical implementations. For details and proofs, we refer to [78].

Recall that the predicted execution time of a task is denoted by ti,p , i being the task
index and p the number of processors assigned to that task, see Equation (5.6). The
algorithm assumes t to be monotonic: ti,p ≥ ti,p′ for p < p′. This property is not gener-
ally given – practically, more processors can unintentionally result in a higher execution
time. Thus, the monotonic assumption needs to be considered in the implementation
of the cost function (see Section 5.5). Furthermore, we introduce the set D, which con-
tains all processor assignments to a task. The set may generally contain the integers,
D = {1, 2, . . . ,m}, however, technical constraints might allow only a certain subset. For
example, one such constraint can be implied by the network topology (e.g. a hypercube
allows only D = {20, 21, 22, . . . , 2r}), or other constraints or simplifications, as will be
introduced later.

Let p̄ = (p1, p2, . . . , pn) be an allotment, where pi ∈ D denotes the chosen processor
assignment to task Ti. The longest execution time of all tasks in an allotment is defined
by h(p̄) = maxi{ti,pi}. Furthermore, define

ω(p̄) = max{ 1

m

n∑
i=1

piti,pi , h(p̄)} (5.7)

as the lower bound on the makespan of the allotment p̄. Hence, the minimization problem

ω = min
p̄∈Dn

ω(p̄) (5.8)

yields a lower bound on the makespan of the MPTS (there is possibly more than one
ω). The goal of this phase of the algorithm is to find a feasible ω with corresponding
allotment. This accomplishes the transformation from an MPTS problem to an NPTS

71

5. Scheduling Parallel Eigenvalue Computations in SCF

problem.

Therefore, define

v[i, 1] < v[i, 2] < · · · < v[i, z[i]] (5.9)

as all possible number of processors that can be assigned to task Ti. A number v[i, j]
can be assigned if the resulting execution time t[i, j] = ti,v[i,j] meets the monotonic
assumption stated above. Thus,

t[i, j] ≥ t[i, j + 1] ∀ j ∈ {1, . . . , z[i]− 1} . (5.10)

Equation (5.7) can also be written as

ω = min
τ

max{τ, 1

m
min
p̄∈Dn

{
n∑
i=1

piti,pi}} , (5.11)

where for now, let τ ∈ R+ be an arbitrary time replacing h(p̄). Define

ji(τ) = min{j : t[i, j] ≤ τ} , (5.12)

which yields the smallest number of processors required to achieve an execution time
smaller or equal to τ for task Ti. Furthermore,

min
p̄∈Dn

{
n∑
i=1

piti,pi} =
n∑
i=1

v[i, ji(τ)] · t[i, ji(τ)] . (5.13)

The proof of Equation (5.13) is given in [78]. With

W (τ) =
1

m

n∑
i=1

v[i, ji(τ)] · t[i, ji(τ)] (5.14)

Equation (5.11) now has the form of

ω = min
τ

max{τ,W (τ)} . (5.15)

Note that the original minimization problem from Equation (5.7), which searches for an
allotment p̄ in the n-dimensional space Dn, has been transformed into a minimization
problem which searches a single value τ in the one-dimensional space R+. Furthermore,
with Equation (5.11), we can restrict τ to the values which h(p̄) can possibly have, com-
prised by the set X = {t[i, j]}.

This suggests a viable strategy to tackle the central minimization problem. The arrays
t[i, ∗] are already sorted by definition (see Equation (5.9) and the monotonic assump-
tion). Hence, they can be merged into a single list of size O(|D|n) in time O(|D|n log n).
The time τ , which yields the minimum bound ω, can then be determined by binary

72

5.4. The Employed MPTS Algorithm

search, which requires O(log(|D|n)) probes. Each probe requires O(n log |D|) opera-
tions (see Equations. (5.12) and (5.14)). However, the total runtime is dominated by
the sorting algorithm, which requires O(|D|n log n) operations. In case of successive
processor numbers (D = {1, . . . ,m}), the computational costs can also be denoted as
O(mn log n). The paper [78] also suggests an alternative algorithm, which improves this
runtime to O(mn). However, for our practical solution, the presented algorithm shall
be sufficient.

5.4.2. Phase 2: The NPTS Problem

A central statement of [78] is that any solution to the NPTS problem can be used to
solve the MPTS problem with the same approximation factor, using the above presented
transformation. See therefore Theorem 3.1 and the following proof in [78]. In our specific
case, the number of tasks, given by the number of IRREPs of the applied point group,
is not more than 10 in the great majority of applications. This includes the important
point groups Oh and Ih and their subgroups as well as in all point groups with up to
fivefold rotational axes as symmetry elements [83]. Based on this assumption of the
maximum problem size, we show how to compute an optimal solution by using a com-
binatorial approach in relatively few computing time. While the running time of this
approach is higher than computing an approximate solution, we show that this invested
time is amortized by a faster computation of the actual eigenvalue problem in Section 5.7.

In our approach, a feasible scheduling is represented ambiguously by a particular se-
quence of tasks. In turn, this task sequence is represented by a permutation σ of the
sequence of integer numbers (1, 2, . . . , n):

σ =

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
, (5.16)

where σ(i) ∈ {1, . . . , n}. To map a number to a distinct task, we define the function

T : i 7→ Ti , (5.17)

such that T (σ(i)) is the i-th task in the permutation sequence σ.

In Phase 1 of the algorithm, each task Ti is already assigned a number of processors pi.
Now, we give an algorithm, which converts the permutation σ into a feasible scheduling,
stored in a data structure for its execution in a parallel software code. Therefore, we
expand the already introduced task- and processor objects, Ti and Pj, respectively, by
some additional fields. To address a field of an object, we use the practical dot-notation:
object.field refers to a property or a nested data structure (i.e. a set or list) comprised
by a specific object. For examples see the following paragraph.

73

5. Scheduling Parallel Eigenvalue Computations in SCF

Each processor Pj ∈ P is assigned a list T [], that holds those tasks the processor has
to process in the right order: Pj.T [i] ∈ T , i ∈ {1 . . . nj} refers to the i-th task to be
processed by processor Pj, with nj being the total number of assigned tasks. We will
refer to this list as the processor stack. These stacks can be easily implemented with
standard (dynamic) arrays, comprised in a data structure representing a task. When
the tasks are finally executed, each process simply has to execute the tasks in his stack
in the right order. Furthermore, the attribute Pj.t stores the (predicted) stack availabil-
ity time, which is the time when processor Pj has finished the execution of all tasks in
Pj.T [], and is available for the processing of new tasks. To finally execute the tasks, the
processor also has to know, which other processors are possibly involved. This informa-
tion is stored in the task-private set Ti.P = {P1, . . . , Pmi

}, where mi is the number of
processors assigned to task Ti. Finally, the number of assigned processors, pi, is stored
in the attribute Ti.p = pi.

Algorithm 1 shows how to construct a practical scheduling from a sequence, given by
σ(i). Thus, the variational freedom for the minimization of the NPTS makespan lies in
the possible permutations σ:

min
σ
{GetMakespan(MakeSchedule(σ))} . (5.18)

The function MakeSchedule is given by Algorithm 1, and the function GetMakespan
by Algorithm 2.

Algorithm 1 The procedure to generate a practical scheduling, stored in the fields of
the objects from T and P , from a permutation σ. The for-loop in lines 4− 10 processes
all tasks in the sequence given by σ. The min-function in line 6 looks for those processors,
whose stacks have the earliest availability time, and the task is scheduled on those which
have first finished according to the current scheduling. Finally, the finalization time of
these processors is updated in line 8. This procedure requires O(nm) steps, n being the
number of tasks and m the number of available processors.

1: function MakeSchedule(σ)
2: Declare a new set P of size m.
3: Initialize all Pi.t from P with 0.
4: for i = 1 . . . n do
5: T = T (σ(i))
6: T.P ← T.p processors with min

Pi∈P
{Pi.t}

7: for all Pi ∈ Ti.P do
8: Pi.t = max

Pi∈Ti.P
{Pi.t}+ ti,pi

9: end for
10: end for
11: return P
12: end function

74

5.4. The Employed MPTS Algorithm

Algorithm 2 The function yields the makespan of a generated scheduling, stored in
the set P . Its execution requires m steps.

function GetMakespan(P)
return max

Pi∈P
{Pi.t}

end function

A sequence of n tasks allows a total of n! possible permutations. Hence, a combinatorial
“brute-force” search would require n! · O(nm) steps. With the assumption of the maxi-
mum problem size, n ≤ 10, the number of permutations to search through would add up
to 10! ≈ 3.6 · 106 in the worst case. The real time required for the computation of this
worst case is still low, in comparison to the time required to solve the actual eigenvalue
problem (given a moderate problem size). Section 5.7 compares these times from real
applications. However, to lower the probability that this case happens, we introduce
two simplifications, in which the problem size can be reduced for most of the common
scheduling constellations:

Simplification 1

In the first phase of the algorithm, described in Section 5.4.1, some tasks might be
assigned all available processors, pi = m. See, for example, the tasks T1 and T2 in
Figure 5.2. Clearly, those tasks can be taken out of the combinatorial part of the
algorithm and simply scheduled before all other tasks. We therefore define the set

Tm = {Ti ∈ T : pi = m} , (5.19)

which contains all tasks that do not have to be considered by the combinatorial routine,
and the set

Tr = T \ Tm , (5.20)

which contains all other tasks in the combinatorial algorithm for the minimization prob-
lem from Equation (5.18).

Simplification 2

Before Algorithm 1 starts to schedule the tasks from Tr on the processors from P , all
processor stacks are available at an initial time, which we denote as t0: either the pro-
cessor stacks are initially empty (if Tm = ∅), or they have a task from Tm on top of their
stack and are available after its common execution. In each permutation σ, there is a set
of tasks T0 ⊆ Tr , n0 = |T0| , which are scheduled at t0 – typically the tasks from the first
few iterations. See for example the tasks T3 and T4 in Figure 5.2. However, depending
on the number of tasks n, the number of available processors m, and the chosen proces-
sor allotment p̄, these tasks may be the majority or even all tasks from Tr: 1 ≤ n0 ≤ |Tr|.

75

5. Scheduling Parallel Eigenvalue Computations in SCF

The presented simplification is based on the assumption that a different scheduling of
the tasks from T0 does not change the makespan of a scheduling of the tasks from Tr,
and consequently of all tasks T . To demonstrate how this assumption helps to reduce
the total number of permutations, we take out one random combination and split it up
into two parts: σ0(i) = σ(i) : i = 1, . . . , n0 ; σp(i) = σ(i) : i = n0 + 1, . . . , n. Let us
assume that σ0 is fixed and the algorithm searches through all (n − n0)! permutations
of σp. Clearly, these permutations constitute a subset of the set of all possible permu-
tations of σ. If now the permutation of σ0 is changed, a “brute force” approach will go
through all possible permutations of σp again, so this particular constellation causes a
total of n0! ·(n−n0)! combinations. However, if we assumed that a different permutation
of σ0 does not result in a scheduling with an improved makespan, we would need only
one random permutation of σ0 instead of n! , and could, thus, reduce the number of
permutations necessary here to (n − n0)! . Note that this works only for one distinct
partitioning of σ into σ0 and σp. Once the elements of σ0 and σp are interchanged, the
permutations of σp have to be computed again.

To show that this assumption is true, we establish the following Theorem:

Theorem 1. There is an initial time t0, when no task from Tr has been scheduled yet
and all processors are available. In each iteration i of Algorithm 1, there is a set of
tasks T0 ⊆ Tr , |T0| = n0 , which start at t0. Let σ0 be the sequence of the tasks from
T0: σ0(i) = σ(i), i = 1, . . . , n0. When establishing a scheduling with Algorithm 1, the
makespan of the whole set T is independent from the sequence σ0.

The proof of Theorem 1 is given by the following paragraphs and lemmas.

Algorithm 1 schedules each task Ti ∈ T one after another on the processors from P in
order of their appearance in σ, see the loop in lines 4− 10. The processors assigned to a
specific task, Ti.P , refer to those processors, whose stacks have the earliest availability
time, Pj.t, in this iteration of the loop (line 6). The starting time of Ti, here denoted as
tstart
i , is the highest availability time of the stacks from Ti.P (line 8). Furthermore, let
tfin
i be the finishing time of Ti:

tfin
i = tstart

i + ti,pi . (5.21)

Lemma 1. After the tasks from T0 have been scheduled, the finishing time of the pro-
cessor stacks must be either t0 or one of their finishing times tfin

i .

Proof. Each processor stack can only contain either no task or exactly one task. Those
which contain no task, are still available at t0; all others after the execution of the
scheduled task, which is at tfin

i = t0 + ti,pi .

Lemma 2. The finishing time tfin
i of each task Ti ∈ T0 is independent from σ0.

76

5.5. Cost Function

Proof. There are two parameters which determine the finishing time tfin
i : the starting

time tstart
i and the assigned processor count pi. The starting time of all tasks in T0 is

per definition t0 and hence equal, and the assigned processor count pi is fixed Phase 2
of the algorithm.

Lemma 3. The finishing time tfin
i of each task Ti ∈ T \ T0 is independent from σ0.

Proof. The time tfin
i is determined in Equation 5.21. The only variable in Phase 2 of

the algorithm is the starting time tstart
i . Furthermore, tstart

i is the availability time of
a processor stack from P , which in turn is the finishing time of a previously scheduled
task: tstart

i = tfin
j , j ∈ {σ(1), . . . , σ(i − 1)} . Let Ti be the first task scheduled after the

tasks from T0: Ti = T (σ[n0 + 1]). Its starting time must be the finishing time of one of
the tasks from T0, according to Lemma 1. These times are independent from σ0, shown
in Lemma 2, hence, tfin

i is also independent from σ0. Thus, for each task T = T (σ[i])
scheduled in iteration i = n0 + 1, . . . , n , the finishing time of the previously scheduled
tasks are independent from σ0, and so is the finishing time of this task, tfin

i .

Clearly, the makespan of the whole scheduling is the finishing time of one of the tasks
from T . Lemmas 2 and 3 show that these times are independent from σ0. This proofs
Theorem 1.

How many of the n! permutations of σ can finally be saved by this simplification, depends
on the constellation of m, p̄, and n. For example, if maxi{pi} � m, the cases in which T0

is large will appear frequently, which reduces the total number of permutations necessary
to a minor fraction of n! . Section 5.7 also addresses this issue.

The Final Algorithm

Finally, Algorithm 3 brings everything together and solves the NPTS minimization prob-
lem from Equation (5.18), according to the scheme presented above.
Figure 5.3 illustrates how this algorithm generates a different makespan from a varying
number of available processors m, making, thus, the overall eigensolver step scalable.

5.5. Cost Function

The practical implementation of Algorithm 3 requires a cost function, as given in Equa-
tion (5.6) and stated here again for convenience,

t : (Ti, p) 7→ ti,p ,

that works well in practical applications. In our case, this function refers to the wall-clock
time performance of the employed eigensolver – here the (Sca)LAPACK routines DSYGV
and PDSYGV. However, accurate performance prediction, especially of parallel routines,
proves to be difficult. The ScaLAPACK User’s Guide [33] proposes a general perfor-
mance model, which depends on machine-dependent parameters such as floating point

77

5. Scheduling Parallel Eigenvalue Computations in SCF

m = 1

m = 2 m = 4

m = 8

m = 12

m = 16

Figure 5.3.: “Strong scaling” illustration of ten tasks on a varying number of proces-
sors m. A task is represented by a gray box, with its width being its pre-
dicted execution time, and its height indicating the number of processors
assigned to it. When all tasks are executed on a single processor (m = 1),
all tasks are simply executed one after another. On higher processor num-
bers, the scheduling algorithm starts to distribute the tasks on the available
processors, where some of the tasks may also be executed using a paral-
lel eigensolver (starting from m = 4). Thus, by employing the proposed
scheduling scheme, the overall eigensolver step for all IRREPs has also been
made “malleable”.

78

5.5. Cost Function

Algorithm 3 Finds the scheduling sequence σ∗, from which MakeSchedule (Algo-
rithm 1) generates a scheduling with the minimum NPTS makespan. An algorithm to
generate permutations of a sequence of objects is part of most standard literature on
algorithms, and for reasons of brevity not provided explicitly here.

Find the tasks which have been assigned m processors and create the sets Tm and Tr
Schedule Tm at the beginning
makespan∗ ←∞
for all permutations σ, except those neglected due to Simplification 2 do

makespantmp ← GetMakespan(MakeSchedule(σ))
if makespantmp < makespan∗ then

makespan∗ ← makespantmp

σ∗ ← σ
end if

end for

performance or network bandwidth, and data- and routine-dependent parameters such
as total FLOP or communication count. In [84], Demmel and Stanley used this approach
to evaluate the general performance behavior of the ScaLAPACK routine PDSYEVX. The
validation of the models shows that the accuracy is relatively poor – the prediction error
lies between 10 and 30%. Apart from that, for the practical use in a computer program,
it exhibits another important drawback: to establish such an analytical model, detailed
knowledge of many implementation details is required, such as the underlying numerical
algorithms, the data distribution, or the communication patterns. Furthermore, each
routine needs its own specific model; thus, if the routine changes (e.g. due to a new
revision or the use of a different library), the model has to be adapted and validated as
well. Hence, we believe that using an analytical performance model does not result in a
good, generic solution.

Here we follow a different approach: the numerical routine—the eigensolver—is treated
as a “black box”. Predictions of its execution time are based on empirical data, which
are recorded by test runs with a set of randomly generated matrices. As Equation 5.6
indicates, the cost function depends on two parameters:

• the task Ti or, more precisely, its size. Since each task corresponds to a symmetric
sub-matrix block HΓ with the relation Γ 7→ i, we refer to its size as the sub-matrix
dimension Ni. All possible (or considered) dimensions are comprised in the set
N ⊂ N;

• the number of employed processors, pi ∈ D.

Both parameters are discrete. However, practically, the set of possible processor num-
bers D is usually much smaller than the set of possible sub-matrix dimensions N . We
therefore propose the following approach: for each processor number p ∈ D we choose
a certain subset of N . On these “points” along the p-axis, we make a test run with a

79

5. Scheduling Parallel Eigenvalue Computations in SCF

0

2

4

6

8

10

12

14

16

500 1000 1500 2000

ti
m

e
(s

ec
o
n
d

s)

dimension n of a matrix ∈ Rn×n

empiric data
fitted data

Figure 5.4.: Example benchmark run of the Cost Function Generator (see Section 5.6.1)
for one pi ∈ D. The points labeled “empiric data” refer to the measured
wall-clock execution times required by the routine PDSYGV to diagonalize
randomly generated matrices. The curve labeled “fitted data” represents a
polynomial function of degree 3, which models the empiric data and is used
by the cost function for execution time predictions.

randomly generated matrix of that size. Then, a continuous cost function tj is generated
using a one-dimensional curve-fitting algorithm. See Figure 5.4 for an example. Thus,
each pj ∈ D has a related cost function, which we denote by

tj : N 7→ tpj ,N . (5.22)

We use the method of least squares to fit the data, see Chapter 15 of [27] for an intro-
duction. For our purposes, it shows two beneficial properties:

• the data can be fitted by polynomial functions, in our case of degree three. This
function type is easy to handle and allows to generate an estimated execution time
tj with low computational effort. The chosen polynomial degree of three refers to
the execution time behavior of the eigensolver routine, which scales as O(N3);

• during the benchmark run, the processing of a matrix may take longer than ex-
pected, e.g. due to unexpected hardware delays (see circular marks in Figure 5.4).
As long as those cases are rare, their influence on the cost function is minor and
can be neglected.

To keep the effort of the test runs small, we introduce a reduction of the set D:
ScaLAPACK uses a two-dimensional block cyclic data distribution. For each instance
of a routine, a mr ×mc process grid has to be allocated with mr process rows and mc

80

5.6. Implementation: Software Components

process columns. However, the ScaLAPACK User’s Guide [33] suggests to use a square
grid (mr = mc = b

√
mc) for m ≥ 9 and a one-dimensional grid (mr = 1;mc = m) for

m < 9. Following this suggestion results in a reduced set of processor configurations,
e.g. D = {1, 2, . . . , 8, 9, 16, 25, . . . , b

√
mc2}, which will be used here.

Finally, we combine the emerging set of p-related cost functions to form the general cost
function from Equation (5.6). However, in practice, when a certain number of allotted
processors is exceeded, parallel routines no longer feature a speedup or even slow down,
see also [85]. This behavior does not comply with the assumption of a general monotonic
cost function. To satisfy this constraint, we redefine Equation (5.6) as

ti,p = min
pj∈D
{tpj ,Ni

: pj ≤ p} . (5.23)

All possible processor counts pj ∈ D are considered which are smaller than or equal to
the primary parameter p. The pj which results in the smallest execution time for the
given N also determines the p-related cost function and thus the result t of the general
cost function.

The accuracy requirements on the cost function are difficult to determine upfront. How-
ever, the evaluation of the presented method on real chemical systems in Section 5.7 will
show that the error is below 10% in all relevant cases, and works well in practice.

5.6. Implementation: Software Components

This section gives an overview of the software, in which we implemented the eigenvalue
scheduling technique, introduced in this chapter. It consists of two main components:

Cost Function Generator An independent program, which carries out benchmark runs
with the employed eigensolver and creates, consequently, a continuous cost function

Eigenscheduler A Fortran library, to be included into ParaGauss, which provides mod-
ules for

1. the generation of a scheduling (the implemented MPTS algorithm);

2. the computation of the eigenvalues and eigenvectors of the Hamiltonian, according
to the generated scheduling.

An overview of the software structure is sketched in Figure 5.5. The following Sections
5.6.1 and 5.6.2 describe these main components in detail.

81

5. Scheduling Parallel Eigenvalue Computations in SCF

ParaGauss

Eigenscheduler
(Fortran 90 + MPI)

LAPACK
(Ext. Lib)

ScaLAPACK
(Ext. Lib)

Coefficient
Data

(Text File)

Cost Function
Generator
(Perl Script)

Curve Fit
(Ext. Lib)

Log File
(Text File)

Eigensolver
Benchmark

(Fortran 90 + MPI)

Figure 5.5.: Structure of the software components implementing the introduced eigen-
scheduler. The Cost Function Generator (see Section 5.6.1) script calls a
program labeled Eigensolver Benchmark. This program executes the bench-
mark runs of randomly generated matrices (see Figure 5.4) using the external
libraries LAPACK and ScaLAPACK. The timings are stored in an external
Log File. Then, the script extracts the times from the log files and passes
them to a Curve Fit routine, which generates the polynomials of degree
three. The coefficients of the polynomials are then stored in a text file la-
beled Coefficient Data. The Eigenscheduler (see Section 5.6.2) is a module
invoked by ParaGauss in each SCF cycle for the solution of the generalized
eigenvalue problem in Equation (5.1). The cost function, as part of the
eigenscheduler, requires the coefficients, stored in the text file Coefficient
Data.

82

5.6. Implementation: Software Components

5.6.1. Cost Function Generator

As the name indicates, this software component is responsible for the generation of the
cost function, required later by the scheduling algorithm. It consists of two components:

• a Perl script (“Cost Function Generator”, see Figure 5.5), which

– calls the program for the eigensolver benchmark (“Eigensolver Benchmark”);

– parses the “Log File”, generated by the benchmark program;

– generates polynomials, which are fitted to the benchmark data;

– writes the polynomial coefficients to an external text file (“Coefficient Data”).

• a Fortran 90 program (“Eigensolver Benchmark”), which carries out the actual
benchmark runs by invoking the external routines DSYGV and PDSYGV. The mea-
sured timings are written to an external “Log File”.

How To – User Information

To start the cost function generation process, one calls the script

${PG_DIR}/schedeig/se_runrec/run.sh ,

where the environmant variable PG_DIR indicates the ParaGauss root directory. Within
the script run.sh, there is a number of parameters (plus default values), which allow
some adjustments of the cost function generation process. Here we give a list of the
available parameters and default values:

MPIPROCESSES=36 The number of processes which are used to schedule the eigensolver
instances on. Can be greater than MAXPROCCONF.

MINPROCCONF=1 The minimum number of processes to be used for a single test run in a
benchmark. See also MAXPROCCONF.

MAXPROCCONF=36 The maximum number of processes to be used for a single test run.
Corresponds tom. Test runs are recorded forD = {1, 2, . . . , 8, 9, 16, 25, . . . , b

√
mc2}.

BLOCKSIZE=64 Determines the size of the blocks, into which the matrices are split up
for their distribution. For more information, we refer to the ScaLAPACK User’s
Guide [33].

MINMATSIZE=200 The smallest possible matrix size used in a benchmark run.

MAXMATSIZE=2500 The greatest matrix size, to which a benchmark run is generated.

STEPSIZE=25 The step size, in which a test series for a p ∈ D proceeds from MINMATSIZE

to MAXMATSIZE.

83

5. Scheduling Parallel Eigenvalue Computations in SCF

According to these values, the benchmark program generates a test run for each p ∈ D,
starting from N = max{MINMATSIZE, pj · BLOCKSIZE}, and proceeding to MAXMATSIZE

in steps of size STEPSIZE. In case bMPIPROCESSES/pjc ≥ 2, the benchmark schedules
several instances of test runs from a series at the same time, which speeds up the whole
benchmark process significantly.

5.6.2. Eigenscheduler

The Eigenscheduler is the component of the software, which is invoked by ParaGauss
to carry out scheduled eigenvalue computations of the Hamiltonian sub-matrices HΓ. It
is an external Fortran 90 library, comprising two main modules and one helper module,
which will be described more in detail below. The interface to these modules has been
designed such, to allow an easy incorporation into ParaGauss, with few changes to the
original code.

se scheduling module

This module establishes a static scheduling, according to the algorithm presented in
Section 5.4. The scheduling is stored in the data type se_scheduling_scheduletype,
also declared in this module. The public interface is defined by only one routine:

se_scheduling_run(scheduling, taskArray,

availableProc, coeffFileName, iostatus) .

The parameters are:

• scheduling (output): is of type se_scheduling_scheduletype, and stores the
scheduling for further processing in se_eigen_module.

• taskArray (input): an integer-array, which stores the dimensions of the IRREPs.
It is required as input parameter for the algorithm, and corresponds to the set N .

• availableProc (input): an integer value, which gives the number of available
processors. It is required as input parameter for the algorithm, and corresponds
to m.

• coeffFileName (input): a string, which contains the path to the coefficient data
file.

• iostatus (output): an integer value, which contains an error value. 0 indicates
success.

The routine must be called collectively by all involved processes. After exit, the schedul-
ing data is provided on the MPI master process (process number 0).

84

5.7. Performance Results

se eigen module

This module does the actual eigenvalue computations of the sub-matrices HΓ, according
to the previously established scheduling. It requires, thus, a feasible scheduling, stored
in a variable of type se_scheduling_scheduletype. The public interface is defined by
the subroutine

se_eigen_compeigs(scheduling, ham_tot,

overlap, eigval, eigvec, mpi_communicator, blacsExit) .

The parameters are:

• scheduling (input): static scheduling information, previously generated by the
routine se_scheduling_run, of type se_scheduling_scheduletype.

• ham_tot (input): The Hamiltonian sub-matrices, refers to HΓ.

• overlap (input): The overlap sub-matrices, refers to SΓ.

• eigval (output): The computed eigenvalues.

• eigvec (output): The computed eigenvectors.

• mpi_communicator (input): A valid MPI communicator, which provides at least
m processes.

• blacsExit (input): A logical value, which determines if the BLACS environment
shall be closed after execution (true) or left unchanged for further use (false).

The data types of the input- and output-matrices, ham_tot, overlap, and eigvec, as
well as the output vector eigval, are the ParaGauss-specific data structures arrmat2

and arrmat3. The routine is called by all processes in the same manner – a differentiation
e.g. between a master- and a slave process is not necessary. However, it is assumed that
the input matrices ham_tot and overlap are provided by the MPI master (process
number 0), which also holds the output data eigval and eigvec after the routine has
terminated.

5.7. Performance Results

We evaluated the presented scheduler on four molecular systems of medium and large
size as example applications: the gold cluster compound Au55(PH3)12 in symmetry S6

(for brevity also referred to as Au55) and the palladium clusters Pd344, Pd489 and Pd670,
all in symmetry Oh. The symmetry S6 results in four large IRREPs with few variation
in size, and the Oh symmetry in ten blocks, whose size varies much more. Thus, the
latter system states a more difficult scheduling problem. Table 5.1 lists the dimensions

85

5. Scheduling Parallel Eigenvalue Computations in SCF

S6 Au55

PGC Ni

Ag 782

Eg 1556

Au 782

Eu 1560

Oh Pd344 Pd489 Pd670

PGC Ni Ni Ni

A1g 199 652 857

A2g 317 447 622

Eg 513 1093 1473

T1g 838 1204 1680

T2g 956 1370 1870

A1u 1110 305 432

A2u 317 447 622

Eu 471 749 1048

T1u 785 1550 2105

T2u 956 1366 1870

Table 5.1.: The resulting point group classes (PGC) of the example systems Au55(PH3)12

in symmetry S6, and Pd344, Pd489 and Pd670 in symmetry Oh.

of the resulting sub-matrix blocks.

The examples were executed on two different computer systems, both installed at the
Leibniz Rechenzentrum1, with different hardware characteristics. Test platform for the
examples Au55 and Pd344 was the former national supercomputer HLRB2, which is an
Altix 4700 from SGI. The system uses between one and two Intel Itanium2 Montecito
Dual Cores as CPUs on one compute node, and has an SGI NUMAlink 4 as interconnect.
Each core has 4 GByte of memory available. The numerical library SCSL from SGI was
used to provide BLAS, LAPACK, BLACS and ScaLAPACK support.

For the test runs of the palladium clusters Pd489 and Pd670, the migration system Super-
MIG, built by IBM, was used, which provides a more recent supercomputer architecture.
The machine contains 205 nodes, each hosting four 10-core Intel Xeon Westmere-EX pro-
cessors. The nodes are equipped with 256 GB of memory and are interconnected by an
Infiniband QDR network. For the benchmarks we employed the default vendor supplied
MPI library implementation, IBM MPI v5.2, and BLACS/ScaLAPACK v1.8, linking to
the BLAS library distributed with Intel’s MKL v10.3. For further details on the hard-
and software specification of HLRB2 and SuperMIG, please refer to [86].

We measured the execution times of the complete eigensolver step in a single SCF itera-
tion, see Figure 5.6. Technically, this refers to a call to the routine se_eigen_compeigs

(see Section 5.6.2). Recall that typical quantum chemical applications require between
103 and 105 eigenvalue computations. This should be taken into consideration when

1www.lrz.de

86

5.7. Performance Results

examining the real time savings achieved by this parallelization technique.

Figure 5.6 shows that the cost function works accurate in most of the cases, with an
error well below 10%. Interestingly, this does not apply to small processor numbers
(m = {1, 2}), where the error is quite significant (up to ≈ 40% in the Pd670 test runs).
Fortunately, these cases still provide good scheduling results, even with a poorly accu-
rate execution time predictions. In the cases where m is higher, the cost function works
sufficiently accurate to facilitate the practical use of the scheduling algorithm.

The figure also shows a lower bound on the execution time of a sequential scheduler
(“LPT”-line). To recapitulate the basic idea of the previously used LPT-scheduler: all
matrices are sorted by their size and accordingly scheduled on any processor which be-
comes available. There the matrix is diagonalized by a sequential (LAPACK) eigensolver
routine (see Figure 5.1). However, this performance bound is now broken and the exe-
cution time is improved below this barrier by our new algorithm, as the next paragraph
will show.

Test runs were performed employing up to 80 and 120 processor cores on SuperMIG for
the test systems Pd489 and Pd670, respectively. On HLRB2, timings were recorded using
up to 20 and 28 cores for the test systems Au55 and Pd344, respectively. Beyond the pro-
cessor numbers presented, no significant speedup could be reached anymore. The graphs
in Figure 5.6 show that the previously existing barrier, implied by the LPT-scheduler
and indicated by the line labeled “LPT”, could be broken, with significantly lower exe-
cution times: on SuperMIG, the diagonalization step of the test system Pd489 was sped
up by a factor of up to 11.1, compared to LPT, and by a factor of 31.6 compared to a
sequential run. For the system Pd670 we achieved a maximum speedup factor of 10.5 and
40, compared to LPT and a sequential run, respectively. For the two systems tested on
HLRB2, Au55 and Pd344, the execution times were improved by a factor of 8.4 and 4.1,
respectively, compared to the LPT-approach, and by factors of 19 and 13.8, respectively,
compared to a sequential run. For all test systems, the execution time of the overall
eigensolver step now lies well below one second, except for Au55, where the execution
requires 1.6 seconds. Thus, we have shown that the execution time of this important
step can be reduced down to a minor fraction of time, compared to the overall electronic
structure calculation.

Figure 5.7 shows the parallel efficiency of the scheduled eigensolver step, according to
the times given in Figure 5.6. One can see that the test system Au55 in S6 symmetry
shows overall a good efficiency, sometimes greater than 1 and never worse than 0.6.
In contrast, the other systems in Oh symmetry, Pd344, Pd489 and Pd670, show a much
worse efficiency at higher processor numbers: above 8 processors, the efficiency drops
below 0.6 in all test systems. This shows that a symmetry such as S6 comprises a sub-
matrix structure much easier to handle for our scheduler: there are only four blocks
which are relatively large, and relatively equal in size (2 blocks of dimension ≈ 1560 and
two blocks of ≈ 780). Here, the parallel solver can parallelize the two large blocks ef-

87

5. Scheduling Parallel Eigenvalue Computations in SCF

ficiently (its efficiency is always above 0.9), only the idle times cause some efficiency loss.

The processor core numbers shown in this evaluation section are relatively small, com-
pared to other eigenvalue computations in electronic structure codes [87]. However,
the chemical systems used for our benchmarks are among the largest systems used in
practical ab initio DFT calculations. In these examples, the computational effort has
been reduced significantly by exploiting the molecular symmetry, which also results in
comparatively small matrix sizes. The computational workload could be increased by
using a lower or no symmetry at all, resulting in much larger core numbers. However,
the scalability of these calculations would depend (almost) solely on the employed eigen-
solver. The improvement of parallel eigensolvers is an active research field in scientific
computing [87, 88], but shall not be discussed in this work.

One also has to consider the costs of establishing the scheduling, mainly implied by the
combinatorial Phase 2 of the algorithm (see Section 5.4.2). This applies especially, if the
chosen point group exhibits high symmetry, such as Oh, where ten IRREPs are involved
(see Table 5.1). The two simplifications, introduced in Section 5.4.2, make the cases,
where it is necessary to go through all 10! permutations, very rare – none of our 47 test
runs created this worst case. The wall-clock time required for the algorithm was always
clearly below one second, in most cases a few milliseconds. However, we provide a “rule
of thumb” to estimate the costs of the worst case: in our Fortran 90 implementation,
executed on the SuperMIG computer system [86], each considered processor caused a
computing time of roughly one second if the algorithm has to go through all 10! combi-
nations, so tworst ≈ m seconds.

To finally summarize what the technique presented in this chapter has achieved: a
parallel bottleneck of the eigensolver in ParaGauss, imposed by the previous “LPT”-
based parallelization approach, could be eliminated. This was achieved by employing a
more sophisticated “MPTS” scheduler, together with parallel eigensolver routines from
ScaLAPACK. The overall scalability of the eigensolver step was significantly improved,
being now able to use processor core numbers up to 120 efficiently. The time spent in this
step was reduced to a minor fraction of what was necessary before, requiring now less
than one second in one SCF iteration for most of the test cases considered in this section.
This approach also goes beyond the use of parallel eigensolvers in other Gaussian-based
DFT codes [87, 89]: to our knowledge, it is the first technique, which allows an efficient
parallel treatment of Hamilton matrices with a block-diagonal structure. Thus, DFT-
based methods which achieve computational benefits by exploiting molecular symmetries
(see Section 3.2) have now been augmented with a specific, efficient, parallelization
technique.

88

5.7. Performance Results

29.9

1

10

100

201 10

ti
m

e
in

se
co

n
d

s

number of processor cores m

predicted
computed

comp. linear
LPT

(a) Au55(PH3)12 in S6 on HLRB2

0.3

13.7

30

1

10

301 10
ti

m
e

in
se

co
n

d
s

number of processor cores m

predicted
computed

comp. ideal
LPT

(b) Pd344 in Oh on HLRB2

18.7

0.1

1

10

100

1 10 100

ti
m

e
in

se
co

n
d

s

number of processor cores m

predicted
computed

comp. linear
LPT

(c) Pd489 in Oh on SuperMIG

37.9

0.1

1

10

100

1 10 100

ti
m

e
in

se
co

n
d

s

number of processor cores m

predicted
computed

comp. ideal
LPT

(d) Pd670 in Oh on SuperMIG

Figure 5.6.: Log-log time diagrams of the complete eigensolver step of the four test sys-
tems Au55(PH3)12, Pd344, Pd489 and Pd670. Considered is the wall-clock
time of the diagonalization module during one SCF iteration. The curves
labeled “predicted” show the makespan of the scheduling algorithm, pre-
dicted by the cost function. The curves labeled “computed” provide the
real execution time of the scheduled eigensolvers. The lines labeled “LPT”
indicate the execution time of the sequential LAPACK routine computing
the largest matrix from N and yield, thus, the best possible performance of
the previously used LPT-scheduler.

89

5. Scheduling Parallel Eigenvalue Computations in SCF

0

0.2

0.4

0.6

0.8

1

1.2

201 10

p
ar

a
ll

el
effi

ci
en

cy

number of processor cores m

computed
no idle time

ideal

(a) Au55(PH3)12 in S6 on HLRB2

0

0.2

0.4

0.6

0.8

1

1.2

301 10

p
a
ra

ll
el

effi
ci

en
cy

number of processor cores m

computed
no idle time

ideal

(b) Pd344 in Oh on HLRB2

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100

p
ar

al
le

l
effi

ci
en

cy

number of processor cores m

computed
no idle time

ideal

(c) Pd489 in Oh on SuperMIG

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100

p
ar

al
le

l
effi

ci
en

cy

number of processor cores m

computed
no idle time

ideal

(d) Pd670 in Oh on SuperMIG

Figure 5.7.: Semi-log diagrams of the parallel efficiency of the complete eigensolver step
of the four test systems Au55(PH3)12, Pd344, Pd489 and Pd670. The curves
labeled “computed” show the parallel efficiency according to the real exe-
cution time required by the scheduled eigensolvers and correspond to the
timing curves labeled “computed” in Figure 5.6. The curves labeled “no
idle time” show the same efficiency, in which the idle time of a scheduling is
subtracted from the execution time. Thus, it indicates the efficiency behav-
ior only of the eigensolvers. The difference between “computed” and “no
idle time” can be interpreted as the efficiency loss due to idle times in the
scheduling. Finally, the line labeled “ideal” indicates the efficiency in case
of a linear speedup.

90

6. Summary

In this thesis, we presented advancements in computational methods, addressing par-
allelization problems arising in Gaussian-based density-functional software for chemical
applications. These advancements are accompanied by implementations, incorporated
in the quantum chemistry software ParaGauss. In particular, we presented a parallel
programming interface, which facilitates easy data management and the expression of
matrix operations in pseudo-mathematical notation. We demonstrated that this tech-
nique is suitable for the expression of parallel relativistic transformations, implemented
in ParaGauss. The resulting code has indeed the appearance of the original abstract
mathematical formulation, and provides a clear and comprehensible representation of
the original semantics. The adoption of the existing, sequential, implementation of
the relativistic transformations was possible with only minor changes to the original
code. We furthermore showed that with our implementation, which partly relies on
the performance-optimized parallel libraries PBLAS and ScaLAPACK, the relativistic
transformations scale up to 81 cores for input matrices of dimension 4000, requiring
now less than one second for the overall relativistic transformation. This states a major
improvement compared to the previous sequential implementation. Consequently, this
technique brings together programming productivity, code quality and parallel perfor-
mance, which we also consider a useful contribution to software engineering in high-
performance computing.

Furthermore, a parallel bottleneck of the eigenvalue solver step in ParaGauss, imposed
by the previous LPT–based parallelization approach, could be eliminated. This was
achieved by employing a sophisticated MPTS scheduler, together with parallel routines
from ScaLAPACK. The overall scalability of the eigenvalue solver step was significantly
improved, being now able to use processor core numbers up to 120 efficiently in large-
scale chemical applications. The time spent in this step was reduced to a minor fraction
of what was necessary for the previous solution, requiring less than one second in one
SCF iteration for all except for one of the test cases considered. This approach also goes
beyond the use of parallel eigenvalue solvers in other Gaussian-based DFT codes [6, 89]:
to our knowledge, it is the first technique that allows an efficient parallel treatment of
dense Hamilton matrices with a block-diagonal structure. Thus, Gaussian-based DFT
methods which achieve computational benefits by exploiting molecular symmetries are
now augmented with an efficient parallelization technique.

91

A. Atomic Units

In quantum mechanics, quantities are usually measured in atomic units (a.u.), given as
multiples of fundamental constants. This appendix gives a list of all relevant constants
and their translation to the more common International System of Units (SI).

Quantity Name Symbol SI unit

Action Reduced Planck’s constant ~ 1.0546× 10−34Js

Length Bohr radius a0 5.2918× 10−11m

Energy Hartree Eh 4.3597× 10−18J

Charge Elementary charge e 1.6022× 10−19C

Mass Electron mass me 9.1094× 10−31kg

The energy is sometimes also given in other units, e.g. in Rydberg or electron Volts:

1 Hartree = 2 Rydberg = 27.2114 eV

The equations in Chapter 2 are all given without units, by expressing quantities as
multiples of the above given constants. For example, the mass m = 7.2 implicitly refers
to a multiple of the electron mass, 7.2 a.u. = 7.2me.

Other Constants

Quantity Name Symbol SI unit

Velocity Speed of light c 299,792,458 m/s

93

Bibliography

[1] M. R. Benioff and E. D. Lazowska. Computational science: Ensuring Americas
competitiveness. Technical report, Presidents Information Technology Advisory
Committee (PITAC), June 2005.

[2] Cern experiments observe particle consistent with long-sought higgs boson. CERN
Press Release, July 2012.

[3] Kommission für Informatik. Jahrbuch 2011. Technical report, Leibniz Rechenzen-
trum, München, Germany, 2011.

[4] E. Schrödinger. An Undulatory Theory of the Mechanics of Atoms and Molecules.
Physical Review, 28:1049–1070, December 1926.

[5] Tom Geller. Supercomputing’s exaflop target. Commun. ACM, 54(8):16–18, August
2011.

[6] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krämer,
B. Lang, H. Lederer, and P. R. Willems. Parallel solution of partial symmetric
eigenvalue problems from electronic structure calculations. Parallel Computing,
37:783–794, 2011.

[7] J. Dongarra. The linpack benchmark: An explanation. In Proceedings of the 1st
International Conference on Supercomputing, pages 456–474. Springer-Verlag, 1988.

[8] T. Belling, T. Grauschopf, S. Krüger, F. Nörtemann, M. Staufer, M. Mayer, V. A.
Nasluzov, U. Birkenheuer, A. Hu, A. V. Matveev, A. V. Shor, M. S. K. Fuchs-Rohr,
K. M. Neyman, D. I. Ganyushin, T. Kerdcharoen, A. Woiterski, A. B. Gordienko,
S. Majumder, and N. Rösch. paragauss, version 3.1. Technische Universität
München, 2006.

[9] T. Belling, Thomas Grauschopf, S. Krueger, M. Mayer, F. Noertemann, S. Staufer,
Christoph Zenger, and N. Roesch. Quantum chemistry on parallel computers: Con-
cepts and results of a density functional model. High Performance Scientific and
Engineering Computing, 8:441–455, 1999.

[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel virtual machine: a users’ guide and tutorial for networked parallel
computing. MIT Press, Cambridge, MA, USA, 1994.

95

Bibliography

[11] Message Passing Interface Forum. Mpi: A message-passing interface standard,
version 2.2. Specification, September 2009.

[12] W. Koch and M.C. Holthausen. A chemist’s guide to density functional theory.
Wiley-VCH, 2000.

[13] A. Szabo and N. S. Ostlund. Modern quantum chemistry. Dover Publishing, Mine-
ola, New York, 1996.

[14] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. Van Dam,
D. Wang, J. Nieplocha, E. Apra, T.L. Windus, and W.A. de Jong. Nwchem: A com-
prehensive and scalable open-source solution for large scale molecular simulations.
Computer Physics Communications, 181(9):1477 – 1489, 2010.

[15] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–
B871, November 1964.

[16] W. Kohn and L. J. Sham. Self-consistent equations including exchange and corre-
lation effects. Phys. Rev., 140:A1133–A1138, November 1965.

[17] R. G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules.
Oxford University Press, New York, 1989.

[18] D. R. Bowler and T. Miyazaki. O(n) methods in electronic structure calculations.
Reports on Progress in Physics, 75(3):036503, 2012.

[19] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,
M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin,
V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.
Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg,
S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox. Gaussian 09 Revision A.1. Gaussian Inc. Wallingford CT 2009.

[20] TURBOMOLE V6.4 2012, a development of University of Karlsruhe and
Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since
2007; available from http://www.turbomole.com.

[21] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B, 54:11169, 1996.

96

Bibliography

[22] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Corso, S. Gironcoli, S. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos,
N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A. Seitsonen, A. Smogunov, P. Umari,
and R. Wentzcovitch. Quantum espresso: a modular and open-source software
project for quantum simulations of materials. Journal of Physics: Condensed Mat-
ter, 21(39):395502, 2009.

[23] Y. Saad, J. Chelikowsky, and S. Suzanne. Numerical methods for electronic struc-
ture calculations. SIAM Rev., 52:3–54, March 2010.

[24] P Pulay. Convergence acceleration of iterative sequences. the case of scf iteration.
Chemical Physics Letters, 73(2):393–398, 1980.

[25] J. M. Soler, E. Artacho, J. D. Gale, A. Garćıa, J. Junquera, P. Ordejón, and
D. Sánchez-Portal. The siesta method for ab initio order-n materials simulation. J.
Phys.: Condens. Matter, 14:2745–2779, 2002.

[26] G. T. Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. Van Gisber-
gen, J. G. Snijders, and T. Ziegler. Chemistry with adf. Journal of Computational
Chemistry, 22(9):931–967, 2001.

[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press,
New York, NY, USA, 3 edition, 2007.

[28] S. Krüger, S. Vent, F. Nortemann, M. Staufer, and N. Rösch. The average bond
length in pd clusters pd[sub n], n = 4–309: A density-functional case study on the
scaling of cluster properties. The Journal of Chemical Physics, 115(5):2082–2087,
2001.

[29] B. I. Dunlap and N. Rösch. The gaussian-type orbitals density-functional approach
to finite systems, in: Density functional theory of many-fermion systems. Adv.
Quantum Chem., 21:317–399, 1990.

[30] B. I. Dunlap, N. Rösch, and S. B. Trickey. Variational fitting methods for electronic
structure calculations. Molecular Physics: An International Journal at the Interface
Between Chemistry and Physics, 108:3167–3180, 2010.

[31] K. Eichkorn, O. Treutler, H. Ohm, M. Haser, and R. Ahlrichs. Auxiliary basis sets to
approximate Coulomb potentials. Chemical Physics Letters, 240(4):283–289, June
1995.

[32] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. SIAM, Philadelphia, PA, third edition, 1999.

97

Bibliography

[33] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. C. Whaley, and J. Don-
garra. ScaLAPACK user’s guide. SIAM, Philadelphia, 1997.

[34] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management
of parallelism in object-oriented numerical software libraries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Com-
puting, pages 163–202. Birkhauser Press, 1997.

[35] R. A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT
Press, 1997.

[36] A. D. Becke. A multicenter numerical integration scheme for polyatomic molecules.
The Journal of Chemical Physics, 88(4):2547, 1988.

[37] F. P. Preparata and M. I. Shamos. Computational geometry: an introduction.
Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[38] V.I. Lebedev. Values of the nodes and weights of ninth to seventeenth order gauss–
markov quadrature formulae invariant under the octahedron group with inversion.
USSR Computational Mathematics and Mathematical Physics, 15(1):44–51, 1975.

[39] V. I. Lebedev and D. N. Laikov. A quadrature formula for the sphere of the 131st
algebraic order of accuracy. Doklady Mathematics, 59(3):477–481, 1999.

[40] M. Mayer. A Parallel Implementation of the Density Functional Method: Imple-
mentation of the Two-Component Douglas-Kroll-Hess Method and Application to
Relativistic Effects in Heavy Element Chemistry. PhD thesis, Technische Univer-
sität München, 1999.

[41] A. V. Matveev. ParaGauss – A Parallel Implementation of the Density Functional
Method: Spin-Orbit Interaction in the Douglas-–Kroll-–Hess Approach and a Novel
Two-Component Treatment of Spin-Independent Interaction Terms. PhD thesis,
Technische Universität München, 2004.

[42] A V. Matveev, M. Mayer, and N. Rösch. Efficient symmetry treatment for the non-
relativistic and relativistic molecular Kohn–Sham problem. the symmetry module
of the program ParaGauss. Computer Physics Communications, 160(2):91 – 119,
2004.

[43] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of Computa-
tional Group Theory (Discrete Mathematics and Its Applications). Chapman and
Hall/CRC, 1 edition, January 2005.

[44] M. Reiher and A. Wolf. Relativistic Quantum Chemistry: The Fundamental Theory
of Molecular Science. John Wiley & Sons, 2009.

98

Bibliography

[45] P. A. M. Dirac. The quantum theory of the electron. Proc. R. Soc. London,
117(778):610, 1928.

[46] M. Douglas and N. M. Kroll. Quantum electrodynamical corrections to the fine
structure of helium. Ann. Phys. (NY), 82:89, 1974.

[47] Notker Rösch and Oliver D. Häberlen. Reply to the comment on: Relativistic
linear combination of gaussian-type orbitals density functional method based on a
two-component formalism with external field projectors. The Journal of Chemical
Physics, 96(8):6322–6323, 1992.

[48] R. J. Buenker, P. Chandra, and B. A. Hess. Matrix representation of the relativistic
kinetic energy operator: Two-component variational procedure for the treatment of
many-electron atoms and molecules. Chem. Phys., 84:1–9, 1984.

[49] M. Reiher and A. Wolf. Exact decoupling of the dirac hamiltonian. II. the gener-
alized Douglas–Kroll–Hess transformation up to arbitrary order. J. Chem. Phys.,
121:10945, 2004.

[50] C. Wüllen. Relation between different variants of the generalized Douglas–Kroll
transformation through sixth order. J. Chem. Phys., 120:7307, 2004.

[51] V. A. Nasluzov and N. Rösch. Density functional based structure optimization for
molecules containing heavy elements: analytical energy gradients for the Douglas–
Kroll–Hess scalar relativistic approach to the LCGTO-DF method. Chem. Phys.,
210:413, 1996.

[52] J. M. Seminario. Recent Developments And Applications Of Modern Density Func-
tional Theory. Theoretical and Computational Chemistry. Elsevier, 1996.

[53] A. V. Matveev and N. Rösch. The electron-electron interaction in the Douglas–
Kroll–Hess approach to the Dirac–Kohn–Sham problem. J. Chem. Phys., 118:3997–
4012, 2003.

[54] A. V. Matveev and N. Rösch. Atomic approximation to the projection on electronic
states in the Douglas–Kroll–Hess approach to the relativistic Kohn–Sham method.
J. Chem. Phys., 128:244102, 2008.

[55] J3 The Fortran Standard Commite. J3/97-007r2. Technical report,
http://www.fortran.com/, 1997. Working Draft of the Fortran 95 Standard.

[56] R. C. Whaley and A. Petitet. Minimizing development and maintenance costs
in supporting persistently optimized BLAS. Software: Practice and Experience,
35(2):101–121, February 2005.

[57] C. Sanderson. Armadillo: An open source C++ linear algebra library for fast
prototyping and computationally intensive experiments. Technical report, NICTA,
Australia, October 2010.

99

Bibliography

[58] B. S. Ling. The Boost C++ Libraries. XML Press, 2011.

[59] P. Gottschling, D. S. Wise, and M. D. Adams. Representation-transparent matrix
algorithms with scalable performance. In Proceedings of the 21st annual interna-
tional conference on Supercomputing, ICS ’07, pages 116–125, New York, USA,
2007. ACM.

[60] G. W. Stewart. Matran: A Fortran 95 matrix wrapper. Technical report, UMIACS,
2003.

[61] M. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Trans.
Comput., C-21:948+, 1972.

[62] Enhanced data type facilities. Technical report, ISO/IEC TR 15581, Second edition,
2001.

[63] G. H. Golub and C. F. van Van Loan. Matrix Computations (Johns Hopkins Studies
in Mathematical Sciences)(3rd Edition). The Johns Hopkins University Press, 3rd
edition, October 1996.

[64] J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the solu-
tion of algebraic eigenvalue problems: a practical guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2000.

[65] I. S. Dhillon and B. N. Parlett. Multiple representations to compute orthogonal
eigenvectors of symmetric tridiagonal matrices. Linear Algebra and Appl, 387:1–28,
2004.

[66] E. R. Davidson. The iterative calculation of a few of the lowest eigenvalues and
corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys.,
17:87, 1975.

[67] Elemental: A new framework for distributed memory dense matrix computations.
ACM Transactions on Mathematical Software. To appear.

[68] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. Flame:
Formal linear algebra methods environment. ACM Trans. Math. Softw., 27(4):422–
455, December 2001.

[69] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures:
The plasma and magma projects. Journal of Physics: Conference Series, 180(1),
2009.

[70] L. Graham, R.˙ Bounds on multiprocessing timing anomalities. SIAM J. Appl.
Math., 17:263–269, 1969.

100

Bibliography

[71] L. Graham, R.˙ Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.,
45:1563–1581, 1966.

[72] M. Roderus, A. Berariu, H.-J. Bungartz, S. Krüger, A. V. Matveev, and N. Rösch.
Scheduling parallel eigenvalue computations in a quantum chemistry code. In Euro-
Par (2)’10, pages 113–124, 2010.

[73] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. Handbook on schedul-
ing: from theory to applications. Springer, Heidelberg, 2007.

[74] J. Blazewicz, M. Y. Kovalyov, M. Machowiak, D. Trystram, and J. Weglarz.
Scheduling malleable tasks on parallel processors to minimize the makespan. Ann.
Oper. Res., 129:65–80, 2004.

[75] G. Mounié, C. Rapine, and D. Trystram. Efficient approximation algorithms for
scheduling malleable tasks. In SPAA ’99, pages 23–32, 1999.

[76] M. Garey and D. Johnson. Computers and intractability: a guide to the theory of
NP-completeness. W.H. Freeman and Company, 1979.

[77] J. Turek, J. Wolf, and P. Yu. Approximate algorithms for scheduling parallelizable
tasks. In SPAA’92, pages 323–332, 1992.

[78] W. Ludwig and P. Tiwari. Scheduling malleable and nonmalleable parallel tasks.
In SODA ’94, pages 167–176, 1994.

[79] G. Mounié, C. Rapine, and D. Trystram. A 3/2-approximation algorithm for
scheduling independent monotonic malleable tasks. SIAM J. Comp., 37(2):401–
412, 2007.

[80] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM
J. Comp., 26(2):401–409, 1997.

[81] K. Jansen. Scheduling malleable parallel tasks: an asymptotic fully polynomial
time approximation scheme. Algorithmica, 39:59–81, 2004.

[82] T. Decker, T. Lücking, and B. Monien. A 5/4-approximation algorithm for schedul-
ing identical malleable tasks. Theor. Comput. Sci., 361(2):226–240, 2006.

[83] S. L. Altmann and P. Herzig. Point-group theory tables. Clarendon, Oxford, 1994.

[84] J. Demmel and K. Stanley. The performance of finding eigenvalues and eigenvectors
of dense symmetric matrices on distributed memory computers. In Proc. seventh
SIAM conf. on parallel processing for scientific computing, pages 528–533, 1995.

[85] R. C. Ward, Y. Bai, and J Pratt. Performance of parallel eigensolvers on electronic
structure calculations II. Technical report, The University of Tennessee, 2006.

[86] Leibniz rechenzentrum. http://www.lrz.de/.

101

Bibliography

[87] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krämer,
B. Lang, H. Lederer, and P. Willems. Parallel solution of partial symmetric eigen-
value problems from electronic structure calculations. Parallel Computing, 2011.

[88] T. Auckenthaler, H.-J. Bungartz, T. Huckle, L. Krämer, B. Lang, and P. Willems.
Developing algorithms and software for the parallel solution of the symmetric eigen-
value problem. Journal of Computational Science, May 2011.

[89] J. Hein. Improved parallel performance of SIESTA for the HPCx Phase2 system.
Technical report, The University of Edinburgh, 2004.

102

