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Zusammenfassung

In dieser Bachelorarbeit wird die Value-at-Risk (VaR) Schätzung im Basel III Market Risk
Framework, basierend auf verschiedenen Extremwert Methoden analysiert. Neben dem
VaR wird in Basel III nun zusätzlich der so genannte gestresste VaR (SVaR) eingeführt,
damit die Kapitalrückstellungen auch hohe Verluste absorbieren können. Zuerst wer-
den die mathematischen Grundlagen dargelegt. Daf̈r wird der VaR definiert und eine
Einfḧrung in die Extremwerttheorie gegeben. Darauf basierend werden dann zwei ver-
schiedene Schätzmethoden für den VaR erklärt: Die erste Methode ist die so genannte
Peaks over Threshold Methode, bei der man die Überschreitungen einer Folge von Zu-
fallsvariablen Xi über einen bestimmten Grenzwert u betrachtet und einer Generalized
Pareto Verteilung anpasst. Die zweite Methode basiert auf dem Hill-Schätzer.

Dann wird eine statistische Analyse der VaR- Schätzung der letzten 5 Jahre (27.04.2007
bis 23.05.2012) durchgeführt. Als Datensatz werden die täglichen Gewinne/Verluste der
Goldman Sachs Group inc. benutzt. Zuerst wird die Verteilung der Daten untersucht. Das
Ergebnis davon ist, dass unser gesamter Datensatz einer Exponentialverteilung zugrunde
liegen. Schätzen wir aber den 99%-VaR für einen bestimmten Tag, nehmen wir immer nur
die Verluste der 260 vorhergehenden Arbeitstage. So müssen wir also unsere Verteilung
jeweils für diese 260 Tage schätzen. Diese unterliegen jeweils einer Extremwertverteilung
mit verschiedenen Paramtern. Basierend auf den oben genannten Schätzmethoden (POT
und Hill) sowie einer Kombination dieser beiden Methoden wird dann der 99%-VaR für
diesen Zeitraum geschätzt. Das Ganze wird mit dem selben aber skalierten Datensatz
wiederholt. Backtesting ergibt, dass sowohl die POT als auch die Hill-Methode basierend
auf den nichtskalierten Daten die besten Ergebnisse gibt. Anschließend werden noch die
einzelnen Terme der Kapitalanforderungen aus den Basel III Richtlinien behandelt.
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1 Introduction

The financial and insurance industry is naturally exposed to different risks, such as high
losses or even bankruptcy, earthquakes, legal risks, etc. just to name a few examples. In
the financial sector we can generally differ between three risk types: Market risk, “the
risk of a change in the value of a financial position due to changes in the value of the
underlying on which that position depends, such as stock and bond prices, exchange
rates, commodity prices etc”, (see [2]), credit risk, the risk of default of the obligor, and
operational risk, the risk of losses due to a fail of people, processes or systems.

Among these three risk categories, the focus in this thesis will be on market risk
or more specifically, the Value-at-risk (VaR) estimation in the Basel III framework, as
described in the Revision to the Basel II market risk framework, published of the Basel
Committee of Banking Supervision in 2010 [3]. The VaR is widely used as a measure of
financial risk and is nothing else than a high quantile. In a non mathematical way, the
VaRα is the value, at which the probability of exceeding this value is equal to (1 − α),
for a given time horizon and portfolio. This is quite intuitive, as we just find a threshold
for exceeding a high loss which happens with a small probability α. Another reason why
this risk measure is so widespread, is the fact that it is so easy to calculate. But there
are some criticisms of the VaR which should be discussed shortly.

First of all it does not fulfill the property of subadditivity, and thus is not a coherent
risk measure (for a detailed discussion of coherent risk measures, see [2] p. 238-248).
Subaddititvity is, if we have two portfolios with loss random variables L1 and L2 and
one merged portfolio with loss random variable L = L1 + L2, then it holds for the risk
measure qα : qα(L) ≤ qα(L1) + qα(L2). The VaR violates this equation, even if we would
intuitively say, that the combination of two portfolios should be less risky than the sum
of the risk of the single portfolios, i.e. there should be a diversification benefit. This is
exactly what subadditivity states. Another point is, that we do not know what happens
above the probability α. There could be significantly higher losses than the VaR or just
losses which are a little higher than the VaR. Moreover, when modeling risk we always
have to make some assumptions which are not met in practice. One of them is the fact
that we assume a completely liquid market, which is not the case in reality, as for example
sales are impossible if there is no counterparty who wants to buy. There is also always
the risk of using a misspecified model for the loss distribution.

The Basel III market risk framework says, that every bank can decide which statis-
tical model they use to calculate the Value-at-risk. It is very common to calculate the
Value-at-risk based on the normal distribution, thus it is assumed that the movement
of stocks is normally distributed. But investigations will show that the data fits better
to a distribution which is more heavy tailed than the normal distribution. More heavy
tailed means that the probability of large values is higher. In other words, if we fit our
data to the normal distribution, the probability of high losses will be underestimated.
This would be a big flaw, as our goal is to estimate a high quantile, which falls exactly
in the part where the normal distribution is too low. This leads to the part of statistics
which is dealing with the probability of rare events: Extreme Value statistics. Extreme
value theory focusses on maxima of samples, and describes the behaviour of maxima in a
probabilistic way as the generalized extreme value distribution.

The main emphasis of this work will be to calculate the Value-at-risk based on different
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extreme value methods, the Peaks over Threshold (POT) method, the Hill-estimator and
a combination of both. As many statistic models, these methods require data which is
independent and identically distributed, and it is common to assume this for the data
of stock returns. But one should be aware of the fact that this is not exactly the case
for daily stock returns, as high losses occur in clusters frequently. This is one of the
assumptions which we have to make, but is not met in reality. Thus our estimations can
be defective at some points. Moreover, our whole further analysis is done with the stock
price of one single stock. In reality the VaR is calculated based on the whole portfolio of
a bank. This simplification can lead to some other results than in practice.

This work will begin with a short introduction to the quantitative standards in the
Basel III market risk framework in section 2. The exact description and formula of the
capital requirements, and the rules given for the calculation of the VaR are summarized
there. The mathematical definition of the VaR will be treated in the following section, as
well as the mathematical basics we need to apply the extreme value methods mentioned
above. This will be followed by the analysis of the capital requirements in the Basel III
market risk framework (section 4).

The data set used are the daily prices of the Goldman Sachs Group, Inc. (NYSE)
obtained from http://finance.yahoo.com. Having this data there will be first a general
analysis of the daily returns of the stock, using standard statistical tools, as the Quantile-
Quantile plot. Then the VaR will be estimated for every day of the last five years (the
period of 2007-04-27 until 2012-05-23) using the different methods in section 4.2. In
section 4.3 the different terms of the formula of the capital requirements will be applied.
All the statistical work is done with the R Project for statistical computing [6], and all
the plots which follow are made with this software. The main R package used is evir
[7], besides a few exceptions where POT [8] or evd [9] are used. They are all for doing
extreme value statistics and can be obtained for free on http://cran.r-project.org.
For all the statistical analysis in section 4, the functions used in R will be presented in a
short way in the text and can be found in full length in the appendix.
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2 Basel III market risk framework - Quantitative stan-

dards

Now, five years after the financial crisis in 2007-2008 financial markets have more or less
recovered, but it is still of high demand to avoid crises of this magnitude. The low quality
of capital and the resulting limited liquidity of many banks were among the reasons
which made the crisis so severe. There is clearly a need for a new regulation defining
bank’s capital buffers to strengthen the whole financial sector against uncertain losses.
On that account, the Basel Committee on Banking supervision introduces a reform of the
regulatory framework for the bankings sector, named “Basel III”.

It is not the first time that regulations are intensified. In 1988 Basel I, the first
international guidelines for banks’ capital buffers, was introduced and updated in 1996.
Whereas in 1988 it only contained capital requirements for credit risk, in 1996 the risk
category market risk was amended. The amendment was a reaction to the bankruptcy
of Barings, the oldest merchant bank in UK, which was eventually caused by a bad
trade of the Singapore-based trader, Nick Leeson. The next enhancement was the part
operational risk, which was implemented in the Basel II framework in 2004. As response to
the latest crises, the reform Basel III will help to raise the resilience of individual banking
institutions in periods of stress. It will be implemented stepwise between 2013 and 2019.
The basic goals are to strengthen the equity basis and tighten liquidity regulations of
banks. This is achieved in a raise of the capital quality and also a raise in the level of the
minimum capital requirements. More precisely, the common equity requirements increase
from 2% to 4.5 % and a capital conservation buffer of 2.5 % is introduced. Furthermore,
the risk coverage of the capital framework for trading activities, securitisation, etc. will
be increased. Moreover, an internationally harmonised leverage ratio is implemented as
well as the promotion of building up capital buffers in good times that can be drawn
down in periods of stress. Also minimum global liquidity standards are introduced and
the supervisory review process is strengthened.

Especially regarding the Basel II market risk framework a factor which caused high
losses was the excessive build up leverage. A big problem was also that there were
no capital charges which include default risk and migration risk for unsecuritised credit
products, which are implemented now. Moreover, the minimum capital requirements
were simply too low to capture the losses during the crises. The answer to this problem
is the introduction of the so called stressed Value-at-risk (SVaR). Whilst before capital
requirements were only based on the Value-at-risk (VaR), now the SVaR is added to
increase the capital requirements and thus absorb higher losses.

According to the Basel III framework the banks still have flexibility in the calculation
of their capital requirements, but there are some minimum standards which they have to
adhere. The basis of the calculation is the VaR computed on a daily basis, using a 99th
percentile, one tailed confidence interval. The 10-day-returns of the portfolio must be
used, which can be approximated by using the 1-day-returns and scale them according to
a normal distribution by

√
10 up to ten days. Furthermore, the length of the sample period

underlying the calculation must be at least one year. Besides that the banks are free to
choose between models based on variance-covariance matrices, historical simulations or
Monte Carlo simulations. Moreover, the Basel III market risk framework defines a SVaR,
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which is calculated on the same basis as the VaR, but in a period of significant stress
for the bank’s portfolio. The length of the period must be twelve months and the choice
of the period has to be approved by the supervisor as well as reviewed regularly. As an
example, a period relating to significant losses in 2007/2008 would adequately reflect a
period of such stress, although other periods may be considered.
Applying these standards, the banks’ capital requirements are the sum of

• The higher of (1) its previous day’s Value-at-Risk estimate VaR0.99,t−1 and (2) an
average of the daily Value-at-Risk estimate on each of the preceding sixty business
days VaR0.99,avg, multiplied by a factor mc.

• The higher of (1) its latest available Stressed-Value-at-Risk estimate SVaR0.99,t−1
and (2) an average of the Stressed-Value-at-Risk estimates on each of the preceding
sixty business days SVaR0.99,avg, multiplied by a factor ms.

The minimum for factors mc and ms is 3. To this minimum an amount between 0 and 1
has to be added, which is directly related to the ex-post performance of the bank’s model.
The backtesting results for calculating this “plus” are based on VaR only and not SVaR.
This results in the following formula for the capital requirement at time t:

Ct = max{VaR0.99,t−1;mcVaR0.99,avg}+ max{SVaR0.99,t−1;msSVaR0.99,avg} (2.0.1)

The whole second term of the equation is new compared to the capital requirements in
the Basel II market risk framework. That means that a large amount of money has to
be added. As the SVaR as well as the average SVaR should be larger than the VaR by
definition, we expect the capital requirements to be more as twice as high as before.
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3 Mathematical Basics

Before starting a statistical analysis of the VaR, it is obligatory to know the basic mathe-
matical results on which our chosen estimation methods are based on. Therefore we start
with introducing the VaR as a risk measure of financial losses. Then we present the basic
ideas of extreme value theory and end with two statistical extreme value methods, the
POT method and the Hill-estimator. The contents and results of this section can all be
found in P. Embrechts, C. Klüppelberg, and T. Mikosch [1] and A. J. McNeil, R. Frey,
and P. Embrechts [2].

3.1 The Value-at-Risk

The Value-at-Risk (VaR) is probably the most popular risk measure in financial institu-
tions. One of the purposes of risk measurement is to estimate possible future losses of
a bank’s portfolio and calculate minimal capital requirements to be able to absorb these
losses. In the Basel III market risk framework the VaR is specified as risk measure for this
calculation. To define the VaR we need some basic statistic definitions. For the following
results we refer to [2], p. 37-43.

Definition 3.1.1. (Generalized inverse and Quantile function)

(i). Let h: R → R be a non-decreasing function (i.e. h(x) ≤ h(y) for x ≤ y). The
generalized inverse is given by

h←(t) = inf{x ∈ R : h(x) ≥ t}.

(ii). Given some distribution function F, the generalized inverse F← is called the quantile
function of F. For α ∈ (0,1) the α-quantile of F is given by

qα := F←(α) = inf{x ∈ R : F (x) ≥ α}.

If F is continuous and strictly non-decreasing, the quantile function is equal to the ordi-
nary inverse of F : qα(F ) = F−1(α). We can also write qα(F ) = qα(X), where X ∼ F .
Now consider a random variable L, which is defined as the loss of a portfolio of risky
assets, with distribution function FL(l) = P (L ≤ l). Comparing two portfolios one could
ask the question which portfolio is riskier than the other. We want to find a way to
describe the different risks, i.e. we want to define a risk measure. A first idea could be
the maximum loss possible, which is inf{l ∈ R : FL(l) = 1}. This measure could be
used in insurance cases, where the maximum loss is a finite number, but as we look at
financial losses which are not bounded in general, this is not an appropriate risk measure.
Therefore, we introduce the VaR as risk measure:

Definition 3.1.2. (Value-at-Risk (VaR))
Given some confidence level α ∈ (0, 1). The VaR of a portfolio at the confidence level α
is given by the smallest number l such that the probability that the loss L exceeds l is no
larger than (1− α). Formally:

VaRα(L) = inf {l ∈ R : P (L > l) ≤ 1− α} = inf {l ∈ R : FL(l) ≥ α}.
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Figure 1: The density of the loss rv L and its 95% value-at risk

In other words, the probability that the loss random variable L is bigger than a certain
threshold (i.e. the (1− α) quantile, VaRα) is smaller than α. It means that, if we choose
α very small you get high values for VaRα. In the financial sector values of α = 0.95 or
α = 0.99 are common.

3.2 Basics in Extreme Value Theory

Extreme Value Theory is the part of statistics which is dealing with the probability of rare
events. It considers events that exceed all the events that have happened in the past. To
study extreme value theory we assume that we have a sample X1, ..., Xn of independent
identically distributed (iid) random variables (rvs) with distribution function (df) F .
Now the main part of interest is to determine the df for the maximum of the sample
Mn = max(X1, ..., Xn).

In this section the basic results for finding this distribution will be presented. First,
we will use the Poisson approximation to examine asymptotic behaviour of the maxima
of our sample. This will lead us to the Fisher-Tippet Theorem, a precise representation
of the so called extreme value distributions. To study the behaviour of the tail of our
distributions we will come to the Pickands-Balkema de Haan theorem. What follows is a
short summery of [1], pages 113-168. The proofs which are not presented can be found
there.

3.2.1 Limit Probabilities for maxima

As said before we want to focus on the maximum Mn = max(X1, ..., Xn) of a sample
of iid rvs X1, ..., Xn. First, we determine the distribution function of Mn by using the
independence of the Xi and the fact that, if Mn ≤ x, it follows Xi ≤ x, ∀i = 1, .., n. Thus,

P (Mn ≤ x) = P (X1 ≤ x, ..., Xn ≤ x) = F n(x).

As the right endpoint of F we define: xF = sup {x ∈ R : F (x) < 1} and we want to
examine the behaviour of Mn towards xF . We achieve the probabilities as n→∞:

P (Mn ≤ x)→ 0 x < xF ,

P (Mn ≤ x) = 1 ∀x ≥ xF , xF <∞,
P (Mn ≥ x)→ 1 ∀x, xF =∞.
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This means that Mn
P−→ xF , and with the fact that Mn is non-decreasing in n we deduce

that the maximum of a sample converges almost surely to the right endpoint of the df F ,
i.e. Mn

a.s.−−→ xF .
This is a quite intuitive result which does not give us much information about the

probabilistic behaviour of Mn. It is much more interesting to find a non-degenerate
distribution to describe the behaviour of a samples maximum, i.e. we look for a df H
such that there exist constants cn > 0, dn ∈ R with

c−1n (Mn − dn)
d−→ Y ∼ H.

Thus, we have to investigate the distribution

P (c−1n (Mn − dn) ≤ x)

or in other words

P (Mn ≤ un) where un = un(x) = cnx+ dn,

where cn is the normalising and dn is the centering constant. It follows an elementary
result which brings us a step closer to the distribution of maxima of a sample.

Proposition 3.2.1. (Poisson Approximation)
For given τ ∈ [0,∞] and an increasing sequence (un) of real numbers, for n→∞, it holds

nF (un)→ τ ⇐⇒ P (Mn ≤ un)→ e−τ . (3.2.1)

It remains the question what the possible (non-degenerate) limit laws for the maxima Mn

are when properly normalised and centered. The answer to this question is given by the
limit property of max-stable laws.

Definition 3.2.2. (Max-stable distribution)
A df is max-stable if ∀n ≥ 2 and iidXi ∼ F , there exist constants cn > 0 and dn ∈ R, so
that

c−1n (Mn − dn)
d
= X1 ⇐⇒ Mn

d
= cnx+ dn. (3.2.2)

Proposition 3.2.3. (Limit property of max-stable laws)
The max-stable distributions are the only non-degenerate limit distributions for normalised
and centred maxima of iid rvs X1, ..., Xn.

However, we still do not know how these max-stable distributions look like and what
properties they have. Thus, we want to present the limit distributions of normalised and
centred maxima of iid rvs, the so called extreme value distributions :



8 3 MATHEMATICAL BASICS

Figure 2: On the right hand side, the distribution functions of the three extreme value
distributions. The solid line for Fréchet: H(x) = Φα(x) where α = 1, the dotted line for
Weibull: H(x) = Ψα(x) where α = 1 and the dashed line for Gumbel: H(x) = Λ(x). On
the left hand side are the corresponding densities.

Fréchet distribution: Φα(x) =

{
0, x ≤ 0

exp{−x−α}, x > 0
α > 0

Weibull distribution: Ψα(x) =

{
exp{−(−x)α}, x ≤ 0

1, x > 0
α > 0

Gumbel distribution: Λα(x) = exp{−e−x}, x ∈ R.

The corresponding rvs to these distributions are called extremal rvs. It is easy to show
that the distributions are max-stable and (3.2.2) holds for all of them with:

Fréchet Mn
d
= n

1
αX1

Weibull Mn
d
= n−

1
αX1

Gumbel Mn
d
= X1 + lnn

We will present an exemplary proof in the case of a Fréchet distribution, the other two
cases can be proven analogously. Let Xi iid ∼ Φα, then it holds:

P (Mn ≤ x) = (Φα(x))n = exp{−nx−α} = exp{−(n−
1
αx)−α}

=⇒ P (n−
1
αMn ≤ x) = exp{−x−α} = Φα(x)

=⇒ n−
1
αMn

d
= X1

Actually, they are the only max-stable distributions one can find. In other words, the
class of max-stable distributions is equivalent to the class of extreme value distributions.
This is stated in the most important theorem in classical extreme value theory:
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Theorem 3.2.4. (Fisher-Tippett theorem, limit laws for maxima)
Let (Xn) be a sequence of iid rvs. If there exist norming constants cn > 0, dn ∈ R and
some non-degenerate df H such that

c−1n (Mn − dn)
d−→ H,

then H belongs to the type of one of the following three dfs:

Frechet: Ψα, Weibull: Φα, Gumbel: Λ.

This theorem for maxima can be compared with the central limit theorem for sums. The
Fisher-Tippett theorem describes the limit distribution of maxima Mn of a sample of iid
rvs X1, ..., Xn as one of the extreme value distributions. The central limit theorem does
the same for the sum Sn = X1 + ... + Xn of a sample of iid rvs X1, ..., Xn, where the Xi

have a finite variance. With norming constants µ = E(X1) and σ =
√
var(X1) you get

the limit distribution for sums:

lim
n→∞

P

(
Sn − nµ
σ
√
n
≤ x

)
= Φ(x), x ∈ R,

Where Φ(x) is the standard normal distribution N(0, 1). Here we only have one limit
distribution, compared to the three limit distribution for maxima.

3.2.2 Maximum Domain of Attraction

If we only know that we have an extremal rv X we still do not know to which extreme
value distribution it belongs or, in other words, given an extreme value distribution H,
what conditions on the distribution function F imply that the normalised and centered
maxima converge weakly to H.

Definition 3.2.5. (Maximum domain of attraction (MDA))
Consider a sequence of iid rvs Xi ∼ F and an extreme value distribution H. If there exist
constants cn > 0, dn ∈ R such that

c−1n (Mn − dn)
d−→ Y ∼ H,

then F is in the maximum domain of attraction of H: F ∈ MDA(H).

Now we will present how to decide which distribution to choose, i.e. which is the maximum
domain of attraction of our sample.

Proposition 3.2.6. (Characterization of MDA(H))
F belongs to the MDA(H) with norming constants cn > 0, dn ∈ R if and only if

lim
n→∞

nF (cnx+ dn) = − lnH(x), x ∈ R,

where F (x) = 1− F (x). When H(x) = 0 the limit is interpreted as ∞.
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Proof. The proposition is easy to prove by using the continuity of H on R and the Poisson
approximation (3.2.1):

c−1n (Mn − dn)
d−→ Y ∼ H

⇐⇒ lim
n→∞

P (Mn ≤ cnx+ dn) = lim
n→∞

F n(cnx+ dn) = H(x), x ∈ R

⇐⇒ lim
n→∞

nF (cnx+ dn) = − lnH(x), x ∈ R

This means that having the distribution of X we can decide which of the extreme value
distributions is the underlying distribution of our maxima. To characterize this exactly
we need some technical help:

Definition 3.2.7. (Slowly varying and regularly varying functions)

(i). A positive, Lebesgue measurable function L on (0,∞) is slowly varying at ∞ if

lim
x→∞

L(tx)

L(x)
= 1, t > 0.

(ii). A positive, Lebesgue measurable function h on (0,∞) is regularly varying at ∞ with
index ρ ∈ R if

lim
x→∞

h(tx)

h(x)
= tρ, t > 0.

One can say that slowly varying functions change relatively slowly for x → ∞ while
regularly varying functions behave like power law functions. Regularly varying functions
can be represented by h(x) = xρL(x), where L(x) is a slowly varying function. This will
be needed in the characterisation of the maximum domain of attraction of the Fréchet
distribution. It should be mentioned that for our further purposes, the analysis of one-day
losses of stocks(or indices), the Fréchet distribution is most appropriate and, thus, the
results are presented in more detail for the Fréchet distribution.

Theorem 3.2.8. (Maximum domain of attraction of Φα)
F ∈ MDA(Φα) for some α > 0 if and only if F (x) = x−αL(x) for some slowly varying

function L. Then

c−1n Mn
d−→ Y ∼ Φα,

where cn = F←(1− 1
n
).

Proof. We assume that we have a sequence of iid rvs X1, ..., Xn with distribution function
F and regularly varying tail distribution function F (x) = x−αL(x) for some slowly varying
L and α > 0. With cn = F←(1− 1

n
) we get F (cn) ∼ 1

n
and then as n→∞:

for x > 0 : nF (cnx) ∼ nF (cnx)

F (cn)
→ x−α

for x ≤ 0 : nF (cnx) ≥ nF (0) → ∞
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Where we use that F (0) > 0, since it is regularly varying. Summarizing the two cases
above we have

nF (cnx)→ − ln Φα(x) ∀x
and with the Poisson approximation (3.2.1) we can conclude

c−1n Mn
d−→ Y ∼ Φα.

The other direction of the proof can be found in [1], p. 131f.

There we used that the tail of Φα is regularly varying with index −α. This can easily be
shown by Taylor expansion.

1−Ψα(x) = 1− exp{−x−α} ∼ x−α, x→∞.
As you can see, dn = 0 and we can choose cn = F←(1 − 1

n
). For studying the extreme

behaviour of a sample one can replace the distribution function F by the empirical distri-
bution function Fn = 1

n

∑n
i=1 1{Xi≤x}, x ∈ R and gets cn = F←n (1− 1

n
) = F←n (n−1

n
) = X(2),

where X(1) ≥ ... ≥ X(n) is the ordered sample of X1, ..., Xn. Because the tail is regularly
varying the distribution has an infinite right end point xF . This is one of the properties
which fits very good for the daily losses of a stock. Even if we can assume that the losses
will not exactly be ∞, the loss of one day can be higher than any observed loss before.
Another important property of Φα which will not be shown here, is

E(Xδ
+)

{
=∞ for δ > α

<∞ for δ < α.

Which means that if you just have α < 2, you get infinite second moments, i.e. an infinite
variance. Consequently F is very heavy tailed if F ∈ MDA(Φα). In particular, it is more
heavy tailed than the normal distribution.

Theorem 3.2.9. (Maximum domain of attraction of Ψα)
F ∈ MDA(Ψα) for some α > 0 if and only if xF < ∞ and F

(
xF − 1

x

)
= x−αL(x) for

some slowly varying function L. Then

c−1n (Mn − xF )
d−→ Y ∼ Ψα,

where cn = xF − F←
(
1− 1

n

)
.

This is quite similar to the characterization of MDA(Φα), but it has a finite right endpoint.
For example chose F as uniform distribution U(0, 1). The maximum of a sample Xi ∼ F
is at most one a.s. and the right endpoint of the distribution is 1. It is easy to check that

n(Mn − 1)
d−→ Y ∼ Ψ1. Clearly this is not a considerable distribution for our daily stock

returns, because they have a distribution with infinite right endpoint.
The MDA(Λ) will not be discussed in detail here, as the distribution is lighter tailed

than any regular varying tail. It consists of a wide range of distribution functions such as
the lognormal distribution, the exponential distribution or the normal distribution. The
characterization of MDA(Λ) is more difficult than the regular variation of MDA(Φα) or
MDA(Ψα), but it can be characterized by the so called von Mises functions and their
tail-equivalent dfs. For further discussion see [1], p.138-152.

To summarize the results above: As Figure 2 shows, the Weibull distribution has a
finite right end point, while the Fréchet and Gumbel have an infinite one. If we compare
the two latter distributions Φα is more heavy tailed than Λ.
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3.2.3 Generalized extreme value distribution

Now as the three different extreme value distributions are characterized, we still have to
decide to which of the three distributions our sample belongs, before we can estimate
parameters. For statistical methods it is mostly desirable that you find a parametric
family of distributions that constitute the three extreme value distribution. Thus, we
define:

Definition 3.2.10. (Jenkinson-von Mises representation of the extreme value distribu-
tions: Generalised extreme value distribution (GEV))
The GEV is defined as

Hξ(x) =

{
exp{−(1 + ξx)−

1
ξ }, if ξ 6= 0

exp{−e−x}, if ξ = 0
, 1 + ξx > 0.

Hence, the support of Hξ corresponds to

x ∈ R for ξ = 0

x < −1

ξ
= α for ξ < 0

x > −1

ξ
= α for ξ > 0.

By defining Hξ,µ,σ := Hξ(
x−µ
σ

) we obtain a three-parameter family with location parameter
µ ∈ R, scale parameter σ > 0 and shape parameter ξ ∈ R.

The shape parameter ξ plays an important role as it characterizes the distribution of Hξ

as one of the three extreme value distributions named above:

Fréchet: ξ =
1

α
> 0

Weibull: ξ = − 1

α
< 0

Gumbel: ξ = 0.

Hξ is nothing else than a shifted and scaled version of these three distributions, which
makes it easier to estimate parameters of a distribution of a sample of extremal rvs. Note
that Hξ is a continuous function of ξ if x is fixed.

3.2.4 Generalized Pareto distribution

As we characterized the MDA(H) above, we can do the same for the generalized extreme
value distribution Hξ.

Theorem 3.2.11. (Pickands-Balkema-de Haan Theorem(1977))
F ∈ MDA(Hξ) for some ξ ∈ R if and only if ∃ a(x) > 0, a(·) measurable, such that for

1 + ξx > 0 it holds:

lim
x↑xF

F (u+ xa(u))

F (u)
=

{
(1 + ξx)−

1
ξ for ξ 6= 0

e−x for ξ = 0
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Proof. We only prove the result for Fréchet case.
First, we assume that F ∈ MDA(Φα), i.e. ξ = 1

α
> 0 which means that we have

Hξ(x) = Φα(α−1(x+ α). As in theorem 3.2.8 this is equivalent to F (x) = x−αL(x) where
L is slowly varying. We chose a(u) = u

α
and get

F (u+ xa(u))

F (u)
=
F (u(1 + x

α
))

F (u)
=

(u(1 + x
α

))−α

u−α
·
L(u(1 + x

α
))

L(u)

=
(

1 +
x

α

)−α
(1 + o(1))→ (1 + ξx)−

1
ξ

Second, we assume that ∃ a(u) > 0 such that

F (u+ xa(u))

F (u)

u→xF−−−→ (1 + ξx)−
1
ξ .

We choose dn such that F (dn) ∼ 1
n

and get

nF (dn + xa(dn)→
(

1 +
x

α

)−α
(3.2.1)
=⇒ (a(dn))−α(Mn − dn)

d−→ Y ∼ Hξ

And with ξ = 1
α

it holds that

Hξ(x) = exp

{
−
(

1 +
x

α

)−α}
= Φα(α−1(x+ α))

Thus, we have F ∈ MDA(Φα).

To clarify what is meant by the left expression in the preceededing theorem we first define.

Definition 3.2.12. (Excess distribution function, mean excess function)
For a rv X with df F and a right endpoint xF the excess distribution function for u < xF
is given by:

Fu(x) = P (X − u ≤ x|X > u), x > 0.

And the “corresponding expected value”, i.e. the mean excess function is given by:

eF (u) = E(X − u|X > u).

For the tail of Fu we get

F u(x) = P (X − u > x|X > u) =
P (X > u+ x)

P (X > u)
=
F (u+ x)

F (u)
. (3.2.3)

Therefore, F u(xa(u)) is equal to the left expression in theorem 3.2.11. Remark that we
have:

eF (u) =

∫ xF

0

y dFu(y) =

∫ xF

0

1

F (u)
y dP (X ≤ u+ x|X > u)

=
1

F (u)

∫ xF

u

(Z − u) dF (Z) =
1

F (u)

∫ xF

u

F (x) dx. (3.2.4)

These two expressions will be relevant for the Peaks over threshold method in section 3.3
and, thus, also for the further data analysis in section 4.
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Definition 3.2.13. (The generalized Pareto distribution (GPD))
The GPD is defined as

Gξ(x) =

{
1− (1 + ξx)−

1
ξ , if ξ 6= 0

1− e−x, if ξ = 0

with

x ≥ 0 for ξ ≥ 0

0 < x ≤ −1

ξ
for ξ < 0.

By defining Gξ,µ,β := Gξ(
x−µ
β

) we get a three-parameter family with location parameter
µ ∈ R, scale parameter β > 0 and shape parameter ξ ∈ R.

Figure 3: On the right hand side, the dfs of three generalized Pareto distributions, cor-
responding to the three different extreme value distributions. The solid line for Fréchet,
with ξ = 0.5, the dotted line for Weibull, with ξ = −0, 25 and the dashed line for Gumbel,
with ξ = 0. On the left hand side are the corresponding densities.

In practice you mostly assume µ = 0 and therefore you get

Gξ,β(x) = 1−
(

1 + ξ
x

β

)− 1
ξ

x ∈ D =

{
[0,∞) if ξ ≥ 0

[0,−β
ξ
] if ξ < 0.

Some examples of the GPD are the standard exponential distribution (for ξ = 0), the
uniform distribution (for ξ = −1) and the pareto distribution (for ξ > 0). The relation to
the general extreme value distribution follows from the Pickand-Balkema-de Haan theorem
3.2.11.
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Proposition 3.2.14. (Relation of GPD and GEV)
F ∈ MDA(Hξ) for some ξ ∈ R if and only if ∃ a(u) > u so that

lim
x↑xF

sup
0<x<xF−u

|Fu(x)−Gξ

(
x

a(u)

)
| = 0.

This means that the GPD is an appropriate approximation for the excess df Fu, if F ∈
MDA(Hξ). It is a very important tool for tail and high quantile estimation. The POT
method, which will be described below is based on the GPD approximation of excesses
over a high threshold.

3.3 The POT method

Now that we have all the technical devices we can come to the main topic of our further
analysis. A part of Extreme value statistics which refers to excesses of high thresholds:
the Peaks over threshold (POT) method. The basic idea of the POT method is that you
assume a sample X1, ..., Xn of iid rvs, which have a GPD as excess distribution function.
For the statistical analysis we only look at excesses of the sample over a certain threshold
u. Thereby, it is possible that you have any distribution in the “middle” of the sample
and an extreme value distribution on the “right margin” of the sample, where “middle”
denotes the values close to the mean of the sample and “right margin” denotes the values
which lie above a certain threshold. This is a big advantage over using the whole sample.

The statistical basis of the POT method is the assumption, that the excesses of a high
threshold u are generalized pareto distributed. Our goal is to estimate the parameters of
the GPD and certain quantiles or percentiles based on this distribution. The presented
results can be found in [1], p. 352-358.

Figure 4: A sample X1, ...Xn of rvs and its excesses over the threshold.
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3.3.1 Excess distribution function

First, we assume that we have chosen a threshold u. How to choose u will be discussed in
more detail in section 3.3.4. So we search for the tail of the distribution function of the
excesses over u, i.e. F (u+ x). From (3.2.3) it follows that

F (x+ u) = F u(x)F (u).

Now we want to estimate the two expressions on the right hand side, based on the sample.
Therefore, we look at the number of excesses over u which we define by

Nu = #{i ≤ n : Xi > u}.

And we denote the excesses Xk − u by Y1, ..., YNu . They are illustrated in Figure 4. They
can be seen as a new sample of rvs and again we assume independence of the rvs. Having
defined the number of excesses we can replace the tail of F by its empirical distribution
function:

F̂ (u) = F n(u) =
1

n
#{i ≤ n : Xi > u} =

Nu

n

A direct result of (3.2.14) is that we can approximate

F u(x) ≈ Gξ,β(x)

for high values of u. Note that we have β = a(u) and a(u) is a function of u. Thus, β as
well as ξ depend on the choice of u. By estimating β and ξ we get:

F̂ u(x) = Gξ̂,β̂(x),

where again ξ̂ and β̂ depend on the number of exceedances and, thus, the choice of u.
Combining the above yields

F̂ (u+ x) = F̂ (u)F̂ u(x) =
Nu

n
Gξ̂,β̂(x).

3.3.2 Estimation of parameters

Estimating the parameters ξ and β can be done by maximum likelihood estimation (MLE).
As MLE requires a sample of iid rvs, we have to make the assumption that Y1, ..., YNu
are iid. This assumption could be criticised in practice, as in reality large losses fre-
quently occur in clusters which implies that they are dependent. But here we will assume
independence of Y1, ..., YNu with Yi ∼ Fu. For the density we get

gξ,β(x) =
ξ

β

(
1 +

ξx

β

)− 1
ξ
−1

, x ∈ D =

{
[0,∞) if ξ ≥ 0

[0,−β
ξ
] if ξ < 0

.

Accordingly, the likelihood function is

L(ξ, β, Y1, ...YNu) =
Nu∏
i=1

gξ,β(Yi) =
Nu∏
i=1

ξ

β

(
1 +

ξYi
β

)− 1
ξ
−1
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and the log-likelihood function

l(ξ, β, Y1, ...YNu) = lnL(ξ, β, Y1, ...YNu) (3.3.1)

= Nu(ln ξ − ln β)−
(

1

ξ
+ 1

) Nu∑
i=1

ln

(
1 +

ξYi
β

)
.

Differentiation with respect to ξ and β and setting to zero provides the results. The
equations have to be solved numerically, and they yield the estimates ξ̂ and β̂.

3.3.3 Estimation of tail and quantile

Having the estimates, we obtain a representation of the tail F (u+ x):

F̂ (u+ x) =
Nu

n
Gξ̂,β̂(x) =

Nu

n

(
1 +

ξ̂x

β̂

)− 1

ξ̂

.

The estimated p-quantile is immediately obtained by setting F̂ (x̂p) = 1− p

x̂p = u+
β̂

ξ̂

((
n

Nu

(1− p)
)−ξ̂
− 1

)
. (3.3.2)

This equation will be important when estimating the VaRα with the POT method, as
we have VaRα = xα. Moreover, if p = 1, we get the estimated right endpoint of the
distribution.

x̂F = u− β̂

ξ̂
.

3.3.4 Choice of the threshold

Remember that we did the steps above under the assumption that we have already chosen
a threshold u. A very important and also quite difficult task is the right choice of the
threshold. We always have to take care that the threshold is neither “too high” nor “too
low”. If we pick a relatively low u, we will get a lot of exceedances of u which seems
to be good at first glance. But as mentioned above the sample could be not extreme
value distributed in the “middle”. This data will then lead to a wrong estimation of
parameters. Opting for a high value of u, the problem occurs that it is just too less data
to provide appropriate estimates. Especially the variance of the estimators becomes too
large. So how do we chose an appropriate u? Therefore, we take a look at the mean excess
function of the generalised pareto distribution, which we can calculate by using (3.2.4)
where F (x) = Gξ,β(x) :

e(u) =
1

Gξ,β(u)

∫ xG

u

Gξ,β(x)dx

=

(
1 +

ξu

β

) 1
ξ
(
−1

ξ
+ 1

)−1
β

ξ

(
1 +

ξx

β

)− 1
ξ
+1
∣∣∣∣∣
xG

u

=
β + ξu

1− ξ
. (3.3.3)
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As the empirical mean excess function we have

en(u) =
1

F n(u)

∫ ∞
u

(x− u) dFn(x)

=
1

Nu/n

n∑
i=1

(Xi − u) 1{Xi>u}
1

n

=
1

Nu

∑
i:Xi>u

(Xk − u). (3.3.4)

So for large u
Fu(y) ≈ Gξ,β → en(u) ≈ e(u). (3.3.5)

As e(u) is a linear function of u, and we know that en(u) ≈ e(u) for large u, we just have
to look at the mean excess plot{(

X(k), en(X(k))
)

: k = 2, ...., n
}

(3.3.6)

and choose the smallest u where it is linear.

3.4 The Hill estimator

Besides the POT method there are different ways of estimating the shape parameter of
the GPD, for example the Hill-estimator ([1], p. 330-339). It estimates ξ under the
assumption that the underlying sample X1, ..., Xn is iid with df F ∈ MDA(Φα) where
ξ = 1

α
, i.e. the sample is obeying a Fréchet distribution. It should be noticed that the

estimator can be obtained by different approaches, e.g. the MLE approach, the regular
variation approach or the mean excess function approach. This assures its functionality.
The MLE approach will be shown here in a few steps. Again, we denote X(1) ≥ ... ≥ X(n)

as the ordered sample. From F ∈ MDA(Φα) we know that the tail of F is regularly
varying and we assume that c = 1, then it holds for X ∼ F :

P (X > x) = F (x) = x−α, x ≥ 1, =⇒ for Y = lnX we have P (Y > y) = e−αy.

This can be generalized by

P (X > x) = F (x) = cx−α =
(x
u

)−α
for x ≥ u > 0, c = uα andY = ln

(x
u

)
.

Then Y is exponentially distributed and by MLE we get:

ξ̂ =
1

α̂
=

1

n

n∑
j=1

lnX(j) − lnu

But as X ∼ F often only holds for the upper extremes, we have to do a MLE on the k-th
upper order statistics. If we choose either u = X(k) or k = #{i ≤ n : Xi ≥ u}, we obtain
the Hill-estimator for ξ:

ξ̂(H) =
1

k

k∑
j=1

lnX(j) − lnX(k) (3.4.1)
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Moreover, we get the estimation for c by ĉ = k
n
X

1/ξ̂(H)

(k) , so the tail is given by

F̂ (x) =
k

n

(
x

X(k)

)− 1

ξ̂(H)

and the corresponding p-quantile by

x̂p =
(n
k

(1− p)
)−ξ̂(H)

X(k). (3.4.2)

As above, the last formula is used to estimate the VaR0.99 with VaRα = xα. For analysis
of the threshold u, the so called Hill-plot can be applied. For ξ it is defined as

{
(
k, ξ(H)

)
: k = 2, ..., n}

The value of k should be chosen out of a region where the plot is “almost constant”, since
the estimator is stable in this area.
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4 Analysis of the market risk in the Basel III frame-

work
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Figure 5: The Goldman Sachs stock price from 2007-04-28 until 2012-05-23.
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Figure 6: The Goldman Sachs stock negative logarithmic returns (left) in 2007-2012 and
the corresponding histogram.

Having all the mathematical devices we can start with the statistical analysis. The quan-
titative standards of the Basel III market risk frameworks define some basic rules for
the calculation of minimum capital requirements, but the banks still have flexibility in
choosing the underlying statistical model. Here, the VaR estimation is done with extreme
value statistics as explained in the previous section. To analyse the different ways of es-
timation as well as the historical development of the VaR, the daily returns of Goldman
Sachs Group inc. are used as the underlying data. In Figure 5 you can see the chart of
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the stock prices. In Figure 6 the negative returns and the corresponding histogram of
the daily negative returns between 2007 and 2012 are depicted. The negative returns are
given by (St−1−St) where St is the stock price at time t and St−1 the stock price one day
before. The negative returns are used instead of the positive because we want to assess
the big losses and our statistical method used is based on the maxima of a sample, not the
minima. As you can also see in Figure 5 the Goldman Sachs stock is varying a lot, which is
related to the financial problems during the crisis, contrary to normal market behaviour.
In this section the daily VaR of the last 5 years is estimated via the POT method, the
Hill-estimator and a method combining both. The data we use can be downloaded from
http://finance.yahoo.com/q/hp?s=GS&a=00&b=3&c=2005&d=04&e=23&f=2012&g=d.

We begin the analysis in R:

gs <-read.csv("C:/.../ gs.csv")

date.gs<-strptime(gs[,1],format ="%Y-%m-%d")

head(gs)

Date Open High Low Close Volume Adj.Close

1 2012 -05 -23 96.75 98.51 95.51 98.04 5469700 97.57

2 2012 -05 -22 96.88 99.95 96.59 97.53 5839700 97.07

3 2012 -05 -21 94.80 97.55 94.00 96.51 5314700 96.05

4 2012 -05 -18 97.53 97.90 95.00 95.49 7184700 95.04

5 2012 -05 -17 98.57 99.94 97.08 97.08 6375200 96.62

6 2012 -05 -16 100.55 102.14 98.20 98.20 5797200 97.73

ret.gs <-diff(gs[,5])

ret.gs0 <-ret.gs[ret.gs >0]

head(ret.gs)

[1] -0.51 -1.02 -1.02 1.59 1.12 1.67

For the further analysis the difference of the closing prices of each day (ret.gs) are the
negative returns of the stock. Thus, by ret.gs0 the one day losses of the stock are given.
Based on the data analysis we achieve a knowledge about the statistical behaviour of the
sample. Subsequently the daily VaR for every day of the period between 2007-04-27 and
2012-05-23 will be estimated based on past values. Afterwards we will choose a period of
significant stress to calculate the SVaR. Finally we will accomplish the different terms of
the capital requirements of the Basel III framework calculated for the last 5 years, but by
means of analysing, it is done with the one-day-VaRs instead of the 10-day-VaRs which
is suggested in the Basel III framework.

4.1 General Data Analysis

We start the statistical analysis with an explorative analysis of the underlying data. As
previously mentioned, we use extreme value methods, because our quantile estimation
is based on the large observations of our sample. An empirical cumulative distribution
function of the losses only provides a rough shape of the distribution. A more valuable
tool for a detailed examination is the Quantile-Quantile plot. Thereby, we look at the
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whole set of the data and not only on the data of one year, as we will do later to calculate
the VaR. Having found an appropriate distribution of the whole sample we conclude
that the data of one year has the same or similar distribution. We are aware that this is
questionable, as we have to assume that our data is iid, which is actually not the case.
Having a sample X1, ..., Xn and the corresponding ordered sample is X(1), ...., X(n) where
X(1) ≤ ... ≤ X(n) the QQ-plot is given by

{
(
F←( k

n+1
), X(k)

)
: k = 1, ..., n},

i.e. theoretical values of the chosen distribution F are plotted against the values of the
ordered sample. If the plot is roughly linear we can assume that F is the distribution of
our sample. This is stated in the Glivenko-Cantelli Theorem:

Theorem 4.1.1. (Glivenko-Cantelli theorem)
Let Fn(x) = 1

n

∑n
i=1 1{Xi≤x}, x ∈ R be the empirical distribution function of a sample

X1, ..., Xn, then it holds for n→∞

sup
x∈R
|Fn(x)− F (x)| a.s.−−→ 0.

Note that, even if our sample is not appropriate scaled and centered, it does not have an
impact on the linearity of the plot. That is because the location and scale parameter do
not change the shape of our distribution. You can even estimate the intercept and slope
watching the plot. This is, of course, not a very exact way of estimation.

In Figure 7 the quantiles of the whole sample are plotted versus different theoretical
quantiles: the normal quantiles, exponential quantiles and Fréchet quantiles with ξ = 0.1
and ξ = 0.5. A QQ-plot of the threshold data (using 180 upper values) against the gener-
alized Pareto distribution with different ξ’s is presented in Figure 8. The corresponding
R code is given above each plot.

qqnorm(ret.gs)

qqplot(rexp (10000) , ret.gs0)

qqplot(rfrechet (10000 , shape =10),ret.gs0)

qqplot(rfrechet (10000 , shape =2),ret.gs0)
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Normal Quantiles
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Exponential Quantiles
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Figure 7: QQ-plots of the Goldman Sachs daily negative returns during 2007-2012, with
quantiles of the normal, exponential and generalized extreme value distribution with ξ =
0.1 and ξ = 0.5 (from left to right).
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Figure 8: QQ-plots of the exceedances of u of Goldman Sachs daily negative returns during
2007-2012, with quantiles of the generalized pareto distribution with different choices of
ξ: ξ = 0, ξ = 0.1, ξ = 0.2, ξ = 0.5 (from left to right).

The first thing we can observe from the left graph in Figure 7 is, whether our sample is
heavy or light tailed compared to a normal distribution. As we can see, the right tail
values are more increasing than the middle values, which means that the tail-distribution
of the data is heavier tailed than a normal distribution. In the second graph from the left
the data is plotted against the exponential distribution, where we can observe a more or
less straight line, despite some points which are a little higher. Then the sample quantiles
are plotted against Fréchet quantiles where ξ = 0.1, which is also a good fit. For the
Fréchet quantiles of the right graph, we chose ξ = 0.5, which is too heavy tailed for our
sample. But one should keep in mind that here we examine the behaviour of all positive
values of our sample, or all values in the case of the Normal quantiles.

However, our goal is to determine a distribution especially of the large values of our
sample. Thus, the logical step is to actually contemplate only these values. In other
words, we look at the excess distribution function of our sample. Thus, we choose a
threshold so that 180 of 1861 values lie above the threshold, i.e. approximately 9.7 % of
our whole data set, or 180 out of 929 positive values, i.e. approximately 19.4 %. The
threshold is then given by u = 3.99. Now this threshold data is plotted against the GPD
with different ξ, where ξ = 0.5, ξ = 0.2, ξ = 0.1, and ξ = 0 (see Figure 8). Comparing
the four different graphs with increasing ξ from left to right, ξ = 0 is the best fit for our
threshold data. That means that we can assume that the tail of our sample is obeying an
exponential distribution. We should be aware of the fact that we used the whole sample
and get a good fit for a certain ξ. Later on, when we look only at a part of our sample,
the estimation of ξ will vary for each period. Nevertheless, we can conclude that, when we
examine the excesses of a certain high threshold, we have a sample which is generalized
pareto distributed.
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4.2 Estimation of the daily Value at Risk

In the previous section we made a general data analysis with the whole range of our data.
Now we want to calculate the daily one-day VaR. For each particular date we will use the
negative returns of the 260 preceding business days to estimate the VaR. The estimation
will be based on different methods of extreme value statistics. All methods require an
appropriate choice of numbers of extreme values which we include in our estimation. This
is an important questions, and will be discussed more in detail in section 4.2.1. Having
chosen a threshold, we will describe the different methods and compare their results over
the last five years. This will be done by using the 1-day-log-returns of the Goldman Sachs
stock and compared to the VaR estimation based on the normal distribution.

4.2.1 Choice of the threshold

First of all, we will discuss how to decide which threshold could be appropriate or, in other
words, how many upper values do we assume to be extreme value distributed. To investi-
gate the right choice of a threshold value, as described in section 3.3.4 we will first use the
standard tool: The mean excess plot, which is given by

{(
X(k), en(X(k))

)
: k = 2, ...., n

}
,

cf. (3.3.6), i.e. we plot the sample against the empirical mean excess function (3.3.4).
In Figure 9, we depict the mean excess plot of the positive values of our sample. We
omitted the last 7 values, because they are affected by boundary effects which are not
representative. This is because upper plotting points are the average of only a handful of
extremes, and the last point is always on the x-axis. This downwards trend at the end
should not be taken into account.

meplot(ret.gs0 ,omit =7)
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Figure 9: Mean excess plot of the positive values of our sample, which consists of the
negative returns of the Goldman Sachs stock during 2007-2012.
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We observe that our plot fluctuates a lot, but is more or less increasing beginning from
u ≈ 2.5 and one could add a linear regression line which approximates the behaviour of
the plot. This upwards trend shows heavy tailed behaviour of our sample. But still the
points have large variation from the straight line for higher values of u. The next step
of our threshold analysis is to observe the change of the shape parameter and the change
of the quantile with a change of the threshold. In Table 1 we compare the outcomes of
the GPD fit to our data when we choose different numbers of extremes. The comparison
is performed for the VaR of 2010-07-01, which means that the preceding 260 business
days are used as our sample to estimate the VaR (cf. 3.1), i.e. the negative returns
from 2009-06-19 until 2010-06-30. We can see that the estimated shape parameters ξ and
scale parameters β vary with different choices of the threshold, but the quantile which we
estimate on basis of (3.3.2) does not change significantly. We show this exemplarily for
the number of extremes k = 26.

date <-which(gs[ ,1]=="2010 -07 -01")

ret10.gs<-ret.gs[(date +1):( date +260)]

gpd.26<-gpd(ret10.gs,nextremes =26)

> gpd .26$p.less.thresh

[1] 0.9

> gpd .26 $threshold

[1] 3.74

> gpd .26 $par.ests

xi beta

0.4158144 1.5129573

> riskmeasures(gpd .26 ,0.99)

p quantile sfall

[1,] 0.99 9.580002 16.32669

Number of extremes
18 26 34

Percentage above threshold 6.9% 10% 13.1%
Threshold 4.1 3.74 3.33
ξ 0.2935115 0.4158144 0.414545
β 2.2614619 1.5129573 1.367307
VaR0.99 9.990852 9.580002 9.60661

Table 1: Comparison of the estimates of a GPD fit to the negative returns from 2009-06-19
to 2010-06-30 choosing a different number of extremes.

In Figure 10, the shape parameter as well as the VaR0.99 is plotted versus the number
of extremes we use for fitting the GPD. The left column is based on the data for the
VaR of 2008-07-01, a period of relatively normal market behaviour before the crisis. The
middle two graphs are based on the data of 2009-07-01, which is right after a year of high
volatility on the market (see Figure 6). The data for the VaR-estimation of 2010-07-01 is
used for the two right graphs and this date coincides with the date of Tabular 1. This is
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after the market has more or less calmed down. For all dates we can observe that based
on the POT method the 99%-VaR does not really depend on the choice of the threshold
u. However, what we want to emphasize is that the 95% confidence boundaries of our
estimates for ξ and the VaR are very large (see the red lines). In the upper graphs of
Figure 10 we see that the estimated ξ depends considerably on the date of the estimated
VaR. But all three lines are more or less constant around a number of extremes k = 26.

date <-which(gs[ ,1]=="2009 -07 -01")

ret09.gs<-ret.gs[date:(date +260)]

shape(ret09.gs,start=17,end=45, reverse=FALSE)

quant(ret09.gs,p=0.99, start=17,end=45, reverse=FALSE)

17 21 25 29 33 37 41 45

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2

7.75 7.34 6.98 6.29 5.23 4.85

Exceedances

S
ha

pe
 (

xi
) 

(C
I, 

p 
=

 0
.9

5)

Threshold

17 21 25 29 33 37 41 45

−
0.

5
0.

0
0.

5

7.68 7.49 6.57 6.29 5.95 5.18

Exceedances

S
ha

pe
 (

xi
) 

(C
I, 

p 
=

 0
.9

5)

Threshold

17 21 25 29 33 37 41 45

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

4.26 3.99 3.65 3.34 3.29 2.95

Exceedances

S
ha

pe
 (

xi
) 

(C
I, 

p 
=

 0
.9

5)

Threshold

17 21 25 29 33 37 41 45

8
10

12
14

16
18

20
22

7.75 7.34 6.98 6.29 5.23 4.85

Exceedances

0.
99

 Q
ua

nt
ile

 (
C

I, 
p 

=
 0

.9
5)

Threshold

17 21 25 29 33 37 41 45

8
10

12
14

16
18

20
22

7.68 7.49 6.57 6.29 5.95 5.18

Exceedances

0.
99

 Q
ua

nt
ile

 (
C

I, 
p 

=
 0

.9
5)

Threshold

17 21 25 29 33 37 41 45

4
6

8
10

12
14

16
18

4.26 3.99 3.65 3.34 3.29 2.95

Exceedances

0.
99

 Q
ua

nt
ile

 (
C

I, 
p 

=
 0

.9
5)

Threshold

Figure 10: The shape parameter ξ of the GEV and quantile when fitting the negative
returns to a generalised pareto distribution dependent on the number of extremes used
for estimation, based on the data for the VaR estimation from the following dates 2008-
07-01 (left), 2009-07-01 (middle), 2010-07-01 (right).

Now we want to look at a different way to estimate the quantile: The Hill estimator. As
described in 3.4 the shape parameter can be estimated by (3.4.1) and subsequently the
quantile by (3.4.2). Using the function hill we can choose whether we want to plot ξ,
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α or the quantile as a function of the threshold or the number of extremes. For a fixed
date, this is done by

date <-which(gs[ ,1]=="2009 -07 -01")

ret09.gs<-ret.gs[date:(date +260)]

hill(ret09.gs,option ="xi",start=15,end =45)

hill(ret09.gs,option =" quantile",start =15,p=0.99,end =45)
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Figure 11: The shape parameter ξ of the GEV and the quantiles estimated with the Hill-
estimator dependent on the number of extremes used for estimation, based on the data
for the VaR estimation from the following dates 2008-07-01(left), 2009-07-01(middle),
2010-07-01(right).

Note that the Hill estimator fits the data only to a Fréchet distribution not to the larger
class of GEV distribution. In Figure 11 the shape parameter ξ, estimated by the Hill-
estimator, as well as the estimated quantile as a function of the threshold are plotted for
different dates. The same dates are chosen as in Figure 10. To make an appropriate choice
of threshold, we should look at the upper three plots. In order to find an appropriate
threshold with the help of the Hill plots, we search for a region where the graph is
approximately constant. The middle and the right graph can be seen as more or less
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Figure 12: Three mean excess plots based on the data for the VaR estimation of the
following dates: 2008-07-01 (left), 2009-07-01 (middle), 2010-07-01 (right).

constant in the whole range of our plot. The left graph, however, has a step around a
number of extremes k = 29 and we might say that it is constant between 17 and 29. We
could chose 26 exceedances as a value in the middle of the constant area. Contrary to the
lower graphs in Figure 10, the estimated quantile depends on the number of extremes.
Taking into account more excesses provides us a higher VaR estimate as we can see in the
two left plots of Figure 11. But in the region around 26 extremes they are all consistent.
It should be argued that we want to estimate the 99% VaR which means that only one
percent of the data, here around “2.6” values, should lie above the VaR. Thus, we should
also look at range of data around this 1% quantile. Consequently, the upper 10% (i.e. 26
of 260 values) of the ordered sample is better than using more values.

Another tool to examine the threshold or the behaviour of the sample is the mean
excess plot which is depicted for the whole sample in Figure 9. Now it is plotted again for
the three different dates in Figure 12. The plots coincide with the results of Figure 10: The
left graph is decreasing, which means the underlying sample is light tailed, and a negative
ξ is estimated. The graph in the middle is more or less constant, which indicates a sample
which is exponentially distributed. As the right graph is increasing, the underlying data
is clearly heavy tailed. This is based on the data for the VaR of 2010-07-01, which means
the data from 2009-06-19 until 2010-06-30. Based on the 26 largest values of this sample
we get ξ̂ = 0.416 and based on this estimate Figure 13 depicts the excess distribution
function, the tail of the distribution function and a QQ-Plot of the data against general
pareto quantiles.

We can obtain the plots in Figure 13 by

date <-which(gs[ ,1]=="2010 -07 -01")

ret10.gs<-diff(gs[date:(date +260) ,5])

k<-26

threshold <-findthresh(ret10.gs,ne=k)

gpd.10<-gpd(ret10.gs,nextremes=k)

plot.gpd(gpd .10)
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Figure 13: The excess distribution function (left), the tail of the distribution function

(middle) and the QQ-plot with Fréchet quantiles with ξ̂ = 0.416 (right) based on the
26 largest values of the data from 2009-06-19 until 2010-06-30, the data for the VaR of
2010-07-01.

4.2.2 Parameter and VaR estimation with different methods

In the following section the shape parameter ξ as well as the scale parameter β will be
estimated by different means of extreme value statistics, described in the mathematical
basics, section 3. The estimation for the daily VaR is based on the largest 26 values out of
a set of 260 values, the returns of the 260 preceding business days. As the analysis in 4.2.1
has shown, this is an appropriate choice of number of extremes. Based on these selected
extremes, the parameter estimates can be determined. Subsequently, the VaR0.99 will be
estimated for each day of the last 5 years (the period of 2007-04-27 until 2012-05-23). The
VaR of the first 260 days is estimated based on the data which is only partly depicted
in Figures 14-16 since we always need 260 preceeding daily returns for the estimation.
Therefore, we used returns beginning from 2006-01-18. The different VaRs are compared
to the estimated VaR0.99 based on the normal distribution.

For a fit of the normal distribution, the empirical mean and variance were estimated
based on the previous 260 days. Since the mean is always close to zero, setting µ = 0
would not change the results significantly, but we will nevertheless use the empirical
mean. Consequently, we assume that the returns of each of the 260 days preceding day i
to be N (µi, σi

2) distributed and we can estimate the 99% normal quantile as VaRN
0.99(i).

The R code below shows how to estimate each VaR for one day i. Figure 14 - 16 have
been obtained by using a loop of i over the whole period (2007-04-27 until 2012-05-
23). Therefore, we defined i as the date of the VaR, ret as the negative returns of the
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preceding 260 business days of i, retsort as the decreasing sorted ret and k as the
number of extremes used for the estimation.

i<-which(gs[ ,1]=="2009 -07 -01")

ret <-ret.gs[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

k<-26

And the normal VaRN
0.99(i) can then be derived with:

VaRnorm <-qnorm (0.99, mean=mean(ret),sd=sd(ret))

Method 1: Classical POT method
We begin with the first extreme value method, where ξ and β are estimated based on
the POT method, which was presented in detail in section 3.3. Thereby ξ̂ and β̂ are
determined by maximum likelihood estimation and put in formula (3.3.2) to calculate the
VaR0.99. In Figure 14 the POT-VaR (blue) is plotted as well as the Normal-VaR (black)
and the daily negative returns. The outcomes of the VaR based on the POT method are
higher than the outcomes of the normal distribution. This is due to the fact that the POT
method uses the GEV distribution, which is more heavy tailed than the normal distribu-
tion and thus delivers higher quantiles. Moreover, it was observed that in some periods,
the POT method provides negative ξ̂, which means that the estimated distribution has a
finite right end point. But the quantiles are still appropriate. This will be discussed in
more detail at the end of this chapter. The POT-VaR is estimated by:

gpd <-gpd(ret , nextremes=k)

q<-riskmeasures(gpd ,0.99)[2]
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Figure 14: The dynamical development of the VaR estimated by the POT-method (blue)
and the normal distribution (black).
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Method 2: Hill estimation
Another classical extreme value method to estimate the VaR is the Hill-estimator, as
explained in section 3.4. We will first estimate the shape parameter ξ̂(H) of the GEV
distribution by formula (3.4.1). Then the VaR can be derived from formula (3.4.2). In R

there is no function where the shape parameter is estimated by the Hill-estimator, so we
use the formulas itself. It is important to note that no scale parameter is included in this
estimation and the quantile is just based on the estimated ξ̂(H) and the threshold, which
is the k-th largest value of the ordered sample u = X(k). Especially in the beginning of
our observed period the outcomes of the Hill estimation are significantly better than the
Normal-VaR. This can be observed in Figure 15, where the VaR by the Hill-estimator
(red line) is higher than many losses, while the Normal-VaR is not.

shape <-(1/k)*sum(log(retsort [1:k]))-log(retsort[k])

q< -((260/k*(1 -0.99))^( - shape ))* retsort[k]
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Figure 15: The dynamical development of the VaR, where ξ is estimated by Hill-estimator
(red) and by the normal distribution (black).

Method 3: Combining Hill-estimation and POT method
As in method 2, we will again use the Hill-estimator to determine the shape parameter
ξ. Additionally, the shape parameter β is estimated by the POT method. Therefore
the estimate ξ̂(H) is put in the log-likelihood function of the GPD, l(ξ̂(H), β, Y1, ..., YNu)

(3.3.1) and β is then estimated by maximum likelihood estimation given ξ = ξ̂(H). This
estimation is again compared to the normal distribution in Figure 16. The values of the
VaR fluctuate more than the Normal-VaR. Especially at the beginning of 2007, the VaR
is even higher than all occurred losses. When we determined the shape parameter by
the Hill-estimator, we use the function fitgpd instead of the function gpd, because one
parameter, in this case ξ, can be fixed.
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shape <-(1/k)*sum(log(retsort [1:k]))-log(retsort[k])

gpd <-fitgpd(ret ,threshold=retsort[k],est="mle",shape=shape)

scale <-gpd$scale

q< -((260/k*(1 -0.99))^( - shape ) -1)*( scale/shape)+ retsort[k]

2008 2009 2010 2011 2012

−
20

−
10

0
10

20

Figure 16: The dynamical development of the VaR, where ξ is estimated by the Hill-
estimator and β by the POT-method, given ξ̂(H) (green) and the normal VaR (black).

Comparison of the different estimated shape parameters
It is intressting to observe the different outcomes of the estimated shape parameter ξ̂
based on the different methods. In Figure 17 the different outcomes for the last five years
are depicted. First, ξ is estimated by the classical POT method (blue) and, secondly,
ξ is estimated by the Hill estimator (red). It is hard to explain why the POT-method

delivers ξ̂’s with such a high variation. We would rather expect a more continuous line
with a few steps. Moreover, it is negative in some areas, which indicates that we have
a Weibull distribution. But we do not assume losses of a stock to have a certain finite
threshold. This could be explained by the fact that the high losses, which are taken into
the estimation, are all more or less the same in this areas and thus the MLE estimates
a negative ξ̂ (see Figure 6). The shape parameter received from the Hill-estimator does
not vary as much. But as we saw above both estimation methods provide relatively good
estimates for the VaR. Which means that the VaR is estimated appropriate, as it would
have absorbed most of the occurred losses. This will be discussed in more detail in section
4.2.4.
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Figure 17: The dynamic development of the shape parameter ξ, where ξ is estimated by
the classical POT-method (blue dots) and the Hill-estimator (red dots).

4.2.3 Parameter and VaR estimation with scaled data

In the previous section we have assumed that 260 data points have the same distribution,
and we have estimated ξi and βi by methods 1 - 3 based on this assumption. But in reality
every data point has a different distribution, so it could be problematic for statistical work
to make this assumption. To take this into account, we scale the whole data set and derive:

X̃i =
Xi − µ̂i
β̂i

where µ̂i := 0 and β̂i :=

√√√√ 1

n− 1

n∑
i=1

(Xi − µ̂i)2.

Here µ̂i is set to zero, because the empirical mean is so small that it is negligible and
would not change the results significantly, and β̂i is determined by the empirical standard
deviation. In R we get the scaled data set by

sigma1 <-c()

for (i in 1: (length(ret.gs) -260)){

ret.help <-ret.gs[(i+1):(i+260)]

sigma <-sd(ret.help)

sigma1 <-rbind(sigma1 ,sigma)

}

ret.neu <-ret.gs[1:( length(sigma1 ))]/ sigma1

Now methods 1-3 are applied on X̃i to estimate the VaR based on the scaled data ṼaR.
Therefore, we define ret as the scaled negative returns of the preceding 260 business days
of i.

ret <-ret.neu[(i+1):(i+260)]
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Now the different methods are applied as above. Only for method 1 we use the function
fitgpd instead of the function gpd. The dynamic development of the scaled VaRs is
depicted in Figure 18. Now we take this VaR and scale it backwards with VaR(i) =

ṼaR(i)β̂i. This is done in Figure 19. We can observe that all three methods deliver more
or less the same results.
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Figure 18: The dynamical development of the VaR of the scaled data, based on the
POT-method(blue), the Hill-estimator(red) and a combination of Hill-estimator and the
POT-method(green).
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Figure 19: The dynamical development of the VaR, based on the POT-method (blue),
the Hill-estimator (red) and a combination of Hill-estimator and the POT-method(green)
of the scaled data, and scaled back after the estimation.
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Again the different estimated shape parameters are plotted in Figure 20. Comparing the
development of ξ based on the scaled data with the development of ξ in Figure 17, we
observe that the trend is the same. But the ξ estimates by the POT method fluctuates
even more, when we use the scaled data for estimation.
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Figure 20: The dynamical development of the shape parameter ξ, where ξ is estimated by
the POT-method (blue dots) and the Hill-estimator (red dots) based on the scaled data
set

4.2.4 Backtesting

Finally, we apply a simple backtesting procedure to our estimates. As we estimate the
99% VaR, the number of losses above the estimated VaR should be around 1% of all
data, which cover 5 years, or exactly 1340 days. In Table 2 the different extreme value
methods, as well as the method of using the normal distribution are compared. Using
method 1 or 2 on the unscaled data, we have 13 excesses of the losses over the VaR, which
is 1.02% of our data. This is the closest we get to 1%. This is very interesting, as we
can see that the two classical methods in extreme value theory work very good. Even if
we would expect that the scaling of the data would provide us better results, this is not
the case. Nevertheless, all the methods deliver appropriate results. Moreover, it should
be emphasised that regarding the percentage of losses exceeding the Normal-VaR, the
estimated 99%-VaR is more a 98%-VaR. This means that the probability that we exceed
the VaR is twice as high as it should be. This again confirms that the data is in fact more
heavy tailed than the Normal distribution and, thus, it is not a good way of estimating
the VaR.
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Method # neg returns >VaR in %

unscaled data
1 POT 13 1.015625
2 Hill 13 1.015625
3 Hill & POT 9 0.703125

scaled data
1 POT 15 1.171875
2 Hill 15 1.171875
3 Hill & POT 12 0.9375
Normal distr. 25 1.953125

Table 2: Comparison of the backtesting results of the different methods for estimating
the VaR during 2007-04-28 until 2012-05-23.

4.3 Additions to the daily VaR

The Basel III framework does not only require the calculation of the VaR. In addition
to the VaR a so called stressed VaR (SVaR) is required, which is a new announcement
compared to the Basel II framework. Besides this, a 60-days average VaR has to be
calculated. This results in the formula for capital requirements in the Basel III framework:

Ct = max{VaR0.99,t−1;mcVaR0.99,avg}+ max{SVaR0.99,t−1;msSVaR0.99,avg} cf. (2.0.1)

The different terms in the formula will now be described in more detail.

4.3.1 Estimation of the stressed Value at Risk

First of all, we consider the estimation of the stressed VaR. The Basel III framework
requires that the SVaR is estimated based on a period of significant stress. It suggests
a period around 2007/2008 if this adequately represents a stressed period. In the case
of Goldman Sachs we observe in Figures 5 and 6 that the stock might have the highest
volatility around 2008/2009. To find an adequate period, the maximal VaR of each
method above is searched. A comparison of the outcomes and the corresponding dates of
maximus are listed in Table 3. The 260-days data used for the estimation of the VaR of
these exact day should be a period of significant stress. As we can see, the Normal-VaR
reaches its maximum earlier than the VaRs of methods 1-3. The data used for the normal
SVaR thus begins on 2007-10-31. In Figure 21 the different methods are plotted during
the period of stress (2007-10-31 to 2009-07-23). We observe that all the extreme value
methods deliver more or less the same results, but method 3 provides the highest.

Method max. VaR dates of max. VaR
1 POT 15.10394 2009-06-19 to 2009-07-09
2 Hill 16.19147 2009-07-10 to 2009-07-17
3 Hill & POT 17.47609 2009-07-20 to 2009-07-23
Normal. distr 15.00873 2008-11-11

Table 3: Comparison of the maximal VaRs of the different methods and the corresponding
dates where the maxima are reached.
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Figure 21: The period of stress of Goldman Sachs and the VaRs by the POT-
method(blue), the Hill-estimator(red) and the combination of Hill-estimator and POT-
method(green) as well es the normal VaR(black).

4.3.2 Average of VaR and sVaR

In the following only the POT-method is used. Regarding formula (2.0.1), besides the
VaR and the stressed VaR, an average VaR has to be calculated for both of them in
order to determine the capital requirements in Basel III. As we did our whole analysis
based on the 1-day and not 10-day log-returns, we can not determine the actual capital
requirements, but we can analyse the formula based on our estimations of the 1-day-VaR.
First, we calculate the average VaR, which is the average of the VaRs of the preceed-
ing 60 business days, given by the blue line in Figure 22. Then we have to determine
max{VaR0.99,t−1;mcVaR0.99,avg}, where mc = 3. In fact mc can be chosen between 3 and
4, depending on the backtesting results. But here it is chosen as 3. The red line in this
Figure represents 3VaR0.99,avg and we can observe that at each point of time it holds that
max{VaR0.99,t−1;mcVaR0.99,avg} = mcVaR0.99,avg. Thus, the same holds for the SVaR.
This means that the capital requirements at time t would be the sum of three times
the VaR0.99,avg and three times the SVaR0.99,avg. Regarding the capital requirements we
would choose a certain SVaR , here for example from t=2009-07-09. The SVaR is given
by SVaR0.99,avg = 15.02944. This and 3SVaR0.99,avg = 45.08832 is marked as a point in
Figure 22. Then max{SVaR0.99,t−1;mcSVaR0.99,avg} is a constant which is added in the
capital requirements of each day.
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Figure 22: The dynamical development of the VaR estimated by the POT method(black),
combined with the 60-days-average-VaR(blue) and 3 times the average VaR (red).

5 Conclusion

The goal of this thesis was to estimate the daily VaR0.99 of the period 2008-04-27 until
2012-05-23 by different means of extreme value statistics. Moreover, the formula of the
capital requirements in the Basel III framework was analysed based on this VaR estima-
tion. Here we have to mention that the whole analysis was based on 1-day losses and,
thus, we determined the 1-day VaR and not the 10-day VaR as it is required in the
framework. Moreover, we did the estimation based on one single stock, and not a whole
portfolio, how banks would do it. Thus, calculating the actual capital requirements would
not make sense here. We would for example get higher capital requirements than the stock
is worth, what is, of course, senseless. In reality banks have a very large portfolio and the
variation is small in comparison with its value. But for our purpose to do a statistical
analysis, it is satisfying to use one stock.

We first gave an overview of the mathematical topics the estimation is based on. The
VaR and the basic steps in extreme value theory which lead to the estimation methods
used were discussed.

Then the analysis was performed with the daily returns of the Goldman Sachs Group
inc. stock which was chosen, because the stock has a high volatility which distinguishes
the functionality of extreme value methods. We started with a general analysis of the
sample, where we learned that the whole sample is exponential distributed. We calculated
the VaR for each day in the sample period looking at the preceeding 260 business days.
Based on these samples we used tools as the mean excess plot and the hill plot to examine
over which threshold our data is extreme value distributed. We concluded that the 26
largest values can be fitted to a GEV. Then we firstly fitted the excesses over this threshold
to a generalized pareto distribution by finding an appropriate shape parameter ξ and scale
parameter β using the POT method. Secondly, we used the Hill estimator to estimate
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a positive shape parameter ξ, which fits the data to a Fréchet distribution. The POT
method delivers besides positive also negative ξ’s. This is actually not what we accepted,
because a negative ξ means that the underlying distribution is a Weibull distribution
which has a finite right endpoint. Based on theses estimates we estimated the VaR with
the POT method and the Hill estimator as well as with a combination of both. We saw
that despite the completely different outcomes of ξ the estimated VaR is similar for all
methods used. In particular, we can conclude that the classical extreme value methods
deliver very good results. In our observed period 1.02 % of losses lie above the VaR
derived from the POT method and Hill estimator. This is very close to the 99% VaR,
what we wanted to obtain.

Furthermore every data point was scaled by the empirical standard deviation of the
preceeding 260 days, to derive a rather identically distributed dataset. The extreme value
methods were again applied on the scaled sample. Actually, the work of our estimators
was a little bit worse, but still delivers appropriate results. Lastly, we saw that fitting the
data to the normal distribution is not appropriate and our sample is indeed more heavy
tailed, which means that we were right when assuming a geneneral pareto distribution for
the excesses of our sample values over a certain threshold.
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A R codes

For the whole section we have

gs <-read.csv("C:/.../ gs.csv")

as the data downloaded from
http://finance.yahoo.com/q/hp?s=GS&a=00&b=3&c=2005&d=04&e=23&f=2012&g=d

A.1 Figure 1

dens <-density(rgumbel (1000000))

plot(dens ,xlim=c(-3,7),main="",sub="",xlab="",cex.axis =1.5,

lwd=3,cex.lab =1.5)

VaR95 <-qgumbel (0.95)

abline(v=0)

abline(v=VaR95 ,lty=2,lwd =3)

x1 <- min(which(dens$x >= VaR95))

x2 <- max(which(dens$x < 7))

with(dens , polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0),

col="gray "))

axis(side=1,at=VaR95 ,"VaR (0.95)" , cex.axis =1.5)

text(locator (1),"5%" ,cex =1.5)

A.2 Figure 2

library ("evd")

par(mfrow=c(1,2))

x <- seq(-4, 8, length =100)

hx <- dweibull(-x,shape =1)

plot(x, hx , type="l",lty=3,lwd=3,ylab="h(x)",cex.axis =1.5,

cex.lab =1.5)

lines(x,dgumbel(x),type="l",lty=2,lwd=3)

lines(x,dfrechet(x,shape =1),type="l",lwd =3)

legend (" topright",legend=c(" F r c h e t ","Weibull","Gumbel"),

lwd=3,lty=c(1,3,2),cex=2)

x <- seq(-4, 8, length =100)

hx <- pweibull(-x,shape =1)

plot(x, (hx*(-1)+1), type="l",lty=3,lwd=3,ylim=c(0,1),

ylab="H(x)",cex.axis =1.5,cex.lab =1.5)

lines(x,pgumbel(x),type="l",lty=2,lwd=3)

lines(x,pfrechet(x,shape =1),type="l",lwd =3)

legend (" bottomright",legend=c(" F r c h e t ","Weibull","Gumbel"),

lwd=3,lty=c(1,3,2),cex=2)
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A.3 Figure 3

library ("evd")

library ("evir")

par(mfrow=c(1,2))

x <- seq(0, 5, length =100)

hx <- dgpd(x, xi=0.5)

plot(x, hx , type="l",lty=1,lwd=3,cex.axis =1.5, ylab="g(x)",

cex.lab =1.5)

lines(x,dgpd(x,xi=-0.25), type="l",lty=3,lwd=3)

lines(x,dgpd(x,xi =0.0000000001) , type="l",lty=2, lwd=3)

legend (" topright",legend=c(" F r c h e t ","Weibull","Gumbel"),

lwd=3,lty=c(1,3,2),cex=2)

x <- seq(0, 5, length =100)

hx <- pgpd(x, xi=0.5)

plot(x, hx , type="l",lty=1,lwd=3,ylim=c(0,1),cex.axis =1.5,

ylab="G(x)",cex.lab =1.5)

lines(x,pgpd(x,xi=-0.25), type="l",lty=3,lwd=3)

lines(x,pgpd(x,xi =0.0000000001) , type="l",lty=2, lwd=3)

legend (" bottomright",legend=c(" F r c h e t ","Weibull","Gumbel"),

lwd=3,lty=c(1,3,2),cex=2)

A.4 Figure 4

library ("evir")

set.seed (1)

gev <-rgev(50,xi =0.8)

gev0 <-gev[6>gev&gev >0]

plot(gev0 ,ylim=c(0.2 ,5.2) , type="h",xlab=" ", ylab=" ",xaxt="n",

yaxt="n",lwd =1)

abline(h=2.5,lwd=2,lty =3)

gev25 <-gev0[gev0 >2.5]

ind <-which(gev0 >2.5)

for (i in 1: length(gev25 )){

polygon(x=c(ind[i],ind[i]),y=c(2.5, gev25[i]),lwd =3)

}

axis(side=2,at=2.5,"u",cex.axis =1.5,las=1,lwd =3)

text(locator (1), expression(X[i]),cex =1.5)

text(locator (1), expression(X[i]-u),cex =1.5)

text(locator (1), expression(X[1]),cex =1.5)

text(locator (1), expression(X[n]),cex =1.5)

text(locator (1), expression(X[k]),cex =1.5)

text(locator (1), expression(X[k]-u),cex =1.5)
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A.5 Figure 5

date.gs<-strptime(gs[,1],format ="%Y-%m-%d")

chart.gs<-gs[,5]

dateplot <-date.gs[1:( length(date.gs) -582)]

chartplot <-chart.gs[1:( length(chart.gs) -582)]

plot(dateplot ,chartplot ,type="l",ylab=" ", xlab=" ",

main=" Goldman Sachs Group , Inc.(NYSE) Basic Chart ")

A.6 Figure 6

date.gs<-strptime(gs[,1],format ="%Y-%m-%d")

ret.gs <-diff(gs[,5])

dateplot <-date.gs[1:( length(date.gs) -582)]

retplot <-ret.gs[1:( length(ret.gs) -581)]

par(mfrow=c(1,2))

plot(dateplot ,retplot ,ylab=" ", xlab=" ",main="", type="h")

hist(retplot ,br=seq(-25,25, length =61),col="grey",labels=FALSE ,

xlab="",ylab="",main ="")

A.7 Figure 7

library ("evd")

ret.gs <-diff(gs[,5])

ret.gs0 <-ret.gs[ret.gs >0]

par(mfrow=c(1,4))

#qqnorm

qqnorm(ret.gs,xlab=" Normal Quantiles", ylab=" ",main=" ",

cex.lab =1.5)

##qqexp

qqplot(rexp (10000) , ret.gs0 ,xlab=" Exponential Quantiles",

ylab=" ",cex.lab =1.5)

#qqfrechet

qqplot(rfrechet (10000 , shape =10),ret.gs0 ,

xlab=expression(xi==0.1) , ylab=" ",cex.lab =1.5)

qqplot(rfrechet (10000 , shape =2),ret.gs0 ,

xlab=expression(xi==0.5) , ylab=" ",cex.lab =1.5)
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A.8 Figure 8

library ("evir")

ret.gs <-diff(gs[,5])

ret.gs0 <-ret.gs[ret.gs >0]

threshold <-findthresh(ret.gs0 ,ne =180)

par(mfrow=c(1,4))

x<-c(0 ,0.1 ,0.2 ,0.5)

for (i in 1:4)

qplot(ret.gs0 ,xi=x[i],threshold=threshold)

A.9 Figure 9

library ("evir")

ret.gs <-diff(gs[,5])

ret.gs0 <-ret.gs[ret.gs >0]

meplot(ret.gs0 ,omit =7)

A.10 Figure 10

library ("evir")

date.gs<-gs[,1]

ret.gs <-diff(gs[,5])

date <-which(date.gs=="2008 -07 -01")

ret08.gs<-ret.gs[(date +1):( date +260)]

date <-which(date.gs=="2009 -07 -01")

ret09.gs<-ret.gs[(date +1):( date +260)]

date <-which(date.gs=="2010 -07 -01")

ret10.gs<-ret.gs[(date +1):( date +260)]

par(mfrow=c(2,3))

shape(ret08.gs,start=17,end=45, reverse=FALSE)

shape(ret09.gs,start=17,end=45, reverse=FALSE)

shape(ret10.gs,start=17,end=45, reverse=FALSE)

quant(ret08.gs,p=0.99, start=17,end=45, reverse=FALSE ,

auto.scale=FALSE ,ylim=c(8 ,22))

quant(ret09.gs,p=0.99, start=17,end=45, reverse=FALSE ,

auto.scale=FALSE ,ylim=c(8 ,22))

quant(ret10.gs,p=0.99, start=17,end=45, reverse=FALSE ,

auto.scale=FALSE ,ylim=c(4 ,18))
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A.11 Figure 11

library ("evir")

date.gs<-gs[,1]

ret.gs <-diff(gs[,5])

date <-which(date.gs=="2008 -07 -01")

ret08.gs<-ret.gs[(date +1):( date +260)]

date <-which(date.gs=="2009 -07 -01")

ret09.gs<-ret.gs[(date +1):( date +260)]

date <-which(date.gs=="2010 -07 -01")

ret10.gs<-ret.gs[(date +1):( date +260)]

par(mfrow=c(2,3))

hill(ret08.gs,option ="xi",start=15,end =45)

hill(ret09.gs,option ="xi",start=15,end =45)

hill(ret10.gs,option ="xi",start=15,end =45)

hill(ret08.gs,option =" quantile",start =15,p=0.99,end=45,

auto.scale=FALSE , ylim=c(12 ,22))

hill(ret09.gs,option =" quantile",start =15,p=0.99,end=45,

auto.scale=FALSE , ylim=c(18 ,28))

hill(ret10.gs,option =" quantile",start =15,p=0.99,end=45,

auto.scale=FALSE , ylim=c(8 ,18))

A.12 Figure 12

library ("evir")

ret.gs <-diff(gs[,5])

date.gs<-gs[,1]

date <-which(date.gs=="2008 -07 -01")

ret08.gs<-diff(gs[(date +1):( date +260) ,5])

date <-which(date.gs=="2009 -07 -01")

ret09.gs<-diff(gs[(date +1):( date +260) ,5])

date <-which(date.gs=="2010 -07 -01")

ret10.gs<-diff(gs[(date +1):( date +260) ,5])

par(mfrow=c(1,3))

meplot(ret08.gs[ret08.gs >0],xlim=c(0,20),ylim=c(0,5))

meplot(ret09.gs[ret09.gs >0],xlim=c(0,20),ylim=c(0,5))

meplot(ret10.gs[ret10.gs >0],xlim=c(0,20),ylim=c(0 ,10))
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A.13 Figure 13

library ("evir")

date <-which(gs[ ,1]=="2010 -07 -01")

ret10.gs<-diff(gs[date:(date +260) ,5])

par(mfrow=c(1,3))

k<-26

threshold <-findthresh(ret10.gs,ne=k)

gpd.10<-gpd(ret10.gs,nextremes=k)

plot.gpd(gpd .10)

1

2

0

qplot(ret10.gs,xi=0.416 , threshold=threshold)

A.14 Figure 14

library ("evir")

date.gs<-strptime(gs[,1],format ="%Y-%m-%d")

ret.gs <-diff(gs[,5])

k<-26

#######################

# VaR with POT method #

#######################

VaR.P<-c()

for (i in 1:( length(ret.gs) -521)) {

ret <-ret.gs[(i+1):(i+260)]

gpd <-gpd(ret , nextremes=k)

q<-riskmeasures(gpd ,0.99)[2]

VaR.P<-rbind(VaR.P,q)

}

################################

# VaR with Normal distribution #

################################

VaRnorm <-c()

for (i in 1:( length(ret.gs) -521)) {
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ret <-ret.gs[(i+1):(i+260)]

q<-qnorm (0.99, mean=mean(ret),sd=sd(ret))

VaRnorm <-rbind(VaRnorm ,q)

}

dateplot <-date.gs[1:( length(date.gs) -582)]

retplot <-ret.gs[1:( length(ret.gs) -581)]

VaR.P.plot <-VaR.P[1:( length(VaR.P)-60)]

VaRnormplot <-VaRnorm [1:( length(VaRnorm )-60)]

plot(dateplot ,retplot ,type="h",xlab="",ylab ="")

lines(dateplot ,VaR.P.plot ,lwd=2, col="blue")

lines(dateplot ,VaRnormplot ,col="black",lwd=2)

###############

# Backtesting #

###############

number.days <-length(retplot)

number.excesses.P<-length(which(retplot >VaR.P.plot))

number.excesses.P

number.excesses.P/number.days

################

# Stressed VaR #

################

date.gs[which(VaR.P.plot==max(VaR.P.plot ))]

max(VaR.P.plot)

A.15 Figure 15

date.gs<-strptime(gs[,1],format ="%Y-%m-%d")

ret.gs <-diff(gs[,5])

k<-26

##########################

# VaR estimation by Hill #

##########################

VaR.H<-c()

for (i in 1:( length(ret.gs) -521)) {
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ret <-ret.gs[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

shape <-(1/k)*sum(log(retsort [1:k]))-log(retsort[k])

q< -((260/k*(1 -0.99))^( - shape ))* retsort[k]

VaR.H<-rbind(VaR.H,q)

}

################################

# VaR with normal distribution #

################################

VaRnorm <-c()

for (i in 1:( length(ret.gs) -521)) {

ret <-ret.gs[(i+1):(i+260)]

q<-qnorm (0.99, mean=mean(ret),sd=sd(ret))

VaRnorm <-rbind(VaRnorm ,q)

}

dateplot <-date.gs[1:( length(date.gs) -582)]

retplot <-ret.gs[1:( length(ret.gs) -581)]

VaR.H.plot <-VaR.H[1:( length(VaR.H)-60)]

VaRnormplot <-VaRnorm [1:( length(VaRnorm )-60)]

plot(dateplot ,retplot ,type="h",xlab="",ylab ="")

lines(dateplot ,VaR.H.plot ,lty=1,lwd=2,col="red")

lines(dateplot ,VaRnormplot ,col="black",lwd=2)

###############

# Backtesting #

###############

number.days <-length(retplot)

number.excesses.H<-length(which(retplot >VaR.H.plot))

number.excesses.H

number.excesses.H/number.days

################

# Stressed VaR #

################

date.gs[which(VaR.H.plot==max(VaR.H.plot ))]

max(VaR.H.plot)
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A.16 Figure 16

library ("POT")

date.gs<-strptime(gs[,1],format ="%Y-%m-%d")

ret.gs <-diff(gs[,5])

k<-26

############################################

# VaR estimated xi by hill and beta by POT #

############################################

VaR.HP <-c()

for (i in 1:( length(ret.gs) -521)) {

ret <-ret.gs[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

shape <-(1/k)*sum(log(retsort [1:k]))-log(retsort[k])

gpd <-fitgpd(ret ,threshold=retsort[k],est="mle",shape=shape)

scale <-gpd$scale

q< -((260/k*(1 -0.99))^( - shape ) -1)*( scale/shape)+ retsort[k]

VaR.HP <-rbind(VaR.HP,q)

}

################################

# VaR with normal distribution #

################################

VaRnorm <-c()

for (i in 1:( length(ret.gs) -521)) {

ret <-ret.gs[(i+1):(i+260)]

q<-qnorm (0.99, mean=mean(ret),sd=sd(ret))

VaRnorm <-rbind(VaRnorm ,q)

}

dateplot <-date.gs[1:( length(date.gs) -582)]

retplot <-ret.gs[1:( length(ret.gs) -581)]

VaR.HP.plot <-VaR.HP[1:( length(VaR.HP)-60)]

VaRnormplot <-VaRnorm [1:( length(VaRnorm ) -60)]

plot(dateplot ,retplot ,type="h",xlab="",ylab ="")

lines(dateplot ,VaR.HP.plot ,lty=1,lwd=2,col=" green3 ")

lines(dateplot ,VaRnormplot ,col="black",lwd=2)
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###############

# Backtesting #

###############

number.days <-length(retplot)

number.excesses.HP <-length(which(retplot >VaR.HP.plot))

number.excesses.HP

number.excesses.HP/number.days

number.excesses.norm <-length(which(retplot >VaRnormplot ))

number.excesses.norm

number.excesses.norm/number.days

################

# Stressed VaR #

################

date.gs[which(VaR.HP.plot==max(VaR.HP.plot ))]

max(VaR.HP.plot)

date.gs[which(VaRnormplot ==max(VaRnormplot ))]

max(VaRnormplot)

A.17 Figure 17

library ("evir")

date.gs<-strptime(gs[,1],format ="%Y-%m-%d")

ret.gs <-diff(gs[,5])

k<-26

shape.P<-c()

for (i in 1:( length(ret.gs) -581)) {

ret <-ret.gs[(i+1):(i+260)]

gpd <-gpd(ret , nextremes=k)

shape <-as.vector(gpd [["par.ests "]][1])

shape.P<-rbind(shape.P,shape)

}

shape.H<-c()

for (i in 1:( length(ret.gs) -581)) {
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ret <-ret.gs[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

threshold <-retsort[k]

retneu <-retsort [1:k]

shape <-(1/k)*sum(log(retneu))-log(retneu[k])

shape.H<-rbind(shape.H,shape)

}

dateplot <-date.gs[1:( length(date.gs) -582)]

plot(dateplot ,shape.P,type="p",col="blue",pch=20,xlab="",

ylab="",ylim=c(-0.6 ,1))

lines(dateplot ,shape.P, col="blue",lwd=2)

points(dateplot ,shape.H, col="red",pch =20)

lines(dateplot ,shape.H, col="red",lwd =2)

abline(h=0)

A.18 Figure 18

library ("POT")

date.gs<-strptime(gs[,1],format ="%Y-%m-%d")

ret.gs <-diff(gs[,5])

k<-26

sigma1 <-c()

for (i in 1: (length(ret.gs) -260)){

ret <-ret.gs[(i+1):(i+260)]

sigma <-sd(ret)

sigma1 <-rbind(sigma1 ,sigma)

}

ret.neu <-ret.gs[1:( length(sigma1 ))]/ sigma1

##########################

# VaR estimation by Hill #

##########################

VaR.H<-c()

for (i in 1:( length(ret.neu ) -261)) {

ret <-ret.neu[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

shape <-(1/k)*sum(log(retsort [1:k]))-log(retsort[k])
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q< -((260/k*(1 -0.99))^( - shape ))* retsort[k]

VaR.H<-rbind(VaR.H,q)

}

################################

# VaR estimation by POT method #

################################

VaR.P<-c()

for (i in 1:( length(ret.neu ) -261)) {

ret <-ret.neu[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

gpd <-fitgpd(ret ,threshold=retsort[k],est="mle")

shape <-gpd [[1]][2]

scale <-gpd [[1]][1]

q< -((260/k*(1 -0.99))^( - shape ) -1)*( scale/shape)+ retsort[k]

VaR.P<-rbind(VaR.P,q)

}

############################################

# VaR estimated xi by hill and beta by POT #

############################################

VaR.HP <-c()

shape.HP<-c()

for (i in 1:( length(ret.neu ) -261)) {

ret <-ret.neu[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

shape <-(1/k)*sum(log(retsort [1:k]))-log(retsort[k])

gpd <-fitgpd(ret ,threshold=retsort[k],est="mle",shape=shape)

scale <-gpd$scale

q< -((260/k*(1 -0.99))^( - shape ) -1)*( scale/shape)+ retsort[k]

VaR.HP <-rbind(VaR.HP,q)

}

dateplot <-date.gs[1:( length(date.gs) -582)]

ret.neuplot <-ret.neu [1:( length(ret.neu ) -321)]

VaR.H.plot <-VaR.H[1:( length(VaR1 )-60)]

VaR.P.plot <-VaR.P[1:( length(VaR2 )-60)]

VaR.HP.plot <-VaR3 [1:( length(VaR3 )-60)]

plot(dateplot , ret.neuplot , type="h",xlab="",ylab ="")
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lines(dateplot , VaR3plot , col=" green3",lwd =2)

lines(dateplot , VaR1plot , col="red",lwd=2)

lines(dateplot , VaR2plot , col="blue",lwd =2)

###############

# Backtesting #

###############

number.days <-length(ret.neuplot)

number.excesses.H<-length(which(ret.neuplot >VaR.H.plot))

number.excesses.H

number.excesses.H/number.days

number.excesses.P<-length(which(ret.neuplot >VaR.P.plot))

number.excesses.P

number.excesses.P/number.days

number.excesses.HP <-length(which(ret.neuplot >VaR.HP.plot))

number.excesses.HP

number.excesses.HP/number.days

A.19 Figure 19

library ("POT")

date.gs<-strptime(gs[,1],format ="%Y-%m-%d")

ret.gs <-diff(gs[,5])

sigma1 <-c()

for (i in 1: (length(ret.gs) -260)){

ret <-ret.gs[(i+1):(i+260)]

sigma <-sd(ret)

sigma1 <-rbind(sigma1 ,sigma)

}

ret.neu <-ret.gs[1:( length(sigma1 ))]/ sigma1

##########################

# VaR estimation by Hill #

##########################

VaR.H<-c()

for (i in 1:( length(ret.neu ) -261)) {
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ret <-ret.neu[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

shape <-(1/k)*sum(log(retsort [1:k]))-log(retsort[k])

q< -((260/k*(1 -0.99))^( - shape ))* retsort[k]

VaR.H<-rbind(VaR.H,q)

}

################################

# VaR estimation by POT method #

################################

VaR.P<-c()

for (i in 1:( length(ret.neu ) -261)) {

ret <-ret.neu[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

gpd <-fitgpd(ret ,threshold=retsort[k],est="mle")

shape <-gpd [[1]][2]

scale <-gpd [[1]][1]

q< -((260/k*(1 -0.99))^( - shape ) -1)*( scale/shape)+ retsort[k]

VaR.P<-rbind(VaR.P,q)

}

############################################

# VaR xi estimated by hill and beta by POT #

############################################

VaR.HP <-c()

shape.HP<-c()

for (i in 1:( length(ret.neu ) -261)) {

ret <-ret.neu[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

shape <-(1/k)*sum(log(retsort [1:k]))-log(retsort[k])

gpd <-fitgpd(ret ,threshold=retsort[k],est="mle",shape=shape)

scale <-gpd$scale

q< -((260/k*(1 -0.99))^( - shape ) -1)*( scale/shape)+ retsort[k]

VaR.HP <-rbind(VaR.HP,q)

}

dateplot <-date.gs[1:( length(date.gs) -582)]

ret.neuplot <-ret.neu [1:( length(ret.neu ) -321)]

VaR.H.plot <-VaR.H[1:( length(VaR1 )-60)]

VaR.P.plot <-VaR.P[1:( length(VaR2 )-60)]
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VaR.HP.plot <-VaR.HP[1:( length(VaR3 )-60)]

sigma2 <-sigma1 [1:( length(sigma1 ) -321)]

plot(dateplot , ret.neuplot*sigma2 , type="h",xlab="",ylab ="")

lines(dateplot , VaR.HP.plot*sigma2 , col=" green3",lwd =2)

lines(dateplot , VaR.H.plot*sigma2 , col="red",lwd=2)

lines(dateplot , VaR.P.plot*sigma2 , col="blue",lwd=2)

A.20 Figure 20

library ("POT")

date.gs<-strptime(gs[,1],format ="%Y-%m-%d")

ret.gs <-diff(gs[,5])

k<-26

sigma1 <-c()

for (i in 1: (length(ret.gs) -260)){

ret.help <-ret.gs[(i+1):(i+260)]

sigma <-sd(ret.help)

sigma1 <-rbind(sigma1 ,sigma)

}

ret.neu <-ret.gs[1:( length(sigma1 ))]/ sigma1

shape.H<-c()

for (i in 1:( length(ret.neu ) -261)) {

ret <-ret.neu[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

shape <-(1/k)*sum(log(retsort [1:k]))-log(retsort[k])

shape.H<-rbind(shape.H,shape)

}

shape.P<-c()

for (i in 1:( length(ret.neu ) -261)) {

ret <-ret.neu[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

gpd <-fitgpd(ret ,threshold=retsort[k],est="mle")

shape <-gpd [[1]][2]

shape.P<-rbind(shape.P,shape)
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}

dateplot <-date.gs[1:( length(date.gs) -582)]

plot(dateplot ,shape.P[1:( length(shape.P)-60)],col="blue",

type="l",lwd=2,xlab="",ylab="",ylim=c( -0.6 ,1.0))

points(dateplot ,shape.P[1:( length(shape.P)-60)],col="blue",

pch =20)

points(dateplot ,shape.H[1:( length(shape.H)-60)],col="red",

pch =20)

lines(dateplot ,shape.H[1:( length(shape.H)-60)],col="red",

lwd =2)

abline(h=0)

A.21 Figure 21

library ("evir")

library ("POT")

date.gs<-strptime(gs[,1],format ="%Y-%m-%d")

ret.gs <-diff(gs[,5])

k<-26

#######################

# VaR with POT method #

#######################

VaR.P<-c()

for (i in 1:( length(ret.gs) -521)) {

ret <-ret.gs[(i+1):(i+260)]

gpd <-gpd(ret , nextremes=k)

q<-riskmeasures(gpd ,0.99)[2]

VaR.P<-rbind(VaR.P,q)

}

##########################

# VaR estimation by Hill #

##########################

VaR.H<-c()

for (i in 1:( length(ret.gs) -521)) {

ret <-ret.gs[(i+1):(i+260)]
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retsort <-sort(ret ,decreasing=TRUE)

shape <-(1/k)*sum(log(retsort [1:k]))-log(retsort[k])

q< -((260/k*(1 -0.99))^( - shape ))* retsort[k]

VaR.H<-rbind(VaR.H,q)

}

############################################

# VaR xi estimated by hill and beta by POT #

############################################

VaR.HP <-c()

for (i in 1:( length(ret.gs) -521)) {

ret <-ret.gs[(i+1):(i+260)]

retsort <-sort(ret ,decreasing=TRUE)

shape <-(1/k)*sum(log(retsort [1:k]))-log(retsort[k])

gpd <-fitgpd(ret ,threshold=retsort[k],est="mle",shape=shape)

scale <-gpd$scale

q< -((260/k*(1 -0.99))^( - shape ) -1)*( scale/shape)+ retsort[k]

VaR.HP <-rbind(VaR.HP,q)

}

dateplot <-date.gs[1:( length(date.gs) -582)]

retplot <-ret.gs[1:( length(ret.gs) -581)]

plot(dateplot [716:1150] , retplot [716:1150] , type="h",xlab="",ylab ="")

lines(dateplot [716:1150] , VaRnorm [716:1150] , col="black",lwd=2)

lines(dateplot [716:1150] , VaR.P[716:1150] , lwd=2, col="blue")

lines(dateplot [716:1150] , VaR.H[716:1150] , lty=1,lwd=2,col="red")

lines(dateplot [716:1150] , VaR.HP [716:1150] , lty=1,lwd=2,col=" green3 ")

A.22 Figure 22

library ("evir")

date.gs<-strptime(gs[,1],format ="%Y-%m-%d")

ret.gs <-diff(gs[,5])

k<-26

#######################

# VaR with POT method #

#######################

VaR.P<-c()
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for (i in 1:( length(ret.gs) -521)) {

ret <-ret.gs[(i+1):(i+260)]

gpd <-gpd(ret , nextremes=k)

q<-riskmeasures(gpd ,0.99)[2]

VaR.P<-rbind(VaR.P,q)

}

###############

# average VaR #

###############

a<-60

VaR.avg <-c()

for (i in 1:( length(VaR.P)-a)){

avg <-mean(VaR.P[i:(i+a)])

VaR.avg <-rbind(VaR.avg ,avg)

}

dateplot <-date.gs[1:( length(date.gs) -582)]

retplot <-ret.gs[1:( length(ret.gs) -581)]

VaR.P.plot <-VaR.P[1:( length(VaR.P)-60)]

plot(dateplot ,retplot ,type="h",xlab="",ylab="",ylim=c(-20,50))

lines(dateplot ,VaR.P.plot ,lwd=2, col="blue")

lines(dateplot ,VaR.avg ,col="black",lwd =2)

lines(dateplot ,3* VaR.avg ,col="red",lwd =2)

max <-which(gs[ ,1]=="2009 -07 -09")

points(dateplot[max],VaR.avg[max],pch=4,cex=2,lwd=2)

points(dateplot[max],3*VaR.avg[max],pch=4,cex=2,lwd=2,col="red")


