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Introduction

In this thesis, we study Random Walks in Random Environment (RWRE) in different

settings. The study of RWRE goes back to models introduced by Chernov ([Ch62]) and

Temkin ([Te72]) as toy-models for the replication of DNA-chains. Later, Solomon ([So75])

gave a rigorous construction of the probability measures of the system which started an

intensive study of RWRE by probabilists. Already in one dimension, RWRE show several

unusual phenomena – such as sub-diffusive behaviour, aging phenomena, trapping effects,

. . . – which make its study so interesting and rewarding. Over the last decades, the un-

derstanding of RWRE in one dimension has reached a very high level. However in the

multidimensional case, RWRE are still less understood and even many of the basic ques-

tions are still unresolved.

In Part I of this thesis (Random Walks in Random Environment), we are mainly interested

in a model that lies between a one-dimensional and a multidimensional setting: We consider

the movement of a particle on the two-dimensional lattice Z2, but the random environment

is only one-dimensional, i.e. it only depends on the first component of each position. Our

main question will be if the considered random walks are recurrent or transient, i.e. if they

return to the origin infinitely often or not.

In Chapter 2 (Strong Recurrence of Recurrent RWRE), we start with one of the simplest

extensions of the one-dimensional RWRE to a random walk on Z2: What happens if we

consider a combination of the recurrent one-dimensional RWRE in the first coordinate and

a symmetric random walk on Z in the second coordinate (cf. Corollary 2.6.6 and Corollary

2.6.7 for a precise description of the model)? Will the two-dimensional random walk become

transient?

For an answer to this question, we start with an analysis of the return probabilities of

the one-dimensional recurrent RWRE to the origin. In contrast to the symmetric random

walk on Z, the return probabilities of the RWRE do not only depend on time but also on

the environment ω (cf. (1.3)). As a main tool, we will construct favourable “valleys” of

the environment (cf. Figure 2.1 on page 23) which make it easier for the RWRE (Xn)n∈N0

to return to 0 as long as it has not left this valley. Using this approach, we will get the

following two main results in Theorem 2.4.1 and Theorem 2.4.2:

For P-a.e. environment ω, we have
∑

n∈N

Pω(X2n = 0) · n−α =∞ (1)

1



INTRODUCTION

for 0 ≤ α < 1 and

∑

n∈N

(
Pω(X2n = 0)

)α
=∞

for all α > 0. Those two analytical statements (and the analogous statement for a com-

bination of d ∈ N i.i.d. environments in Theorem 2.4.3) enable us to answer the question

of recurrence and transience for a lot of interesting examples of random walks in different

random environments (cf. Section 2.6 – Examples for Recurrent Random Walks in Random

Environments). As a first result, we will recover the statement that a combination of d

independent recurrent RWRE – in the same or d i.i.d. environments – is still recurrent

for a.e. environment. Additionally, we can conclude that the combination of a recurrent

one-dimensional RWRE and a symmetric random walk on Z (which we were originally

interested in) is still recurrent (cf. Corollary 2.6.6 and Corollary 2.6.7).

Therefore, the question of recurrence or transience of the two-dimensional process is still

interesting if we add an additional source of inhomogeneity to the random environment.

To this end, we introduce the model of a RWRE with random orientations (RWRO) in

Chapter 3. In this model, the one-dimensional random environment additionally contains

a sequence of i.i.d. random orientations (αx)x∈Z taking the values −1 and +1 each with

probability 1
2
. In contrast to the combination of the recurrent one-dimensional RWRE with

the symmetric random walk on Z, the particle in the RWRO can only move upwards or

downwards (i.e. move in the second component) in the direction of the random orientation.

Thereby, the first component is still treated as in the setting of a one-dimensional RWRE.

For more details on the model we refer to Section 3.2.

An analysis of a similar model containing the symmetric random walk on Z instead of

the recurrent one-dimensional RWRE can be found in [CP03a]. Note here that the return

probabilities of the recurrent one-dimensional RWRE behave very differently in comparison

to the return probabilities of a symmetric random walk on Z: For the symmetric random

walk (Sn)n∈N0 on Z, we have for example

∑

n∈N

P (S2n = 0) · n−α <∞

for all α > 1
2

in contrast to (1). Therefore, we need a different approach in comparison with

[CP03a] in order to answer the question of recurrence and transience of RWRO, which goes

as follows.

It is well known that the one-dimensional RWRE spends most of its time close to “bottom

points” of the environment. This makes the RWRE very sensitive to local inhomogeneities

as in the setting of RWRO. By using the observation that the random walk picks up a lot

of orientations pointing in the same direction close to the bottom points, we will show that

the RWRO is transient for a.e. environment – as in the setting of [CP03a] – even though

the recurrence in the first component is stronger compared to the symmetric random walk

on Z.

By combining the results of Chapter 2 and Chapter 3, we can further answer the question of

2



INTRODUCTION

recurrence and transience of the following process which depends on the parameter p ∈ [0, 1].

Here p can be understood as the strength of the inhomogeneity of the environment in the

vertical direction.

At first, we choose an environment θ which consists of the environment ω = (ωx)x∈Z of a

recurrent one-dimensional RWRE and i.i.d. orientations (αx)x∈Z taking the values −1 and

+1 each with probability 1
2

(cf. (3.4)). Then, for 0 < δ < 1 and 0 ≤ p ≤ 1, we can introduce

the following Markov chain (Mn)n∈N0 with values in Z2 which is determined by

Pθ
(
M0 = (0, 0)

)
= 1,

Pθ
(
Mn+1 = (k + 1, `)

∣∣Mn = (k, `)
)

= δ · ωk,

Pθ
(
Mn+1 = (k − 1, `)

∣∣Mn = (k, `)
)

= δ · (1− ωk),

Pθ
(
Mn+1 = (k, `+ 1)

∣∣Mn = (k, `)
)

=
1− δ

2
· (1 + p · αk),

Pθ
(
Mn+1 = (k, `− 1)

∣∣Mn = (k, `)
)

=
1− δ

2
· (1− p · αk).

Here, in each step, δ and 1 − δ are

the probabilities for a movement of

the particle in the first and the second

component, respectively. In Section 3.6,

we will see that we have the following

dependence on the parameter p:

Theorem 3.6.1 (1) For p = 0, the

Markov chain (Mn)n∈N0 is recur-

rent for P-a.e. environment θ.

(2) On the contrary for 0 < p ≤ 1, the

Markov chain (Mn)n∈N0 is transient

for P-a.e. environment θ.

x

y

(1− δ) · 1+p
2

(1− δ) · 1−p
2

δ · ω3δ · (1− ω3)

(1− δ) · 1+p
2

(1− δ) · 1−p
2

δ · ω3δ · (1− ω3)

(1− δ) · 1−p
2

(1− δ) · 1+p
2

δ · ω−3δ · (1− ω−3)

(1− δ) · 1−p
2

(1− δ) · 1+p
2

δ · ω−3δ · (1− ω−3)

Figure 1: A possible realization of the ran-

dom orientations ↑↓ and the corresponding

transition probabilities.

In Part II (Random Walks in Random Environment with Branching), we consider a different

class of models. Here, we additionally allow particles to branch which leads to the model

of a Branching Random Walk in Random Environment (BRWRE). BRWRE can be used

as a model for the spread of particles in inhomogeneous media. Additionally, the analysis

of BRWRE is very interesting and useful from a purely mathematical point of view. For

3



INTRODUCTION

example, it turned out that the analysis of BRWRE seems to be easier than the analysis of

RWRE (with only one particle) in the multidimensional case.

In Chapter 5 (Survival and Growth of a BRWRE), we analyse the behaviour of a BRWRE

on N0 in which particles produce offspring which either stay at the same location or move

one step to the right. In the considered model, we also allow the particles to produce no

offspring. Therefore, our first question aims at survival and extinction of the process. For

the answer, we introduce two different survival regimes – Local Survival and Global Survival

– and give explicit criteria for these two types of survival.

In the following part, we answer the question of the growth of the process. We show that

global survival is equivalent to the exponential growth of the expected number of particles.

Further, on the event of survival the number of particles grows almost surely exponentially

fast with the same growth rate as the expected number of particles.

In general, the drift parameter hx, which gives the probability for each offspring to move

one step to the right, may depend on the location x of the particles. As an interesting

special case, we can choose hx ≡ h ∈ (0, 1] to be constant. For this case, we answer the

question of survival of the process depending on the drift h. In particular, we show that

if the BRWRE survives with positive probability for some h ∈ (0, 1], then it also survives

with positive probability for all smaller drifts 0 < h ≤ h.

The structure of this thesis is the following: As mentioned before, the thesis consists of two

major parts: The first one (Random Walks in Random Environment) deals with a RWRE

with one particle and in the second part (Random Walks in Random Environment with

Branching) we allow the particles to branch. Each part begins with a chapter “Prelimi-

naries”, where we give an introduction to the basic setting and our general assumptions.

Further, we recall some of the classical and more recent results on RWRE (in Section 1.2)

and on BRWRE (in Section 4.2). This enables us to describe the context of our results

in Section 1.3 and Section 4.3. The key parts of this thesis are contained in Chapter 2

(Strong Recurrence of Recurrent RWRE), Chapter 3 (RWRE with Random Orientations),

and Chapter 5 (Survival and Growth of a BRWRE). Since we consider a different model

with the need of a slightly different notation in each of these chapters, we left the chap-

ters self-contained. Thus, some of the material already presented before is repeated in the

introductory sections.

4
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Chapter 1

Preliminaries

1.1 Basic Notation and General Assumptions

In the following, we analyse the behaviour of different RWRE. The construction of a RWRE

always consists of two steps: In the first step, we choose an environment according to a

specific distribution, and in the second step, we perform a random walk in the chosen

environment.

The distribution of the environment will be denoted by P for which we make the following

assumptions in this chapter if not stated otherwise:

(1) P is a measure on ([0, 1]Z,F), where F denotes the corresponding product σ-field.

Further, we denote the projections [0, 1]Z → [0, 1] by ω = (ωn)n∈Z.

(2) ω = (ωn)n∈Z is a sequence of i.i.d. random variables with respect to P.

(3) P(0 < ω0 < 1) = 1.

The expectation and the variance with respect to P will be denoted by E[·] and Var(·),
respectively. Further, we define

ρ0 = ρ0(ω) :=
1− ω0

ω0

.

Given the environment ω = (ωn)n∈Z and a starting point x ∈ Z, we can introduce the

Markov chain (Xn)n∈N0 with values in Z by

P x
ω (X0 = x) = 1,

P x
ω (Xn+1 = y + 1|Xn = y) = ωy for all y ∈ Z, n ∈ N0,

P x
ω (Xn+1 = y − 1|Xn = y) = 1− ωy for all y ∈ Z, n ∈ N0.

For each ω, P x
ω is a probability measure on the space of paths (ZN0 ,G), where G is the

corresponding product σ-field. For notational convenience, we often drop the superscript

and use Pω instead of P 0
ω . Statements involving P x

ω are called quenched.

7



CHAPTER 1. PRELIMINARIES

The joint distribution Px of (ω, (Xn)n∈N0) with starting point x ∈ Z is uniquely determined

by

Px(F ×G) :=

∫

F

P x
θ (G)P(dθ)

for F ∈ F and G ∈ G. Again, we often use P instead of P0 for notational convenience.

In contrast to above, probabilistic statements involving the second marginal distribution of

Px, i.e. observing an event in the RWRE (Xn)n∈N0 without observing the environment ω

first, are called annealed.

It is important to note at this point that (Xn)n∈N0 is a time-homogeneous Markov chain

under P x
ω but (in general) not under Px. On the contrary, we have

Px
(
(Xn)n∈N0 − x ∈ ·

)
= Py

(
(Xn)n∈N0 − y ∈ ·

)

for all x, y ∈ Z, i.e. homogeneity in space, which is (in general) not true for the quenched

distributions P x
ω and P y

ω (for x 6= y).

1.2 Classical and Recent Results

The first results in the mathematical literature on RWRE are due to Solomon. His first

result shows that the question of recurrence and transience of the RWRE can be answered

with the help of E [log ρ0] as long as E [log ρ0] is well defined:

Theorem 1.2.1 (Recurrence and Transience of RWRE - cf. Theorem 1.7 in [So75]). If

E[log ρ0] is well defined, then we have the following classification:

(1) If E [log ρ0] = 0 holds, then we P-a.s. have

lim sup
n→∞

Xn =∞ and lim inf
n→∞

Xn = −∞.

(2) If E [log ρ0] > 0 holds, then we P-a.s. have

lim
n→∞

Xn = −∞.

(3) If E [log ρ0] < 0 holds, then we P-a.s. have

lim
n→∞

Xn =∞.

In particular, (Xn)n∈N0 is a recurrent Markov chain for P-a.e. environment in case (1). On

the contrary, (Xn)n∈N0 is transient for P-a.e. environment in the cases (2) and (3).

In the same article, Solomon also computed the linear speed of the RWRE (Xn)n∈N0 in the

transient case:

8



1.2. CLASSICAL AND RECENT RESULTS

Theorem 1.2.2 (Linear Speed of transient RWRE - cf. Theorem 1.16 in [So75]). There

are the following three cases:

(1) If E[ρ0] < 1 holds, then we P-a.s. have

lim
n→∞

Xn

n
=

1− E[ρ0]

1 + E[ρ0]
.

(2) If E[(ρ0)−1] < 1 holds, then we P-a.s. have

lim
n→∞

Xn

n
=

1− E[(ρ0)−1]

1 + E[(ρ0)−1]
.

(3) If (E[ρ0])−1 ≤ 1 ≤ E[(ρ0)−1] holds, then we P-a.s. have

lim
n→∞

Xn

n
= 0.

By combining the last two theorems, we see that, if we have

E [log ρ0] 6= 0 and (E[ρ0])−1 ≤ 1 ≤ E[(ρ0)−1],

then our RWRE (Xn)n∈N0 is transient but the linear speed on its escape to {−∞,∞} is 0.

This regime is called the sub-ballistic regime. The occurrence of this regime is one of the

first properties which were shown for the RWRE but which do not occur for a random walk

in a constant environment (i.e. an environment with ωn = p ∈ (0, 1) for all n ∈ Z).

There are many more interesting and also very recent results on transient RWRE. But since

we only consider the recurrent RWRE on Z in the following, we restrict ourselves to the

recurrent case:

As a first highlight for a recurrent RWRE, we have to mention the following result which

is due to Sinai (cf. Section 1 in [Si82]). For the theorem, we assume that the following

conditions are fulfilled:

E [log ρ0] = 0,

P(ε ≤ ω0 ≤ 1− ε) = 1 for some ε ∈
(
0, 1

2

)
,

Var(log ρ0) > 0. (1.1)

Then, the following theorem holds for which we chose the form which is also used in The-

orem 2.5.3 in [Ze04]:

Theorem 1.2.3 (Sinai’s Regime). For a RWRE (Xn)n∈N0 for which the environment fulfils

the assumptions in (1.1), we have the following:

There exists a sequence of random variables (bn)n∈N0 - which only depends on the environ-

ment ω - such that

P
(∣∣∣∣

Xn

(log n)2
− bn

∣∣∣∣ > η

)
n→∞−−−→ 0

for all η > 0.

9



CHAPTER 1. PRELIMINARIES

Alternatively, one can show that

Xn

(log n)2

n→∞−−−→ b∞ in law

where the exact law of the nondegenerate limit b∞ was computed in [Ke86] and [Go86]

independently.

Again, the scaling (log n)2 is completely different from the behaviour of a random walk in

a constant environment. This behaviour is often called slowdown of the random walk due

to the random environment. Here, slowdown is to be understood in comparison with the

behaviour of a random walk in a constant environment for which we have a scaling of n
1
2

due to the central limit theorem.

Among the more recent results, we want to present two results on the strong localization of

the RWRE. Strong localization refers to the property of the RWRE to spend most of the

time around the bottom point of the deepest valley it has visited so far (cf. [GPS10] and

[DGPS07] for more details). For the theorems, let (Xn)n∈N0 be a one-dimensional RWRE,

and for x ∈ Z, let

ξ(n, x) := |{0 ≤ j ≤ n : Xj = x}|
denote the local time of the RWRE in x. Then, the maximal local time

ξ∗(n) := sup
x∈Z

ξ(n, x)

has the following two properties:

Theorem 1.2.4 (lim sup behaviour of ξ∗(n) - cf. Theorem 1.1 and section 4 in [GPS10]).

Let (Xn)n∈N0 be a one-dimensional RWRE for which the environment fulfils the assumptions

in (1.1). Then, there exists a constant c ∈ (0,∞) such that

lim sup
n→∞

ξ∗(n)

n
= c

P-a.s.

Further, the value of c was computed in [GPS10]. We want to remark here that the first

results about the lim sup behaviour of ξ∗(n) in the form

lim sup
n→∞

ξ∗(n)

n
≥ c

P-a.s. for some c ∈ (0,∞) were developed in [Ré05] (p.337) and [Sh98] (Theorem 1.1).

Theorem 1.2.5 (lim inf behaviour of ξ∗(n) - cf. Theorem 1.1 in [DGPS07]). Let (Xn)n∈N0

be a one-dimensional RWRE for which the environment fulfils the assumptions in (1.1).

Then, there exists a constant c ∈ (0,∞) such that

lim inf
n→∞

ξ∗(n)

n/(log log log n)
= c

P-a.s.

10
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Actually, the last theorem was only derived for the RWRE on the positive half-line in

[DGPS07]. But it can easily be seen that the theorem can directly be extended to the

RWRE on Z by splitting the RWRE on Z into the time points it spends on N0 and on −N.

This strong localization property of the RWRE is important for our consideration in Chap-

ter 3. There, the RWRE collects +1/ − 1-orientations which have been attached to the

positions x ∈ Z independently and with equal probability before the RWRE starts. Since

the RWRE spends most of its time in only few positions, the accumulated +1- and −1-

orientations, which the RWRE has collected, are mainly influenced by those few positions.

As a result, the RWRE has either collected a lot more +1-orientations or a lot more −1-

orientations at most time points with only few exceptions around the time points at which

the preferred sign changes from one to the other.

1.3 Context of our Results

1.3.1 Return Probabilities of the Recurrent RWRE

In [CP03b], Comets and Popov consider the return probabilities of the one-dimensional

recurrent RWRE. In contrast to our setting, they consider the corresponding jump process

in continuous time (ξxt )t≥0 started at x ∈ Z and with jump rates (ω+
x , ω

−
x )x∈Z to the right

and left neighbouring sites. One advantage of this process in continuous time is that it is

not periodic as the RWRE in discrete time. By considering the process (ξxt )t≥0 in continuous

time only at the random time points of the jumps, we can recover the embedded discrete-

time RWRE.

As before, let us denote the law of the environment by P which is now a product measure

on ((0,∞)× (0,∞))Z, and again ω = ((ω+
x , ω

−
x ))x∈Z denote the projections. If we have

E

[
log

(
ω−0
ω+

0

)]
= 0,

κ−1 ≤ ω+
0 , ω

−
0 ≤ κ P-a.s. for some κ > 0,

Var

(
log

(
ω−0
ω+

0

))
∈ (0,∞), (1.2)

then the following theorem holds:

Theorem 1.3.1 (Convergence of the Return Probabilities - cf. Corollary 2.1 in [CP03b]).

We have
logPω(ξ0

t = 0)

log t

t→∞−−−→ −âe
in law, where âe has the density

p(z) =

{
2− z − (z + 2) · e−2z if z ∈ (0, 1)(
[e2 − 1] · z − 2

)
· e−2z if z ≥ 1.

11
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In Chapter 2, we are interested in the behaviour of the return probabilities of the discrete-

time RWRE to 0 for a fixed environment ω. In contrast to [CP03b], our goal is to derive

P-a.s. statements involving the return probabilities Pω(X2n = 0) for fixed environment ω.

Even though, Theorem 1.3.1 and the approach in [CP03b] to prove it are very helpful

for our consideration: Since we can embed the discrete-time RWRE (Xn)n∈N0 into the

corresponding jump process in continuous time, we can expect the return probabilities to

behave similarly as in the continuous setting, i.e.

Pω(X2n = 0) ' n−a(ω,n) (1.3)

with

lim inf
n→∞

a(ω, n) = 0,

lim sup
n→∞

a(ω, n) =∞

for P-a.e. environment ω due to Theorem 1.3.1.

As one main result in Chapter 2, we will get the following theorems for a recurrent RWRE

(Xn)n∈N0 in discrete time for which the environment ω fulfils the assumptions in (1.1) (which

are the discrete-time analogous assumptions in comparison with (1.2)):

Theorem 2.4.1 For 0 ≤ α < 1, we have

∑

n∈N

Pω(X2n = 0) · n−α =∞

for P-a.e. environment ω.

Theorem 2.4.2 For all α > 0, we have

∑

n∈N

(
Pω(X2n = 0)

)α
=∞

for P-a.e. environment ω.

In particular, we see that, even though for fixed environment ω there are arbitrarily large

time points n for which the exponent a(ω, n) in (1.3) is arbitrarily large, there are enough

time points n for which we have a(ω, n) ∈ (0, δ] for every 0 < δ < 1 which cause the above

series to diverge.

12



1.3. CONTEXT OF OUR RESULTS

1.3.2 Random Orientations

In Chapter 3, we consider a RWRE with random orientations. Random walks on ran-

domly oriented lattices (or with random orientations) were also considered in [CP03a] and

[GKP12]. The first result deals with the symmetric random walk on Z:

Let (αx)x∈Z be a sequence of i.i.d. random variables with

P(α0 = +1) = P(α0 = −1) =
1

2
.

For a fixed environment α = (αx)x∈Z, we can now introduce the following Markov chain

(Xn, Yn)n∈N0 started in z ∈ Z2 with respect to P z
α which is determined by

P z
α

(
(X0, Y0) = z

)
= 1,

P z
α

(
(Xn+1, Yn+1) = (x+ 1, y)

∣∣(Xn, Yn) = (x, y)
)

=
1

3
,

P z
α

(
(Xn+1, Yn+1) = (x− 1, y)

∣∣(Xn, Yn) = (x, y)
)

=
1

3
,

P z
α

(
(Xn+1, Yn+1) = (x, y + 1)

∣∣(Xn, Yn) = (x, y)
)

=
1 + αx

6
,

P z
α

(
(Xn+1, Yn+1) = (x, y − 1)

∣∣(Xn, Yn) = (x, y)
)

=
1− αx

6
(1.4)

for all n ∈ N0 and x, y ∈ Z. Note that the last two conditional probabilities are either
1
3

or 0 depending on the realisation of αx. In particular, the random walk can only move

upwards in points (x, y) with αx = +1 (with a positive orientation) and it can only move

downwards in points (x, y) with αx = −1 (with a negative orientation). Further, note that

the first component (Xn)n∈N0 − only looked at when the first component has changed −
behaves as a symmetric random walk on Z for every environment α.

Theorem 1.3.2 (Transience of the random walk on the randomly oriented lattice - cf.

Theorem 1.8 in [CP03a]). For almost all realisations of the environment α, the simple

random walk (Xn, Yn)n∈N0 on the randomly vertically oriented lattice is transient with respect

to Pα.

For the reference, note that in contrast to [CP03a] we have switched the roles of the first

and the second component which makes it easier to compare Theorem 1.3.2 to our results

in Chapter 3. There, we want the first component (Xn)n∈N0 − only looked at when the first

component has changed − to behave as a RWRE on Z.

An analogous result with a generalization of the transition probabilities in (1.4) can be

found in Proposition 2 in [GKP12].

Another possibility for a generalization of the setting in Theorem 1.3.2 is to use an arbitrary

next-neighbour Markov chain (Mn)n∈N0 on Z with transition probabilities (px)x∈Z such that

P (Mn+1 = x+ 1|Mn = x) = px,

P (Mn+1 = x− 1|Mn = x) = 1− px (1.5)

13
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for n ∈ N0, x ∈ Z instead of the embedded symmetric random walk in (1.4). Such a process

(Xn, Yn)n∈N0 with values in Z2 for a fixed environment θ = (px, αx)k∈Z, αx ∈ [0, 1] for all

x ∈ Z and some 0 < δ < 1 is determined by

P z
θ

(
(X0, Y0) = z

)
= 1,

P z
θ

(
(Xn+1, Yn+1) = (x+ 1, y)

∣∣(Xn, Yn) = (x, y)
)

= δ · px,

P z
θ

(
(Xn+1, Yn+1) = (x− 1, y)

∣∣(Xn, Yn) = (x, y)
)

= δ · (1− px),

P z
θ

(
(Xn+1, Yn+1) = (x, y + 1)

∣∣(Xn, Yn) = (x, y)
)

= (1− δ) · αx,

P z
θ

(
(Xn+1, Yn+1) = (x, y − 1)

∣∣(Xn, Yn) = (x, y)
)

= (1− δ) · (1− αx) (1.6)

for all n ∈ N0 and x, y ∈ Z. Here, δ (and 1− δ) is an additional parameter which gives the

probability for a movement in the first (second) component. If the transition probabilities

are chosen such that the Markov chain (Mn)n∈N0 in (1.5) is positive recurrent, then we have

the following characterization of recurrence and transience:

Theorem 1.3.3 (Recurrence and Transience on the randomly oriented lattice - cf. Propo-

sition 3 in [GKP12]). If (px)x∈Z is fixed, such that the Markov chain (Mn)n∈N0 in (1.5)

is positive recurrent with invariant probability measure µ = (µ(x))x∈Z and (αx)x∈Z is an

arbitrary sequence with values in [0, 1]. Then, the Markov chain (Xn, Yn)n∈N0 is recurrent

with respect to Pθ iff

Z :=
∑

x∈Z

µ(x) · βx = 0

where βx = 2αx − 1.

If α = (αx)x∈Z are i.i.d. random variables with values in [0,1] with respect to some probability

measure P, E[α0] = 1
2
, Var(α0) > 0, and µ(x) > 0 holds for all x ∈ Z, then

P
(
α : (Xn, Yn)n∈N0 is recurrent with respect to Pθ

)
= P

(
Z = 0

)
= 0.

In the final result of Chapter 3, we embed a one-dimensional RWRE into the above setting.

For this we make the following choice for (px)x∈Z and (αx)x∈Z:

Let (ωx)x∈Z and (αx)x∈Z be two independent sequences of i.i.d random variables with respect

to the law of the environment P. The sequence ω = (ωx)x∈Z is a sequence of i.i.d. random

variables taking values in (0, 1), and we assume that the following assumptions hold

E[log ρ0] = 0,

P(ε ≤ ω0 ≤ 1− ε) = 1 for some ε ∈
(
0, 1

2

)
,

Var(log ρ0) > 0,

where

ρ0 = ρ0(ω) :=
1− ω0

ω0

14
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as usual. Note that (ωx)x∈Z corresponds to the random environment of a one-dimensional

RWRE and that the assumptions ensure that the one-dimensional RWRE is recurrent.

The second part of the random environment (αx)x∈Z determines a random orientation for

every position x ∈ Z . More precisely, (αx)x∈Z is an i.i.d. sequence with

P(α0 = +1) =
1

2
= P(α0 = −1)

which is further independent of (ωx)x∈Z. Finally, our random environment is given by

θ := (θx)x∈Z := (ωx, αx)x∈Z.

By choosing px = ωx for x ∈ Z and using

1 + p · αx
2

instead of αx

for some p ∈ [0, 1] in (1.6), we come to the following (transition) probabilities

P z
θ

(
(X0, Y0) = z

)
= 1,

P z
θ

(
(Xn+1, Yn+1) = (x+ 1, y)

∣∣(Xn, Yn) = (x, y)
)

= δ · ωx,

P z
θ

(
(Xn+1, Yn+1) = (x− 1, y)

∣∣(Xn, Yn) = (x, y)
)

= δ · (1− ωx),

P z
θ

(
(Xn+1, Yn+1) = (x, y + 1)

∣∣(Xn, Yn) = (x, y)
)

=
1− δ

2
· (1 + p · αx),

P z
θ

(
(Xn+1, Yn+1) = (x, y − 1)

∣∣(Xn, Yn) = (x, y)
)

=
1− δ

2
· (1− p · αx)

for all n ∈ N0, x, y ∈ Z and z ∈ Z2.

We derive the following characterization

of recurrence and transience for the

Markov chain (Mn)n∈N0 = (Xn, Yn)n∈N0

in

Theorem 3.6.1 (1) For p = 0, the

Markov chain (Mn)n∈N0 is recur-

rent for P-a.e. environment θ.

(2) On the contrary for 0 < p ≤ 1, the

Markov chain (Mn)n∈N0 is transient

for P-a.e. environment θ.

x

y

(1− δ) · 1+p
2

(1− δ) · 1−p
2

δ · ω3δ · (1− ω3)

(1− δ) · 1+p
2

(1− δ) · 1−p
2

δ · ω3δ · (1− ω3)

(1− δ) · 1−p
2

(1− δ) · 1+p
2

δ · ω−3δ · (1− ω−3)

(1− δ) · 1−p
2

(1− δ) · 1+p
2

δ · ω−3δ · (1− ω−3)

Figure 1.1: A possible realization of the

random orientations ↑↓ and the correspond-

ing transition probabilities.
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1.3.3 RWRE in Random Scenery

Random Walk in Random Scenery (RWRS) is a family of stationary random processes

which possess long-range correlations. The general configuration is the following:

Let (Mn)n∈N0 be a Markov chain on some state space S and (αx)x∈S be a sequence of i.i.d.

random variables indexed by S. Then, (αx)x∈S is referred to as the random scenery. As

the random walk (Mn)n∈N0 moves in its state space, it observes the random scenery at its

location. Therefore, we define

Sn :=
n∑

i=0

αSi

as the RWRS. Such a process was first introduced by Kesten and Spitzer in [KS79]. Since

we only consider results on random scenery as by-product, we concentrate on results for

RWRE in random scenery (RWRERS) in the following. Therefore at this point, we only

refer to [KS79] for the first results on RWRS and to [HS06] for more results and recent

developments.

There are only few results on problems which combine RWRE and random scenery. A first

question about the behaviour of a RWRE on Z in a random scenery appeared in form of a

conjecture of Révész ([Ré05], p.353) which is motivated by the strong localization property

of the RWRE. Since the form of the conjecture in [Ré05] was still unfinished, we use the

form of [Zi08]:

Conjecture 1.3.4. Let (Xn)n∈N0 be a one-dimensional RWRE for which the environment

ω fulfils our assumptions in (1.1). Further, let (αx)x∈Z be an i.i.d. sequence with respect to

some probability measure Q. Does the assumption a := ess supα0 <∞ imply

lim sup
n→∞

Sn
n

= a P⊗Q− a.s.?

Here we use

Sn :=
n∑

i=0

αSi

as above. Further, the product measure P⊗Q is used to indicate that we want the random

scenery to be independent of (ω, (Xn)n∈N0). In the same work, Zindy proved the following

result which shows that the conjecture is only true under further assumptions:

Theorem 1.3.5 (lim sup behaviour of RWRERS - cf. Theorem 1.1 in [Zi08]). Assume that

the environment ω fulfils the assumptions in (1.1) and a := ess supα0 <∞.

(1) If Q(α−0 > λ) ≤ 1
(log λ)2+ε

for some ε > 0 and all large λ, then

P⊗Q
(

lim sup
n→∞

Sn
n

= a

)
= 1.
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(2) If Q(α−0 > λ) ≥ 1
(log λ)2−ε

for some ε > 0 and all large λ, then

P⊗Q
(

lim sup
n→∞

Sn
n

= −∞
)

= 1.

Here, we use the convention α−0 = max{−α0, 0}. In particular the case ε = 0 is still open.

In Chapter 3, we are able to derive a first statement about the lim inf behaviour of a

particular RWRERS. As mentioned before, we consider a model in which the RWRE collects

+1/− 1-orientations, which have been attached to the positions x ∈ Z independently and

with equal probability before the RWRE starts. This setting can also be understood as a

RWRERS, where (αx)x∈Z is an i.i.d. sequence with

P(α0 = +1) = P(α0 = −1) =
1

2

which is further independent of the environment ω. In our notation, we use P (instead of

P⊗Q) as the corresponding probability measure of the extended environment

θ = (ωx, αx)x∈Z.

Using Theorem 1.3.5, we see that (expressed as a quenched statement) we have

lim sup
n→∞

Sn
n

= 1 and lim sup
n→∞

−Sn
n

= 1

Pθ-a.s. for P-a.e. environment θ, where we use

Sn :=
n−1∑

i=0

αXi

for periodic reasons. (This statement could also be directly derived by known concentration

properties of the RWRE since we have ess sup |α0| = 1 < ∞ (cf. Section 1.3 in [Zi08] and

Theorem 1.3 in [An07])).

But what can we say about Sνn , where (νn)n∈N0 denotes the sequence of the successive

return times of the RWRE (Xn)n∈N0 to 0?

Note here that (Xn)n∈N0 is recurrent for P-a.e. environment by assumption on the en-

vironment. In Chapter 3, we get the following proposition, where we assume that the

environment ω of the RWRE (Xn)n∈N0 fulfils the assumptions in (1.1):

Proposition 3.5.1 For 0 < ϑ < 1 we have

lim inf
n→∞

|Sνn |
νn · exp

(
−
(

log(νn)
)ϑ) =∞ (1.7)

Pθ-a.s. for P-a.e. environment θ.

In particular for all n large enough, the RWRERS has either collected a lot more +1- orien-

tations or a lot more −1-orientations when the RWRE (Xn)n∈N0 returns to 0 at time νn.

17



CHAPTER 1. PRELIMINARIES

18



Chapter 2

Strong Recurrence of Recurrent

RWRE

2.1 Overview

In this chapter, we consider a RWRE on Z for which we assume that we are in the recurrent

regime. Our main results are three analytical results on the quenched return probabilities

of the RWRE to the origin.

The structure of this chapter is the following: In Section 2.2, we introduce the model of a

RWRE on Z together with the notation which we use in this chapter. Then we collect some

useful equalities and inequalities in the context of RWRE in Section 2.3 before we state our

main result in Section 2.4. Section 2.5 contains the proofs of our main results. The main

tool for our proofs is a careful analysis of the corresponding potential of the RWRE (cf.

(2.5)). To this end, we introduce favourable “valleys” (cf. Figure 2.1 on page 23), which

help us to derive lower bounds for the quenched return probabilities of the RWRE to the

origin. In the last Section 2.6, we give some examples for recurrent random walks in some

random environment. In particular Corollary 2.6.2 and Corollary 2.6.3 give reason for the

part “strong recurrence” in the title of this chapter when we compare the behaviour of

RWRE with the behaviour of a symmetric random walk on Zd.

2.2 Model and Notation

Let us first introduce the notation for a random walk in random environment (RWRE) as

it is usually done in the literature:

At first, let ω = (ωx)x∈Z be a sequence of i.i.d. random variables taking values in (0, 1) with

respect to some probability measure P. For i ∈ Z we define

ρi = ρi(ω) :=
1− ωi
ωi

.
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In the following, we will assume that

E[log ρ0] = 0, (2.1)

P(ε ≤ ω0 ≤ 1− ε) = 1 for some ε ∈
(
0, 1

2

)
, (2.2)

Var(log ρ0) > 0. (2.3)

Here, (2.1) ensures that the one-dimensional RWRE is recurrent. The second assumption

is a common technical condition in the context of RWRE. Further, the third assumption

excludes the case of a symmetric random walk on Z.

For each environment ω, we can introduce the random walk (Xn)n∈N0 whose transition

probabilities are determined by (ωx)x∈Z. More precisely for every x ∈ Z, (Xn)n∈N0 is a

Markov chain with respect to P x
ω determined by

P x
ω (X0 = x) = 1,

P x
ω (Xn+1 = y + 1|Xn = y) = ωy = 1− P x

ω (Xn+1 = y − 1|Xn = y) ∀y ∈ Z. (2.4)

As usual, we use P o
ω instead of P 0

ω and will even drop the superscript o where no confusion

is to be expected. We can now define the potential V (cf. Section 2 in [SZ07]) as

V (x) :=





x∑
i=1

log ρi for x = 1, 2, . . .

0 for x = 0
0∑

i=x+1

log(ρi)
−1 for x = −1,−2, . . . .

(2.5)

Note that V (x) is a sum of i.i.d. random variables which are centred and which are bounded

by C := log(1−ε)−log ε > 0 due to the assumptions (2.1) and (2.2). One of the most useful

properties of the RWRE is the observation that, for fixed ω, the random walk is a reversible

Markov chain and can therefore be described as an electrical network (cf. [DGPS07]). The

conductances are given by

C(x,x+1)(ω) = e−V (x) =





x∏
i=1

(ρi)
−1 for x = 1, 2, . . .

1 for x = 0
0∏

i=x+1

ρi for x = −1,−2, . . .

and the reversible measure which is unique up to multiplication by a constant is given by

µω(x) = e−V (x) + e−V (x−1) =





x−1∏
i=1

ωi
1−ωi ·

1
1−ωx for x = 1, 2, . . .

1
ω0

for x = 0
0∏

i=x+1

1−ωi
ωi
· 1
ωx

for x = −1,−2, . . . .

(2.6)
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As a consequence of the reversibility, we conclude that we have

µω(x) · P x
ω (Xn = y) = µω(y) · P y

ω(Xn = x) (2.7)

for all n ∈ N0 and x, y ∈ Z.

2.3 Preliminaries

In the following, we collect some useful properties of the RWRE. For the random time of

the first arrival in x

τ(x) := inf{n ≥ 0 : Xn = x}, (2.8)

the interpretation of the RWRE as an electrical network helps us to compute the following

probability for x < y < z (for a proof see for example formula (2.1.4) in [Ze04]):

P y
ω(τ(z) < τ(x)) =

y−1∑
j=x

eV (j)

z−1∑
j=x

eV (j)

(2.9)

Further (cf. (2.4) and (2.5) in [SZ07] and Lemma 7 in [Go84]), we have for k ∈ N and y < z

P y
ω(τ(z) < k) ≤ k · exp

(
− max

y≤i<z

[
V (z − 1)− V (i)

])
(2.10)

and similarly for x < y

P y
ω(τ(x) < k) ≤ k · exp

(
− max

x<i≤y

[
V (x+ 1)− V (i)

])
. (2.11)

To get bounds for large values of τ(·), we can use that for x < y < z we have (cf. Lemma

2.1 in [SZ07])

Ey
ω[τ(z) · 1{τ(z)<τ(x)}] ≤ (z − x)2 · exp

(
max

x≤i≤j≤z

(
V (j)− V (i)

))
. (2.12)

Further, the Komlós-Major-Tusnády strong approximation theorem (cf. Theorem 1 in

[KMT76], see also formula (2) in [CP03b]) will help us to compare the shape of the potential

with the paths of a two-sided Brownian motion:

Theorem 2.3.1. In a possibly enlarged probability space, there exists a version of our

environment process ω and a two-sided Brownian motion (B(t))t∈R with diffusion constant

σ := (Var(log ρ0))
1
2 (i.e. V ar(B(t)) = σ2|t|) such that for some K > 0 we have

P

(
lim sup
x→±∞

|V (x)−B(x)|
log |x| ≤ K

)
= 1. (2.13)
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2.4 Results

Let us consider a RWRE (Xn)n∈N0 on Z where the law of the environment ω = (ωx)x∈Z
fulfils the assumptions (2.1), (2.2), and (2.3). Then, the following two theorems hold:

Theorem 2.4.1. For 0 ≤ α < 1, we have

∑

n∈N

Pω(X2n = 0) · n−α =∞ (2.14)

for P-a.e. environment ω.

Theorem 2.4.2. For all α > 0, we have

∑

n∈N

(
Pω(X2n = 0)

)α
=∞ (2.15)

for P-a.e. environment ω.

For the last theorem we consider a combination of d environments:

Theorem 2.4.3. For d ∈ N, consider d i.i.d. environments ω(1), ω(2), . . . , ω(d) which all

fulfil the assumptions (2.1), (2.2), and (2.3). Then, we have

∑

n∈N

d∏

k=1

Pω(k)(X2n = 0) =∞ (2.16)

for P⊗d-a.e. environment (ω(1), ω(2), . . . , ω(d)).

2.5 Proofs

Let us first introduce the sets Γ+(L, δ) and Γ−(L, δ) of environments for L ∈ N and

0 < δ < 1 defined by

Γ+(L, δ) := {R+
1 (L) ≤ δL, R+

2 (L) ≤ δL, T+(L) ≤ L2},

Γ−(L, δ) := {R−1 (L) ≤ δL, R−2 (L) ≤ δL, −T−(L) ≤ L2},

where

T+(L) := inf{n ≥ 0 : V (n)− min
0≤k≤n

V (k) ≥ L},

T−(L) := sup{n ≤ 0 : V (n)− min
n≤k≤0

V (k) ≥ L},

R+
1 (L) := − min

0≤k≤T+(L)
V (k),
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R−1 (L) := − min
T−(L)≤k≤0

V (k),

T+
b (L) := inf{n ≥ 0 : V (n) = −R+

1 (L)},

T−b (L) := sup{n ≤ 0 : V (n) = −R−1 (L)},

R+
2 (L) := max

0≤k≤T+
b (L)

V (k),

R−2 (L) := max
T−b (L)≤k≤0

V (k).

Here, the +-sign and the−-sign indicate whether we deal with properties of the valley on the

positive or negative half-line, respectively. Note that the definition of the sets Γ+(L, δ) and

Γ−(L, δ) is compatible with the scaling of a Brownian motion in space and time (cf. (2.31)).

V (x)

x

L2 L2

R−
1 (L)

b−=T−
b (L)

T−(L)

L

R+
1 (L)

T+
b (L)=b+

T+(L)

L

δL

δL

R−
2 (L) R+

2 (L)

Figure 2.1: Shape of a valley of an environment in Γ(L, δ) := Γ+(L, δ) ∩ Γ−(L, δ)

Remark 2.5.1. We have constructed the valleys in such a way that the return probability

of the random walk to the origin is high (or bounded from below as we will see) for even

time points as long as the random walk has not left the valley. For ω ∈ Γ+(L, δ)∩Γ−(L, δ),

we have the following behaviour for the random walk (Xn)n∈N0 in the environment ω:

(1) Since we have V (T−(L))−V (T−b (L)) ≥ L and V (T+(L))−V (T+
b (L)) ≥ L, the random

walk (Xn)n∈N0 stays within {T−(L), T−(L) + 1, . . . , T+(L)} for (approximately) at

least exp(L) steps (cf. (2.23)).

(2) Within the area {T−(L), T−(L) + 1, . . . , T+(L)}, the random walk prefers to stay at

positions x with a small potential V (x), i.e. at positions close to the bottom points
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at T−b (L) and T+
b (L).

(3) The return probability for the random walk from the positions T−b (L) and T+
b (L) to

the origin is mainly influenced by the potential differences R−2 (L)+R−1 (L) ≤ 2δL and

R+
2 (L) + R+

1 (L) ≤ 2δL respectively, i.e. by the height of the climb the random walk

has to trespass from the bottom points back to the origin (cf. (2.19)).

Proposition 2.5.2. For ω ∈ Γ(L, δ) := Γ+(L, δ) ∩ Γ−(L, δ) with 0 < δ < 1
5
, we have

Pω(X2n = 0) ≥ C · exp(−3δL) (2.17)

for

exp(3δL) ≤ n ≤ exp
(
(1− 2δ)L

)
,

where the constant C = C(δ) does not depend on L.

Proof of Proposition 2.5.2. The construction of “valleys” has been useful for the proofs of

many theorems in the context of RWRE. Our construction uses some ideas from [CP03b],

where it is shown that the transition probabilities of a RWRE in continuous time converge

in distribution. Since we deal with a RWRE in discrete time and we want to have lower

estimates for the return probabilities for a fixed environment in Proposition 2.5.2, we will

have to adapt the construction to our setting:

The return probability to the origin for the time points of interest is mainly influenced

by the shape of the “valley” of the environment ω between T−(L) and T+(L). For the

positions of the two deepest bottom points of this valley on the positive and negative side,

we write

b+ := T+
b (L) and b− := T−b (L)

and we assume for the following proof that we have (cf. (2.8) for the definition of τ(·))

P o
ω

(
τ(b+) < τ(b−)

)
≥ 1

2
. (2.18)

(Due to the symmetry of the RWRE, the proof also works in the opposite case if we switch

the roles of b+ and b−). We have

P o
ω(X2n = 0) ≥ P o

ω

(
X2n = 0, τ(b+) ≤ 2n

3
, τ(b+) < τ(b−)

)

≥ P o
ω

(
τ(b+) ≤ 2n

3
, τ(b+) < τ(b−)

)
· înf

`∈
{⌈

4n
3

⌉
,...,2n

}P b+
ω (X` = 0)

= P o
ω

(
τ(b+) ≤ 2n

3
, τ(b+) < τ(b−)

)
· µω(0)

µω(b+)
· înf

`∈
{⌈

4n
3

⌉
,...,2n

}P o
ω(X` = b+) (2.19)

where we used (2.7) in the third step. Here, for x, y ∈ Z,

înf
`∈
{⌈

4n
3

⌉
,...,2n

}P x
ω (X` = y)
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is the short notation for

inf
`∈
{⌈

4n
3

⌉
,...,2n

}
∩
(

2Z+(x+y)
)P x

ω (X` = y)

since we have to take care of the periodicity of the random walk.

Let us now have a closer look at the factors in the lower bound in (2.19) separately:

First factor in (2.19):

We can bound the first factor from below by

P o
ω

(
τ(b+) ≤ 2n

3
, τ(b+) < τ(b−)

)

≥ 1− P o
ω

(
τ(b+) > 2n

3
, τ(b+) < τ(b−)

)
− P o

ω

(
τ(b+) ≥ τ(b−)

)

≥ 1− 3
2n
· Eo

ω

[
τ(b+) · 1{τ(b+)<τ(b−)}

]
− P o

ω

(
τ(b+) ≥ τ(b−)

)

≥ 1− 3
2n
· (b+ − b−)2 · exp

(
max

b−≤i≤j≤b+

(
V (j)− V (i)

))
− 1

2
,

where we used (2.12) and assumption (2.18) for the last step. Therefore, we get for

ω ∈ Γ(L, δ) and exp (3δL) ≤ n that

P o
ω

(
τ(b+) ≤ 2n

3
, τ(b+) < τ(b−)

)
≥ 1

2
− 3 · 4 · L4

2 · exp(3δL)
· exp(2δL) =

1

2
− 6 · L4 · exp(−δL).

(2.20)

Second factor in (2.19):

By using assumption (2.2) and the relation in (2.6), we get for ω ∈ Γ(L, δ):

µω(0)

µω(b+)
=

1
ω0

e−V (b+) + e−V (b+−1)
=

1
ω0

e−V (b+) · (1 + ρb+)

≥
1

1−ε

1 + 1−ε
ε

· eV (b+) =
ε

1− ε · e
V (b+) ≥ ε

1− ε · exp(−δL). (2.21)

Here we used that V (b+) ≥ −δL holds for ω ∈ Γ(L, δ).

Third factor in (2.19):

For the last factor in (2.19), we can compare the RWRE with the process (X̃n)n∈N0 which be-

haves as the original RWRE but is reflected at the positions T− := T−(L) and T+ := T+(L),

i.e. we have for x ∈ {T−, T− + 1, . . . , T+}

P x
ω (X̃0 = x) = 1,

P x
ω (X̃n+1 = y ± 1|X̃n = y) = P x

ω (Xn+1 = y ± 1|Xn = y),

∀y ∈ {T− + 1, T− + 2, . . . , T+ − 1},
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P x
ω (X̃n+1 = y + 1|X̃n = y) = 1 for y = T−,

P x
ω (X̃n+1 = y − 1|X̃n = y) = 1 for y = T+.

Therefore, we have for ` ∈
{ ⌈

4n
3

⌉
, . . . , 2n

}
∩
(
2Z + b+

)

P o
ω(X` = b+)

≥ P o
ω(X` = b+, min{τ(T−), τ(T+)} > 2n)

= P o
ω(X̃` = b+)− P o

ω(X̃` = b+, min{τ(T−), τ(T+)} ≤ 2n)

≥ P o
ω(X̃` = b+)− P o

ω(min{τ(T−), τ(T+)} ≤ 2n)

≥ P o
ω

(
X̃` = b+, τ(b+) ≤ `

2
, τ(b+) < τ(b−)

)
− P o

ω(min{τ(T−), τ(T+)} ≤ 2n)

≥ P o
ω

(
τ(b+) ≤ `

2
, τ(b+) < τ(b−)

)
· înf

k∈
{⌈

`
2

⌉
,...,`
}P b+

ω (Xk = b+)

− P o
ω(min{τ(T−), τ(T+)} ≤ 2n). (2.22)

Using (2.10) and (2.11), we see that the last term in (2.22) with the negative sign decreases

exponentially for n ≤ exp
(
(1− 2δ)L

)
, i.e.

P o
ω(min{τ(T−), τ(T+)} ≤ 2n) ≤ P o

ω

(
min{τ(T−), τ(T+)} ≤ 2 · exp

(
(1− 2δ)L

))

≤ P o
ω

(
τ(T−) ≤ 2 · exp

(
(1− 2δ)L

))
+ P o

ω

(
τ(T+) ≤ 2 · exp

(
(1− 2δ)L

))

≤ 4 · exp
(
(1− 2δ)L

)
· exp

(
− L

)
= 4 · exp

(
− 2δL

)
. (2.23)

In order to derive a lower bound for the first term in (2.22), we first notice that the analogous

calculation as in (2.20) shows for ω ∈ Γ(L, δ) that

P o
ω

(
τ(b+) ≤ `

2
, τ(b+) < τ(b−)

)
≥ 1− 2

`
· 4 · L4 · exp(2δL)− 1

2

≥ 1

2
− 6 · L4 · exp(−δL) (2.24)

since ` ≥
⌈

4n
3

⌉
≥ 4

3
·exp(3δL) for n ≥ exp(3δL). For the second factor, we show the following

Lemma 2.5.3. For ω ∈ Γ(L, δ) and for all ` ∈ 2N, we have

P b+
ω (X̃` = b+) ≥ 1

2
· 1

|T−|+ T+ + 1
· exp

(
− δL

)
.

Proof of Lemma 2.5.3. Using the reversibility (cf. (2.7)) of (X̃`)`∈N0 , we get

P b+
ω (X̃` = b+)
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=
T+∑

x=T−

P b+
ω (X̃`/2 = x) · P x

ω (X̃`/2 = b+)

=
T+∑

x=T−

P b+
ω (X̃`/2 = x) · µ̃ω(b+)

µ̃ω(x)
· P b+

ω (X̃`/2 = x), (2.25)

where µ̃ω(·) denotes a reversible measure of the reflected random walk (X̃n)n∈N0 which is

unique up to multiplication by a constant. To see that (X̃`)`∈N0 is also reversible, it is

enough to note that (X̃`)`∈N0 can again be described as an electrical network with the

following conductances:

C̃(x,x+1)(ω) =

{
C(x,x+1)(ω) = e−V (x) for x = T−, T− + 1, . . . , T+ − 1

0 for x = T− − 1, T+

Therefore, a reversible measure for the reflected random walk is given by (cf. (2.6))

µ̃ω(x) =





µω(x) = e−V (x) + e−V (x−1) for x = T− + 1, T− + 2, . . . , T+ − 1,

e−V (T−) for x = T−,

e−V (T+−1) for x = T+.

This implies, since 0 ≤ b+ < T+,

µ̃ω(b+)

µ̃ω(x)
≥ e−V (b+) + e−V (b+−1)

e−V (x) + e−V (x−1)

≥ e−V (b+)

2 · e(−min{V (b+),V (b−)}) ≥
1

2
· exp(−δL) (2.26)

for T− ≤ x ≤ T+ and for ω ∈ Γ(L, δ). By applying (2.26) to (2.25), we get

P b+
ω (X̃` = b+)

≥ 1

2
·

T+∑

x=T−

(
P b+
ω (X̃`/2 = x)

)2

· exp(−δL)

≥ 1

2
·

T+∑

x=T−

(
1

|T−|+ T+ + 1

)2

· exp(−δL)

=
1

2
· 1

|T−|+ T+ + 1
· exp(−δL). (2.27)

Here, we used that we have

T+∑

x=T−

(ax)
2 ≥

T+∑

x=T−

(
1

|T−|+ T+ + 1

)2

for every sequence (ax)x with
T+∑

x=T−
ax = 1. �
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We can now return to the proof of Proposition 2.5.2 and finish our lower bound for the

third factor in (2.19). By applying (2.23), (2.24) and Lemma 2.5.3 to (2.22), we get for

exp(3δL) ≤ n ≤ exp((1− 2δ)L) and ω ∈ Γ(L, δ), i.e. |T−|, T+ ≤ L2,

înf
`∈
{⌈

4n
3

⌉
,...,2n

}P o
ω(X` = b+)

≥
(

1

2
− 6 · L4 · exp(−δL)

)
· 1

2
· 1

2L2 + 1
· exp(−δL)− 4 · exp

(
− 2δL

)

≥ exp
(
−3

2
δL
)

(2.28)

for all L = L(δ) large enough.

To finish the proof of Proposition 2.5.2, we can collect our lower bounds in (2.20), (2.21),

and (2.28) and conclude with (2.19) that for exp (3δL) ≤ n ≤ exp
(
(1 − 2δ)L

)
and for

ω ∈ Γ(L, δ) we have

Pω(X2n = 0)

≥
(

1

2
− 6 · L4 exp(−δL)

)
· ε

1− ε exp(−δL) · exp
(
−3

2
δL
)

≥ exp(−3δL)

for all L = L(δ) large enough. This shows (2.17) since we have Pω(X2n = 0) ≥ ε2n > 0 for

all n ∈ N due to assumption (2.2). �

Proposition 2.5.4. For 0 < δ < 1, we have

P(ω : ω ∈ Γ(L, δ) for infinitely many L) = 1. (2.29)

Proof of Proposition 2.5.4. Let (B(t))t∈R be the two-sided Brownian motion from Theorem

2.3.1 and let us choose some 0 < δ < 1
2
. For y ∈ R we define

T̂+(y) := inf{t ≥ 0 : B(t) = y},
T̂−(y) := sup{t ≤ 0 : B(t) = y}

as the first hitting times of y on the positive and negative side of the origin, respectively.

Additionally, for L ∈ N, i ∈ N, y ∈ R, we can introduce the following sets

F+
L (y) := {T̂+ (y · L) < T̂+ (−y · L)},
F−L (y) := {T̂− (y · L) < T̂− (−y · L)}

on which the Brownian motion reaches the value y · L before −y · L. Further we define

G+
L(i) :=

{
B(t) ≥ (2i− 1) · δ

4
· L for T̂+

(
2i · δ

4
· L
)
≤ t ≤ T̂+

(
(2i+ 2) · δ

4
· L
)}

,

G−L(i) :=
{
B(t) ≥ (2i− 1) · δ

4
· L for T̂−

(
(2i+ 2) · δ

4
· L
)
≤ t ≤ T̂−

(
2i · δ

4
· L
)}
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on which the Brownian motion does not decrease much between the first hitting time of

the two levels of interest. Using these sets, we can define the sets

A+(L, δ) := F+
L (δ) ∩

{
T̂+(1.1 · L) ≤ L2, min

T̂+(δ·L)≤t≤T̂+(1.1·L)
B(t) ≥ δ

4
· L
}
,

A−(L, δ) := F−L (δ) ∩
{
−T̂−(1.1 · L) ≤ L2, min

T̂−(1.1·L)≤t≤T̂−(δ·L)
B(t) ≥ δ

4
· L
}
,

D+(L, δ) := G+
L(0) ∩G+

L(1) ∩G+
L(2)

∩



T̂

+(1.2 · L) ≤ 0.9 · L2, min
T̂+
(

3·δ
2
·L
)
≤t≤T̂+(1.2·L)

B(t) ≥ 3δ

4
· L



 ,

D−(L, δ) := G−L(0) ∩G−L(1) ∩G−L(2)

∩



−T̂

−(1.2 · L) ≤ 0.9 · L2, min
T̂−(1.2·L)≤t≤T̂−

(
3δ
2
·L
)B(t) ≥ 3δ

4
· L





which which will be used for an approximation of our previously constructed valleys ω

belonging to Γ(L, δ) which we illustrated in Figure 2.1 on page 23. Here, we added the

factors 1.1, 1.2 and 0.9 in contrast to the construction before in order to have some space

for the approximation. For the Brownian motion, we can directly compute that we have

P
(
D+(1, δ) ∩D−(1, δ)

)
> 0. (2.30)

Thereby, the scaling property of the Brownian motion, i.e. the property that for L ∈ N
(

1

L
B(L2 · t)

)

t∈R
(2.31)

is again a two-sided Brownian motion with diffusion constant σ, implies

P
(
D+(L, δ) ∩D−(L, δ)

)
= P

(
D+(1, δ) ∩D−(1, δ)

)
> 0 (2.32)

for all L ∈ N.

At first, we notice that for L0 ∈ N we have

P

(
∞⋂

L=L0

(
A+(L, δ) ∩ A−(L, δ)

)c
)
≤ P

(
∞⋂

k=`+1

(
A+(Lk, δ) ∩ A−(Lk, δ)

)c
)

(2.33)

for arbitrary ` ∈ N0, where we define

Lk := max
{

10,
⌈

2
δ

⌉}
· (Lk−1)2

for k ∈ N inductively. Note that for n > `+ 1 with

Fn := σ
((
B(t)

)
−(Ln−1)2≤t≤(Ln−1)2

)
,
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the following holds:

P

(
n⋂

k=`+1

(
A+(Lk, δ) ∩ A−(Lk, δ)

)c
)

≤ E




n−1∏

k=`+1

1(
A+(Lk,δ)∩A−(Lk,δ)

)c · 1{
max

−(Ln−1)
2≤t≤(Ln−1)

2
|B(t)|<(Ln−1)2

}

· E
[
1{(

B(t+(Ln−1)2)−B((Ln−1)2)
)
t∈R

/∈D+(Ln,δ)

}
∪
{(

B(t−(Ln−1)2)−B(−(Ln−1)2)
)
t∈R

/∈D−(Ln,δ)

}
∣∣∣∣∣Fn
]]

+ P

(
max

−(Ln−1)2≤t≤(Ln−1)2
|B(t)| ≥ (Ln−1)2

)

≤
(

1− P
(
D+ (Ln, δ) ∩D− (Ln, δ)

))
· P
(

n−1⋂

k=`+1

(
A+(Lk, δ) ∩ A−(Lk, δ)

)c
)

+ P

(
max

−(Ln−1)2≤t≤(Ln−1)2
|B(t)| ≥ (Ln−1)2

)

≤
(

1− P
(
D+ (1, δ) ∩D− (1, δ)

))n−`
+

n∑

k=`+1

P

(
max

−(Lk−1)2≤t≤(Lk−1)2
|B(t)| ≥ (Lk−1)2

)
.

(2.34)

To see that the first step holds, note that for

ω ∈
{

max
−(Ln−1)2≤t≤(Ln−1)2)

|B(t)| < (Ln−1)2

}

∩
{(
B(t+ (Ln−1)2)−B((Ln−1)2)

)
t∈R ∈ D

+ (Ln, δ)
}

(2.35)

we have

min
0≤t≤(Ln)2

B(t) ≥ min
0≤t≤(Ln−1)2

B(t) + min
(Ln−1)2≤t≤(Ln)2

B(t+ (Ln−1)2)−B((Ln−1)2)

> − (Ln−1)2 − δ

4
· Ln > −δ · Ln,

and

max
0≤t≤(Ln)2

B(t) ≥ B
(
(Ln−1)2

)
+ max

(Ln−1)2≤t≤(Ln)2−(Ln−1)2
B(t+ (Ln−1)2)−B((Ln−1)2)

≥ − (Ln−1)2 + 1.2 · Ln ≥ 1.1 · Ln.

In particular, we have T̂+(δ · L) < T̂+(−δ · L) and T̂+(1.1 · L) ≤ L2 on the considered set.

Similarly, again on the set in (2.35), we see that we have

T̂+(δ · L) > inf{t ≥ (Ln−1)2 : (B(t+ (Ln−1)2)−B((Ln−1)2) ≥ δ
2
· Ln},
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T̂+(δ · L) < inf{t ≥ (Ln−1)2 : (B(t+ (Ln−1)2)−B((Ln−1)2) ≥ 3·δ
2
· Ln},

which implies

min
T̂+(δ·L)≤t≤T̂+(1.1·L)

B(t) ≥ δ

4
· Ln

by construction of D+(Ln, δ). Altogether, we can conclude that ω ∈ A+(Ln, δ) holds for

our choice of ω in (2.35). The argument for the negative part runs completely analogously.

Further in (2.34), we used the Markov property of the Brownian motion in the second step.

Additionally, we iterated the first two steps n − ` − 1 times and used (2.32) for the last

step. To control the last sum in (2.34), let us recall the standard upper bound

P (Z ≥ x) ≤ 1

x
· 1√

2π
· exp

(
−x

2

2

)
for x > 0

for a random variable Z ∼ N (0, 1), which can be found for example in Lemma 12.9 in

Appendix B of [MP10]. By using this upper bound, we can conclude that

n∑

k=`+1

P

(
max

−(Lk−1)2≤t≤(Lk−1)2
|B(t)| ≥ (Lk−1)2

)
≤ 4 ·

n∑

k=`+1

P

(
max

0≤t≤(Lk−1)2

B(t)

σ · Lk−1

≥ Lk−1

σ

)

≤ 4 ·
∞∑

k=`+1

σ

Lk−1

· 1√
2π
· exp

(
−(Lk−1)2

2σ2

)
`→∞−−−→ 0. (2.36)

Here, we used that

max
0≤t≤(Lk−1)2

B(t)

σ · Lk−1

∼ |Z|

for all k ∈ N, where Z ∼ N (0, 1). By combining the upper bounds in (2.33), (2.34), and

(2.36), we get for all ` ∈ N0

P
(
ω /∈

(
A+(L, δ) ∩ A−(L, δ)

)
for all L ≥ L0

)

≤ lim
n→∞

(
1− P

(
D+

(
1, δ

2

)
∩D−

(
1, δ

2

) ))n−`

+
∞∑

k=`+1

P

(
max

−(Lk−1)2≤t≤(Lk−1)2
|B(t)| ≥ (Lk−1)2

)
`→∞−−−→ 0.

Since L0 ∈ N was chosen arbitrarily, we can conclude that for 0 < δ < 1
2

we have

P
(
ω : ω ∈

(
A+(L, δ) ∩ A−(L, δ)

)
for infinitely many L

)
= 1.

Using the Komlós-Major-Tusnády strong approximation Theorem (cf. Theorem 2.3.1), we

see that for 0 < δ < 1
2

we have

{
ω : ω ∈

(
A+(L, δ) ∩ A−(L, δ)

)
for infinitely many L

}

⊆ {ω : ω ∈ Γ(L, 2δ) for infinitely many L} ,
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which is enough to conlude that (2.29) holds for all 0 < δ < 1. �

With the help of Proposition 2.5.2 and Proposition 2.5.4, we can now turn to the proofs of

our Theorems 2.4.1 – 2.4.3:

Proof of Theorem 2.4.1. For a fixed 0 ≤ α < 1, we choose 0 < δ < 1
6

such that

α <
1− 5δ

1− 2δ
. (2.37)

For ω ∈ Γ(L, δ), the inequality in (2.17) implies that

∑

n∈N

Pω(X2n = 0) · n−α ≥
∑

dexp(3δL)e≤n≤bexp((1−2δ)L)c

Pω(X2n = 0) · n−α

≥
(

exp
(
(1− 2δ)L

)
− exp(3δL)− 1

)
· C · exp(−3δL) ·

(
exp

(
(1− 2δ)L

))−α

= C · exp(−3δL) · exp(3δL) ·
(

exp
(
(1− 5δ)L

)
− 1− exp(−3δL)

)
· exp

(
− α(1− 2δ)L

)

L→∞−−−→∞.

Since Proposition 2.5.4 shows that for P-a.e. environment ω we find L arbitrarily large such

that ω ∈ Γ(L, δ), we can conclude that (2.14) holds for P-a.e. environment ω. �

Proof of Theorem 2.4.2. For fixed α > 0, we choose δ such that

0 < δ < min

{
1

2 + 3α
,
1

5

}
,

which yields

1− 2δ − 3αδ > 0 and 1− 2δ > 3δ.

For ω ∈ Γ(L, δ), the inequality in (2.17) implies

∑

n∈N

(
Pω(X2n = 0)

)α
≥

∑

dexp(3δL)e≤n≤bexp((1−2δ)L)c

(
Pω(X2n = 0)

)α

≥
(

exp
(
(1− 2δ)L

)
− exp(3δL)− 1

)
·
(
C · exp(−3δL)

)α

= Cα · exp(−3αδL) · exp(3αδL)

·
(

exp
(
(1− 2δ − 3αδ)L

)
− exp

(
(3δ − 3αδ)L

)
− exp(−3αδL)

)

L→∞−−−→∞.
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Again since Proposition 2.5.4 shows that for P-a.e. environment ω we find L arbitrarily

large such that ω ∈ Γ(L, δ), we can conclude that (2.15) holds for P-a.e. environment ω.

�

Proof of Theorem 2.4.3. Due to the independence of the environments ω(1), ω(2), . . . , ω(d),

we can extend the proof of Proposition 2.5.4 to get

P⊗d
(
For infinitely many L ∈ N we have : ω(i) ∈ Γ(L, δ) for i = 1, 2, . . . d

)
= 1 (2.38)

for all 0 < δ < 1.

Thereby due to Proposition 2.5.2, we have for (ω(1), ω(2), . . . , ω(d)) with ω(i) ∈ Γ(L, δ) for

i = 1, 2, . . . d

∑

n∈N

d∏

k=1

Pω(k)(X2n = 0) ≥
∑

dexp(3δL)e≤n≤bexp((1−2δ)L)c

d∏

k=1

Pω(k)(X2n = 0)

≥
(

exp
(
(1− 2δ)L

)
− exp(3δL)− 1

)
· Cd · exp(−3δdL)

= Cd · exp(−3δdL) · exp(3δdL)

·
(

exp
(
(1− 2δ − 3δd)L

)
− exp

(
(3δ − 3δd)L

)
− exp(−3δdL)

)

L→∞−−−→∞

for

0 < δ <
1

2 + 3d
.

Since (2.38) holds for arbitrarily small δ, we can conclude that (2.16) holds for P⊗d-a.e.

environment (ω(1), ω(2), . . . , ω(d)). �

2.6 Examples for Recurrent Random Walks in Ran-

dom Environments

Remark 2.6.1. Consider a RWRE (Xn)n∈N0 for which the environment ω fulfils the as-

sumptions (2.1), (2.2), and (2.3). By an application of Theorem 2.4.1 for α = 0, we get
∑

n∈N

Pω(X2n = 0) =∞

for P-a.e. environment ω. From this, we can conclude that the random walk is recurrent

for P-a.e. environment ω.

33



CHAPTER 2. STRONG RECURRENCE OF RECURRENT RWRE

Corollary 2.6.2 (d particles in the same random environment). Let us first choose a

random environment ω = (ωx)x∈Z which fulfils the assumptions (2.1), (2.2), and (2.3). For

fixed ω, we can now consider d independent random walks (X
(i)
n )n∈N0 for i = 1, 2, . . . , d

where every random walk (X
(i)
n )n∈N0 is a usual RWRE in the environment ω in the sense

of (2.4). Then, for arbitrary d, the d-dimensional process

(
X(1)
n , X(2)

n , . . . , X(d)
n

)
n∈N0

is recurrent for P-a.e. environment ω.

Proof of Corollary 2.6.2. First of all, we notice that for fixed ω

(
X(1)
n , X(2)

n , . . . , X(d)
n

)
n∈N0

is a Markov chain. For the expected amounts of returns to 0, we get by applying Theorem

2.4.2 with α = d

∑

n∈N

Pω

((
X

(1)
2n , X

(2)
2n , . . . , X

(d)
2n

)
=
(
0, 0, . . . , 0

))
=
∑

n∈N

(
Pω(X

(1)
2n = 0)

)d
=∞

for P-a.e. environment ω. This implies the recurrence. �

Corollary 2.6.3 (d particles in d i.i.d. random environments). For arbitrary d ∈ N, we

choose d i.i.d. environments ω(i) = (ω
(i)
x )x∈Z which all fulfil the assumptions (2.1), (2.2),

and (2.3) for i = 1, 2, . . . , d. For fixed ~ω := (ω(1), ω(2), . . . , ω(d)), we consider d independent

RWRE (X
(i)
n )n∈N0, where (X

(i)
n )n∈N0 is a usual RWRE in the environment ω(i) in the sense

of (2.4). In this case, the d-dimensional process

(
X(1)
n , X(2)

n , . . . , X(d)
n

)
n∈N0

is recurrent for P⊗d-a.e. environment ~ω.

Proof of Corollary 2.6.3. Due to the independence of the processes and the environments

in every component, we get

∑

n∈N

P~ω

((
X

(1)
2n , X

(2)
2n , . . . , X

(d)
2n

)
=
(
0, 0, . . . , 0

))
=
∑

n∈N

d∏

i=1

Pω(i)(X
(i)
2n = 0) =∞

due to Theorem 2.4.3 for P⊗d-a.e. environment ~ω. �

Remark 2.6.4. An alternative proof of Corollary 2.6.3 can be found in [Ze04] after Lemma

A.2. The proof there uses the Nash-Williams inequality in the context of electrical networks.

Remark 2.6.5. Corollary 2.6.2 and 2.6.3 show that the recurrence of a RWRE is indeed

“stronger” than the recurrence of the symmetric random walk on Z. Note that d particles

performing a one-dimensional symmetric random walk will only meet finitely often for

d ≥ 3.
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Corollary 2.6.6 (Symmetric Random Walk combined with RWRE - Version 1). We first

choose an environment ω which fulfils the assumptions (2.1), (2.2), and (2.3). For a fixed

ω, let (Xn, Yn)n∈N0 be a 2-dimensional process where the process (Xn)n∈N0 and (Yn)n∈N0 are

independent with respect to Pω, (Xn)n∈N0 is a RWRE in the sense of (2.4) and (Yn)n∈N0 a

symmetric random walk on Z. Then, (Xn, Yn)n∈N0 is recurrent for P-a.e. environment ω.

Proof of Corollary 2.6.6. Due to the independence of the two components, we get

∑

n∈N

Pω
(
(X2n, Y2n) = (0, 0)

)
=
∑

n∈N

Pω
(
X2n = 0

)
· Pω

(
Y2n = 0

)

≥ C ·
∑

n∈N

Pω
(
(X2n = 0

)
· n− 1

2 =∞.

Here, we used the lower bound

Pω
(
Y2n = 0

)
≥ C · n− 1

2 (2.39)

for the return probabilities of the symmetric random walk on Z with some constant C > 0

(cf. Section 2.18.4 in [Gut05]) and Theorem 2.4.1 with α = 1
2

for the last two steps. Again,

we can conclude the recurrence of the process (Xn, Yn)n∈N0 for P-a.e. environment ω. �

Corollary 2.6.7 (Symmetric Random Walk combined with RWRE - Version 2). We first

choose an environment ω which fulfils the assumptions (2.1), (2.2), and (2.3) and some

0 < δ < 1. For a fixed environment ω, let (Xn, Yn)n∈N0 be a Markov chain with values in

Z2 which is determined by

Pω
(
(X0, Y0) = (0, 0)

)
= 1,

Pω
(
(Xn+1, Yn+1) = (x+ 1, y)

∣∣(Xn, Yn) = (x, y)
)

= δ · ωx,

Pω
(
(Xn+1, Yn+1) = (x− 1, y)

∣∣(Xn, Yn) = (x, y)
)

= δ · (1− ωx),

Pω
(
(Xn+1, Yn+1) = (x, y ± 1)

∣∣(Xn, Yn) = (x, y)
)

=
1− δ

2
.

Again, (Xn, Yn)n∈N0 is recurrent for P-a.e. environment ω.

Remark 2.6.8. In the situation of Corollary 2.6.7, we first choose the first (or second)

component for the next step with probability δ (or 1−δ). If we choose the first component,

then we change the first component by ±1 as in the setting of a RWRE, otherwise we change

the second component by ±1 with probability 1
2

as in the case of a symmetric random walk

on Z.

Proof of Corollary 2.6.7. For the proof, it is enough to look at the process (Xn, Yn)n∈N0

whenever it has moved in the first component. For this, we define inductively

τ0 := 0 and

τk := inf
{
n > τk−1 : Xn 6= Xτk−1

}
for k ≥ 1.
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Additionally, we define

X̃n := Xτn for n ∈ N0,

Ỹn := Yτn for n ∈ N0.

Note that (X̃n)n∈N0 is a usual RWRE on Z for

which the environment ω fulfils our assump-

tions (2.1), (2.2), and (2.3). Further, we have

Ỹn
d
= S(τn − n), (2.40)

where (S(n))n∈N0 denotes a symmetric ran-

dom walk on Z which is independent of

(X̃n)n∈N0 , (τn)n∈N0 , and the environment ω.

Note here that we can decompose τn into the

increments

τn =
n∑

i=1

(τi − τi−1), (2.41)

x

y

1−δ
2

1−δ
2

δ · ω3δ · (1− ω3)

1−δ
2

1−δ
2

δ · ω3δ · (1− ω3)

1−δ
2

1−δ
2

δ · ω−3δ · (1− ω−3)

1−δ
2

1−δ
2

δ · ω−3δ · (1− ω−3)

Figure 2.2: Transition probabilities for the

considered process in Corollary 2.6.7

where (τi − τi−1)i∈N is a sequence of i.i.d. random variables with a geometric distribution

with parameter δ and expectation 1
δ
.

Let us fix an arbitrary γ > 0. Due to (2.41), an application of Cramer’s theorem implies

that we have

Pω
(
τn >

(
1
δ

+ γ
)
· n
)
≤ exp(−n · I)

for some constant I=I(γ) > 0. Therefore, the Borel-Cantelli lemma implies that we have

Pω

(
lim inf
n→∞

{
n ≤ τn ≤

(
1
δ

+ γ
)
· n
})

= 1

for every environment ω. Notice here that we have τn ≥ n by definition. Due to the

continuity of Pω, we can therefore conclude that

lim
n→∞

Pω

(
n ≤ τn ≤

(
1
δ

+ γ
)
· n
)

= 1. (2.42)

Since we are interested in the returns of the random walk to 0, we have to distinguish

between the cases in which τn is even or odd. Only for even values of τn our random walk

(X̃2n, Ỹ2n) = (Xτ2n , Yτ2n) can reach the point (0, 0). For this, we note that τn has a negative

binomial distribution with parameters n and δ and therefore has the following properties:

Pω(τn = k) ≤ Pω(τn = k + 1) for n ≤ k ≤ n− 1

δ
,

Pω(τn = k) ≥ Pω(τn = k + 1) for k ≥ max

{
n− 1

δ
, n

}
,

max
k≥n

Pω(τn = k)
n→∞−−−→ 0. (2.43)
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Thus, a combination of (2.42) and (2.43) implies that in the limit, for n→∞, the proba-

bility for the even and odd part is the same, i.e.

lim
n→∞

Pω

(
n ≤ τn ≤

(
1
δ

+ γ
)
· n, τn ∈ 2N0

)
=

1

2
.

Since due to our choice γ > 0 we have

Pω

(
n ≤ τn ≤

(
1
δ

+ γ
)
· n, τn ∈ 2N0

)
> 0

for all n ∈ N, a combination of the last two in-/equalities implies that there exists some

constant C2 > 0 such that

Pω

(
n ≤ τn ≤

(
1
δ

+ γ
)
· n, τn ∈ 2N0

)
≥ C2 > 0 (2.44)

for all n ∈ N and for every environment ω. Using the independence of (X̃2n)n∈N0 and

(Ỹ2n)n∈N0 , we therefore get the following lower bound:

∑

n∈N

Pω
(
(X̃2n, Ỹ2n) = (0, 0)

)
=
∑

n∈N

Pω(X̃2n = 0) · Pω(Ỹ2n = 0)

≥
∑

n∈N

Pω(X̃2n = 0) ·

⌊(
1
δ

+γ
)
·2n
⌋

∑

i=2n
i∈2N0

Pω(Ỹ2n = 0, τ2n = i)

≥
∑

n∈N

Pω(X̃2n = 0) ·

⌊(
1
δ

+γ
)
·2n
⌋

∑

i=2n
i∈2N0

Pω
(
S(i− 2n) = 0

)
· Pω(τ2n = i)

≥
∑

n∈N

Pω(X̃2n = 0) ·
(
Pω(τ2n = 2n) +

⌊(
1
δ

+γ
)
·2n
⌋

∑

i=2n+2
i∈2N0

C · (i− 2n)−
1
2 · Pω(τ2n = i)

)

Here, we used (2.40) in the third line and the usual lower bound for the return probabilities

of the symmetric random walk on Z (cf. (2.39)), i.e.

Pω
(
S(i− 2n) = 0

)
≥ C · (i− 2n)−

1
2

for i ∈ 2N, i ≥ 2n+ 2 and with some constant C > 0, in the fourth line. From this, we get

∑

n∈N

Pω
(
(X̃2n, Ỹ2n = (0, 0)

)

≥ C ·
∑

n∈N

Pω(X̃2n = 0) ·
(
2 ·
(

1
δ

+ γ − 1
) )− 1

2 · n− 1
2 ·

⌊(
1
δ

+γ
)
·2n
⌋

∑

i=2n
i∈2N0

Pω(τ2n = i)

37



CHAPTER 2. STRONG RECURRENCE OF RECURRENT RWRE

≥ C · C2 ·
(
2 ·
(

1
δ

+ γ − 1
) )− 1

2 ·
∑

n∈N

Pω(X̃2n = 0) · n− 1
2 =∞

for P-a.e. environment ω. Here, we additionally made use of (2.44) and Theorem 2.4.1

(applied for α = 1
2
) in the last line. This implies that the process

(X̃n, Ỹn)n∈N0

is recurrent for P-a.e. environment ω. Finally, this obviously implies that our process

(Xn, Yn)n∈N0

is also recurrent for P-a.e. environment ω since we can embed the paths of the process

(X̃n, Ỹn)n∈N0 into the paths of the process (Xn, Yn)n∈N0 . �
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Chapter 3

RWRE with Random Orientations

3.1 Overview

In this chapter, we consider a RWRE with random orientations (RWRO) which is a random

walk on Z2 with a one-dimensional random environment. As the main result of this chapter,

we show that the RWRO is transient for a.e. random environment.

The structure of this chapter is the following: In Section 3.2, we start with a formal

description of the model and then state our main results. Before we can finally prove

these results, we need some preparation: In a first step in Section 3.3, we construct two

sequences of valleys with the help of a coupled two-sided Brownian motion and derive some

properties of these valleys. Afterwards, we collect and extend several statements about

the so-called strong localization of the RWRE with regard to our constructed valleys in

Section 3.4. With the help of our preparation, we are then able to prove our main theorems

in Section 3.5. Finally in Section 3.6, we consider an extended model of the RWRO, for

which we introduce a drift p as an additional parameter. Here, we answer the question of

recurrence and transience of the extended model depending on the drift p. This further

connects our results from Chapter 2 and Section 3.2.

3.2 Model and Results

We first introduce the random environment: Let (ωx)x∈Z and (αx)x∈Z be two independent

sequences of i.i.d random variables with respect to the law of the environment P. The

sequence (ωx)x∈Z is a sequence of i.i.d. random variables taking values in (0, 1) and we

assume that the following assumptions hold

E[log ρ0] = 0, (3.1)

P(ε ≤ ω0 ≤ 1− ε) = 1 for some ε ∈
(
0, 1

2

)
, (3.2)
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Var(log ρ0) > 0, (3.3)

where

ρ0 = ρ0(ω) :=
1− ω0

ω0

as usual. Note that (ωx)x∈Z corresponds to the random environment of a one-dimensional

RWRE and that (3.1) ensures that the one-dimensional RWRE is recurrent. The second

assumption is a common technical condition in the context of RWRE. Additionally, the

third assumption excludes the case of a symmetric random walk on Z.

The second part of the random environment, (αx)x∈Z, determines a random orientation for

every position x ∈ Z. More precisely, (αx)x∈Z is an i.i.d. sequence with

P(α0 = +1) =
1

2
= P(α0 = −1)

which is further independent of (ωx)x∈Z. Finally, the random environment is given by

θ := (θx)x∈Z := (ωx, αx)x∈Z. (3.4)

For a fixed environment θ and some 0 < δ < 1,

we can now introduce the associated random walk

(Zn)n∈N0 whose transition probabilities are deter-

mined by θ: For every z = (z1, z2) ∈ Z2, (Zn)n∈N0

is a Markov chain with respect to P z
θ determined

by

P z
θ

(
Z0 = (z1, z2)

)
= 1,

P z
θ

(
Zn+1 = (k + 1, `)

∣∣Zn = (k, `)
)

= δ · ωk,

P z
θ

(
Zn+1 = (k − 1, `)

∣∣Zn = (k, `)
)

= δ · (1− ωk),

P z
θ

(
Zn+1 = (k, `+ 1)

∣∣Zn = (k, `)
)

=
1− δ

2
· (1 + αk),

P z
θ

(
Zn+1 = (k, `− 1)

∣∣Zn = (k, `)
)

=
1− δ

2
· (1− αk)

for n ∈ N0, k, ` ∈ Z. Here, δ and 1 − δ are the

probabilities for a movement in the first and the

second component, respectively.

x

y

1− δ

δ · ω3δ · (1− ω3)

1− δ

δ · ω3δ · (1− ω3)

1− δ

δ · ω−3δ · (1− ω−3)

1− δ

δ · ω−3δ · (1− ω−3)

Figure 3.1: A possible realization

of the random orientations ↑↓ and

the corresponding transition proba-

bilities.

Note that (Zn)n∈N0 can only move upwards in points with a positive orientation and down-

wards in points with a negative orientation. For notational convenience, we will often use

Pθ without the superscript 0 instead of P 0
θ when we consider the random walk which is

started at the origin.
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In order to define a joint distribution of the environment θ and the random walk (Zn)n∈N0 ,

we can equip the set of environments

Ω :=
(
(0, 1)× {−1, 1}

)Z

with its product σ-field F (where we consider the natural product σ-field in every com-

ponent), and we equip the set of all paths (Z2)N0 with the product σ-field G. The joint

distribution Pz of (θ, (Zn)n∈N0) with starting point z ∈ Z2 is uniquely determined by

Pz(F ×G) :=

∫

F

P z
θ (G)P(dθ)

for F ∈ F and G ∈ G. Again, we will use P instead of P0 for notational convenience. Our

main result is the following:

Theorem 3.2.1. The Markov chain (Zn)n∈N0 is transient for P-a.e. environment θ. In

particular we have

P (Zn = (0, 0) for infinitely many n) = 0.

Following [CP03a], we can decompose the two-dimensional random walk

(Zn)n∈N0 =: (X̃n, Ỹn)n∈N0 (3.5)

into a skeleton one-dimensional random walk (the horizontal walk (Xn)n∈N0), an embedded

one-dimensional random walk with unbounded jumps (the vertical walk (Yn)n∈N0), and

a sequence of waiting times (ιn)n∈N0 . For the decomposition, we introduce the following

random times inductively:

τ0 := 0,

τk := inf{n > τk−1 : X̃n 6= X̃τk−1
} for k ≥ 1. (3.6)

With the help of the random times of the movement in the horizontal direction, we can

now define for n ∈ N

Xn := X̃τn ,

Yn := Ỹτn ,

ιn−1 := τn − τn−1 (3.7)

where X0 := X̃0, Y0 := Ỹ0. Note that (Xn)n∈N0 is a RWRE on Z. As a by-product, we get

the following result for a RWRE in a random scenery (RWRERS):

Theorem 3.2.2. For the RWRE (Xn)n∈Z and the RWRERS (Sn)n∈N0 with

Sn :=
n−1∑

i=0

αXi , (3.8)

we have that (Xn, Sn)n∈N0 is transient for P-a.e. environment θ. In particular, we have

P
(
(Xn, Sn) = (0, 0) for infinitely many n

)
= 0.
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3.3 Construction of the Valleys

As a tool for the proofs, we construct valleys of the environment as it is often done in the

context of RWRE. Note that only the first part of the environment, namely (ωx)x∈Z, is used

for the definition of the valleys. At first, we introduce the potential V as it is usually done

in the literature (cf. Section 2 in [SZ07]). With

ρx(θ) :=
1− ωx
ωx

for x ∈ Z, we can define the potential V =
(
V (x)

)
x∈Z by

V (x) :=





x∑
i=1

log ρi for x = 1, 2, . . .

0 for x = 0

0∑
i=x+1

log(ρi)
−1 for x = −1,−2, . . . .

Note that V (x) is a sum of i.i.d. random variables which are centred and which are bounded

by C := log(1 − ε) − log ε > 0 due to the assumptions (3.1) and (3.2). One of the most

useful properties of the RWRE is the observation that (for fixed environment θ) the random

walk is a reversible Markov chain and can therefore be described as an electrical network

(cf. [DGPS07]). The conductances are given by

C(x,x+1)(θ) = e−V (x) =





x∏
i=1

(ρi)
−1 for x = 1, 2, . . .

1 for x = 0

0∏
i=x+1

ρi for x = −1,−2, . . .

and the reversible measure (which is unique up to multiplication by a constant) is given by

µθ(x) = e−V (x) + e−V (x−1) =





x−1∏
i=1

ωi
1−ωi ·

1
1−ωx for x = 1, 2, . . .

1
ω0

for x = 0

0∏
i=x+1

1−ωi
ωi
· 1
ωx

for x = −1,−2, . . . .

(3.9)

3.3.1 Consideration of a two-sided Brownian Motion

Since the explicit distribution of the potential V is often hard to describe, we use the

Komlós-Major-Tusnády strong approximation theorem (cf. Theorem 1 in [KMT76], see

also formula (2) in [CP03b]) to define the valleys with the help of a two-sided Brownian

motion:
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Theorem 3.3.1. In a possibly enlarged probability space, there exists a version of the

environment θ = (ω, α) and a two-sided Brownian motion (B(t))t∈R with diffusion constant

σ := (Var(log ρ0))
1
2 (i.e. V ar(B(t)) = σ2|t|) such that for some K > 0 we have

P

(
lim sup
x→±∞

|V (x)−B(x)|
log |x| ≤ K

)
= 1. (3.10)

Remark: As in the situation of inequality (1.7) in [HS98], our assumptions (3.1), (3.2), and

(3.3) imply that the approximation theorem may be applied to the potential V (·). Here, it

is important that the moment generating function of V (1) exists in some neighbourhood of

0 which is ensured by assumption (3.2). Therefore, we can start with the construction of

the first component of the environment ω, then apply the Komlós-Major-Tusnády strong

approximation theorem, and in a last step add the second part of the environment α

independently of (ω, (B(t))t∈R).

From now on, we consider the possibly enlarged probability space on which Theorem 3.3.1

holds for the two-sided Brownian motion (B(t))t∈R and the potential V =
(
V (x)

)
x∈Z with

respect to the law of the environment P.

With the help of (B(t))t∈R, we can define the following sequence of valleys (V̂k)k∈N and

their deeper parts (D̂k)k∈N which is motivated by the construction of valleys in [DGPS07].

There, the RWRE is restricted to the positive half-line by a barrier in 0. Further, our goal

is to control the returns of the RWRE to 0 in contrast to [DGPS07]. This is why we have

to modify the construction.

Since for the RWRE the points at which the potential V (·) attains its minima and its

maxima in some neighbourhood play a key role, we will construct our valleys with the help

of two sequences (̂̀k)k∈N0 and (r̂k)k∈N0 on the left and the right side of the origin at which

the Brownian motion attains its maxima in some connected and open neighbourhood of

these points which further contains 0. Further, (̂bk)k∈N0 will be the sequence at which the

Brownian motion attains its minimum in between. For the construction, we start with the

Brownian motion at B(0) = 0. We always have to look a little further to the left and right

side of our candidates for extrema to be sure that they have their extremal property in

some open neighbourhood.

Note here that we use ·̂ for all quantities which are directly constructed with the help of

the two-sided Brownian motion. In contrast, all quantities which are directly connected to

the potential V (·) will be denoted without ·̂.

We start with k = 0 and we define:

η̂+
0 := inf{t > 0 : B(t) = 1},

η̂−0 := sup{t < 0 : B(t) = 1},

b̂+
0 := sup

{
0 ≤ t ≤ η̂+

0 : B(t) = min
0≤s≤η̂+

0

B(s)

}
,
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B(t)

t

η̂−
0 η̂+

0

b̂−
0 = b̂0

r̂0

φ̂−
0 φ̂+

0

ℓ̂0

Ĥ −
0

Ĥ +
0

V̂0

Figure 3.2: Sampled path of the two-sided Brownian motion and the corresponding valley V̂0.

b̂−0 := inf

{
η̂−0 ≤ t ≤ 0 : B(t) = min

η̂−0 ≤s≤0
B(s)

}
,

b̂0 :=

{
b̂+

0 if B(̂b+
0 ) ≤ B(̂b−0 )

b̂−0 if B(̂b−0 ) < B(̂b+
0 ),

φ̂+
0 := inf{t > η̂+

0 : B(t) = B(̂b0)},

φ̂−0 := sup{t < η̂−0 : B(t) = B(̂b0)},

̂̀
0 := inf

{
φ̂−0 ≤ t ≤ b̂0 : B(t) = max

φ̂−0 ≤s≤b̂0
B(s)

}
,

m̂0 := ĥ0 := 0,

r̂0 := sup

{
b̂0 ≤ t ≤ φ̂+

0 : B(t) = max
b̂0≤s≤φ̂+

0

B(s)

}
,

V̂0 := [̂̀0, r̂0],

D̂0 :=

{
[m̂0, r̂0] if b̂0 ≥ 0

[̂̀0, m̂0] if b̂0 < 0,

Ĥ +
0 := B(r̂0)−B(̂b0),

Ĥ −0 := B(̂̀0)−B(̂b0).
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B(t)

t

b̂0

b̂1

r̂0 = m̂1

φ̂−
0 φ̂+

0

ℓ̂0 = ĥ1

η̂+
1

φ̂−
1 φ̂+

1

ℓ̂1 r̂1

V̂1

D̂1

Figure 3.3: Sampled path of the two-sided Brownian motion and the corresponding valleys D̂1

and V̂1.

For k ≥ 1 we distinguish between two cases. If we have Ĥ +
k−1 ≤ Ĥ −k−1, then we define

inductively:

η̂+
k := inf{t > φ̂+

k−1 : B(t) = B(r̂k−1)},

η̂−k := φ̂−k−1,

b̂k := sup

{
t < η̂+

k : B(t) = min
0≤s≤η̂+

k

B(s)

}
,

φ̂+
k := inf{t > η̂+

k : B(t) = B(̂bk)},

φ̂−k := sup{t < η̂−k : B(t) = B(̂bk)},

̂̀
k := inf

{
φ̂−k ≤ t ≤ b̂k : B(t) = max

φ̂−k ≤s≤b̂k
B(s)

}
,

m̂k := r̂k−1,

ĥk := ̂̀
k−1,

r̂k := sup

{
b̂k ≤ t ≤ φ̂+

k : B(t) = max
b̂k≤s≤φ̂+

k

B(s)

}
,

D̂+
k := B(r̂k)−B(̂bk),

D̂−k := B(m̂k)−B(̂bk).
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In the other case, i.e. if Ĥ +
k−1 > Ĥ −k−1, we define in symmetry with the first case:

η̂−k := sup{t < φ̂−k−1 : B(t) = B(̂̀k−1)},

η̂+
k := φ̂+

k−1,

b̂k := inf

{
t > η̂−k : B(t) = min

η̂−k ≤s≤0
B(s)

}
,

φ̂−k := sup{t < η̂−k : B(t) = B(̂bk)},

φ̂+
k := inf{t > η̂+

k : B(t) = B(̂bk)},

̂̀
k := inf

{
φ̂−k ≤ t ≤ b̂k : B(t) = max

φ̂−k ≤s≤b̂k
B(s)

}
,

m̂k := ̂̀
k−1,

ĥk := r̂k−1,

r̂k := inf

{
b̂k ≤ t ≤ φ̂+

k : B(t) = max
b̂k≤s≤φ̂+

k

B(s)

}
,

D̂−k := B(̂̀k)−B(̂bk),

D̂+
k := B(m̂k)−B(̂bk).

Now we can define our valley V̂k and its deeper part D̂k

V̂k := [̂̀k, r̂k],

D̂k :=

{
[m̂k, r̂k] if Ĥ +

k−1 ≤ Ĥ −k−1

[̂̀k, m̂k] if Ĥ +
k−1 > Ĥ −k−1,

the left and the right height of the valley V̂k

Ĥ −k := B(̂̀k)−B(̂bk),

Ĥ +
k := B(r̂k)−B(̂bk),

and further the heights of the valley V̂k and its deeper part D̂k

D̂k := min{D̂−k , D̂+
k },

Ĥk := min{Ĥ −k , Ĥ +
k }.
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Remark 3.3.2. In words, we can say the following about our constructed valleys:

(1) For every k ∈ N0, we have constructed two valleys V̂k = [̂̀k, r̂k] and D̂k ⊆ V̂k. By

construction, we have b̂k ∈ D̂k ⊆ V̂k, 0 ∈ V̂k but 0 /∈ D̂k for k ≥ 1.

(2) Here, the name valley refers to the property

B(̂̀k) = max̂̀
k≤s≤b̂k

B(s),

B(̂bk) = min̂̀
k≤s≤r̂k

B(s),

B(r̂k) = max
b̂k≤s≤r̂k

B(s)

for the left end point ̂̀k, the bottom point b̂k, and the right end point r̂k of the valley

V̂k. The valley D̂k has the same property if we replace ̂̀k and r̂k by the left end right

end point of D̂k.

(3) The reason for the distinction between the two cases Ĥ +
k−1 ≤ Ĥ −k−1 and Ĥ +

k−1 > Ĥ −k−1

is the following: Due to the approximation theorem (Theorem 3.3.1), the path of the

two-sided Brownian motion is connected to the potential (V (x))x∈Z of our RWRE. The

RWRE prefers paths on which the potential is not very large in between. Therefore,

it is more likely that the RWRE leaves a valley to the side with the lower height.

(4) Similarly to the construction in [DGPS07], note that (η̂+
k )k∈N0 and (φ̂+

k )k∈N0 are stop-

ping times with respect to the filtration (F +
t )t≥0, where

F +
t := σ

(
{Bs : −∞ < s ≤ t}

)
for t ≥ 0.

The same holds for (η̂−k )k∈N0 and (φ̂−k )k∈N0 with respect to the filtration (F −t )t≤0,

where

F −t := σ
(
{Bs : t ≤ s <∞}

)
for t ≤ 0.

In contrast, (̂̀k)k∈N0 , (r̂k)k∈N0 , (m̂k)k∈N0 , and (̂bk)k∈N0 are not stopping times with

respect to any reasonable choice for the filtration.

In the following, we collect some properties of our constructed valleys (V̂k)k∈N0 and (D̂k)k∈N0

which will be useful to describe the behaviour of the RWRO later on.

The motivation for Proposition 3.3.3 – 3.3.8 is the following: Since we will often make use

of the Borel-Cantelli lemma to derive the typical behaviour of the RWRE for large time

points n, we need some quantity growing to infinity for our estimates. For this quantity,

we use the heights Ĥk and D̂k of our constructed valleys which turn out to grow at least

exponentially in k (cf. Proposition 3.3.3). Further, we need some lower scale for the error

terms which we can neglect in comparison with Ĥk and D̂k for large k. For this scale, we

use terms of the form (Ĥk)
1−γ and (D̂k)

1−γ for some 0 < γ < 1:
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Proposition 3.3.3. For 0 < β < 1, we P-a.s. have

Ĥk ≥ D̂k ≥ exp (β · k) (3.11)

for all k large enough.

Proposition 3.3.4. For ϑ > 0, we P-a.s. have

Ĥk ≤ k1+ϑ · Ĥk−1 (3.12)

for all k large enough.

Proposition 3.3.5. For 0 < γ < 1, we P-a.s. have

(Ĥk−1)1−γ ≤ |Ĥ +
k − Ĥ −k | = |B(r̂k)−B(̂̀k)| ≤ (Ĥk−1)1+γ (3.13)

for all k large enough.

Proposition 3.3.6. For ϑ > 0, we P-a.s. have

|φ̂−k | ≤ (Ĥk)
2+ϑ and |φ̂+

k | ≤ (Ĥk)
2+ϑ (3.14)

for all k large enough. In particular, this implies that we P-a.s. have

|̂̀k| ≤ (Ĥk)
2+ϑ and |r̂k| ≤ (Ĥk)

2+ϑ (3.15)

for all k large enough.

Proposition 3.3.7. For 0 < γ < 1, we P-a.s. have

B(̂bk)−B(̂bk−1) ≤ −(Ĥk−1)1−γ, (3.16)

B(̂̀k)−B(̂̀k−1) ≥ (Ĥk−1)1−γ on {b̂k < 0}, (3.17)

B(r̂k)−B(r̂k−1) ≥ (Ĥk−1)1−γ on {b̂k > 0} (3.18)

for all k large enough.

In view of the last proposition, it makes sense to introduce the following two random times

for 0 < γ < 1 and k ∈ N:

φ̂−k,γ := sup{t ≤ η̂−k : B(t) = B(̂bk) + (Ĥk−1)1−γ},
φ̂+
k,γ := inf{t ≥ η̂+

k : B(t) = B(̂bk) + (Ĥk−1)1−γ}. (3.19)

φ̂−k,γ and φ̂+
k,γ give the locations at which the Brownian motion has almost returned to the

minimal position B(̂bk) at the random times φ̂−k and φ̂+
k again. Thereby, Proposition 3.3.7

ensures that we P-a.s. have

φ̂−k,γ < η̂−k ,
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φ̂+
k,γ > η̂+

k

for all k large enough. The next Proposition ensures that we even P-a.s. have

φ̂−k < φ̂−k,γ <
̂̀
k,

φ̂+
k > φ̂+

k,γ > r̂k

for all k large enough:

Proposition 3.3.8. For 0 < γ < 1, we P-a.s. have

max
φ̂−k ≤t≤φ̂

−
k,γ

B(t) ≤ B(̂bk) + (Ĥk−1)1− γ
2 ,

max
φ̂+
k,γ≤t≤φ̂

+
k

B(t) ≤ B(̂bk) + (Ĥk−1)1− γ
2 (3.20)

for all k large enough.

Proofs:

For the proofs, let (
B̂(t)

)
t≥0

d
=
(
B(t)

)
t≥0

denote another Brownian motion which is independent of
((
B(t)

)
t∈R,

(
V (x)

)
x∈Z

)
(on a

possibly enlarged probability space). Further, we define for x ∈ R

T̂ (x) := inf{t ≥ 0 : B̂(t) = x}

as the first hitting time of x of the Brownian motion
(
B̂(t)

)
t≥0

.

Proof of Proposition 3.3.3. This proposition is motivated by Lemma 2.1 in [DGPS07].

Therefore, we use a similar approach:

For k ∈ N, we define

Âk := D̂k − Ĥk−1 ≥ 0

as the difference of the heights of D̂k and V̂k−1.

The key observation is the following:

At first, notice that on the set {Ĥ +
k−1 ≤ Ĥ −k−1} we have Ĥk−1 = Ĥ +

k−1 and further that

the valley D̂k is located on the right side of V̂k−1. Using the strong Markov property of

the Brownian motion for the stopping time φ̂+
k−1 (cf. Remark 3.3.2), we see that on the set

{Ĥ +
k−1 ≤ Ĥ −k−1} we have for c > 0 that

P
(
Âk ≥ c · Ĥk−1

∣∣Ĥ +
k−1, Ĥ

−
k−1

)
= P

(
T̂ (−c · Ĥk−1) < T̂ (Ĥk−1)

∣∣Ĥ +
k−1, Ĥ

−
k−1

)

=
Ĥk−1

(1 + c) · Ĥk−1

=
1

1 + c
, (3.21)
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i.e. the conditional probability can be computed with the help of ruin probabilities for the

Brownian motion. Analogously, we can use the strong Markov property at φ̂−k−1 to get for

c > 0 on the set {Ĥ +
k−1 > Ĥ −k−1}

P
(
Âk ≥ c · Ĥk−1

∣∣Ĥ +
k−1, Ĥ

−
k−1

)
=

1

1 + c
. (3.22)

A combination of (3.21) and (3.22) now implies that for c > 1 we have

P

(
Ĥk−1

Âk + Ĥk−1

≤ 1

c

)
= P

(
1

c
· Âk ≥

(
1− 1

c

)
· Ĥk−1

)
=

1

c
.

Therefore, we can conclude that for k ∈ N

Ĥk−1

Âk + Ĥk−1

has a uniform distribution on (0, 1).

Since k was arbitrary and again using the strong Markov property, we further notice that

(
Ĥk−1

D̂k

)

k∈N

=

(
Ĥk−1

Âk + Ĥk−1

)

k∈N

(3.23)

is a sequence of i.i.d. random variables with a uniform distribution on (0, 1).

By an iteration, we get

log D̂k = log(Âk + Ĥk−1) = log

(
Âk + Ĥk−1

Ĥk−1

)
+ log Ĥk−1

≥ log

(
Âk + Ĥk−1

Ĥk−1

)
+ log D̂k−1 ≥

k∑

i=2

log

(
Âi + Ĥi−1

Ĥi−1

)
+ log D̂1.

Together with the strong law of large numbers, this P-a.s. implies

lim inf
k→∞

1

k
log D̂k ≥ lim

k→∞

1

k

k∑

i=2

log

(
Âi + Ĥi−1

Ĥi−1

)
= E

[
log

(
Â2 + Ĥ1

Ĥ1

)]

= −
∫ 1

0

log(x)dx = 1,

where we used that
Ĥ1

Â2 + Ĥ1

has a uniform distribution on (0, 1) for the last step. In particular, we can conclude that,

for 0 < β < 1, we P-a.s. have

D̂k ≥ exp (β · k)
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for all k large enough. �

Proof of Proposition 3.3.4. For k ∈ N, we define

Ĉk := max{D̂−k , D̂+
k } −min{D̂−k , D̂+

k }

as the height difference between the higher and lower side of the valley D̂k. With an

analogous calculation as in (3.21) and (3.22), we see that

(
min{D̂−k , D̂+

k }
max{D̂−k , D̂+

k }

)

k∈N

=

(
D̂k

D̂k + Ĉk

)

k∈N

is again a sequence of i.i.d. random variables with a uniform distribution on (0, 1). For

the computation, we can use the strong Markov property of the Brownian motion for the

stopping times η̂+
k and η̂−k (cf. Remark 3.3.2). Again using the strong Markov property, we

see that
Ĥk−1

D̂k

and
D̂k

D̂k + Ck

are independent for each k ∈ N. Further, we have seen above and in (3.23) that both

random variables have a uniform distribution on (0, 1). Therefore, we can conclude that

for c > 1 (using Ĥk ≤ max{D̂−k , D̂+
k })

P
(
Ĥk > c · Ĥk−1

)
≤ P

(
max{D̂−k , D̂+

k } > c · Ĥk−1

)

= P

(
D̂k + Ĉk

D̂k

> c · Ĥk−1

D̂k

)
=

1∫

0

1∫

0

11

y
> c · x


dx dy

=

1∫

0

min

{
1

y · c, 1
}
dy =

log(c) + 1

c
.

Finally, an application of the Borel-Cantelli lemma finishes the proof since

∞∑

k=0

log(k1+ϑ) + 1

k1+ϑ
<∞

for ϑ > 0. �

Proof of Proposition 3.3.5. For the proof, we fix γ > 0. The intuition behind this propo-

sition is the following: Since the parts of the Brownian motion on the left and the right

side of the origin are independent, it is very unlikely that the maxima B(r̂k) and B(̂̀k)
only differ by the small distance (Ĥk−1)1−γ. On the other hand, their distance is with high

probability not larger than the large distance (Ĥk−1)1+γ. Here, small and large are to be

understood in comparison with the height Ĥk−1.
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More precisely, we again have the following connection to the ruin probabilities of the

Brownian motion: Using the strong Markov property of the Brownian motion at η̂+
k (cf.

Remark 3.3.2), we get on the set

{b̂k > 0} = {B(̂̀k−1) ≥ B(r̂k−1)}

(i.e. D̂k is located on the right side of the origin) and with

A := σ
(
B(η̂−k ), B(̂bk), B(η̂+

k ), B(̂̀k−1), B(r̂k−1), Ĥk−1

)

that

P
(
−(Ĥk−1)1−γ ≤ B(r̂k)−B(̂̀k) ≤ (Ĥk−1)1−γ

∣∣∣A, B( ̂̀k)
)

= P
(
B(r̂k)−B(η̂+

k ) ≥ B(̂̀k)−B(η̂+
k )− (Ĥk−1)1−γ

∣∣∣A, B( ̂̀k)
)

− P
(
B(r̂k)−B(η̂+

k ) > B(̂̀k)−B(η̂+
k ) + (Ĥk−1)1−γ

∣∣∣A, B( ̂̀k)
)

= P
(
T̂
(

max{0, B(̂̀k)−B(η̂+
k )− (Ĥk−1)1−γ}

)
≤ T̂

(
− [B(η̂+

k )−B(̂bk)]
)∣∣∣A, B( ̂̀k)

)

− P
(
T̂
(
B(̂̀k)−B(η̂+

k ) + (Ĥk−1)1−γ) < T̂
(
− [B(η̂+

k )−B(̂bk)]
)∣∣∣A, B( ̂̀k)

)

=





1− B(η̂+
k )−B(̂bk)

B(̂̀k)−B(̂bk) + (Ĥk−1)1−γ

if B(̂̀k)−B(η̂+
k )− (Ĥk−1)1−γ ≤ 0

B(η̂+
k )−B(̂bk)

B(̂̀k)−B(̂bk)− (Ĥk−1)1−γ
− B(η̂+

k )−B(̂bk)

B(̂̀k)−B(̂bk) + (Ĥk−1)1−γ

if B(̂̀k)−B(η̂+
k )− (Ĥk−1)1−γ > 0





=





B(̂̀k)−B(η̂+
k ) + (Ĥk−1)1−γ

B(̂̀k)−B(̂bk) + (Ĥk−1)1−γ
≤ 2 · (Ĥk−1)1−γ

Ĥk−1 + (Ĥk−1)1−γ

if B(̂̀k)−B(η̂+
k )− (Ĥk−1)1−γ ≤ 0

2 · (Ĥk−1)1−γ ·
(
B(η̂+

k )−B(̂bk)
)

(
B(̂̀k)−B(̂bk)

)2 − (Ĥk−1)2·(1−γ)
≤ 2 · (Ĥk−1)1−γ

Ĥk−1 − (Ĥk−1)1−2γ

if B(̂̀k)−B(η̂+
k )− (Ĥk−1)1−γ > 0





≤ 2

(Ĥk−1)γ − 1
.

By a symmetric consideration, we can further derive the analogous upper bound on the

set {b̂k < 0} by using the strong Markov property of the Brownian motion at η̂−k . Since

the last upper bound is P-a.s. summable in k due to the exponential growth of Ĥk−1 (cf.

(3.11)), we can conclude by the Borel-Cantelli lemma that we P-a.s. have

(Ĥk−1)1−γ ≤ |B(r̂k)−B(̂̀k)|
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for all k large enough. This shows the lower bound in (3.13).

For the upper bound, we show the following three properties: We P-a.s. have

B(̂bk) ≥ −(Ĥk−1)1+ γ
2 ,

B(r̂k) ≤ (Ĥk−1)1+γ,

B(̂̀k) ≤ (Ĥk−1)1+γ (3.24)

for all k large enough. A combination of the last two inequalities in particular implies that

we P-a.s. have

|B(r̂k)−B(̂̀k)| ≤ (Ĥk−1)1+γ

for all k large enough, i.e. the upper bound in (3.13). Note here that we have

B(r̂k), B(̂̀k) ≥ 0

by definition. For the first relation in (3.24), we can use the following connection to the ruin

probabilities of the Brownian motion: Using the strong Markov property of the Brownian

motion at φ̂+
k−1, we get on the set {b̂k > 0} = {B(̂̀k−1) ≥ B(r̂k−1)}

P
(
B(̂bk) < −(Ĥk−1)1+ γ

2

∣∣∣B(r̂k−1), B(̂̀k−1), B(̂bk−1)
)

= P
(
T̂
(
− (Ĥk−1)1+ γ

2 −B(̂bk−1)
)
< T̂

(
Ĥk−1

)∣∣∣B(r̂k−1), B(̂̀k−1), B(̂bk−1)
)

=
Ĥk−1

Ĥk−1 + (Ĥk−1)1+ γ
2 +B(̂bk−1)

≤ Ĥk−1

(Ĥk−1)1+ γ
2

=
1

(Ĥk−1)
γ
2

.

Due to the symmetry, we can show the same upper bound on the set {b̂k < 0} by an analo-

gous argument. Since the last upper bound is P-a.s. summable in k due to the exponential

growth of Ĥk−1 (cf. (3.11)), we can again conclude by the Borel-Cantelli lemma that we

P-a.s. have

B(̂bk) ≥ −(Ĥk−1)1+ γ
2

for all k large enough which is the first statement in (3.24).

For the second relation in (3.24), notice that on the set {B(r̂k) > (Ĥk−1)1+γ} we P-a.s. have

B(r̂k) = max
0≤t≤φ̂+

k

B(t)� (Ĥk−1)1+ γ
2 ≥ −B(bk) ≥ − min

0≤t≤φ̂+
k

B(t)

for all k large enough, i.e. the maximum of the Brownian up to time φ̂+
k is of larger order

than the minimum which is very unlikely. More precisely, we observe for arbitrary 0 < β < 1

– using the first relation in (3.24) and the exponential growth of Ĥk−1 in k (cf. (3.11)) –

that the following inclusion P-a.s. holds:

lim sup
k→∞

{B(r̂k) > (Ĥk−1)1+γ}

⊆ lim sup
k→∞

(
{B(r̂k) > (Ĥk−1)1+γ} ∩ {B(̂bk) ≥ −(Ĥk−1)1+ γ

2 } ∩ {Ĥk−1 ≥ exp
(
β · (k − 1)

)
}
)
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⊆ lim sup
k→∞

(⋃

n≥k

{
B(r̂k) >

(
exp

(
β · (n− 1)

))1+γ
}
∩
{
B(̂bk) ≥ −

(
exp(β · n)

)1+ γ
2

})

(3.25)

For the last step, notice that we have exp(β · (n− 1)) ≤ Ĥk−1 ≤ exp(β · n) for some n ≥ k

on {Ĥk−1 ≥ exp(β · (k − 1))}. Thereby, we have

∑

n≥k

P
({
B(r̂k) >

(
exp

(
β · (n− 1)

))1+γ
}
∩
{
B(̂bk) ≥ −

(
exp(β · n)

)1+ γ
2

})

≤
∑

n≥k

P
(
T̂
((

exp
(
β · (n− 1)

))1+γ
)
< T̂

(
−
(

exp(β · n)
)1+ γ

2

))

=
∑

n≥k

(
exp(β · n)

)1+ γ
2

(
exp

(
β · (n− 1)

))1+γ
+
(

exp(β · n)
)1+ γ

2

≤
∑

n≥k

1
(

exp
(
β · (n− 1)

)) γ
2

= exp
(
− β·γ

2
· (k − 1)

)
· 1

1− exp
(
−β·γ

2

)

for all k large enough.

Since the last upper bound is summable in k, we can conclude by the Borel-Cantelli lemma

and (3.25) that we P-a.s. have

B(r̂k) ≤ (Ĥk−1)1+γ

for all k large enough which is the second relation in (3.24).

The third relation in (3.24) can be shown by an analogous consideration for ̂̀k instead of

r̂k due to the symmetry. �

Proof of Proposition 3.3.6. Here, we can use a similar approach as in [DGPS07] (cf. Section

2.3):

For the proof, we fix ϑ > 0 and recall Chung’s law of the iterated logarithm (cf. Theorem

in [JP75]). It states that we have

lim inf
t→∞

max
0≤s≤t

|Bs|
(

t

log log t

) 1
2

= σ · π√
8
> 0, P-a.s. (3.26)

Recall here that 0 < σ2 = Var(log ρ0) denotes the variance of B1.

For the valley V̂k, note that we have

max
φ̂−k ≤s<t≤0

(
B(t)−B(s)

)
= Ĥ −k ,

max
0≤s<t≤φ̂+

k

(
B(s)−B(t)

)
= Ĥ +

k
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by construction. In particular, we can conclude that we have

max
φ̂−k ≤s≤0

|B(s)| ≤ Ĥ −k ,

max
0≤s≤φ̂+

k

|B(s)| ≤ Ĥ +
k .

Thereby (3.26), i.e. Chung’s law of the iterated logarithm, implies that for 0 < γ < 1 we

P-a.s. have

Ĥ −k ≥ max
φ̂−k ≤s≤0

|B(s)| ≥ |φ̂−k |
1
2
γ,

Ĥ +
k ≥ max

0≤s≤φ̂+
k

|B(s)| ≥ |φ̂+
k |

1
2
γ

for all k large enough. From this, we can conclude that we P-a.s. have

|φ̂−k | ≤
(
Ĥ −k

)2 1
γ

|φ̂+
k | ≤

(
Ĥ +
k

)2 1
γ




≤
(
Ĥk + (Ĥk)

1+ϑ
4

)2 1
γ ≤

(
2 · (Ĥk)

2+ϑ
2

) 1
γ ≤ (Ĥk)

2+ϑ

for all k large enough and γ = γ(ϑ) close enough to 1. Here, we applied the upper bound

in (3.13) for ϑ
4

in the second step. Further, we used that Ĥk grows a.s. exponentially in k

(cf. (3.11)) for the last step. �

Proof of Proposition 3.3.7. For the proof, we fix 0 < γ < 1. Further, we assume for

the beginning that we have b̂k > 0 for some k ∈ N, i.e. the valley D̂k is located in the

right side of the origin. Then, we can make the following connection between the increase

B(̂bk)−B(̂bk−1) and the ruin probability of the Brownian motion:

Using the strong Markov property of the Brownian motion at φ̂+
k−1 (cf. Remark 3.3.2), we

get the following relation on the set {b̂k > 0} = {B(r̂k−1) ≤ B(̂̀k−1)}

P
(
B(̂bk)−B(̂bk−1) ≥ −(Ĥk−1)1−γ∣∣B(r̂k−1), B(̂̀k−1), B(̂bk−1)

)

= P
(
T̂ (Ĥk−1) < T̂ (−(Ĥk−1)1−γ)

∣∣Ĥk−1

)
=

(Ĥk−1)1−γ

Ĥk−1 + (Ĥk−1)1−γ
=

1

(Ĥk−1)γ + 1
.

By a symmetric analogous consideration, we can derive the same result on the set {b̂k < 0}.
Since the last upper bound is P-a.s. summable in k due to the exponential growth of Ĥk−1

in k (cf. (3.11)), the Borel-Cantelli lemma implies that we P-a.s. have

B(̂bk)−B(̂bk−1) < −(Ĥk−1)1−γ

for all k large enough. This shows (3.16).

The remaining two inequalities in (3.17) and (3.18) are symmetric analogues of each other.

Therefore, we only show (3.18):
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Similarly to above, we can use the strong Markov property of the Brownian motion at η̂+
k

to derive the following upper bound on the set {b̂k > 0}

P
(
B(r̂k)−B(r̂k−1) ≤ (Ĥk−1)1−γ∣∣B(r̂k−1), B(̂̀k−1), B(̂bk−1), B(̂bk)

)

= P
(
T̂
(
(Ĥk−1

)1−γ
) > T̂

(
− Ĥk−1 +B(̂bk)−B(̂bk−1)

)∣∣B(r̂k−1), B(̂̀k−1), B(̂bk−1), B(̂bk)
)

=
(Ĥk−1)1−γ

(Ĥk−1)1−γ + Ĥk−1 −B(̂bk) +B(̂bk−1)
≤ (Ĥk−1)1−γ

Ĥk−1 + (Ĥk−1)1−γ
=

1

(Ĥk−1)γ + 1
.

Again, the Borel-Cantelli lemma finishes the proof of (3.18). �

Proof of Proposition 3.3.8. For the proof, we fix 0 < γ < 1. At first, we observe that for

all k ∈ N

φ̂+
k,γ

def
= inf{t > η̂+

k : B(t) = B(̂bk) + (Ĥk−1)1−γ}

is a stopping time with respect to the filtration (F +
t )t≥0 since η̂+

k is a stopping time with

respect to this filtration (cf. Remark 3.3.2) for all k.

Now, we can make the following connection to the ruin probabilities of the Brownian motion:

Using the strong Markov property of the Brownian motion at φ̂+
k,γ, we get on the set

{B(̂bk)−B(̂bk−1) ≤ −(Ĥk−1)1−γ}

P

(
max

φ̂+
k,γ≤t≤φ̂

+
k

B(t) > B(̂bk) + (Ĥk−1)1− γ
2

∣∣∣∣∣B(̂bk−1), B(̂bk), Ĥk−1

)

= P
(
T̂
(
(Ĥk−1)1− γ

2 − (Ĥk−1)1−γ) < T̂
(
− (Ĥk−1)1−γ)∣∣∣ Ĥk−1

)

=
(Ĥk−1)1−γ

(Ĥk−1)1− γ
2

=
1

(Ĥk−1)
γ
2

.

Since the last expression is summable in k due to the exponential growth of Ĥk−1 in k

(cf. (3.11)) and since we P-a.s. have B(̂bk)− B(̂bk−1) ≤ −(Ĥk−1)1−γ for all k large enough

according to (3.16), we can conclude by the Borel-Cantelli lemma that we P-a.s. have

max
φ̂+
k,γ≤t≤φ̂

+
k

B(t) ≤ B(̂bk) + (Ĥk−1)1− γ
2

for all k large enough. The argument for φ̂−k,γ runs completely analogously with the help of

the symmetric analogues of all appearing quantities. �
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3.3.2 Associated Valleys of the Potential and their Properties

Since the potential (V (x))x∈Z is only defined for integers, we have to discretize the valleys

which we constructed in the previous section. For this, we define for k ∈ N0

`k := min

{
x ∈ Z, φ̂−k ≤ x ≤ 0 : V (x) = max

φ̂−k ≤y≤0
V (y)

}
,

rk := max

{
x ∈ Z, 0 ≤ x ≤ φ̂+

k : V (x) = max
0≤y≤φ̂+k

V (y)

}
,

bk := min

{
x ∈ Z, `k ≤ x ≤ rk : V (x) = min

`k≤y≤rk
V (y)

}
(3.27)

as the left end point, the right end point, and the position of the bottom point of the valley

which we will consider in the following. Further, we define m0 := 0 and for k ≥ 1

mk :=





max

{
x ∈ Z, bk−1 ≤ x ≤ bk : V (x) = max

bk−1≤y≤bk
V (y)

}
if bk−1 ≤ bk

min

{
x ∈ Z, bk ≤ x ≤ bk−1 : V (x) = max

bk−1≤y≤bk
V (y)

}
if bk−1 > bk

as the position with the highest potential between the successive bottom points at bk−1 and

bk. Additionally, we define h0 := 0 and for k ≥ 1

hk :=

{
`k−1 if bk ≥ 0

rk−1 if bk < 0
(3.28)

as the point out of {`k−1, rk−1} which is not on the same side of the origin as bk and which

turns out to have the higher potential for all k large enough, i.e. (cf. (3.36))

V (hk) = max{V (`k−1), V (rk−1)}.

Analogously to the construction with the help of the two-sided Brownian motion from the

previous section, we define the sequence of valleys (Vk)k≥1 as

Vk := {`k, `k + 1, . . . , rk}

and the sequence of deeper parts (Dk)k≥1 as

Dk :=

{
{`k, `k + 1, . . . ,mk} if bk < mk

{mk,mk + 1, . . . , rk} if bk ≥ mk.
(3.29)

From the definition, it would be possible to have Dk 6⊆ Vk. But in Proposition 3.3.9, we

show that this can only happen for finitely many k.

Additionally, we define the right and left heights of our valleys Dk and Vk for k ∈ N0 by

D+
k :=

{
V (rk)− V (bk) if bk ≥ mk

V (mk)− V (bk) if bk < mk,
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B(t)

t

b̂0

b̂1

r̂0 = m̂1

φ̂−
0 φ̂+

0

ℓ̂0 = ĥ1

η̂+
1

φ̂−
1 φ̂+

1

ℓ̂1 r̂1

V̂1

D̂1

t

φ̂−
0 φ̂+

0φ̂−
1 φ̂+

1

V (x)

x

b0

b1

r1 = h2

ℓ1 = m2

r0 = m1
ℓ0 = h1

b2

H+
1 = D+

1

H−
1 D−

1

V1

D1

Figure 3.4: Construction of our valleys D1 and V1 with the help of the coupled Brownian motion:

Note here that the potential V (·) is only defined for integers and that `1, b1, r1, . . . all denote the

x-coordinate of the points which are emphasized by the black circles. Further note that we cannot

be sure about the positions of b2, m2 and h2 alone from the shown part of the potential V (x).

Anyhow, we have attached them to their qualitatively correct positions where they are at least

located for large indices k since here we have V (`1) < V (r1).
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D−k :=

{
V (mk)− V (bk) if bk ≥ mk

V (`k)− V (bk) if bk < mk,

H+
k := V (rk)− V (bk),

H−k := V (`k)− V (bk),

and further the depth as

Dk := min{D+
k , D

−
k },

Hk := min{H+
k , H

−
k }.

In order to make sure that one upcoming definition is well defined (cf. (3.81)), we finally

define

b−1 := H−1 := 0.

Using the strong approximation theorem (Theorem 3.3.1), which gives us an upper bound

for the differences between B(x) and V (x) for large |x| (x ∈ Z), we can now derive the

analogous results from the previous section:

Proposition 3.3.9. For P-a.e. environment θ, we have bk+1 6= 0 and further

mk+1 =

{
rk > 0 if bk+1 > 0

`k < 0 if bk+1 < 0
(3.30)

for all k large enough. In particular, this implies that we P-a.s. have

V (mk+1) =





max
0≤j≤bk+1−1

V (j) if bk+1 > 0

max
bk+1≤j≤−1

V (j) if bk+1 < 0,
(3.31)

V (mk+1)− V (bk+1) = Dk+1 (3.32)

V (mk+1)− V (bk) = Hk (3.33)

for all k large enough.

Proposition 3.3.10. For 0 < β, γ < 1 and 0 < ϑ, we P-a.s. have

Dk+1 ≥ Hk ≥ Dk ≥ exp(β · k), (3.34)

Hk ≤ k1+ϑ ·Hk−1, (3.35)

V (hk+1)− V (mk+1) ≥ (Hk−1)1−γ, (3.36)

|`k| ≤ (Hk)
2+ϑ, (3.37)

|rk| ≤ (Hk)
2+ϑ, (3.38)

|bk| ≤ (Hk)
2+ϑ, (3.39)
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|mk+1| ≤ (Hk)
2+ϑ, (3.40)

|hk+1| ≤ (Hk)
2+ϑ (3.41)

for all k large enough.

Proposition 3.3.11. For 0 < γ < 1, we P-a.s. have

min
x∈Vk\Dk

V (x) ≥ V (bk) + (Hk−1)1−γ (3.42)

for all k large enough. In particular, we P-a.s. have

Dk ≥ Hk−1 + (Hk−1)1−γ (3.43)

for all k large enough.

For the last two propositions, we need one more definition: For k ∈ N we define

η+
k := inf{n ≥ b` : V (n) ≥ V (m`)},
η−k := sup{n ≤ b` : V (n) ≥ V (m`)} (3.44)

as the closest position to the bottom point at b` at which the potential V (·) reaches the

level V (m`) (again).

Proposition 3.3.12. For 0 < γ < 1, we P-a.s. have

max
x,y∈Dk: x<y<bk

V (y)− V (x) ≤ Dk − (Hk−1)1−γ on {bk > 0}, (3.45)

max
x,y∈Dk: bk<x<y

V (x)− V (y) ≤ Dk − (Hk−1)1−γ on {bk < 0},

max
x,y∈Dk: bk<y<x<η

+
k

V (y)− V (x) ≤ Dk − (Hk−1)1−γ on {bk > 0}, (3.46)

max
x,y∈Dk: η−k <y<x<bk

V (x)− V (y) ≤ Dk − (Hk−1)1−γ on {bk < 0}

for all k large enough.

For the next proposition recall the following definition (cf. (3.19)) for 0 < γ < 1 and k ∈ N

φ̂+
k,γ

def
= inf{t ≥ η̂+

k : B(t) = B(̂bk) + (Ĥk−1)1−γ},
φ̂−k,γ

def
= sup{t ≤ η̂−k : B(t) = B(̂bk) + (Ĥk−1)1−γ}.

Proposition 3.3.13. For 0 < γ < 1, we P-a.s. have

min
η+k ≤x≤rk

V (x) ≥ V (bk) + (Dk)
1−γ on {bk > 0}, (3.47)

min
`k≤x≤η−k

V (x) ≥ V (bk) + (Dk)
1−γ on {bk < 0},
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max
φ̂+
k,γ≤x≤bk+1

V (x)− V (mk+1) ≤ −(Hk)
1−γ on {bk+1 > 0}, (3.48)

max
bk+1≤x≤φ̂−k,γ

V (x)− V (mk+1) ≤ −(Hk)
1−γ on {bk+1 < 0}

for all k large enough.

For the proofs of Proposition 3.3.9 – 3.3.13 , the following lemmata are helpful:

The first lemma yields an upper bound for the fluctuations of the Brownian motion between

two integers:

Lemma 3.3.14. We P-a.s. have

max
0≤t≤1

∣∣B(n+ t)−B(n)
∣∣ <

(
log(n)

)2
and

max
0≤t≤1

∣∣B(−n− t)−B(−n)
∣∣ <

(
log(n)

)2
(3.49)

for all n large enough.

The second lemma shows that the position of our valleys Vk and Dk are closely connected

to the positions of our auxiliary valleys V̂k and D̂k which we constructed with the help of

the coupled two-sided Brownian motion:

Lemma 3.3.15. For 0 < γ < 1, we P-a.s. have

`k ∈
{

[φ̂−k,γ, 0] if b̂k > 0

[φ̂−k,γ, η̂
−
k ] if b̂k < 0,

(3.50)

bk ∈
{

[φ̂+
k−1, η̂

+
k ] if b̂k > 0

[η̂−k , φ̂
−
k−1] if b̂k < 0,

(3.51)

rk ∈
{

[η̂+
k , φ̂

+
k,γ] if b̂k > 0

[0, φ̂+
k,γ] if b̂k < 0

(3.52)

for all k large enough. In particular, we P-a.s. have

B(̂bk) ≤ B(bk),

V (bk) ≤ V (b̂bkc) (3.53)

for all k large enough.

Proofs: The main tool for the upcoming proofs is always the same one: We will use the

strong approximation theorem (Theorem 3.3.1) for a comparison between the potential V (·)
and the coupled Brownian motion B(·). But in each situation, we still have to adapt our

argument to the considered situation. One of the main difficulties, which we have to take

care of here, is the following: The strong approximation theorem states that the differences

of the potential V (n) and the coupled Brownian motion B(n) are of order O(|n|) for large

|n|. In particular, the upper bounds coming from the approximation theorem depend on
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the position n we are considering. On the other hand, the propositions are mostly stated in

terms of the increasing heights of the valleys Ĥk, D̂k, and Hk, Dk. One important tool for

us is therefore Proposition 3.3.6 which connects the height of the valleys and the positions

of their end points.

For reasons of completeness, we will present all proofs in the following:

Proof of Lemma 3.3.14. Consider a random variable Z ∼ N (0, σ2) and recall the standard

upper bound

P

(
Z

σ
> x

)
≤ 1

x
· 1√

2π
· exp

(
−x

2

2

)
for x > 0

for tails of the standard normal distribution which can be found for example in Lemma

12.9 in Appendix B of [MP10]. By choosing x = 2 ·
√

log(n), we see that

P

( |Z|
σ
≥ 2 ·

√
log(n)

)
≤ 2 · n−2 (3.54)

for all n large enough. Since for all n ∈ N0

max
0≤t≤1

(
B(n+ t)−B(n)

)
and max

0≤t≤1

(
B(−n− t)−B(−n)

)

have the same distribution as |Z|, we can conclude with the help of (3.54) that

∞∑

n=0

(
P

(
max
0≤t≤1

∣∣B(n+ t)−B(n)
∣∣ ≥

(
log(n)

)2
)

+ P

(
max
0≤t≤1

∣∣B(−n− t)−B(−n)
∣∣ ≥

(
log(n)

)2
))

<∞

holds (which is not the best possible statement, but the form in which we will use it).

Therefore, the Borel-Cantelli lemma implies (3.49). �

Proof of Lemma 3.3.15. We start the proof with the following remark which will be useful

for all remaining proofs in this section:

Remark 3.3.16. A combination of the Komlós-Major-Tusnády approximation Theorem

3.3.1 (which describes the coupling between the potential (V (x))x∈Z and the two-sided

Brownian motion (B(t))t∈R) and Lemma 3.3.14 (which controls the fluctuations of the

Brownian motion between two integers) implies for example that we P-a.s. have

max
0≤x≤s

V (x) ≤ max
0≤x≤s

B(x) + 2 · (log |s|)2,

max
r≤x≤s

V (x) ≥ max
r≤x≤s

B(x)− 2 · (log |r|)2 − 2 · (log |s|)2,

min
0≤x≤s

V (x) ≤ min
0≤x≤s

B(x) + 2 · (log |s|)2,

min
r≤x≤s

V (x) ≥ min
r≤x≤s

B(x)− 2 · (log |r|)2 − 2 · (log |s|)2 (3.55)

for r, s ∈ R with r < 0 < s and |r|, |s| large enough. Note here that V (x) is only defined

for x ∈ Z whereas B(x) is well defined for all x ∈ R. As long as we only compare B(·)
and V (·) for integers, we can even drop the factor 2 in the above estimates. Inequalities of

these types will be useful for the upcoming estimates.
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Using this connection between the potential (V (x))x∈Z and the Brownian motion (B(t))t∈R,

we can continue the proof of Lemma 3.3.15:

For the proof, we fix 0 < γ < 1. Further, we assume that b̂k > 0, i.e. the valley D̂k is

located on the right side of the origin. In the other case, i.e. b̂k < 0, we only have to use

the symmetric analogues of all appearing quantities.

Let us start with the consideration of `k: Due to (3.55) and (3.20), we P-a.s. have

max
φ̂−k ≤x≤φ̂

−
k,γ

V (x) ≤ max
φ̂−k ≤x≤φ̂

−
k,γ

B(x) + 2 ·
(

log |φ̂−k |
)2 ≤ B(̂bk) + (Ĥk)

1− γ
2 + 2 ·

(
log |φ̂−k |

)2

≤ B(̂bk−1) + 2 ·
(

log
(
(Ĥk)

2+γ
))2

≤ −(Ĥk−2)1−γ + 2 ·
(

log
(
(Ĥk)

2+γ
))2

< 0

for all k large enough. Here, we further used (3.14) for the third step, (3.16) (applied for
γ
2
) for the third step, and again (3.16) (applied for γ) together with B(̂bk−2) ≤ 0 for the

fourth step. Additionally, we made use of (3.12) and (3.11) for the last step. Since we have

V (0) = 0, we can immediately conclude that we have

`k ∈ [φ̂−k,γ, 0].

To see where rk is located, we notice that, P-a.s.,

max
0≤x≤η̂+

k

V (x) ≤ max
0≤x≤η̂+

k

B(x) + 2 ·
(

log(r̂k)
)2 ≤ B(r̂k−1) + 2 ·

(
log
(
(Ĥk)

2+γ
))2

≤ B(r̂k−1) +
(

log
(
(k1+γ · Ĥk−1)2+γ

))2

≤ B(r̂k−1) +
1

4
· (Ĥk−1)1−γ

for all k large enough. Here, we used (3.15) for the second step, (3.12) for the third step,

and (3.11) for the last step. Due to (3.20), analogously to above, we further P-a.s. have

max
φ̂+
k,γ≤x≤φ̂

+
k

V (x) ≤ max
φ̂+
k,γ≤x≤φ̂

+
k

B(x) + 2 ·
(

log(φ̂+
k )
)2 ≤ B(̂bk) + (Ĥk)

1− γ
2 + 2 ·

(
log(φ̂+

k )
)2

≤ B(̂bk−1) + 2 ·
(

log
(
(Ĥk)

2+γ
))2

≤ −(Ĥk−2)1−γ + 2 ·
(

log
(
(Ĥk)

2+γ
))2

< 0

for all k large enough, where we again used (3.16) (applied for γ
2
) for the third step and

(applied for γ) for the fourth step. In the last step, we again made use of (3.12) and (3.11).

On the other hand, we P-a.s. have

max
η̂+
k ≤x≤φ̂

+
k,γ

V (x) ≥ max
η̂+
k ≤x≤φ̂

+
k,γ

B(x)− 2 ·
(

log(φ̂+
k )
)2

= B(r̂k)− 2 ·
(

log(φ̂+
k )
)2

≥ B(r̂k−1) + (Ĥk−1)1−γ − 2 ·
(

log
(
(Ĥk)

2+γ
))2

≥ B(r̂k−1) + (Ĥk−1)1−γ − 2 ·
(

log
(
(k1+γ · Ĥk−1)2+γ

))2

≥ B(r̂k−1) +
1

2
· (Ĥk−1)1−γ
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for all k large enough. Here, we used (3.20) for the second step. Further, we made use of

(3.14) and (3.18) for the third step, (3.12) for the fourth step, and (3.11) for the last step.

By combining the last three upper bounds, we see that we P-a.s. have

max
η̂+
k ≤x≤φ̂

+
k,γ

V (x) > max

{
max

0≤x≤η̂+
k

V (x), max
φ̂+
k,γ≤x≤φ̂

+
k

V (x)

}

for all k large enough which implies

rk ∈ [η̂+
k , φ̂

+
k,γ]

due to the definition of rk.

The proof for the location of bk works very similarly. Here, we are interested in which region

the potential V (·) attains its minimum. Again, we assume that we have b̂k > 0:

Using `k ∈ [φ̂−k,γ, 0] for all k large enough (which we have just shown), we can conclude that

we P-a.s. have

min
`k≤x≤φ̂+

k−1

V (x) ≥ min
φ̂−k,γ≤x≤φ̂

+
k−1

V (x) ≥ min
φ̂−k,γ≤x≤φ̂

+
k−1

B(x)− 2 ·
(

log(φ̂−k )
)2 − 2 ·

(
log(φ̂+

k )
)2

≥ B(̂bk) + (Ĥk)
1−γ − 4 ·

(
log
(
(Ĥk)

2+γ
))2

≥ B(̂bk) +
1

2
· (Ĥk)

1−γ

for all k large enough. Here, we used the definition of φ̂−k,γ, φ̂
+
k−1, (3.16), and (3.14) for the

third step. For the last inequality, we further used (3.11). Similarly, we P-a.s. have

min
η̂+
k ≤x≤rk

V (x) ≥ min
η̂+
k ≤x≤φ̂

+
k,γ

V (x) ≥ min
η̂+
k ≤x≤φ̂

+
k,γ

B(x)− 2 ·
(

log(φ̂+
k )
)2

≥ B(̂bk) + (Ĥk)
1−γ − 2 ·

(
log
(
(Ĥk)

2+γ
))2

≥ B(̂bk) +
1

2
· (Ĥk)

1−γ

for all k large enough. Here, we again used the definition of φ̂+
k,γ and (3.14) for the third

step and (3.11) for the last step. On the other hand, we P-a.s. have (using b̂k > 0, i.e.

b̂k ∈ [φ̂+
k−1, η̂

+
k ])

min
φ̂+
k−1≤x≤η̂

+
k

V (x) ≤ V (b̂bkc) ≤ B(̂bk) + 2 ·
(

log |̂bk|
)2 ≤ B(̂bk) + 2 ·

(
log
(
(Ĥk)

2+γ
))2

≤ B(̂bk) +
1

4
· (Ĥk)

1−γ

for all k large enough. Here, we again used (3.15) for the third step and (3.11) for the last

step. A combination of the last three inequalities finally implies that, P-a.s.,

min
φ̂+
k−1≤x≤η̂

+
k

V (x) < min

{
min

`k≤x≤φ̂+
k−1

V (x), min
η̂+
k ≤x≤rk

V (x)

}

for all k large enough. Therefore, we P-a.s. have

bk ∈ [φ̂+
k−1, η̂

+
k ] on {b̂k > 0}
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for all k large enough due to the definition of bk.

An analogous proof shows that we also P-a.s. have

bk ∈ [η̂−k , φ̂
−
k−1] on {b̂k < 0}

for all k large enough. Overall, we can conclude (3.51).

For the proof of (3.53), note that by definition of b̂k we have

B(̂bk) =





min
φ̂+
k−1≤s≤η̂

+
k

B(s) if b̂k > 0

min
η̂−k ≤s≤φ̂

−
k−1

B(s) if b̂k < 0.

On the other hand, we have just shown in (3.51) that we P-a.s. have

V (bk) =





min
φ̂+
k−1≤x≤η̂

+
k

V (x) if b̂k > 0

min
η̂−k ≤x≤φ̂

−
k−1

V (x) if b̂k < 0

for all k large enough. �

Together with the help of Lemma 3.3.14 and 3.3.15, we can now start to prove that our

constructed valleys have various properties, which we formulated in Proposition 3.3.9 –

3.3.13:

Proof of Proposition 3.3.9. For the proof, we fix 0 < γ < 1. Further, we assume that we

have b̂k+1 > 0, i.e. the valley D̂k+1 is located on the right side of the origin. In the other

case, i.e. b̂k+1 < 0, we only have to use the symmetric analogues of all appearing quantities.

Thereby, we P-a.s. have b̂k+1 6= 0 for all k by definition of the bottom points (̂bk)k∈N0 since

we P-a.s. have

min
− 1
n
≤t≤ 1

n

B(t) < 0

for all n ∈ N.

First of all, we notice that according to (3.51) we P-a.s. have

bk+1 > 0

for all k large enough. In a first step, we show that in this case we also P-a.s. have

mk+1 > 0

for all k large enough. By definition of mk+1, there is only something to show if we have

bk < 0
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what we will assume for the next few lines. Again using (3.51), this implies that we also

P-a.s. have

b̂k < 0

for all k large enough. Let us assume that we have mk+1 ≤ 0:

In this case, due to the definition of mk+1, we P-a.s. have

V (mk+1) = max
bk≤x≤0

V (x) ≤ max
η̂−k ≤x≤0

V (x) ≤ max
η̂−k ≤x≤0

B(x) + 2 ·
(

log |̂̀k|
)2

for all k large enough, where we further used (3.51) and (3.55). This yields that, P-a.s.,

V (mk+1) ≤ B(̂̀k−1) + 2 ·
(

log |`k|
)2 ≤ B(r̂k−1)− (Ĥk−2)1−γ + 2 ·

(
log
(
(Ĥk)

2+γ
))2

for all k large enough, where we used the definition of ̂̀k−1 for the first step and (3.13) and

(3.15) for the last step. Notice here that b̂k < 0 implies B(̂̀k−1) < B(r̂k−1) by construction.

Due to (3.11) and (3.12), the last inequality P-a.s. implies

V (mk+1) ≤ B(r̂k−1)− 1

2
· (Ĥk−2)1−γ (3.56)

for all k large enough. On the other hand, we notice that we P-a.s. have

0 < r̂k−1 < bk+1

for all k large enough due to (3.51). Thereby, we P-a.s. have

V (br̂k−1c) ≥ B(r̂k−1)− 2 ·
(

log |r̂k−1|
)2 ≥ B(r̂k−1)− 2 ·

(
log
(
(Ĥk−1)2+γ

))2

> V (mk+1)

for all k large enough, where we used (3.15) for the second step and (3.56) together with

(3.11) and (3.12) for the last step. This a contradiction to the definition of mk+1 as the

point with the highest potential between bk and bk+1. In particular, we can conclude that

we P-a.s. have

mk+1 > 0 (3.57)

for all k large enough if also bk+1 > 0 holds.

Our claim is that we actually have

mk+1 = rk

in our situation, i.e. bk+1 > 0. (Now we allow bk > 0 and also bk < 0.) By definition, we

have

V (rk) = max
0≤x≤φ̂+

k

V (x). (3.58)

Therefore, we still have to show that, P-a.s., we cannot have

mk+1 > φ̂+
k ≥ r̂k
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for arbitrary large k. For mk+1 > φ̂+
k ≥ r̂k, an application of (3.55) and the definition of

mk+1 yields that, P-a.s.,

B(mk+1) ≥ V (mk+1)−
(

log |mk+1|
)2 ≥ V (br̂kc)−

(
log |mk+1|

)2

≥ B(br̂kc)− 2 ·
(

log |mk+1|
)2 ≥ B(r̂k)− 3 ·

(
log
(
(Ĥk+1)2+γ

))2

≥ B(r̂k)− 3 ·
(

log
(
(k1+γ · Ĥk)

2+γ
))2

≥ B(r̂k)− (Ĥk)
1−γ

for all k large enough. Here, we further used (3.14), (3.12) and the exponential growth of

Ĥk in k (cf. (3.11)). In terms of stopping times for the Brownian motion, this implies that

we P-a.s. have

lim sup
k→∞

({
mk+1 > φ̂+

k

}
∩ {bk+1 > 0}

)

⊆ lim sup
k→∞

({
φ̂+
k < λ̂k < φ̂

(2)
k < η̂+

k+1

}
∩
{
b̂k+1 > 0

})
, (3.59)

where, for k ∈ N0,

λ̂k := inf{t ≥ φ̂+
k : B(r̂k)− (Ĥk)

1−γ},
φ̂

(2)
k := inf{t ≥ λ̂k : B(̂bk)}.

For the relation in (3.59), notice that the sign of bk+1 and b̂k+1 P-a.s. coincides for all k

large enough (cf. (3.51)). Further we have mk ≤ bk+1 ≤ η̂k
+ for all k large enough due to

the definition of mk+1 and again (3.51).

On the set {b̂k+1 > 0}, we have the following connection to the ruin probabilities of the

Brownian motion using the strong Markov property at λ̂k

P
(
φ̂+
k < λ̂k < φ̂

(2)
k < η̂+

k+1

∣∣∣B(r̂k), B(̂̀k), B(̂bk)
)

≤ P
(
T̂
(
− Ĥk + (Ĥk)

1−γ) < T̂
(
(Ĥk)

1−γ)∣∣∣B(r̂k), B(̂̀k), B(̂bk)
)

=
(Ĥk)

1−γ

Ĥk

=
1

(Ĥk)γ
.

Since this last upper bound is P-a.s. summable in k due to the exponential growth of Ĥk in

k (cf. (3.11)), the Borel-Cantelli lemma and (3.59) imply that on the set bk+1 > 0 we P-a.s.

have

mk+1 ≤ φ̂+
k

for all k large enough. In combination with (3.57) and (3.58), we can conclude that we

P-a.s. have

mk+1 = rk

for all k large enough if bk+1 > 0.
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Finally, (3.31) is a direct consequence of (3.30) and the definition of mk+1. Further, a

combination of (3.30) and the definition of Dk P-a.s. yields

Dk+1 =

{
min{V (rk)− V (bk+1), V (rk+1)− V (bk+1)} = V (rk)− V (bk+1) if bk+1 > 0

min{V (`k+1)− V (bk+1), V (`k)− V (bk+1)} = V (`k)− V (bk+1) if bk+1 < 0

}

= V (mk+1)− V (bk+1)

for all k large enough which shows (3.32). For the proof of (3.33), we notice that we P-a.s.

have

Hk = min{V (`k)− V (bk), V (rk)− V (bk)} = min{V (hk+1)− V (bk), V (mk+1)− V (bk)}
= V (mk+1)− V (bk)

for all k large enough. Here, we used the definition of hk+1 and (3.30) for the second step.

The argument for the last step, i.e. V (mk+1) ≤ V (hk+1) for all k large enough, is postponed

to the proof of (3.36). �

Proof of Proposition 3.3.10. Due to Proposition 3.3.9, we P-a.s. have

mk =

{
rk−1 > 0 if bk > 0

`k−1 < 0 if bk < 0

for all k large enough. Therefore, we also P-a.s. have

Dk =

{
min{V (rk)− V (bk), V (`k−1)− V (bk)} if bk > 0

min{V (`k)− V (bk), V (rk−1)− V (bk)} if bk < 0,

Hk = min{V (rk)− V (bk), V (`k)− V (bk)},

Dk+1 =

{
min{V (rk+1)− V (bk+1), V (`k)− V (bk+1)} if bk+1 > 0

min{V (`k+1)− V (bk+1), V (rk)− V (bk+1)} if bk+1 < 0

for all k large enough by definition, where further

V (rk+1) ≥ V (rk) ≥ V (rk−1),

V (`k+1) ≥ V (`k) ≥ V (`k−1),

V (bk+1) ≤ V (bk)

also holds by definition. Overall, we can conclude that we P-a.s. have

Dk ≤ Hk ≤ Dk+1 (3.60)

for all k large enough. This shows the first part of (3.34). To see that the last inequality

holds, we will compare Hk and Ĥk:

Let us assume that V (rk) ≤ V (`k) holds. In the other case, we can use the same proof with

the symmetrically analogous quantities. Due to the assumption, for ϑ > 0, we P-a.s. have

Hk = V (rk)− V (bk) ≥ V (br̂kc)− V (b̂bkc)
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≥ B(br̂kc)−B(b̂bkc)−
(

log |r̂k|
)2 −

(
log |̂̀k|

)2

≥ B(r̂k)−B(̂bk)− 4 ·
(

log
(
(Ĥk)

2+ϑ
))2

≥ Ĥk − 4 ·
(

log
(
(Ĥk)

2+ϑ
))2

(3.61)

for all k large enough. Thereby, we made use of the definition of rk and (3.53) in the second

step. Further, we used (3.55) and (3.15) for the remaining steps. In particular, (3.11)

together with (3.60) implies that for every 0 < β, λ < 1 we P-a.s. have

Dk+1 ≥ Hk ≥ (1− λ) · exp(β · k)

for all k large enough. Since this property holds for every 0 < β, λ < 1, we can conclude

that, for 0 < β < 1, we even P-a.s. have

Dk+1 ≥ Hk ≥ exp
(
β · (k + 1)

)

for all k large enough. This finishes the proof of (3.34).

For the proof of (3.35), we first notice that analogous arguments as in (3.61) show that we

can derive the analogous upper bound, and therefore, for ϑ > 0, we P-a.s. have

Ĥk − 4 ·
(

log
(
(Ĥk)

2+ϑ
))2

≤ Hk ≤ Ĥk + 4 ·
(

log
(
(Ĥk)

2+ϑ
))2

(3.62)

for all k large enough. Since we have seen in Proposition 3.3.4 that for ϑ > 0 we P-a.s. have

Ĥk ≤ k1+ϑ
2 · Ĥk−1

for all k large enough, a combination of the last two inequalities show that we also have

(3.35), i.e. for ϑ > 0 we P-a.s. have

Hk ≤ k1+ϑ ·Hk−1

for all k large enough where we further used the exponential growth of (Ĥk)k in k (cf.

(3.11)).

For the proof of (3.36), we first consider the difference V (`k) − V (rk) for k ∈ N0. For

0 < γ < 1, we P-a.s. have

V (`k)− V (rk) ≥ V (b̂̀kc)−B(rk)−
(

log(rk)
)2

≥ B(b̂̀kc)−B(rk)−
(

log(rk)
)2 −

(
log(b̂̀kc)

)2

≥ B(̂̀k)−B(r̂k)− 3 ·
(

log
(
(Ĥk)

2+γ
))2

(3.63)

for all k large enough. Here, we used the strong approximation Theorem and Lemma 3.3.14

several times (cf. Remark 3.3.16). Further, we used (3.15) for the third step. Recall that

due to (3.30) and the definition of hk+1 we P-a.s. have

mk+1 =

{
rk > 0 if bk+1 > 0

`k < 0 if bk+1 < 0,
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hk+1 =

{
`k > 0 if bk+1 > 0

rk < 0 if bk+1 < 0

for all k large enough where further, P-a.s.,

bk+1 > 0 iff b̂k+1 > 0

for all k large enough due to (3.51). Therefore, we can conclude that on the set {bk+1 > 0}
we P-a.s. have, using (3.63),

V (hk+1)− V (mk+1) = V (`k)− V (rk) ≥ B(̂̀k)−B(r̂k)− 3 ·
(

log
(
(Ĥk)

2+γ
))2

= B(ĥk+1)−B(m̂k+1)− 3 ·
(

log
(
(Ĥk)

2+γ
))2

≥ (Ĥk−1)1− γ
2 − 3 ·

(
log
(
(Ĥk)

2+γ
))2

≥
(
Hk−1 − 4 ·

(
log
(
(Ĥk)

2+γ
))2
)1− 3γ

4

≥ (Hk−1)1−γ

for all k large enough. Here, we used (3.63) for the second step. Further, we used (3.13) (for
γ
2
) for the fourth step, where we have B(ĥk+1)− B(m̂k+1) ≥ 0 by definition. Additionally,

we used (3.62), (3.35), and the exponential growth of Hk in k (cf. (3.34)) for the last two

steps.

The argument on the set {bk+1 < 0} works just in the same way if we use the symmetric

analogues of all appearing quantities. Overall, we have shown (3.36).

For the remaining inequalities, we can use (3.50) and (3.52) to conclude that, for ϑ > 0, we

P-a.s. have

|`k| ≤ |φ̂−k | ≤ (Ĥk)
2+ϑ

2 ≤ (Hk)
2+ϑ,

|rk| ≤ |φ̂+
k | ≤ (Ĥk)

2+ϑ
2 ≤ (Hk)

2+ϑ

for all k large enough, where we first applied (3.14) for ϑ
2

and then used (3.62). This shows

(3.37) and (3.38). Further, (3.39), (3.40), and (3.41) are direct consequences since we have

`k ≤ bk ≤ rk and

hk+1 ∈ {`k, rk}

by definition and, P-a.s.,

mk+1 ∈ {`k, rk}

for all k large enough due to Proposition 3.3.9. �

Proof of Proposition 3.3.11. For the proof, we fix 0 < γ < 1. Further, we assume that we

have b̂k > 0, i.e. the valley D̂k is located on the right side of the origin. In the other case,

i.e. b̂k < 0, we only have to use the symmetric analogues of all appearing quantities.
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Due to our assumption and (3.51), we also P-a.s. have bk > 0 for all k large enough. In

particular, this implies

Vk\Dk = {`k, `k + 1, . . . ,mk − 1} = {`k, `k + 1, . . . , `k−1− 1} ∪ {`k−1, `k−1 + 1, . . . , rk−1− 1}

for all k large enough, where we further used (3.30) for the last step. According to (3.50),

we therefore P-a.s. have

{`k, `k + 1, . . . , `k−1 − 1} ⊆ [φ̂−k,γ, 0],

{`k−1, `k−1 + 1, . . . , rk−1 − 1} ⊆ [φ̂−k−1,γ, φ̂
+
k−1,γ]

for all k large enough. Thereby, we can conclude with the help of (3.50) and (3.55) that we

P-a.s. have

min
`k≤x≤`k−1−1

V (x) ≥ min
φ̂−k,γ≤x≤0

V (x) ≥ min
φ̂−k,γ≤x≤0

B(x)− 2 ·
(

log |φ̂−k,γ|
)2

= min

{
min

φ̂−k,γ≤x≤φ̂
−
k−1

B(x), min
φ̂−k−1≤x≤0

B(x)

}
− 2 ·

(
log |φ̂−k,γ|

)2

≥ B(̂bk) + (Ĥk−1)1−γ − 2 ·
(

log
(
(Ĥk)

2+γ
))2

for all k large enough. Here, we used the definition of φ̂−k,γ (cf. (3.19)), (3.16) (note that we

have φ̂−k−1 = η̂−k since b̂k > 0 for all k large enough), and (3.14). Similarly, we P-a.s. get

min
`k−1≤x≤rk−1−1

V (x) ≥ min
φ̂−k−1,γ≤x≤φ̂

+
k−1,γ

V (x)

≥ min
φ̂−k−1,γ≤x≤φ̂

+
k−1,γ

B(x)− 2 ·
(

log |φ̂−k−1,γ|
)2 − 2 ·

(
log |φ̂+

k−1,γ|
)2

≥ B(̂bk−1)− 4 ·
(

log
(
(Ĥk−1)2+γ

))2

≥ B(̂bk) + (Ĥk−1)1−γ − 4 ·
(

log
(
(Ĥk−1)2+γ

))2

for all k large enough, where we again used (3.14) and further (3.16) for the last step. On

the other hand, due to (3.53), we P-a.s. have

V (bk) ≤ V (b̂bkc) ≤ B(̂bk) + 2 ·
(

log |̂bk|
)2 ≤ B(̂bk) + 2 ·

(
log
(
(Ĥk)

2+γ
))2

for all k large enough, where we applied (3.55) in the second step and (3.15) in the last

step. A combination of the last three inequalities in particular implies due to the exponential

growth of (Ĥk−1)k in k (cf. (3.11)) that we P-a.s. have

min
x∈Vk\Dk

V (x) ≥ V (bk) +
3

4
(Ĥk−1)1−γ ≥ V (bk) +

1

2
(Hk−1)1−γ (3.64)
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for all k large enough. Here, we additionally used that, P-a.s.,

Ĥk−1 − 4 ·
(

log
(
(Ĥk−1)2+γ

))2

≤ Hk−1 ≤ Ĥk−1 + 4 ·
(

log
(
(Ĥk−1)2+γ

))2

for all k large enough which we have shown in (3.62).

Since (3.64) holds for every 0 < γ < 1 and since Hk−1 grows at least exponentially in k due

to (3.34), we can finally conclude that we even P-a.s. have

min
x∈Vk\Dk

V (x) ≥ V (bk) + (Hk−1)1−γ (3.65)

for all k large enough.

For the proof of (3.43), recall (3.30) which states that, P-a.s.,

mk =

{
rk−1 > 0 if bk > 0

`k−1 < 0 if bk < 0

for all k large enough. In particular we P-a.s. have

bk−1 ∈ Vk\Dk

for all k large enough, where further, P-a.s.,

Dk = V (mk)− V (bk) and

Hk−1 = V (mk)− V (bk−1)

for all k large enough (cf. (3.33)). �

Proof of Proposition 3.3.12. For the proof, it is helpful to have the following picture in

mind: The maximal potential difference we are interested in here can be understood as a

largest neighbouring spike within the valley Dk on the two sides of the bottom point bk.

Since this neighbouring spike cannot stick out of the valley, we will see that is very unlikely

that the neighbouring spike is almost as high as the depth of the valley Dk.

For the proof, we fix 0 < γ < 1. Further, we assume that we have bk > 0, i.e. the valley Dk
is located on the right side of the origin. In the other case, i.e. bk < 0, we only have to use

the symmetric analogues of all appearing quantities.

Let us define

Mk := max
x,y∈Dk: x<y<bk

V (y)− V (x).

Note in a first step that we P-a.s. have

lim sup
k→∞

({
Mk > Dk − (Hk−1)1−γ} ∩ {bk > 0}

)
⊆ lim sup

k→∞

(
Fk ∩ {bk > 0}

)
,

where, for k ∈ N0,

Fk :=
{
∃mk < x < y < bk : V (x) ≤ V (mk)−Dk + (Hk−1)1−γ, V (y) ≥ V (mk)− (Hk−1)1−γ} .
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Thereby, we P-a.s. have for x with

mk < x < bk and V (x) ≤ V (mk)−Dk + (Hk−1)1−γ

on the set {bk > 0} that

B(x) ≤ V (x) +
(

log(x)
)2 ≤ V (mk)−Dk + (Hk−1)1−γ +

(
log
(
(Hk)

2+γ
))2

≤ V (bk) + (Hk−1)1−γ +
(

log
(
(k1+γ ·Hk−1)2+γ

))2

≤ V (bk−1)− 1

2
(Hk−1)1− γ

2 ≤ V (b̂bk−1c)−
1

2
(Hk−1)1− γ

2

≤ B(̂bk−1) + 2 ·
(

log |̂bk−1|
)2 − 1

2
(Hk−1)1− γ

2

≤ B(̂bk−1) + 2 ·
(

log
(
(Ĥk−1)2+γ

))2

− 1

2
(Hk−1)1− γ

2 < B(̂bk−1)

holds for all k large enough. Here, we used the Komlós-Major-Tusnády strong approxima-

tion theorem (cf. Remark 3.55) for the first step. Further, we used (3.39) and (3.35) in

the second and third step. Additionally, we used (3.42) with γ
2

– which implies V (bk−1) ≥
V (bk) + (Hk−1)1− γ

2 for all k large enough – and the exponential growth of Hk (cf. (3.34)) in

the third line. In the next two steps, we made use of (3.53) and the approximation theorem

again. Finally, we can apply (3.62) – which connects Ĥk−1 and Hk−1 – together with the

exponential growth of Ĥk to see that the last inequality holds. The last inequality, which

we just derived, in particular implies that for the considered x we P-a.s. have

x > φ̂+
k−1

for all k large enough. Similarly, we P-a.s. have for y with

mk < y < bk and V (y) ≥ V (mk)− (Hk−1)1−γ

on the set {bk > 0}

B(y) ≥ V (y)−
(

log(y)
)2 ≥ V (mk)− (Hk−1)1−γ −

(
log(y)

)2

≥ V (bm̂kc)− (Hk−1)1−γ −
(

log
(
(Hk)

2+γ
))2

≥ B(m̂k)− (Ĥk−1)1− γ
2

for all k large enough where we used the same inequalities as above. Additionally, we used

that we P-a.s. have mk = rk−1 due to our assumption for all k large enough (cf. (3.30))

from which we know that the potential V (·) attains a maximum in some neighbourhood at

rk−1 = mk which we used in the third step. For the last step, we made use of (3.62) again

to connect Ĥk−1 and Hk−1. On the other hand, we P-a.s. have

V (bk) ≤ V (b̂bkc) ≤ B(̂bk) + 2 ·
(

log(̂bk)
)2

≤ B(̂bk−1)− (Ĥk−1)1−γ + 2 ·
(

log
(
(Ĥk)

2+γ
))2

≤ B(̂bk−1)
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for all k large enough. Here, we used (3.53) for the first step, (3.55) for the second step,

and (3.16) for the third step. For the last step, we again used the exponential growth of

Ĥk−1 in k (cf. (3.11)) together with (3.12).

In terms of stopping times for the Brownian motion with

λ̂k−1 := inf{t ≥ φ̂+
k−1 : B(t) = B(m̂k)− (Ĥk−1)1− γ

2 },
φ̂∗k−1 := inf{t ≥ λ̂k−1 : B(t) = B(̂bk−1)},

we can conclude by the above argument that we P-a.s. have

lim sup
k→∞

({
Mk > Dk − (Hk−1)1−γ} ∩ {bk > 0}

)

⊆ lim sup
k→∞

({
φ̂+
k−1 < λ̂k−1 < φ̂∗k−1 < η̂+

k

}
∩
{
b̂k > 0

})
.

Here, we additionally used that (3.51) implies that we P-a.s. have bk ≤ η̂+
k and that the

sign of bk and b̂k coincides for all k large enough. Now we can compute the probability for

the dominating event with the help of the ruin probabilities of the Brownian motion again.

More precisely, we have the following upper bound on the set {b̂k > 0} using the strong

Markov property of the Brownian motion at λ̂k−1 (cf. Remark 3.3.2):

P
(
φ̂+
k−1 < λ̂k−1 < φ̂∗k−1 < η̂+

k

∣∣∣ Ĥk−1, B(r̂k−1), B(̂̀k−1)
)

≤ P
(
T̂
(
−Ĥk−1 + (Ĥk−1)1− γ

2

)
< T̂

(
(Ĥk−1)1− γ

2

)∣∣∣ Ĥk−1, B(r̂k−1), B(̂̀k−1)
)

=
(Ĥk−1)1− γ

2

Ĥk−1

=
1

(Ĥk−1)
γ
2

.

Since the last expression is P-a.s. summable in k due to the exponential growth of Ĥk−1 in

k (cf. (3.34)), the Borel-Cantelli lemma yields that on the set {bk > 0} we P-a.s. have

Mk
def
= max

x,y∈Dk: x<y<bk
V (y)− V (x) ≤ Dk − (Hk−1)1−γ

for all k large enough. This shows (3.45).

The proof of (3.46) is similar to above, where we again assume bk > 0. In order to have a

high neighbouring spike within the valley Dk, the potential has to reach a very large value

without reaching V (mk) first, then a very small value without attaining a new minimum

before the potential reaches a value of at least V (mk) at time η+
k again. In comparison with

above, all we have to do here is to use

M
(1)
k := max

x,y∈Dk: bk<x<y<η
+
k

V (x)− V (y),

F ∗k :=
{
∃ bk < x < y < η+

k : V (x) ≥ V (mk)− (Hk−1)1−γ, V (y) ≤ V (mk)−Dk + (Hk−1)1−γ}

instead of M and Fk. For such x and y we P-a.s. have on {bk > 0}

B(x) ≥ B(m̂k)− (Ĥk−1)1− γ
2 ,
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B(y) ≤ B(̂bk−1)

for all k large enough due to the same arguments as above. With

λ̂k−1
def
= inf{t ≥ φ̂+

k−1 : B(t) = B(m̂k)− (Ĥk−1)1− γ
2 },

φ̂∗k−1
def
= inf{t ≥ λ̂k−1 : B(t) = B(̂bk−1)}

as above, this again implies

lim sup
k→∞

({
M

(1)
k > Dk − (Hk−1)1−γ

}
∩ {bk > 0}

)

⊆ lim sup
k→∞

({
φ̂+
k−1 < λ̂k−1 < φ̂∗k−1 < η̂+

k

}
∩
{
b̂k > 0

})
.

Here, we used that we P-a.s. have bk ≥ φ̂+
k−1 for all k large enough (cf. (3.51)). An

application of the Borel-Cantelli lemma therefore yields that on the set {bk > 0} we also

P-a.s. have

M
(1)
k

def
= max

x,y∈Dk: bk<x<y<η
+
k

V (x)− V (y) ≤ Dk − (Hk−1)1−γ

for all k large enough. This finishes the proof of (3.46). �

Proof of Proposition 3.3.13. The proof runs very similarly to the proof of Proposition

3.3.12. Again, we fix 0 < γ < 1 and only consider the case bk > 0 (bk+1 > 0), i.e. the case in

which the valley Dk (Dk+1) is located on the right side of the origin. In the other case, i.e.

bk < 0 (bk+1 < 0), we only have to use the symmetric analogues of all appearing quantities.

Using the same approach as above, we see that for

M
(2)
k := min

η+k ≤x≤rk
V (x),

M
(3)
k := max

φ̂+
k,γ≤x≤bk+1

V (x)− V (mk+1)

we have

lim sup
k→∞

({
M

(2)
k < V (bk) + (Dk)

1−γ
}
∩ {bk > 0}

)

⊆ lim sup
k→∞

({
η̂+
k < λ̂

(2)
k < η̂

(2)
k < φ̂+

k

}
∩
{
b̂k > 0

})

and

lim sup
k→∞

({
M

(3)
k > −(Hk)

1−γ
}
∩ {bk+1 > 0}

)

⊆ lim sup
k→∞

({
φ̂+
k < λ̂

(3)
k < φ̂

(3)
k < η̂+

k+1

}
∩
{
b̂k+1 > 0

})

P-a.s., where, for k ∈ N0,

λ̂
(2)
k := inf{t ≥ η̂+

k : B(t) = B(̂bk) + (D̂k)
1− γ

2 },
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η̂
(2)
k := inf{t ≥ λ̂

(2)
k : B(t) = B(m̂k)− (D̂k)

1− γ
2 },

λ̂
(3)
k := inf{t ≥ φ̂+

k : B(t) = B(m̂k+1)− (Ĥk)
1− γ

2 },
φ̂

(3)
k := inf{t ≥ λ̂

(3)
k : B(t) = B(̂bk)}.

Again using the strong Markov property of the Brownian motion at λ̂
(2)
k and λ̂

(3)
k respectively

(cf. Remark 3.3.2), we can compute the probability of the dominating events: On the set

{b̂k > 0}, we have the following connection to the ruin probability of the Brownian motion

(using the strong Markov property at λ̂
(2)
k )

P
(
η̂+
k < λ̂

(2)
k < η̂

(2)
k < φ̂+

k

∣∣∣ D̂k, B(̂bk), B(r̂k−1), B(̂̀k−1)
)

≤ P
(
T̂
(
D̂k − 2 · (D̂k)

1− γ
2

)
< T̂

(
−(D̂k)

1− γ
2

)∣∣∣ D̂k, B(̂bk), B(r̂k−1), B(̂̀k−1)
)

=
(D̂k)

1− γ
2

D̂k − (D̂k)
1− γ

2

=
1

(D̂k)
γ
2 − 1

and similarly on the set {b̂k+1 > 0} (using the strong Markov property at λ̂
(3)
k )

P
(
φ̂+
k < λ̂

(3)
k < φ̂

(3)
k < η̂+

k+1

∣∣∣ Ĥk, B(̂bk), B(r̂k), B(̂̀k)
)

≤ P
(
T̂
(
−Ĥk + (Ĥk)

1− γ
2

)
< T̂

(
(Ĥk)

1− γ
2

)∣∣∣ Ĥk, B(̂bk), B(r̂k), B(̂̀k)
)

=
(Ĥk)

1− γ
2

Ĥk

=
1

(Ĥk)
γ
2

.

Since the last two upper bounds are P-a.s. summable in k due to the exponential growth of

D̂k, Ĥk in k (cf. (3.34)), we can conclude with the help of the Borel-Cantelli lemma that

we P-a.s. have

M
(2)
k

def
= min

η+k ≤x≤rk
V (x) ≥ V (bk) + (Dk)

1−γ on {bk > 0},

M
(3)
k

def
= max

φ̂+
k,γ≤x≤bk+1

V (x)− V (mk+1) ≤ −(Hk)
1−γ on {bk+1 > 0}

for all k large enough. This shows (3.47) and (3.48). �
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3.4 Preparation for the proofs

3.4.1 Preliminaries

In the following, we collect some useful properties of the RWRE. For the random time of

the first arrival in x

T (x) := inf{n ≥ 0 : Xn = x},
the interpretation of the RWRE as an electrical network helps us to compute the following

probability for x < y < z (for a proof see for example formula (2.1.4) in [Ze04]):

P y
θ (T (z) < T (x)) =

y−1∑
j=x

eV (j)

z−1∑
j=x

eV (j)

(3.66)

Further (cf. (2.4) and (2.5) in [SZ07] and Lemma 7 in [Go84]), we have for k ∈ N and y < z

P y
θ (T (z) < k) ≤ k · exp

(
− max

y≤i<z

[
V (z − 1)− V (i)

])
(3.67)

and similarly for x < y

P y
θ (T (x) < k) ≤ k · exp

(
− max

x<i≤y

[
V (x+ 1)− V (i)

])
. (3.68)

To get bounds for large values of T (·), we can use the following estimate for x < y < z (cf.

Lemma 2.1 in [SZ07]):

Ey
θ [T (z) · 1{T (z)<T (x)}] ≤ (z − x)2 · exp

(
max

x≤i≤j≤z

(
V (j)− V (i)

))
(3.69)

3.4.2 Notation

In the following, we introduce some more notation which we need for our proofs:

Recall that (Xn)n∈N0 is a RWRE on Z. For x ∈ Z, let

ξ(n, x) := |{0 ≤ j ≤ n : Xj = x}|

denote the local time of the RWRE in x. As in [DGPS07] and [GPS10], it is helpful to

decompose the RWRE into excursions away from the bottom points (bk)k∈N0 . For this

decomposition, the following successive return times to (bk)k∈N0 are helpful. For k, ` ∈ N0,

we define inductively

T
(k)
` := inf{i > T

(k)
`−1 : Xi = bk} for ` ≥ 1 (3.70)
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where T
(k)
0 := 0 (and T

(k)
1 = T (bk)) for all k. For x ∈ Z, we can decompose ξ(n, x) into the

number of visits to x before the first arrival in bk and the visits belonging to the different

excursions away from bk. For this, we define for every x ∈ Z

Y(0)
bk,x

:= |{0 ≤ j ≤ T
(k)
1 : Xj = x}|,

Y(n)
bk,x

:= |{T (k)
n < j ≤ T

(k)
n+1 : Xj = x}| for n ∈ N.

Then, we have for k, n ∈ N0, x ∈ Z

ξ(n, x) = Y(0)
bk,x

+

τ(n,k)∑

`=1

Y(`)
bk,x

+ |{T (k)
τ(n,k) < j ≤ n : Xj = x}| (3.71)

where

τ(n, k) := sup{` ∈ N0 : T
(k)
` ≤ n}

denotes the number of visits to bk up to time n. Further, note that (Y(n)
bk,x

)n≥1 are i.i.d.

random variables with respect to Pθ for all environments θ, x ∈ Z and k ∈ N0.

For the proofs, the expectation and the variance of the random variable Y(1)
bk,x

for x 6= bk will

play a crucial role. Similarly to Section 3.2 in [DGPS07], we observe that the distribution

of Y(1)
bk,x

is almost geometric. More precisely, we have

Pθ(Y(1)
bk,x

= `) =

{
λ · (1− β)`−1 · β ` = 1, 2, 3, . . .

1− λ ` = 0,

where

λ = λ(bk, x) := P bk
θ

(
T+(x) < T+(bk)

)
,

β = β(bk, x) := P x
θ

(
T+(bk) < T+(x)

)

with

T+(x) := inf{n > 0 : Xn = x}.

In particular, we have

Eθ
[
Y(1)
bk,x

]
=
λ

β
=

µθ(x)

µθ(bk)
=

e−V (x) + e−V (x−1)

e−V (bk) + e−V (bk−1)
, (3.72)

where µθ is a reversible measure for the Markov chain (Xn)n∈N0 (cf. (3.9)). Further, we

have

Var
(
Y(1)
bk,x

)
=
λ · (2− β − λ)

β2
≤ 2

β
· µθ(x)

µθ(bk)
.

To get useful upper bounds for the variance, we observe that

β =





(1− ωx) · P x−1
θ

(
T (bk) < T (bx)

)
= (1− ωx) ·

(
x−1∑
y=bk

eV (y)−V (x−1)

)−1

if x > bk

ωx · P x+1
θ

(
T (bk) < T (bx)

)
= ωx ·

(
bk−1∑
y=x

eV (y)−V (x)

)−1

if x < bk,
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where we used (3.66) for the second step. Using (3.2), this implies

Var
(
Y(1)
bk,x

)
≤





C · e−[V (x)−V (bk)] ·
(

x−1∑
y=bk

eV (y)−V (x−1)

)
if x > bk

C · e−[V (x)−V (bk)] ·
(
bk−1∑
y=x

eV (y)−V (x)

)
if x < bk





≤





C · e−[V (x)−V (bk)] · (x− bk) · exp

(
max

bk≤y≤x−1

(
V (y)− V (x− 1)

))
if x > bk

C · e−[V (x)−V (bk)] · (bk − x) · exp

(
max

x≤y≤bk−1

(
V (y)− V (x)

))
if x < bk

(3.73)

for some constant C > 0.

Using the decomposition of the path of the random walk (Xn)n∈N0 into the different excur-

sions from the bottom point at bk back to bk for some k ∈ N0, we introduce

Z(k)
0 :=

∑

x∈Dk

αx · Y(0)
bk,x

,

Z(k)
j :=

∑

x∈Dk

αx · Y(j)
bk,x

for j ∈ N (3.74)

as the accumulated positive and negative orientations which the RWRE collects within the

valley Dk on one excursion. With the help of the random variables (Z(k)
j )j∈N0 we have the

following decomposition

G(k)
n := Z(k)

0 +

τ(n,k)∑

j=1

Z(k)
j + ∆(k)

n (3.75)

where

∆(k)
n :=

∑

x∈Dk

αx · |{T (k)
τ(n,k) < j ≤ n : Xj = x}|

denotes the remainder, i.e. the collected orientations of the last excursion which has not

been finished yet. Similarly to the effective width from [DGPS07], we can introduce, for

k ∈ N0,

Φ(k) := Eθ
[
Z(k)

1

]

as the expected accumulated orientations which the RWRE collects on one excursion within

the valley Dk. We further define

s(k) :=

{
+1 if Φ(k) ≥ 0

−1 if Φ(k) < 0

as the “sign” of Φ(k).

Finally, we define

R(k) = inf{` > T
(k)
1 : X` = mk} (3.76)

as the first time the RWRE leaves the k-th valley via mk after it has reached the bottom

at bk.
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3.4.3 Behaviour of the Drift within the Valleys

Recall that we have introduced

Φ(k) = Eθ
[
Z(k)

1

]
= Eθ

[∑

x∈Dk

αx · Y(1)
bk,x

]
=
∑

x∈Dk

αx ·
µθ(x)

µθ(bk)

as the expected accumulated orientations which the RWRE collects on one excursion away

from the bottom point at bk in the valley Dk. This is why we can think of the quantity

Φ(k) as a drift the environment θ possesses in the valley Dk. In particular, it is more likely

that the RWRO collects more positive orientations as long as it moves in a valley Dk with

drift Φ(k) > 0 and more negative orientations if we have Φ(k) < 0. In our next proposition,

we show that, for all ` large enough, each of the valleys (Dk)k≥` possesses a drift which is

different from 0 due to the inhomogeneity of our valleys. Additionally, the drift Φ(k) does

not decrease to 0 too fast in k which will be useful for the proofs of Theorem 3.2.1 and 3.2.2.

Proposition 3.4.1. Let 0 < γ < 1. Then, we have for P-a.e. environment θ = (ωx, αx)x∈Z

∣∣Φ(k)
∣∣ =

∣∣∣∣∣
∑

x∈Dk

µθ(x)

µθ(bk)
αx

∣∣∣∣∣ ≥ exp
(
− (Dk)

γ
)

(3.77)

for all k = k(θ, γ) large enough.

Proof of Proposition 3.4.1. At first, we fix 0 < γ < 1. For an arbitrary k ∈ N, we now

decompose the k-th valley Dk into disjoint sets depending on how “deep” the positions lie

in the valley. For this, we define

I
(k)
j :=

{
x ∈ Dk : exp

(
−j · (Dk)

γ
2

)
≤ µθ(x)

µθ(bk)
< exp

(
−(j − 1) · (Dk)

γ
2

)}
for j ∈ N,

I
(k)
0 := Dk ∩

(
∞⋃

j=1

I
(k)
j

)c

.

The idea for the proof is the following: Since the contribution of positions in I
(k)
j to Φ(k)

decays exponentially in j, our goal is to find some j ∈ N such that∣∣∣∣∣∣∣∣∣

∑

x∈
j⋃
`=0

I
(k)
`

µθ(x)

µθ(bk)
αx

∣∣∣∣∣∣∣∣∣
> exp

(
−(j − 1) · (Dk)

γ
2

)
−

∑

x∈
∞⋃

`=j+1

I
(k)
`

µθ(x)

µθ(bk)
,

i.e. the advance of a positive or negative drift of the lower part of Dk is large enough such

that it cannot be compensated again by the upper part of Dk for large k. Therefore, we

define for j ∈ N

sj :=





+1 if
∑

x∈
j⋃
`=0

I
(k)
`

µθ(x)

µθ(bk)
αx ≥ 0

−1 if
∑

x∈
j⋃
`=0

I
(k)
`

µθ(x)

µθ(bk)
αx < 0
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as the sign of the drift of the lower part of Dk up to I
(k)
j .

Further, we define for j ∈ 2N

A
(k)
j =




θ : sj−1 ·

∑

x∈I(k)j

µθ(x)

µθ(bk)
αx ≥ exp

(
−j · (Dk)

γ
2

)



∩




θ : sj−1 ·

∑

x∈I(k)j+1

µθ(x)

µθ(bk)
αx ≥ 0





on which the contribution of I
(k)
j and I

(k)
j+1 to the drift in particular has the same direction

as sj−1. We first notice that due to assumption (3.2) and (3.34) we have for P-a.e. (ωx)x∈Z
and all k = k(γ, θ) large enough that I

(k)
j 6= ∅ holds for 1 ≤ j ≤ 2 · b(Dk)

γ
4 c. Due

to the symmetry of the sequence (αx)x∈Z with regard to 0 and using that (αx)x∈Z and

(ωx)x∈Z are two independent sequences of i.i.d. random variables, we therefore have for

1 ≤ j ≤ 2 · b(Dk)
γ
4 c − 1

P







θ : sj−1 ·

∑

x∈I(k)j+1

µθ(x)

µθ(bk)
αx ≥ 0





∣∣∣∣∣∣∣
(ωx)x∈Z


 ≥ 1

2
(3.78)

on
{

(ωx)x∈Z : I
(k)
j 6= ∅ for 1 ≤ j ≤ 2 · b(Dk)

γ
4 c
}
.

Further, let i
(k)
j be the smallest element of I

(k)
j (as long as I

(k)
j 6= ∅). Then, we have for

1 ≤ j ≤ 2 · b(Dk)
γ
4 c

P







θ : sj−1 ·

∑

x∈I(k)j

µθ(x)

µθ(bk)
αx ≥ exp

(
−j · (Dk)

γ
2

)




∣∣∣∣∣∣∣
(ωx)x∈Z




≥ P


P


{αi(k)j

= sj−1} ∩




θ : sj−1 ·

∑

x∈I(k)j \{i
(k)
j }

µθ(x)

µθ(bk)
αx ≥ 0





∣∣∣∣∣∣∣
sj−1, (ωx)x∈Z




∣∣∣∣∣∣∣
(ωx)x∈Z




≥ 1

4
(3.79)

on
{

(ωx)x∈Z : I
(k)
j 6= ∅ for 1 ≤ j ≤ 2 · b(Dk)

γ
4 c
}
.

A combination of (3.78) and (3.79) and again using that (αx)x∈Z and (ωx)x∈Z are two

independent sequences of i.i.d. random variables now yields

P




⋂

j=1,...,b(Dk)
γ
4 c

(
A

(k)
2j

)c
∣∣∣∣∣∣∣
(ωx)x∈Z




= P


P




⋂

j=1,...,b(Dk)
γ
4 c

(
A

(k)
2j

)c
∣∣∣∣∣∣∣
(αx)x∈I(k)j for j≤2·b(Dk)

γ
4 c−2

, (ωx)x∈Z




∣∣∣∣∣∣∣
(ωx)x∈Z



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≤
(

1− 1

8

)
· P




⋂

j=1,...,b(Dk)
γ
4 c−1

(
A

(k)
2j

)c
∣∣∣∣∣∣∣
(ωx)x∈Z




≤
(

7

8

)b(Dk)
γ
4 c

(3.80)

on
{

(ωx)x∈Z : I
(k)
j 6= ∅ for 1 ≤ j ≤ 2 · b(Dk)

γ
4 c
}

where we iterated the first two steps b(Dk)
γ
4 c − 1-times for the last step.

Note here that on the set

A
(k)
2j ∩

{
(ωx)x∈Z : I

(k)
j 6= ∅ for 1 ≤ j ≤ 2 · b(Dk)

γ
4 c
}

we have by construction for 1 ≤ j ≤ b(Dk)
γ
4 c

∣∣∣∣∣
∑

x∈Dk

µθ(x)

µθ(bk)
αx

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

∑

x∈
2j−1⋃
`=0

I
(k)
j

µθ(x)

µθ(bk)
αx +

∑

x∈
2j+1⋃
`=2j

I
(k)
j

µθ(x)

µθ(bk)
αx +

∑

x∈
∞⋃

`=2j+2

I
(k)
j

µθ(x)

µθ(bk)
αx

∣∣∣∣∣∣∣∣∣∣

≥

∣∣∣∣∣∣∣

∑

x∈I(k)2j

µθ(x)

µθ(bk)
αx

∣∣∣∣∣∣∣
−

∑

x∈
∞⋃

`=2j+2
I
(k)
j

µθ(x)

µθ(bk)

≥ exp
(
−2j · (Dk)

γ
2

)
− |Dk| · exp

(
−(2j + 1) · (Dk)

γ
2

)

≥ exp
(
−2j · (Dk)

γ
2

)
·
(

1− (Hk)
2+γ · exp

(
−(Dk)

γ
2

))

≥ exp
(
− (Dk)

γ
)

for P-a.e. environment θ and k = k(γ, θ) large enough. Here, we applied (3.37) and (3.38)

for the fourth step. Further, we used (3.35) together with the exponential growth if Dk in

k (cf. (3.34)) for the last step.

Therefore, (3.80) and the Borel-Cantelli lemma finally imply (3.77) since the upper bound

in (3.80) is summable in k for P-a.e. θ again due to the exponential growth of Dk in k. �
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3.4.4 Strong Localization of the RWRE

V (x)

x

b0

b1

r1 = h2

ℓ1 = m2

r0 = m1
ℓ0 = h1

b2

H+
1 = D+

1

H−
1 D−

1

V1

D1

Figure 3.5: Sampled potential V (·) and the corresponding location of the valleys V1 and D1

from Figure 3.4 on page 58.

In the following, we derive some results on the strong localization of the RWRE in the form

that we will use for the proofs of Theorem 3.2.1 and 3.2.2. Strong localization refers to the

property of the RWRE to spend most of the time around the bottom point of the deepest

valley it has visited so far. Therefore, we introduce, for n ∈ N0,

Nn :=

{
sup{` ∈ N0 : Xj = b` for some j ≤ n} if {` ∈ N0 : Xj = b` for some j ≤ n} 6= ∅
−1 else

(3.81)

as the random index of the deepest bottom point (bk)k∈N0 the RWRE has visited up to

time n. Now, we can introduce the following sets which turn out to describe the typical

behaviour of the RWRE for large time points. For arbitrary 0 < β, γ < 1, which we choose

later (cf. (3.141)), we define (cf. (3.70), (3.76), and (3.75) for the definition of T
(k)
1 , R(k),

and G
(k)
n ):

B
(k)
1 :=

{
∀n ≥ k : HNn−1 ≤

1

1− β log n

}
∩
{
Nn

n→∞−−−→∞
}
,

B
(k)
2 :=



∀n ≤ T

(k+1)
1 :

∑

x∈Z\(Vk∪Dk+1)

ξ(n, x) = 0



 ,

B
(k)
3 :=



∀n ≥ R(k) :

∑

x∈Vk\Dk

ξ(n, x) ≤ exp
(
−(Hk−1)1−γ) · ξ(n, bk)



 ,

B
(k)
4 :=



∀n ≤ T

(k+1)
1 with Xn /∈ Dk+1 :

∑

x∈Dk+1

ξ(n, x) ≤ exp
(
−(Hk−1)1−γ) · ξ(n, bk)



 ,
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B
(k)
5 :=

{
∀n ≥ R(k) : 12 · (Hk)

2+γ · ξ(n, bk) ≥
∑

x∈Vk

ξ(n, x)

}
,

B
(k)
6 :=

{
∀n ≥ R(k) : (1− β) · s(k) · Φ(k) · ξ(n, bk) < s(k) ·G(k)

n

}
,

F (k) :=
∞⋂

`=k

(
B

(`)
1 ∩B(`)

2 ∩B(`)
3 ∩B(`)

4 ∩B(`)
5 ∩B(`)

6

)
.

Here, B
(k)
1 gives us an upper bound for the height of the valley VNn−1 – which is the second

deepest of the valleys (Vk)k∈N0 in which the RWRE has visited the bottom point bk up

to time n – after time k. On the intersection of (B
(k)
2 )k≥`, (B

(k)
3 )k≥`, and (B

(k)
4 )k≥`, the

RWRE prefers to spend most of the time in the valley DNn for large n, i.e. the deepest

of the valleys (Dk)k∈N0 in which the RWRE has visited the bottom point bk up to time n.

Since the bottom point bk plays a key role in our consideration, it will be useful to know

how often the RWRE has visited the bottom point bk of some valley Dk before it leaves Dk
via mk at time R(k) again. A lower bound for this behaviour is contained in B

(k)
5 . Finally,

the behaviour on B
(k)
6 tells us that the accumulated +1/ − 1-orientations G

(k)
n , which the

RWRE collects in the valley Dk before it leaves it via mk at time R(k) again, behaves – at

least in the lower bound – almost like the number of visits to the bottom point bk times the

expected accumulated +1/− 1-orientations during one excursion away from bk to bk which

is denoted by Φ(k).

One key tool for our proofs of Theorem 3.2.1 and 3.2.2 is the following proposition which

tells us that the RWRE will have the properties of the above introduced sets for all but

finitely many k:

Proposition 3.4.2. For P-a.e. environment θ, we have

Pθ

(
lim inf
k→∞

F (k)
)

= lim
k→∞

Pθ
(
F (k)

)
= 1. (3.82)

Remark 3.4.3. Proposition 3.4.2 could easily be extended to show that for large time

points n our RWRE has spent most of its time in the valleys DNn and DNn−1 which are (for

large n) the last two valleys of the sequence (Dk)k∈N0 the RWRE has visited up to time n.

A similar statement for the RWRE on the positive half-line has been shown in Theorem 3.4

in [DGPS07]. For our proof, we need a slightly different information: Due to the definition

of B
(k)
3 for k ∈ N0, we see that the RWRE – when returning to 0 at some large time point

n – has spent most of its time in the single valley DNn ( VNn , i.e. the deepest valley of the

sequence (Dk)k∈N0 in which the RWRE has also visited the bottom point bNn . Note for this

that according to Proposition 3.3.9 we a.s. have 0 /∈ Dk for all k large enough which implies

that the RWRE has to leave the valley DNn at time R(Nn) again before it can return to 0.

Proof of Proposition 3.4.2. For the proof, we show the following lemmata:

Lemma 3.4.4. For ` ∈ N0, β > 0, and 0 < γ < 1, we have for P-a.e. environment θ

Pθ

(
T (b`) < exp

(
(1− β) ·H`−1

))
≤ 2 · exp

(
− (H`−3)1−γ) (3.83)
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for all ` = `(β, γ, θ) large enough. In particular, we have

lim
k→∞

Pθ

(
B

(k)
1

)
= Pθ

(
lim inf
k→∞

B
(k)
1

)
= 1 (3.84)

for P-a.e. environment θ.

Lemma 3.4.5. For ` ∈ N0 and 0 < γ < 1, we have for P-a.e. environment θ

Pθ
(
T (b`+1) ≥ T (h`+1)

)
≤ exp

(
− (H`−1)1−γ) (3.85)

for all ` = `(γ, θ) large enough. In particular, we have

lim
k→∞

Pθ

(
∞⋂

`=k

B
(k)
2

)
= Pθ

(
lim inf
k→∞

B
(k)
2

)
= 1 (3.86)

for P-a.e. environment θ.

Lemma 3.4.6. For ` ∈ N0, x ∈ V`\D`, and 0 < γ < 1, we have for P-a.e. environment θ

Pθ

(
∃n ≥ R(`) : ξ(n, x) > exp

(
−(H`−1)1−γ) · ξ(n, b`)

)

≤ exp
(
− (H`−1)1−γ) (3.87)

for all ` = `(γ, θ) large enough (uniformly in x). In particular, we have

lim
k→∞

Pθ

(
∞⋂

`=k

B
(`)
3

)
= Pθ

(
lim inf
k→∞

B
(k)
3

)
= 1 (3.88)

for P-a.e. environment θ.

Lemma 3.4.7. For ` ∈ N0, x ∈ D`+1, and 0 < γ < 1, we have for P-a.e. environment θ

Pθ

(
∃n ≤ T

(`+1)
1 : Xn /∈ D`+1, ξ(n, x) > exp

(
−(H`−1)1−γ) · ξ(n, b`)

)

≤ exp
(
−(H`−2)1−γ) (3.89)

for all ` = `(γ, θ) large enough (uniformly in x). In particular, we have

lim
k→∞

Pθ

(
∞⋂

`=k

B
(k)
4

)
= Pθ

(
lim inf
k→∞

B
(k)
4

)
= 1 (3.90)

for P-a.e. environment θ.

Lemma 3.4.8. For ` ∈ N0, x ∈ V`, and 0 < β, γ < 1, we have for P-a.e. environment θ

Pθ
(
∃n ≥ R(`) : ξ(n, x) ≥ 6 · ξ(n, b`)

)
≤ exp

(
−(H`−1)1−γ) (3.91)

for all ` = `(β, γ, θ) large enough (uniformly in x). In particular, we have

lim
k→∞

Pθ

(
∞⋂

`=k

B
(`)
5

)
= Pθ

(
lim inf
k→∞

B
(k)
5

)
= 1 (3.92)

for P-a.e. environment θ.

85



CHAPTER 3. RWRE WITH RANDOM ORIENTATIONS

Lemma 3.4.9. For ` ∈ N0 and 0 < β, γ < 1, we have for P-a.e. environment θ

Pθ
({
∃n ≥ R(`) : (1− β) · s(`) · Φ(`) · ξ(n, b`) ≥ s(`) ·G(`)

n

})
≤ exp

(
−1

4
(H`−1)1−γ

)
(3.93)

for all ` = `(β, γ, θ) large enough. In particular, we have

lim
k→∞

Pθ

(
∞⋂

`=k

B
(`)
6

)
= Pθ

(
lim inf
k→∞

B
(k)
6

)
= 1 (3.94)

for P-a.e. environment θ.

Proof of Lemma 3.4.4. At first we fix 0 < β, γ < 1. Further, notice that, for P-a.e.

environment θ, we have

lim
n→∞

Nn =∞ (3.95)

Pθ-a.s. since (Xn)n∈N0 is recurrent for P-a.e. environment θ due to assumption (3.1).

For the proof of (3.83), we notice that

Pθ

(
T (b`) < exp

(
(1− β) ·H`−1

))

≤ P
b`−1

θ

(
T (b`) < exp

(
(1− β) ·H`−1

))
+ Pθ

(
T (b`−1) ≥ T (m`)

)
. (3.96)

for P-a.e. environment θ and all ` = `(θ) large enough due to (3.30). For the first summand,

we get

P
b`−1

θ

(
T (b`) < exp

(
(1− β) ·H`−1

))
≤ P

b`−1

θ

(
T (m`) < exp

(
(1− β) ·H`−1

))

≤





exp
(
(1− β) ·H`−1

)
· exp

(
− max

b`−1≤i<m`

(
V (m` − 1)− V (i)

))
if b` > 0

exp
(
(1− β) ·H`−1

)
· exp

(
− max

m`<i≤b`−1

(
V (m` + 1)− V (i)

))
if b` < 0





≤ exp
(
(1− β) ·H`−1

)
· 1

ε
· exp

(
−
(
V (m`)− V (b`−1)

))

=
1

ε
· exp

(
− β ·H`−1

)
(3.97)

for P-a.e. environment θ and all ` = `(θ) large enough. Here, we used the definition of

m` for the first step. In the second line, we made use of (3.67) and (3.68), where we have

b`−1 < m` < b` if b` > 0 and b` < m` < b`−1 if b` < 0 (for P-a.e. environment θ and for all

` = `(θ) large enough). Further, we applied (3.2) and (3.33) in the last two lines.

Now we turn to the second summand in (3.96): First of all, we notice that

Pθ

(
T (b`−1) ≥ T (m`)

)
=

{
0 if 0 < b`−1 < m`

0 if m` > b`−1 > 0.
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Therefore, we only have to consider the remaining possibilities which are left for all ` large

enough (cf. (3.30)). By using (3.66), we get

Pθ

(
T (b`−1) ≥ T (m`)

)
=





−1∑
j=b`−1

eV (j)

m`−1∑
j=b`−1

eV (j)

if b`−1 < 0 < m`

b`−1−1∑
j=0

eV (j)

b`−1−1∑
j=m`

eV (j)

if b`−1 > 0 > m`





≤





−b`−1 · exp

(
max

b`−1≤j≤−1
V (j)

)
· exp

(
− V (m` − 1)

)
if b`−1 < 0 < m`

b`−1 · exp

(
max

0≤j≤b`−1−1
V (j)

)
· exp

(
− V (m`)

)
if b`−1 > 0 > m`





≤





1

ε
· |b`−1| · exp

(
V (m`−1)− V (r`−1)

)
if b`−1 < 0 < m`

|b`−1| · exp
(
V (m`−1)− V (``−1)

)
if b`−1 > 0 > m`





≤ 1

ε
· |b`−1| · exp

(
V (m`−1)− V (h`−1)

)
≤ 1

ε
· (H`−1)2+γ · exp

(
− (H`−3)1− γ

2

)

≤ 1

ε
·
(
(`− 1)1+γ · (`− 2)1+γ ·H`−3

)2+γ · exp
(
− (H`−3)1− γ

2

)

≤ exp
(
− (H`−3)1−γ) (3.98)

for P-a.e. environment θ and all ` = `(γ, θ) large enough. Here, we used (3.30), (3.31), and

(3.2) in the third line. For the fourth line, notice that V (r`−1) ≥ V (r`−2) and V (``−1) ≥
V (``−2), where further h`−1 = r`−2 if b`−1 < 0 and h`−1 = ``−2 if b`−1 > 0 by definition.

For the second step in this line, we applied (3.39) and further (3.36) for γ
2
. Finally, we

used (3.35) in the last line and the exponential growth of H` in ` (cf. (3.34)) for the last

inequality.

By applying the two upper bounds in (3.97) and (3.98) to (3.96), we see that

Pθ

(
T (b`) < exp

(
(1− β) ·H`−1

))

≤ 1

ε
· exp

(
− β ·H`−1

)
+ exp

(
− (H`−3)1−γ) ≤ 2 · exp

(
− (H`−3)1−γ)

for P-a.e. environment θ and all ` = `(β, γ, θ) large enough. This shows (3.83).

Since the last upper bound is summable in ` for P-a.e. environment θ (again due to the

exponential growth of H` in `), we can apply the Borel-Cantelli lemma to conclude that

1 = Pθ

(
lim inf
`→∞

{
T (b`) ≥ exp

(
(1− β) ·H`−1

)})

= lim
`→∞

Pθ
({
∀n ≥ ` : T (bn) ≥ exp

(
(1− β) ·Hn−1

)})
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≤ lim
k→∞

Pθ

({
∀n ≥ k : HNn−1 ≤

1

1− β log n

})

holds for P-a.e. environment θ. The last step can be seen by assuming HNn−1 >
1

1−β log n

which implies T (bNn) ≤ n < exp ((1− β) ·HNn−1), where further Nn →∞ Pθ-a.s. for P-a.e.

environment θ (cf. (3.95)). In particular, we have shown (3.84). �

Proof of Lemma 3.4.5. At first we fix 0 < γ < 1. Then, we recall (cf. Proposition 3.3.9)

that we have

m`+1 =

{
r` if b`+1 > 0

`` if b`+1 < 0

for P-a.e. environment θ and all ` = `(θ) large enough. Further, we have by definition (cf.

(3.28))

h`+1 =

{
`` if b`+1 > 0

r` if b`+1 < 0.

Therefore, we conclude using the definition of V` and D`+1 (cf. (3.29)) that

V` ∪ D`+1 =

{
{`` = h`+1, h`+1 + 1, . . . ,m`+1, . . . , b`+1, . . . , r`+1} if b`+1 > 0

{``+1, ``+1 + 1, . . . , b`+1, . . . ,m`+1, . . . , r` = h`+1} if b`+1 < 0

for P-a.e. environment θ and all ` = `(θ) large enough. This yields that

Pθ

((
B

(`)
2

)c) ≤ Pθ
(
T (b`+1) ≥ T (h`+1)

)
=





−1∑
j=b`+1

eV (j)

h`+1−1∑
j=b`+1

eV (j)

if b`+1 < 0 < h`+1

b`+1−1∑
j=0

eV (j)

b`+1−1∑
j=h`+1

eV (j)

if b`+1 > 0 > h`+1





≤





−b`+1 · exp

(
max

b`+1≤j≤−1
V (j)

)
· exp

(
− V (h`+1 − 1)

)
if b`+1 < 0 < h`+1

b`+1 · exp

(
max

0≤j≤b`+1−1
V (j)

)
· exp

(
− V (h`+1)

)
if b`+1 > 0 > h`+1





≤ 1

ε
· (H`+1)2+γ · exp

(
V (m`+1)− V (h`+1)

)
≤ 1

ε
· (H`+1)2+γ · exp

(
−(H`−1)1− γ

2

)

≤ 1

ε
·
(
(`+ 1)1+γ · `1+γ ·H`−1

)2+γ · exp
(
−(H`−1)1− γ

2

)
≤ exp

(
−(H`−1)1−γ)
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for P-a.e. environment θ and all ` = `(γ, θ) large enough. Here in the third line, we used

(3.31), (3.39), and (3.2). Further we made use of (3.36) (applied for γ
2
). Finally, we used

(3.34) and (3.35) for the last line. In particular, this shows (3.85).

To finish the proof, we can use the last inequality to conclude that, for P-a.e. environment

θ and all k = k(γ, θ) large enough, we have

1− Pθ
(
∞⋂

`=k

B
(`)
2

)
= Pθ

(
∞⋃

`=k

(
B

(`)
2

)c
)
≤

∞∑

`=k

exp
(
−(H`−1)1−γ) k→∞−−−→ 0,

where we used the exponential growth of H` in ` (cf. (3.34)) for the convergence for k →∞.

�

Proof of Lemma 3.4.6. Here, we are in similar situation as in Lemma 4.3 in [DGPS07],

and therefore we can use a similar approach:

We first fix 0 < γ < 1 and an environment θ. Then, we choose an arbitrary x ∈ V`\D`.
Using the decomposition of the visits to x with respect to the excursions of the RWRE

away from b` (cf. (3.71)), we see that we have

ξ(n, x) ≤ Y(0)
b`,x

+

τ(n,`)+1∑

j=1

Y(j)
b`,x
.

Recall that we have (cf. (3.73)), for some constant C > 0,

Var
(
Y(1)
b`,x

)
≤





C · e−[V (x)−V (b`)] · (x− b`) · exp

(
max

b`≤y≤x−1

(
V (y)− V (x− 1)

))
if x > b`

C · e−[V (x)−V (b`)] · (b` − x) · exp

(
max

x≤y≤b`−1

(
V (y)− V (x)

))
if x < b`





= C · e−[V (x)−V (b`)] · |x− b`| · exp
(
f`(x)

)
, (3.99)

where

f`(x) :=





max
b`≤y≤x−1

(
V (y)− V (x− 1)

)
if x > b`

max
x≤y≤b`−1

(
V (y)− V (x)

)
if x < b`.

(3.100)

exp
(
f`(x)

)
is the factor of the variance which we have to control in the following. It

measures how hard it is for the RWRE to get from x to b`.

At this point we have to distinguish between two cases, namely, if we have

(1) f`(x) ≤ D` − (H`−1)1− γ
2 or

(2) f`(x) > D` − (H`−1)1− γ
2 .

Let us start with the first case, i.e. we assume that f`(x) ≤ D` − (H`−1)1− γ
2 . Then, we

define

g :=
⌈
exp

(
D` − 1

3
(H`−1)1− γ

2

)⌉
, c :=

⌈
exp

(
D` − 2

3
(H`−1)1− γ

2

)⌉
, and kr := g · 2r
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for r ∈ N0. Observe that we have

Pθ
(
∃n ≥ R(`) : ξ(n, x) > exp

(
−(H`−1)1−γ) · ξ(n, b`)

)

≤ Pθ
(
ξ(T (b`), x) > c

)
+ Pθ

(
ξ(R(`), b`) < g

)

+
∞∑

r=0

Pθ

(
kr+1∑

j=1

Y(j)
b`,x

>
1

2
· kr · exp

(
−(H`−1)1−γ)

)

=: I1 + I2 + I3 (3.101)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, the first

summand controls the unlikely event that the RWRE visits x very often before the RWRE

reaches b` for the first time. The second summand is the probability of the event that the

number of finished excursions away from the bottom point b` before the RWRE reaches

m` again after the first visit to b` is unlikely low. Finally, the third summand controls the

event that there are a lot of visits to x up to the kr+1-th excursion for some r ∈ N. To see

that the inequality really holds, note that on the set

{ξ(T (b`), x) ≤ c} ∩ {ξ(R(`), b`) ≥ g} ∩
∞⋂

r=0

{
kr+1∑

j=1

Y(j)
b`,x
≤ 1

2
· kr · exp

(
−(H`−1)1−γ)

}
(3.102)

we have kr ≤ ξ(n, b`) < kr+1 for some r ∈ N0. Thereby, again on the set in (3.102), we have

for every r ∈ N0 with kr ≤ ξ(n, b`) < kr+1 that

ξ(n, x) ≤ c+
1

2
· kr · exp

(
−(H`−1)1−γ) ≤ ξ(n, b`) · exp

(
−(H`−1)1−γ)

holds for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, we

further use that we have H` →∞ (for `→∞) for P-a.e. environment θ due to (3.34).

To get an upper bound for I1, let L denote the number of excursions from x to x made by

the walk during the time interval [0, T (b`)) when we start in x. Then, L+1 has a geometric

distribution (with values 1, 2, . . .) with parameter

q` :=





(1− ωx) · P x−1
θ

(
T (b`) < T (x)

)
= (1− ωx) ·

eV (x−1)

x−1∑
i=b`

eV (i)

if x > b`

ωx · P x+1
θ

(
T (b`) < T (x)

)
= ωx ·

eV (x)

b`−1∑
i=x

eV (i)

if x < b`





≥ ε · 1

|x− b`|
· exp

(
− f`(x)

)
≥ ε · 1

2 · (H`)2+γ
· exp

(
− f`(x)

)
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for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, we used

(3.2), (3.37), (3.38), and the definition of f`(x) (cf. (3.99)) for the last two steps. Therefore,

we can conclude, using the definition of c, that

I1 ≤ P x
θ

(
ξ(T (b`), x) > c

)
= P x

θ (L+ 1 > c) = (1− q`)c ≤ exp(−q` · c)

≤ exp

(
−ε · 1

2 · (H`)2+γ
· exp

(
1

3
(H`−1)1− γ

2

))

≤ exp

(
−ε · 1

2 ·
(
`1+γ ·H`−1

)2+γ · exp

(
1

3
(H`−1)1− γ

2

))

≤ 1

3
· exp

(
− (H`−1)1−γ) (3.103)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, we applied

(3.35) in the third line. For the last line, note that H`−1 grows exponentially in ` due to

(3.34).

Now, we can turn to I2: Similarly to above, let K denote the number of excursions away

from b` to b` made by the walk during the time interval [T (b`), R
(`)). Then, K + 1 has a

geometric distribution with parameter

p` :=





ωb` · P b`+1
θ

(
T (m`) < T (b`)

)
= ωb` ·

eV (b`)

m`−1∑
i=b`

eV (i)

if m` > b`

(1− ωb`) · P b`−1
θ

(
T (m`) < T (b`)

)
= (1− ωb`) ·

eV (b`−1)

b`−1∑
i=m`

eV (i)

if m` < b`





≤





exp
(
V (m`)− V (m` − 1)

)
· exp

(
V (b`)− V (m`)

)
if m` > b`

exp
(
V (b` − 1)− V (b`)

)
· exp

(
V (b`)− V (m`)

)
if m` < b`





≤ 1

ε
· exp

(
−D`

)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, we used

(3.2) and (3.32) for the last step. Therefore, we have using the definition of g

I2 = Pθ(K + 1 < g) ≤ 1− (1− p`)g ≤ p` · g ≤
2

ε
· exp

(
−1

3
(H`−1)1− γ

2

)

≤ 1

3
· exp

(
−(H`−1)1−γ) (3.104)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, we again

used the exponential growth of H`−1 in ` for the last step.

For the upper bound for I3, we first note that due to (3.72) we have for all j ∈ N

Eθ[Y(j)
b`,x

] =
µθ(x)

µθ(b`)
=

e−V (x) + e−V (x−1)

e−V (b`) + e−V (b`−1)
≤ 1

ε
· exp

(
−
(
V (x)− V (b`)

))
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≤ 1

ε
· exp

(
−(H`−1)1− γ

2

)
� exp

(
−(H`−1)1−γ)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, we used

(3.2) for the third step. Further, we made use of (3.42) for γ
2

(which implies V (x) − V (b`) ≥
(H`−1)1− γ

2 since x ∈ V`\D`) and again the exponential growth of H`−1 in ` for the last two

steps. This yields, using that (Y(j)
b`,x

)j∈N are i.i.d. random variables together with Cheby-

shev’s inequality,

I3 ≤
∞∑

r=0

Pθ

(
kr+1∑

j=1

Y(j)
b`,x
− Eθ[Y(j)

b`,x
] >

1

3
· kr · exp

(
−(H`−1)1−γ)

)

≤
∞∑

r=0

9 · kr+1 · Varθ

(
Y(1)
b`,x

)

(kr)2 · exp
(
− 2 · (H`−1)1−γ

) =
18 · Varθ

(
Y(1)
b`,x

)

exp
(
− 2 · (H`−1)1−γ

) ·
∞∑

r=0

1

kr

≤ 36 · C · exp
(
−
(
V (x)− V (b`)

))
· |x− b`| · exp

(
f`(x)

)

exp
(
− 2 · (H`−1)1−γ

)
· g

≤ 36 · C · exp
(
−
(
V (x)− V (b`)

))
· 2 · (H`)

2+γ · exp
(
−2

3
(H`−1)1− γ

2

)

exp
(
− 2 · (H`−1)1−γ

)

≤ 72 · C ·
(
`1+γ ·H`−1

)2+γ · exp

(
−2

3
(H`−1)1− γ

2

)
≤ 1

3
· exp

(
− (H`−1)1−γ) (3.105)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, we used∑∞
r=0

1
kr

= 2
g

and (3.99) in the third line, where C denotes the constant which is also used

in (3.99). We further applied (3.42) for γ
2

and (3.35) in the fifth line. For the last step, we

made use of the exponential growth of H` in ` again (cf. (3.34)).

A combination of the three upper bounds in (3.103), (3.104), and (3.105) now implies

Pθ
(
∃n ≥ R(`) : ξ(n, x) > exp

(
−(H`−1)1−γ) · ξ(n, b`)

)

≤ I1 + I2 + I3 ≤ exp
(
− (H`−1)1−γ),

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). This shows

(3.87) for x ∈ V`\D` with f`(x) ≤ D` − (H`−1)1− γ
2 .

Now we turn to the second case, i.e. positions x ∈ V`\D` with f`(x) > D` − (H`−1)1− γ
2 .

Here it turns out that the RWRE visits b` before x with very large probability. Similarly

to above, we define

g :=
⌈
exp

(
f`(x) + V (x)− V (b`)− 1

3
(H`−1)1− γ

2

)⌉
and kr := g · 2r

for r ∈ N0. Here, we have

Pθ
(
∃n ≥ R(`) : ξ(n, x) > exp

(
−(H`−1)1−γ) · ξ(n, b`)

)
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≤ Pθ
(
T (x) < T (b`)

)
+ P b`

θ

(
ξ(T (x), b`) < g

)

+
∞∑

r=0

Pθ



kr+1∑

j=1

Y(j)
b`,x

> kr · exp
(
−(H`−1)1−γ)




=: I1 + I2 + I3 (3.106)

for all `. Note here (in contrast to (3.101)) that on the set {T (x) ≥ T (b`)} we have

ξ(n, x) = 0

for R(`) ≤ n ≤ T (x).

For first summand I1, we observe that we have

f`(x)
def
=





max
b`≤y≤x−1

(
V (y)− V (x− 1)

)
if 0 > x > b`

max
x≤y≤b`−1

(
V (y)− V (x)

)
if 0 < x < b`



 ≤ V (m`)− V (b`−1)

= H`−1 � D` − (H`−1)1− γ
2

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, we made

use of (3.31) and (3.33) in the first line. Further, we used (3.43) (applied for γ
4
) together

with the exponential growth of H`−1 in ` for the last step. Therefore, due to our assumption

on f`(x), we only have to consider the remaining possibilities for the location of x and b`:

We have

I1 = Pθ
(
T (x) < T (b`)

)

≤





−1∑
j=b`

eV (j)

x−1∑
j=b`

eV (j)

≤
−b` · exp

(
max

b`≤j≤−1
V (j)

)

exp

(
max

b`≤j≤x−1
V (j)

) =
−b` · exp

(
V (m`)

)

exp
(
f`(x) + V (x− 1)

) if x > 0 > b`

b`−1∑
j=0

eV (j)

b`−1∑
j=x

eV (j)

≤
b` · exp

(
max

0≤j≤b`−1
V (j)

)

exp

(
max

x≤j≤b`−1
V (j)

) =
b` · exp

(
V (m`)

)

exp
(
f`(x) + V (x)

) if x < 0 < b`





≤ (H`)
2+γ · exp

(
V (m`)− V (b`)− (H`−1)1− γ

4 − f`(x)
)

≤
(
`1+γ ·H`−1)2+γ · exp

(
− (H`−1)1− γ

4 + (H`−1)1− γ
2

)
≤ 1

3
· exp

(
−(H`−1)1−γ) (3.107)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, we made

use of (3.31) and the definition of f`(x) in the second line. Further, we applied (3.39) and

(3.42) (for γ
4
) in the third line. In the last line, we used (3.32), (3.35), and the assumption

on f`(x). Finally, the last step holds due to the exponential growth of H`−1 in ` (cf. (3.34)).
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Now, we can turn to I2: Similarly to above, let K denote the number of excursions away

from b` to b` made by the walk during the time interval [0, T (x)) when we start in b`. Again,

K + 1 has a geometric distribution with parameter

p` :=





ωb` · P b`+1
θ

(
T (x) < T (b`)

)
= ωb` ·

eV (b`)

x−1∑
i=b`

eV (i)

if x > b`

(1− ωb`) · P b`−1
θ

(
T (x) < T (b`)

)
= (1− ωb`) ·

eV (b`−1)

b`−1∑
i=x

eV (i)

if x < b`





≤





eV (x)−V (x−1) · eV (b`)−V (x) · exp

(
− max

b`≤i≤x−1

(
V (i)− V (x− 1)

))
if x > b`

eV (b`−1)−V (b`) · eV (b`)−V (x) · exp

(
− max

x≤i≤b`−1

(
V (i)− V (x)

))
if x < b`





≤ 1

ε
· eV (b`)−V (x) · exp

(
− f`(x)

)
,

where we used (3.2) and the definition of f`(x) for the last step. Therefore, we have using

the definition of g

I2 = P b`
θ (K + 1 < g) ≤ 1− (1− p`)g ≤ p` · g ≤

2

ε
· exp

(
−1

3
(H`−1)1− γ

2

)

≤ 1

3
· exp

(
−(H`−1)1−γ) (3.108)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, we used

the exponential growth of H`−1 in ` in the last line.

The upper bound of I3 can be derived almost in the same way as the upper bound of I3.

Note that the factor f`(x) has to be treated differently here, which is compensated by the

larger choice of g. By using the same argument as in the first three lines in (3.105), we get

I3 ≤
36 · C · exp

(
−
(
V (x)− V (b`)

))
· |x− b`| · exp

(
f`(x)

)

exp
(
− 2 · (H`−1)1−γ

)
· g

≤ 36 · C · exp
(
−(H`−1)1− γ

2

)
· 2 · (H`)

2+γ · exp
(

1
3
(H`−1)1− γ

2

)

exp
(
− 2 · (H`−1)1−γ

)

≤ 72 · C ·
(
`1+γ ·H`−1

)2+γ · exp

(
−2

3
(H`−1)1− γ

2 + 2 · (H`−1)1−γ
)

≤ 1

3
· exp

(
− (H`−1)1−γ) (3.109)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x).

Again, a combination of the three upper bounds in (3.107), (3.108), and (3.109) implies

Pθ
(
∃n ≥ R(`) : ξ(n, x) > exp

(
−(H`−1)1−γ) · ξ(n, b`)

)
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3.4. PREPARATION FOR THE PROOFS

≤ I1 + I2 + I3 ≤ exp
(
− (H`−1)1−γ),

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). This yields (3.87)

for x ∈ V`\D` with f`(x) > D` − (H`−1)1− γ
2 .

To finish the proof, note that for P-a.e. environment θ we have

(
B

(`)
3

)c
=



∀n ≥ R(`) :

∑

x∈V`\D`

ξ(n, x) ≤ exp
(
−(H`−1)1−γ) · ξ(n, b`)





c

⊆
⋃

x∈V`\D`

{
∃n ≥ R(`) : ξ(n, x) > exp

(
−(H`−1)1− γ

2

)
· ξ(n, b`)

}

for all ` = `(γ, θ) large enough. Here, for the last step, we used that due to (3.37) and

(3.38) we have

|V`\D`| ≤ 2 · (H`)
2+γ

for P-a.e. environment θ and all ` = `(γ, θ) large enough. By applying (3.87), this implies

that, for P-a.e. environment θ and all k = k(γ, θ) large enough, we have

1− Pθ
(
∞⋂

`=k

B
(`)
3

)
= Pθ

(
∞⋃

`=k

(
B

(`)
3

)c
)

≤
∞∑

`=k

|V`\D`| · exp
(
−
(
H`−1

)1− γ
2

)
≤

∞∑

`=k

2 · (H`)
2+γ · exp

(
−
(
H`−1

)1− γ
2

)
k→∞−−−→ 0,

where we used (3.37) and (3.38) for the second step and (3.34) and (3.35) for the convergence

for k →∞. �

Proof of Lemma 3.4.7. We first fix 0 < γ < 1. In order to make it a little easier to read

the proof, we assume in the following that we have

b` > 0.

In the other case, i.e. b` < 0, the proof works completely in the same way if we just consider

the symmetric analogues of all appearing quantities (with respect to the origin). Note here

that we a.s. have b` 6= 0 for all ` = `(θ) large enough (cf. Proposition 3.3.9).

For the proof of (3.89), we distinguish between two cases for which we recall (cf. (3.19))

that

φ̂−
`, γ

2

def
= sup{t ≤ η̂−` : B(t) = B(̂b`) + (Ĥ`−1)1− γ

2 } and

φ̂+
`, γ

2

def
= inf{t ≥ η̂+

` : B(t) = B(̂b`) + (Ĥ`−1)1− γ
2 }.

In the first case, we consider positions x ∈ D`+1 with

m`+1 ≤ x ≤ φ̂+
`, γ

2
if b`+1 > 0 or

φ̂−
`, γ

2
≤ x ≤ m`+1 if b`+1 < 0.
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Those positions x therefore do not lie very deep in D`+1, which makes it unlikely that the

RWRE spends a lot of time in x without returning to b`. The remaining positions x ∈ D`+1

with
φ̂+
`, γ

2
< x < b`+1 if b`+1 > 0 or

b`+1 < x < φ̂−
`, γ

2
if b`+1 < 0

on the other hand are very deep in D`+1. In this case, it is unlikely that the RWRE leaves

the valley D`+1 again before it reaches the bottom point b`+1.

Further, note that the RWRE cannot reach the remaining positions within D`+1 without

reaching b`+1 first.

Let us start with the first group, i.e. x ∈ D`+1 with

m`+1 ≤ x ≤ φ̂+
`, γ

2
if b`+1 > 0 or

φ̂−
`, γ

2
≤ x ≤ m`+1 if b`+1 < 0.

Here, we are almost in the same situation as in the proof of Lemma 3.4.6. Due to our choice

for x, we have for P-a.e. environment θ and all ` = `(γ, θ) large enough that

V (x) ≥ B(x)−max
{(

log(φ̂+
`, γ

2
)
)2
,
(

log(φ̂−
`, γ

2
)
)2
}

≥ B(b̂`) + (Ĥ`−1)1− γ
2 −max

{(
log(φ̂+

`, γ
2
)
)2
,
(

log(φ̂−
`, γ

2
)
)2
}

≥ V (bb̂`c) + (Ĥ`−1)1− γ
2 − 3 ·max

{(
log(φ̂+

`, γ
2
)
)2
,
(

log(φ̂−
`, γ

2
)
)2
}

≥ V (b`) + (Ĥ`−1)1− γ
2 − 3 ·

(
log
(
(Ĥ`)

2+γ
))2

≥ V (b`) + (Ĥ`−1)1− γ
2 − 3 ·

(
log
(
(`1+γ · Ĥ`−1)2+γ

))2

≥ V (b`) +
3

4
· (Ĥ`−1)1− γ

2 ≥ V (b`) +
2

3
· (H`−1)1− γ

2 , (3.110)

i.e. V (x) � V (b`), which makes it unlikely to observe more visits of the RWRE to x than

to b`. Here, we need to choose ` large enough such that we may apply Lemma 3.3.15 to

ensure that the Brownian motion B(·) and the potential V (·) attain their minima at b̂` and

b` close to each other. Further, we applied the approximation theorem (cf. Remark 3.55) in

the first and the third step, the definition of φ̂+
`, γ

2
and φ̂−

`, γ
2

in the second step, and (3.14) in

the fourth step. Additionally, we used (3.12) and the exponential growth of Ĥ`−1 in ` (cf.

(3.11)) in the last two lines. Finally, we applied (3.62) – which connects H`−1 and Ĥ`−1 –

for the last step.

Similarly to the approach in (3.106), we define

g :=
⌈
exp

(
f`(x) + V (x)− V (b`)− 1

3
(H`−1)1− γ

2

)⌉
and kr := g · 2r

for r ∈ N0, where

f`(x) :=





max
b`≤y≤x−1

(
V (y)− V (x− 1)

)
if x > b`

max
x≤y≤b`−1

(
V (y)− V (x)

)
if x < b`,
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which measures how hard it is to get from x to b`. Then, we have

Pθ

(
∃n ≤ T

(`+1)
1 : Xn /∈ D`+1, ξ(n, x) > exp

(
−
(
H`−1

)1−γ
)
· ξ(n, b`)

)

≤ Pθ
(
T (x) < T (b`)

)
+ P b`

θ

(
ξ(T (x), b`) < g

)

+
∞∑

r=0

Pθ



kr+1∑

j=1

Y(j)
b`,x

> kr · exp
(
−
(
H`−1

)1−γ
)



=: Ĩ1 + I2 + I3 (3.111)

for all `.

Let us start with Ĩ1:

Ĩ1 = Pθ
(
T (x) < T (b`)

)

≤





0 if b`+1 > 0

b`−1∑
j=0

eV (j)

b`−1∑
j=x

eV (j)

≤
b` · exp

(
max

0≤j≤b`−1
V (j)

)

exp

(
max
x≤j≤0

V (j)

) if b`+1 < 0





≤ (H`)
2+γ · exp

(
V (m`)− V (h`)

)
≤
(
`1+γ · (`− 1)1+γ ·H`−2

)2+γ · exp
(
−(H`−2)1− γ

2

)

≤ 1

3
· exp

(
−(H`−2)1−γ) (3.112)

for P-a.e. environment θ and ` = `(γ, θ) large enough (uniformly in x). Here in the third

line, we used (3.39) and (3.31) together with the fact that x < h` < 0 (for all ` large

enough) if we are in the situation with b` > 0 and b`+1 < 0. Additionally, we applied (3.35)

and (3.36) for γ
2

in the next step. Finally, we used the exponential growth of H`−1 in ` (cf.

(3.34)) for the last step.

For I2, we can use the same approach as in (3.108): In particular we have

I2 ≤
1

3
· exp

(
−(H`−1)1−γ) (3.113)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x).

The upper bound for I3 can be shown almost as in (3.109). The only difference is that

we have to use the upper bound |x − b`| ≤ 2 · (H`+1)2+γ in contrast to (3.109) and for

V (x)− V (b`) we have to use our lower bound in (3.110): In particular we have

I3 ≤
36 · C · exp

(
−
(
V (x)− V (b`)

))
· |x− b`| · exp

(
f`(x)

)

exp
(
− 2 · (H`−1)1−γ

)
· g
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≤ 36 · C · exp
(
−2

3
(H`−1)1− γ

2

)
· 2 · (H`+1)2+γ · exp

(
1
3
(H`−1)1− γ

2

)

exp
(
− 2 · (H`−1)1−γ

)

≤ 72 · C ·
(
(`+ 1)1+γ · `1+γ ·H`−1

)2+γ · exp

(
−1

3
(H`−1)1− γ

2 + 2 · (H`−1)1−γ
)

≤ 1

3
· exp

(
− (H`−1)1−γ) (3.114)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here in the

third line, we used (3.35). Further, we made use of the exponential growth of H`−1 in ` (cf.

(3.34)) in the last step.

Finally, we can collect our upper bounds in (3.111), (3.112), (3.113), and (3.114) to conclude

that we have

Pθ

(
∃n ≤ T

(`+1)
1 : Xn /∈ D`+1, ξ(n, x) > exp

(
−
(
H`−1

)1−γ
)
· ξ(n, b`)

)

≤ Ĩ1 + I2 + I3 ≤ exp
(
−(H`−2)1−γ) . (3.115)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). This shows

(3.89) for the first group (of choices for x).

Now we turn to the second group, i.e. x ∈ D`+1 with

φ̂+
`, γ

2
< x < b`+1 if b`+1 > 0 or

b`+1 < x < φ̂−
`, γ

2
if b`+1 < 0.

For

φ :=

{
dφ̂+

`, γ
2
e if b`+1 > 0

bφ̂−
`, γ

2
c if b`+1 < 0,

we have

Pθ

(
∃n ≤ T

(`+1)
1 : Xn /∈ D`+1, ξ(n, x) > ξ(n, b`) · exp

(
−
(
H`−1

)1−γ
))

≤ P φ
θ

(
T (m`+1) < T (b`+1)

)
.

Note here that the RWRE can only leave the valley D`+1 via φ and m`+1 after visiting x

for the first time without visiting b`+1 in between.

Thereby, we have

P φ
θ

(
T (m`+1) < T (b`+1)

)
=





b`+1−1∑
i=φ

eV (i)

b`+1−1∑
i=m`+1

eV (i)

if b`+1 > 0

φ−1∑
i=b`+1

eV (i)

m`+1−1∑
i=b`+1

eV (i)

if b`+1 < 0




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≤





(b`+1 − φ) · exp


 max
φ̂+

`,
γ
2
≤i≤b`+1−1

V (i)− V (m`+1)


 if b`+1 > 0

(φ− b`+1) · exp


 max
b`+1≤i≤φ̂−`, γ2

−1
V (i)− V (m`+1)


 · eV (m`+1)−V (m`+1−1) if b`+1 < 0





≤ 1

ε
· (H`+1)2+γ · exp

(
− (H`)

1− γ
2

)
≤ exp

(
− (H`)

1−γ) (3.116)

for P-a.e. environment θ and all ` = `(γ, θ) large enough. Here in the last line, we applied

(3.2) and (3.48) for γ
2
. Further, we used the exponential growth of H`−1 in ` (cf. (3.34))

together with (3.35) for the last step.

By comparing the upper bounds in (3.115) and (3.116), we conclude that overall we have

for every x ∈ D`+1 that

Pθ

(
∃n ≤ T

(`+1)
1 : Xn /∈ D`+1, ξ(n, x) > exp

(
−
(
H`−1

)1−γ
)
· ξ(n, b`)

)
≤ exp

(
−(H`−2)1−γ)

holds for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x) which shows

(3.89).

To finish the proof, we note that for P-a.e. environment θ we have

(
B

(`)
4

)c
=



∀n ≤ T

(`+1)
1 with Xn /∈ D`+1 :

∑

x∈D`+1

ξ(n, x) ≤ exp
(
−(H`−1)1−γ) · ξ(n, b`)





c

⊆
⋃

x∈D`+1

{
∃n ≤ T

(`+1)
1 : Xn /∈ D`+1, ξ(n, x) > exp

(
−
(
H`−1

)1− γ
2

)
· ξ(n, b`)

}

for all ` = `(γ, θ) large enough due to the exponential growth of H`−1 in ` (cf. (3.34)), where

further

|D`+1| ≤ (H`+1)2+γ

for P-a.e. environment θ and all ` = `(θ, γ) large enough due to (3.30), (3.37), and (3.38).

Therefore, for P-a.e. environment θ and all k = k(γ, θ) large enough, we have

1− Pθ
(
∞⋂

`=k

B
(`)
4

)
= Pθ

(
∞⋃

`=k

(
B

(`)
4

)c
)

≤
∞∑

`=k

|D`+1| · exp
(
−(H`−2)1− γ

2

)
≤

∞∑

`=k

(H`+1)2+γ · exp
(
−(H`−2)1− γ

2

)

≤
∞∑

`=k

(
(`+ 1)1+γ · `1+γ · (`− 1)1+γ ·H`−2

)2+γ · exp
(
−(H`−2)1− γ

2

)
k→∞−−−→ 0,

where we used (3.35) in the last line and again the exponential growth of H`−1 in ` (cf.

(3.34)) for the convergence for k →∞. �
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Proof of Lemma 3.4.8. For the proof we first fix 0 < γ < 1. In view of (3.87), there is

nothing left to show for x ∈ V`\D`. Therefore, we only consider positions x ∈ D`. We

further treat the following two cases separately:

(1) m` ≤ x ≤ η+
` if b` > 0,

η−` ≤ x ≤ m` if b` < 0, or

(2) η+
` < x ≤ r` if b` > 0,

`` ≤ x < η−` if b` < 0.

Notice that in the first case the potential V (x) can be close to V (b`) whereas in the second

case we have V (x)� V (b`) (cf. (3.47)). Let us start with the first case, i.e.

m` ≤ x ≤ η+
` if b` > 0,

η−` ≤ x ≤ m` if b` < 0.

Similarly to the approach in (3.101), we define

g := dexp
(
D` − 1

3
(H`−1)1− γ

2

)
e, c := dexp

(
D` − 2

3
(H`−1)1− γ

2

)
e, and kr := g · 2r

for r ∈ N0 and observe that we have

Pθ
(
∃n ≥ R(`) : ξ(n, x) ≥ 6 · ξ(n, b`)

)

≤ Pθ
(
ξ(T (b`), x) > c

)
+ Pθ

(
ξ(R(`), b`) < g

)
+
∞∑

r=0

Pθ

(
kr+1∑

j=1

Y(j)
b`,x

> 5 · kr
)

=: I1 + I2 + I ′3

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x).

For I1 and I2, we can copy the argument from (3.103) and (3.104) to get

I1 ≤
1

3
exp

(
−(H`−1)1−γ) and I2 ≤

1

3
exp

(
−(H`−1)1−γ) (3.117)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Note here that

we even have I1 = 0 for positions x ∈ D` which the RWRE cannot reach before visiting b`
first.

Now, we turn to I ′3: Let us again define

f`(x) :=





max
b`≤y≤x−1

(
V (y)− V (x− 1)

)
if x > b`

max
x≤y≤b`−1

(
V (y)− V (x)

)
if x < b`

as before. First of all, we notice that

Eθ[Y(1)
b`,x

] =
µθ(x)

µθ(b`)
=

e−V (x) + e−V (x−1)

e−V (b`) + e−V (b`−1)
≤ 2.
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Therefore, we can conclude by using Chebyshev’s inequality that we have

I ′3 ≤
∞∑

r=0

Pθ

(
kr+1∑

j=1

(
Y(j)
b`,x
− Eθ[Y(j)

b`,x
]
)
> kr

)
≤

∞∑

r=0

kr+1 · Varθ

(
Y(1)
b`,x

)

(kr)2

≤ 2 · C · exp
(
V (x)− V (b`)

)
· |x− b`| · exp

(
f`(x)

)
·
∞∑

r=0

1

kr

≤ 4 · C · (H`)
2+γ · exp

(
−
(
V (x)− V (b`)

))
· exp

(
f`(x)

)

g

≤ 4 · C · (H`)
2+γ · exp

(
−2

3
(H`−1)1− γ

2

)
≤ 1

3
· exp

(
−(H`−1)1−γ) (3.118)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, C > 0

denotes the constant from our upper bound for Varθ(Y(1)
b`,x

)(cf. (3.73)), which we used in the

second line. For the next step, notice again that
∑∞

r=0
1
kr

= 2
g
. Further, we can apply (3.45)

(for |x| < |b`|) or (3.46) (for b` < x ≤ η+
` and η−` ≤ x ≤ b` depending on the sign of b`)

for γ
2

in the fourth line. The last step holds again due to (3.35) and due to the exponential

growth of H` in ` (cf. (3.34)).

By collecting our bounds from (3.117) and (3.118), we get

Pθ
(
∃n ≥ R(`) : ξ(n, x) ≥ 6 · ξ(n, b`)

)
≤ I1 + I2 + I ′3 ≤ exp

(
−(H`−1)1−γ)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). This shows

(3.91) in the first case.

Now we turn to the second case, i.e.

η+
` < x ≤ r` if b` > 0,

`` ≤ x < η−` if b` < 0.

In the following, we further assume that we have b` > 0. For the case b` < 0, we only have

to consider the symmetric analogues of all appearing quantities.

Similarly to the consideration in (3.106), we define

g :=
⌈
exp

(
f`(x) + V (x)− V (b`)− 1

3
(H`−1)1− γ

2

)⌉
and kr := g · 2r

for r ∈ N0 and observe that we have

Pθ
(
∃n ≥ R(`) : ξ(n, x) ≥ 6 · ξ(n, b`)

)

≤ Pθ
(
ξ(T (x), b`) < g

)
+
∞∑

r=0

Pθ



kr+1∑

j=1

Y(j)
b`,x

> 6 · kr




=: I2 + I3
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for all `. Notice here, that the RWRE cannot reach x without reaching b` first.

Let us start with I2: Using the same estimates as in (3.108) we get

I2 ≤
1

2
· exp

(
−(H`−1)1−γ) (3.119)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x).

For I3, we have similarly to (3.118)

I3 ≤
∞∑

r=0

Pθ

(
kr+1∑

j=1

(
Y(j)
b`,x
− Eθ[Y(j)

b`,x
]
)
> 2 · kr

)
≤

∞∑

r=0

kr+1 · Varθ

(
Y(1)
b`,x

)

4 · (kr)2

≤ C · exp
(
−
(
V (x)− V (b`)

))
· |x− b`| · exp

(
f`(x)

)

g

≤ C · exp
(
− (D`)

1− γ
2

)
· (H`)

2+γ · exp
(

+ 1
3
(H`−1)1− γ

2 − (D`)
1− γ

2

)

≤ C ·
(
`1+γ ·H`

)2+γ · exp
(
− (H`−1)1− γ

2

)
≤ 1

2
· exp

(
−(H`−1)1−γ) (3.120)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). Here, we

additionally used (3.47) (applied for γ
2
) in the third line.

By collecting our bounds from (3.119) and (3.120), we get

Pθ
(
∃n ≥ R(`) : ξ(n, x) ≥ 6 · ξ(n, b`)

)
≤ I2 + I3 ≤ exp

(
−(H`−1)1−γ)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in x). This shows

(3.91) in the second case.

For the proof of (3.92), notice that for P-a.e. environment θ we have

(
B

(`)
5

)c
=

{
∀n ≥ R(`) : 12 · (H`)

2+γ · ξ(n, b`) ≥
∑

x∈V`

ξ(n, x)

}c

⊆
⋃

x∈V`

{
∃n ≥ R(`) : ξ(n, x) ≥ 6 · ξ(n, b`)

}

for all ` = `(γ, θ) large enough. Here, we further used that

|V`| ≤ 2 · (H`)
2+γ

for P-a.e. environment θ and all ` = `(θ, γ) large enough due to (3.37) and (3.38). Therefore,

we have for P-a.e. environment θ and all k = k(γ, θ) large enough

1− Pθ
(
∞⋂

`=k

B
(`)
5

)
= Pθ

(
∞⋃

`=k

(
B

(`)
5

)c
)

≤
∞∑

`=k

|V`| · exp
(
−(H`−1)1−γ) ≤

∞∑

`=k

2 · (H`)
2+γ · exp

(
−(H`−1)1−γ)
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≤
∞∑

`=k

(
`1+γ ·H`−1

)2+γ · exp
(
−(H`−1)1−γ) k→∞−−−→ 0,

where we used (3.35) in the last line and again the exponential growth of H`−1 in ` (cf.

(3.34)) for the convergence for k →∞. �

Proof of Lemma 3.4.9. Here, we are in similar situation as in Lemma 4.3 in [DGPS07],

and therefore we can use a similar approach. Since in our case, we do not only have to

count the number of visits to different positions x ∈ Z, but we also have to take care of the

orientations αx for x ∈ Z, we have to be slightly more careful in our upper bounds:

For the proof, we first fix 0 < β, γ < 1. In order to make it a little easier to read the proof,

we assume in the following that we have

m` < b`.

In the other case, i.e. m` > b`, the proof works completely in the same way if we just

consider the symmetric analogues (with respect to the origin) of all appearing quantities.

The main tool for the proof is again to decompose the RWRE into excursions away from

the bottom point b`. Since it might happen that the variance of Y
(1)
b`,x

is relatively big, we

have to further decompose our valley D` into two parts with the help of (cf. (3.44))

η` := η+
`

def
= inf{n ≥ b` : V (n) ≥ V (m`)}.

Note that in the considered case we have

η` ≤ r`

for P-a.e. environment θ and all ` = `(θ) large enough since we have m` = rl−1 (cf. (3.30))

for large enough ` = `(θ) and further r` ≥ b` with V (r`) ≥ V (r`−1) by definition.

The key observation here is that the RWRE has to reach η` + i first before it can reach

η` + i + 1. Since V (η`)− V (b`) is large (for large `), we can expect the RWRE to spend a

lot of time within the valley D` before it reaches the positions η` + 1, η` + 2, . . . , r`, where

the time spent within the valley further increases with the increase of the position. Using

this approach, we get the following upper bound

Pθ
(
∃n ≥ R(`) : (1− β) · s(`) · Φ(`) · ξ(n, b`) ≥ s(`) ·G(`)

n

)

= Pθ
(
∃n ∈ [R(`), T (η`)) : (1− β) · s(`) · Φ(`) · ξ(n, b`) ≥ s(`) ·G(`)

n

)

+

r`−1∑

i=η`

Pθ
(
∃n ∈ [T (i), T (i+ 1)) : (1− β) · s(`) · Φ(`) · ξ(n, b`) ≥ s(`) ·G(`)

n

)

+ Pθ
(
∃n ≥ T (r`) : (1− β) · s(`) · Φ(`) · ξ(n, b`) ≥ s(`) ·G(`)

n

)

=: I1 +

r`−1∑

i=η`

I2(i) + I3. (3.121)
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The way we can derive upper bounds for I1, I3 and I2(i) with η` ≤ i ≤ r` − 1 runs very

similarly. The main difference is that we can expect that the random walk has spent more

time in the valleyD` before it reaches larger positions i. Recall (cf. (3.75)) the decomposition

G(`)
n := Z(`)

0 +

τ(n,`)∑

j=1

∑

x∈D`

αx · Y(j)
b`,x

+
∑

x∈D`

αx · |{T (`)
τ(n,`) < j ≤ n : Xj = x}|

of the accumulated orientations which the RWRE collects on the different excursions it

makes away from the bottom point at b`. Thereby, we have for g(I) ∈ N, whose precise

value we choose later (cf. (3.124)),

h :=
⌈
g(I) · exp

(
−1

2
(H`−1)1−γ

2

)⌉
and kv = kv(I) =

⌈
g(I) · exp

(
−1

3
(H`−1)1−γ

2

)
· v2
⌉

for v ∈ N, and for I ∈ {I1, I3} ∪ {I2(i) : η` ≤ i ≤ r` − 1} that

I ≤ Pθ

(
ξ(T (I), b`) < g(I)

)
+ Pθ

(∣∣Z(`)
0

∣∣ > h
)

+
∞∑

v=

⌊
exp
(

1
6

(H`−1)1−
γ
2

)⌋

Pθ


s(`) ·

kv+1∑

i=1

max{η`,L(I)}∑

x=m`

αx · Y(i)
b`,x
≤
(

1− β

2

)
· s(`) · Φ(`) · kv+1




+ Pθ



kv+1∑

i=kv

max{η`,L(I)}∑

x=m`

Y(i)
b`,x

>
β

3
· s(`) · Φ(`) · kv+1






=: J1(I) + J2 +
∞∑

v=

⌊
exp
(

1
6

(H`−1)1−
γ
2

)⌋
(
J3(I, v) + J4(I, v)

)
(3.122)

for P-a.e. environment θ and all ` = `(β, γ, θ) large enough (uniformly in I). Here,

T (I) :=





R(`) for I = I1

T (r`) for I = I3

T (i) for I = I2(i)

at which the random walk reaches the following location

L(I) :=





m` for I = I1

r` for I = I3

i for I = I2(i).

In the above sum, the first summand controls the unlikely event that the RWRE makes

only a few excursions from b` to b` before it reaches the position L(I) (again for I = I1).

The second summand gives an upper bound for the probability of the event that the RWRE

spends a lot of time in D` before it reaches the bottom point b` for the first time. Addi-

tionally, the term J3(I, v) controls the event that the absolute value of the accumulated
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orientations which the RWRE collects up to the kv+1-th excursion is unlikely low. Finally,

the term J4(I, v) controls the probability of the event on which the time between the kv-th

and the kv+1-th excursion is unlikely long. To see that the inequality really holds, note that

we will choose (cf. (3.125))

g(I)
`→∞−−−→∞ (uniformly in I) such that h, k0 � 0 for large `.

Therefore, we have for P-a.e. environment θ on the complement of the union of all sets

which appear in the above inequality (i.e. on the intersection of all complements)

(1− β) · s(`) · Φ(`) · ξ(n, b`) < s(`) ·G(`)
n

for all ` = `(β, γ, θ) large enough and n ∈ [R(`), T (η`)), n ∈ [T (i), T (i+ 1)) and n ≥ T (r`),

respectively. Here, we can use that we have

kv ≤ ξ(n, b`) < kv+1

for some v ≥
⌊
exp

(
1
6
(H`−1)1− γ

2

)⌋
on the considered set. Further, recall Proposition 3.4.1

in which we have shown that for 0 < γ < 1 and v ≥
⌊
exp

(
1
6
(H`−1)1− γ

2

)⌋
we have

h ≤ 2 · g(I) · exp
(
−1

2
(H`−1)1−γ

2

)
≤ 2 ·kv+1(I) · exp

(
−1

2
(H`−1)1−γ

2

)
� β

6
· s(`) ·Φ(`) ·kv+1(I)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in I) since |Φ(`)| does

not decrease to 0 too fast.

We start with J1(I): Let K = K(I) denote the number of excursions away from b` to b`
made by the random walk during the time interval [T (b`), T (I)). Then K(I) + 1 has a

geometric distribution with parameter

p` = p`(I) :=





(1− ωb`) · P b`−1
θ

(
T (L(I)) < T (b`)

)
= (1− ωb`) ·

eV (b`−1)

b`−1∑
i=L(I)

eV (i)

if L(I) < b`

ωb` · P b`+1
θ

(
T (L(I)) < T (b`)

)
= ωb` ·

eV (b`)

L(I)−1∑
i=b`

eV (i)

if L(I) > b`





≤





eV (b`−1)−V (b`) · exp

(
−
(

max
L(I)≤i≤b`−1

(
V (i)− V (b`)

)))
if L(I) < b`

exp

(
−
(

max
b`≤i≤L(I)−1

(
V (i)− V (b`)

)))
if L(I) > b`





≤





1

ε
· exp

(
−
(

max
L(I)≤i≤b`−1

(
V (i)− V (b`)

)))
if L(I) < b`

exp

(
−
(

max
b`≤i≤L(I)−1

(
V (i)− V (b`)

)))
if L(I) > b`,

(3.123)

where we used (3.2) for the last step. Since we have

max
L(I)≤i≤b`−1

(
V (i)− V (b`)

)
if L(I) < b`

max
b`≤i≤L(I)−1

(
V (i)− V (b`)

)
if L(I) > b`



 ≥ V (m`)− V (b`) = D`
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for all ` large enough (uniformly in I) by definition and due to (3.32), we can choose

g(I) :=

⌊(
p`(I)

)−1 · exp

(
−1

3

(
H`−1

)1− γ
2

)⌋
(3.124)

such that we have

g(I) ≥ 1

2
· exp(D`) · exp

(
−1

3

(
H`−1

)1− γ
2

)
� 1 (3.125)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in I). For this choice

of g(I), we further have

J1(I) = Pθ
(
K(I) + 1 < g(I)

)
≤ 1−

(
1− p`(I)

)g(I) ≤ p`(I) · g(I)

≤ exp

(
−1

3
(H`−1)1− γ

2

)
≤ 1

3
· exp

(
−1

3
(H`−1)1−γ

)
(3.126)

again for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in I).

To get an upper bound for J2, we first notice that (cf. (3.74))

Z(`)
0 =

∑

x∈D`

αx · Y(0)
b`,x

=

b`−1∑

x=m`

αx · Y(0)
b`,x

i.e. Z(`)
0 consists of the collected orientations in D` up to the first visit in b`. Due to our

assumption, we only have to take care of the number of visits to m`,m` + 1, . . . , b`− 1 here.

In particular, we can compare our RWRE with a RWRE (X̃n)n∈N0 in an environment ω̃

in which the random walk is reflected in m` − 1 but has the same transition probabilities

otherwise. More precisely, we consider the process (X̃n)n∈N0 which is determined by the

following properties:

Pm`−1
ω̃

(
X̃0 = m` − 1

)
= 1,

Pm`−1
ω̃

(
X̃n+1 = X̃n + 1

∣∣X̃n = x
)

= ωx for x ≥ m`, n ∈ N0,

Pm`−1
ω̃

(
X̃n+1 = X̃n − 1

∣∣X̃n = x
)

= 1− ωx for x ≥ m`, n ∈ N0,

Pm`−1
ω̃

(
X̃n+1 = X̃n + 1

∣∣X̃n = x
)

= 1 for x = m` − 1, n ∈ N0.

This reflected RWRE in particular fulfills the requirements of the inequality in (A.1) in

[Go84] (see also inequality (3.1) in [DGPS07]) which gives

Em`−1
ω̃

[
T̃ (x)

]
≤ (x−m` + 1)2 · exp

(
max

m`−1≤i≤j<x

(
V (j)− V (i)

))
(3.127)

for x ≥ m`. Here, T̃ (x) denotes the first hitting time of x of the random walk (X̃n)n∈N0 .

Thereby, we have

J2 = Pθ

(∣∣Z(`)
0

∣∣ > h
)
≤ Pθ

(
b`−1∑

x=m`

Y(0)
b`,x

> h

)
≤ Pm`−1

ω̃

(
T̃ (b`) > h

)
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≤ Em`−1
ω̃

[
T̃ (b`)]

h
≤ (b` −m` + 1)2

h
· exp

(
max

m`−1≤i≤j<b`

(
V (j)− V (i)

))

≤ (H`)
4+2γ

h
· exp

(
D` − (H`−1)1− γ

2

)
(3.128)

for P-a.e. environment θ and all ` = `(γ, θ) large enough. Here, we used (3.127) for the

second line and further (3.39) and (3.45) (applied for γ
2
) for the last step. In particular, we

get using the definition of h and (3.125)

J2 ≤
(H`)

4+2γ

⌈
g(I) · exp

(
−1

2
(H`−1)1−γ

2

)⌉ · exp
(
D` − (H`−1)1− γ

2

)

≤ 2 · (H`)
4+2γ · exp

(
−1

6
(H`−1)1− γ

2

)
≤ 1

3
· exp

(
−1

3
(H`−1)1−γ

)
(3.129)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in I), where we further

used (3.34) and (3.35) for the last step.

Now, we turn to J3(I, v) and J4(I, v). Note that for i ∈ N we have

s(`) ·
max{η`,L(I)}∑

x=m`

Eθ
[
αx · Y(i)

b`,x

]
≥ s(`) ·

r∑̀

x=m`

Eθ
[
αx · Y(i)

b`,x

]
−

r∑̀

x=η`+1

Eθ
[
Y(i)
b`,x

]

= s(`) · Φ(`) −
r∑̀

x=η`+1

µθ(x)

µθ(b`)
= s(`) · Φ(`) −

r∑̀

x=η`+1

e−V (x) + e−V (x−1)

e−V (b`) + e−V (b`−1)

≥ s(`) · Φ(`) − 2 · (r` − η`) · exp

(
− min

η`≤x≤r`

(
V (x)− V (b`)

))

≥ s(`) · Φ(`) − 2 · (H`)
2+γ · exp

(
−(D`)

1−γ) ≥
(

1− β

4

)
· s(`) · Φ(`)

for P-a.e. environment θ and ` = `(β, γ, θ) large enough (uniformly in I), where we used

(3.38) and (3.47) in the first part of the last line. Additionally, the exponential growth of

D` (cf. (3.34)) and the slow decrease of Φ(`) to 0 (cf (3.77)) explain the last step.

Using the last inequality, we can conclude with help of Chebyshev’s inequality and the

independence of the different excursions that we have

J3(I, v) = Pθ


s(`) ·

kv+1∑

i=1

max{η`,L(I)}∑

x=m`

αx · Y(i)
b`,x
≤
(

1− β

2

)
· s(`) · Φ(`) · kv+1




≤ Pθ


s(`) ·

kv+1∑

i=1

max{η`,L(I)}∑

x=m`

(
αx · Y(i)

b`,x
− Eθ

[
αx · Y(i)

b`,x

])
≤ −β

4
· s(`) · Φ(`) · kv+1



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≤
Varθ

(
max{η`,L(I)}∑

x=m`

αx · Y(1)
b`,x

)
· kv+1

(
β

4
· Φ(`) · kv+1

)2 =

Varθ

(
max{η`,L(I)}∑

x=m`

αx · Y(1)
b`,x

)

(
β

4
· Φ(`)

)2

· kv+1

(3.130)

for P-a.e. environment θ and all ` = `(β, γ, θ) large enough (uniformly in I). Similarly, we

notice that we have

max{η`,L(I)}∑

x=m`

Eθ
[
Y(i)
b`,x

]
≤

r∑̀

x=m`

Eθ
[
Y(i)
b`,x

]
=

r∑̀

x=m`

µθ(x)

µθ(b`)
=

r∑̀

x=m`

e−V (x) + e−V (x−1)

e−V (b`) + e−V (b`−1)

≤ 2 · |D`| ≤ 2 · (H`)
2+γ · s(`) · Φ(`) · exp

(
(D`)

γ
8

)

≤ 2 · s(`) · Φ(`) ·
(
`1+γ ·H`−1

)2+γ · exp
((
`1+γ ·H`−1

) γ
8

)

≤ s(`) · Φ(`) · exp
(

(H`−1)
γ
4

)

for P-a.e. environment θ and ` = `(γ, θ) large enough (uniformly in I). Here, we used (3.38)

and (3.77) (applied for γ
8
) in the second line. Further, we made of use of (3.34) and (3.35)

in the last two lines. Therefore, we can conclude – using

kv+1 − kv + 1 ' (2v + 1) · g(I) · exp
(
−1

3
(H`−1)1−γ

2

)
< 3 · kv+1 · exp

(
−1

6
(H`−1)1−γ

2

)

for v ≥
⌊
exp

(
1
6
(H`−1)1−γ

2

)⌋
and all ` = `(γ, θ) large enough (uniformly in I) – that we

have

J4(I, v) = Pθ



kv+1∑

i=kv

max{η`,L(I)}∑

x=m`

Y(i)
b`,x

>
β

3
· s(`) · Φ(`) · kv+1




≤ Pθ



kv+1∑

i=kv




max{η`,L(I)}∑

x=m`

Y(i)
b`,x
− Eθ

[
Y(1)
b`,x

]

 >

β

6
· s(`) · Φ(`) · kv+1




≤
Varθ

(
max{η`,L(I)}∑

x=m`

Y(1)
b`,x

)
· (kv+1 − kv + 1)

(
β

6
· Φ(`) · kv+1

)2

≤
Varθ

(
max{η`,L(I)}∑

x=m`

Y(1)
b`,x

)

(
β

6
· Φ(`)

)2

· kv+1

(3.131)
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for P-a.e. environment θ, all ` = `(β, γ, θ) large enough (uniformly in I) and

v ≥
⌊
exp

(
1
6
(H`−1)1−γ

2

)⌋
.

Using the inequality

Varθ

(
n∑

x=1

Y(1)
b`,x

)
≤ n ·

n∑

x=1

Varθ(Y(1)
b`,x

),

we therefore have, depending on the choice of I,

Varθ




max{η`,L(I)}∑

x=m`

αx · Y(1)
b`,x


 ≤ |D`| ·

max{η`,L(I)}∑

x=m`

Varθ

(
Y(1)
b`,x

)
=: Varθ(I) (3.132)

and

Varθ




max{η`,L(I)}∑

x=m`

Y(1)
b`,x


 ≤ |D`| ·

max{η`,L(I)}∑

x=m`

Varθ

(
Y(1)
b`,x

)
= Varθ(I). (3.133)

Recall that we have the following upper bound for some constant C > 0 (cf. (3.73)):

Varθ

(
Y(1)
b`,x

)
≤





C · exp
(
−
(
V (x)− V (b`)

))
· |D`| · exp

(
max
b`≤y<x

(
V (y)− V (x− 1)

))

if x > b`

0 if x = b`

C · exp
(
−
(
V (x)− V (b`)

))
· |D`| · exp

(
max

x≤y≤b`−1

(
V (y)− V (x)

))

if x < b`

In particular, this implies – using V (x) − V (b`) ≥ 0 for x ∈ D`, (3.45), and (3.46) – that

we have

η∑̀

x=m`

Varθ

(
Y(1)
b`,x

)
≤
(
η` −m` + 1

)
· C · |D`| · exp

(
D` − (H`−1)1− γ

2

)

for P-a.e. environment θ and all ` = `(γ, θ) large enough. Similarly for L(I) ≥ η` + 1, we

can use (3.47) – applied for γ
2

together with H`−1 ≤ D` for all ` large enough (cf. (3.34)) –

to conclude that

L(I)∑

x=η`+1

Varθ

(
Y(1)
b`,x

)

≤
(
L(I)− η`

)
· C · exp

(
−(H`−1)1− γ

2

)
· |D`| · exp

(
max

b`≤y<L(I)−1

(
V (y)− V (b`)

))

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in I). Overall, this

yields using (3.123) and (3.125) together with the definition of g(I) that for each choice of
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I ∈ {I1, I3} ∪ {I2(i) : η` ≤ i ≤ r` − 1} we have

Varθ(I)

g(I)
=

|D`| ·
(

max{η`,L(I)}∑
x=m`

Varθ

(
Y(1)
b`,x

))

g(I)
≤ |D`|3 ·

2C

ε
· exp

(
−2

3
(H`−1)1− γ

2

)

≤
(
H`−1 · `1+γ

)6+3γ · 2C

ε
· exp

(
−2

3
(H`−1)1− γ

2

)
≤ exp

(
−1

2
(H`−1)1− γ

2

)

for P-a.e. environment θ and all ` = `(γ, θ) large enough (uniformly in I). Here, we used

(3.38) and (3.35) for the third step and the exponential growth of H`−1 in ` (cf. (3.34)) for

the last step.

Therefore, we find by the means of (3.130) and (3.132) that we have for P-a.e. environment

θ and all ` = `(β, γ, θ) large enough (uniformly in I)

∞∑

v=

⌊
exp
(

1
6

(H`−1)1−
γ
2

)⌋ J3(I, v)

≤
∞∑

v=

⌊
exp
(

1
6

(H`−1)1−
γ
2

)⌋
Varθ(I)

(
β

4
· Φ(`)

)2

·
⌈
g(I) · exp

(
−1

3
(H`−1)1−γ

2

)
· (v + 1)2

⌉

≤ exp
((
−1

2
+ 1

3

)
· (H`−1)1− γ

2

)
(
β

4

)2

· exp
(
−(D`)

γ
8

) ·
∞∑

v=1

1

(v + 1)2

≤ exp
(
−1

6
(H`−1)1− γ

2

)
(
β

4

)2

· exp
(
−
(
`1+γ ·H`−1

) γ
8

) ·
∞∑

v=1

1

(v + 1)2

≤ 1

6
· exp

(
−1

3

(
H`−1

)1−γ
)
, (3.134)

where we further applied Proposition 3.4.1 for γ
16

in the second step and (3.35) in the third

step. Similarly, an application of (3.131) and (3.133) yields

∞∑

v=

⌊
exp
(

1
6

(H`−1)1−
γ
2

)⌋ J4(I, v)

≤
∞∑

v=

⌊
exp
(

1
6

(H`−1)1−
γ
2

)⌋
Varθ(I)

(
β

6
· Φ(`)

)2

·
⌈
g(I) · exp

(
−1

3
(H`−1)1−γ

2

)
· (v + 1)2

⌉

≤ exp
(
−1

6
(H`−1)1− γ

2

)
(
β

6

)2

· exp
(
−(D`)

γ
8

) ·
∞∑

v=1

1

(v + 1)2
≤ 1

6
· exp

(
−1

3

(
H`−1

)1−γ
)

(3.135)
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for P-a.e. environment θ and all ` = `(β, γ, θ) large enough (uniformly in I). By combining

(3.122) with (3.126), (3.129), (3.134), and (3.135), we therefore get for each I ∈ {I1, I3} ∪
{I2(i) : η` ≤ i ≤ r` − 1}

I ≤ J1(I) + J2 +
∞∑

v=

⌊
exp
(

1
6

(H`−1)1−
γ
2

)⌋
(
J3(I, v) + J4(I, v)

)

≤ 2 · 1

3
· exp

(
−1

3
(H`−1)1−γ

)
+ 2 · 1

6
· exp

(
−1

3

(
H`−1

)1−γ
)

(3.136)

= exp

(
−1

3

(
H`−1

)1−γ
)

(3.137)

for P-a.e. environment θ and all ` = `(β, γ, θ) large (uniformly in I). Finally, we can apply

(3.137) to (3.121) to get

Pθ
(
∃n ≥ R(`) : (1− β) · s(`) · Φ(`) · ξ(n, b`) ≥ s(`) ·G(`)

n

)

≤ I1 +

r`−1∑

i=η`

I2(i) + I3 ≤ (r` − η` + 2) · exp

(
−1

3

(
H`−1

)1−γ
)

≤ (H`)
2+γ · exp

(
−1

3

(
H`−1

)1−γ
)
≤ exp

(
−1

4

(
H`−1

)1−γ
)

for P-a.e. environment θ and all ` = `(β, γ, θ) large enough. Here, we used (3.38) in the

third line and (3.35) together with the exponential growth of H`−1 in ` (cf. (3.34)) for the

last step. This shows (3.93).

To finish the proof, we note that, for P-a.e. environment θ and all k = k(β, γ, θ) large

enough, we have

1− Pθ
(
∞⋂

`=k

B
(`)
6

)
= Pθ

(
∞⋃

`=k

(
B

(`)
6

)c
)

≤
∞∑

`=k

exp

(
−1

4

(
H`−1

)1−γ
)

k→∞−−−→ 0,

where we used (3.34) for the convergence for k →∞. �

A combination of Lemma 3.4.4, 3.4.5, 3.4.7, 3.4.6, 3.4.8, and 3.4.9 finally implies (3.82) in

Proposition 3.4.2. �
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3.5 Proofs

After the construction of our valleys and the description of the typical behaviour of the

RWRE for large time points n, we are now able to prove Theorem 3.2.1 and Theorem

3.2.2. For the following proposition, we let (νn)n∈N0 denote the sequence of the successive

return times of the RWRE (Xn)n∈N0 to 0. Note here that (Xn)n∈N0 is recurrent for P-a.e.

environment due to assumption (3.1).

At these return times (νn)n∈N0 , we look at the accumulated orientations Sνn (cf. (3.8)) with

Sνn
def
=

νn−1∑

i=0

αXi

which the RWRE (Xn)n∈N0 has collected before time νn. For large n, the RWRE will have

either collected a lot more +1-orientations or a lot more −1-orientations when it returns to

0 at time νn:

Proposition 3.5.1. For 0 < ϑ < 1, we have

lim inf
n→∞

|Sνn|
νn · exp

(
−
(

log(νn)
)ϑ) =∞ (3.138)

Pθ-a.s. for P-a.e. environment θ.

Proof of Proposition 3.5.1. For the proof, we fix an arbitrary 0 < β < 1 and some

0 < γ < 1
4
, whose precise value we choose later (cf. (3.141)). In a first step, we need to

make sure that the valleys of the environment, which we consider, behave “typically” start-

ing from the (k − 1)-th valley. For this, we define:

A
(k)
1 :=

{
θ : |Φ(k)| ≥ exp

(
− (Dk)

γ
)}
,

A
(k)
2 :=

{
θ : Hk ≥ Dk ≥ exp(β · k)

}
,

A
(k)
3 :=

{
θ : Hk ≤ k1+γ ·Hk−1

}
,

A
(k)
4 :=

{
θ : 0 /∈ Dk

}
,

E(k) :=
∞⋂

`=k

(
A

(`)
1 ∩ A(`)

2 ∩ A(`)
3 ∩ A(`)

4

)
.

Note that due to Proposition 3.4.1, (3.34),(3.35) and Proposition 3.3.9, we have

P
(

lim inf
k→∞

E(k)
)

= 1. (3.139)

112



3.5. PROOFS

In a second step, we need to make sure that (for fixed environment θ) the RWRE (Xn)n∈N0

behaves “typically” starting from the random time point R(k). To this end, we introduced

the following sets in the last section

B
(k)
1 :=

{
∀n ≥ k : HNn−1 ≤

1

1− β log n

}
∩
{
Nn

n→∞−−−→∞
}
,

B
(k)
2 :=



∀n ≤ T

(k+1)
1 :

∑

x∈Z\(Vk∪Dk+1)

ξ(n, x) = 0



 ,

B
(k)
3 :=



∀n ≥ R(k) :

∑

x∈Vk\Dk

ξ(n, x) ≤ exp
(
−(Hk−1)1−γ) · ξ(n, bk)



 ,

B
(k)
4 :=



∀n ≤ T

(k+1)
1 with Xn /∈ Dk+1 :

∑

x∈Dk+1

ξ(n, x) ≤ exp
(
−(Hk−1)1−γ) · ξ(n, bk)



 ,

B
(k)
5 :=

{
∀n ≥ R(k) : 12 · (Hk)

2+γ · ξ(n, bk) ≥
∑

x∈Vk

ξ(n, x)

}
,

B
(k)
6 :=

{
∀n ≥ R(k) : (1− β) · s(k) · Φ(k) · ξ(n, bk) < s(k) ·G(k)

n

}
,

F (k) :=
∞⋂

`=k

(
B

(`)
1 ∩B(`)

2 ∩B(`)
3 ∩B(`)

4 ∩B(`)
5 ∩B(`)

6

)
.

Note that F (k) is an increasing sequence of sets by definition for which we have

Pθ

(
lim inf
k→∞

F (k)
)

= 1 (3.140)

for P-a.e. environment θ due to Proposition 3.4.2.

Now, we can decompose Sνn into the contribution from the valley DNνn , i.e. from the deepest

of the valleys (Dk)k∈N0 in which the RWRE has reached the bottom point bk before time

νn, and the remaining positions x ∈ Z\DNνn . Notice (cf. Remark 3.4.3) that for large νn
the RWRE has spent most of its time in the valley DNνn when it returns to 0 at time νn.

Therefore, this valley has the main influence on the accumulated orientations Sνn . Note

here that for fixed environment θ ∈ E(k), we have

νn ≥ R(Nνn )

for all n with νn ≥ R(k). This holds since we know that 0 /∈ D` for all ` ≥ k due to our

choice of the environment θ ∈ E(k). Therefore, the RWRE has to leave the valley DNνn
again at time R(Nνn ) – after it has reached the bottom point bNνn – before it can return to

0. Overall, we get for fixed environment θ ∈ E(k−1) and νn ≥ R(k) on the set F (k)

∣∣Sνn
∣∣ =

∣∣∣∣∣∣
G(Nνn )
νn +

∑

x∈Z\DNνn

αx · ξ(νn − 1, x)

∣∣∣∣∣∣
≥
∣∣G(Nνn )

νn

∣∣−
∑

x∈Z\DNνn

ξ(νn − 1, x)
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≥
(

(1− β) · s(Nνn ) · Φ(Nνn ) − 2 · exp
(
−(HNνn−1)1−γ) ) · ξ(νn, bNνn )

≥
(

(1− β) · exp
(
−(DNνn )γ

)
− 2 · exp

(
−(HNνn−1)1−γ) ) · ξ(νn, bNνn )

≥
(

(1− β) · exp
(
−
(
(Nνn)1+γ ·HNνn−1

)γ)− 2 · exp
(
−(HNνn−1)1−γ) )

· ξ(νn, bNνn )

for all n = n(β, γ, θ) large enough. Note that, due to the exponential growth of Hk ≥ Dk

in k and our choice 0 < γ < 1
4
, the difference in the first of the last two lines is positive

for all n large enough (and with this νn ≥ 2n and Nνn large enough). Therefore, we can

conclude that

∣∣Sνn
∣∣ ≥ exp

(
−
(
HNνn−1

)2γ
)
·

∑
x∈VNνn

ξ(νn, x)

12 · (HNνn )2+γ

≥ exp
(
−
(
HNνn−1

)2γ
)
·

νn −
∑

x∈Z\VNνn

ξ(νn, x)

12 ·
(
(Nνn)1+γ · (HNνn−1)

)2+γ

≥ exp
(
−
(
HNνn−1

)3γ
)
· νn

2
≥ exp

(
−
(

1

1− β

)3γ

·
(

log(νn)
)3γ

)
· νn

2

≥ exp
(
−
(

log(νn)
)4γ
)
· νn

for all n = n(β, γ, θ) large enough. By choosing

γ =
ϑ

4
, (3.141)

we get for θ ∈ E(k−1) on the set F (k)

∣∣Sνn
∣∣ ≥ exp

(
−
(

log(νn)
)ϑ) · νn (3.142)

for all n = n(ϑ, θ) large enough.

Since (3.142) holds for all 0 < ϑ < 1, we can conclude by using (3.139) and (3.140) that

(3.138) holds. �

Proof of Theorem 3.2.2. Theorem 3.2.2 is a direct consequence of Proposition 3.5.1. �

Proof of Theorem 3.2.1. We choose γ = 3
4

and define the sets

Mn :=
{∣∣Sνn

∣∣ ≥
(
νn
) 3

4

}
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for n ∈ N. Due to (3.138), we have

Pθ

(
lim inf
n→∞

Mn

)
= 1 (3.143)

for P-a.e. environment θ. Recall the definition of (τn)n∈N0 from (3.6): τn denotes the first

random time point at which the random walk (Z`)`∈N0 = (X̃`, Ỹ`)`∈N0 has moved in the first

component for the n-th time. Notice that (τn+1−τn)n∈N0 is a sequence of i.i.d. random vari-

ables with a geometric distribution with parameter δ which are independent of (Xn)n∈N0 and

the environment θ. Further, recall that we have introduced (Xn, Yn)n∈N0 as the embedded

process for which we only consider the positions of the process (Zn)n∈N0 = (X̃n, Ỹn)n∈N0

right after this second process has moved in the first component. Thereby, we have the

following decomposition of the second component for the embedded process:

Yn =
n−1∑

k=0

αXk ·
(
τk+1 − τk

)

d
=

n+Sn
2∑

k=1

χ
(+)
k −

n−Sn
2∑

k=1

χ
(−)
k

Here, (χ
(+)
k )k∈N0 and (χ

(−)
k )k∈N0 denote two independent sequences of i.i.d. random variables

with a geometric distribution with parameter δ, where (χ
(+)
k )k∈N0 and (χ

(−)
k )k∈N0 are further

independent of (Xn)n∈N0 and the environment θ.

In a first step, we show that Yνn will not be close to 0 with high probability. Therefore, we

start with

Pθ
(
− c · log(n) ≤ Yνn ≤ c · log(n)

∣∣νn, Sνn
)

= Pθ


−c · log(n) ≤

νn+Sνn
2∑

k=1

χ
(+)
k −

νn−Sνn
2∑

k=1

χ
(−)
k ≤ c · log(n)

∣∣∣∣∣∣
νn, Sνn




≤ Pθ




νn+|Sνn |
2∑

k=1

χ
(+)
k −

νn−|Sνn |
2∑

k=1

χ
(−)
k ≤ c · log(n)

∣∣∣∣∣∣∣
νn, Sνn




≤ Pθ




νn+|Sνn |
2∑

k=1

χ
(+)
k ≤ νn

2δ
+ (νn)

2
3 + c · log(n)

∣∣∣∣∣∣∣
νn, Sνn




+ Pθ




νn−|Sνn |
2∑

k=1

χ
(−)
k ≥ νn

2δ
− (νn)

2
3

∣∣∣∣∣∣∣
νn, Sνn


 , (3.144)

where c > 0 denotes a constant which we choose later (cf. (3.149)). Note that the additional

term ±(νn)
2
3 is not necessary for our proof here but it enables us to directly extend our

proof of Theorem 3.2.1 to the more general setting in Theorem 3.6.1.

115



CHAPTER 3. RWRE WITH RANDOM ORIENTATIONS

For the forthcoming inequalities, the common moment generating function φ(t) of χ
(+)
1 and

χ
(−)
1 is helpful. Since χ

(+)
1 and χ

(−)
1 both have a geometric distribution, φ(t) is finite for

t < − log(1− δ). In particular, φ(t) is finite in a neighbourhood of 0, and therefore we have

(cf. Theorem 4.8.3 (iii) in [Gut05])

φ(t) := Eθ

[
exp

(
t · χ(+)

1

)]
= 1 + Eθ[χ

(+)
1 ] · t+ Eθ[(χ

(+)
1 )2] · t

2

2
+O(t3)

= 1 +
t

δ
+

2− δ
δ2
· t

2

2
+O(t3) .

By using the inequality 1 + x ≤ exp(x) for all x ∈ R, this implies that we have

φ(t) ≤ exp

(
t

δ
+

2− δ
2 · δ2

· t2 + C · |t3|
)

(3.145)

for all −1 ≤ t ≤ −1
2

log(1 − δ), where C > 0 denotes a suitable constant. For the first

summand in (3.144), we can derive the following upper bound for arbitrary

−1 < t = t(n) < 0

by applying Markov’s inequality and using νn ≥ 2n

Pθ




νn+|Sνn |
2∑

k=1

χ
(+)
k ≤ νn

2δ
+ (νn)

2
3 + c · log(n)

∣∣∣∣∣∣∣
νn, Sνn




≤ Pθ


exp


t ·

νn+|Sνn |
2∑

k=1

χ
(+)
k


 ≥ exp

(
t ·
(νn

2δ
+ 2 · (νn)

2
3

))
∣∣∣∣∣∣∣
νn, Sνn




≤ exp
(
−t ·

(νn
2δ

+ 2 · (νn)
2
3

))
·
(
φ(t)

) νn+|Sνn |
2

≤ exp
(
−t ·

(νn
2δ

+ 2 · (νn)
2
3

))
· exp

(
νn + |Sνn|

2
·
(
t

δ
+

2− δ
2 · δ2

· t2 + C · |t3|
))

= exp

(
t ·
( |Sνn|

2δ
− 2 · (νn)

2
3

)
+ t2 · 2− δ

2 · δ2
· νn + |Sνn|

2
+ |t3| · C · νn + |Sνn|

2

)

for all n large enough. Here, we used (3.145) for the third step. By choosing

t = t(n) := −
(
νn
)− 2

3 ,

we therefore get on the set Mn =
{∣∣Sνn

∣∣ ≥
(
νn
) 3

4

}

Pθ




νn+|Sνn |
2∑

k=1

χ
(+)
k ≤ νn

2δ
+ (νn)

2
3 + c · log(n)

∣∣∣∣∣∣∣
νn, Sνn


 ≤ exp

(
−n 1

13

)
(3.146)

for all n and with this νn ≥ 2n large enough.
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Now, we can turn to the second summand in (3.144). Similarly for

0 < s = s(n) < −1
2

log(1− δ),

we get by applying Markov’s inequality and again using νn ≥ 2n

Pθ




νn−|Sνn |
2∑

k=1

χ
(−)
k ≥ νn

2δ
− (νn)

2
3

∣∣∣∣∣∣∣
νn, Sνn




≤ Pθ


exp


s ·

νn−|Sνn |
2∑

k=1

χ
(−)
k


 ≥ exp

(
s ·
(νn

2δ
− (νn)

2
3

))
∣∣∣∣∣∣∣
νn, Sνn




≤ exp
(
−s ·

(νn
2δ
− (νn)

2
3

))
·
(
φ(s)

) νn−|Sνn |
2

≤ exp
(
−s ·

(νn
2δ
− (νn)

2
3

))
· exp

(
νn − |Sνn|

2
·
(
s

δ
+

2− δ
2 · δ2

· s2 + C · |s3|
))

= exp

(
s ·
(
−|Sνn|

2δ
+ (νn)

2
3

)
+ s2 · 2− δ

2 · δ2
· νn − |Sνn|

2
+ |s3| · C · νn − |Sνn|

2

)

for all n large enough, where we again used (3.145) for the third step. By choosing

s = s(n) :=
(
νn
)− 2

3 ,

we therefore get on the set Mn =
{∣∣Sνn

∣∣ ≥
(
νn
) 3

4

}

Pθ




νn−|Sνn |
2∑

k=1

χ
(−)
k ≥ νn

2δ
− (νn)

2
3

∣∣∣∣∣∣∣
νn, Sνn


 ≤ exp

(
−n 1

13

)
(3.147)

for all n and with this νn ≥ 2n large enough.

Inserting (3.146) and (3.147) in (3.144) now yields

Pθ
(
{−c · log(n) ≤ Yνn ≤ c · log(n)} ∩Mn

)
≤ 2 · exp

(
−n 1

13

)

for all n large enough. Therefore, the Borel-Cantelli lemma and (3.143) imply

Pθ (Yνn ∈ [−c · log(n), c · log(n)] for infinitely many n) = 0 (3.148)

for P-a.e. environment θ and all c > 0. This in particular shows the transience of the

process (Zτn)n∈N0 = (Xn, Yn)n∈N0 (cf. (3.7)) for which we only consider the time points at

which the first coordinate of the process (Zn)n∈N0 has changed in the last step.

In a last step, we only need to make sure that the process (Zn)n∈N0 = (X̃n, Ỹn)n∈N0 – which

we are mainly interested in – does not make too many steps in the second component

without moving in the first component. For this, we note that for n ∈ N0 we have

Pθ
(
τνn+1 − τνn ≥ c · log(n)

)
= (1− δ)bc·log(n)c ≤ nc·log(1−δ) · 1

1− δ .
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Here, τνn+1 − τνn denotes the number of movements of (Zn)n∈N0 in the second component

after returning to 0 in the first component at time νn up to leaving 0 again in the first

component at time νn + 1. By choosing c = c(δ) large enough such that

c · log(1− δ) < −1, (3.149)

we can therefore conclude with the help of the Borel-Cantelli lemma that

Pθ
(
τνn+1 − τνn ≥ c · log(n) for infinitely many n

)
= 0 (3.150)

holds for P-a.e. environment θ. Finally, we can combine (3.148) and (3.150) to conclude

that we have

Pθ
(
Zn = (0, 0) for infinitely many n

)
= 0

for P-a.e. environment θ. For the last conclusion, we use that, as long as

τνn+1 − τνn < c · log(n)

holds for some n ∈ N0, the random walk (Z`)`∈N0 cannot reach (0, 0) between the time

points ` = νn and ` = νn + 1 as long as Yνn /∈ [−c · log(n), c · log(n)], which was left to show.

�

3.6 A Final Extension of RWRE with Random Orien-

tations

As one possible extension of the RWRE with random orientations, we can look at the fol-

lowing process which combines our results from Chapter 2 and Section 3.2:

We still use the same random environment θ as introduced in Section 3.2. The only differ-

ence is that we need one more parameter p ∈ [0, 1]. For every environment θ, we can now

look at the following Markov chain (Mn)n∈N0 with values in Z2 which is determined by

P z
θ

(
M0 = (z1, z2)

)
= 1,

P z
θ

(
Mn+1 = (k + 1, `)

∣∣Mn = (k, `)
)

= δ · ωk,

P z
θ

(
Mn+1 = (k − 1, `)

∣∣Mn = (k, `)
)

= δ · (1− ωk),

P z
θ

(
Mn+1 = (k, `+ 1)

∣∣Mn = (k, `)
)

=
1− δ

2
· (1 + p · αk),

P z
θ

(
Mn+1 = (k, `− 1)

∣∣Mn = (k, `)
)

=
1− δ

2
· (1− p · αk)

for z = (z1, z2) ∈ Z2.
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The process can be understood as

a combination of a one-dimensional

RWRE with an asymmetric random

walk on Z for 0 < p ≤ 1 and a sym-

metric random walk for p = 0. In

the case 0 < p ≤ 1, the random

orientation αk contained in the ran-

dom environment θ indicates if the

Markov chain at time n prefers to

move upwards or downwards in the

second component given Mn = (k, ·)
for some k ∈ Z. Then, we have the

following dependency of the param-

eter p ∈ [0, 1]:

x

y

(1− δ) · 1+p
2

(1− δ) · 1−p
2

δ · ω3δ · (1− ω3)

(1− δ) · 1+p
2

(1− δ) · 1−p
2

δ · ω3δ · (1− ω3)

(1− δ) · 1−p
2

(1− δ) · 1+p
2

δ · ω−3δ · (1− ω−3)

(1− δ) · 1−p
2

(1− δ) · 1+p
2

δ · ω−3δ · (1− ω−3)

Figure 3.6: A possible realization of the random ori-

entations ↑↓ and the corresponding transition proba-

bilities for the extended model.

Theorem 3.6.1. (1) For p = 0, the Markov chain (Mn)n∈N0 is recurrent for P-a.e. en-

vironment θ.

(2) On the contrary for 0 < p ≤ 1, the Markov chain (Mn)n∈N0 is transient for P-a.e.

environment θ.

Proof of Theorem 3.6.1. In the first case, we are exactly in the situation of Corollary 2.6.7.

Therefore, there is nothing left to show.

In the second case, i.e. 0 < p ≤ 1, the proof runs almost as the proof of Theorem 3.2.1 and

we can adjust our argument to the new situation:

Let us denote the second component of (Mn)n∈N0 by

Ỹ ∗n := pr2(Mn) for n ∈ N0,

and note that the first component

X̃n := pr1(Mn) for n ∈ N0

for each choice of 0 < p ≤ 1 still behaves as (X̃n)n∈N0 which was introduced in (3.5). As in

(3.6), we can introduce

τ0 := 0,

τk := inf{n > τk−1 : X̃n 6= X̃τk−1
} for k ≥ 1

inductively as the time points of the movement in the first component. Now, we can again

define

Xn :=X̃τn ,
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Y n :=Ỹ ∗τn

for n ∈ N0. As before, (Xn)n∈N0 behaves as a RWRE on Z.

At the random successive return times (νn)n∈N0 of the first component (Xn)n∈N0 to 0, we

now have the following decomposition of the movement in the second component (Y n)n∈N0 :

Y νn
d
=

νn−1∑

k=0

αXk ·Υ(k)(τk+1 − τk)

d
= Υ(1)




νn+Sνn
2∑

k=1

χ
(+)
k


−Υ(2)




νn−Sνn
2∑

k=1

χ
(−)
k


 (3.151)

Here, (χ
(+)
k )k∈N0 and (χ

(−)
k )k∈N0 again denote two independent sequences of i.i.d. random

variables with a geometric distribution with parameter δ, where (χ
(+)
k )k∈N0 and (χ

(−)
k )k∈N0

are further independent of (Xn)n∈N0 and the environment θ. Additionally, (Υ(0)(`))`∈N0 ,

(Υ(1)(`))`∈N0 ,(Υ
(2)(`))`∈N0 , . . . denote i.i.d. asymmetric next neighbour random walks on Z

with

Pθ
(
Υ(1)(0) = 0

)
= 1,

Pθ
(
Υ(1)(`+ 1) = y + 1

∣∣Υ(1)(`) = y
)

=
1 + p

2
for all y ∈ Z, ` ∈ N0,

Pθ
(
Υ(1)(`+ 1) = y − 1|Υ(1)(`) = y

)
=

1− p
2

for all y ∈ Z, ` ∈ N0

for every environment θ, where the sequence (Υ(0)(`))`∈N0 , (Υ(1)(`))`∈N0 ,(Υ
(2)(`))`∈N0 , . . .

is further independent of (χ
(+)
k )k∈N0 and (χ

(−)
k )k∈N0 , (Xn)n∈N0 , and the environment θ. As

before, the moment generating function will be helpful for our consideration. For t ∈ R, we

define

ψ(t) := Eθ
[
exp

(
t ·Υ(1)(1)

)]
= 1 + Eθ

[
Υ(1)(1)

]
· t+ Eθ

[(
Υ(1)(1)

)2
]
· t

2

2
+O(t3)

= 1 + p · t+
t2

2
+O(t3),

where the second relation holds since ψ(t) <∞ holds in a neighbourhood of 0 (which is R
here). Again using the inequality 1 + x ≤ exp(x) for x ∈ R, we get for −1 ≤ t ≤ 1 that

ψ(t) ≤ exp

(
p · t+

t2

2
+ C · |t3|

)
(3.152)

for some suitable constant C > 0. Similarly to the proof of Theorem 3.2.1, we get the

following for arbitrary c > 0 by using (3.151):

Pθ
(
− c · log(n) ≤ Y νn ≤ c · log(n)

)
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= Pθ


−c · log(n) ≤ Υ(1)




νn+Sνn
2∑

k=1

χ
(+)
k


−Υ(2)




νn−Sνn
2∑

k=1

χ
(−)
k


 ≤ c · log(n)




≤ Pθ


Υ(1)




νn+|Sνn |
2∑

k=1

χ
(+)
k


−Υ(2)




νn−|Sνn |
2∑

k=1

χ
(−)
k


 ≤ c · log(n)




Recall that a combination of (3.143), (3.146), and (3.147) implies that we have

Pθ


lim inf

k→∞





νn+|Sνn |
2∑

k=1

χ
(+)
k ≥ νn

2δ
+ (νn)

2
3






 = 1

Pθ


lim inf

k→∞





νn−|Sνn |
2∑

k=1

χ
(−)
k ≤ νn

2δ
− (νn)

2
3






 = 1 (3.153)

for P-a.e. environment θ.

In comparison with the upper bound in (3.144), here we also need upper bounds for the atyp-

ical behaviour of the asymmetric random walks (Υ(1)(`))`∈N0 and (Υ(2)(`))`∈N0 . Thereby,

we have:

Pθ


Υ(1)




νn+|Sνn |
2∑

k=1

χ
(+)
k


−Υ(2)




νn−|Sνn |
2∑

k=1

χ
(−)
k


 ≤ c · log(n)

∣∣∣∣∣∣∣

νn+|Sνn |
2∑

k=1

χ
(+)
k ,

νn−|Sνn |
2∑

k=1

χ
(−)
k




≤ Pθ


Υ(1)




νn+|Sνn |
2∑

k=1

χ
(+)
k


 ≤ p · νn

2δ
+ c · log(n)

∣∣∣∣∣∣∣

νn+|Sνn |
2∑

k=1

χ
(+)
k ,

νn−|Sνn |
2∑

k=1

χ
(−)
k




+ Pθ


Υ(2)




νn−|Sνn |
2∑

k=1

χ
(−)
k


 ≥ p · νn

2δ

∣∣∣∣∣∣∣

νn+|Sνn |
2∑

k=1

χ
(+)
k ,

νn−|Sνn |
2∑

k=1

χ
(−)
k


 (3.154)

Notice that there exists λ = λ(p) ∈ [−1, 0) such that

ψ(t)
def
= Eθ

[
exp

(
t ·Υ(1)(1)

)]
=

1 + p

2
· exp(t) +

1− p
2
· exp(−t) < 1

for all λ(p) ≤ t < 0. Therefore, on the set

A(1)
n :=





νn+|Sνn |
2∑

k=1

χ
(+)
k ≥ νn

2δ
+ (νn)

2
3




,

and for λ(p) ≤ t = t(n) < 0, we get for the first summand in (3.154) by using Markov’s

inequality

Pθ


Υ(1)




νn+|Sνn |
2∑

k=1

χ
(+)
k


 ≤ p · νn

2δ
+ c · log(n)

∣∣∣∣∣∣∣

νn+|Sνn |
2∑

k=1

χ
(+)
k ,

νn−|Sνn |
2∑

k=1

χ
(−)
k



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= Pθ


exp


t ·Υ(1)




νn+|Sνn |
2∑

k=1

χ
(+)
k





 ≥ exp

(
t ·
(p · νn

2δ
+ c · log(n)

))
∣∣∣∣∣∣∣

νn+|Sνn |
2∑

k=1

χ
(+)
k




≤ exp
(
−t ·

(p · νn
2δ

+ c · log(n)
))
· exp







νn+|Sνn |
2∑

k=1

χ
(+)
k


 · log

(
ψ(t)

)



≤ exp
(
−t ·

(p · νn
2δ

+ c · log(n)
))
· exp

((νn
2δ

+ (νn)
2
3

)
·
(
t · p+

t2

2
+ C · |t3|

))

= exp

(
t ·
(
−c · log(n) + p · (νn)

2
3

)
+
t2

2
·
(νn

2δ
+ (νn)

2
3

)
+ |t3| · C ·

(νn
2δ

+ (νn)
2
3

))
.

Here in the third line, we used that, for ` ∈ N0, Υ(1)(`) has the same distribution as the

sum of ` i.i.d. copies of Υ(1)(1). For the fourth line, we used (3.152) and ψ(t) < 1 for

λ(p) ≤ t < 0. By choosing t = t(n) := −(νn)−
1
2 , the last upper bound implies that on the

set A
(1)
n we have

Pθ


Υ(1)




νn+|Sνn |
2∑

k=1

χ
(+)
k


 ≤ p · νn

2δ
+ c · log(n)

∣∣∣∣∣∣∣

νn+|Sνn |
2∑

k=1

χ
(+)
k ,

νn−|Sνn |
2∑

k=1

χ
(−)
k


 ≤ exp

(
−n 1

7

)

(3.155)

for all n large enough, where we further used νn ≥ 2n for the last step. For the second

summand in the upper bound in (3.154), we similarly get on the set

A(2)
n :=





νn−|Sνn |
2∑

k=1

χ
(−)
k ≤ νn

2δ
− (νn)

2
3





for 0 < s = s(n) ≤ 1 again using Markov’s inequality

Pθ


Υ(2)




νn−|Sνn |
2∑

k=1

χ
(−)
k


 ≥ p · νn

2δ

∣∣∣∣∣∣∣

νn+|Sνn |
2∑

k=1

χ
(+)
k ,

νn−|Sνn |
2∑

k=1

χ
(−)
k




= Pθ


exp


s ·Υ(2)




νn−|Sνn |
2∑

k=1

χ
(−)
k





 ≥ exp

(
s · p · νn

2δ

)
∣∣∣∣∣∣∣

νn−|Sνn |
2∑

k=1

χ
(−)
k




≤ exp
(
−s · p · νn

2δ

)
· exp

((νn
2δ
− (νn)

2
3

)
·
(
s · p+

s2

2
+ C · |s3|

))

= exp

(
−s · p · (νn)

2
3 + s2 · 1

2
·
(νn

2δ
− (νn)

2
3

)
+ |s3| · C ·

(νn
2δ
− (νn)

2
3

))
,

122



3.6. A FINAL EXTENSION OF RWRE WITH RANDOM ORIENTATIONS

where we further used ψ(s) > 1 for s > 0 for the second step. By choosing

s = s(n) := (νn)−
1
2 ,

the last upper bound implies that on the set A
(2)
n we have

Pθ


Υ(2)




νn−|Sνn |
2∑

k=1

χ
(−)
k


 ≥ p · νn

2δ

∣∣∣∣∣∣∣

νn+|Sνn |
2∑

k=1

χ
(+)
k ,

νn−|Sνn |
2∑

k=1

χ
(−)
k


 ≤ exp

(
−n 1

7

)
(3.156)

for all n large enough, where we again used νn ≥ 2n. By combining (3.153), (3.155), and

(3.156), we can in particular conclude with the help of the Borel-Cantelli lemma that for

all c > 0 we have

Pθ
(
Y νn ∈ [−c · log(n), c · log(n)] for infinitely many n

)
= 0

for P-a.e. environment θ.

For the rest of the proof, we can copy the end of our argument from the proof of Theorem

3.2.1 to ensure that for P-a.e. environment θ our process (M`)`∈N0 Pθ-a.s. does not reach

the point (0, 0) between time νn and νn + 1 for infinitely many n ∈ N0. �
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Part II

Random Walks in Random

Environment with Branching
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Chapter 4

Preliminaries

4.1 Basic Notation and General Assumptions

In the following chapter, we do not only consider the movement of one particle but we

allow the particles to produce a random number of offspring in each step. Models which

combine those two components – random reproduction and movement of particles – are

called Branching Random Walks (BRW). As before, we additionally assume that the en-

vironment – which determines the probabilities for the reproduction and the movement of

the particles – is random itself. Altogether, this leads to the model of a Branching Random

Walk in Random Environment (BRWRE).

The construction of a BRWRE also consists of two steps: In a first step, we choose an

environment according to a specific distribution P, and in a second step, we perform a

BRW in the chosen environment. The expectation with respect to P will be denoted by E[·]
as in Part I.

4.2 Classical Results

Let us first collect some basic results on Branching Processes in Random Environment

(BPRE) from [Ta77]:

Since we are only interested in the (random) number of all existing particles in this set-

ting, the distribution of the environment P can be chosen as a probability distribution on

(MN0 ,AN0), where

M :=
{

(pi)i∈N0 : pi ≥ 0,
∞∑

i=0

pi = 1
}

is the set of all offspring distributions (i.e. probability measures on N0) and A is some

suitable σ-algebra on M (for example we can equip M with the induced topology of

(RN0 ,BN0) and then consider the generated Borel σ-algebra on M).
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Let µ = (µn)n∈N0 denote a sequence in MN0 with distribution P. Then, µ is referred to as

the random environment and we write Pµ for the quenched probability measure given µ.

For fixed µ, we can now introduce the following inhomogeneous branching process (Zn)n∈N0

with respect to Pµ:

At time 0, we start with Z0 = 1 particle. Afterwards at every time n ∈ N0, all existing

particles Zn produce offspring according to the distribution µn independently of all other

existing particles and then die. The amount of all newly produced offspring then gives the

size Zn+1 of the (n + 1)-th generation. For a more detailed description of the model, we

refer to Section 1 in [Ta77].

For the next three theorems from [Ta77], we have to assume that the environment µ=(µn)n∈N0

is stationary and ergodic with respect to P. In particular, we may apply the results if

µ = (µn)n∈N0 is an i.i.d. sequence. Further, using the (random) probability distribution µ0

on N0, we write

p0(µ0) := µ0({0}), p1(µ0) := µ0({1}),

m0 = m0(µ0) :=
∞∑

k=0

kµ0({k})

for the (random) probability to have 0 or 1 descendant at time 0, respectively, and for the

(random) mean number of offspring at time 0.

Due to Tanny, we know the following sufficient criteria for survival and extinction of

(Zn)n∈N0 :

Theorem 4.2.1 (Sufficient Condition for Survival - cf. Corollary 6.3 in [Ta77]). If

E
[∣∣log

(
1− p0(µ0)

)∣∣] <∞ and E
[

log(m0)
]
> 0, (4.1)

then we have

Pµ(Zn → 0) < 1

for P-a.e. environment µ.

Here, E[log(m0)] > 0 means in particular that E[log(m0)] is well-defined.

Theorem 4.2.2 (Sufficient Condition for Extinction - cf. Theorem 5.5 in [Ta77]). If one

of the conditions

(1) E
[

log(m0)
]
< 0,

(2) P
(
p1(µ0) = 1

)
< 1 and E

[
log(m0)

]
= 0

holds, then we have

Pµ(Zn → 0) = 1

for P-a.e. environment µ.
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We remark here that the conditions in the last two theorems are in general not necessary

for survival/extinction of a BPRE as Tanny showed in Section 7 in [Ta77]. If µ = (µn)n∈N0

is an i.i.d. sequence, then we can say more: If

E[| log(m0)|] <∞ and P
(
p1(µ0) = 1

)
< 1

holds, then the conditions in (4.1) are also necessary for survival of a BPRE in an i.i.d.

environment (cf. Theorem 1 in [Sm68] and Theorem 3.1 in [SW69]).

Additionally to the above conditions for survival and extinction, Tanny also answered the

question of the growth of the BPRE in the case of survival:

Theorem 4.2.3 (Growth of a Surviving BPRE - cf. Theorem 5.5 (iii) and Theorem 5.3 in

[Ta77]). For E
[

log(m0)
]
> 0, we have

lim
n→∞

1

n
logZn = E

[
log(m0)

]

Pµ-a.s. on {Zn 6→ 0} for P-a.e. environment µ.

In particular, the BPRE grows exponentially fast if it survives.

4.3 Context of our Results

4.3.1 Survival of BRWRE

In Chapter 5, we answer the question under which conditions and in which way a special

BRWRE on N0 survives. The same question for a related model was answered in [GMPV08].

Let us therefore quickly recall the setting of the model, which is introduced in Section 2 in

[GMPV08], as a motivation for our considered model. Further, we are able to compare our

results to the results in the [GMPV08] at the end of this section:

Define U := {-1,0,1},

V := {v = (vx, x ∈ U) : vx ∈ N0 ∀x ∈ U}

and for v ∈ V put |v| = ∑x∈U vx. Furthermore, letM be the set of all probability measures

ω on V , i.e.

M :=

{
ω = (ω(v), v ∈ V) : ω(v) ≥ 0 for all v ∈ V ,

∑

v∈V

ω(v) = 1

}
.

Then, suppose that ω := (ωx ∈ M, x ∈ Z) is an i.i.d. sequence with values in M with

respect to some probability measure P. As before, ω = (ωx ∈ M, x ∈ Z) is called the

environment. Given the environment ω, the evolution of the process is described in the

following way: start with one particle at some fixed site of Z. At each integer time the
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particles branch independently in the following way: for a particle at site x ∈ Z, a random

element v = (vy, y ∈ U) is chosen with probability ωx(v) and then the particle is substituted

by vy particles in x+ y, y ∈ U .

Remark 4.3.1. In many models (and also in our model introduced in Chapter 5) on

BRWRE, the reproduction and the movement of the particles takes place in two subsequent

steps: At every discrete time point n ∈ N0, a particle in x first produces i offspring with

probability µx(i) independently of all other particles and then dies. Then, each of the

offspring jumps to x + y with probability p(x, y) independently off all other offspring.

Thereby, the pairs ((µx(i))i∈N0 , (p(x, y))y∈U) are chosen according to some i.i.d. field on Z.

In the above notation introduced in [GMPV08], this case is included in their setup if we

choose

ωx(·) =
∑

i∈N0

µx(i)Mult(i, p(x, y), y ∈ U)(·).

Let us continue the description of the model: Denote

µ−x :=
∑

v∈V

ωx(v) · v−1, µ0
x :=

∑

v∈V

ωx(v) · v0, and µ+
x :=

∑

v∈V

ωx(v) · v1,

i.e., given the environment ω, µ−x is the mean number of offspring sent by a particle from

position x to x− 1, µ+
x is the mean number of offspring sent by a particle from position x

to x+ 1, and µ0
x is the mean number of offspring which stay at x. Further, we assume that

the following two conditions hold:

(1) P(min{µ−0 , µ+
0 } > 0) = 1.

(2) There exists v ∈ V with |v| ≥ 2 such that P(ω0(v) > 0) > 0. (4.2)

Here, the first condition ensures that the process is irreducible in the sense that for any

x, y ∈ Z a particle from x can have descendants at y. The second condition states that

there are positions where particles are able to branch.

In the context of BRW, we can distinguish between different survival regimes:

Definition 4.3.2. Given the environment ω we say that

(1) there is Global Survival (GS) if

P 0
ω

(
Zn → 0

)
< 1,

(2) there is Local Survival (LS) if

P 0
ω

(
ηn(x)→ 0

)
< 1

for all x ∈ N0.
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We say that for a given ω there is local (global) extinction if there is no local (no global)

survival. Alone from the above definition, GS and LS could depend on the starting point

and on the realization of the environment ω. But the next theorem shows that, for an i.i.d.

random environment which fulfils the assumptions in (4.2), there is no such dependence:

Theorem 4.3.3 (cf. Theorem 2.4 and Theorem 2.9 in [GMPV08]). Local survival and

global survival do not depend on the starting point of the BRWRE. Further, there is either

local survival (global survival) for P-a.e. environment ω or there is local extinction (global

extinction) for P-a.e. environment ω.

The next theorem answers the question on local survival:

Theorem 4.3.4 (Local Survival - cf. Theorem 2.6 in [GMPV08]). There is local extinction

iff there exists λ > 0 such that

µ−0 λ
−1 + µ0

0 + µ+
0 λ ≤ 1

for P-a.e. environment ω.

For the next theorem on global survival, we have to assume that also the following condition

holds:

Condition S. E[| log(ω0(V1))|] <∞ and E[| log(ω0(V−1))|] <∞.

Here, V1 := {v ∈ V : v1 ≥ 1} and V−1 := {v ∈ V : v−1 ≥ 1} denote the set of all

offspring configurations which send at least one offspring one step to the right or to the

left, respectively.

Further, we need to define two so-called Lyapunov exponents: For k ∈ N denote

Ak :=

(
1−µ0k
µ+k

−µ−k
µ+k

1 0

)
and Ãk :=

(
1−µ0k
µ−k

−µ+k
µ−k

1 0

)

and define

γ1 := lim
n→∞

1

n
E
[

log ‖AnAn−1 · · ·A1‖
]

and γ̃1 := lim
n→∞

1

n
E
[

log ‖ÃnÃn−1 · · · Ã1‖
]
,

where ‖·‖ is any matrix norm. Then, γ1 and γ̃1 exist due to the assumptions in [GMPV08].

Theorem 4.3.5 (Global Survival - cf. Theorem 2.9 in [GMPV08]). Suppose that condition

S holds. Assume also that there is local extinction. Then, the following holds:

(1) If there is some λ > 1 such that µ−0 λ
−1 + µ0

0 + µ+
0 λ ≤ 1 P-a.s., then there is global

survival iff

γ1 < E

[
log

(
µ−0
µ+

0

)]
.
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(2) If there is some λ < 1 such that µ−0 λ
−1 + µ0

0 + µ+
0 λ ≤ 1 P-a.s., then there is global

survival iff

γ̃1 < E

[
log

(
µ+

0

µ−0

)]
.

Even though the last two theorems give a complete answer to the question on global sur-

vival, the condition in Theorem 4.3.5 is not very explicit. In particular if we just consider

a combination of two offspring configurations, we cannot answer the question on global

survival without a longer and involved computation in general.

In the next chapter, we consider an easier model in which particles located at x ∈ N0 can

only produce offspring to the same position x ∈ N0 and to the right neighbouring site x+1.

This case is excluded by the assumptions in (4.2). The easier configuration of the model

enables us to derive a very simple condition on global survival in

Theorem 5.3.2 Suppose Λ ≤ 1.

There is either GS for P-a.e. ω or there is no GS for P-a.e. ω.

There is GS for P-a.e. ω iff

E

[
log

(
m0h0

1−m0(1− h0)

)]
> 0.

Here, m0 denotes the mean number of offspring produced by one particle located at 0.

Afterwards, every newly produced offspring moves to +1 (or stays at 0) with probability

h0 (or 1 − h0) independently of all other existing particles (cf. Section 5.2 for a precise

description of the considered model).

Further, Λ := ess sup(m0(1−h0)) (cf. (5.2)) which is a helpful quantity to characterize local

survival:

Theorem 5.3.1 There is either LS for P-a.e. ω or there is no LS for P-a.e. ω.

There is LS for P-a.e. ω iff

Λ > 1.

Remark 4.3.6. Let us shortly summarize some aspects of Theorem 5.3.2:

(1) If we choose h0 ≡ 1, then the condition for global survival reduces to the condition for

survival of a BPRE in Theorem 4.2.1 by Tanny. Note for this that our assumptions in

(5.1) ensure that in our setting the first condition in Theorem 4.2.1 is always fulfilled.

(2) If we choose h0 ≡ h to be constant, an analysis of the function

ϕ(h) := E

[
log

(
m0h

1−m0(1− h)

)]

allows us to answer the dependence of survival on the drift h (cf. Theorem 5.3.7).

We show that global survival for some drift h always implies that we also have global

survival for all drifts h such that 0 < h ≤ h, i.e. for the considered BRWRE, it is

easier to survive for a smaller drift h.
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4.3.2 Growth of BRWRE

The questions of the growth rates of the BRWRE in Chapter 5 are motivated by a series of

papers by Baillon, Clement, Greven and den Hollander, see [BCGH93], [BCGH94], [GH91],

[GH92] and [GH94] in which the authors consider the Population Growth in Random Media.

In Remark 5.4.2, we will see that there is strong connection between our model which we

consider in Chapter 5 and the model which is considered in [GH91]. So, let us shortly repeat

the setting of the model which is introduced in the latter article (cf. 0.2 Section Model in

[GH91]):

(1) For each x ∈ Z, Fx is a random probability measure on the nonnegative integers N0

called the offspring distribution at site x. The sequence F = (Fx)x∈Z is i.i.d. with

common distribution α. Here, F plays the role of the random medium.

(2) For fixed F , define a discrete-time Markov process (ηn)n≥0 on (N0)Z with

ηn = (ηn(x))x∈Z,

ηn(x) = number of particles at site x at time n

by specifying its one-step transition mechanism as follows: Given the state ηn at time

n,

(a) each particle is independently replaced by a new generation. The size of the

new generation descending from a particle at site x has distribution Fx, i.e., it

consists of k new particles with probability Fx(k) (k = 0, 1, 2, . . .). Also, particles

at the same site branch independently.

(b) Immediately after creation, each new particle at site x independently decides to

either stay at x with probability 1 − h or to jump to x + 1 with probability h.

The parameter h ∈ [0, 1] is the drift and is the same for all x.

(3) The resulting sequence of particle numbers after steps (1) and (2) make up the state

ηn+1 at time n+ 1. F stays fixed during the evolution.

(4) We start with η0(x) = 1, i.e. one particle at each site x ∈ Z at time 0 (which

corresponds to Case I in [GH91]).

In Equation (0.3) in [GH91], the quantity

dn(x, F ) := EF [ηn(x)]

is introduced as the average particle density at site x at time n for fixed F . Here we

use the usual “quenched” notation in the context of BRWRE (alternatively one can define

dn(x, F ) := E[ηn(x)|F ] as in [GH91] where E denotes the expectation with respect to the

joint distribution of (F, (ηn)n∈N0)).

In Theorem 1 and Theorem 2 I. in [GH91], Greven and den Hollander describe the limit

lim
n→∞

1
n

log dn(0, F ) =: λ(h)
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as a function of the drift h by an implicit formula which we want to shortly repeat here to

emphasize the explicitness of our results:

Let

bx :=
∞∑

k=0

kFx(k)

denote the mean offspring of a particle located at site x and let β denote the distribution

of bx (which does not depend on x since F = (Fx)x∈Z is an i.i.d. sequence) and we assume

0 < inf
x
bx < sup

x
bx <∞ β-a.s.

Further, we define

Mθ,β :=

{
ν ∈ P(N× supp β) :

∑

i,j

iν(i, j) = θ−1,
∑

i

ν(i, j) = β(j) for all j

}
,

f(ν) :=
∑

i,j

ν(i, j)i log j,

Iθ,β(ν) :=
∑

i,j

ν(i, j) log

(
ν(i, j)

πθ(i)β(j)

)
,

Ih(θ) := θ log

(
θ

h

)
+ (1− θ) log

(
1− θ
1− h

)
,

πθ(i) := θ(1− θ)i−1.

The notation is for the situation where suppβ is countable. For more details on the defini-

tions, we refer to Section 0.3 in [GH91]. Then, we have the following:

Theorem 4.3.7 (cf. Theorem 1 in [GH91]). For h ∈ (0, 1), we have

λ(h)
def
= lim

n→∞
1
n

log dn(0, F ) = λ(β, h; 0) F -a.s.,

where

λ(β, h; 0) := sup
θ∈(0,1]

[Jβ(θ)− Ih(θ)],

Jβ(θ) := θ sup
ν∈Mθ,β

[f(ν)− Iθ,β(ν)] for θ ∈ (0, 1].

The two suprema in the last theorem have a nice interpretation as the best strategy for

particles to move within the random medium (cf. Section 0.5 in [GH91]). Further, the

variational expressions in Theorem 4.3.7 can be solved, i.e. there are maximizers for both

expressions (cf. (0.21) and (0.22) in [GH91]). The solution leads to the following theorem

which gives a very complete description of λ(h) from a qualitative point of view:

134



4.3. CONTEXT OF OUR RESULTS

Theorem 4.3.8 (cf. Theorem 2 I. and Corollary 2 I. in [GH91]). With M := ess sup b0, we

have

λ(β, h; 0) = log[M(1− h)] + r∗,

where r∗ can be described by an implicit formula (cf. Section 0.4 in [GH91] for more details).

Further, we have the following properties:

(1) h 7→ λ(β, h; 0) is continuous and strictly decreasing on (0,1). Further, λ(β, 0; 0) =

logM and λ(β, 1; 0) =
∑

j β(j) log(j).

(2) In particular if logM > 0 >
∑

j β(j) log(j), then λ(β, h; 0) as function of h changes

sign at h = h∗c which is the unique solution of λ(β, h; 0) = 0.

In the next chapter, we introduce the model of a BRWRE on Z in which every particle

located at x ∈ N0 can only produce offspring to the same position x ∈ N0 and to the right

neighbouring position x + 1. The total number of particles at time n will be denoted by

Zn (cf. (5.4)). In our setting, the drift hx (for a single offspring to move one step to the

right) may also depend on the location x of the parental particles. In the case of a constant

drift (i.e. hx ≡ h ∈ (0, 1] for all x ∈ N0), we show in Remark 5.4.2 that the expected global

population size Eω[Zn] corresponds to dn(0, F ) in the notation of [GH91].

In order to make our results on global survival comparable to the results on the growth

of the process in [GH91], we show that global survival of our BRWRE in Chapter 5 is

equivalent to the exponential growth of Eω[Zn] (cf. Definition 4.3.2 for the definition of

global survival):

Theorem 5.3.5 The following assertions are equivalent:

(1) lim
n→∞

1
n

logEω
[
Zn
]
> 0 holds for P-a.e. ω.

(2) There is GS for P-a.e. ω.

So, let us recall the condition for global survival (rewritten for the case of a constant drift

h0 ≡ h) which we already mentioned above:

Theorem 5.3.2 Suppose Λ
def
= ess sup(m0(1− h)) ≤ 1.

There is either GS for P-a.e. ω or there is no GS for P-a.e. ω.

There is GS for P-a.e. ω iff

ϕ(h)
def
= E

[
log

(
m0h

1−m0(1− h)

)]
> 0.

By combining the last two theorems, we are able to describe the location of the critical

parameter h = h∗c in Theorem 4.3.8 by just using one implicit formula, i.e. the solution of

0 = ϕ(h) (uniqueness – if a solution exists – will be shown in Theorem 5.3.7). Note here

that the critical parameter h = h∗c in Theorem 4.3.8 is only given by an implicit formula

in which the quantity r∗ itself is only available through a second implicit formula. The

easier criterion from Theorem 5.3.2 in particular enables us to directly treat the cases in

which we deal with a combination of just two offspring distributions. Here, we can describe
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the phases in which we have global survival (i.e. exponential growth of the population)

and no global survival (i.e. no exponential growth of the population) without any further

computation. Two examples for this configuration are included in Section 5.6.
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Chapter 5

Survival and Growth of a BRWRE

5.1 Overview

The chapter consists of the article Survival and Growth of a Branching Random Walk in

Random Environment by Christian Bartsch, Nina Gantert, and Michael Kochler ([BGK09]).

In order to keep this chapter self-contained, this article has been left relatively unchanged.

In the article we considered a particular Branching Random Walk in Random Environment

(BRWRE) on N0 started with one particle at the origin. Particles reproduce according

to an offspring distribution (which depends on the location) and move either one step to

the right (with a probability in (0, 1] which also depends on the location) or stay in the

same place. We give criteria for local and global survival and show that global survival

is equivalent to exponential growth of the moments. Further, on the event of survival the

number of particles grows almost surely exponentially fast with the same growth rate as

the moments.

The chapter is organized as follows: In Section 2, we give a formal description of our model.

Section 3 contains the results, Section 4 some remarks and Section 5 the proofs. At last,

in Section 6, we provide examples and pictures.

5.2 Formal Description of the Model

The considered BRWRE will be constructed in two steps, namely we first choose an envi-

ronment and then let the particles reproduce and move in this environment.

Step I (Choice of the environment)

First, define

M :=
{

(pi)i∈N0 : pi ≥ 0,
∞∑

i=0

pi = 1
}
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as the set of all offspring distributions (i.e. probability measures on N0). Then, define

Ω :=M× (0, 1]

as the set of all possible choices for the local environment, now also containing the local

drift parameter. Let α be a probability measure on Ω satisfying

α
({(

(pi)i∈N0 , h
)
∈ Ω : p1 = 1

})
< 1,

α
({(

(pi)i∈N0 , h
)
∈ Ω : p0 ≤ 1− δ, h ∈ [δ, 1]

})
= 1

(5.1)

for some δ > 0. The first property ensures that the branching is non-trivial and the second

property is a common ellipticity condition which comes up in the context of survival of

branching processes in random environment.

Let ω = (ωx)x∈N0 = (µx, hx)x∈N0 be an i.i.d. random sequence in Ω with distribution

αN0 =
⊗

x∈N0
α. We write P := αN0 and E for the associated expectation. In the fol-

lowing, ω is referred to as the random environment containing the offspring distributions

µx and the drift parameters hx. Let

mx = mx(ω) :=
∞∑

k=0

kµx
(
{k}
)

be the mean offspring at location x ∈ N0. We denote the essential supremum of m0 by

M := ess supm0

and furthermore we define

Λ := ess sup
(
m0(1− h0)

)
. (5.2)

Step II (Evolution of the cloud of particles)

Given the randomly chosen environment (ωx)x∈N0 = (µx, hx)x∈N0 , the cloud of particles

evolves at every time n ∈ N0. First, each existing particle at some site x ∈ N0 produces

offspring according to the distribution µx independently of all other particles and dies.

Then, the newly produced particles move independently according to an underlying Markov

chain starting at position x. The transition probabilities are also given by the environment.

We will only consider a particular type of Markov chain on N0 that we may call “movement

to the right with (random) delay”. This Markov chain is determined by the following

transition probabilities:

pω(x, y) =





hx y = x+ 1

1− hx y = x

0 otherwise

(5.3)

Note that due to the ellipticity condition (5.1), hx is bounded away from 0 by some positive

δ. Later, we consider the case that P(h0 = h) = 1 for some h ∈ (0, 1] where the drift pa-

rameter is constant and analyse different survival regimes depending on the drift parameter
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h, see Theorem 5.3.7.

For n ∈ N0 and x ∈ N0, let us denote the number of particles at location x at time n by

ηn(x), and furthermore, let

Zn :=
∑

x∈N0

ηn(x) (5.4)

be the total number of particles at time n.

We denote the probability and the expectation for the process in the fixed environment ω

started with one particle at x by P x
ω and Ex

ω, respectively. P x
ω and Ex

ω are often referred to

as “quenched” probability and expectation.

Now we define two survival regimes:

Definition 5.2.1. Given ω, we say that

(i) there is Global Survival (GS) if

P 0
ω

(
Zn → 0

)
< 1,

(ii) there is Local Survival (LS) if

P 0
ω

(
ηn(x)→ 0

)
< 1

for some x ∈ N0.

Remarks 5.2.2. (i) For fixed ω, LS is equivalent to

P 0
ω

(
ηn(x)→ 0 ∀ x ∈ N0

)
< 1.

(ii) Since the drift parameter is always positive, it is easy to see that for fixed ω LS and

GS do not depend on the starting point in Definition 5.2.1. Thus we will always

assume that our process starts at 0. For convenience we will omit the superscript 0

and use Pω and Eω instead.

5.3 Results

The following results characterize the different survival regimes. As in [GMPV08] (cf. The-

orem 4.3.3 and Theorem 4.3.5), local and global survival do not depend on the realization

of the environment but only on its law.

Theorem 5.3.1. There is either LS for P-a.e. ω or there is no LS for P-a.e. ω.

There is LS for P-a.e. ω iff

Λ > 1.
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Theorem 5.3.2. Suppose Λ ≤ 1.

There is either GS for P-a.e. ω or there is no GS for P-a.e. ω.

There is GS for P-a.e. ω iff

E

[
log

(
m0h0

1−m0(1− h0)

)]
> 0.

We now consider the local and the global growth of the moments Eω[ηn(x)] and Eω[Zn].

For Theorems 5.3.3 – 5.3.6, we need the following stronger condition

α
({(

(pi)i∈N0 , h
)
∈ Ω : p1 = 1

})
< 1,

α
({(

(pi)i∈N0 , h
)
∈ Ω : p0 ≤ 1− δ, h ∈ [δ, 1− δ]

})
= 1

(5.5)

for some δ > 0. In addition, for those theorems we assume M <∞.

Theorem 5.3.3. There exists a unique, deterministic, continuous, and concave function

β : [0, 1] −→ R such that for every γ > 0 we have for P-a.e. ω

lim
n→∞

max
x∈n[γ,1]∩N

∣∣∣ 1
n

logEω
[
ηn(x)

]
− β(x

n
)
∣∣∣ = 0.

Additionally, it holds that β(0) = log
(
Λ
)

and β(1) = E[log(m0h0)].

Theorem 5.3.4. We have

lim
n→∞

1
n

logEω
[
Zn
]

= max
x∈[0,1]

β(x) for P-a.e. ω.

The next theorem shows that GS is equivalent to exponential growth of the moments Eω[Zn]:

Theorem 5.3.5. The following assertions are equivalent:

(i) lim
n→∞

1
n

logEω
[
Zn
]
> 0 holds for P-a.e. ω.

(ii) There is GS for P-a.e. ω.

In the following theorem we consider the growth of the population Zn on the event of sur-

vival:

Theorem 5.3.6. If there is GS we have for P-a.e. ω

lim
n→∞

1
n

logZn = max
x∈[0,1]

β(x) > 0 Pω-a.s. on {Zn 6→ 0}.
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As already announced above, we now analyse the case of constant drift parameter, i.e.

P(h0 = h) = 1 for some h ∈ (0, 1]. As it is easy to see from Theorem 5.3.1 in this case, we

have LS iff

h < hLS :=

{
1− 1

M
if M ∈ (1,∞]

0 if M ∈ (0, 1] .

To analyse the dependence of GS on h we define

ϕ(h) := E

[
log

(
m0h

1−m0(1− h)

)]
.

Theorem 5.3.7. Suppose h ≥ hLS.

(i) If M ≤ 1, then we have ϕ(h) ≤ 0 for all h ∈ (0, 1] and thus there is a.s. no GS.

(ii) Assume M > 1.

(a) If ϕ(hLS) ≥ 0 and ϕ(1) ≤ 0, then there is a unique hGS ∈ [hLS, 1] with

ϕ(hGS) = 0. In this case, we have a.s. GS for h ∈ (0, hGS) and a.s. no GS

for h ∈ [hGS, 1].

(b) If ϕ(hLS) < 0, then ϕ(h) < 0 for all h ∈ [hLS, 1]. Thus, we have a.s. GS for

h ∈ (0, hLS) and a.s. no GS for h ∈ [hLS, 1]. In this case, we define hGS := hLS.

(c) If ϕ(1) > 0, then ϕ(h) > 0 for all h ∈ [hLS, 1]. Thus, there is a.s. GS for all

h ∈ (0, 1]. In this case we define hGS :=∞.

Hence, we have a unique hGS ∈ [hLS, 1]∪ {∞} such that there is a.s. GS for h < hGS
and a.s. no GS for h ≥ hGS.

5.4 Remarks

The following remarks apply to the case of constant drift:

Remarks 5.4.1. (i) Since ϕ(1) = E[logm0], our results can be seen as an extension

of the well-known condition for possible survival of branching processes in a random

environment (cf. Theorem 4.2.1 and Theorem 4.2.2 by Tanny, recalling that we assume

condition (5.1)). In fact, our proofs rely on this result.

(ii) If M < ∞ and ϕ(hLS) ∈ (0,∞], then due to the continuity of ϕ there exists z > 0

such that there is a.s. GS but a.s. no LS for every h ∈ [hLS, hLS + z). In particular,

this is the case if P(m0 = M) > 0, since then ϕ(hLS) =∞.

(iii) We provide an example for a setting in which the condition of Theorem 5.3.7 (ii)(b)

holds. In this case, there is a.s. LS for h ∈ (0, hLS) and a.s. no GS for h ∈ [hLS, 1] for

some hLS ∈ (0, 1). (See Section 5.6.)
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Remark 5.4.2. The expected global population size Eω[Zn] corresponds to dn(0, F ) in the

notation of [GH91]. They describe the limit

lim
n→∞

1
n

logEω[Zn] = lim
n→∞

1
n

log dn =: λ(h)

as a function of the drift h by an implicit formula (cf. Theorem 4.3.7).

To see this correspondence, let (Sn)n∈N0 be a random walk with (non-random) transition

probabilities (ph(x, y))x,y∈N0 starting in 0 where the transition probabilities are defined by

ph(x, y) :=





h y = x+ 1

1− h y = x

0 otherwise

and let Eh be the associated expectation. We denote the local times of (Sn)n∈N0 by ln(x),

that is

ln(x) := |{0 ≤ i ≤ n : Si = x}| for x ≥ 0, n ≥ 0.

For x = 0, we now have

Eω[ηn(0)] = (1− h)n ·m0(ω)n = Eh

[
n−1∏

i=0

mSi(ω) · 1{Sn=0}

]
.

For x ≥ 1, we have

Eω[ηn(x)] = h ·mx−1(ω) · Eω
[
ηn−1(x− 1)

]
+ (1− h) ·mx(ω) · Eω

[
ηn−1(x)

]

which yields

Eω[ηn(x)] = Eh

[
n−1∏

i=0

mSi(ω) · 1{Sn=x}

]

for all x ≥ 1 by induction. Finally, we get

Eω[Zn] =
∞∑

x=0

Eω[ηn(x)] = Eh

[
n−1∏

i=0

mSi(ω)

]
= Eh

[
n−1∏

x=0

mx(ω)ln(x)

]
.

Since we can extend the environment ω = (ωx)x∈N0 to an i.i.d. environment (ωx)x∈Z and

since (ωx)x∈Z and (ω−x)x∈Z have the same distribution with respect to P, formula (1.8) and

Theorem 4.3.7 by Greven and den Hollander show that there exists a deterministic c ∈ R
such that

lim
n→∞

1
n

logEω[Zn] = c for P-a.e. ω.

In our notation this limit coincides with maxx∈[0,1] β(x).

The connection between the two models enables us to characterize the critical drift param-

eter at which the function h 7→ λ(h) in Theorem 4.3.8 (2) by Greven and den Hollander

changes its sign using an easier criterion, see Theorem 5.3.7.
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5.5 Proofs

Proof of Theorem 5.3.1. First, we observe that the descendants of a particle at location x

that stay at x form a Galton-Watson process with mean offspring mx(1−hx). Given ω, we

therefore have

P x
ω

(
ηn(x)→ 0

)
< 1 ⇔ mx(ω)(1− hx(ω)) > 1.

Now assume Λ > 1. Thus, there is some λ > 1 such that

P(m0(1− h0) ≥ λ) > ε > 0

for some ε > 0 and using the Borel-Cantelli lemma we obtain that P-a.s. for infinitely many

locations x we have

mx(1− hx) > 1.

Let x0 = x0(ω) be a location satisfying mx0(1− hx0) > 1.

For P-a.e. ω, we see

Pω(ηx0(x0) ≥ 1)

≥
(
1− µ0

(
{0}
))
h0 ·

(
1− µ1

(
{0}
))
h1 · . . . ·

(
1− µx0−1

(
{0}
))
hx0−1

> 0

whereas the second inequality uses condition (5.1).

We obtain for P-a.e. ω

Pω(ηn(x0)→∞)

≥ Pω(ηx0(x0) ≥ 1) · P x0
ω (ηn(x0)→∞)

> 0

and thus LS.

Now assume Λ ≤ 1. As mentioned above, for every x ∈ N0 and P-a.e. ω, the descendants of

a particle at location x that stay at x form a subcritical or critical Galton-Watson process.

Thus, for a given ω we have

ηn(0)→ 0 Pω-a.s.

and the total number of particles that move from 0 to 1 is therefore Pω-a.s. finite. Induc-

tively, we conclude for every x ∈ N0 that the total number of particles that reach location

x from x− 1 is finite. By assumption, each of those particles starts a subcritical or critical

Galton-Watson process at location x which dies out Pω-a.s.. This implies

Pω(ηn(x)→ 0) = 1 ∀ x ∈ N0

which completes the proof. �
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Proof of Theorem 5.3.2. Since Λ ≤ 1 by assumption, there is P-a.s. no LS according to

Theorem 5.3.1. In other words, we have for all x ∈ N0

Pω(ηn(x)→ 0) = 1 for P-a.e. ω.

We now define a branching process in random environment (ξn)n∈N0 that is embedded in

the considered BRWRE. After starting with one particle at 0, we freeze all particles that

reach 1 and keep those particles frozen until all existing particles have reached 1. This will

happen a.s. after a finite time because the number of particles at 0 constitutes a subcritical

or critical Galton-Watson process that dies out with probability 1. We now denote the total

number of particles frozen in 1 by ξ1. Then, we release all particles, let them reproduce

and move according to the BRWRE and freeze all particles that hit 2. Let ξ2 be the total

number of particles frozen at 2. We repeat this procedure and with ξ0 := 1 we obtain the

process (ξn)n∈N0 which is a branching process in an i.i.d. environment.

Another way to construct (ξn)n∈N0 is to think of ancestral lines. Each particle has a unique

ancestral line leading back to the first particle starting from the origin. Then, ξk is the total

number of particles which are the first particles that reach position k among the particles

in their particular ancestral lines.

We observe that GS of (Zn)n∈N0 is equivalent to survival of (ξn)n∈N0 .

Due to Theorem 4.2.1 and Theorem 4.2.2 by Tanny (taking into account condition (5.1)),

the process (ξn)n∈N0 survives with positive probability for P-a.e. environment ω iff

∫
log
(
Eω[ξ1]

)
P(dω) > 0.

Computing the expectation Eω[ξ1] now completes our proof. First, we define ξ
(k)
1 as the

number of particles which move from position 0 to 1 at time k. Using this notation, we

may write

ξ1 =
∞∑

k=0

ξ
(k)
1

and obtain

Eω[ξ1] =
∞∑

k=0

Eω
[
ξ

(k)
1

]
.

To calculate Eω
[
ξ

(k)
1

]
, we observe that (with respect to Pω) the expected number of particles

at position 0 at time k equals
(
m0(ω) · (1 − h0(ω))

)k
. Each of those particles contributes

m0(ω) · h0(ω) to Eω
[
ξ

(k)
1

]
. This yields

Eω[ξ1] =
∞∑

k=0

(
m0(ω) · (1− h0(ω))

)k ·m0(ω) · h0(ω)

=
m0(ω) · h0(ω)

1−m0(ω) · (1− h0(ω))
(5.6)

which is defined as ∞ if m0(ω) · (1− h0(ω)) = 1. �
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Remark 5.5.1. Alternatively, equation (5.6) can be obtained using generating functions.

The crucial observation is that the generating function fx(s) := Eω[sξx+1|ξx = 1] is a solution

of the equation

fx(s) = gx
(
(1− hx)fx(s) + hxs

)

where gx(s) :=
∑∞

k=0 µx
(
{k}
)
sk. Then, Eω[ξ1] = f ′0(1), leading to (5.6) .

Proof of Theorem 5.3.3. Following the ideas of [CP07], we introduce the function β to

investigate the local growth rates.

(i) First, we show that β can be defined as a concave function on (0, 1] ∩Q such that

lim
n→∞

1
sn

logEω
[
ηsn(rn)

]
= β

(
r
s

)
(5.7)

holds for all r, s ∈ N with r ≤ s and for P-a.e. ω.

To see this, fix r, s ∈ N with r ≤ s. We define

Sm,n(ω) := 1
s

logErm
ω

[
ηs(n−m)(rn)

]

for 0 ≤ m ≤ n which is integrable due to (5.5) and M <∞. Using this definition, we have

Sm+1,n+1(ω) = Sm,n ◦Θ(ω) (5.8)

where Θ(ω) := θr(ω) with θ denoting the shift operator as usual, i.e. (θ ω)i = ωi+1. Fur-

thermore, we have

S0,n(ω) ≥ S0,m(ω) + Sm,n(ω)

since

E0
ω

[
ηsn(rn)

]
≥ E0

ω

[
ηsm(rm)

]
· Erm

ω

[
ηs(n−m)(rn)

]
. (5.9)

With the properties (5.8) and (5.9), we are able to apply the subadditive ergodic theorem

to (Sm,n) and we obtain that

lim
n→∞

1
n
S0,n(ω) = lim

n→∞
1
sn

logEω
[
ηsn(rn)

]
=: β

(
r
s

)

exists for P-a.e. ω. Clearly, the limit only depends on r
s
. Whereas it is P-a.s. constant since

P is i.i.d..

(ii) We now show that β is concave on (0, 1] ∩ Q. Fix a, b, t ∈ (0, 1] ∩ Q with t 6= 1

and let s := a′ · b′ · t′ be the product of the denominators of the reduced fractions of a, b, t.

Due to (5.9), we have

1
sn

logEω

[
ηsn
(
s(ta+ (1− t)b)n

)]

≥ t 1
stn

logEω

[
ηstn
(
stan

)]

+ (1− t) 1
s(1−t)n logEstan

ω

[
ηs(1−t)n

(
s(ta+ (1− t)b)n

)]
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= t 1
stn

logEω

[
ηstn
(
stan

)]

+ (1− t) 1
s(1−t)n logEθstanω

[
ηs(1−t)n

(
s(1− t)bn

)]
. (5.10)

We observe that for all n ∈ N0

Eθstanω

[
ηs(1−t)n

(
s(1− t)bn

)] d
= Eω

[
ηs(1−t)n

(
s(1− t)bn

)]
.

Due to (5.7) and since β is P-a.s. constant, this implies

(1− t) 1
s(1−t)n logEθstanω

[
ηs(1−t)n

(
s(1− t)bn

)]
−−−→
n→∞

(1− t)β(b)

in probability. Therefore there exists a subsequence such that we have P-a.s. convergence

in (5.10) and this yields

β(ta+ (1− t)b) ≥ tβ(a) + (1− t)β(b).

We observe that β is bounded with 2 log δ + log(1− δ) ≤ β(x) ≤ logM and thus it can be

uniquely extended to a continuous and concave function β : (0, 1) −→ R.

(iii) We now investigate the behaviour of β for x ↓ 0 and show that

lim
x↓0

β(x) = log(Λ).

Fix ε > 0 and a ∈ Q ∩ (0, ε]. Let a′ be the denominator of the reduced fraction of a. For

P-a.e. ω there exists y = y(ω) with

my(ω)(1− hy(ω)) > Λ− ε.

With

k := max{l ∈ N : l ≤ (1− ε)a′n},
we get for large n such that k ≥ y(ω)

Eω
[
ηa′n(a′an)

]
≥ Eω

[
ηk(y(ω))

]
· Ey(ω)

ω

[
ηa′n−k(a

′an)
]

≥ δ
y(ω)
0 · (Λ− ε)k−y(ω) · δa′n−k0 for P-a.e. ω

whereas δ0 := δ2 · (1− δ). Taking n→∞ and ε→ 0, we conclude

lim inf
x↓0

β(x) ≥ log(Λ).

To get the other inequality, we notice that for n1, n2 ∈ N we have

Eω
[
ηn1·n2(n2)

]
≤
(
n1·n2

n2

)
· Λ(n1−1)·n2 ·Mn2 for P-a.e. ω. (5.11)

Since
1

n1·n2
log
(
n1·n2

n2

)
−−−−→
n2→∞

n1−1
n1

log
(

n1

n1−1

)
+ 1

n1
log(n1) −−−−→

n1→∞
0,
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(5.11) yields for P-a.e. ω

1
n1·n2

logEω
[
ηn1·n2(n2)

]
≤ (o(n2) + o(n1)) + n1−1

n1
log(Λ) + 1

n1
log(M)

−−−−→
n2→∞

n1−1
n1

log(Λ) + o(n1).

This implies

lim sup
n→∞

β
(

1
n

)
≤ log(Λ),

and due to the continuity of β on (0, 1), we conclude

lim sup
x↓0

β(x) ≤ log(Λ).

(iv) Since (ηn(n))n∈N0 is a branching process in an i.i.d. environment satisfying

Eω[η1(1)] = m0h0,

we have

β(1) = E
[

log(m0h0)
]
.

The continuity of β in 1 can be shown with similar arguments as in part (iii).

(v) Fix γ > 0 and ε > 0. We now show that for P-a.e. ω

lim inf
n→∞

min
x∈n[γ,1]∩N

(
1
n

logEω[ηn(x)]− β(x
n
)
)
≥ 0. (5.12)

To see this, we observe that there is a finite set {a1, . . . , al} ⊂ (0, 1) ∩ Q satisfying the

following condition:

∀ b ∈ [γ, 1] ∃ i, j ∈ {1, . . . , l} : |b− ai| < ε , ai ≤ b and |b− aj| < ε , aj ≥ b .

Let a′i be the denominator of the reduced fraction of ai. We define

ki := max{l ∈ N : a′il ≤ (1− ε)n}.

By definition of ki, for large n, it holds that

(1− 2ε)n < (1− ε)n− a′i < a′iki ≤ (1− ε)n. (5.13)

Furthermore, for large n and for all i ∈ {1, . . . , l}, we have

1
a′iki

logEω
[
ηa′iki(a

′
iaiki)

]
≥ β(ai)− ε (5.14)

for P-a.e. ω due to (5.7).

Now let y ∈ n[γ, 1] ∩ N. Then, there is ai ≤ y
n

with | y
n
− ai| < ε and we have

a′iaiki ≤ (1− ε)nai ≤ (1− ε)y ≤ y. (5.15)

147



CHAPTER 5. SURVIVAL AND GROWTH OF A BRWRE

If β(ai)− ε ≥ 0 due to (5.13), (5.14), and (5.15), we have

Eω
[
ηn(y)

]

≥ Eω
[
ηa′iki(a

′
iaiki)

]
· Ea′iaiki

ω

[
ηn−a′iki(y)

]

≥ exp
(
a′iki · (β(ai)− ε)

)
· δn−a

′
iki

0

= exp
(

a′iki︸︷︷︸
≥(1−2ε)n

· (β(ai)− ε)− (n− a′iki)︸ ︷︷ ︸
≤2εn

· log(δ−1
0 )
)

≥ exp
(
n
(
(1− 2ε) · (β(ai)− ε)− 2ε · log(δ−1

0 )
))

for P-a.e. ω and for all large n, again with δ0 := δ2 ·(1− δ). This yields for P-a.e. ω

1
n

logEω
[
ηn(y)

]

≥ (1− 2ε) · (β(ai)− ε)− 2ε · log(δ−1
0 ). (5.16)

If β(ai)− ε < 0, we conclude in the same way that for P-a.e. ω

Eω
[
ηn(y)

]

≥ exp
(
n
(
(1− ε) · (β(ai)− ε)− 2ε · log(δ−1

0 )
))
. (5.17)

Since |ai − y
n
| < ε and since β is uniformly continuous on [γ, 1], (5.16) and (5.17) imply

(5.12) as n→∞ and ε→ 0.

(vi) To complete the proof, we now have to show that for P-a.e. ω

lim sup
n→∞

max
x∈n[γ,1]∩N

(
1
n

logEω
[
ηn(x)

]
− β(x

n
)
)
≤ 0. (5.18)

So we assume that (5.18) does not hold and thus for infinitely many n ∈ N there exists

y ∈ n[γ, 1] ∩ N such that
1
n

logEω
[
ηn(y)

]
≥ β( y

n
) + ε (5.19)

holds with positive probability. As in (v), associated with y, there exists aj ≥ y
n

with

| y
n
− aj| < ε. We define

k′j := max{l ∈ N : a′jl ≤ (1 + ε)n}.
Then, (5.7) implies

Eω
[
ηa′jk′j(a

′
jajk

′
j)
]
< exp

(
a′jk

′
j · (β(aj) + ε)

)
(5.20)

for P-a.e. ω and for all large n. At the same time due to (5.19), we have with positive

probability

Eω
[
ηa′jk′j(a

′
jajk

′
j)
]

≥ Eω
[
ηn(y)

]
· Ey

ω

[
ηa′jk′j−n(a′jajk

′
j)
]

≥ exp
(
n(β( y

n
) + ε)

)
· δa

′
jk
′
j−n

0

148



5.5. PROOFS

since a′jk
′
j − n > 0 and a′jajk

′
j ≥ (n + εn − a′j)aj ≥ naj ≥ y for large n. This yields a

contradiction to (5.20) and hence completes the proof of the theorem. �

Proof of Theorem 5.3.4. For any ε > 0, there exists x0 ∈ Q ∩ (0, 1] such that

β(x0) ≥ max
x∈[0,1]

β(x)− ε.

Let x′0 ∈ N be the denominator of the reduced fraction of x0. Then, we have for P-a.e. ω

lim inf
n→∞

1
nx′0

logEω
[
Znx′0

]
≥ lim inf

n→∞
1
nx′0

logEω
[
ηnx′0(nx

′
0 · x0)

]

= β(x0) ≥ max
x∈[0,1]

β(x)− ε,

and because of the ellipticity condition (5.5),

Eω
[
Znx′0+r

]
≥ δr0 · Eω

[
Znx′0

]

for r ∈ {0, 1, . . . , x′0 − 1} and for P-a.e. ω. We conclude for ε→ 0 that for P-a.e. ω

lim inf
n→∞

1
n

logEω
[
Zn
]
≥ max

x∈[0,1]
β(x). (5.21)

To get the other inequality, we first state the following

Lemma 5.5.2. For ε > 0, there is γ > 0 such that for all n ∈ N we have

1
n

logEω
[
ηn(y)

]
≤ log(Λ + ε) for P-a.e. ω

for all y ∈ n[0, γ] ∩ N0.

Proof of Lemma 5.5.2. For 1
2
> γ > 0 and y < γn, we have

Eω[ηn(y)] ≤
(
n
y

)
· Λn−y ·My for P-a.e. ω.

Since
1
n

log
(
n
y

)
≤ 1

n
log
(

n
bγnc

)
→ 0

for γ → 0 uniformly in n, we get for P-a.e. ω

1
n

logEω[ηn(y)] ≤ o(γ) + n−y
n

log(Λ) + y
n

log(M) ≤ log(Λ + ε)

for γ > 0 small enough. �

For an arbitrary ε > 0, we now choose γ > 0 as in Lemma 5.5.2. Then, by Theorem 5.3.3

and Lemma 5.5.2, we get

lim sup
n→∞

1
n

logEω[Zn]

= lim sup
n→∞

1
n

logEω



bγnc−1∑

y=0

ηn(y) +
n∑

y=bγnc

ηn(y)



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≤ lim sup
n→∞

1
n

log

(
γn·
(
Λ + ε

)n
+ n·exp

(
n·
(

max
x∈[0,1]

β(x) + o(n)
)))

≤ max
x∈[0,1]

β(x) + ε

for P-a.e. ω since β(0) = log(Λ). For ε→ 0, this yields for P-a.e. ω

lim sup
n→∞

1
n

logEω[Zn] ≤ max
x∈[0,1]

β(x) ,

which, together with (5.21), proves the claim. �

Proof of Theorem 5.3.5. We start by proving that (ii) implies (i).

First, assume that there is P-a.s. LS. As shown in the proof of Theorem 5.3.1, for P-a.e.

ω there is a location x such that the descendants of a particle at x that stay at x form a

supercritical Galton-Watson process. Let x = x(ω) be such a location, i.e. mx(1− hx) > 1.

Then, we have for P-a.e. ω and for n ≥ x

Eω[Zn] ≥ Eω[ηn(x)]

≥
(
1− µ0

(
{0}
))
h0 · . . . ·

(
1− µx−1

(
{0}
))
hx−1 ·

(
mx(1− hx)

)n−x

≥ (δ2x ·
(
mx(1− hx)

)n−x

where we used condition (5.1) for the last inequality. Due to Theorem 5.3.4, we obtain for

P-a.e. ω

lim
n→∞

1
n

logEω[Zn] ≥ lim sup
n→∞

1
n

log
(
δ2x · (mx(1− hx))n−x

)

= log (mx(1− hx))
> 0.

Now, let us assume that there is P-a.s. no LS, which is according to Theorem 5.3.1 equivalent

to Λ ≤ 1. Again, we use the process (ξn)n∈N0 defined in the proof of Theorem 5.3.2.

Since there is GS for P-a.e. ω, the process (ξn)n∈N0 has a positive probability of survival for

P-a.e. ω. Thus, we have ∫
log
(
Eω[ξ1]

)
P(dω) > 0 (5.22)

due to Theorem 4.2.1 and Theorem 4.2.2 by Tanny. For T ∈ N, we now introduce a

slightly modified embedded branching process (ξTn )n∈N0 . For k ∈ N, we define ξTk as the

total number of all particles that move from position k − 1 to k within T time units after

they were released at position k− 1. The left over particles are no longer considered. With

ξT0 := 1, we observe that (ξTn )n∈N0 is a branching process in an i.i.d. environment. By the

monotone convergence theorem and (5.22), there exists some T such that
∫

log
(
Eω
[
ξT1
])

P(dω) > 0. (5.23)

By construction of (ξTn )n∈N0 , we obtain

ξTn ≤ Zn + Zn+1 + . . .+ ZnT . (5.24)
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Using the strong law of large numbers and taking into account that ω is an i.i.d. sequence,

we have

lim
n→∞

1
n

logEω
[
ξTn
]

= lim
n→∞

1
n

log
n∏

i=0

Eθnω
[
ξT1
]

= lim
n→∞

1
n

n∑

i=0

logEθnω
[
ξT1
]

=

∫
log
(
Eω
[
ξT1
])

P(dω) for P-a.e. ω. (5.25)

Here, θ again denotes the shift operator as usual, i.e. (θ ω)i = ωi+1. Together with (5.23)

and (5.24), this yields for P-a.e. ω

lim inf
n→∞

1
n

logEω
[
Zn + Zn+1 + . . .+ ZnT

]
> 0. (5.26)

Now, we conclude using Theorem 5.3.4 that for P-a.e. ω

max
x∈[0,1]

β(x) = lim
n→∞

1
n

logEω[Zn] > 0

because otherwise there would be a contradiction to (5.26). This shows that (ii) implies

(i).

To show that (i) implies (ii), we first notice that (ii) obviously holds if there is LS for P-a.e.

ω. Therefore, we may assume Λ ≤ 1 for the rest of the proof.

Now, label every particle of the entire branching process and let Γ denote the set of all

produced particles. Write σ ≺ τ for two particles σ 6= τ if σ is an ancestor of τ and denote

by |σ| the generation in which the particle σ is produced. Furthermore, for every σ ∈ Γ let

Xσ be the random location of the particle σ. Using these notations, we define

Gi := {τ ∈ Γ : Xτ = i, Xσ < i for all σ ∈ Γ, σ ≺ τ} (5.27)

for every i ∈ N0. Therefore, Gi is for i 6= 0 the set of all the particles τ that move from

position i − 1 to position i and hence the particles in Gi are the first particles at position

i in their particular ancestral lines. We observe that the process (|Gn|)n∈N0 coincides with

(ξn)n∈N0 . Further, define for every σ ∈ Γ and n ∈ N0

Hσ
n := |{τ ∈ Γ : σ � τ, |τ | = n, Xτ = Xσ}|

as the number of descendants of the particle σ in generation n which are still at the same

location as the particle σ. This enables us to decompose Zn in the following way:

Zn =
n∑

i=1

∑

σ∈Gi

Hσ
n−|σ| (5.28)
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Since by assumption there is no LS, we have for P-a.e. ω

Eω[Hσ
n |σ ∈ Γ, Xσ = i] ≤ 1 (5.29)

because for any existing particle σ its progeny which stays at the location of σ forms a

Galton-Watson process which eventually dies out. By (5.28) and (5.29), we conclude that

for P-a.e. ω we have

Eω[Zn] ≤
n∑

i=1

Eω[|Gi|].

Therefore, due to (i), we get

lim sup
n→∞

1
n

logEω[|Gn|] > 0 for P-a.e. ω.

Since (|Gn|)n∈N0 coincides with the branching process in random environment (ξn)n∈N0 , we

obtain ∫
log
(
Eω[ξ1]

)
P(dω) = lim

n→∞
1
n

logEω[|Gn|] > 0 for P-a.e. ω

as in (5.25). But then again, we have GS for P-a.e. ω since (ξn)n∈N0 survives with positive

probability for P-a.e. ω. �

Proof of Theorem 5.3.6. In this proof we use the expression “a.s.” in the sense of “Pω-a.s.

for P-a.e. ω”.

Part 1. In the first part of the proof we show in three steps that we have a.s.

lim sup
n→∞

1
n

logZn ≤ max
x∈[0,1]

β(x). (5.30)

(i) To obtain (5.30), we start by showing that for all γ > 0 we have a.s.

lim sup
n→∞

max
x∈n[γ,1]∩N

(
1
n

log ηn(x)− β(x
n
)
)
≤ 0. (5.31)

To see this, fix γ > 0 and ε > 0.

Then, by Theorem 5.3.3, for P-a.e. ω there exists N = N(ω, γ, ε) such that for all n ≥ N

and for all y ∈ n[γ, 1] ∩ N we have

Eω[ηn(y)] ≤ exp
(
n · (β( y

n
) + ε)

)
.

Thus, for P-a.e. ω we obtain for large n and for all y ∈ n[γ, 1] ∩ N

Pω

(
ηn(y) ≥ exp

(
n · (β( y

n
) + 2ε)

))
≤ Eω[ηn(y)]

exp(n · (β( y
n
) + 2ε))

= exp(−εn).

Using the Borel-Cantelli lemma and taking into account that
∣∣n[γ, 1] ∩ N

∣∣ ≤ n, this yields

that a.s. we have

lim sup
n→∞

max
x∈n[γ,1]∩N

(
1
n

log ηn(y)− β( y
n
)
)
< 2ε.

Since ε is arbitrarily small, this proves (5.31).
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(ii) Secondly, we show that for every ε > 0 there exists γ = γ(ε) > 0 such that a.s. we have

lim sup
n→∞

max
x∈n[0,γ]∩N

(
1
n

log ηn(x)− β(0)− ε
)
≤ 0. (5.32)

To see this, we observe that according to Lemma 5.5.2 for every ε > 0 there is γ = γ(ε) > 0

such that

1
n

logEω
[
ηn(y)

]
≤ log(Λ + ε)

(Λ>1)

≤ log(Λ) + ε = β(0) + ε

for P-a.e. ω and for 0 ≤ y ≤ γn. Therefore, the same argument as in (i) yields (5.32).

(iii) We now combine (i) and (ii) to obtain (5.30). For an arbitrary ε > 0, choose γ > 0 as

in (ii). Then, (5.31) and (5.32) imply that a.s. we have

lim sup
n→∞

1
n

logZn

= lim sup
n→∞

1
n

log



bγnc−1∑

y=0

ηn(y) +
n∑

y=bγnc

ηn(y)




≤ lim sup
n→∞

1
n

log

(
γn·exp

(
n·(β(0) + ε)

)
+ n·exp

(
n·
(

max
x∈[0,1]

β(x) + o(n)
)))

≤ max
x∈[0,1]

β(x) + ε.

For ε→ 0, this implies (5.30) and thus the first part of the proof is complete.

Part 2. In the second part of the proof we show that

Pω

(
lim inf
n→∞

1
n

logZn ≥ max
x∈[0,1]

β(x)

∣∣∣∣ Zn 6→ 0

)
= 1 for P-a.e. ω. (5.33)

We start by stating the following

Lemma 5.5.3. For all ε > 0 and r, s ∈ N with r ≤ s and β( r
s
)− ε > 0, there exists N0 ∈ N

such that for P-a.e. ω we have

Pω

(
lim inf
n→∞

1
nsN0

log ηnsN0(nrN0) ≥ β( r
s
)− ε

)
> 0.

Proof of Lemma 5.5.3. Define

MN :=
{
ω ∈ Ω : 1

sN
logEω[ηsN(rN)] ≥ β( r

s
)− ε

2

}
.

Then, for every ε0 > 0 there exists N0 = N0(ε0) such that

P
(
MN0

)
≥ 1− ε0

and thus for sufficiently small ε0 and the corresponding N0(ε0) we have
∫

logEω
[
ηsN0(rN0)

]
P(dω)
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≥ sN0(β( r
s
)− ε

2
)(1− ε0)

≥ sN0(β( r
s
)− ε) + sN0( ε

2
− β( r

s
)ε0 + ε

2
ε0)

≥ sN0(β( r
s
)− ε) > 0. (5.34)

We now construct a branching process in random environment (ψn)n∈N0 which is dominated

by
(
ηnsN0(nrN0)

)
n∈N0

. After starting with one particle at 0, we count all the particles that

are at time sN0 at position rN0 and denote this number by ψ1. The remaining particles

are removed from the system and no longer considered. After that, we count the number

of particles at time 2sN0 at position 2rN0 and denote this number by ψ2. Repeating this

procedure yields the process (ψn)n∈N0 which is supercritical due to (5.34). In fact, (5.34)

and Theorem 4.2.3 by Tanny now imply that for sufficiently small ε0,

lim inf
n→∞

1
n

log ηnsN0(nrN0) ≥ sN0(β( r
s
)− ε) (5.35)

a.s. on {ψn 6→ 0}. Since we assume condition (5.5), Theorem 4.2.1 by Tanny implies

Pω(ψn → 0) < 1 (5.36)

for P-a.e. ω. Combining (5.35) and (5.36) now completes the proof of the lemma. �

Lemma 5.5.3 yields the following

Corollary 5.5.4. Let ε, r, s and N0 be as in Lemma 5.5.3. Then, there exists ν > 0 such

that for P-a.e. ω there exists an increasing sequence (xl)l∈N0 = (xl(ω))l∈N0 in N0 such that

for all l ∈ N0 we have

P xl
ω

(
lim inf
n→∞

1
nsN0

log ηnsN0(nrN0) ≥ β( r
s
)− ε

)
> ν.

Proof of Corollary 5.5.4. Due to Lemma 5.5.3, there exists ν > 0 such that

P
({
ω : Pω

(
lim inf
n→∞

1
nsN0

log ηnsN0(nrN0) ≥ β( r
s
)− ε

)
> ν

})
> 0.

Since the sequence

(
P x
ω

(
lim inf
n→∞

1
nsN0

log ηnsN0(nrN0) ≥ β( r
s
)− ε

))

x∈N0

=

(
Pθxω

(
lim inf
n→∞

1
nsN0

log ηnsN0(nrN0) ≥ β( r
s
)− ε

))

x∈N0

is ergodic with respect to P, the ergodic theorem yields

lim
n→∞

1
n

n−1∑

k=0

1
{
Pθxω

(
lim inf
n→∞

1
nsN0

log ηnsN0(nrN0) ≥ β( r
s
)− ε

)
> ν

}
> 0

for P-a.e. ω and this completes the proof of the corollary. �
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Let (xl)l∈N0 be an increasing sequence of positions as in Corollary 5.5.4. We now show in

two steps that a.s. on the event of non-extinction there will eventually be some particle at

one of the positions xl such that the descendants of this particle constitute a process with

the desired growth.

(i) As a first step, we show that a.s. on the event of survival (Zn)n∈N0 grows as desired

along some subsequence (j + nsN0)n∈N0 for some j ∈ {0, . . . , sN0 − 1}. To obtain this, as

in the proof of Theorem 5.3.5, let Γ again denote the set of all existing particles and for

σ ∈ Γ let ησn(y) denote the number of descendants of σ among the particles which belong

to ηn(y). With the sets (Gl)l∈N0 as in (5.27) and the sequence (xl)l∈N0 as in Corollary 5.5.4,

we define:

Axl :=
{
∃ σ ∈ Gxl : lim inf

n→∞
1

nsN0
log ησ|σ|+nsN0

(xl + nrN0) ≥ β( r
s
)− ε

}

Bxl :=
{
|Gxl | ≥ l

}

Due to Corollary 5.5.4 and since the descendants of all particles belonging to Gxl evolve

independently, we get

Pω
(
Acxl ∩Bxl

)
≤ (1− ν)l for P-a.e. ω,

and therefore, we conclude with the Borel-Cantelli lemma that

Pω

(
lim sup
l→∞

(
Acxl ∩Bxl

))
= 0 for P-a.e. ω. (5.37)

According to Theorem 4.2.3 by Tanny, we have a.s. exponential growth of the process(
|Gl|

)
l∈N0

on the event of survival and therefore it holds that we have a.s.

lim inf
l→∞

Bxl =
{
Zn 6→ 0

}
.

Together with (5.37), this yields

Pω

(
lim sup
l→∞

Acxl

∣∣∣∣ Zn 6→ 0

)
= 0 for P-a.e. ω.

Thus a.s. on {Zn 6→ 0}, there is l ∈ N0 and σ ∈ Gxl such that

lim inf
n→∞

1
nsN0

log ησ|σ|+nsN0
(xl + nrN0) ≥ β( r

s
)− ε

and hence we have for P-a.e. ω

Pω

(⋃

σ∈Γ

{
lim inf
n→∞

1
nsN0

logZ|σ|+nsN0 ≥ β( r
s
)− ε

} ∣∣∣∣∣ Zn 6→ 0

)

= Pω

(⋃

j∈N0

{
lim inf
n→∞

1
nsN0

logZj+nsN0 ≥ β( r
s
)− ε

} ∣∣∣∣∣ Zn 6→ 0

)
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= Pω

(
sN0⋃

j=1

{
lim inf
n→∞

1
nsN0

logZj+nsN0 ≥ β( r
s
)− ε

} ∣∣∣∣∣ Zn 6→ 0

)
= 1. (5.38)

(ii) The last step of this part of the proof is to show that the growth along some subsequence

(j + nsN0)n∈N0 already implies sufficiently strong growth of (Zn)n∈N0 .

Due to the ellipticity condition (5.5), we have (recalling δ0 = δ2(1− δ))

P x
ω

(
ηi(x) ≥ 1

)
≥ δi0 for all i, x ∈ N0.

A large deviation bound for the binomial distribution therefore implies

Pω

(
Zn+i ≤ Zn · δ

i
0

2

∣∣∣ Zn = m
)
≤ exp(−m · λ0) ∀ m ∈ N (5.39)

for i ∈ {1, ..., sN0} and some constant λ0 = λ0(N0) > 0. We now define:

Cj,n :=

sN0⋃

i=1

{
Zj+nsN0+i ≤ δ

sN0
0

2
exp

(
nsN0 ·(β( r

s
)− ε)

)}

Dj,n :=
{

1
nsN0

logZj+nsN0 ≥ β( r
s
)− ε

}

Then, due to (5.39) for P-a.e. ω, we have for all j ∈ {1, . . . , sN0}

Pω (Cj,n ∩Dj,n)

≤ sN0 ·exp
(
− λ0 exp(n·λ1)

)
(5.40)

where λ1 := sN0 ·(β( r
s
)− ε).

Since the upper bound in (5.40) is summable in n ∈ N0, we can apply the Borel-Cantelli

lemma and conclude that for P-a.e. ω we have for all j ∈ {1, . . . , sN0}

Pω

(
lim sup
n→∞

Cj,n

∣∣∣∣ lim inf
n→∞

Dj,n

)

≤ Pω

(
lim inf
n→∞

Dj,n

)−1

· Pω
(

lim sup
n→∞

(Cj,n ∩Dj,n)

)
= 0

Thus, for P-a.e. ω, we have for all j ∈ {1, . . . , sN0}

Pω

(
lim inf
n→∞

1
n

logZn ≤ β( r
s
)− 2ε

∣∣∣ lim inf
n→∞

Dj,n

)
= 0

and this implies

Pω

(
lim inf
n→∞

1
n

logZn ≤ β( r
s
)− 2ε

∣∣∣∣∣
sN0⋃

j=1

lim inf
n→∞

Dj,n

)
= 0. (5.41)

Using (5.38) and (5.41), we obtain

Pω

(
lim inf
n→∞

1
n

logZn ≤ β( r
s
)− 2ε

∣∣∣ Zn 6→ 0
)
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≤ Pω (Zn 6→ 0)−1 · Pω
({

lim inf
n→∞

1
n

logZn ≤ β( r
s
)− 2ε

}
∩
sN0⋃

j=1

lim inf
n→∞

Dj,n

)

= 0

which yields

Pω

(
lim inf
n→∞

1
n

logZn > β( r
s
)− 2ε

∣∣∣ Zn 6→ 0
)

= 1 for P-a.e. ω. (5.42)

Since r and s can be chosen such that β( r
s
) is arbitrarily close to maxx∈[0,1] β(x), (5.42)

implies (5.33) as ε→ 0 and the proof is complete.

�

Proof of Theorem 5.3.7. If M ≤ 1, then

log

(
m0h

1−m0(1− h)

)
≤ 0 P-a.s.

and therefore Theorem 5.3.2 implies (i).

We continue with proving (ii) and assume that M > 1. If m0 = M P-a.s., then

log

(
m0h

1−m0(1− h)

)
> 0 P-a.s.

and thus ϕ(h) > 0 for all h ∈ (hLS, 1]. This case is included in (c).

In the following, we assume that m0 is not deterministic. We notice that ϕ is finite and

continuously differentiable for h ∈ (hLS, 1] since

∂

∂h
log

(
m0h

1−m0(1− h)

)
=

1

h
− m0

1−m0(1− h)

is a.s. uniformly bounded for h ∈ [hLS + ε, 1] with ε > 0. Thus, we have

∂

∂h
ϕ(h) = E

[
1

h
− m0

1−m0(1− h)

]
. (5.43)

Now assume that there exists h∗ ∈ (hLS, 1] with ϕ(h∗) = 0. Then,

E

[
log

(
m0

1−m0(1− h∗)

)]
= log

(
1

h∗

)
. (5.44)

Due to the strict concavity of y 7−→ log y, we have

log

(
E

[
m0

1−m0(1− h∗)

])
> log

(
1

h∗

)
(5.45)

by Jensen’s inequality and (5.44). Thus, we obtain that ϕ is strictly decreasing in h = h∗

by (5.43) and (5.45).
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Now assume ϕ(hLS) = 0. As above, Jensen’s inequality yields (5.45) for hLS instead of h∗.

Since the mapping

h 7−→ m0

1−m0(1− h)

is decreasing in h > 1− 1
m0

, we have

lim
ε↓0

E

[
m0

1−m0(1− hLS + ε)

]
= E

[
m0

1−m0(1− hLS)

]
>

1

hLS

by the monotone convergence theorem. Thus, ϕ is strictly decreasing and therefore negative

in h ∈ (hLS, hLS + ε) for some sufficiently small ε > 0.

Now, we obtain (a) – (c) by the continuity of ϕ and the fact that ϕ is strictly decreasing

in every zero in [hLS, 1]. �

5.6 Examples

1. A basic and natural example to illustrate our results is the following. Let µ(+) and µ(−)

be two different non-trivial offspring distributions. We define

m(+) :=
∞∑

k=0

k µ(+)(k) and m(−) :=
∞∑

k=0

k µ(−)(k)

and suppose

0 < m(−) < m(+) ≤ ∞.

hLS hGS 1

h

ϕ(h)

I II III

Figure 5.1: There are three regimes: I:

LS, II: GS but no LS, III: no GS

hLS 1 < hGS

h

ϕ(h)

I II

Figure 5.2: There are two regimes: I: LS,

II: GS but no LS

Furthermore, let

P
(
µ0 = µ(+)

)
= 1− P

(
µ0 = µ(−)

)
= q ∈ (0, 1).
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This setting obviously satisfies condition (5.1). For Figures 5.1 and 5.2, we have chosen

q =
3

4
, m(+) =

10

9
, m(−) =

2

5
,

q =
1

2
, m(+) = 2, m(−) =

2

3
,

respectively.

2. As already announced above, we now provide an example for a setting in which hGS =

hLS < 1. Let the law Pm0 of the mean offspring m0 be given by

dPm0

dλ
(x) := 1.6 · 1[0.5,1](x) + 0.2 · 1(1,2](x)

where λ denotes the Lebesgue measure. Obviously, hLS = 0.5 and a simple computation

yields

ϕ(hLS) = 0.2 ·
(

2 · log(2)
)

+ 1.6 ·
(

2 · log(2)− 1.5 · log(3)
)
< 0.
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