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Abstract

In this thesis we investigate the reconstruction problem of limited angle tomography. Such prob-
lems arise naturally in practical applications like digital breast tomosynthesis, dental tomography
or electron microscopy. Many of these modalities still employ the filtered backprojection (FBP)
algorithm for practical reconstructions. However, as the FBP algorithm implements an inversion
formula for the Radon transform, an essential requirement for its application is the completeness
of tomographic data. Consequently, the use of the FBP algorithm is theoretically not justified
in limited angle tomography. Another issue that arises in limited angle tomography is that only
specific features of the original object can be reconstructed reliably and additional artifacts might
be created in the reconstruction.

The first part of this work is devoted to a detailed analysis of classical reconstructions at a
limited angular range. For this purpose, we derive an exact formula of filtered backprojection
reconstructions at a limited angular range and interpret these results in the context of microlocal
analysis. In particular, we show that a meaningful a-priori information can be extracted from the
limited angle data. Moreover, we prove a characterization of limited angle artifacts that are gen-
erated by the filtered backprojection algorithm and develop an artifact reduction strategy. We also
illustrate the performance of the proposed method in some numerical experiments. Finally, we
study the ill-posedness of the limited angle reconstruction problem. We show that the existence
of invisible singularities at a limited angular range entails severe ill-posedness of limited angle
tomography. Owing to this observation, we derive a stabilization strategy and justify the applica-
tion of the filtered backprojection algorithm to limited angle data under certain assumptions on
the target functions.

In the second part of this work, we develop curvelet sparse regularization (CSR) as a novel
reconstruction method for limited angle tomography and argue that this method is stable and
edge-preserving. We also formulate an adapted version of curvelet sparse regularization (A-
CSR) by applying the stabilization strategy of the first part, and provide a thorough mathematical
analysis of this method. To this end, we prove a characterization of the kernel of the limited
angle Radon transform in terms of curvelets and derive a characterization of CSR reconstructions
at a limited angular range. Finally, we show in a series of numerical experiments that the theo-
retical results directly translate into practice and that the proposed method outperforms classical
reconstructions.
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Chapter 1

Introduction

Computed tomography (CT) has revolutionized diagnostic radiology and is by now one of the
standard modalities in medical imaging. Its goal consists in imaging cross sections of the human
body by measuring and processing the attenuation of x-rays along a large number of lines through
the section. In this process, a fundamental feature of CT is the mathematical reconstruction of an
image through the application of a suitable algorithm. The corresponding mathematical problem
consists in the reconstruction of a function f : R2 → R from the knowledge of its line integrals

R f (θ, s) =

∫
L(θ,s)

f (x) dS (x),

where L(θ, s) = {x ∈ R2 : x1 cos θ + x2 sin θ = s}. The purely mathematical problem of recon-
structing a function from its line integrals was first studied and solved by the Austrian mathemati-
cian Johann Radon in 1917 in his pioneering paper “Über die Bestimmung von Funktionen durch
ihre Integralwerte längs gewisser Mannigfaltigkeiten”, cf. [Rad17]. In that work, he derived an
explicit inversion formula for the integral transform R : f 7→ R f (θ, s) under the assumption
that the data R f (θ, s) is complete, i.e., available for all possible values (θ, s) ∈ [−π/2, π/2) × R.
More than 50 years later, when Allan M. Cormack, [Cor63, Cor64], and Godfrey N. Hounsfield,
[Hou73], invented computer assisted tomography1, this mathematical problem has finally be-
come relevant for practical applications. This breakthrough has attracted very much attention
in engineering sciences as well as in the mathematical community. Especially, the tomographic
reconstruction problem has been studied extensively, and many different reconstruction algo-
rithms were developed for the case of complete tomographic data, cf. [Nat86, NW01], [KS88],
[RK96], [Eps08], [Her09].

The success of computed tomography has also initiated the development of new imaging tech-
niques. In some of these applications the tomographic data can be acquired only at a limited
angular range, i.e., the integral values R f (θ, s) are merely available for (θ, s) ∈ [−Φ,Φ] × R,
where Φ < π/2. According to that, the reconstruction problem of limited angle tomography is
equivalent to the inversion of the limited angle Radon transform RΦ : f 7→ R f |[−Φ,Φ]×R, rather
than the full Radon transform R. Typical examples of modalities where such problems arise are
digital breast tomosynthesis (DBT) [N+97], [III09], dental tomography [HKL+10], [MS12], or

1Allan M. Cormack and Godfrey N. Hounsfield were jointly awarded with the Nobel prize in Physiology and
Medicine in 1979 for the development of computer assisted tomography.
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10 Chapter 1 Introduction

electron microscopy [DRK68]. In these cases, the available angular range [−Φ,Φ] might be very
small. In DBT, for example, the angular range parameter usually varies between Φ = 10◦ and
Φ = 25◦, [ZCS+06], [III09]. In such situations, the reconstruction methods for the full angu-
lar problem are no longer applicable. In [Lou79], [Per79], [Grü80], [Ino79], [Ram91, Ram92],
dedicated inversion methods for the limited angle tomography problem were developed under
the assumption that the target functions have compact support. Essentially, all of these methods
utilize analytic continuation in the Fourier domain or employ the completion of the limited angle
data. In particular, these methods show that a perfect reconstruction is theoretically possible even
from a very small angular range. Nevertheless, there are still substantial problems that arise in
practice:

Severe ill-posedness. Since the limited angle reconstruction problem is severely ill-posed
[Nat86], [Dav83], all reconstruction procedures are extremely unstable, i.e., small measurement
errors can cause huge reconstruction errors. This is a serious drawback since, in practice, the
acquired data is (to some extent) always corrupted by noise. As a consequence, only specific
features of the original object can be reconstructed stably, [Qui93].

Filtered backprojection in limited angle tomography. In practice, the filtered backprojec-
tion (FBP) algorithm is usually preferred over those inversion techniques mentioned above, cf.
[PSV09], [LMKH08], [SMB03], [IG03], [SFS06], [III09]. However, as the FBP algorithm im-
plements an inversion formula for the Radon transform, cf. Section 2.4, an essential requirement
for its application is the completeness of tomographic data. Consequently, there is no theoretical
justification for the application of the FBP algorithm in limited angle tomography.

Limited angle artifacts. Besides the fact that only specific features of the original object can
be reconstructed reliably, the application of the FBP algorithm to limited angle data can also
create additional artifacts in reconstructions, cf. Figure 3.1. Thus, even the reliable information
can be distorted by these artifacts.

Edge-preserving reconstruction. The filtered backprojection algorithm does not perform well
in the presence of noise, [NW01], [Her09], [MS12]. Depending on the choice of the regulari-
zation parameter, the reconstructions may appear either noisy or tend to oversmooth the edges,
cf. Figure 4.1. However, edge-preserving reconstructions are of particular importance for medical
imaging purposes.

In this thesis, we solve the problems listed above. To this end, we prove different characteri-
zations of classical reconstructions at a limited angular range, justify the application of filtered
backprojection to the limited angle data, and provide an artifact reduction strategy for the FBP al-
gorithm. Furthermore, we address the severe ill-posedness by developing a novel edge-preserving
reconstruction method that is adapted to the limited angle geometry, and show its practical rele-
vance.

The thesis is organized as follows. Chapter 2 has an introductory character. It is devoted to
the presentation of basic concepts of computed tomography at a full angular range. We begin
with a brief overview of the imaging principle in x-ray tomography and introduce the Radon
transform as a mathematical model of the measurement process in x-ray CT. Moreover, we note
some fundamental properties of the Radon transform. The main part of this chapter is devoted
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to the presentation of inversion formulas for the Radon transform and the study of ill-posedness
of the tomographic reconstruction problem. The last section of this chapter reviews classical
reconstruction methods. In particular, we present the classical filtered backprojection algorithm
(FBP). Most of the material presented in this chapter is well known and can be found in the
textbooks [Nat86, NW01], [KS88], [RK96], [Eps08], [Her09].

Chapter 3 contains the first part of our main results. Its main objective is the characterization
of reconstructions at a limited angular range. In Section 3.2, we begin our investigations by
studying the backprojection of limited angle data. To that end, we characterize the action of the
Gram operator R∗

Φ
RΦ in the Fourier domain, cf. Theorem 3.6, and prove a characterization of the

kernel of the limited angle Radon transform in the Schwartz space S(R2), cf. Corollary 3.7. We
also observe that the kernel functions of RΦ are directional and illustrate this fact in a numerical
example. Subsequently, we derive an exact formula for filtered backprojection reconstructions at
a limited angular range in Theorem 3.9, and justify the application of the FBP algorithm to limited
angle data under suitable assumptions on the sought functions. An interpretation of these results
in terms of visible and invisible singularities is given in Section 3.3. In particular, we show that a
meaningful a-priori information can be extracted from the limited angle data. In Section 3.4, we
turn our attention to the characterization of limited angle artifacts that are generated by the filtered
backprojection algorithm. Using techniques of microlocal analysis we state a characterization of
these artifacts in Theorem 3.24. Based on this result, we derive an artifact reduction strategy for
the FBP algorithm in Theorem 3.26, and conclude the section with numerical experiments. In
Section 3.5, we discuss three aspects of the severe ill-posedness of limited angle tomography in
the context of microlocal analysis. In particular, we show that the main reason for the severe
ill-posedness is the existence of invisible singularities at limited angular range. Based on this
observation, we finally derive a stabilization strategy for limited angle tomography.

The second part of our results is presented in Chapters 4 and 5. In Chapter 4, we develop a
novel reconstruction technique that is stable, edge-preserving and adapted to the limited angle
geometry. To achieve that, we combine the technique of sparse regularization, [DDDM04], with
the curvelet dictionary, [CD05b], [MP10]. We show that this gives a stable and edge-preserving
reconstruction method which we call curvelet sparse regularization (CSR). In Section 4.2, we
formulate an adapted version of curvelet sparse regularization (A-CSR) by integrating the inher-
ent a-priori information of limited angle tomography (which we derived in Chapter 3) into the
CSR method. In contrast to the non-adapted CSR, the problem dimension of A-CSR is directly
linked to the available angular range. In particular, a significant dimensionality reduction can
be achieved for small angular ranges. The relation between the adapted and the non-adapted
approach is investigated in Section 4.3. To this end, we first derive an explicit formula for the
Radon transform of curvelets, cf. Theorem 4.7, and prove a characterization of the kernel of the
limited angle Radon transform in terms of curvelets, cf. Theorem 4.8. Finally, we characterize
the CSR reconstructions at a limited angular range in Theorem 4.10. These results show that
the reconstructions obtained by the adapted curvelet sparse regularization (A-CSR) coincide with
those obtained via CSR. In Section 4.4, we discuss the relation between the CSR method and the
“curvelet thresholding” approach of [CD02]. In particular, we derive an explicit formula for CSR
reconstructions at a full angular range and interpret the CSR method as a natural generalization of
the “curvelet thresholding” approach to a limited angular range. We conclude with some further
remarks on the CSR approach and discuss the related literature.
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Chapter 5 is concerned with the numerical implementation and with the performance analysis
of CSR and A-CSR in a practical setting. We begin by giving the details of our implementation in
Section 5.1 and proceed with the presentation of numerical experiments in Sections 5.2 and 5.3.
These experiments are basically divided into two parts. The first part, presented in Section 5.2, is
devoted to the illustration of the visibility of curvelets under the limited angle Radon transform.
In the second part of our experiments, we analyze the execution times and the reconstruction
quality of CSR and A-CSR reconstructions, cf. Section 5.3. We show that a significant speedup
can be achieved by using the adapted approach (A-CSR), while preserving the reconstruction
quality of the CSR method. In both cases, the reconstructions are found to be superior to those
obtained via filtered backprojection (FBP). In Section 5.4, we adopt the artifact reduction strat-
egy of Section 3.4 to the adapted curvelet sparse regularization and illustrate its performance in
numerical experiments.

The appendix contains supplementary material. In Appendix A, we review the basic concepts
of the Fourier transform on various spaces of functions and distributions, and present the defini-
tion of Sobolev spaces Hs. The singular value decomposition of compact operators is presented
in Appendix B, whereas Appendix C summarizes the fundamentals of the theory of inverse prob-
lems and regularization.

Remarks. The contents of Chapter 4 and Chapter 5 were partly published in the Journal of
Applied and Computational Harmonic Analysis, [Fri12]. Moreover, the results of Section 4.3
have been announced in the Proceedings in Applied Mathematics and Mechanics, [Fri11]. We
also note that an alternative approach to adapted curvelet sparse regularization was published in
the Proceedings of IEEE International Symposium on Biomedical Imaging, [Fri10].



Chapter 2

An overview of computed tomography

In this chapter, we present the basic concepts of computed tomography (CT). We begin with an
overview of the imaging principle in x-ray tomography. Subsequently, the Radon transform is
introduced as a mathematical model for the measurement process in CT and some fundamental
properties are noted. The main part is devoted to the presentation of inversion formulas for the
Radon transform and the study of ill-posedness of the tomographic reconstruction problem. In
the last section of this chapter we give a brief overview of some classical reconstruction methods.
Most of the material presented in this chapter is well known and can be found in the following
textbooks [Nat86, NW01], [KS88], [RK96], [Eps08], [Her09].

2.1 The principle of x-ray tomography

The aim of x-ray tomography (greek τoµoς = slice) consists in reconstructing the interior of an
unknown two dimensional object from a number of one dimensional x-ray projections. In order
to explore the two-dimensional structure of the object, the x-ray projections are taken at different
views. To this end, a source-detector pair is rotated around the object, cf. Figure 2.1.

Source

Detector

f

I0

I

Figure 2.1: Imaging principle of x-ray tomography. In order to explore the inner structure of an object f , the x-ray
projections are taken at different views. To this end, a source-detector pair is rotated around the object.

13



14 Chapter 2 An overview of computed tomography

The underlying imaging principle is based on the fact that the x-rays are attenuated when pass-
ing the object. The attenuation of the x-ray depends on the interior structure and, hence, carries
information about the interior of the unknown object. Assuming that the x-rays are monochro-
matic and that they travel along straight lines, the intensity I of an x-ray beam is given according
to Beer’s law by, [KS88, Sec. 4.1], [Nat86, Sec. I.1], [Eps08, Sec. 3.1.1],

I = I0 · exp
{
−

∫
L

f (x) dx
}
,

where I0 denotes the initial intensity of the x-ray, f is the absorption coefficient and dx is the arc
length along the straight line path L. Assuming the initial intensity I0 to be known, we can restate
the Beer’s law as

yL B ln
( I0

I

)
=

∫
L

f (x) dx. (2.1)

Recovering the absorption coefficient f or, equivalently, reconstructing an object from x-ray pro-
jections, therefore reduces to solving the mathematical equation (2.1). The theory for solving this
integral equation (in the case that the data yL is available for all possible lines L) is well developed
and will be presented in the course of this chapter.

2.2 Notations

We begin by introducing some standard notation. The inner product of x, y ∈ Rn, n ∈ N, will be
denoted as x · y or simply xy. When not otherwise stated, the inner product in a function space
X will be denoted by 〈 f , g〉X . The Euclidean norm of a vector x ∈ Rn will be denoted by ‖x‖2
or |x|, respectively, whereas the norm in a function space X will be denoted by ‖ f ‖X . We will
be using some classical function spaces, such as the space of Schwartz functions S(Rn) and the
spaces of measurable functions Lp(Ω), without reference since they can be found in every book
on functional analysis. The same holds for the classical sequence spaces `p. Probably the most
important notation for this work is that of the Fourier transform f̂ of a function f ∈ S(Rn) which
is defined as

f̂ (ξ) B (2π)−n/2
∫
Rn

f (x)e−ixξ dx.

The inverse Fourier transform is given by f̌ (x) = f̂ (−x). We will also use the notation F ( f ) and
F −1( f ) for the Fourier and its inverse, respectively. More facts about the Fourier transform are
summarized in Appendix A.

Furthermore, we will make use of the following sets

Ωn := {x ∈ Rn : ‖x‖2 ≤ 1} (unit ball in Rn)

S n−1 := {x ∈ Rn : ‖x‖2 = 1} (sphere in Rn)

Zn−1 := S n−2 × R (cylinder in Rn)

H(θ, s) := {x ∈ Rn : x · θ = s} (θ ∈ S n−1, s ∈ R)

T n−1 := {(θ, x) : θ ∈ S n−1, x ∈ H(θ, 0)} (tangent bundle of S n−1)



2.3 Mathematics of computed tomography 15

For n = 2, we will sometimes drop the superscripts of the above sets and simply write Ω, Z
and T instead of Ω2, Z1 and T 1, respectively. Both, the volume (Lebesgue measure) of subsets
A ⊆ Rn as well as the surface measure of submanifolds M ⊆ Rn will be denoted by |A| or
|M|, respectively. The hyperplanes H(θ, 0) will be denoted by θ⊥ B H(θ, 0), whereas the affine
hyperplanes H(θ, s) in R2 will be denoted by L(θ, s). Sometimes we will abuse the notation and
write θ⊥ = (− sinϕ, cosϕ)ᵀ for the orthogonal unit vector θ = (cosϕ, sinϕ)ᵀ ∈ S 1.

The spaces L2(Zn) as well as L2(T n−1) are defined by the inner products

〈g, h〉L2(Zn) B

∫
S n−1

∫
R

g(θ, s)h(θ, s) ds dθ,

〈g, h〉L2(T n−1) B

∫
S n−1

∫
θ⊥

g(θ, x)h(θ, x) dx dθ,

where dθ denotes the surface measure on S n−1. The space of Schwartz functions on Zn is defined
as

S(Zn) B
{
g ∈ C(Zn) : g(θ, · ) ∈ S(R) uniformly in θ ∈ S n−1

}
.

In what follows, the Fourier transforms and convolutions of functions on Zn or T n are taken
with respect to the second variable, i.e.,

h ∗ g(θ, s) =

∫
R

h(θ, s − t)g(t) dt,

ĥ(θ, σ) = (2π)−1/2
∫
R

h(θ, s)e−isσ ds,

for h, g ∈ S(Zn), and

h ∗ g(θ, x) =

∫
θ⊥

h(θ, x − y)g(y) dy, x ∈ θ⊥,

ĥ(θ, ω) = (2π)−1/2
∫
θ⊥

h(θ, x)e−ixω dx, ω ∈ θ⊥

for h, g ∈ S(T n). Further notation that is of importance for this work will be introduced at the
place of its first occurrence.

2.3 Mathematics of computed tomography

In this section we will give a brief overview of some basic facts about computed tomography.
Though this thesis is concerned with the two dimensional setting, the basic principles will be
stated for arbitrary dimensions.

2.3.1 Radon transforms

According to Beer’s law (2.1), the mathematical model for the measurement process of x-ray
tomography is an integral transform which maps a function f to the set of all of its line integrals.
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In the two dimensional case, this is the well known Radon transform, cf. [Rad17]. We now define
the Radon transform in a multivariate setting.

Definition 2.1 (Radon transform). The Radon transform R f : Zn → R of a function f ∈ S(Rn)
is defined by

R f (θ, s) =

∫
H(θ,s)

f (x) dx =

∫
θ⊥

f (x + sθ) dx. (2.2)
y

In the multivariate case, there are several possibilities to define a transform that resembles
(2.1). Another prominent example is the so-called x-ray transform.

Definition 2.2 (X-Ray Transform). The x-ray transform X f : T n−1 → R of a function f ∈ S(Rn)
is defined by

X f (θ, x) =

∫
R

f (x + tθ) dt. (2.3)
y

The x-ray transform integrates f over straight lines in Rn. This is in contrast to the Radon
transform which integrates the functions over affine hyperplanes H(θ, s). Clearly, both transforms
coincide (apart from the parametrization) for n = 2. For n > 2, the following relation is valid (cf.
[Nat86, Sec. II.1])

R f (θ, s) =

∫
H(θ,s)∩η⊥

X f (η, x) dx.

In what follows, we use the notation Rθ f (s) = R f (θ, s) and Xθ f (x) = X f (θ, x) for the Radon
and the x-ray transform of f , respectively. Note that Rθ f and Xθ f are considered as functions of
the second variable. We call these functions projections of f at θ ∈ S n−1.

Remark. The x-ray and Radon transforms are special cases of the general k-plane transform,
which maps a function to its integrals over k-dimensional affine subspaces, see [Kei89]. y

We shall now present some basic properties of the Radon and the x-ray transform. We start by
noting the obvious facts that R as well as X are linear operators and that R f is an even function
on Zn, i.e., R f (−θ,−s) = R f (θ, s). However, the most important property of the above Radon
transforms is given in the next theorem.

Theorem 2.3 (Fourier slice theorem, [Nat86, Theorem II.1.1]). For f ∈ S(Rn) we have

X̂θ f (η) = (2π)1/2 f̂ (η), η ∈ θ⊥, (2.4)

R̂θ f (σ) = (2π)(n−1)/2 f̂ (σθ), σ ∈ R. (2.5)
y

The importance of the Fourier slice theorem lies in the fact that it links together the Radon
transforms and the Fourier transform, which is very well studied. This connection can be used to
derive properties of the Radon transform from those properties which are known for the Fourier
transform.
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Moreover, Theorem 2.3 immediately provides a scheme for reconstructing a function from the
knowledge of its Radon transform. More specifically, assume thatR fθ(s) is known for all θ ∈ S n−1

and all s ∈ R. Then, we can gain knowledge about the (n-dimensional) Fourier transform of f
by computing the (1-dimensional) Fourier transform of the projections Rθ f for all values of θ.
Subsequent application of the inverse Fourier transform would yield the sought function f . Such
reconstruction procedures are known as Fourier reconstructions, cf. [Nat86, NW01].

We proceed by noting further properties of the Radon and the x-ray transform.

Theorem 2.4 ([Nat86, Theorem II.1.2]). For f , g ∈ S(Rn) we have

X( f ∗ g) = X f ∗ Xg, (2.6)

R( f ∗ g) = R f ∗ Rg, (2.7)

where the convolution on the right hand side is in Zn or T n−1 (cf. Section 2.2), respectively,
whereas the convolution on the left hand side denotes the usual convolution of functions in Rn, cf.
Proposition A.5. y

Dual operators of R and X play also an important role in computed tomography.

Theorem 2.5 (Dual Operators, [Nat86, p. 13]). For g ∈ S(Zn) or g ∈ S(T n−1), respectively, we
define the dual operators R∗θ ,R∗,X∗θ,X∗ by

R∗θg(x) = g(θ, x · θ),

R∗g(x) =

∫
S n−1

g(θ, x · θ) dθ,

X∗θg(x) = g(θ, Eθx),

X∗g(x) =

∫
S n−1

g(θ, Eθx) dθ,

where Eθ denotes the orthogonal projection onto θ⊥. Then, for any f ∈ S(Rn),∫
θ⊥
Rθ f (s)g(θ, s) dθ ds =

∫
Rn

f (x)R∗θg(x) dx,∫
S n−1

∫
R
R f (θ, s)g(θ, s) dθ ds =

∫
Rn

f (x)R∗g(x) dx,∫
θ⊥
Xθ f (x)g(θ, x) dθ dx =

∫
Rn

f (x)X∗θg(x) dx,∫
S n−1

∫
θ⊥
X f (θ, x)g(θ, x) dθ dx =

∫
Rn

f (x)X∗g(x) dx. y

The notion of dual operators stems from integral geometry. In computed tomography the
operators X∗ and R∗ are also called backprojection operators. This is because the value R∗ f (x) is
an average of all measurement values R f (θ, x) which correspond to hyperplanes passing through
the point x ∈ Rn. A similar interpretation holds for X∗ f (θ, y). We have the following useful
properties of backprojection operators.
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Theorem 2.6 ([Nat86, Theorem II.1.3]). For f ∈ S(Rn) and g ∈ S(Zn), S(T n−1), respectively,
we have

(X∗g) ∗ f = X∗(g ∗ X f ), (2.8)

(R∗g) ∗ f = R∗(g ∗ R f ). (2.9)
y

The following characterization of the Gram operators show that simple backprojection of the
measured data does not recover the unknown object but a smoothed version of it.

Theorem 2.7 ([Nat86, Theorem II.1.5]). For f ∈ S(Rn) we have

X∗X f = 2 ‖ · ‖1−n
2 ∗ f , (2.10)

R∗R f =
∣∣∣S n−2

∣∣∣ ‖ · ‖−1
2 ∗ f . (2.11)

y

Since the Radon transforms are used as mathematical model for the measurement process in
computed tomography, it is important to know about the continuity of these transforms. In this
case, the measurement process is stable, i.e., small differences of the imaged object result in small
variations of the data.

Theorem 2.8 ([Nat86, Theorem II.1.6]). All of the following linear operators are continuous:

Rθ : L2(Ωn)→ L2([−1, 1], (1 − s2)(1−n)/2),

Xθ : L2(Ωn)→ L2(θ⊥, (1 − ‖x‖22)−1/2),

R : L2(Ωn)→ L2(Zn, (1 − s2)(1−n)/2),

X : L2(Ωn)→ L2(T n−1, (1 − ‖x‖22)−1/2) y

In particular, R : L2(Ωn) → L2(Zn) and X : L2(Ωn) → L2(T n−1) are continuous operators and, in
this case, their dual operators (cf. Theorem 2.5) correspond to their Hilbert space adjoints.

To prove Theorem 2.8, it is essential to assume that the functions have compact support which
is contained in a bounded set Ω ⊆ Rn. However, there are some situations where it would be
convenient to deal with functions that are supported on the whole Rn. Unfortunately, the Radon
transform is an unbounded operator on L2(Rn). Though R is defined on a dense subset of L2(Rn)
(e.g. S(Rn)), there are functions f ∈ L2(Rn), for which R f (θ, s) does not exist for any θ ∈ S n−1

and any s ∈ R. An example of such a function is given by (cf. [GS08])

f (x) = (2 + ‖x‖)−
n
2

2
(
log(2 + ‖x‖))−1 .

To restore continuity, we have to consider weighted L2-spaces.

Theorem 2.9. The Radon transform

R : L2(R2, (1 + ‖x‖22)α)→ L2(S 1 × R, (1 + s2)α−1/2). (2.12)

is bounded for α > 1/2. y
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Proof. This proof was communicated by W.R. Madych. Denote wα(x) = (1 + ‖x‖22)α/2. We start
by estimating the modulus of R f (θ, s):

|R f (θ, s)| =
∣∣∣∣∣∣
∫ ∞

−∞
wα(sθ + tθ⊥)
wα(sθ + tθ⊥)

f (sθ + tθ⊥) dt

∣∣∣∣∣∣
≤

∫ ∞

−∞
wα(sθ + tθ⊥)
wα(sθ + tθ⊥)

∣∣∣ f (sθ + tθ⊥)
∣∣∣ dt

≤
(∫ ∞

−∞
dt

w2
α(sθ + tθ⊥)

) 1
2
(∫ ∞

−∞
w2
α(sθ + tθ⊥)

∣∣∣ f (sθ + tθ⊥)
∣∣∣2 dt

) 1
2

. (2.13)

We compute the first integral:∫ ∞

−∞
dt

w2
α(sθ + tθ⊥)

=

∫ ∞

−∞
dt

(1 + s2 + t2)α

=
1

(1 + s2)α

∫ ∞

−∞
1(

1 +
(
t/
√

1 + s2
)2

)α dt

=
1

(1 + s2)α−1/2

∫ ∞

−∞
1(

1 + p2)α dp.

For α > 1/2 it holds that

cα B
∫ ∞

−∞
1(

1 + p2)α dp < ∞.
Hence, we further deduce from (2.13) that

|R f (θ, s)|2 (1 + s2)α−1/2 ≤ cα

∫ ∞

−∞
w2
α(sθ + tθ⊥)

∣∣∣ f (sθ + tθ⊥)
∣∣∣2 dt.

Therefore we get the following estimate

‖R f ‖2L2(S 1×R,(1+s2)α−1/2) =

∫
S 1

∫ ∞

−∞
|R f (θ, s)|2 (1 + s2)α−1/2 ds dθ

≤ cα

∫
S 1

∫ ∞

−∞

∫ ∞

−∞
w2
α(sθ + tθ⊥)

∣∣∣ f (sθ + tθ⊥)
∣∣∣2 dt ds dθ

= cα

∫
S 1

∫
R2

w2
α(x) | f (x)|2 dx dθ

= cα|S 1| ‖ f ‖2
L2(R2,(1+|x|2)α)

. �

Another possibility to get rid of the assumption about the compact support is to consider L1-
spaces. In this case, we have for f ∈ S(Rn),

‖R f ‖L1(Zn) ≤ C ‖ f ‖L1(Rn) ,

‖Rθ f ‖L1(R) ≤ C ‖ f ‖L1(Rn) ,

‖X f ‖L1(T n−1) ≤ C ‖ f ‖L1(Rn) ,

‖Xθ f ‖L1(θ⊥) ≤ C ‖ f ‖L1(Rn) ,

where C > 0 may denote different constants in the above estimates. Hence, R, Rθ, X and Xθ are
easily continuously extended to L1(Rn).
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2.3.2 Inversion formulas

In order to note the inversion formulas for the Radon transform and the x-ray transform, we first
recall the definition of Riesz potentials. Let α ∈ R such that α < n. Then, the Riesz potential Iα f
of a function f ∈ S(Rn) is defined as a fractional power of the Laplacian via

Iα f = (−∆)−α/2 f = F −1(‖ · ‖−α f̂ ). (2.14)

Note that, for α < n, the function ‖ξ‖−α is locally integrable, and hence F (Iα f ) ∈ L1(Rn).
Therefore, the Riesz potential is well-defined and we have I−αIα f = f for all f ∈ S(Rn).
For more details we refer to [Ste70]. Furthermore, if Iα is applied to functions g ∈ S (Zn) or
g ∈ S(T n−1), respectively, it is defined to act on the second variable, i.e.,

F (Iαg(θ, ·)) = ‖ · ‖−α F (g(θ, · )). (2.15)

We have the following general inversion formulas.

Theorem 2.10 ([Nat86, Theorem II.2.1]). Let f ∈ S(Rn). Then, for any α < n, we have

f =
1
2

(2π)1−nI−αR∗Iα−n+1g, g = R f , (2.16)

f =
1∣∣∣S n−2

∣∣∣ (2π)−1I−αX∗Iα−1g, g = X f . (2.17)
y

For α = 0 the inversion formulas reduce to

f =
1
2

(2π)1−nR∗I1−ng, g = R f , (2.18)

f =
1∣∣∣S n−2

∣∣∣ (2π)−1X∗I−1g, g = X f . (2.19)

As remarked above, backprojecting the data g = R f is not sufficient for the recovery of f . The
inversion formulas (2.18) and (2.19) reveal that the Riesz potential need to be applied to the
data g before backprojecting it. This operation is usually considered as filtering of the data.
For this reason, an algorithm that implements one of these inversion formulas is called filtered
backprojection (FBP) (cf. remark at the end of Section 2.4).

Moreover, we would like to mention that for even dimensions n, the reconstruction formula
(2.18) may be expressed as follows, cf. [Nat86],

f (x) = 2c(n)
∫ ∞

0

1
q

F(n−1)
x (q) dq, (2.20)

where c(n) = (−1)n/2(2π)−n
∣∣∣S n−1

∣∣∣ and F(n−1)
x is (n − 1)-st derivative of the function

Fx(q) =
1∣∣∣S n−1

∣∣∣
∫

S n−1
R f (θ, x · θ + q) dθ.

In two dimensional setting, (2.20) is the famous inversion formula that was published by Johann
Radon in 1917, [Rad17]. An English translation of the original article can be found in [Rad86].
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The validity of Radon’s inversion formula was studied by W.R. Madych in [Mad04]. This
author shows in this work that, for functions f ∈ Lp(R2) with 4/3 < p < 2, the Radon transform
exists almost everywhere and the Radon inversion formula holds almost everywhere in this case.

Although we are not going to consider three dimensional reconstructions in this thesis, we
would like to mention that the use of the reconstruction formula (2.19) is limited in 3D because
it requires the knowledge of all line integrals. However, in practice, the sources are usually
restricted to a curve surrounding the object (restricted source problem). For this reason, many
line integrals are not available. In this situation, Tuy’s inversion formula is more appropriate.

Theorem 2.11 (Tuy’s inversion formula, [Nat86, Theorem VI.5.1]). Let Ω3 be the unit ball inR3

and let γ : [a, b] → R3 be a C1 curve which satisfies the Tuy’s condition, i.e., for each x ∈ Ω3

and each θ ∈ S 2 there is t = t(x, θ) such that

(γ(t) − x) · θ = 0, γ′(t) · θ , 0. (2.21)

Then, for f ∈ C∞c (Ω3), we have

f (x) = (2π)−3/2i−1
∫

S 2
(γ′(t) · θ)−1 d

dt
F

(
Dγ(t) f

)
(θ) dθ, (2.22)

whereDa f is a function on R3 defined by

Da f (x) =

∫ ∞

0
f (a + tx) dt. y

The above theorem gives sufficient conditions on the acquisition process of tomographic data
which guarantee a perfect reconstruction of the unknown object. Condition (2.21), known as
Tuy’s condition, is a very standard condition for three dimensional reconstruction. The first
requirement in (2.21) ensures that for each x ∈ Ω3 and each plane containing x, this plane contains
also some point of the curve γ, whereas the second requirement of (2.21) states that the curve γ
intersects the plane transversally in that point. Interestingly, this condition can be understood in
the framework of microlocal analysis and singularity detection (cf. Section 3.3).

2.3.3 Ill-posedness

In the previous subsection we have presented some inversion formulas for the Radon transform.
However, for the application of these reconstruction formulas to real data, we have to assume that
we are given perfect measurement data, which is not a realistic scenario because in practice the
data is always corrupted by noise. Hence, it is of proper importance to know how small measure-
ment errors are propagated through the reconstruction process. In particular, it is important to
know whether inversion is stable or not, i.e., whether small measurements errors lead to small
reconstruction errors. In what follows, we shall make use of standard notations and concepts of
the theory of inverse problems and regularization. These are summarized for reader’s convenience
in Appendix C.

One possibility to study stability issues is to consider the singular value decomposition of the
Radon transform. More precisely, the decay rate of the singular values gives an insight into the
nature of ill-posedness of an inverse problem, cf. Theorem C.4 and subsequent remarks.
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Theorem 2.12 (Singular values of the full angular Radon transform, [Nat86, Sec. IV.3]). The sin-
gular values σm,l of the two-dimensional Radon transform R : L2(Ω) → L2(Z, (1 − s2)1/2) are
given by

σm,l =


√

4π
m + 1 , |l| ≤ m, m + l even, m ∈ N0,

0, otherwise.

In particular, it holds that σm,l = O(m−1/2) for m→ ∞. y

Remarks.
1. Let (σm,l; fm,l,k, gm,l,k) denote the singular system for the Radon transform R, cf. Ap-

pendix B. Then, the system
{
gm,l,k

}
of eigenfunctions of RR∗ is an orthonormal basis of

L2(Z, (1 − s2)1/2), [Lou84]. Therefore, the operator RR∗ is compact. In turn, this implies
the compactness of R and R∗.

2. Theorem 2.12 is formulated with respect to the weighted L2-space L2(Z, (1− s2)1/2). How-
ever, a singular value decomposition is not known for L2-spaces without weight. y

As a consequence Theorem 2.12, we see that the problem of reconstructing a two-dimensional
function from the Radon transform data is ill-posed of order 1

2 in the sense of Definition C.5. In
the context of inverse problems, this is considered to be mildly ill-posed. The same conclusion
holds with respect to Definition C.6 which is based on Sobolev space estimates. To state the
result, we first need to define appropriate Sobolev spaces. The Sobolev spaces Hα(Ω) and Hα

0 (Ω),
Ω ⊆ Rn, are defined in Appendix A.2. The spaces Hα(Zn) and Hα

0 (T n−1) are defined by the norms

‖g‖Hα(Zn) =

(∫
S n−1

∫
R
|ĝ(θ, σ)|2 (1 + σ2)α dσ dθ

) 1
2

,

‖g‖Hα(T n−1) =

(∫
S n−1

∫
θ⊥
|ĝ(θ, η)|2 (1 + ‖η‖22)α dη dθ

) 1
2

.

We can now formulate the announced result.

Theorem 2.13 ([Nat86, Theorem II.5.1]). Let f ∈ C∞c (Ωn). Then, for each α ∈ R there exist
positive constants c(α, n), C(α, n) such that

c(α, n) ‖ f ‖Hα
0 (Ωn) ≤ ‖R f ‖Hα+(n−1)/2(Zn) ≤ C(α, n) ‖ f ‖Hα

0 (Ωn) , (2.23)

c(α, n) ‖ f ‖Hα
0 (Ωn) ≤ ‖X f ‖Hα+1/2(T n−1) ≤ C(α, n) ‖ f ‖Hα

0 (Ωn) . (2.24)
y

Theorem 2.13 shows that the inverse operators X−1 and R−1 are continuous as operators be-
tween Hα

0 (Ωn) and Hα+1/2(T ) or Hα+(n−1)/2(Z), respectively. However, there is an inherent insta-
bility in the reconstruction of f : Theorem 2.13 implies that the x-ray transform X smoothes by
an order of 1

2 measured in a Sobolev scale. Since, inversion has to reverse the smoothing, the
reconstruction process is unstable. To stabilize the inversion, regularization strategies have to be
applied, cf. Appendix C and references therein.
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2.4 Reconstruction methods

There are basically two classes of reconstruction methods, namely direct (or analytical) and al-
gebraic methods. In this subsection, we present the basic idea of each class of reconstruction
methods. As an example for the analytic reconstruction method, we will present the classical
filtered backprojection (FBP) reconstruction. Moreover, we will formulate the fully discrete re-
construction problem as a basis for the class of algebraic methods. Based on this formulation, the
broad class of variational methods will be discussed.

Let us fix the notation before we start. In what follows we will deal with a practical situation
where the data y = R f is not known precisely, but only up to an error bound δ > 0. That is, we
assume to be given yδ such that ∥∥∥y − yδ

∥∥∥
L2(Z) ≤ δ.

Our goal is to recover an approximation f δ to f from the noisy data yδ. Thus, the practical
reconstruction problem may be written in the following form

R f δ = yδ. (2.25)

2.4.1 Analytic reconstruction methods

The characteristic of the class of analytic (or direct) reconstruction methods is the fact that these
methods are based on analytic reconstruction formulas and, hence, deal with continuous data.

Filtered backprojection (FBP) is clearly the most important analytic reconstruction method in
computed tomography. We have already mentioned in Subsection 2.3.2 that this reconstruction
method may be regarded as an implementation of the reconstruction formula (2.18), which (for
n = 2) may be written in the following form

f (x) =
1

4π

∫
S 1

(Rθ f ∗ ψ)(x · θ) dσ(θ), (2.26)

where ψ = F −1(‖ · ‖) (in the distributional sense). However, implementing the formula (2.26)
would lead to an instable reconstruction procedure, which is due to the ill-posedness of the to-
mographic reconstruction problem, cf. Subsection 2.3.3. Intuitively, the source for instability is
the filtering step because it amplifies high frequencies. To stabilize the inversion, a regularization
strategy needs to be applied (cf. Appendix C). A standard approach is to choose a sequence of
band limited functions {ψε : R→ R}ε>0 such that ψ̂ε(ξ) → ψ̂(ξ) as ε → 0 for all ξ ∈ R. Usually,
the regularization parameter ε is chosen as a function of the noise level δ such that ε(δ) → 0 as
δ→ 0, cf. Chapter C. Then, a regularized solution is given by

f δ(x) =
1

4π

∫
S 1

(yδθ ∗ ψε)(x · θ) dσ(θ),

where yδθ = yδ(θ, · ). Since noise is a high frequency phenomenon, the idea behind this regular-
ization strategy consists in suppressing high frequency components. A standard choice for ψε is
given by ψ̂ε(ξ) = χ[−1/ε,1/ε](ξ) · |ξ|, which is the so-called Ram-Lak filter. There are many other
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filters that can be used in this context. For example, the Shepp-Logan filter, cosine filter, and
many more, cf. [NW01]. We note that the choice of the filter and the regularization parameter
ε is essential for the reconstruction quality. The right choice should balance the amplification
of noise and the measurement error. We refer to [Nat86, NW01] for more details on the filtered
backprojection algorithm.

Finally, we list some more analytic reconstruction methods without explanation. Kernel based
reconstruction (summability method) is an approximation theoretic approach that was introduced
in [Mad90]. A related technique is the method of approximate inverse that may also be applied
to tomographic reconstruction [LM90], [Sch07]. Moreover, we mention the Fourier reconstruc-
tion techniques that are direct applications of the Fourier slice theorem (cf. Theorem 2.3 and
subsequent remarks), cf. [NW01].

2.4.2 Algebraic reconstruction methods

Another large class of reconstruction methods is the class algebraic reconstruction methods. This
class again splits into many different subclasses of algorithms. Describing all of them would go
beyond the scope of this thesis. We present only the basic idea of these methods.

In contrast to analytic methods, algebraic approaches are based on a fully discrete formulation
of the reconstruction problem. In this setting, the sought function f δ is discretized right from the
beginning by using some basis functions {ϕn}. That is, f δ is assumed to be given as a finite linear
combination of these basis functions,

f δ(x) =

N∑
n=1

cnϕn(x), (2.27)

where c ∈ RN , N ∈ N, is the coefficient vector with respect to {ϕn}. In the next discretization step
we assume to be given a finite number of measurements yδm = R f δ(θm, sm), 1 ≤ m ≤ M ∈ N.
Then, each measurement is given by

yδm =

N∑
n=1

cnRϕn(θm, sm).

Thus, the fully discrete version of the reconstruction problem (2.25) is given by the linear system
of equations

R · c = yδ, (2.28)

where R = (rm,n) ∈ RM×N is the so-called system matrix whose entries are given by

rm,n = Rϕn(θm, sm).

Note that the discrete reconstruction problem (2.28) is formulated with respect to the coefficient
vector c ∈ RN . That is, in this case we aim at reconstructing the vector c rather than f δ.

Of course there are many algorithms for solving linear equations like (2.28). In practice, one
of the most popular methods is the so-called algebraic reconstruction technique (ART), which
is an implementation of the Kaczmarz method, and its variants SART (simultaneous algebraic
reconstruction) and SIRT (simultaneous iterative reconstruction) [Her80], [KS88], [NW01].
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Remark. The nomenclature “algebraic reconstruction” is not consistently used in the literature.
In this thesis, we will use this term to refer to methods which are designed for solving the alge-
braic equation (2.28). At this point, we have to point out that the term algebraic reconstruction is
often used to refer to the methods ART, SART, and SIRT. y

In designing reconstruction algorithms based on (2.28), one still has to consider the ill-posedness
of the reconstruction problem and use regularization strategies. In its standard formulation, the
methods ART, SART and SIRT do not incorporate any regularization strategy.

Usually, stabilization of the inversion is achieved by incorporating prior knowledge into the
reconstruction procedure. A very flexible way for doing this is offered by the statistical recon-
struction. In this setting, the unknown coefficient vector c as well as the measurement vector yδ

are considered to be realizations of some random variables. In order to formulate the statistical
reconstruction problem one has to model the likelihood density π(y|c) and the prior-density π(c).
The likelihood-density π(y|c) is a statistical model for the measurement process, whereas the
prior-density π(c) encodes the a priori information. The solution of the statistical reconstruction
results in determining the posterior-density π(c|y). To compute an explicit solution of the problem
(2.28) a statistical estimator is used. For more details, we refer to [KSJ+03], [SKJ+03], [BLZ08]
and [KS05], [CS11].

Another very general setting for regularized reconstruction can be formulated in the framework
of variational regularization. In this case, the solution of the equation (2.28) is computed by
minimizing a Tikhonov type functional

cα = arg min
c∈RN

∥∥∥R · c − yδ
∥∥∥2

2 + α · Λ(c), (2.29)

where α > 0 is a regularization parameter and Λ : RN → [0,∞] is a prior (or penalty) func-
tion. The first term in (2.29) (data fidelity term) controls the data error, whereas the second term
encodes the prior information about the unknown object. It can be shown that the variational ap-
proach is a regularization strategy, cf. Appendix C. For more details on variational regularization,
we refer to [SGG+09].

We would like to note that the choice among the various prior terms and, thus, regularization
techniques, depends on the specific object (which is imaged) and, to some extent, on the desire to
preserve or emphasize particular features of the unknown object. A possible choice for Ψ may be
any kind of a smoothness (semi-) norm [SGG+09]. For instance, the Besov norm allows to adjust
the smoothness of the solution at a very fine scale [KSJ+03], [LT08], [RVJ+06]. Another promi-
nent example in image reconstruction is the total variation (TV) seminorm. This seminorm is a
smoothness norm that is particularly used for edge-preserving reconstructions [FP11], [HSP11],
[HHK+12].

Algebraic approaches and, in particular, variational reconstruction methods enjoy great popu-
larity in image reconstruction. This is based on fact that the algebraic formulation of the recon-
struction problem offers high flexibility. More precisely, the solution of the equation (2.28) allows
the integration of a priori information and does not depend on the specific acquisition geometry
which is in contrast to the FBP method.





Chapter 3

Characterization of limited angle reconstructions
and artifact reduction

In this chapter, we turn our attention to the study of the limited angle reconstruction problem. In
this case, the tomographic data R f (θ, s) is no longer available for all θ ∈ S 1, but is known only
on a restricted subset of S 1. Problems of this type arise naturally in practical applications, such
as digital breast tomosynthesis [N+97], electron microscopy [DRK68], or dental tomography
[HKL+10], [MS12]. Many of these modalities still employ the filtered backprojection (FBP)
algorithm for practical reconstructions, cf. [PSV09], [LMKH08], [SMB03], [IG03], [SFS06],
[III09]. However, since the FBP algorithm implements an inversion formula for the Radon trans-
form, cf. Section 2.4, an essential requirement for its application is the completeness of tomo-
graphic data. Consequently, the application of the FBP algorithm is theoretically not justified in
limited angle tomography. Moreover, only specific features of the original object can be recon-
structed reliably from limited angle data, [Qui93], and additional artifacts can be created in FBP
reconstructions, cf. Figure 3.1.

In the present chapter, we solve the above issues and provide a detailed analysis of reconstruc-
tions at a limited angular range. Specifically, we focus on the following topics:

• Characterization of classical reconstructions at a limited angular range,

• Characterization of the information content of limited angle data and in particular of those
features that can be reconstructed from a limited angular range,

• Characterization and reduction of artifacts in filtered backprojection reconstructions from
a limited angular range,

• Stabilization strategy for limited angle tomography.

In Section 4.3, we begin our investigations by studying the backprojection of limited angle data
and prove a characterization of the kernel of the limited angle Radon transform in the Schwartz
space S(R2), cf. Theorem 3.6 and Corollary 3.7. Subsequently, we derive an exact formula for
filtered backprojection reconstructions at a limited angular range in Theorem 3.9 and justify the
application of the FBP algorithm to limited angle data under suitable assumptions on the target
functions. An interpretation of these results in terms of visible and invisible singularities is given
in Section 3.3. In particular, we show that a meaningful a-priori information can be extracted from

27
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Figure 3.1: Original images (left) and FBP reconstructions at limited angular range [−Φ,Φ], Φ = 45◦ (right). As a
consequence of the limited angular range, only specific features of the original object can be reconstructed,
and some streak artifacts are generated.

limited angle data. In Section 3.4, we prove a microlocal characterization of limited angle artifacts
that are generated by the filtered backprojection algorithm, Theorem 3.24, and develop an artifact
reduction strategy for the FBP algorithm, Theorem 3.26. We also illustrate the proposed method
in some numerical experiments. Finally, we show that the existence of invisible singularities
at limited angular range entails severe ill-posedness of limited angle tomography, and derive a
stabilization strategy in Section 3.5.

3.1 Notations and basic definitions

In what follows, we assume that the data R f (θ, s) is known only for (θ, s) ∈ S 1
Φ
× R, where the

angular range parameter Φ satisfies 0 < Φ < π/2, and S 1
Φ
( S 1 is given by (cf. Figure 3.2)

S 1
Φ B S 1,+

Φ
∪ S 1,−

Φ
, S 1,±

Φ
B

{
θ ∈ S 1 : θ = ±(cosϕ, sinϕ)T , |ϕ| ≤ Φ

}
. (3.1)

In order to compute a reconstruction, we consequently have to invert the restricted or the limited
angle Radon transform

RΦ : f 7→ R f |S 1
Φ
×R. (3.2)

Hence, the practical limited angle reconstruction problem reads

given yδ = RΦ f + η, find an approximation to f , (3.3)

where η denotes the noise component with ‖η‖L2(Z) < δ and δ > 0.
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Φ

S 1,−
Φ

S 1,+
Φ

Figure 3.2: The figure shows S 1
Φ

= S 1,+
Φ
∪ S 1,−

Φ
(solid line) as a subset of S 1 (dotted line). The wedge WΦ = R · S 1

Φ
is

indicated by the gray shaded area.

In the context of tomographic reconstruction at a limited angular, the backprojection opera-
tor (or dual operator) R∗

Φ
plays an important role. Analogously to Theorem 2.5, we have the

following representation.

Theorem 3.1. Let 0 ≤ Φ ≤ π/2. For g ∈ ZΦ = S 1
Φ
× R we define the backprojection operator of

the limited angle Radon transform RΦ by

R∗Φg(x) =

∫
S 1

Φ

g(θ, x · θ) dθ. (3.4)

Then, for f ∈ S(R2), ∫
S 1

Φ

∫
R
RΦ f (θ, s)g(θ, s) dθ ds =

∫
R2

f (x)R∗Φg(x) dx y

Note that many properties, such as continuity, evenness, etc., carry over from the full angular
Radon transform the case of the limited angle Radon transform.

3.2 Characterizations of limited angle reconstructions

The objective of this section is to understand the nature of limited angle tomography. Of proper
interest are the following questions: How much information about the unknown function is con-
tained in the limited angle data? Which features of the sought function can be reconstructed
reliably using a limited angle data set? In this section we are going to partly answer these ques-
tions by characterizing reconstructions that are obtained via FBP and algebraic reconstructions.

We start by examining the information content of the limited angle data. To this end, we use the
Fourier slice theorem (Theorem 2.3) in order to relate the data y = RΦ f to the Fourier transform
of f . For this purpose, we first note that the limited angle Radon transform RΦ f can be extended
to the cylinder Z = S 1 × R by setting RΦ f (θ, s) = χS 1

Φ
(θ) · R f (θ, s). In this context, we have



30 Chapter 3 Characterization of limited angle reconstructions and artifact reduction

f̂ (sθ) = F (RΦ f (θ, ·))(s) if θ ∈ S 1
Φ

, and f̂ (sθ) = F (RΦ f (θ, ·))(s) = 0 if θ < S 1
Φ

. Therefore, the
limited angle Radon transform acts as a truncation operator in the Fourier domain, and we have

RΦ f = RΦ(PΘ f ), for all Φ ≤ Θ ≤ π

2
,

where PΘ f = F −1(χWΘ
f̂ ) and χWΘ

is the characteristic function of the wedge WΘ = R · S 1
Θ

.

In view of the above discussion, the limited angle data g = RΦ f contains only the information
about the two dimensional Fourier transform f̂ on the polar wedge WΦ, which is defined by, cf.
Figure 3.2,

WΦ B R · S 1
Φ =

{
r · θ : θ ∈ S 1

Φ, r ∈ R
}
. (3.5)

Consequently, a minimum requirement on a reconstruction algorithm for limited angle tomogra-
phy should be the ability to provide reconstructions frec whose Fourier transform coincides with
the Fourier transform of the sought function f on the wedge WΦ. That is, the reconstructions
should satisfy f̂rec|WΦ

= f̂ |WΦ
. Since many practical applications still employ the filtered backpro-

jection (FBP) algorithm for reconstruction at a limited angular range, it is important to understand
whether the FBP meets this requirement.

In what follows, we turn our attention to the characterization of FBP reconstructions at a limited
angular range. To this end, let us recall that the FBP algorithm implements the inversion formula
f = 1/(4π)R∗I−1R f , which by Theorem 2.10 is equal to f = 1/(4π)I−1R∗R f . According to
that, we see that the (limited angle) Gram operator R∗

Φ
RΦ plays an important role in this context.

For the problem of image reconstruction at a limited angular range, it is therefore important to
have a characterization of R∗

Φ
RΦ.

The content of the next theorem is a generalization of Theorem 2.7 to the setting of limited
angle tomography.

Theorem 3.2. Let 0 ≤ Φ ≤ π/2 and f ∈ S(R2). Then,

R∗ΦRΦ f = 2 ·
χW⊥

Φ

‖ · ‖2
∗ f , (3.6)

where χW⊥
Φ

is the characteristic function of the polar wedge

W⊥Φ =
{
ξ ∈ R2 : θ · ξ = 0 for some θ ∈ WΦ

}
. y

Proof. We use (3.4) to compute

R∗ΦRΦ f (x) =

∫
S 1

Φ

RΦ f (θ, x · θ) dθ,

=

∫
S 1

Φ

∫
R

f ((x · θ)θ + tθ⊥) dt dθ,

=

∫
S 1

Φ

∫
R

f (x + tθ⊥) dt dθ.
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The last equations holds true because (−x + (x · θ)θ)⊥θ, whence (x · θ)θ = x + t0 · θ⊥ for some
t0 ∈ R, where θ⊥ = (−θ2, θ1) denotes an orthogonal vector to θ = (θ1, θ2). Using the symmetry of
the above integral we further get with y = tθ,

R∗ΦRΦ f (x) =

∫
(S 1

Φ
)⊥

∫ ∞

−∞
f (x + tθ) dt dθ

= 2 ·
∫
R2

f (x + y)
χW⊥

Φ
(y)

‖y‖2
dy

= 2 ·
(χW⊥

Φ

‖ · ‖2
∗ f

)
(x). �

In the following, we shall use Theorem 3.2 in order to derive a representation of the Gram
operator R∗

Φ
RΦ in the Fourier domain. For this purpose, we first note some auxiliary results.

Proposition 3.3. Let b > 0 and δb± be the function defined by

δb
±(x) =

1
2π

∫ b

−b
e±ix·ξ dξ. (3.7)

For c, d ∈ R ∪ {−∞,∞}, c < d, let ϕ ∈ L1((c, d)) such that ϕ ∈ C1(Bε(0)), where Bε(0) =

[−ε, ε] ∩ [c, d] for some ε > 0. Then, we have

lim
b→∞

∫ d

c
δb
±(x)ϕ(x) dx = χ[c,d](0) ·


1
2 · ϕ(0+), c = 0,
1
2 · ϕ(0−), d = 0,
ϕ(0), else.

(3.8)
y

Proof. A simple calculation yields

δb
±(x) =

1
π

sin(bx)
x

.

To show the assertion we first assume that either c > 0 or d < 0. In both cases, the function
g(x) := χ(c,d)(x) · ϕ(x)/x is in L1(R) and it follows from the Riemann-Lebesgue Lemma, cf.
Appendix A, that

lim
b→∞

∫ d

c
δb
±(x)ϕ(x) dx =

1
π

lim
b→∞

∫
R

sin(bx)g(x) dx =

√
2
π

lim
b→∞

Im( ĝ(b)) = 0. (3.9)

Next, we consider the cases c = 0 and d = 0. Because∫ 0

c
δb
±(x)ϕ(x) dx =

∫ −c

0
δb
±(x)ϕ(−x) dx,

we may assume without loss of generality that c = 0 and d > 0. Then, it follows from (3.9) that

lim
b→∞

∫ d

0
δb
±(x)ϕ(x) dx = lim

b→∞

(∫ ε

0
+

∫ d

ε

)
δb
±(x)ϕ(x) dx = lim

b→∞

∫ ε

0
δb
±(x)ϕ(x) dx
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for some ε > 0. By assumption, ϕ can be extended to a continuously differentiable function ϕ̃ on
the closed interval [0, ε] such that we can use the Taylor expansion, ϕ̃(x) = ϕ̃(0) + ϕ̃ ′(ξx)x with
x ∈ [0, ε) and ξx ∈ [0, x]. By assumption, the derivative ϕ̃ ′ is bounded and, hence, it follows that
ϕ̃′(ξx) is integrable. Using the Riemann-Lebesgue Lemma we get

lim
b→∞

∫ ε

0
δb
±(x)ϕ(x) dx = lim

b→∞

∫ ε

0
δb
±(x)ϕ̃(x) dx

=
ϕ̃(0)
π

lim
b→∞

∫ ε

0

sin(bx)
x

dx +
1
π

lim
b→∞

∫ ε

0
sin(bx)ϕ̃ ′(ξx) dx

=
ϕ̃(0)
π

lim
b→∞

∫ bε

0

sin(x)
x

dx.

The asymptotics for the sine integral, limx→∞
∫ x

0 sin t/t dt = π/2, yield

lim
b→∞

∫ ε

0
δb
±(x)ϕ(x) dx =

1
2
· ϕ̃(0) =

1
2
· ϕ(0+). (3.10)

Finally, if 0 ∈ (c, d) we consider (c, d) = (c,−ε] ∪ (−ε, ε) ∪ [ε, d) and use (3.9) to get

1
π

lim
b→∞

∫ d

c

sin(bx)
x

ϕ(x) dx =
1
π

lim
b→∞

(∫ −ε

c
+

∫ ε

−ε
+

∫ d

ε

)
sin(bx)

x
ϕ(x) dx

=
1
π

lim
b→∞

∫ ε

−ε
sin(bx)

x
ϕ(x) dx

=
1
π

lim
b→∞

∫ ε

0

sin(bx)
x

(ϕ(x) + ϕ(−x)) dx.

Now, we can apply (3.10) to the function (ϕ(x) + ϕ(−x)) to get

1
π

lim
b→∞

∫ d

c

sin(bx)
x

ϕ(x) dx = ϕ(0). �

As a consequence of Proposition 3.3 we get the following result, which is well known in the
classical Fourier analysis.

Corollary 3.4. Let b > 0 and δb± as in Proposition 3.3. Then, δb± → δ in S′(R) as b → ∞, i.e.,
for each ϕ ∈ S(R) we have

lim
b→∞

∫
R
δb
±(x)ϕ(x) dx = ϕ(0). (3.11)

y

Remark. The classical proof of Corollary 3.4 is more succinct than the proof of Proposition 3.3.
It is based on the L2-Theory of the Fourier transform. In this case, the crucial observation is that
δb± ∈ L2(R) and δ̂b±(ξ) = 1√

2π
χ[−b,b] in L2(R). Then, the assertion follows by applying Parseval’s

identity (cf. Proposition A.4),

lim
b→∞

∫
R
δb
±(x) f (x) dx = lim

b→∞

∫
R
δ̂b
±(ξ) f̂ (ξ) dξ =

1√
2π

∫
R

f̂ (ξ) dξ = f (0).
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Another essential ingredient in the classical proof is the continuity of test functions around the
origin. In our setting, however, we neither suppose the test functions to be continuous around the
origin nor we assume the test functions to belong to an L2-space. Therefore, the classical proof
(as stated above) cannot be applied directly in our situation. The setting of Proposition 3.3 will
be used to prove Theorem 3.6. y

Lemma 3.5. Let f : [−1, 1]→ R be bounded and integrable. Then, for any η ∈ S 1,∫
S 1

f (η · ξ) dξ = 2
∫ 1

−1

f (t)√
1 − t2

dt. (3.12)
y

Proof. The assertion is a special case of the well known Funk-Hecke theorem, cf. [Gro96, The-
orem 3.4.1]. �

We are now able to characterize the action of the operator R∗
Φ
RΦ in the Fourier domain.

Theorem 3.6. Let 0 ≤ Φ ≤ π/2 and f ∈ S(R2). Then,

F (R∗ΦRΦ f )(ξ) = 4π
χWΦ

(ξ)
‖ξ‖2

f̂ (ξ), (3.13)

for almost all ξ ∈ R2. y

Proof. We use the representation (3.6) to compute the Fourier transform of R∗
Φ
RΦ f . Using the

convolution theorem for the Fourier transform, Proposition A.15, we first note that

F
(
R∗ΦRΦ f

)
= 4π · F ( χW⊥

Φ
‖ · ‖−1

2 ) · f̂ . (3.14)

It is therefore sufficient to compute the (distributional) Fourier transform of T B (χW⊥
Φ
‖ · ‖−1

2 ). To
this end, we further note that T can be written as T = Tb + Rb with Tb = χ{|x|≤b}T ∈ L1(R2) and
Rb = χ{|x|>b}T ∈ L2(R2), b > 0. This means that T an element of L1(R2) + L2(R2) and, therefore,
the distributional Fourier transform of T belongs to C0(R2) + L2(R2). In particular, T̂ ∈ L1

loc(R2).

On the other hand, the pointwise convergence Tb → T , b → ∞, implies the distributional
convergence Tb → T in S′(R2) as b → ∞. In turn, the continuity of the Fourier transform in S′
entails the convergence T̂b → T̂ in S′(R2).

In summary, the above considerations show that in order to compute the distributional Fourier
transform of T , it is sufficient to compute the pointwise limit limb→∞ T̂b(ξ), where T̂b denotes the
ordinary Fourier transform.

To do so, we evaluate the Fourier transform T̂ ∈ L1
loc(R2) using polar coordinates ξ = rθ, r > 0,

and θ ∈ S 1,

F
(χW⊥

Φ

‖ · ‖2

)
(rθ) =

1
2π

lim
b→∞

∫
{‖x‖2≤b}

χW⊥
Φ

(x)

‖x‖2
e−irx·θ dx. (3.15)
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In addition, we also use polar coordinates x = sζ, s ∈ R, and ζ ∈ S 1,+
Φ

, cf. (3.1), to evaluate the
integral on the right-hand side. To this end, note that W⊥

Φ
= R · AΦ, where

AΦ =
{
θ ∈ S 1 : θ = (cosϕ, sinϕ)T , |ϕ − π/2| ≤ Φ

}
is the rotation of S 1,+

Φ
by π/2 (cf. (3.1)). Then,

F
(χW⊥

Φ

‖ · ‖2

)
(rθ) =

1
2π

lim
b→∞

∫
AΦ

∫ b

−b

1
‖sζ‖2

e−irsζ·θ |s| ds dζ

= lim
b→∞

∫
S 1
χAΦ

(ζ) δb(rζ · θ) dζ.

Now let
m(θ) = inf

ζ∈AΦ

(ζ · θ) and M(θ) = sup
ζ∈AΦ

(ζ · θ).

Then,

F
(χW⊥

Φ

‖ · ‖2

)
(rθ) =

1
2

lim
b→∞

∫
S 1
χ[m(θ),M(θ)](ζ · θ) δb(rζ · θ) dζ.

Applying Lemma 3.5 to the function f (t) = χ[m(θ),M(θ)](t) δb(rt) and substituting x = rt, we get

F
(χW⊥

Φ

‖ · ‖2

)
(rθ) = lim

b→∞

∫ rM(θ)

rm(θ)
δb(x)

1√
r2 − x2

dx (3.16)

and by Proposition 3.3 we eventually deduce

F
(χW⊥

Φ

‖ · ‖2

)
(rθ) = C(θ) · χ[m(θ),M(θ)](0) · 1

r
,

where C(θ) ∈ {1/2, 1}, according to (3.8). Now it is easy to see that,

C(θ) · χ[m(θ),M(θ)](0) = χS 1
Φ
(θ) ·

1/2, θ ∈ ∂WΦ ∩ S 1

1, otherwise
, (3.17)

where S 1
Φ

is defined in (3.1). Now note that the right hand side in (3.17) is equal to χS 1
Φ

almost
everywhere, and WΦ = R · S 1

Φ
. Hence, the assertion follows from (3.14) together with

F
(χW⊥

Φ

‖ · ‖2

)
(ξ) =

χWΦ
(ξ)

‖ξ‖2
. �

Remark. It was communicated by E. T. Quinto that a similar version of the Theorem 3.6 was
published in [Tuy81]. However, Theorem 3.6 and its proof that we presented here were developed
without knowledge of this work.

An inspection of [Tuy81] shows that both proofs follows a similar idea, whereas our realization
seems to be more elementary and complete in its argumentation. More precisely, the author of
[Tuy81] arrives at an expression which is similar to (3.16) (by using a different technique) and
concludes the proof by simply noting that δb → δ in S′(R2) as b → 0, cf. [Tuy81, p. 610]. This
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argumentation is however incomplete, since on the one hand the function (r2 − x2)−1/2 does not
belong to S(R2) and, on the other hand, the evaluation of the limit

lim
b→∞

∫ d

c
δb(x)

1√
r2 − x2

dx

depends on the interval of integration [c, d]. Moreover, the convergence δb → δ in S′(R2) does
not imply the Proposition 3.3 (cf. remark after Corollary 3.4). In contrast to the proof of H. Tuy,
we have treated both of these issues in Proposition 3.3, which was an essential ingredient for the
proof of Theorem 3.6. y

As an immediate consequence of Theorem 3.6 we note the following null space characteriza-
tion of the Gram operator R∗

Φ
RΦ and the limited angle Radon transform.

Corollary 3.7. Let f ∈ S such that supp f̂ ⊆ R2 \WΦ, then R∗
Φ
RΦ f ≡ 0 and RΦ f ≡ 0. y

If we consider the limited angle Radon transform as an operator between Schwartz spaces, i.e.,
RΦ : S(R2)→ S(S 1

Φ
× R), then Corollary 3.7 implies that

ker (RΦ) = ker
(
R∗ΦRΦ

)
=

{
f ∈ S(R2) : supp f̂ ⊆ WΦ

}
.

In view of the limited angle reconstruction problem, this result also characterizes functions that
can be perfectly reconstructed from a limited angle data set. These are those functions f ∈ S(R2)
whose Fourier transform satisfies supp f̂ ⊆ WΦ.

Example. To illustrate the functions in the kernel of the limited angle Radon transform let us
assume that we are given a function f1 ∈ S(R2) such that supp f̂1 ⊆ R2 \ WΦ. By Corollary
3.7, this function lies in the kernel of RΦ, i.e., RΦ f1 ≡ 0. Now consider a rotated version of f1,
namely f2(x) = f1(%ϕx), where %ϕ denotes the rotation matrix in R2 with respect to the angle
ϕ ∈ [0, 2π). Assume that ϕ is chosen in such a way that supp f̂2 ∩WΦ , ∅, Then, f2 < ker (RΦ).
As a consequence, we see that kernel functions of RΦ are directional and that the orientation
determines whether the function belongs to the kernel of the limited angle Radon transform RΦ

or not. These considerations also show up in the corresponding practical experiment that is
presented in Figure 3.3. y

In order to understand the appearance of practical reconstructions in Figure 3.1, let us now
consider the reconstruction problem which is given by the equation RΦ f = y. In practice, the
reconstruction is often obtained by computing a least squares solution f̃ ∈ arg min ‖RΦ f − y‖2L2(Z)

or by computing a best approximate solution f † = R†
Φ

y, cf. Appendix C. In both cases the
reconstruction satisfies the normal equation

R∗ΦRΦ f = R∗Φy.

To characterize the solutions of this normal equation, we reformulate the result of Theorem 3.6
in the following way

R∗ΦRΦ f = 4πI1PΦ f , (3.18)
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Figure 3.3: Illustration of the null space ker (RΦ) for Φ = 80◦. The top row shows two functions f1(x1, x2) and
f2(x1, x2) in the spatial domain, whose Fourier and Radon transforms are depicted in the middle and the
bottom row, respectively. The dashed lines in the middle row indicate the boundary of the wedge WΦ and,
hence, do not belong to f̂1(ξ1, ξ2), f̂2(ξ1, ξ2). One can see that the function f1 satisfies supp f̂1 ⊆ R2 \WΦ,
whereas f2 is a rotation of f1 such that supp f̂2 ⊆ WΦ. According to Corollary 3.7, it holds that f1 ∈
ker (RΦ) but f2 < ker (RΦ) which is also reflected by the images of the corresponding limited angle Radon
transforms, RΦ f1(θ, s) and RΦ f2(θ, s), that are shown in the bottom row. As can be observed from the top
row, both functions f1 and f2 are directional and their orientation determines whether they belong to the
kernel of RΦ or not.
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where I1 denotes the Riesz potential (cf. (2.14)) and PΦ is the projection operator defined by
PΦ f = F −1(χWΦ

f̂ ). Inserting this into the normal equation and applying I−1 to both sides yields

PΦ f =
1

4π
I−1R∗Φy.

Assuming that we are given perfect data, i.e., y = RΦ f , we get

PΦ f =
1

4π
I−1R∗ΦRΦ f =

1
4π
I−1R∗ΦRΦ(PΦ f ).

Thus, the set of all least squares solutions is given by

LΦ =
{
PΘ f : f ∈ S(R2), Φ ≤ Θ ≤ π/2

}
. (3.19)

Since the best approximate solution f † is a least squares solution of minimal L2-norm, it is not
hard to see that f † = PΦ f = 1

4πI−1R∗
Φ
RΦ f . We summarize the above discussion in the following

theorem.

Theorem 3.8. Let 0 ≤ Φ ≤ π/2, f0 ∈ S(R2) and y = RΦ f0. Then, the set of all least squares
solutions of the equation RΦ f = y is given by (3.19). In particular, the approximate inverse is
given by

f † = PΦ f =
1

4π
I−1R∗ΦRΦ f . (3.20)

y

Note that the approximate inverse f † in (3.20) is obtained by applying the inversion formula
for the full angular (2.16) (with α = 1) to the limited angle data y = RΦ f . More generally, we get
that the approximate inverse f † may be computed by applying each of the inversion formulae in
(2.16) to the limited angle Radon transform.

Theorem 3.9. Let f ∈ S(R2) and α < 2. Then,

PΦ f =
1

4π
I−αR∗ΦIα−1RΦ f , (3.21)

where PΦ f = F −1(χWΦ
f̂ ). y

Proof. The proof follows from the Fourier slice theorem (Theorem 2.3) by a simple computation:

1
4π
R∗ΦIα−1RΦ f (x) =

1
4π

∫
S 1
χS 1

Φ
(θ)Iα−1RΦ f (θ, x · θ) dθ

=
1

4π

∫
S 1
χS 1

Φ
(θ)

∫ ∞

−∞
|rθ|−α+1 R̂θ f (r)eirx·θ dr dθ

=
1

2π

∫
S 1

∫ ∞

0
χWΦ

(rθ) |r|−α f̂ (rθ)eirx·θr dr dθ

=
1

2π

∫
R2
|ξ|−α (χWΦ

(ξ) f̂ (ξ))eix·ξ dξ

= (IαPΦ f )(x).

The application of the Riesz potential I−α (cf. (2.14)) to both sides yields the assertion. �
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Theorem 3.9 also shows that the naive application of the inversion formulas (2.16) to y = RΦ f
reconstructs PΦ f rather than the unknown function f . Since f = PΦ f + (id − PΦ) f , that part
of f that cannot be recovered from limited angle data is given by (id − PΦ) f . In particular, only
those functions can be perfectly recovered from limited angle data, whose Fourier transform is
supported inside the wedge WΦ.

In Section 2.4 we have outlined that the filtered backprojection algorithm may be regarded as
an implementation of the inversion formula (2.18). Theorem 3.9 justifies the application of the
filtered backprojection (FBP) algorithm in limited angle tomography only if the Fourier transform
of the unknown function is supported inside the wedge WΦ. In this case, the unknown function
can be perfectly recovered from the limited angle data. However, if supp f̂ 1 WΦ, then Theorem
3.9 implies that the FBP reconstruction is equal to PΦ f which is equal to the approximate inverse
at a limited angular range. This explains why the objects cannot be perfectly reconstructed from
a limited angular range, cf. Figure 3.1.

Remark. Throughout this section we have assumed that the available angular range is given by
[−Φ,Φ]. In this case, the corresponding polar wedge WΦ is oriented along the the x-axis, cf.
Figure 3.2. However, the results of this section can be easily adapted for arbitrary orientations of
WΦ and thus for arbitrary angular ranges. y

3.3 Microlocal characterization of limited angle reconstructions

In the previous section we have shown that, at a limited angular range [−Φ,Φ], the approximate
inverse as well as the filtered backprojection reconstruction are given by PΦ f = F −1(χWΦ

f̂ ). This
implies that, in general, the unknown function cannot be recovered perfectly and also explains to
some extent the discrepancy between the original and the reconstructed image in Figure 3.1.

The goal of this section is to give a more detailed characterization of features that can be
reconstructed from limited angle Radon transform data. To this end, we shall use the concept of
singularities as a mathematical tool for describing those features. The characterization will be
presented within the mathematical framework of microlocal analysis that enables us to describe
locations and directions of singularities (features) simultaneously.

3.3.1 Basic facts from microlocal analysis

In this subsection, we summarize some of the basic principles of microlocal analysis, where we
mainly follow the expositions [Hör03], [Fri98]. To fix the notation, we recall that D(R2) = {ϕ ∈
C∞(R2) : suppϕ is compact} and E(R) = C∞(R2). The corresponding sets of distributions will
be denoted byD′(R2) and E′(R2) (distributions with compact support), respectively. Throughout
this chapter we will denote the action of distributions f on test functions ϕ by 〈 f , ϕ〉, and use the
notation Rn∗ = R \ {0} for n = 1, 2.

We start by giving the basic definitions.

Definition 3.10 (conic neighborhood). A conic neighborhood of a set A ⊆ R2∗ is an open subset
N ⊆ R2∗ with A ⊆ N and the property that tξ ∈ N for all t > 0 whenever ξ ∈ N . y
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Definition 3.11. A function f is said to decay rapidly in a conic neighborhoodN if for all ξ ∈ N
and all N ∈ N it holds that f (ξ) = O(|ξ|−N), |ξ| → ∞, i.e.,

∀N ∈ N ∃CN > 0 : | f (ξ)| ≤ CN(1 + |ξ|)−N as |ξ| → ∞, ξ ∈ N . y

We now define the singular support of a distribution as the set of all singular locations.

Definition 3.12 (singular support). The singular support of a distribution f ∈ D′(R2) is defined
as the set

sing supp( f ) =
{
x ∈ R2 : ∀ϕ ∈ D(R2), ϕ(x) , 0, ϕ f < D(R2)

}
y

It follows directly form the definition that sing supp( f ) ⊆ supp( f ), and sing supp( f ) = ∅ if and
only if f ∈ C∞(R2).

Definition 3.13 (frequency set). Let f ∈ E′(R2). We define the frequency set Σ( f ) of f as the set
of all directions ξ ∈ R2∗ in which f̂ does not decay rapidly in any conic neighborhood of ξ. More
precisely,

ξ < Σ( f ) ⇔ ∃ conic neighborhood N of ξ : ∀N ∈ N : f̂ (η) = O(|η|−N) in N . (3.22)
y

Remark. Since the frequency set Σ( f ) is conic, we will sometimes identify it with the quotient
frequency set Σ( f )/∼, where the equivalence relation ∼ is defined via

ξ ∼ η :⇔ ∃t , 0 : η = tξ. (3.23)

This identification is justified since for each real valued distribution f ∈ E′(R2) (that is 〈 f , ϕ〉 ∈ R
for each real valued ϕ ∈ C∞(R2)), f̂ does not decay rapidly in a conic neighborhood of ξ if and
only if f̂ does not decay rapidly a conic neighborhood of −ξ.

This identification justifies the nomenclature directions for the elements ξ ∈ Σ( f ). In this
context, we will call the directions ξ, ζ ∈ Σ( f ) different if the corresponding equivalence classes
[ξ] and [ζ] are disjoint. y

We note a fundamental property of the frequency set.

Lemma 3.14 ([Hör03, Lemma 8.1.1]). Let f ∈ E′(R2) and ϕ ∈ D(R2). Then,

Σ(ϕ f ) ⊆ Σ( f ). y

The singular support sing supp( f ) of a distribution gives the location of the singularities,
whereas, the frequency set Σ( f ) describes all directions in which f is singular. However, both
concepts are not yet correlated. That is, if Σ( f ) , ∅, then f < C∞(R2), but we do not know the
singular location corresponding to ξ ∈ Σ( f ).

The notion of the wavefront set combines both of these concepts and simultaneously describes
the location and the direction of a singularity. In order to define the wavefront set, we first need
the following notion of a localized frequency set.
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Definition 3.15 (localized frequency set). Let f ∈ D′(R2). The localized frequency set of f at
x ∈ R2 is defined as

Σx( f ) =
⋂{

Σ(ϕ f ) : ϕ ∈ D(R2), ϕ(x) , 0
}
. (3.24)

y

We first note that by Lemma 3.14 it holds Σx( f ) ⊆ Σ( f ). Therefore, the localized frequency
set Σx( f ) of f at x can be interpreted as the set of directions in which f is singular at x. This
gives us a precise correspondence of singularities and its directions. We are now able to define
the wavefront set.

Definition 3.16 (wavefront set). Let f ∈ D′(R2). The wavefront set of f is given by

WF( f ) =
{
(x, ξ) ∈ R2 × R2

∗ : ξ ∈ Σx( f )
}
. (3.25)

If (x, ξ) <WF( f ) one also says that f is microlocally near (x, ξ). y

As a consequence of (3.25), the wavefront set WF( f ) can be expressed as a union of sets of the
form {x} × Σx( f ). Since Σx( f ) = ∅ if x < sing supp( f ), we get the following expression

WF( f ) =
⋃

x∈sing supp( f )

{x} × Σx( f ). (3.26)

Remark. From Definition 3.16 it follows that (x, ξ) ∈ WF( f ) if and only if for each cut off

function ϕ ∈ D(R2) with ϕ(x) , 0 the Fourier transform ϕ̂ f does not decay rapidly in any open
conic neighborhood of the ray {tξ : t > 0}. In this context, one first localizes the distribution f
near x by multiplying with ϕ and then microlocalizes ϕ̂ f near the direction ξ. y

The following proposition shows that the wavefront set indeed contains the information of
both, sing supp( f ) and Σ( f ). An element (x, ξ) ∈WF( f ) gives the information about the location
x of a singularity and its direction ξ.

Proposition 3.17 ([Hör03, Prop. 8.1.3]). Let π1 be the projection onto the first variable, π1(x, ξ) =

x, and π2 be the projection onto the second variable, π2(x, ξ) = ξ, respectively. Then, the follow-
ing relations hold

π1 (WF( f )) = sing supp( f ), (3.27)

π2 (WF( f )) = Σ( f ). (3.28)
y

The next proposition gives an upper bound for the wavefront set.

Proposition 3.18. For each f ∈ E′(R2) we have

WF( f ) ⊆ sing supp f × Σ( f ). (3.29)
y

Proof. This is an immediate consequence of Lemma 3.14 and (3.26). �
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(x, ξ) ∈WF( f )

Figure 3.4: The Shepp-Logan head phantom (left) with its singular support, indicated by the black solid line (right).
The direction ξ of the singularity at x is given by the normal to the boundary, cf. (3.30).

We note a very important example that illustrates the concept of the wavefront set and which
will be of importance for us later.

Example. Let Ω ⊆ R2 be such that the boundary ∂Ω is a smooth manifold. Then, the wavefront
set of χΩ is characterized by

(x, ξ) ∈ WF(χΩ) ⇔ x ∈ ∂Ω, ξ ∈ Nx (ξ is a normal vector to ∂Ω at x), (3.30)

where χΩ denotes the characteristic function of Ω and Nx is the normal space to ∂Ω at x ∈ ∂Ω.
The proof of this fact is non-trivial and we refer the reader to [Hör03, p. 265]. y

The relationship (3.30) provides an intuitive understanding of the wavefront set of a function.
It motivates to think of a singularity (x, ξ) ∈ WF( f ) in terms of an oriented infinitesimally small
line segment which is located at x and has the normal direction ξ. This way of thinking gives us
an idea how to visualize the wavefront set of a given function and, on the other hand, to visualize
the singularities of an unknown function if only the wavefront set WF( f ) is known.

We conclude visualizing the wavefront set of the well-known Shepp-Logan head phantom in
Figure 3.4. By (3.30) and discussion above, it is easy to see that the singularities are located
along the boundaries of the elliptic regions, whereas the singular directions are given by the
normal directions (except at intersections), cf. the Figure 3.4.

3.3.2 Microlocal characterizations of limited angle reconstructions

Recall that the approximate inverse solution as well as the filtered backprojection reconstruction
at the limited angular range [−Φ,Φ] is given by PΦ f = F −1(χWΦ

· f̂ ), cf. Section 3.2. In the
following theorem we note a simple observation about the wavefront set of PΦ f .

Theorem 3.19. For f ∈ L2(R2) we have

WF(PΦ f ) ⊆ sing supp(PΦ f ) ×WΦ. (3.31)
y
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Proof. Since Σ(PΦ f ) ⊆ WΦ, the assertion follows from Proposition 3.18. �

As a consequence of Theorem 3.19, we conclude that PΦ f has no singularities in directions
ξ ∈ WC

Φ
B R2 \WΦ. Therefore, the reconstruction PΦ f is smooth in directions ξ ∈ WC

Φ
at every

point x ∈ R2. This observation explains the appearance of limited angle FBP reconstructions in
Figure 3.1, where we can clearly observe the directional smoothing.

In order to get a characterization which is independent of the reconstruction method, we need
to relate the singularities of the Radon transform RΦ f to the singularities of f . A correspondence
between the wavefront set WF(R f ) and WF( f ) was established by E.T. Quinto. We cite this in
the following theorem.

Theorem 3.20 ([Qui93]). Let f ∈ E′(R2), a , 0, and x ∈ L(θ, s) = {x ∈ R2 : x · θ = s} with
(θ, s) ∈ Z = S 1 × R. Moreover, we denote ζ = (−x · θ⊥, 1)ᵀ. Then,

((θ, s), aζ) ∈WF(R f ) ⇔ (x, aθ) ∈WF( f ). (3.32)
y

We use Theorem 3.20 to investigate the relationship between the wavefront set of the limited
angle Radon transform, WF(RΦ f ), and the sought function f . Apparently, we have the same
correspondence as in (3.32) if (θ, s) lies in the interior of ZΦ = S 1

Φ
× R, which in turn is the case

when θ belongs to the interior of S 1
Φ

. On the other hand, since there is no data point for (θ, s) < ZΦ,
the wavefront set WF(RΦ f ) contains no element ((θ, s), aζ) for θ < S 1

Φ
. Consequently, the limited

angle data y = RΦ f does not carry enough information about the singularities (x, ξ) ∈ WF( f ),
where ξ < WΦ. As a result, we cannot stably recover these singularities. This is in accordance
with Theorem 3.19 and the subsequent discussion.

Example. Let f (x) = χΩ be the characteristic function of the unit ball Ω ⊆ R2. Then,

R f (θ, s) =

2(1 − s2)1/2 for |s| ≤ 1,
0 otherwise.

The Radon transform R f (θ, s) is therefore smooth on S 1 × (−1, 1), whereas R f (θ, s) is singular at
each point (θ,±1), θ ∈ S 1, cf. Figure 3.5. That is, singularities appear exactly for those (θ, s) ∈ Z,
for which the line L(θ, s) is tangent to the boundary of the unit ball Ω. y

The above discussion motivates the following definition, which was originally given in [Qui06].

Definition 3.21 (visible singularity). A singularity (x, θ) ∈ WF( f ), θ ∈ S 1, is called visible from
a limited data set if the value RΦ f (θ, x · θ) is in the data set. Other singularities are called
invisible. y

The characterization of visible singularities at a given angular range is of great importance
for practical applications since it describes precisely the information content of an incomplete
tomographic data set. Thus, visible singularities provide information about features that can be
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Figure 3.5: Radon transform of the characteristic function of the unit disc. For s , 1, R f (θ, s) is smooth. Exactly at
lines tangent to the boundary of f , L(θ,±1), R f (θ, s) is not smooth (the first derivative is infinite).

reconstructed at a limited angular range and, in particular, about those features which cannot be
reconstructed from the given data (cf. discussion at the end of Subsection 3.3.1).

Let us draw some conclusions for the case of the limited angular range [−Φ,Φ]. In this case, the
visible singularities (x, ξ) of an unknown function f are exactly those with ξ ∈ WΦ, cf. Theorem
3.20. We therefore know a-priori that any reconstruction frec from the limited angle data y = RΦ f
will satisfy

WF( frec) ⊆ R2 ×WΦ. (3.33)

This observation is also reflected by practical reconstructions which are shown in Figure 3.6.
Since the above relation (3.33) does not depend on a particular reconstruction algorithm, the in-
clusion (3.33) may be interpreted as an inherent a-priori information of limited angle tomography.

Remark. A result similar to Theorem 3.20 is also available for the three-dimensional case, which
is formulated with respect to the divergent x-ray transform D (cf. Theorem 2.11) in R3 with
sources on a smooth curve γ in R3, cf. [Qui93]: Let f be a distribution with compact support,
x ∈ supp( f ). Then any singularity (x, ξ) ∈WF( f ) is stably detected from dataD f if and only if

the plane P(x, ξ) through x with normal direction ξ, intersects γ transversally1. (3.34)

If data are taken over an open set of rays with sources on γ, then a ray in P(x, ξ) from γ to x must
be in the data set for (3.34) to apply.

Note that condition (3.34) is necessary for every tomographic reconstruction method in three
dimensions which deals with x-ray data D f . Indeed, the requirement that “each plane which

1Two submanifolds of a given finite dimensional smooth manifold are said to intersect transversally if at every
point of intersection, their separate tangent spaces at that point together generate the tangent space of the ambient
manifold at that point.
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Figure 3.6: The Shepp-Logan head phantom (left) and its reconstruction at the angular range [−45◦, 45◦] (right). The
red lines in the left image indicate visible singularities at the given angular range. In the reconstructed
image on the right, the visible singularities are clearly visible, however, the invisible singularities are
smoothed out. In addition to the visible singularities, the reconstruction (right) shows the appearance of
some streak artifacts.

meets supp f intersects the curve transversally” is part of the Tuy’s condition (2.21) in Theo-
rem 2.11, which is the standard inversion formula for the x-ray transform in R3. In turn, Tuy’s
condition ensures that all singularities of the imaged object f are visible. y

3.4 Characterization and reduction of limited angle artifacts

In the previous section we have shown that only visible singularities of a function can be recon-
structed from a limited angular range, whereas the invisible singularities are smoothed or dis-
torted. However, the practical reconstructions in Figure 3.6 reveal another phenomenon. Besides
the visible singularities, the reconstruction shows the appearance of some additional singularities
that seem to be located on straight lines. Motivated by this observation, the goal of this section is
to present an exact characterization of these additional singularities. To this end, we will derive
another microlocal characterization of PΦ f (which is considered as limited angle reconstruction,
cf. Section 3.2). Based on this characterization, we will present a novel strategy for artifact
reduction. In addition, we will show that this strategy can be easily integrated into the filtered
backprojection algorithm.

3.4.1 Characterization of limited angle artifacts

To gain knowledge about the limited angle artifacts we again consider PΦ f = F −1(χWΦ
f̂ ), cf.

Theorem 3.9. Our goal is derive a more precise characterization of the wavefront set WF(PΦ f ).
To this end, we need some more facts about the wavefront sets.
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Theorem 3.22 ([Hör03, p. 270]). Let f ∈ D′(R2) and g ∈ E′(R2). Then,

WF( f ∗ g) ⊆
{
(x + y, ξ) ∈ R2 × R2

∗ : (x, ξ) ∈WF( f ), (y, ξ) ∈WF(g)
}
. y

In what follows, we call a distribution f ∈ S′(R2) homogeneous if f is homogeneous of some
degree α ∈ R, cf. Proposition A.17. The next lemma shows that the wavefront set WF( f ) of a
homogeneous distributions f ∈ S′(R2) is determined by the wavefront set of its Fourier transform.

Lemma 3.23 ([Hör03, Theorem 8.1.8]). Let f ∈ S′(R2) be homogeneous in R2∗, then

(x, ξ) ∈WF( f ) ⇔ (ξ,−x) ∈WF( f̂ ),

whenever ξ , 0 and x , 0. y

We are now able to prove our main result of this section.

Theorem 3.24. Let 0 ≤ Φ ≤ π/2 and let f ∈ L2(R2) have compact support. Denote int(WΦ)
the interior of the polar wedge WΦ and let ξϕ = (cos(ϕ), sin(ϕ))ᵀ, ξ⊥ϕ = (− sin(ϕ), cos(ϕ))ᵀ for
ϕ ∈ [−π, π). Then

WF(PΦ f ) ⊆WFΦ( f ) ∪AΦ, (3.35)

where
WFΦ( f ) =

{
(x, ξ) ∈ R2 × R2

∗ : (x, ξ) ∈WF( f ), ξ ∈ int(WΦ)
}

(3.36)

is the set of visible singularities of f and

AΦ =
{
(x + rξ⊥ϕ , αξϕ) : (x, ξϕ) ∈WF( f ), r, α ∈ R∗, ϕ = ±Φ

}
(3.37)

is the set of additional singularities. y

Proof. In what follows we let uΦ(x) = χWΦ
(x) and ǔΦ = F −1(uΦ). Then uΦ, ǔΦ ∈ S′(R2) and

PΦ f =
1

2π
f ∗ ǔΦ.

Moreover, by Theorem 3.22, we have

WF(PΦ f ) ⊆
{
(x + y, ξ) ∈ R2 × R2

∗ : (x, ξ) ∈WF( f ), (y, ξ) ∈WF(ǔΦ)
}
. (3.38)

Thus, we need to compute WF(ǔΦ). Now observe that ǔΦ is homogeneous (since uΦ is homoge-
neous), cf. Proposition A.17. Therefore, by Lemma 3.23, it suffices to compute the wavefront set
WF(uΦ). To this end, we first note that

sing supp (uΦ) = ∂WΦ = (R · ξΦ) ∪ (R · ξ−Φ) .

In order to compute the localized frequency sets Σx(uΦ) for each x ∈ sing supp(uΦ), we note that
the singular directions at each x± ∈ R·ξ±Φ\{0} are given by the normals to ξ±Φ, cf. correspondence
(3.30). Hence, we have

Σx±(uΦ) = R∗ · ξ⊥±Φ,
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and thus
WF(uΦ) =

{
(rξϕ, αξ⊥ϕ )ᵀ : r, α ∈ R∗, ϕ = ±Φ

}
∪ {0} × Σ0(uΦ).

By Lemma 3.23, we therefore have

WF(ǔΦ) =
{
(rξ⊥ϕ , αξϕ) : r, α ∈ R∗, ϕ = ±Φ

}
∪ {0} × Σ0(ǔΦ)

⊆
{
(rξ⊥ϕ , αξϕ) : r, α ∈ R∗, ϕ = ±Φ

}
∪ {0} ×WΦ, (3.39)

where the last inclusion is due to Σ0(ǔΦ) ⊆ WΦ, which in turn follows from suppF (ǔΦ) ⊆ WΦ by
Proposition 3.18. The assertion follows now by inserting (3.39) into (3.38). �

Theorem 3.24 is of particular interest for limited angle tomography since it provides a precise
characterization of the wavefront set of the filtered backprojection reconstruction at the angular
range [−Φ,Φ]. In particular, it explains all effects that can be observed in practical reconstructions
in Figure 3.1: On the one hand, there is the effect of cancellation or smoothing of singularities of f
that is expressed by the fact that WF(PΦ f ) ⊆WFΦ( f )∪AΦ ⊆ R2×WΦ. Therefore, only the visible
singularities are reconstructed, other singularities are smoothed. On the other hand, Theorem
3.24 characterizes the limited angle artifacts that can be observed in every filtered backprojection
reconstruction, cf. Figures 3.1. These artifacts, are described by those singularities (x, ξ) ∈
WF(PΦ f ) that belong to the set AΦ, cf. (3.37). We call these singularities additional since
(x, ξ) ∈ AΦ, in general, does not imply that (x, ξ) ∈WF( f ).

Let us take a closer look at the additional singularities (x, ξ) ∈ AΦ. First of all, note that by
(3.37) we have AΦ , ∅ if and only if ξ±Φ ∈ Σ( f ). In this case, (x f , αξ±Φ) ∈ WF( f ) for some
x f ∈ sing supp( f ). Now let (x f , α0ξ±Φ) ∈WF( f ) for some α0 , 0. Then, by (3.37),

(x f + rξ⊥±Φ, αξ±Φ) ∈ AΦ

for each r, α ∈ R∗. That is, only the existence of a singularity (x f , α0ξ±Φ) ∈ WF( f ) induces
new singularities that have the same direction and are located on the line l(r) = x f + rξ⊥±Φ

. This
fact describes exactly the streak artifacts that are visible in reconstructions in Figures 3.1. An
illustration of the above discussion is shown in Figure 3.7.

We conclude this section by noting that a good reconstruction algorithm should be, on the one
hand, able to reliably reconstruct visible singularities and, on the other hand, should avoid the
production of the added singularities.
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Figure 3.7: Filtered backprojection reconstruction (left) of χΩ at an angular range [−Φ,Φ], Φ = 45◦ and an illus-
tration of additional singularities (right). According to Theorem 3.24, the additional singularities (streak
artifacts) are located on lines l(r) = x f + rξ±Φ, where x f is such that (x f , αξ±Φ) ∈ WF( f ) for α , 0. The
correspondence of the theoretical description (right) and practical reconstruction (left) is remarkable.

3.4.2 Reduction of limited angle artifacts

Our aim in this subsection is to derive an artifact reduction strategy for the filtered backprojection
(FBP) algorithm in limited angle tomography. To this end, let us recall that the basis of the limited
angle FBP is the inversion formula (3.21)

PΦ f =
1

4π
R∗ΦI−1RΦ f . (3.40)

In order to reduce artifacts, our idea consists in modifying the above inversion formula in such a
way that it outputs a function TΦ f which

(i) does not include additional singularities, i.e., WF(TΦ f ) ⊆WFΦ( f ),

(ii) is a good approximation to PΦ f .

Let us first point out the reason why PΦ f = F −1(χWΦ
· f̂ ) may contain singularities (x, ξ) which

do not belong to the wavefront set of f . To this end, we write

PΦ f =
1

2π
f ∗ ǔΦ,

where ǔΦ = F −1(χWΦ
). Then, by examining the proof of Theorem 3.24 it is easy to see that the

set of additional singularitiesAΦ may be written as

AΦ =
{
(x + y, ξ) ∈ R2 × R2

∗ : (x, ξ) ∈WF( f ), (y, ξ) ∈WF(ǔΦ), y , 0
}
.

Consequently, the additional singularities appear only if there are singularities y ∈ sing supp(ǔΦ)
with y , 0. In order to avoid the production of additional singularities it is therefore canonical to
aim at reconstructing

TΦ f =
1

2π
f ∗ κ̌Φ (3.41)
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instead of PΦ f , where κ̌Φ ∈ S′(R2) is assumed to be homogeneous sucht that sing supp(κ̌Φ) = {0}.
This ensures the requirement (i) to hold. To summarize the above discussion we record the
following lemma.

Lemma 3.25. Let κΦ ∈ C∞(R2) be bounded and homogeneous of degree 0 such that

κΦ|W(Φ−ε) ≡ 1, κΦ|R2\WΦ
≡ 0 (3.42)

for some 0 < ε ≤ Φ. Moreover, let

κ̌Φ := F −1(κΦ).

Then, for TΦ f defined in (3.41), we have

WF(TΦ f ) ⊆WFΦ( f ).

In particular, this relation ensures that no additional singularities are produced. y

Proof. Note that κ̌Φ = F −1(κΦ) is homogeneous because κΦ is homogeneous, cf. Proposition
A.17. Moreover, by Lemma 3.23, we have that sing supp κ̌Φ ⊆ {0}. The assertion follows now
from Theorem 3.22 since Σ(κ̌Φ) ⊆ WΦ (cf. Proposition 3.18). �

The next theorem shows that a simple modification of the inversion formula (3.40) leads to an
artifact-free reconstruction TΦ f .

Theorem 3.26. Let κΦ fulfill the assumptions of Lemma 3.25. In addition, assume that κΦ sym-
metric, i.e, κΦ(θ) = κΦ(−θ) for all θ ∈ S 1. Then,

TΦ f =
1

4π
R∗ΦI−1KΦR f , (3.43)

where TΦ f is defined in (3.41), and

KΦR f (θ, s) = κΦ(θ) · R f (θ, s).

In particular, the inversion formula (3.43) does not produce additional artifacts, i.e.,

WF(TΦ f ) ⊆WF( f ). y

Proof. First note that I−1 and KΦ commute since I−1 acts on the second variable of RΦ f ,
whereas KΦ acts on the first variable of RΦ f . Moreover, because κΦ is homogeneous of de-
gree 0, we have κΦ(rθ) = κΦ(θ) for all θ ∈ S 1, r , 0. Following the proof of Theorem 3.9 for



3.4 Characterization and reduction of limited angle artifacts 49

α = 0, we therefore get

1
4π
R∗ΦI−1KΦRΦ f (x) =

1
4π

∫
S 1
χS 1

Φ
(θ)KΦI−1RΦ f (θ, x · θ) dθ

=
1

4π

∫
S 1
χS 1

Φ
(θ)

∫ ∞

−∞
κΦ(θ) |r| R̂θ f (r)eirx·θ dr dθ

=
1

2π

∫
S 1

∫ ∞

0
κΦ(rθ) f̂ (rθ)eirx·θr dr dθ

=
1

2π

∫
R2
κΦ(ξ) f̂ (ξ)eix·ξ dξ

= F −1(κΦ · f̂ )(x)

=
1

2π
( f ∗ κ̌Φ)(x) = TΦ f (x).

The last statement follows from Lemma 3.25. �

The above Theorem 3.26 shows that a simple preprocessing of the data yΦ = RΦ f , namely the
multiplication of the data yΦ by the function κΦ, i.e.,

yΦ(θ, s) = κΦ(θ) · yΦ(θ, s), (3.44)

and the subsequent application of the limited angle FBP leads to a reconstruction that does not
contain additional singularities. We note that the authors of [KLQ12] applied a similar smooth
data truncation in the case of the elliptical Radon transform in order to reduce limited angle
artifacts.

Remark. Let us give a different view on the artifact reduction strategy. To this end, we interpret
the limited angle Radon transform data yΦ = RΦ f as a truncated version of y = R f via

yΦ(θ, s) = χS 1
Φ
(θ) · y(θ, s),

where (θ, s) ∈ S 1 × R. Assuming that y(±Φ, s) , 0 for some s ∈ R, this hard truncation in
the Radon domain introduces additional singularities in the data yΦ which are located at (±Φ, s)
for each s ∈ R. These additional singularities in the Radon domain entail added singularities
in the reconstruction. In order to avoid the additional singularities in the Radon domain, it is
therefore reasonable to use a smoothly truncated data yΦ(θ, s) = κΦ(θ)y(θ, s). In that regard, only
those singularities are reconstructed which belong to the original object f . In particular, no added
singularities are generated.

Though it is not a formal proof, the above discussion gives an intuitive understanding of the
artifact reduction strategy that we presented in Theorem 3.26. y

Example. Let ϕε : [−π, π] → [0, 1] be defined by ϕε(x) = exp( x2

x2−ε2 ) for |x| ≤ ε and ϕε(x) = 0
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Figure 3.8: The characteristic function χWΦ
(left) and the smooth truncation function κΦ (right) as defined in (3.45)

for Φ = 45◦ and ε = 35◦.

for |x| > ε. Denote ξθ = (cos θ, sin θ) for θ ∈ [−π, π]. Then, the function

κΦ(rξθ) =


ϕε(θ + (Φ − ε)), θ ∈ [−Φ,−(Φ − ε)],
1, θ ∈ [−(Φ − ε),Φ − ε],
ϕε(θ − (Φ − ε)), θ ∈ [(Φ − ε),Φ],
0, otherwise.

(3.45)

satisfies the assumptions of Lemma 3.25 and Theorem 3.26, and therefore can be used for artifact
reduction according to (3.43). A plot of such κΦ is given in Figure 3.8. y

We have implemented this artifact reduction strategy in Matlab using the function κΦ as defined
in (3.45). The resulting reconstructions for Φ = 45◦ and ε = 35◦ are shown in Figure 3.9. Here,
one can clearly observe the effect of artifact reduction: While the limited angle artifacts are visible
in the FBP reconstructions (middle column), the implementation of the artifact reduction strategy
(3.41) avoids the production of the additional singularities (right column).

Finally, let us comment on the choice of the parameter ε ∈ (0,Φ] in (3.42) (cf. also (3.45)).
First note that, according to Lemma 3.25 and Theorem 3.26, every choice of the parameter ε ∈
(0,Φ] leads to a reconstruction TΦ f which does not contain additional artifacts as opposed to
PΦ f . Secondly, the function κΦ,ε = κΦ converges pointwise to χWΦ

as ε→ 0 (according to (3.42)).
Therefore, a small value of the parameter ε ensures that TΦ f is close to PΦ f (cf. requirement
(ii)). That is, a small parameter ε leads to a reconstruction TΦ f which is a good approximation
to PΦ f and which does not contain additional artifacts. However, in practice, small values of
ε lead to artifacts in the reconstruction as can be observed in Figure 3.10. This is because κΦ

decays very fast near the boundary ∂WΦ for small values of ε. Therefore, the parameter ε has to
be chosen appropriately. For the experiment in Figure 3.9, the choice of this parameter was based
on a visual inspection of reconstructions for different values of ε.
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Figure 3.9: Limited angle reconstructions at the angular range [−Φ,Φ], Φ = 45◦. Original images (left column), FBP
reconstructions (middle column) and FBP reconstruction with artifact reduction (right column).

3.5 A microlocal approach to stabilization of limited angle
tomography

In the last section of this chapter we draw our attention to the ill-posedness of the limited angle
tomography. We will discuss that, in this case, the reconstruction problem is severely ill-posed.
In particular, we will relate the severe ill-posedness of limited tomography to the existence of
invisible singularities. Moreover, we will show that by integrating the inherent a-priori infor-
mation about visible singularities (3.33) into the reconstruction, the inversion procedure can be
stabilized. As a result, the degree of ill-posedness is reduced to 1/2 (in the sense of Definition
C.6) which equals to the degree of ill-posedness of the reconstruction problem at a full angular
range, cf. Theorem 2.13.

3.5.1 A microlocal principle behind the severe ill-posedness

Our goal of this section is to understand the severe ill-posedness of limited angle tomography
within the framework of microlocal analysis. Though most of the results about the severely ill-
posed nature of limited angle tomography are well-known, we present them here for the sake
of completeness. For more details we refer to the classical literature [Dav83], [Lou84, Lou86],
[Nat86, NW01].

In order to study well-posedness of a problem it is the first task to check whether a unique
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(a) ε = 10◦ (b) ε = 25◦ (c) ε = 35◦

Figure 3.10: FBP reconstructions with artifact reduction. The effect of the parameter ε in the definition of κΦ on
artifact reduction, cf. (3.42) and (3.45). Small values of ε lead to artifacts in the reconstruction.

reconstruction exists, cf. Definition C.1. We begin by noting that the reconstruction cannot
be unique if the sought function has a non-compact support. This is due to the non-injectivity
of the limited angle Radon transform RΦ which was shown in Corollary 3.7. Therefore, the
severe ill-posedness in the case of non-compact support is reflected by the non-uniqueness of the
reconstruction.

In what follows we consider the reconstruction problem for functions with compact support. In
contrast to the case of non-compact support, the reconstruction is unique for every angular range
[−Φ,Φ], 0 ≤ Φ < π/2:

Theorem 3.27 ([Nat86, Theorem II.3.5]). Let f ∈ L2(R2) have compact support, and suppose
RΦ f (θ, ·) = 0 for θ ∈ S 1

Φ
. Then, f ≡ 0. y

Proof. The compact support of f implies that the Fourier transform f̂ is analytic. By assumption
and the Fourier slice theorem we get f̂ (σθ) = (2π)−1/2R̂Φ f (θ, σ) = 0 for all σ ∈ R and θ ∈ S 1

Φ
.

Since no non-trivial analytic function can vanish on a set with a limit point, we get f̂ ≡ 0 and
thus f ≡ 0. �

The result of Theorem 3.27 seems at the very first glance surprising since it guarantees a
unique reconstruction even from a very small angular range. In particular, it guarantees that even
invisible singularities (cf. Definition 3.21) can be reconstructed. However, the proof of the above
theorem reveals that the reconstruction is highly unstable. Namely, it shows that reconstructing
f from a limited angle data is equivalent to analytic continuation of f̂ , which is known to be
extremely unstable. To see this, let us assume that f̂ , ĝ are two analytic functions. Then, observe
that the difference f̂−ĝ is analytic as well, and therefore unbounded if f̂−ĝ is not constant. Hence,
if we are given perturbed data f̂η := f̂ + η, where ‖η‖∞ < ε, ε > 0, on some region U ⊆ R2,
the analytic continuation F̂η of f̂η differs from the analytic continuation F̂ of f̂ . Accordingly, the
difference F̂ − F̂η is unbounded which means that the reconstruction error might be arbitrarily
large. This conclusion is true for every ε > 0. As a result, the analytic continuation and, hence,
limited angle tomography is extremely unstable.

In particular, the above discussion shows that the reconstruction becomes extremely unstable
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when trying to extrapolate values f̂ (ξ) for ξ < WΦ. Note that these are exactly those values
which contain the information about the invisible singularities. It seems therefore reasonable to
conclude that the main instabilities of limited angle reconstruction occur due to the presence of
invisible singularities.

Remark. Assuming the unknown function f to have compact support, the above discussion
shows that, in order to get a perfect reconstruction from a limited angle data, the reconstruction
algorithm has to perform analytic continuation in the Fourier domain. However, as we have shown
in Theorem 3.9, the application of the filtered backprojection (FBP) algorithm to the limited
angle data does not recover f but PΦ f . In this context, the FBP algorithm is not an appropriate
reconstruction algorithm for limited angle tomography. y

To quantify the degree of ill-posedness of the limited angle problem we first note the charac-
terization via the singular value decomposition, cf. Definition C.5.

Theorem 3.28 (Singular values of the limited angle Radon transform, [Nat86, Sec. VI.2]). .
Assume that 0 ≤ Φ ≤ π/2 and let Ω ⊆ R2 be the unit ball of R2. Then, the singular values σm,l

(cf. Theorem B.7) of the limited angle Radon transform

RΦ : L2(Ω)→ L2(ZΦ, (1 − s2)1/2)

are given by

σm,l =

(
2π

m + 1
λl(m + 1,Φ/π)

)1/2

, m ∈ N0, 0 ≤ l ≤ m,

where λl(m + 1,Φ/π) satisfies the following condition: for each 0 < ϑ < 1 there are constants
c = c(ϑ) > 0 and b = b(ϑ) such that

0 ≤ 1 − λl(m + 1,Φ/π) ≤ ce−bm, for l ≤ ϑ2Φ

π
m, (3.46)

0 ≤ λl(m + 1,Φ/π) ≤ ce−bm, for l ≥ ϑ−1 2Φ

π
m. (3.47)

In particular, the singular values σm,l with l ≥ ϑ−1(2Φ/π)m decay exponentially as m→ ∞. y

Let us take a closer look at Theorem 3.28. To this end, let (σm,l, fm,l, gm,l)(m,l)∈I denote the
singular value decomposition of RΦ and let I = {(m, l) : m ∈ N0, 0 ≤ l ≤ m} be the index set of
all singular values. Then, by Theorem 3.28 and Theorem B.7, we can write

f =
∑

(m,l)∈I\I0

cm,l fm,l +
∑

(m,l)∈I0

cm,l fm,l, (3.48)

where the coefficients cm,l are given by

cm,l = σm,l
〈RΦ f , gm,l

〉
L2(ZΦ,(1−s2)1/2) ,

and
I0 =

{
(m, l) ∈ I : l ≥ ϑ−1(2Φ/π)m

}
,
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for some 0 < ϑ < 1. Now observe that, by (3.47), all but a small finite number of coefficients
cm,l with (m, l) ∈ I0 are very close to 0. Therefore, the information content of these small
coefficients is lost if the data y = RΦ f is corrupted by noise. In this case, the right hand sum in
(3.48) consists only of a small (finite) number of summands. Since all singular functions fm,l are
smooth, [Lou86], this sum represents a function which does not contain singularities. As a result,
only those singularities of f can be reconstructed which have a representation with respect to the
system

{
fm,l

}
m,l∈I\I0

. In turn, these are exactly the visible singularities. This observation reflects
again the microlocal correspondence that was noted in Theorem 3.20.

Finally, we note that the limited angle problem is also severely ill-posed in the sense of Defi-
nition C.6, cf. [Nat86, Sec. VI.2]. Also in this context, we will see that the reason for the severe
ill-posedness can be explained within the framework of microlocal analysis.

Theorem 3.29. Let α ∈ R, 0 ≤ Φ ≤ π/2 and let Ω ⊆ R2 be the unit ball of R2. Then there is a
function f such that, for some Cα > 0,

‖ f ‖Hα
0 (Ω) � Cα ‖RΦ f ‖Hα+1/2(ZΦ) , (3.49)

where

‖g‖Hα(ZΦ) =

∫
S 1

Φ

∫
R

(1 + σ2)α |ĝ(θ, σ)|2 dσ dθ.

That is, the left-hand side Sobolev space estimate (cf. Theorem 2.13) does not hold for the limited
angle Radon transform. y

Proof. In order to show that an estimate of the form (3.49) cannot hold, it is sufficient to choose
a function f ∈ Hβ

0(Ω) with β < α such that f has a singularity only with respect to an invisible
direction. Then, according to Theorem 3.20, the limited angle Radon transform is RΦ f is smooth
(i.e. RΦ f ∈ C∞(ZΦ)) such that ‖RΦ f ‖Hα+1/2(ZΦ) < ∞. However, since f < Hα

0 (Ω), ‖ f ‖Hα
0 (Ω) = ∞.

For a concrete example of such a function we refer to [Nat86, Sec. VI.2]. �

To sum up, we again emphasize that the main reason for the severe ill-posedness of limited angle
tomography is the existence of invisible singularities.

3.5.2 A stabilization strategy for limited angle tomography

In the previous subsection we have shown that the reconstruction procedure becomes extremely
unstable as soon as we are trying to reconstruct invisible singularities. In order to stabilize the
inversion, it is therefore natural to reconstruct only that part of the sought function f which merely
contains the visible singularities. For that reason, we aim at reconstructing functions f that satisfy
WF( f ) ⊆ R2 ×WΦ, cf. (3.33). In order to integrate this a-priori information into a reconstruction
procedure, we shall assume that

supp f̂ ⊆ WΦ. (3.50)

That is, our goal is to reconstruct PΦ f = F −1(χWΦ
f̂ ) from the limited angle data y = RΦ f , rather

than f . Note that (3.50) implies WF( f ) ⊆ R2 ×WΦ, but not vice versa.
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According to the above discussion, we formulate the stabilized limited angle reconstruction
problem as follows:

given yδ = RΦ f + η, find an approximation to PΦ f . (3.51)

In this case, we can restore the Sobolev space estimate (3.49).

Theorem 3.30. Let f ∈ C∞c (Ω). Then, for each α ∈ R we have
√

4π ‖PΦ f ‖Hα(R2) ≤ ‖RΦ f ‖Hα+1/2(ZΦ) . (3.52)
y

Proof. The proof is according to [Nat86, Theorem II.5.1]. By using the Fourier slice Theorem
2.3, we first note that

‖RΦ f ‖2Hα+1/2(ZΦ) =

∫
S 1

Φ

∫
R

(1 + σ2)α+1/2 |F (RΦ f )(θ, σ)|2 dσ dθ

= 4π
∫

S 1
Φ

∫ ∞

0
(1 + σ2)α+1/2

∣∣∣ f̂ (σθ)
∣∣∣2 dσ dθ.

Substituting ξ = σθ we get

‖RΦ f ‖2Hα+1/2(ZΦ) = 4π
∫

WΦ

(1 + |ξ|2)α+1/2 |ξ|−1
∣∣∣ f̂ (ξ)

∣∣∣2 dξ, (3.53)

≥ 4π
∫
R2

(1 + |ξ|2)α
∣∣∣χWΦ

(ξ) f̂ (ξ)
∣∣∣2 dξ. (3.54)

�

Remark. For f ∈ C∞c (Ω), it is straightforward to prove the right-hand side Sobolev estimate

‖RΦ f ‖Hα+1/2(ZΦ) ≤ Cα ‖ f ‖Hα
0 (R2) ,

with some constant Cα > 0. In order to prove this inequality, it is essential that f has compact
support, [Nat86, Theorem 5.1]. However, an estimate of the form

‖RΦ f ‖Hα+1/2(ZΦ) ≤ Cα ‖PΦ f ‖Hα(R2) ,

cannot be proven using the same technique. This is due to the fact that the support of PΦ f cannot
be compact even though f has compact support. y

Theorem 3.30 shows that the reformulation of the limited angle reconstruction problem (3.3)
according to (3.51) indeed stabilizes the reconstruction procedure. In this case, the degree of
ill-posedness equals 1/2 (in the sense of Definition C.6) which is the same as in the case of the
full angular range, cf. Theorem 2.13. An appropriate reconstruction algorithm for the stabilized
problem (3.51) is given by the filtered backprojection algorithm. This is due to the fact that
the limited angle FBP implements an inversion formula for PΦ f , cf. Theorem 3.9. An artifact
reduced version of the FBP algorithm for the problem (3.51) was derived in Section 3.4.



56 Chapter 3 Characterization of limited angle reconstructions and artifact reduction

3.6 Summary and concluding remarks

The main goal of this chapter was to understand the image formation principle in limited an-
gle tomography, and to explain all effects that can be observed in practical reconstructions, cf.
Figure 3.1. For this purpose, we presented a detailed analysis of the limited angle backprojection
operator and characterized the kernel of the limited angle Radon transform in S(R2), cf. Theo-
rem 3.6 and Corollary 3.7, respectively. In addition, we derived an exact formula for filtered
backprojection reconstructions at a limited angular range in Theorem 3.9. These characteriza-
tions showed that, given tomographic data at the limited angular range [−Φ,Φ], only the part
PΦ f = F −1(χWΦ

f̂ ) can be reconstructed. In particular, these results explain why limited angle
FBP does not perfectly recover the unknown function f .

In Section 3.3, we gave an interpretation of these characterizations in terms visible and invisi-
ble singularities at the limited angular range [−Φ,Φ]. In particular, we showed that a meaningful
a-priori information can be extracted from the limited angle data, cf. (3.33). Section 3.4 was
devoted to the characterization of limited angle artifacts and the development of an artifact reduc-
tion strategy for the filtered backprojection algorithm. These results were stated in Theorem 3.24
and Theorem 3.26. We also presented some numerical experiments on artifact reduction.

In Section 3.5, we discussed three aspects of the severe ill-posedness of limited angle tomogra-
phy in the context of microlocal analysis. In particular, we showed that the existence of invisible
singularities at a limited angular range is mainly responsible for the severe ill-posedness of the
limited angle reconstruction problem. Based on this insight, we derived a stabilization strategy
for limited angle tomography in Subsection 3.5.2. Basically, this is nothing but the integration of
the inherent a-priori information (3.33) into the reconstruction problem.



Chapter 4

An adapted and edge-preserving reconstruction
method for limited angle tomography

Thus far, we mainly studied the filtered backprojection (FBP) algorithm at a limited angular
range. Its main advantage consists in the ability to produce efficacious reconstructions at a small
cost. However, the FBP algorithm does not perform well in the presence of noise, [NW01],
[Her09], [MS12]. Depending on the choice of the regularization parameter (cf. Subsection 2.4.1),
the reconstructions appear either noisy or tend to oversmooth the edges, see Figure 4.1. However,
it is of particular importance for medical imaging purposes to reliably reconstruct edges. The
need for edge-preserving reconstruction in computed tomography is documented by various pub-
lications, see e.g. [DB95], [CD00, CG02], [YF02], [HHK+12], [Kla11, KRR11], most of which
use a variant of the total variation reconstruction to preserve edges.

In the present chapter we develop a novel reconstruction algorithm for limited angle tomo-
graphy that is stable and edge-preserving. We show that this algorithm may be adapted to the
limited angle geometry by integrating the inherent a-priori information (3.33) into the recon-
struction. As a result, the dimension of the problem can be significantly reduced yielding a
considerable speedup of the algorithm while preserving the reconstruction quality.

This chapter is organized as follows. In Section 4.1 we briefly introduce the technique of sparse
regularization and recall the definition of curvelets. In particular, we show that the combination
of these mathematical tools yields a stable and edge-preserving reconstruction method which we
call curvelet sparse regularization (CSR). In Section 4.2, we formulate an adapted version of
curvelet sparse regularization (A-CSR) by integrating the inherent a-priori information of limited
angle tomography (3.33) into the CSR method. Our main results are presented in Section 4.3,
where we first derive an explicit formula for the Radon transform of curvelets and, in particular,
prove a characterization of the kernel of the limited angle Radon transform in terms of curvelets.
These results are presented in Theorem 4.7 and Theorem 4.8. In Theorem 4.10, we characterize
CSR reconstructions at limited angular range. In particular, we show that the adapted approach
(A-CSR) leads to the same reconstructions as the non-adapted curvelet sparse regularization.
Finally, in Section 4.4, we derive an explicit formula for CSR reconstructions at a full angular
range and discuss the relation of CSR to the “curvelet thresholding” approach of [CD02].

57
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Figure 4.1: Filtered backprojection reconstructions from a noisy data set (noiselevel=2%) at the angular range
[−Φ,Φ], Φ = 45◦ using the Ram-Lak filter with different bandwidths, cf. Section 2.4.1. Top left im-
age was reconstructed using a large bandwidth, whereas the top right image was generated by using a
small bandwidth. The second row shows a zoom of the white rectangular regions of the reconstructions in
the top row. Reconstructions on the left show poor noise performance while the edges are well preserved.
However, the images on the right reveal the opposite phenomenon: The noise performance seems to be
quite good, whereas the edges appear to be blurred.

Essential parts of the present chapter were published in the Journal of Applied and Computa-
tional Harmonic Analysis [Fri12]. Moreover, the results of Section 4.3 were announced in the
Proceedings in Applied Mathematics and Mechanics, [Fri11]. We also note that an alternative
approach to adapted curvelet sparse regularization was published in the Proceedings of IEEE
International Symposium on Biomedical Imaging, [Fri10].

4.1 A stable and edge-preserving reconstruction method

In this section we develop a stable and edge-preserving reconstruction method for the limited
angle reconstruction problem

yδ = RΦ f + η, (4.1)

where η denotes the noise level δ > 0, i.e., ‖η‖22 = δ. In order to stabilize the inversion, it is neces-
sary to integrate additional prior knowledge about the solution into the reconstruction procedure,
[EHN96], [Kir96]. A common approach is to use variational formulation of the reconstruction
problem, [SGG+09]. In this context, a regularized solution fα is obtained as a minimizer of the
so-called Tikhonov functional,

fα = arg min
f

{∥∥∥RΦ f − yδ
∥∥∥2

2 + αΛ( f )
}
, (4.2)
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where α > 0 denotes the regularization parameter and Λ : dom (Λ) → [0,∞] is the so-called
prior (or regularization) functional. The first term in (4.2) controls the data error, whereas the
second term encodes the prior information about the sought object f .

The choice among various prior terms Λ and, thus, regularization techniques, depends on the
specific object (which is imaged) and, to some extent, on the desire to preserve or emphasize
particular features. A classical strategy is to enforce smoothness of the solution. In this case, it is
appropriate to choose Λ to be a smoothness (semi-) norm, [EHN96], [Kir96]. For example, the
Besov norm, which allows to adjust the smoothness of the solution at a very fine scale [KSJ+03],
[LT08], [RVJ+06].

In what follows, our goal is to design a penalty functional which does not smooth edges. The
most prominent prior functional Λ that is used for edge-preserving reconstruction is the total
variation (TV) seminorm, see e.g. [HSP11], [HKK+12]. However, as it was pointed out in
[HD08], TV reconstruction may not be an appropriate choice for medical imaging purposes. One
reason for this is that TV regularization favors piecewise constant functions and, hence, produces
staircase effects which may destroy relevant information [CCN07], [Rin00]. To overcome this
problem, higher order total variation priors were considered by some authors, see for example
[BKP10].

In this section, we apply a different regularization strategy, where instead of enforcing smooth-
ness, sparsity of the solution is enforced with respect to some dictionary (function system),
[DDDM04]. Moreover, we will show that by using the curvelet dictionary, [CD05b], this reg-
ularization method gives rise to an edge-preserving reconstruction technique.

4.1.1 Regularization by sparsity constraints

In what follows we assume {ψn}n∈I to be a frame of L2(Ω) with a countable index set I, cf.
[Chr03]. That is, for some constants A, B > 0 we assume that

A ‖ f ‖22 ≤
∑
n∈I
|〈 f , ψn〉|2 ≤ B ‖ f ‖22 , for all f ∈ L2(Ω).

Moreover, we define the analysis operator T : L2(Ω) → `2(I) and the synthesis operator T ∗ :
`2(I)→ L2(Ω) by

T f = {〈ψn, f 〉}n∈I , T ∗c =
∑
n∈I

cnψn. (4.3)

Then, the reconstruction problem (4.1) can expressed with respect to the frame coefficients c via

yδ = Kc + η, K := RΦT ∗. (4.4)

We are therefore interested in the recovery of the frame coefficients c = (cn)n∈I of f rather than
the function f itself.

In order to stabilize the reconstruction problem (4.4), we will assume that the sought function
f is sparse with respect to the frame {ψn}n∈I. That is, we assume that the coefficients c ∈ `2(I) in
the representation f = T ∗c have only finitely many entries which are different from zero. Thus,
our regularization strategy is to determine a solution of the problem (4.1) such that it is sparse with
respect to the frame {ψn}n∈I. The integration of the sparsity assumptions into the reconstruction
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procedure can be achieved by using variational formulation (4.2) with the following regularization
term [DDDM04], [BL08b], [GHS08], [Lor09a],

Λw,p(c) C ‖c‖pw,p =
∑
n∈I

wn |〈 f , ψn〉|p , (4.5)

where w = (wn)n∈I is a weight sequence satisfying wn ≥ ε > 0 for some ε > 0, and 1 ≤ p ≤ 2.

To sum up, regularization by sparsity constraints yields a solution of (4.4) by minimizing the
following Tikhonov type functional,

cw,p = arg min
c∈CI

{
1
2

∥∥∥Kc − yδ
∥∥∥2

L2(S 1×R) + ‖c‖pw,p
}
. (4.6)

A regularized reconstruction fw,p for the original problem (4.1) is then obtained by applying the
synthesis operator to the regularized coefficients cw,p, i.e., fw,p = T ∗cw,p.

We shall now show that sparse regularization (4.6) of the reconstruction problem (4.1) is well-
posed in the sense that a minimizer cw,p exists and continuously depends on the data yδ. To this
end, for 1 ≤ p ≤ 2, we define the following shrinkage operator Sp

w : `2(I)→ `2(I) by

(Sp
w(c))n = S p

wn(xn) :=


sgn(cn) max {0, |cn| − wn} , p = 1
G−1

wn,p(cn) 1 < p < 2,
cn/(1 + 2wn) p = 2,

(4.7)

where G−1
wn,p denotes the inverse function of Gwn,p(y) = y+wn p sgn(y) |y|p−1, [Lor09a]. For p = 1,

the operator S1
w is the well-known soft-thresholding operator and will be denoted by Sw.

The following proposition follows from results in [GHS08], [Lor09a].

Proposition 4.1. For every yδ ∈ L2(Ω) the Tikhonov functional

Tw,p(c) =
1
2

∥∥∥Kc − yδ
∥∥∥2

L2(S 1×R) + ‖c‖pw,p , (4.8)

has a minimizer in L2(Ω). Furthermore, for any γ > 0, the minimizer cw,p of Tw,p is characterized
by the fixed point equation

cw,p = Sp
γw

(
cw,p − γK∗(Kcw,p − yδ)

)
. (4.9)

y

The following proposition shows that regularization by sparsity constraints (4.6) indeed en-
forces sparsity of the solution.

Proposition 4.2 ([GL08]). For p = 1, each minimizer cw,1 of (4.8) is finitely supported. For
1 < p ≤ 2, it holds that cw,p ∈ `2(p−1)

w2 , where `q
w2 = {c : ‖c‖q

w2,q
≤ ∞} for q = 2(p − 1) and

w2 = (w2
n)n∈I. y

Finally, we note that sparse regularization is a regularization method in the sense of Ap-
pendix C, Definition C.7. The following theorem follows directly by applying [GHS08, Remark
3 and Proposition 7] to the limited angle Radon transform.
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Theorem 4.3. Let 1 ≤ p ≤ 2. Assume that the operator equation Kc = y attains a solution in
`

p
w = {c ∈ CI : ‖c‖w,p < ∞}, and that α : R+ → R+ satisfies

lim
δ→0

α(δ) = 0, lim
δ→0

δp

α(δ)
= 0.

Let δk → 0 and let yk ∈ L2(S 1 × R) satisfy ‖y − yk‖L2(S 1×R) ≤ δk. Moreover, let αk = α(δk) and

ck
w,p ∈ arg min

{
1
2
‖Kc − yk‖2L2(S 1×R) + αk ‖c‖pw,p

}
.

Then, there exists a solution c† of Kc = y of minimal ‖ · ‖w,p-norm and a subsequence ck j
w,p such

that
lim
j→∞

∥∥∥∥ck j
w,p − c†

∥∥∥∥
2

= 0. y

4.1.2 A multiscale dictionary for sparse and edge-preserving representations

In the previous section we have shown that imposing sparsity constraints on the solution stabi-
lizes the reconstruction problem of limited angle tomography. However, in order to make this
method applicable in practice, we still need to specify the dictionary {ψn}n∈I. An essential re-
quirement on the dictionary {ψn}n∈I is the ability to provide sparse representation of a large class
of functions, cf. Subsection 4.1.1. This is necessary in order that the regularized solution is a
good approximation of the sought function, cf. Proposition 4.2. In addition to the stabilizing
property of the reconstruction method, it is our goal to design an inversion technique that is edge-
preserving. To achieve this, our idea consists in combining the technique of sparse regularization
with a dictionary that provides sparse and edge-preserving representations. In this subsection, we
introduce curvelets, [CD05b], [MP10], to address the problem of finding an appropriate dictio-
nary. Moreover, we give an adequate definition of a class of functions with edges and show that
these function can be efficiently approximated by curvelets, [CD04].

The curvelet dictionary

We briefly recall the definition of the curvelet frame. For details we refer to [CD05b], [MP10].
Conceptually, the curvelet dictionary is a wavelet type dictionary that has a multiscale structure
and whose elements are highly directional functions. As opposed to wavelets, the curvelet dic-
tionary is not generated by a single mother curvelet. Rather, the generating functions vary from
one scale to another.

At scale 2− j, j ∈ N0, the generating curvelets ψ j,0,0 : R2 → R are defined in the frequency
domain by using polar coordinates (r, ω) as follows:

ψ̂ j,0,0(r, ω) = 2−3 j/4 ·W(2− j · r) · V
(
2 d j/2e+1

π
· ω

)
, (4.10)

where W(r) is a radial window and V(ω) is an angular window, respectively. The windows W and
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10 20 40

Figure 4.2: Support of curvelets in the Fourier domain for j = 1 (dark gray), j = 3 (gray) and j = 5 (light gray). A
similar image can be found in [MP10].

V are assumed to be real and smooth (W,V ∈ C∞(R)), such that

supp W ⊆ (1/2, 2), supp V ⊆ (−1, 1).

Moreover, we assume the following admissibility conditions to be satisfied,

∞∑
j=−∞

W2(2 jr) = 1, r ∈ (3/4, 3/2);

∞∑
l=−∞

V2(ω − l) = 1, ω ∈ (−1/2, 1/2).

(4.11)

The family of curvelets {ψ j,l,k} j,l,k is now constructed by translation and rotation of generating
curvelets ψ j,0,0. That is, at scale 2− j, the curvelet ψ j,l,k is defined via

ψ j,l,k(x) = ψ j,0,0(Rθ j,l(x − b j,l
k )), (4.12)

where

Rθ j,l =

cos θ j,l − sin θ j,l

sin θ j,l cos θ j,l

 (4.13)

denotes the rotation matrix with respect to the scale-dependent rotation angles θ j,l and the scale-
dependent locations b j,l

k which are defined by

θ j,l = l · π · 2−d j/2e−1, −2 d j/2e+1 ≤ l < 2 d j/2e+1,

b j,l
k = R−1

θ j,l

(
k1

2 j ,
k2

2 j/2

)
, k = (k1, k2)ᵀ ∈ Z2.

(4.14)

Since the window functions W and V are compactly supported, and in particular, since the
support of W(2 j · ) is contained in (1/2,∞), it follows from (4.10) and (4.12) that each curvelet
is supported on a polar wedge in the Fourier domain which has a positive distance to the origin,
cf. Figure 4.2. Thus, we have ψ̂ j,l,k(ξ) = 0 for all |ξ| < 1/2 and all admissible indices ( j, l, k)
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(a) ψ5,0,0 (b) ψ6,5,0

Figure 4.3: Curvelets at different scales and different orientations. Left image shows a curvelet with orientation θ5,0 =

0◦ whereas the right image shows a curvelet with orientation θ6,5 = 56.25◦.

according to (4.14). As a result, the region
⋃

( j,l,k) supp ψ̂ j,l,k does not cover all of the R2 and the
system {ψ j,l,k} does not contain any low-pass element.

To finish the definition of the curvelet system we define the generating low-pass function ψ−1,0,0
in the Fourier domain by

ψ̂−1,0,0(r, ω) = W0(r), W2
0 (r) := 1 −

∞∑
j=0

W2(2− jr)

and complete the curvelet system by all of its translates
{
ψ−1,0,k

}
k∈Z2 . Then, the index set of the

(completed) curvelet dictionary is given by

I =
{
(−1, 0, k) : k ∈ Z2

}
∪

{
( j, l, k) : j ∈ N0, k ∈ Z2, −2 d j/2e+1 ≤ l < 2 d j/2e+1

}
. (4.15)

Note that each index ( j, l, k) ∈ I has a 3 parameter structure, where j denotes the scale-parameter,
k = (k1, k2) is the location parameter and l is the orientation parameter.

Remark. In the spatial domain, the support of curvelets is concentrated around an ellipse which
is located near b j,l

k and oriented along the orthogonal direction θ⊥j,l = θ j,l + π/2. The directional
localization becomes higher when the scale parameter j increases. Consequently, curvelets are
highly oriented at fine scales, see Figure 4.3. y

The curvelet dictionary {ψ j,l,k}( j,l,k)∈I now provides a tiling of the frequency plane, cf. Figure
4.4, and is complete in the sense that it constitutes a tight frame for L2(R2), [CD05b]. That is, for
each f ∈ L2(R2) there is a curvelet representation

f =
∑

( j,l,k)∈I
〈ψ j,l,k, f 〉ψ j,l,k (4.16)

and a Parseval relation
‖ f ‖2L2(R2) =

∑
( j,l,k)∈I

∣∣∣〈ψ j,l,k, f 〉
∣∣∣2 .
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Figure 4.4: Tiling of the frequency plane corresponding to the curvelet dictionary, [CD04].

We conclude our exposition on curvelets with the following example of curvelet window func-
tions W and V that satisfy the admissibility conditions (4.11).

Example. For an explicit construction of a curvelet according to (4.11), the following window
functions may be used, [MP10]:

W(r) =


cos

(
π
2ν (5 − 6r)

)
2
3 ≤ r ≤ 5

6 ,

1 5
6 ≤ r ≤ 4

3 ,

cos
(
π
2ν (3r − 4)

)
4
3 ≤ r ≤ 5

3 ,

0 else,

V(ω) =


1 |ω| ≤ 1

3 ,

cos
(
π
2ν (3 |ω| − 1)

)
1
3 ≤ |ω| ≤ 2

3 ,

0 else,

where

ν(x) =


0 x ≤ 0,

s(x − 1)
s(x − 1) + s(x) 0 < x < 1,

1 x ≥ 1

with s(x) = exp
(
− 1

(1 + x)2 −
1

(1 − x)2

)
.

The corresponding low-pass window W0 is given by

W0(r) =


1 0 ≤ r ≤ 2

3 ,

sin
(
π
2ν(5 − 6r)

)
2
3 ≤ r ≤ 5

6 ,

0 else.

y
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Efficient representation of edges via curvelets

We finally note that the curvelet dictionary provides a sparse representation of functions with
edges. The following results were proven in [CD04]. We summarize these results in order to
make this work self-contained. First of all, we need to formally specify the notion of an edge.

For this purpose, let % : [0, 2π)→ [0, 1] be a radius function and consider the following subsets
of R2,

B =
{
x ∈ R2 : x = (r cos θ, r sin θ), r ≤ %(θ)

}
. (4.17)

In particular, the boundary ∂B is parametrized by the curve γ(θ) = (%(θ) cos θ, %(θ) sin θ). In what
follows, we are interested in those sets B ⊆ R2 (defined by (4.17)) whose curvature is bounded
by a constant A > 0, i.e.,

sup
θ∈[0,2π)

∣∣∣%′′(θ)∣∣∣ < A, % < %0 < 1. (4.18)

Furthermore, we define

STAR2(A) =
{
B ⊆ [0, 1]2 : B is a translate of a set obeying (4.17) and (4.18)

}
. (4.19)

We are now able to define the set of functions which are C2 away from C2 edges as

E2(A) =
{
f1 + f2χB : B ∈ STAR2(A), f1, f2 ∈ C2(R2), supp( f1), supp( f2) ⊆ [0, 1]2

}
.

For this class of functions, the following approximation result holds.

Theorem 4.4 ([CD04]). Let f ∈ E2(A) and N ∈ N. Then, the curvelet dictionary {ψ j,l,k}( j,l,k)∈I
exhibits the following approximation rate

‖ f − fN‖22 = O(N−2(log N)3), as N → ∞,

where
fN =

∑
( j,l,k)∈IN

〈 f , ψ j,l,k〉ψ j,l,k

is the best N-term approximation and IN ⊆ I is the index set corresponding to the N largest
magnitudes of curvelet coefficients |〈 f , ψ j,l,k〉|. y

The function class E2(A) will serve us as a model for functions with edges. By Theorem
4.4, the curvelet dictionary provides a nearly optimal approximation rate (compare to the remark
below) for this class of functions. For the same class of functions, wavelet dictionaries typically
exhibit an approximation rate, [MP07],

‖ f − fN‖22 = O(N−1), as N → ∞,

which is far away from the optimal theoretical approximation rate described in the following
remark.
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Remark. Under weak technical assumptions, the optimal approximation rate is given by

‖ f − fN‖22 = O(N−2),

and can be achieved theoretically using adaptive triangulations, see e.g. [CD04] and references
therein. However, there is no practical algorithm that can achieve this approximation rate for
relatively complex images f , [MP07]. y

4.1.3 Curvelet sparse regularization (CSR)

In previous Subsections 4.1.1 and 4.1.2 we have separately introduced a stabilization strategy
which is based on sparsity assumptions and a multiscale dictionary that provides an efficient
sparse representation of functions that are C2 away from C2 edges. In this subsection we shall
combine both of these techniques in order to get a stable and edge-preserving reconstruction
method for limited angle tomography which we will refer by the term curvelet sparse regulariza-
tion or CSR.

Since we are interested in applying the reconstruction technique to a practical situation, we
consider the discrete version of the reconstruction problem. To this end, we model f as a finite
linear combination of curvelets, i.e.,

f =

N∑
n=1

cnψn, (4.20)

where IN ⊆ I, |IN | = N ∈ N, denotes a finite subset of the curvelet index I set, cf. (4.15),
and n = n( j, l, k) is an enumeration of IN . Moreover, we assume to be given a finite number of
measurements ym = RΦ f (θm, sm), 1 ≤ m ≤ M ∈ N. Then, by (4.20), each measurement ym can
be expressed as

ym = RΦ f (θm, sm) =

N∑
n=1

cnRΦψn(θm, sm). (4.21)

Now, by defining the so-called system matrix K ∈ CM×N ,

Km,n = RΦψn(θm, sm), 1 ≤ m ≤ M, 1 ≤ n ≤ N, (4.22)

the discrete version of the limited angle problem (4.4) can be expressed as

yδ = Kc + η, (4.23)

where yδ ∈ RM denotes the vector of noisy measurements, and c ∈ CN is a vector of curvelet
coefficients. Note that the matrix K is the discrete version of the continuous operator K = RΦT ∗,
cf. (4.4), where T ∗ denotes the synthesis operator with respect to the curvelet frame, i.e., f = T ∗c,
cf. (4.3).

To solve the discrete problem (4.23), we propose the use of curvelet sparse regularization
technique, where a regularized vector of curvelet coefficients cw,p ∈ CN is computed by solving
the minimization problem, cf. Subsection 4.1.1,

cw,p ∈ arg min
c∈CN

{
1
2

∥∥∥Kc − yδ
∥∥∥2

L2(Z) + ‖c‖pw,p
}
. (CSR)
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A regularized reconstruction fw,p for the original limited angle problem (2.25) is subsequently
obtained by applying the synthesis operator T ∗ to the vector cw,p, i.e.,

fw,p = T ∗cw,p =

N∑
n=1

(cw,p)n ψn.

Eventually, we point out that curvelet sparse regularization is a stable and edge-preserving
reconstruction method. This is because of the fact that, on the one hand, the technique of sparse
regularization is a regularization method which enforces sparsity with respect to the curvelet
frame and, on the other hand, sparse representations with respect to curvelets are edge-preserving,
cf. Subsections 4.1.1 and 4.1.2. However, we have to note that curvelet sparse regularization
(CSR) preserves only those edges which have visible directions. This is due to the fact that the
limited angle Radon transform smoothes invisible singularities, cf. Section 3.3. Moreover, we
note that CSR is not yet adapted to the limited angular range. That is, in order to solve the discrete
problem (4.23), we need to compute (cw,p)n for all possible curvelet indices n ∈ IN . Hence, the
dimension of the reconstruction problem (4.23), which is given by N = |IN |, does not depend
on the available angular range. In the next section, we shall show that it is possible to make the
dimension of the reconstruction problem (4.23) dependent on the angular range, and hence to
adapt the method of sparse regularization to the limited angle tomography.

4.2 Adapted curvelet sparse regularization (A-CSR)

The goal of this section is to formulate an adapted curvelet sparse regularization (A-CSR) for
the limited angle tomography. To this end, we will apply the stabilization strategy of Section 3.5,
which consists in determining a solution fΦ of the limited angle problem RΦ f = y, such that fΦ
is an approximation to PΦ f = F −1(χWΦ

f̂ ). To achieve that, we aim at reconstructing a vector
of curvelet coefficients cΦ ∈ CN via CSR such that the Fourier transform of fΦ =

∑N
n=(cΦ)n ψn is

supported near the wedge WΦ, i.e., WΦ ⊆ supp f̂Φ and such that the area | supp f̂Φ \WΦ| is small.

First, we need to formulate the constraint “ f̂ is supported near WΦ” in terms of curvelet coef-
ficients. To this end, note that a function f =

∑
n∈IN cnψn is supported near WΦ if the following

condition is satisfied, cf. Figure 4.5,

cn = 0 for all n ∈ IN with supp ψ̂n ∩WΦ = ∅. (4.24)

Therefore, we have to ensure that the adapted CSR reconstructions curvelet coefficients which
satisfy the condition (4.24).

Before integrating the constraint (4.24) into the curvelet sparse regularization, we further note
that functions f whose Fourier transform is supported near WΦ may only contain singularities
(x, ξ) ∈ WF( f ) with directions ξ ∈ WΦ. These are exactly the visible singularities at the angular
range [−Φ,Φ], cf. Subsection 3.3.2. In accordance with Definition 3.21, we now make the
following definition.
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Figure 4.5: The support of the adapted CSR reconstructions in the frequency plane (gray shaded area enclosed in a
solid line) for the angular range [−Φ,Φ], Φ = 30◦. The polar wedge WΦ is indicated by the gray shaded
area enclosed in a dotted line.

Definition 4.5. Let 0 ≤ Φ ≤ π/2. Then, we define the index set of visible curvelet coefficients at
the angular range [−Φ,Φ] by

IΦ =
{
( j, l, k) ∈ IN : supp ψ̂ j,l,k ∩WΦ , ∅

}
. (4.25)

The corresponding index set of invisible curvelet coefficients at the angular range [−Φ,−Φ] is
defined by

Iinvisible
Φ = IN \ IΦ. (4.26)

Accordingly, the curvelets ψ j,l,k as well as the curvelet coefficients c j,l,k are called visible at the
angular range [−Φ,Φ], if their indices satisfy ( j, l, k) ∈ IΦ. Otherwise they are called invisible. y

Let us get back to the formulation of the adapted curvelet sparse regularization. We need to
integrate the condition (4.24) into the CSR reconstruction method. Since, we a-priori assume
that cn = 0 for all n ∈ Iinvisible

Φ
, we have to reconstruct only the visible curvelet coefficients

(cn)n∈IΦ
. To this end, we reformulate the non-adapted problem (4.23) with respect to visible

curvelet coefficients, i.e. , we assume that the unknown function has a representation with respect
to visible curvelets such that f =

∑
n∈IΦ

cn ψn. Proceeding as in Subsection 4.1.3, we define an
adapted system matrix KΦ with respect to the visible index set IΦ by

(KΦ)m,n = RΦψn(θm, sm), 1 ≤ m ≤ M, 1 ≤ n ≤ NΦ, (4.27)

where NΦ = |IΦ|, and n = n( j, l, k) denotes an enumeration of IΦ. We are now able to formulate
the adapted (or reduced) limited angle problem as

yδ = KΦc + η. (4.28)
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Consequently, the adapted curvelet sparse regularization (A-CSR) is given by the application of
the CSR method to the problem (4.28), i.e.,

cΦ
w,p = arg min

c∈CNΦ

{
1
2

∥∥∥KΦc − yδ
∥∥∥2

L2(Z) + ‖c‖pw,p
}
. (A-CSR)

An adapted reconstruction f Φ
w,p may be computed by,

f Φ
w,p =

∑
n∈IΦ

(cΦ
w,p)n ψn. (4.29)

We conclude this section with some remarks on the A-CSR method.
Remarks.
• First of all, let us point out that the adaption of the problem (4.28) is reflected by the

fact that the reconstruction problem is formulated with respect to an adaptively selected
curvelet subdictionary {ψn}n∈IΦ

, where the size of the dictionary depends on the angular
range. Thus, the adapted system matrix KΦ is a submatrix of the non-adapted system matrix
(4.22). Moreover, since the problem is formulated with respect to a smaller dictionary,
this entails a dimensionality reduction in the curvelet domain, where the dimension of
the problem (4.28) is highly dependent on the angular range [−Φ,Φ]. Apparently, the
dimension of the adapted problem (4.28) increases as the angular range increases, and vice
versa. As a consequence, the computational amount decreases significantly by using the
A-CSR framework instead of CSR. In Chapter 5, we will present some numerical results
confirming this issue.

• The adapted curvelet sparse regularization (A-CSR) is a stable and edge-preserving re-
construction method. These properties are inherited from the non-adapted curvelet sparse
regularization, cf. Section 4.1. However, we have to remark that the edge-preservation ap-
plies only to those edges (singularities) with have visible directions ξ ∈ WΦ at the angular
range [−Φ,Φ]. Edges that have invisible directions ξ < WΦ are smoothed, which is en-
forced by the assumption that the Fourier transform of the unknown function is supported
near the wedge WΦ. Actually, this smoothing property is also inherent in the non-adapted
curvelet sparse regularization, as we have remarked in Subsection 4.1.3.

• Another important property of the A-CSR method is the “reduction of limited angle arti-
facts”. To see this, recall that appearance of limited angle artifacts in reconstruction of the
form PΦ f = F −1(χWΦ

f̂ ) was a consequence of the hard truncation (in angular direction)
in the Fourier transform domain, cf. Section 3.4. However, a function that is reconstructed
via A-CSR has a smooth Fourier transform that is supported near WΦ, cf. Figure 4.5. In
particular, there is no hard truncation in angular direction. Hence, the A-CSR gives rise to
an artifact-free reconstruction method. Note that a similar argumentation also shows that
the non-adapted CSR already possesses this property.

• The A-CSR approach was first introduced in [Fri10], where the author combined microlo-
cal analysis and curvelets in order to reduce the dimension of the reconstruction problem
in the curvelet domain. To this end, the author used the “resolution of the wavefront set
property” of continuous curvelet transform, [CD05a], in order to derive a qualitative char-
acterization of visible curvelets. The rationale behind this approach is basically the same
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as the one presented in Section 3.5. Namely, it aims at reconstructing that part of the un-
known function which contains only the visible singularities. However, the approach of
this section is more direct, since it is formulated with respect to the curvelet frame instead
of the continuous curvelet transform. In particular, it applies more directly to the practical
situation.

4.3 Characterization of curvelet sparse regularizations

In the last Section 4.2 we formulated an adapted curvelet sparse regularization. The basic idea
behind this approach is to reconstruct only the visible curvelet coefficients at a given angular
range. In contrast to the non-adapted CSR, the invisible curvelet coefficients are ignored and,
thus, do not contribute to the reconstruction. It is therefore natural to ask how large the difference
between CSR and A-CSR reconstruction is. In this section we are going to investigate the relation
of curvelet sparse regularization (CSR) and its adapted version (A-CSR). To this end, we study
the action of the limited angle Radon transform on curvelets and, in particular, derive a charac-
terization of its kernel in terms of curvelets. Based on this characterization, we finally will show
that reconstructions obtained via curvelet sparse regularization coincide with those obtained via
A-CSR.

We recall that the entries of the system matrix for the discrete problem (4.23) were given by
Km,n = RΦψn(θm, sm), where 1 ≤ m ≤ M and 1 ≤ n ≤ N. By (4.27), the system matrix for the
adapted problem (4.28) is chosen as a submatrix KΦ of K, where only the columns with indices
n ∈ IΦ are kept. It is therefore interesting to know, how large the entries Km,n with n ∈ Iinvisible

Φ

are. To this end, we are going to derive an exact formula for the Radon transform of curvelets.
We first note an auxiliary result.

Lemma 4.6. Let f ∈ S(R2) and ξ = (ξ1, ξ2)ᵀ ∈ S 1. Moreover, let ξ⊥ = (−ξ2, ξ1)ᵀ. Then,

∫
R

f (t · ξ) dt =

∫
R

f̂ (t · ξ⊥) dt. (4.30)

That is, integration in the spatial domain along a line through the origin corresponds to the
integration along a perpendicular line through the origin in the frequency domain. y

Proof. The identity (4.30) follows easily from Corollary 3.4. More specifically, to see (4.30) in
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the case ξ = (1, 0) we deduce the assertion as follows:∫
R

f (t · ξ) dt =

∫
R

f (x1, 0) dx1 =
1

2π

∫
R

∫
R2

f̂ (ξ)eix1ξ1 dξ dx1

=
1

2π
lim
b→∞

∫ b

−b

∫
R2

f̂ (ξ)eix1ξ1 dξ dx1

=
1

2π
lim
b→∞

∫
R2

f̂ (ξ)
(∫ b

−b
eix1ξ1 dx1

)
dξ

= lim
b→∞

∫
R

∫
R

f̂ (ξ1, ξ2)δb(ξ1) dξ1 dξ2

=

∫
R

(
lim
b→∞

∫
R

f̂ (ξ1, ξ2)δb(ξ1) dξ1

)
dξ2

=

∫
R

f̂ (0, ξ2) dξ2 =

∫
R

f̂ (t · ξ⊥) dt.

Above, we have used the function δb which was defined in (3.7). Moreover, we note that the
change of the integration order as well as the interchange of the limit process and integration
are allowed due to Fubini’s theorem and the dominated convergence theorem, respectively. The
general case follows from an orthogonal change of variables. �

We are now able to derive an exact formula for the Radon transform of curvelets.

Theorem 4.7. Let ξ(ω) = (cosω, sinω)ᵀ, ω ∈ [−π, π). Then, for a curvelet ψ j,l,k (cf. (4.12)),

Rψ j,l,k(ξ(ω), s) = 2 j/4V
(
2 d j/2e+1

π
(ω + θ j,l)

) √
2π Ŵ

(
2 j

〈
b j,l

k , ξ(ω + θ j,l)
〉
− 2 js

)
, (4.31)

where b j,l
k and θ j,l are defined in (4.14). y

Proof. Let ξ := ξ(ω), and τp f := f (· + p), p ∈ R2. Note that each curvelet ψ j,l,k is a Schwartz
function, which is because its Fourier transform is C∞ and compactly supported (per definition).
Hence, we may apply Lemma 4.6 to get

RΦψ j,l,k(ξ, s) =

∫
R
ψ j,l,k(sξ + tξ⊥) dt =

∫
R

(τsξψ j,l,k)(tξ⊥) dt =

∫
R

ei〈sξ,tξ〉ψ̂ j,l,k(tξ) dt, (4.32)

where in the last equation we have also applied (A.5).

According to (4.12), at scale 2− j, each curvelet ψ j,l,k is defined via translation and rotation of a
generating curvelet ψ j,0,0. Using the relations (A.5) and (A.7) we further note that

ψ̂ j,l,k(tξ) = e−i
〈
b j,l

k ,Rθ j,l (tξ)
〉
ψ̂ j,0,0(Rθ j,l(tξ)), (4.33)



72 Chapter 4 An adapted and edge-preserving reconstruction method for limited angletomography

ω| | | | | | |
−π −π + Φ −Φ 0 Φ π − Φ π

AΦ :

AΦ,j :

Figure 4.6: The symmetric (visible) angular range of the limited angle Radon transform, AΦ, and its scale-dependent
version, AΦ, j.

where Rθ j,l is defined in (4.13). By substituting (4.33) into (4.32), we obtain

RΦψ j,l,k(ξ, s) =

∫
R

eiste−i
〈
b j,l

k ,Rθ j,l (tξ)
〉
ψ̂ j,0,0(Rθ j,l(tξ)) dt,

=

∫
R

eiste−it
〈
b j,l

k ,ξ(ω+θ j,l)
〉
ψ̂ j,0,0(t, ω + θ j,l) dt,

= 2−3 j/4V
(
2 d j/2e+1

π
(ω + θ j,l)

) ∫
R

eiste−it
〈
b j,l

k ,ξ(ω+θ j,l)
〉
W(2− jt) dt,

= 2 j/4V
(
2 d j/2e+1

π
(ω + θ j,l)

) ∫
R

e−ir[2 j
〈
b j,l

k ,ξ(ω+θ j,l)
〉
−s]W(r) dr,

= 2 j/4V
(
2 d j/2e+1

π
(ω + θ j,l)

) √
2π Ŵ

(
2 j

〈
b j,l

k , ξ(ω + θ j,l)
〉
− 2 js

)
. �

Theorem 4.7 provides an exact formula for the entries of the adapted as well as the non-adapted
system matrix defined in (4.22) and (4.27), respectively. Moreover, it enables us to characterize
the kernel of the limited angle Radon transform in terms of curvelets and, thus, to identify zero
entries of the system matrix (4.22).

Theorem 4.8. Let 0 < Φ < π/2 and denote Iinvisible
Φ

the index set of invisible curvelet coefficients
according to Definition 4.5. Then,

RΦψ j,l,k ≡ 0 ⇔ ( j, l, k) ∈ Iinvisible
Φ . (4.34)

y

Proof. To abbreviate the notation we let a j = π−12 d j/2e+1. Moreover, we define the symmetric
(visible) angular range of the limited angle Radon transform RΦ, cf. Figure 4.6, by

AΦ := [−π,−π + Φ] ∪ [−Φ,Φ] ∪ [π − Φ, π]

To prove the assertion, according to Theorem 4.7, we have to determine all curvelet directions
θ j,l ∈ [−π, π] such that V(a j(· + θ j,l))|AΦ

≡ 0. To this end, recall that supp V ⊆ (−1, 1) (cf.
Subsection 4.1.2), whence

∀ω ∈ AΦ : V(a j(ω + θ j,l)) = 0 ⇔ ∀ω ∈ AΦ : θ j,l < (−a−1
j − ω, a−1

j − ω)
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WΦ

ξ2

ξ1

supp ψ̂ j,l,k

Figure 4.7: Theorem 4.8 states that a curvelet ψ j,l,k lies in the kernel of the limited angle Radon transform whenever
the the support of ψ̂ j,l,k lies outside the “visible wedge” WΦ = {r(cos η, sin η) : r ∈ R, η ∈ [−Φ,Φ]}. That
is, RΦψ j,l,k ≡ 0 whenever supp ψ̂ j,l,k ∩WΦ = ∅.

Therefore, by defining the scale-dependent version of AΦ via (cf. Figure 4.6)

AΦ, j := [−π,−π + (Φ + a−1
j )] ∪ [−(Φ + a−1

j ),Φ + a−1
j ] ∪ [π − (Φ + a−1

j ), π],

we see that V(a j(· + θ j,l))|AΦ
≡ 0 holds whenever θ j,l < AΦ, j. On the other hand, the condition

θ j,l < AΦ, j is equivalent to supp ψ̂ j,l,k ∩WΦ = ∅, which proves the assertion. �

Remark. The statement of Theorem 4.8 may be reformulated as follows:

RΦψ j,l,k ≡ 0 ⇔ ψ̂ j,l,k ⊆ R2 \WΦ.

That is, a curvelet ψ j,l,k lies in the kernel of the limited angle Radon transform iff the support of
its Fourier transform does not intersect the wedge WΦ, cf. Figure 4.7. This is in accordance with
the Corollary 3.7, where we have shown that every f ∈ S(R2) with supp f̂ ⊆ WΦ lies in the kernel
of RΦ. As curvelets are directional, the Theorem 4.8 also confirms the observation of Section 3.2,
where we noted that kernel functions of the limited angle Radon transform are directional, and
that orientations determine whether a function belongs to the kernel of RΦ or not, cf. Figure 3.3.y

Theorem 4.8 shows that invisible curvelets (in the sense of Definition 4.5) are in fact invisible
for the limited angle Radon transform. This observation justifies the nomenclature “invisible” in
the context of curvelets, cf. Definition 4.5. An even more important fact for us is the identification
of the zero-entries of the system matrix (4.22), namely

Km,n = 0

for all 1 ≤ m ≤ M and all n = n( j, l, k) with ( j, l, k) ∈ Iinvisible
Φ

. Correspondingly, the adapted
system matrix (4.27) is formed by deleting all zero-columns of the non-adapted system matrix K.
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In this sense, the adapted limited angle problem (4.28) is equivalent to the non-adapted problem
(4.23).

Moreover, the fact that the adapted system matrix does not contain the zero-columns of the non-
adapted system matrix shows that the condition number of the adapted system matrix improves
and, in addition to the dimensionality reduction, stabilizes the limited angle problem.

In what follows, we shall show that the support of a CSR reconstruction, denoted by cw,p, is
indeed contained in the index set of visible curvelet coefficients, i.e.,

supp cw,p = {( j, l, k) ∈ IN : (cw,p) j,l,k , 0} ⊆ IΦ.

In order to prove this result we will need the notion of a subdifferential of a proper convex func-
tional, [Roc70]: Let F : H → (−∞,∞] be a proper convex functional on a Hilbert space H, i.e.
F takes values in (−∞,∞], F . ∞ and F(λx + (1 − λ)y) ≤ λF(x) + (1 − λ)F(y) for all x, y ∈ H
and all 0 < λ < 1. An x∗ ∈ H is called subgradient of F at x ∈ H if

F(y) ≥ F(x) +
〈
y − x, x∗

〉
, for all y ∈ H. (4.35)

The set of all subgradients of F at x ∈ H will be denoted by ∂F(x), and is called the subdifferential
of F at x. Before proceeding to the characterization of curvelet sparse regularizations, we note
the following lemma.

Lemma 4.9. Let f : `2(I) → [−∞,∞] be defined by f (x) =
∑

n∈I ϕ(xn), where ϕ : R → R is a
convex function such that f is proper. Then, it holds that

y ∈ ∂ f (x) ⇔ yn ∈ ∂ϕ(xn) for all n ∈ I. (4.36)
y

Proof. Since f is proper, by the definition of a subgradient (4.35), we have ∂ f (x) = ∅ if f (x) = ∞.
We may therefore assume without loss of generality that f (x) < ∞. Now suppose that yn ∈ ∂ϕ(xn)
for all n ∈ I. Then, by definition of the subgradient (4.35) we have

∀zn ∈ R : ϕ(zn) ≥ ϕ(xn) + yn(zn − xn).

Summing over n implies

∀z ∈ `2(I) :
∑
n∈I

ϕ(zn) ≥
∑
n∈I

(ϕ(xn) + yn(zn − xn)) =
∑
n∈I

ϕ(xn) + 〈y, z − x〉 ,

which is by definition of f equivalent to y ∈ ∂ f (x). This proves the implication “⇐” of the
statement.

On the other hand, if y ∈ ∂ f (x), then f (z) ≥ f (x) + 〈y, z − x〉 for all z ∈ `2(I). In particular, this
holds for all z = x + hen with h ∈ R and n ∈ I, where en = (δi,n)i∈I and δi,n denotes the Kronecker
delta. Therefore, we have

∀h ∈ R∀n ∈ I : f (x + hen) ≥ f (x) + 〈y, hen〉
⇔

∑
i∈I

ϕ(xi + δi,nh) −
∑
i∈I

ϕ(xi) ≥ ynh

⇔ ϕ(xn + h) − ϕ(xn) ≥ ynh

⇔ yn ∈ ∂ϕ(xn). �
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Finally, we are able to derive the announced characterization of CSR reconstructions at a lim-
ited angular range.

Theorem 4.10. Let 0 < Φ < π/2, yδ ∈ ran (RΦ) and let Iinvisible
Φ

be defined by (4.26). Then, for
each 1 ≤ p ≤ 2, the minimizer

cw,p ∈ arg min
c∈CN

{
1
2

∥∥∥Kc − yδ
∥∥∥2

L2(Z) + ‖c‖pw,p
}

satisfies
(cw,p) j,l,k = 0 for all ( j, k, l) ∈ Iinvisible

Φ . y

Proof. Since the Tikhonov functional Tw,p (cf. (4.8)) is a proper convex functional, each mini-
mizer ĉ ∈ arg minTw,p(c) is characterized by the the requirement, [Roc70],

0 ∈ ∂Tw,p(ĉ) = K∗(Kĉ − yδ) + ∂ ‖ĉ‖pw,p

which is equivalent to
−K∗(Kĉ − yδ) ∈ ∂ ‖ĉ‖pw,p . (4.37)

On the other hand, since yδ ∈ ran (RΦ), we have yδ = Kcδ = RΦT ∗cδ for some curvelet
coefficient vector cδ ∈ CN . Thus,

x̂ := −K∗(Kĉ − yδ) = −K∗K(ĉ − cδ) = −K∗
∑

j,l,k

(ĉ − cδ) j,l,kRΦψ j,l,k

 .
By Theorem 4.8, we have

x̂ j,l,k = 0 for all ( j, k, l) ∈ Iinvisible
Φ . (4.38)

To see that (4.38) already implies the assertion, let ( j, l, k) ∈ Iinvisible
Φ

and note that, by (4.37)
and (4.38), the Lemma 4.9 implies that 0 ∈ ∂(w j,l,k | · |p)(ĉ j,l,k). In turn, this means that ĉ j,l,k

minimizes the function f = w j,l,k | · |p. However, since w j,l,k > 0, the only minimum of the
function f (x) = w j,l,k |x|p is x = 0 and therefore we get that ĉ j,l,k = 0. �

Theorem 4.10 provides a mathematical justification for the adaption strategy that was presented
in Section 4.2. It shows that only visible curvelet coefficients can be reconstructed by the CSR
method and, consequently, that the A-CSR reconstructions coincide with the CSR reconstructions
at a limited angular range. In particular, this shows that the adapted curvelet sparse regularization
inherits all properties of the non-adapted CSR, such as edge-preservation.

4.4 Relation to biorthogonal curvelet decomposition (BCD) for the
Radon transform

In this section we shall show that, if the data is available at a full angular range, a closed form
formula can be derived for the curvelet sparse regularization (CSR). This formula is based on
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the biorthogonal curvelet decomposition (BCD) for the Radon transform [CD02]. We will see
that this formula is closely related to a curvelet thresholding approach that was also proposed in
[CD00, CD02]. Eventually, we will discuss the application of the BCD approach to the case of
limited angle tomography and interpret the curvelet sparse regularization as a natural generaliza-
tion of the BCD reconstruction.

4.4.1 A closed form formula for CSR at a full angular range

We first briefly recall the definition of the BCD for the Radon transform. For details we refer to
[CD02]. If not otherwise stated, we let n = n( j, l, k) ∈ IN and denote the curvelet frame by {ψn}.
In order to derive the BCD for the Radon transform a pair of frames {Un} and {Vn} is constructed
for ran (R) ⊆ L2(R × S 1) such that

Rψn = 2− jVn, R∗Un = 2− jψn,

and a quasi-biorthogonal relation 〈Vn,Un′〉L2(Z) = 2 j− j′ 〈ψn, ψn′〉 holds for all n, n′ ∈ IN . In
particular, there is a L2-norm equivalence property∑

n∈IN

∣∣∣〈g,Un〉L2(Z)

∣∣∣2 � ‖g‖2L2(Z) ,

for all g ∈ ran (R). Similar relations hold for {Vn}. Using these notations, the BCD of the Radon
transform is given by the following reproducing formula

f =
∑

n∈IN

2 j 〈R f ,Un〉L2(Z) ψn, (4.39)

where f ∈ L2(R2) is assumed to be a finite sum of curvelets {ψn} [CD02]. Note that the curvelet
coefficients of f are computed from the Radon transform data R f .

We now use the above the frames (Un), (Vn) and its relations with R and R∗, respectively, to
compute the minimizer of the `1-penalized Tikhonov functional. We assume that yδ ∈ ran (R),
and denote 〈·, ·〉 = 〈·, ·〉L2(R2) as well as [·, ·] = 〈·, ·〉L2(Z). Then, with yδn = [yδ,Un],

∥∥∥R f − yδ
∥∥∥2

L2(Z) �
∑

n∈IN

∣∣∣[R f − yδ,Un]
∣∣∣2

=
∑

n∈IN

∣∣∣[R f ,Un] − [yδ,Un]
∣∣∣2

=
∑

n∈IN

∣∣∣〈 f ,R∗Un
〉 − [yδ,Un]

∣∣∣2
=

∑
n∈IN

∣∣∣∣〈 f , 2− jψn
〉
− [yδ,Un]

∣∣∣∣2
=

∑
n∈IN

∣∣∣2− jcn − yδn
∣∣∣2 .
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Using the definition of ‖·‖pw,p, we see that

1
2

∥∥∥Kc − yδ
∥∥∥2

L2(Z) + ‖c‖pw,p �
1
2

∑
n∈IN

(∣∣∣yδn − 2− jcn
∣∣∣2 + αwn |cn|p

)
,

where K = RT ∗ and T ∗ denotes again the synthesis operator with respect to the curvelet frame.
We now assume that there is an α > 0 such that

cw,p = arg min
c∈CN

{
1
2

∥∥∥Kc − yδ
∥∥∥2

L2(Z) + ‖c‖pw,p
}

= arg min
c∈CN

{ ∑
n∈IN

(
1
2

∣∣∣2− jcn − yδn
∣∣∣2 + αwn |cn|p

) }
. (4.40)

Then, the functional (4.40) can be minimized by minimizing each term separately. Note that
each term in (4.40) is of the form 1

2 |ax − y|2 + b |x|p and that its minimum is given by S p
b/a2(y/a),

cf. [Lor04], where S p
w is the thresholding operator defined in (4.7) with respect to the threshold

w = b/a2. Therefore, the regularized curvelet coefficients ĉ are given by

ĉn = S p
22 jαwn

(2 jyδn).

We summarize the results in the following theorem.

Theorem 4.11. Assume that there is an α > 0 satisfying (4.40). Then, the solution of the full
angular problem yδ = R f + η via curvelet sparse regularization is given by the (closed) formula

fw,p =
∑

n∈IN

S p
22 jαwn

(2 jyδn)ψn. (4.41)
y

The relation between the reproducing formula (4.39) and (4.41) is now clear. Apparently,
(4.41) reduces to (4.39) if the thresholding sequence satisfies w ≡ 0. On the other hand, if the data
is corrupted by noise then the curvelet sparse regularized solution is simply a thresholded version
of the BCD reproducing formula. The stabilizing character of the curvelet sparse regularization
is reflected by the inherent thresholding of the curvelet coefficients (compare to (5.2)). Moreover,
if the thresholding sequence w = w(δ) in (4.41) satisfies wn(δ) → 0 as δ → 0, we see that the
fw(δ),p → f as δ→ 0, cf. Appendix C.3.

Remark. Note the ill-posed nature of the reproducing formula (4.39). This is evident because
the coefficients 2 j〈R f ,Uµ〉L2(Z) corresponding to fine scales (large j) are amplified by the factor
2 j. Since noise is a fine scale phenomenon, there will be very large reconstruction errors when
the data is corrupted by noise. y

A closely related reconstruction technique was introduced in [CD02]. Starting form the BCD
reproducing formula (4.39), the authors proposed to use soft-thresholding of curvelet coefficients
with a scale dependent threshold τ j, i.e.,

f̂ =
∑

n∈IN

S τ j

(
2 j

〈
yδ,Un

〉
L2(R×S 1)

)
ψn. (4.42)

We see that this formula coincides with (4.41) for p = 1 and a suitably chosen thresholding
sequence τ = (τ j).
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4.4.2 CSR as a generalization of the BCD approach

In order to extend the above observation for curvelet sparse regularization (CSR) at a limited
angular range tomography, a biorthogonal curvelet decomposition (BCD) for the limited angle
Radon transform would be needed. To our knowledge there is no such BCD available for the
limited angle Radon transform. Consequently, in the case of limited angle tomography, the CSR
reconstruction (CSR) can not be expressed explicitly as it was done for the full angular range in
(4.41). In particular, the BCD reconstruction of Candès and Donoho [CD02] can not be applied
in this situation.

In contrast to the BCD approach, a reconstruction of the limited angle problem can be com-
puted by the CSR method. Hence, curvelet sparse regularization can be understood as the natural
generalization of the thresholded BCD reconstruction.

Curvelet sparse regularization offers even more flexibility compared to the BCD method. For
example, the implementation of the thresholded BCD reconstruction is difficult for acquisition
geometries which are different from the parallel-beam geometry. This is because the BCD method
requires discretization of the functions Un which live in the Radon domain. The implementation
of the curvelet sparse regularization approach, however, does not rely on a specific acquisition
geometry. One needs only to implement the system matrix. Moreover, the generalization to
higher dimensions is also easier accessible via curvelet sparse regularization approach.

4.5 Summary and concluding remarks

The objective of this chapter was to design a reconstruction method for limited angle tomography
that is stable, edge-preserving and adapted to the limited angular range. To address the first
two issues, we have developed the method of curvelet sparse regularization (CSR) in Section
4.1. The idea behind this approach was to combine the regularization by sparsity, [DDDM04],
[BL08a], [GHS08], [Lor09a], with the curvelet dictionary that is known to provide sparse and
edge-preserving representations, [CD04]. In Section 4.2, we presented an adapted version of
curvelet sparse regularization (A-CSR). The adaptivity was achieved by formulating the limited
angle reconstruction problem with respect to an adaptively selected curvelet subdictionary, where
the selection process was based on the stabilization strategy that we derived in Subsection 3.5.2.
In this way, we could significantly reduce the dimension of the limited angle problem in the
curvelet domain (depending on the angular range). In Section 4.3, a justification of the adaption
procedure was given through a comprehensive mathematical analysis of the CSR approach. In
particular, we presented a characterizations of the kernel of the limited angle Radon transform in
terms of curvelets, and derived a precise characterization of CSR reconstructions. The last section
of this chapter was devoted to the study of CSR reconstructions at a full angular range. In this
case, we derived that explicit formula for CSR reconstruction by using the biorthogonal curvelet
decomposition of the Radon transform, [CD02]. Finally, we have discussed that curvelet sparse
regularization can be understood as natural generalization of the curvelet thresholding approach
[CD00] to the limited angluar range.

We conclude this chapter with some further remarks.
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The role of curvelets in the limited angle tomography. We would like to emphasize that,
in this chapter, we have used curvelets for two different reasons. On the one hand, for the for-
mulation of an adapted limited angle reconstruction problem in Section 4.2, cf. (4.28), and, on
the other hand, for the developmen of a stable and edge-preserving reconstruction method. In
order to adapt the problem to the limited angular range, we applied the stabilization strategy of
Section 3.5 and performed a dimensionality reduction in the curvelet domain. So far, the adapted
formulation was not related to any reconstruction algorithm (which is the reason why the adapted
formulation can be interpreted as preconditioning procedure). For the development of a sta-
ble and edge-preserving reconstruction method, we exploited the ability of curvelets to provide
sparse representations of functions with an optimal encoding of edges. In this context, curvelets
seem to be optimally suited for the use in limited angle tomography.

General angular ranges. So far, all results of this chapter were formulated with respect to
a symmetric angular range [−Φ,Φ], where 0 < Φ < π/2. We would like to point out that this
assumption is not restrictive. The results of Section 4.3 can be easily formulated for a general
angular range [ϕ1, ϕ2], 0 ≤ ϕ1 < ϕ2 ≤ π. To this end, note that [ϕ1, ϕ2] = [ϕ0 − Φ, ϕ0 + Φ] for
some ϕ0 ∈ [0, π] and 0 < Φ < π/2. In this case, the corresponding wedge WΦ,ϕ0 = Rϕ0(WΦ) is a
rotation of WΦ (cf. (3.5)) by the angle ϕ0, where Rϕ0(WΦ) = {Rϕ0ξ : ξ ∈ WΦ}. Consequently, the
statements of Theorem 4.8 and Theorem 4.10 are valid with the following definition of the index
set of invisible curvelet coefficients,

Iinvisible
Φ =

{
( j, l, k) ∈ IN : supp ψ̂ j,l,k ∩WΦ,ϕ0 = ∅

}
,

Computation of the system matrix. In Theorem 4.7 we have derived an expression for the
Radon transform of a curvelet ψ j,l,k. This expression can be used to compute the entries of the
system matrix K, cf. (4.22), analytically, if both, the angular window V and the Fourier transform
of the radial window Ŵ are known analytically. This is useful for practical application since, in
this case, the system matrix can be precomputed and needs not to be set up in every iteration of
the minimization of the `p-penalized Tikhonov functional.

The use of other directional multiscale dictionaries. We also would like to mention that our
approach can be formulated with respect to other “curvelet-like” systems. An important example
in this context are shearlets, see e.g. [LLKW05], [KL07], [ELL08], because they exhibit most
of the properties of the curvelet dictionary. More precisely, shearlets are also highly directional,
compactly supported in the Fourier domain, and they provide an optimally sparse representation
of cartoon-like objects, [GL07]. Besides, there is also a biorthogonal shearlet decomposition of
the Radon transform [CEGL10]. Accordingly, the results of this chapter can also be formulated
with respect to the shearlet dictionary. The theorems and proofs can be adopted almost literally
in this situation.

Generalization to 3D. Furthermore, we would like to note that the general idea of this chapter
can be generalized to the three-dimensional setting. The results of this chapter carry over to this
situation, even though, the analysis is more technical in this case. In order to do this, one has
to work with the three-dimensional variant of the curvelet transform, [YDC05], or the shearlet
transform, [DST09], [GL12], respectively.
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Related work. The use of curvelets for edge-preserving tomographic reconstructions was
firstly documented in [CD00, CD02, CG02]. These works develop a reconstruction strategy for
the full angular tomographic problem that is based on the biorthogonal curvelet decomposition of
the Radon transform. An analogical approach was formulated with respect to the shearlet dictio-
nary in [CEGL10], [GL12]. For a detailed discussion of this approach and its relation to curvelet
sparse regularization, we refer to Section 4.4. To our knowledge, the first method that exploits
sparsity in the curvelet domain and is adapted to the limited angle geometry was presented in
[Fri10]. In this work, the author combines the characterization of visible singularities, according
to [Qui93], with the “the resolution of wavefront set property” of the continuous curvelet trans-
form [CD05a] in order to get a characterization of visible curvelets. In this way, he derives an
adapted curvelet sparse regularizaiton (A-CSR) that is closely related to our approach in Section
4.2. However, the results of [Fri10] are stated without proofs.



Chapter 5

Implementation of curvelet sparse regularization
and numerical experiments

In the previous chapter, we theoretically developed the method of curvelet sparse regularization
(CSR) and its adapted version (A-CSR) for limited angle tomography. We argued that this ap-
proach provides stable and edge-preserving reconstructions. In this chapter, we are concerned
with the numerical implementation and performance analysis of CSR and A-CSR in a practical
setting. To this end, we consider only the case p = 1, where CSR / A-CSR are obtained by
minimizing the `1-penalized Tikhonov functional, cf. Section 4.1 and 4.2. In particular, it is our
goal to show that the theoretical results of Chapter 4 directly translate into practice.

The present chapter is organized as follows. We start by giving the details of our implemen-
tation in Section 5.1 and proceed with the presentation of numerical experiments in Sections
5.2 and 5.3. These experiments are basically divided into two parts. The first part, presented
in Section 5.2, is devoted to the illustration of the visibility of curvelets under the limited angle
Radon transform. In particular, this experiment illustrates the result of Theorem 4.8 and justifies
the dimensionality reduction that was applied in Section 4.2. In the second part of our experi-
ments, we analyze the CSR and A-CSR reconstructions in terms of execution times, similarity
and reconstruction quality, cf. Section 5.3. We show that a significant speedup can be achieved
by using the adapted approach (A-CSR), while preserving the reconstruction quality of the CSR
method. In both cases, the reconstructions are found to be superior to those obtained via filtered
backprojection (FBP). In Section 5.4, we eventually adopt the artifact reduction strategy of Sec-
tion 3.4 to the adapted curvelet sparse regularization and illustrate its performance in numerical
experiments.

Essential parts of this chapter were published in [Fri12].

5.1 Implementation of curvelet sparse regularization

In what follows, we shall describe the implementation of the curvelet sparse regularization (CSR)
and its adapted version (A-CSR) simultaneously. To this end, the symbol K will be used to denote
the full system matrix K (cf. (4.22)) or the adapted system matrix KΦ (cf. (4.27)), respectively,

81
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i.e.,
K ∈ {K, KΦ } .

Moreover, in all of our experiments we are going to consider only the case p = 1, such that the
computation of CSR and A-CSR reconstructions consists essentially in the minimization of the
`1-penalized Tikhonov functional (4.8), i.e.,

cw = arg min
c∈IN

{
1
2

∥∥∥Kc − yδ
∥∥∥2

L2(Z) + ‖c‖1,w
}
, (5.1)

where w = (wn)n∈IN is a weight sequence satisfying wn ≥ w1 > 0.

In order to formulate an explicit minimization procedure for (5.1), we first recall that the min-
imizer of the `1-penalized Tikhonov functional is characterized by the fixed point equation, cf.
Proposition 4.1,

cw = Sγw
(
cw − γK∗(Kcw − yδ)

)
, (5.2)

where Sγw denotes the soft-thresholding operator

(Sw(c))n = sgn(cn) max {0, |cn| − wn} .

A minimization algorithm for (5.1) can be now formulated by using a fixed point iteration of the
above equation (5.2). Namely,

cn+1 = Sτn

(
cn − snK∗(Kcn − yδ)

)
. (5.3)

Thus, the iteration (5.3) consists of a gradient descent step followed by a soft-thresholding with
respect to the thresholding sequence τ = (τn). It can be shown that this minimizaiton procedure,
known under the name iterated soft-thresholding, converges to a minimizer of (5.1) provided that
the step length sn satisfies

0 < s ≤ sn ≤ s < 2/ ‖K‖2 , (5.4)

for all n ∈ N, where s, s > 0, cf. [DDDM04], [BL08b].

For the purpose of this chapter, we implemented a variant of this soft-thresholding algorithm
in Matlab. We now give the details of our implementation. We start by noting that, instead of
computing the matrix K and storing it in the memory, we implemented the matrix-vector mul-
tiplications c 7→ Kc and y 7→ K∗y using the Matlab functions radon and iradon, respectively,
together with the Matlab toolbox CurveLab version 2.1.2, [CDDY08], where in the adapted case,
the index set of visible curvelet indices IΦ was precomputed according to Definition 4.5. For
the implementation of the iterated soft-thresholding, we shall always use a constant step length
sn = s, s > 0, satisfying (5.4).

According to (5.2), the thresholding sequence τ = (τ( j,l,k)) may depend on all curvelet param-
eters ( j, l, k) ∈ IN and is given by τ = sw, where w denotes the `1-norm weight sequence w (cf.
(5.1)) and s is the step length in (5.3). The thresholding sequence is a free parameter and has
to be selected appropriately because it greatly influences the reconstruction quality. In general,
there is no rule for choosing such a thresholding sequence τ. In our experiments, we are going to
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apply basically two different choice rules for τ. First, we will set τ to be a constant sequence, i.e.,

τ( j,l,k) = α, (5.5)

where α > 0. In this case, the value of α will be set manually for each reconstruction and is
based on the visual inspection of the reconstruction quality. Second, the thresholding sequence
τ = (τ( j,l,k)) will be chosen adaptively and scale-dependent via

τ( j,l,k) = 2 j−Jσ
√

2 loge N j,l, (5.6)

where σ is the standard deviation of the noise η, N j,l denotes the number of curvelet coefficients
at scale 2− j and at orientation θ j,l, and J ∈ N is the largest available scale parameter for the image
size of interest1. We note that this thresholding rule was adapted from [CD02, Sec. 6]. To mimic
practical situations, we will assume throughout this chapter that the data yδ = y + η is corrupted
by an additive white Gaussian noise η ∈ N(0, σ2), where the standard deviation σ is not known
a priori. In order to automatize the reconstruction procedure, we will estimate σ as follows, cf.
[Mal09, p. 565],

σ ≈ 1.4826 ·MAD(cn
J). (5.7)

Above, MAD(cn
J) denotes the median of the absolute values of curvelet coefficients cn

J corre-
sponding to the finest scale 2−J at iteration n. Finally, we would like to note that, as opposed to
the first choice rule, the second choice rule yields a reconstruction procedure that is free of any
parameter.

To complete the description of our algorithm we have to specify the choice of an initial guess c0

for the iteration (5.3). To this end, note that, since the `1-penalized Tikhonov functional is convex,
the iteration (5.3) always converges to a global minimizer. Therefore, the choice of an initial guess
does not matter in theory. However, in practice it influences the speed of convergence. In all of
our experiments we will make the following choices,

c0 ∈ { 0, cFBP } , (5.8)

where 0 denotes the zero vector and cFBP denotes the vector of curvelet coefficients of a filtered
backprojection reconstruction. To obtain cFBP, we first computed a FBP reconstruction fFBP using
the Matlab function iradon and, subsequently, applied the curvelet transform to the vector cFBP
of the CurveLab toolbox.

A summarized description of our reconstruction procedure is given in Algorithm 1.

5.2 Visibility of curvelets and dimensionality reduction

This section is devoted to the illustration of theoretical results that were presented in Section 4.3.
In particular, we are going to investigate the visibility of curvelets under the limited angle Radon



84 Chapter 5 Implementation of curvelet sparse regularization and numerical experiments

Algorithm 1 Reconstruction algorithm

Require: Noisy data yδ; Angular range [−Φ,Φ]; Image size N × N;

1: IΦ ← visible index set at the angular range [−Φ,Φ] according to (4.25);

2: K ∈ {K, KΦ } according to (4.22), (4.27);

3: s← step length, such that (5.4) is satisfied;

4: c0 ← initial guess according to (5.8);

5: τ( j,l,k) ← thresholding sequence according to (5.5), or (5.6)+(5.7);

6: nmax ← maximum number of iterations;

7: n← 0;

8: while (n ≤ nmax) do

9: cn ← Sτn

(
cn − sK∗(Kcn − yδ)

)
with Sτ defined in (5.1);

10: n← n + 1;

11: end while

12: frec ← inverse curvelet transform of cnmax ;

transform in a practical situation, and show how this leads to a dimensionality reduction in the
limited angle reconstruction problem.

In order to illustrate the visibility of curvelets at different angular ranges [−Φ,Φ] let us consider
the function

f = ψ1 + ψ2 + ψ3 + ψ4, (5.9)

where the curvelets ψi, i ∈ {1, 2, 3, 4}, are chosen at a fixed scale 2−4 with different orientations
θ1 = 0◦, θ2 = 20◦, θ3 = 60◦ and θ4 = 90◦. For our experiment, we generated an image of the
function (5.9) in Matlab by using the CurveLab toolbox, cf. Figure 5.1, and computed the lim-
ited angle Radon transform of this function as well as its inverse for two different angular ranges
[−Φ,Φ], namely Φ ∈ {35◦, 80◦}, using the Matlab functions radon and iradon, respectively.
Within the considered angular range the Radon transform was sampled equidistantly with a sam-
pling distance ∆θ = 1◦. The total number of measurements MΦ was given by M35◦ = 51759 and
M80◦ = 117369.

The results of this experiment are shown in Figure 5.2. The first column shows the limited angle
Radon transformsRΦ f for Φ ∈ {35◦, 80◦}, whereas the second column contains the corresponding
inverse Radon transforms R−1

Φ
RΦ f . In the first row of Figure 5.2 we can observe that only two

curvelets are visible in the Radon transform domain. As a result, the corresponding reconstruction
shows only two curvelets, namely those with orientations θ1 = 0◦ and θ2 = 20◦, i.e.,

R−1
35◦R35◦ f = ψ1 + ψ2.

1For an image of size N × N the maximum scale parameter J was set to be J = dlog2 Ne − 2. This is according to
the implementation of CurveLab version 2.1.2, [CDDY08].
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Figure 5.1: A Matlab generated 512 × 512 image of the function given in (5.9).

In the second row, we can observe a similar phenomenon. Namely, we can see that another
curvelet becomes visible in the Radon transform domain. This curvelet also appears in the corre-
sponding reconstruction in the second column, so that

R−1
80◦R80◦ f = ψ1 + ψ2 + ψ3.

To explain this effect let us compute the index set of visible curvelets IΦ according to (4.25). It
is not hard to see that

I35◦ = {1, 2} and I80◦ = {1, 2, 3} .

Consequently, our above observations imply that only visible curvelets appear in limited angle
reconstructions R−1

Φ
RΦ f . This is of course in accordance with Theorem 4.8. Thus, the numerical

experiments confirm the result of Theorem 4.8.

Apparently, the above observation generalizes to a slightly more general situation, where a
function f is given as finite linear combination of curvelets f =

∑
n∈I cnψn. In this case, we

can separate the visible and invisible parts of this function (from the angular range [−Φ,Φ]) as
follows:

f =
∑
n∈IΦ

cnψn +
∑

n∈Iinvisible
Φ

cnψn,

= fvisible + finvisible.

Note that this separation depends only on the parameter Φ. According to Theorem 4.8 and the
above observations, we have R−1

Φ
RΦ f = fvisible. Accordingly, reconstructing a function f from

limited angle data y = RΦ f amounts to determining only the visible curvelet coefficients at a
given angular range. This is observation is in accordance with the adaption strategy of Section 4.2,
where an adapted limited angle problem was derived (cf. (4.28)). We see that the dimension of
the problem in the curvelet domain may be reduced by the number of invisible curvelets |Iinvisible

Φ
|.

We finally investigate the degree of dimensionality reduction in a practical situation. To this
end, we computed the dimension of the adapted problem, d(Φ) B |IΦ|, for various values of Φ.2

The plot of d(Φ) is shown in Figure 5.3 for an image of size 256 × 256. We can observe that
2Note that the dimension |IN | of the reconstruction problem depends on the size of the considered image f .
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Limited angle Radon transform Limited angle FBP
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Figure 5.2: Limited angle Radon transform RΦ f and the corresponding reconstructions R−1
Φ
RΦ f of the function given

in (5.9) (cf. Figure 5.1) at an angular range [−Φ,Φ], Φ ∈ {35◦, 80◦}, and an angular sampling distance
∆Φ = 1◦. Observe that, for Φ = 35◦ (first row), the only visible curvelets are those with orientations
θ1 = 0◦ and θ2 = 20◦. However, after enlarging the angular range to Φ = 80◦ (second row) another
curvelet with orientation θ3 = 60◦ becomes visible.
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the graph of d(Φ) exhibits the expected behavior: The dimension of the non-adapted problem in
the curvelet domain is constant for all angular ranges. This is of course due to the fact that the
non-adapted problem is formulated with respect to all curvelet coefficients. Hence, it is indepen-
dent of Φ. However, the dimension of the adapted problem shows a strong dependence on the
available angular range. We can observe a significant dimensionality reduction for any angular
range parameter satisfying Φ ≤ 153◦. Moreover, the reduced dimension d(Φ) seems to exhibit a
piecewise constant behavior. The values of d(Φ) increase stepwise linearly as the angular range
increases. The reason for this stepwise structure lies in the fact that curvelets remain visible as
long as supp ψ̂ j,l,k ∩ WΦ , ∅, see also Figure 4.7. The length of one such step therefore corre-
sponds to the length of the of the support of the angular window V of curvelets at the finest scale
2−J , i.e., to

∣∣∣ supp V(2 dJ/2e+1 · /π)
∣∣∣.
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Figure 5.3: Dimension of the full problem (4.23), , and of the adapted problem (4.28), , for an image of size
256 × 256. The plot shows the dependence of the full and reduced dimension on the available angular
range [0,Θ]. Because the full problem is formulated in terms of all curvelet coefficients, its dimension
is constant for all angular ranges. The adapted problem, however, is formulated only in terms of visible
curvelet coefficients. Hence, the reduced dimension depends strongly on the available angular range.

5.3 Execution times and reconstruction quality

In the following experiments we are going to investigate execution times and the reconstruction
quality of CSR and A-CSR reconstructions at a limited angular range. We will also compare the
reconstruction quality of CSR and A-CSR reconstructions to those reconstructions obtained via
filtered backprojection.

5.3.1 Experimental setup

In order to minimize the influence of specific image features, we have used three different types
of images for our experiments. These images are shown in Figure 5.4. We note that all of the fol-
lowing computations were done in Matlab. The generation of the limited angle Radon transform
data y = RΦ f was done by the function radon of the Matlab Image Processing Toolbox.
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(a) Shepp-Logan head phantom (b) Brainstem [Bra10] (c) Radial pattern

Figure 5.4: Original images.

To mimic practical conditions, the generated data was corrupted by an additive white Gaussian
noise, which was generated by the Matlab function randn, i.e., yδ = RΦ f + η with η ∈ N(0, σ2)
and σ = 0.02 · (maxRΦ f − minRΦ f ) (noise level = 2%). The total number of measurements
yδ ∈ RM was given by M = LΦ · d

√
2 · (N + 2)e , where LΦ is the number of angles and N × N

denotes the size of the image f . In all of our experiments, the angular sampling distance was
set to ∆Θ = 1◦ and, hence, LΦ = 2Φ + 1 if the angular range is given by [−Φ,Φ] and LΦ =

Φ + 1 if the angular range is [0,Φ]. The corresponding noisy limited angle data sets yδ are
depicted in Figure 5.6. Given these noisy data sets, we computed CSR, A-CSR and filtered
backprojection (FBP) reconstructions at various angular ranges. For the computation of CSR
and A-CSR reconstructions, we have used the Algorithm 1, whereas FBP reconstructions were
computed using the Matlab function iradon of the Image Processing Toolbox. The resulting
reconstructions are presented in Figures 5.7, 5.8 and 5.9.

5.3.2 Execution times

We start by examining the execution times of the curvelet sparse regularization (CSR) and its
adapted version A-CSR. For this purpose, we computed several CSR and A-CSR reconstructions
of the Shepp-Logan head phantom of size 256 × 256 at different angular ranges [0,Θ]. This
experiment was repeated for two different numbers of iterations in the Algorithm 1. In both
cases, the angular range parameter Θ was chosen to vary between 1◦ and 180◦ (with an angular
increment ∆Θ = 1◦). The results of these tests are plotted in Figure 5.5, where the dashed lines
( ) indicate the execution times of the CSR reconstructions, and the solid lines ( ) show the
execution times of the adapted approach A-CSR. The plots in Figure 5.5(a) and (b) show that the
dependence of the execution times on the available angular range exhibits an linear behavior. In
both cases, the adapted procedure shows a significant speedup, especially, for small angular range
parameters Θ ≤ 120◦. This behavior is of course a consequence of the dimensionality reduction
and its dependence on the angular range, cf. Figure 5.3.
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Figure 5.5: Reconstruction of the Shepp-Logan head phantom of size 256 × 256 (Figure 5.4(a)) at different angular
ranges [0,Θ], Θ ∈ {1◦, . . . , 180◦}. The plots show the execution times for CSR and A-CSR reconstruction
using 100 iterations (a) and 2 iterations (b) of Algorithm 1. In both cases a significant speedup of the
reconstruction procedure A-CSR can be observed.

5.3.3 Reconstruction quality

In order to evaluate the reconstruction quality of our method, we performed reconstructions at
two different limited angular ranges, namely [−45◦, 45◦] and [−80◦, 80◦], using the methods CSR,
A-CSR and FBP. For each computation of CSR and A-CSR reconstruction, we have used an in-
dividual set of parameters in Algorithm 1. These parameter sets differ in the number of iterations
nmax, the initial guess c0 and the thresholding sequence τ (cf. Section 5.1). FBP reconstructions
were computed using the Matlab’s function iradon with its default parameters. The resulting
reconstructions are show in Figures 5.7, 5.8 and 5.9, where the exact values of the reconstruction
parameters are listed in the captions. Each of these figures shows a matrix of images, which is
organized as follows: The upper half of the matrix contains images that were reconstructed at
the angular range [−45◦, 45◦], whereas the lower half shows reconstructions at the angular range
[−80◦, 80◦]. Moreover, each row of the image matrices contains only those CSR and A-CSR re-
constructions that were generated using the same parameter set for the Algorithm 1. The original
images can be viewed in Figure 5.4.

The goal of this experiment is twofold: On the one hand, we want to illustrate the similarity of
CSR and A-CSR reconstructions and, on the other hand, to compare the reconstruction quality of
CSR / A-CSR reconstructions to those obtained via FBP.
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Figure 5.6: Noisy Radon transforms at a noise level of 2%: Shepp-Logan head phantom (left), brainstem (middle)
and radial pattern (right), cf. Figure 5.4.

Similarity of CSR and A-CSR reconstructions. Let’s have a look at the CSR / A-CSR
reconstructions in Figures 5.7, 5.8 and 5.9. We compare the reconstructed images that are located
within the same row because these reconstructions were generated using the same parameter set.
We first note that, by visually inspecting the images, no difference in reconstruction quality can
be observed. That is, the CSR and A-CSR reconstruction look visually identical, for which reason
we conclude that curvelet sparse regularization and its adapted version produce reconstructions
of the same visual quality when the same parameters are used in Algorithm 1. To make this
observation independent of visual perception, we computed the discrepancy between the CSR
reconstruction fCSR and the A-CSR reconstruction fA−CSR with respect to the mean squared error
(MSE),

MSE( fCSR, fA−CSR) =
1

N2

N∑
n,m=1

∣∣∣ fCSR[n,m] − fA−CSR[n,m]
∣∣∣2, (5.10)

where N ∈ N corresponds to the size N × N of the reconstructed images. This quantity gives the
average difference between gray values of the CSR and A-CSR reconstructions. The MSE values,
corresponding to reconstructions in Figures s5.7, 5.8 and 5.9, are given in Table 5.1. Observe that
these values vary in the range from 10−4 to 10−6. Since the gray values of the original images (cf.
Figure 5.4) lie between 0 and 1, these MSE values indicate that the average difference between
the gray values of the CSR and A-CSR reconstructions is rather small. Thus, this quantitative
comparison confirms the visual impression, namely that the CSR and A-CSR reconstructions are
of a similar quality.

However, since MSE values are not equal to zero, there is a difference between CSR and A-
CSR reconstructions, depending on the angular range and the particular image. In Table 5.1, the
MSE values at a large angular range are slightly smaller than those at a small angular range. This
phenomenon may be explained as follows: The reconstructed sequence of curvelet coefficients
cCSR contains visible and invisible components. However, the invisible part of this vector might
be not zero after a finite number of iterations and, hence, create a contribution to the MSE values.
Since there are more invisible curvelet coefficients at a small angular range, this contribution
is larger than in the case of a large angular range. Another source for differences in CSR and
A-CSR reconstructions is the estimation of the standard deviation via (5.7). This is due to the
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Shepp-Logan head phantom Brainstem Radial pattern

constant adaptive constant adaptive constant adaptive

Φ = 45◦ 2.89 · 10−5 6.72 · 10−5 6.37 · 10−4 3.04 · 10−4 4.03 · 10−4 4.17 · 10−4

Φ = 80◦ 4.78 · 10−6 1.02 · 10−5 1.09 · 10−6 2.07 · 10−5 7.89 · 10−5 9.08 · 10−5

Table 5.1: The MSE( fCSR, fA−CSR) values (cf. (5.10)) corresponding to reconstructions in Figures 5.7, 5.8 and 5.9.
Each row contains values corresponding to the reconstructions from the angular range [−Φ,Φ]. The
columns with the label “constant” contain MSE values that correspond to those CSR / A-CSR reconstruc-
tions that were generated by using a constant thresholding sequence (5.5), whereas the column “adaptive”
contains the values where an adaptive threshold (5.6) was used. Small values indicate similarity of recon-
structions fCSR and fA−CSR.

fact that the median of absolute values of all curvelet coefficients might be different from the
median of absolute values of the visible curvelet coefficients. The difference in this estimation
procedure is again bigger in the case of a small angular range than in the case of a large angular
range. Of course, the latter explanation applies only if the generic thresholding rule (5.6) is used
in Algorithm 1. As a result, the MSE values are usually larger in this case.

Reconstruction quality. Eventually, we compare the reconstruction quality of CSR / A-CSR
reconstructions to the quality of filtered backprojection reconstruction. In what follows, we shall
not distinguish between CSR and A-CSR reconstructions, because their similarity was already
observed above. We again start by visually inspecting the reconstructions in Figures 5.7, 5.8 and
5.9. First of all, we observe that the FBP reconstructions contain more noise than reconstructions
obtained via curvelet sparse regularization. The visual quality of FBP reconstructions seems to
be poor and inferior to the CSR reconstructions. This is particularly evident for reconstructions
that were obtained at the angular range [−80◦, 80◦]. On the other hand, the visual impression of
curvelet sparse regularizations in the Figures 5.7, 5.8 and 5.9 is better than that of FBP recon-
structions. In particular, the CSR / A-CSR reconstructions appear significantly less noisy than the
FBP reconstructions. Besides the better noise performance of CSR reconstructions, we also ob-
serve that all details are well preserved and that the edges are clearly visible. These conclusions
apply to all parameter sets that we used for generating CSR and A-CSR reconstructions.

To verify our visual impression, we have computed the peak signal-to-noise-ratio (PSNR),

PSNR( frec) = 10 · log
(

1
MSE( f , frec)

)
,

for all reconstructions frec ∈ { fFBP, fCSR, fA−CSR } with respect to the original images f , cf. Fig-
ure 5.4. The PSNR is a quality measure that is expressed on a logarithmic scale, and where
large values indicate a good reconstruction quality. The values corresponding to reconstructions
in Figures 5.7, 5.8 and 5.9 are listed in Table 5.2. Note that the PSNR values of curvelet sparse
regularizations (CSR as well as A-CSR) are considerably larger than those of the FBP reconstruc-
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Shepp-Logan head phantom Brainstem Radial pattern

CSR A-CSR FBP CSR A-CSR FBP CSR A-CSR FBP

18.0736 18.1281 13.8553 18.8445 18.8523 12.6658 15.6230 15.5148 10.8178

Φ = 45◦ 16.2103 16.1676 13.8553 16.3861 16.1246 12.6658 15.5850 15.5017 10.8178

22.2812 22.3060 20.5724 21.0306 21.0319 17.5463 16.8074 16.8429 12.7346

Φ = 80◦ 22.0945 22.1058 20.5724 22.5522 22.5906 17.5463 16.8025 16.8587 12.7346

Table 5.2: PSNR values corresponding to reconstructions in Figures 5.7, 5.8 and 5.9. The upper half contains PSNR
values of reconstructions at the angular range [−Φ,Φ], where Φ = 45◦. Whereas, the lower half con-
tains PSNR values of reconstructions corresponding to Φ = 80◦. For each angular range parameter
Φ ∈ {45◦, 80◦}, there are two rows of PSNR values. The PSNR values of CSR / A-CSR reconstructions that
are located in the first row correspond to the parameter set 1, whereas the PSNR values of CSR / A-CSR
reconstructions that are located in the second row correspond to the parameter set 2.

tions, independently of test image and angular range. As a result, the PSNR values indicate that
the image quality of CSR / A-CSR reconstructions is considerably better that of FBP reconstruc-
tions. This conclusion applies to every parameter set that we have used in the computation of
CSR and A-CSR reconstructions. Once again, our visual impression is confirmed by the values
of an objective quality measure.

Finally, we would like to comment on the differences of CSR / A-CSR reconstructions when
using different parameter sets. To this end, we first remark that essentially two parameter sets
were used for the CSR / A-CSR reconstructions. The characteristics of these parameter sets are as
follows: On the one hand, parameter set 1 consists of a large number of iterations nmax, a constant
thresholding sequence (5.5) together with a relatively poor initial guess c0 = 0. Reconstructions
that were computed with such a parameter set are located in rows 1 and 3 of Figures 5.7, 5.8
and 5.9, whereas the corresponding PSNR values are given in rows 1 and 3 of Table 5.2. On
the other hand, the parameter set 2 consists of only a small number of iterations, an adaptive
thresholding sequence (5.6), and a quite good initial guess c0 = cFBP. These reconstructions are
located in rows 2 and 4 of Figures 5.7, 5.8 and 5.9 and corresponding PSNR values are listed in
rows 2 and 4 of Table 5.2. By visually inspecting the reconstructions, we first of all observe that
the use of different parameter sets results in different quality characteristics of curvelet sparse
regularizations. However, in this case it is difficult to compare the quality of reconstructions on a
visual basis. Comparing the PSNR values in Table 5.2, we observe that parameter set 1 leads to
a slightly better reconstruction quality for the Shepp-Logan head phantom and for the brainstem
image at the angular range [−45◦, 45◦]. In other cases, the PSNR values seem to be comparable.
Nevertheless, there is an advantage in using the parameter set 2, which stems from the fact that
the resulting algorithm is free of any parameters. This is because the thresholding sequence is
chosen automatically for each reconstruction, cf. (5.6), and, thus, has not to be determined in a
series of experiments. In addition, this choice results in a faster computation which is due to the
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better initial estimate c0 = cFBP.

5.4 Artifact reduction in curvelet sparse regularizations

At the end of Section 4.2, we have remarked that curvelet sparse regularization (CSR) and its
adapted version (A-CSR) give rise to artifact-free reconstruction methods. In order to investigate
whether this statement applies to practical CSR / A-CSR reconstructions, let us take a look at
the limited angle reconstructions that are presented in Figures 5.7 and 5.8. Here, it is easy to
observe that reconstructions of the Shepp-Logan head phantom as well as reconstructions of the
brainstem image contain streak artifacts. The artifacts are particularly evident in reconstructions
from the smaller angular range [−45◦, 45◦]. Apparently, these artifacts are a consequence of
the limited angular range, and can be explained analogously to Section 3.4. Namely, at the
angular range [−Φ,Φ], the artifacts appear along straight lines which are tangent to singularities
(x, ξΦ) ∈WF( f ) of the original object f , where ξ±Φ = (cos(±Φ), sin(±Φ))ᵀ. This is in accordance
with Theorem 3.24. Note that no limited angle artifacts are visible in reconstructions that are
shown in Figure 5.9. This is due to the fact that the original image, cf. Figure 5.4(c), does not
contain singularities (x, ξ±Φ) for Φ ∈ {45◦, 80◦}.

In order to reduce the production of the limited angle artifacts, we applied the artifact reduction
strategy of Subection 3.4.2 to the adapted curvelet sparse regularization. For this purpose, we
modified the definition of the adapted system matrix (4.27) according to

(KκΦ
)m,n = κΦ(θm) · RΦψn(θm, sm), 1 ≤ m ≤ M, 1 ≤ n ≤ NΦ, (5.11)

where κΦ = κΦ,ε is a smooth truncation function defined in (3.45), and used Algorithm 1 together
with the matrix KκΦ

to compute artifact reduced A-CSR reconstructions. The resulting recon-
structions for Φ = 45◦ and ε = 35◦ are shown in Figure 5.10. Here, we can observe that the
artifacts, that were present in Figures 5.7 and 5.8, are clearly reduced. However, we can also
observe that singularities (x, ξ) ∈ WF( f ) with directions ξ close to ξ±Φ = (cos(±Φ), sin(±Φ))ᵀ

were smoothed.

Remark. Basically, the artifact reduction strategy (5.11) consists in solving a modified limited
angle problem rather than the original one. This modified problem is given by

yδ = KΦRΦy + η,

where the operator KΦRΦ is defined by KΦRΦ f (θ, s) = κΦ(θ) · RΦ f (θ, s), cf. Theorem 3.26. y

5.5 Summary and concluding remarks

The main part of this chapter was devoted to the numerical analysis of curvelet sparse regulariza-
tion (CSR) and its adapted version (A-CSR). In particular, our goal was to demonstrate the prac-
tical relevance of these methods. For this purpose, we implemented the CSR / A-CSR approach
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in Matlab, cf. Section 5.1, and investigated its performance in a series of numerical experiments.
In our first experiment, we illustrated the visibility of curvelets in practical reconstructions, cf.
Section 5.2. We found that the theoretical result of Theorem 4.8 directly translates into prac-
tice, and consequently justifies the dimensionality reduction in the adapted approach, cf. Section
4.2. In the second part of our experiments, we investigated the execution times and the quality
of CSR and A-CSR reconstructions. The experiments in Section 5.3 showed that A-CSR pro-
duces reconstructions that are of the same quality as CSR reconstructions. This observation is
in accordance with the Theorem 4.10. Moreover, our experiments confirmed that the adapted
curvelet sparse regularization is stable and edge-preserving with respect to visible edges. The
reconstruction quality is controlled by the number of iterations, the choice of the initial guess and
the thresholding sequence. However, we observed that the thresholding sequence had the most
crucial impact on the reconstruction quality. According to that, the choice of this sequence should
be made carefully and individually for each reconstruction problem. In practice, this is often done
by trial and error. To overcome this, we introduced an adaptive thresholding rule in Section 5.1,
and found that this procedure leads to good quality reconstructions. In addition to that, the result-
ing reconstruction algorithm is free of any parameter. In the final Section 5.4, we noted that the
limited angle artifacts are still present in CSR / A-CSR reconstructions and presented an artifact
reduction approach for curvelet sparse regularization.

Finally, we would like to point out that the minimization algorithm (Algorithm 1) that we
used to implement the curvelet sparse regularization is known to be slow, [BL08b], [Lor09b].
In addition to that, our Matlab implementation is very rudimentary. Accordingly, the execution
times that are presented in Figure 5.5 may be improved by a more elaborate implementation of
Algorithm 1 or by using a more sophisticated minimization procedure.
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CSR A-CSR FBP

Φ = 45◦

nmax = 300
c0 = 0

τ = 1 ·10−4

nmax = 3
c0 = cFBP

τ = (5.6)

Φ = 80◦

nmax = 300
c0 = 0

τ = 1 ·10−4

nmax = 2
c0 = cFBP

τ = (5.6)

Figure 5.7: Reconstructions of the Shepp-Logan head phantom of size 256 × 256 (Figure 5.4(a)) at the angular range
[−Φ,Φ] and noise level 2% by using CSR (left column), A-CSR (middle column) and FBP (right column).
The upper half shows reconstructions corresponding to the angular range parameter Φ = 45◦, whereas the
lower half contains reconstructions corresponding to Φ = 80◦. CSR as well as A-CSR reconstructions
were computed by using Algorithm 1 with the following parameters: Row 1: nmax = 300, c0 = 0, constant
threshold τ = 1 · 10−4; Row 2: nmax = 3, c0 = cFBP, adaptive thresholding rule (5.6); Row 3: nmax = 300,
c0 = 0, constant threshold τ = 1 · 10−4; Row 4: nmax = 2, c0 = cFBP, adaptive thresholding rule (5.6).
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CSR A-CSR FBP

Φ = 45◦

nmax = 300
c0 = 0

τ = 1 ·10−5

nmax = 3
c0 = cFBP

τ = (5.6)

Φ = 80◦

nmax = 300
c0 = 0

τ = 1 ·10−5

nmax = 2
c0 = cFBP

τ = (5.6)

Figure 5.8: Reconstructions of the brainstem glioma of size 300 × 300 (Figure 5.4(b)) at the angular range [−Φ,Φ]
and noise level 2% using CSR (left column), A-CSR (middle column) and FBP (right column). The upper
half shows reconstructions corresponding to the angular range parameter Φ = 45◦, whereas the lower
half contains reconstructions corresponding to Φ = 80◦. CSR as well as A-CSR reconstructions were
computed by using Algorithm 1 with the following parameters: Row 1: nmax = 300, c0 = 0, constant
threshold τ = 1 · 10−5; Row 2: nmax = 3, c0 = cFBP, adaptive thresholding rule (5.6); Row 3: nmax = 300,
c0 = 0, constant threshold τ = 1 · 10−5; Row 4: nmax = 2, c0 = cFBP, adaptive thresholding rule (5.6).
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CSR A-CSR FBP

Φ = 45◦

nmax = 300
c0 = 0

τ = 5 ·10−4

nmax = 5
c0 = cFBP

τ = (5.6)

Φ = 80◦

nmax = 300
c0 = 0

τ = 5 ·10−4

nmax = 2
c0 = cFBP

τ = (5.6)

Figure 5.9: Reconstructions of the radial pattern of size 256 × 256 (Figure 5.4(c)) at the angular range [−Φ,Φ] and
noise level 2% using CSR (left column), A-CSR (middle column) and FBP (right column). The upper
half shows reconstructions corresponding to the angular range parameter Φ = 45◦, whereas the lower
half contains reconstructions corresponding to Φ = 80◦. CSR as well as A-CSR reconstructions were
computed by using Algorithm 1 with the following parameters: Row 1: nmax = 300, c0 = 0, constant
threshold τ = 5 · 10−4; Row 2: nmax = 5, c0 = cFBP, adaptive thresholding rule (5.6); Row 3: nmax = 300,
c0 = 0, constant threshold τ = 5 · 10−4; Row 4: nmax = 2, c0 = cFBP, adaptive thresholding rule (5.6).
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A-CSR artifact reduced A-CSR

nmax = 300
c0 = 0

τ = 1 ·10−4

nmax = 3
c0 = cFBP

τ = (5.6)

nmax = 300
c0 = 0

τ = 1 ·10−5

nmax = 5
c0 = cFBP

τ = (5.6)

Figure 5.10: Limited angle reconstructions at the angular range [−45◦, 45◦]. Each row shows an A-CSR reconstruc-
tion from Figure 5.7 or 5.8, respectively, and a corresponding artifact reduced A-CSR reconstruction.
All reconstructions were computed by using Algorithm 1 with the parameters that are given in the corre-
sponding rows.



Appendix A

The Fourier transform and Sobolev spaces

In this chapter we summarize some basic facts about the regular and the distributional Fourier
transforms and introduce the Sobolev spaces Hs. For details on Fourier analysis and distribution
theory we refer to [SW71], [RS72], [Rud91], [Hör03], for details on Sobolev spaces we refer to
[AF03].

A.1 The Fourier transform

The Fourier transform is a basic tool in tomography, and hence it is used extensively throughout
this work. In this section we define the Fourier transform on various function spaces such as
L1(Rn), L2(Rn) and S(Rn). Moreover, we will give the basic definitions of tempered distributions
and define the distributional Fourier transform which will be particularly used in Sections 3.3 and
3.4.

We state the definition of the Fourier transform first and list some of its properties.

Definition A.1 (Fourier transform). Let f ∈ L1(Rn). The Fourier transform of f is defined via

F f (ξ) B f̂ (ξ) = (2π)−n/2
∫
Rn

f (x)e−ixξ dx. y

It is easy to see that the Fourier transform of a function f ∈ L1(Rn) is well-defined. The first
important observation is that in this case the Fourier transform is even continuous. In particular,
the pointwise evaluation makes sense.

Lemma A.2 (Riemann-Lebesgue, [SW71, Theorem 1.1 + 1.2]). If f ∈ L1(Rn), then f̂ is uni-
formly continuous and lim|ξ|→∞

∣∣∣ f̂ (ξ)
∣∣∣ = 0. Furthermore, if C0(Rn) denotes the space of con-

tinuous functions vanishing at infinity, then the Fourier transform F : L1(Rn) → C0(Rn) is a
bounded operator with ‖F ‖ ≤ (2π)−n/2. y

Although, by Lemma A.2, the Fourier transform of f ∈ L1(Rn) vanishes at infinity, it does not
necessarily hold that f̂ ∈ L1(Rn). In order to define the inverse Fourier transform, we therefore
have to assume that f̂ ∈ L1(Rn). In this case we make the following definition.

99
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Definition A.3 (Inverse Fourier transform). Let g ∈ L1(Rn). The inverse Fourier transform of f
is defined via

F −1g(x) B ǧ(x) = (2π)−n/2
∫
Rn

f (ξ)eixξ dξ. y

Indeed, if f̂ ∈ L1(Rn), it holds that F −1( f̂ )(x) = f (x), cf. [SW71, Cor. 1.21]. In this case, by
the lemma of Riemann-Lebesgue, the function f is continuous and the equality holds pointwise.

Another important property is the following.

Proposition A.4 (Parseval’s identity, [SW71, Theorem 1.15]). If f , g ∈ L1(Rn), then∫
Rn

f̂ (x)g(x) dx =

∫
Rn

f (x)ĝ(x) dx. y

One of the most fundamental properties of the Fourier transform is the following convolution
theorem that states that the Fourier transform maps convolution into multiplication and vice versa.

Proposition A.5 (Convolution theorem, [SW71, Theorem 1.4]). The convolution of two functions
f , g ∈ L1(Rn),

f ∗ g(x) =

∫
Rn

f (y − x)g(y) dy,

satisfies
F ( f ∗ g) = (2π)n/2 f̂ · ĝ. (A.1)

If in addition f̂ , ĝ ∈ L1(Rn), then

F ( f · g) = (2π)−n/2 f̂ ∗ ĝ. (A.2)
y

In order to define the Fourier transform on L2(Rn), we first observe that, for all f ∈ L1(Rn) ∩
L2(Rn), the following identity holds, [SW71, Thm. 2.1]

‖ f ‖2 =
∥∥∥ f̂

∥∥∥
2 . (A.3)

Since L1(Rn) ∩ L2(Rn) ⊆ L2(Rn) is dense, we can continuously extend the Fourier transform
to a unitary operator F : L2(Rn) → L2(Rn). In the literature, this operator is often called the
Plancherel transform. However, in this work we will always use the term Fourier transform. The
inverse Fourier transform on L2(Rn) can be defined by letting F −1 f (x) = F f (−x). We see that
the Fourier transform as well as its inverse are defined the whole of L2(Rn) and that according to
(A.3) it is an isometry. However, defining the Fourier transform on L2(Rn) has the disadvantage
that the point evaluation F f (ξ) makes sense only almost everywhere.

A central role in the theory of Fourier transforms is played by the space of Schwartz functions
which we now define.
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Definition A.6 (Schwartz space). The Schwartz space S(Rn) is defined as a set of all functions
f ∈ C∞(Rn) for which

‖ f ‖α,β := sup
x∈Rn

∣∣∣xβDα f (x)
∣∣∣ < ∞ (A.4)

for all multi-indices α, β ∈ Nn
0, where Dα = ∂α/∂xα. The natural topology on S(Rn) is considered

to be the one induced by the family of seminorms ‖ · ‖α,β. y

The importance of the space S(Rn) is due to the following result, [SW71, Sec. I.3].

Proposition A.7. The Fourier transform F : S(Rn)→ S(Rn) is an automorphism and its inverse
is defined in Definition A.3. y

We list some more properties of the Fourier transform, [SW71], [Rud91, Chap. 7].

Proposition A.8. Let f ∈ S(Rn).

(i) For y ∈ Rn and τy f (x) B f (x − y) it holds that

τ̂y f (ξ) = e−iyξ f̂ (ξ). (A.5)

(ii) For a > 0 and Da f (x) B f (ax) it holds that

D̂a f (ξ) = a−n f̂ (a−1ξ). (A.6)

(iii) Let R be a rotation and % f (x) B f (Rx). Then,

%̂ f (ξ) = f̂ (Rξ). (A.7)

(iv) Let α ∈ Nn
0 a multi-index and Dα = ∂α/∂ξα or Dα = ∂α/∂xα, respectively. Then

Dα(F f ) = (−i)|α|F (xα f ), F (Dα f ) = i|α|ξαF f . (A.8)
y

We shall now define the Fourier transform for distributions. To this end, we first introduce the
notion of a tempered distribution.

Definition A.9 (Tempered distributions). The topological dual space of S(Rn) with respect to the
natural topology, denoted by S′(Rn), is called the space of tempered distributions. y

We note that Lp(Rn) ⊆ S′(Rn) for 1 ≤ p ≤ ∞, in the sense that for each f ∈ Lp(Rn) the
functional T f : S(Rn)→ R,

T f (ϕ) =

∫
Rn

f (x)ϕ(x) dx

is a tempered distribution, [Rud91, Chap. 7]. Distributions of the form T f are called regular.

In what follows, we denote the action of the tempered distributions T ∈ S′(Rn) on test functions
ϕ ∈ S(Rn) by 〈T, ϕ〉 = T (ϕ).
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Definition A.10 (Fourier transform of a tempered distribution). Let T ∈ S′(Rn). The Fourier
transform T̂ defined by

〈T̂ , ϕ〉 =
〈
T, ϕ̂

〉
, ϕ ∈ S(Rn). y

We note that the Fourier transform of a tempered distribution is itself a tempered distribution,
[Rud91, Chap. 7]. If T ∈ S′(Rn) is a regular distribution, i.e., T = T f for some function f , we
have T̂ f = T f̂ whenever f̂ is defined. That is, the definition of the classical and the distributional
Fourier transform coincide.

As in the case of the Schwartz space S(Rn), the space of tempered distributions plays also a
central role for Fourier analysis.

Proposition A.11 ([Hör03, Thm. 7.1.5]). The Fourier transform is an automorphism of S′(Rn)
with respect to the weak topology, and the inverse Fourier transform is given by

〈Ť , ϕ〉 = 〈T, ϕ̌〉 , ϕ ∈ S(Rn). y

Many properties of the ordinary Fourier transform carry over to the distributional Fourier trans-
form. However, in order to do that, corresponding operations must be defined for distributions.
We begin by restating the property (A.8) for the distributional differentiation. To this end, we
recall that, for T ∈ S′(Rn), the tempered distribution DαT is defined via

〈DαT, ϕ〉 = (−1)|α|〈T,Dαϕ〉, (A.9)

for all ϕ ∈ S(Rn). With this definition, the property (A.8) also holds in the distributional setting.
However, in order to understand (A.8) in the distributional setting, we note that the multiplication
of a tempered distribution T ∈ S′(Rn) with a function f ∈ C∞(Rn) of at most polynomial growth
is defined by 〈 f T, ϕ〉 = 〈T, fϕ〉 for all ϕ ∈ S(Rn).

We proceed to the distributional definition of convolution, [Hör03, Chap. IV].

Definition A.12 (Convolution of a tempered distribution with a function). Let f ∈ S(Rn), T ∈
S′(Rn) and denote f̃ (x) = f (−x). Then, the convolution of f and T is the tempered distribution
T ∗ f defined by

〈T ∗ f , ϕ〉 = 〈T, f̃ ∗ ϕ〉,

for all ϕ ∈ S(Rn). y

It is also possible to define convolution of distributions. However, this is possible only if one
of these distributions has compact support.

Definition A.13 (Distributions with compact support). The support of a tempered distribution
T ∈ S′(Rn), denoted by supp T, is defined as the complement of the biggest open set U ∈ Rn

for which 〈T, ϕ〉 = 0 for all ϕ ∈ S(Rn) with suppϕ ∈ U. The set of all distributions of compact
support is denoted by E′(Rn). y

Now we can define the convolution of two distributions, [Hör03, Chap. IV].
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Definition A.14. Let T ∈ S′(Rn) and S ∈ E′(Rn). The convolution Λ := T ∗ S is the distribution
Λ ∈ S′(Rn) defined via

Λ ∗ ϕ = T ∗ (S ∗ ϕ), ϕ ∈ S(Rn). (A.10)
y

Actually, it is not obvious that the convolution of T ∈ S′(Rn) and S ∈ E′(Rn) is well-defined
and, in particular, that T ∗ S ∈ S′(Rn). For a detailed exposition we refer to [Hör03, Chap. IV].
However, for all distributional convolutions defined above, there is a convolution theorem for the
(distributional) Fourier transform.

Proposition A.15 (Convolution theorem, [Hör03, Thm. 7.1.18]). Let T ∈ S′(Rn) and S ∈ E′(Rn)
or S ∈ S(Rn). Then,

F (T ∗ S ) = (2π)n/2T̂ · Ŝ . (A.11)
y

We remark that the product (A.11) is well-defined: In the case S ∈ S(Rn) this is clear. The
other case, S ∈ E′(Rn), is due to the following proposition.

Proposition A.16 ([Hör03, Thm. 7.1.14]). The Fourier transform of a distribution S ∈ E′(Rn) is
the function

Ŝ (ξ) =
〈
S , e−i〈 · ,ξ〉〉 . (A.12)

Moreover, the function Ŝ (ξ) is defined for every complex number ξ ∈ C and is a real analytic
function of ξ. In particular, Ŝ ∈ C∞(Rn). y

Eventually, we note another property that will be used in this work.

Proposition A.17 ([Hör03, Thm. 7.1.16]). Let T ∈ S′(Rn) be homogeneous of degree α. That is,
〈T, ϕ〉 = tα 〈T, ϕt〉 for all ϕ ∈ S(Rn), where ϕt(x) = tnϕ(tx), t > 0. Then T̂ is homogeneous of
degree −α − n. y

A.2 Sobolev spaces

We give some basic definitions and facts about Sobolev spaces. These are of particular interest for
the understanding of the ill-posedness of an inverse problem (cf. Chapter C) and especially the
ill-posedness of computed tomography (cf. Subsections 2.3.3 and Section 3.5). In particular, we
will state the characterization of Sobolev spaces by means of the Fourier transform. For details
we refer to [AF03].

We begin with the standard definition of Sobolev spaces. For m ∈ N we define the Sobolev
space Hm(Rn) as

Hm(Rn) =
{
f ∈ L2(Rn) : ‖ f ‖Hm(Rn) < ∞

}
, (A.13)

where
‖ f ‖2Hm(Rn) =

∑
|α|≤m

∥∥∥Dα f
∥∥∥2

2 , (A.14)
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for a multi-index α ∈ Nn
0 and Dα = ∂α/∂xα. We have to remark that in the above definition the

differential Dα f of a function f ∈ L2(Rn) is understood in the distributional sense, cf. (A.9).
In addition, it is assumed that the tempered distribution Dα f is actually a function. Then, the
definition (A.13) together with (A.14) implies that the space Hm(Rn) consists of all f ∈ L2(Rn)
whose derivatives Dα f , |α| ≤ m, are also in in L2(Rn). In this case, the function f is called weakly
differentiable of order m.

Before stating the properties of Sobolev spaces, we note an equivalent characterization of
spaces Hm(Rn) via the Fourier transform. To this end, we note that

‖ f ‖m B
(∫

Rd

∣∣∣ f̂ (ξ)
∣∣∣2(1 + ‖ξ‖22)m dξ

) 1
2

(A.15)

defines an equivalent norm to (A.14). Observe that this characterization relates the decay proper-
ties of the Fourier transform f̂ to the weak differentiability of f ∈ L2(Rn). An essential ingredient
to the proof of this norm equivalence is the property (A.8). So, replacing the norm ‖ · ‖Hm(Rn) in
the definition of (A.13) does not change the space Hm.

The characterization of Sobolev spaces by means of the Fourier transform does not only give
a handy tool to investigate smoothness of a function but also offers a possibility to generalize the
definition of Sobolev spaces of integer order Hm(Rn) to spaces Hs(Rn) of arbitrary smoothness
s ∈ R. To this end, we only need to replace the integer m in the definition (A.15) by the real
number s. However, if s < 0, we have to enlarge the basic set from L2(Rn) (cf. (A.13)) to the
space of tempered distributions S′(Rn). That is, for s ∈ Rn, we define

Hs(Rn) =
{
f ∈ S′(Rn) : f̂ is a function and ‖ f ‖s < ∞

}
, (A.16)

where ‖ · ‖s denotes the norm defined in (A.15) with m replaces by s.

Finally we define the Sobolev spaces Hs
0(Ω), where Ω ∈ Rn is an open subset, by

Hs
0(Ω) =

{
f ∈ Hs(Rn) : supp f ⊆ Ω

}
. (A.17)

The norm in Hs
0(Ω) is the same as in Hs(Rn), namely (A.15).

We eventually list some properties of Sobolev spaces.

(i) The spaces Hs(Rn) and Hs
0(Ω) are Hilbert spaces with the following inner product,

〈 f , g〉s =

∫
Rn

(1 + ‖ξ‖22)s f̂ (ξ)ĝ(ξ) dξ.

(ii) Hs(Rn) ⊆ Ht(Rn) if t < s.

(iii) Every distribution with compact support f ∈ E′(Rn) lies in some Hs(Rn).

(iv) The dual of Hs(Rn) is topologically isomorphic to H−s(Rn).



Appendix B

Singular value decomposition of compact oper-
ators

In order to make this thesis self-contained, we summarize the basic definitions and properties of
compact operators. In particular, we present the spectral theory and singular value decomposition
of compact operators. For further reading we refer to [RS72] and [RY08].

B.1 Some properties of compact operators

Definition B.1 (Compact operator). Let X and Y be normed spaces. A linear operator T : X → Y
is compact if for any bounded set B ⊆ X the image T (B) is relatively compact, i.e., the closure
T (B) is compact in Y. The set of compact operators is denoted by K(X,Y). y

Equivalently, an operator T is compact if for any sequence {xn} ⊆ X the sequence {T xn} ⊆ Y
contains a convergent subsequence.

The basic properties of compact operators are summarized in the following proposition, [RY08,
Chapter 7].

Proposition B.2. Let X,Y,Z be normed spaces.

(i) Every compact operator T ∈ K(X,Y) is bounded.

(ii) K(X,Y) is a closed linear subspaces of L(X,Y), where L(X,Y) is the space of all linear
bounded operators. Especially, if {Tn} ⊆ K(X,Y) converges to a T ∈ L(X,Y), then T is
compact.

(iii) If S ∈ L(X,Y), T ∈ L(Y,Z) and at least one of the operators S ,T is compact, then TS ∈
K(X,Z).

(iv) If dim X = ∞ and T ∈ K(X, X), then T is not invertible.

(v) If T ∈ K(X,Y) then ran (T ) and ran (T ) are separable, i.e., even if the space X is big (not
separable), the range of T is still small (not separable).

(vi) A compact operator maps weakly convergent sequences into strongly convergent sequences.
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(vii) Let X be a normed space and H a Hilbert space. Further, let F(X,H) denote the set of all
operators F ∈ L(X,H) which have a finite rank, i.e., r(F) = dim(ran (F)) < ∞. Then, for
every T ∈ K(X,H) there is a sequence {Tn} ⊆ F(X,H) converging strongly (in L(X,H)) to
T , i.e., F(X,H) = K(Y,H). y

Moreover, we have the following properties of compact operators on Hilbert spaces, [RY08,
Lem. 7.13, Thm. 7.14].

Proposition B.3. Let H be a Hilbert space and T ∈ L(H) := L(H,H). If T ∗ denotes the Hilbert
spaces adjoint of T , then

(i) r(T ) = r(T ∗). In particular, T has finite rank if and only if T ∗ has finite rank.

(ii) T is compact if and only if T ∗ is compact. y

B.2 Spectral theorem and singular value decomposition of compact
operators

Although we are interested only in the Hilbert space setting, we recall the basic definitions from
the spectral theory of operators on Banach spaces.

Definition B.4. Let X be a Banach space and T ∈ L(X).

(i) The resolvent set of T is defined by

%(T ) =
{
λ ∈ C : (λ − T )−1 exists in L(X)

}
.

(ii) The spectrum of T is defined by
σ(T ) = C \ %(T ).

(iii) The point spectrum of T is defined by

σp(T ) = {λ ∈ σ(T ) : (λ − T ) is not injective} .

The elements of σp(T ) are called eigenvalues. For λ ∈ σp(T ) there is a corresponding
eigenvector or eigenfunction x ∈ X such that x , 0 and T x = λx. y

In what follows we let K(H) be the set of all compact operators T : H → H on a Hilbert
space H. The following theorem shows that non-zero elements of the spectrum σ(T ) are actually
eigenvalues of T .

Theorem B.5. Let H be a Hilbert space and T ∈ K(H). Then, σ(T ) is a discrete (countable)
set having no limit points except perhaps λ = 0. Further, any nonzero λ ∈ σ(T ) is an eigen-
value of finite multiplicity (i.e., the corresponding space of eigenvectors if finite dimensional). In
particular, if {λn} ⊆ σp(T ) is any sequence of distinct eigenvalues of T , then limn→∞ λn = 0. y
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We have the following spectral theorem for self-adjoint compact operators, [RS72, Sec. VI.5],
[RY08, Sec. 7.2].

Theorem B.6 (Spectral theorem for self-adjoint compact operators). Let H be a Hilbert space
and let T ∈ K(H) be self-adjoint. Then, there exists an orthonormal system {ψn} ⊆ H and a
(maybe finite) sequence {λn} ∈ C \ {0} with limn λn = 0 such that the following relations hold:

H = ker (T ) ⊕ span {ψ1, ψ2, . . . }

and
T x =

∑
n

λn 〈x, ψn〉ψn ∀x ∈ H.

Here, the values λn are eigenvalues of T , and ψn are the corresponding eigenfunctions. Further-
more it holds that

‖T‖ = sup
n
|λn| . y

The above spectral theorem does not apply for general compact operators T : X → Y . How-
ever, applying the spectral theorem to the self-adjoint compact operator T ∗T we get the following
analog to Theorem B.6, cf. [RS72, Sec. VI.5], [RY08, Sec. 7.2].

Theorem B.7 (Singular value decomposition of a compact operator). Let X and Y be Hilbert spaces
and let T ∈ K(X,Y). There exist orthonormal systems {vn} ⊆ X, {un} ⊆ Y and a sequence
σ1 ≥ σ2 ≥ · · · > 0 with limn σn = 0, such that the following relations hold:

Tvn = σnun, (B.1)

T ∗un = σnvn, (B.2)

T x =
∑

n

σn 〈x, vn〉 un, x ∈ X, (B.3)

T ∗y =
∑

n

σn 〈y, un〉 vn, y ∈ Y. (B.4)

(σn; vn, un) is called singular system of T; σn are the singular values of T; the representation
(B.3) is called singular value decomposition (SVD) of T . y





Appendix C

Basic facts about inverse problems

The goal of this chapter is to recall the basic definitions and notations from the theory of inverse
problems and regularization. For details we refer to [EHN96], [Kir96], [Lou89].

C.1 Ill-posedness

In what follows we assume R : X → Y to be a compact linear operator between Hilbert spaces X
and Y . We consider an inverse problem which is given by the operator equation

y = R f . (C.1)

That is, given y, we are interested in determining (or reconstructing) the unknown function f .
Mathematically, the problem consists in solving the operator equation (C.1). In the context of
inverse problems the operator R is called forward operator whereas y is the data or, alternatively,
the measurements of the object f .

In practice, the measurements y ∈ Y are usually corrupted by noise η ∈ Y , ‖η‖Y ≤ δ. Hence,
given the noisy data yδ = y + η, the goal is to solve the perturbed problem

yδ = R f + η. (C.2)

In this situation it is natural to ask how the measurement errors are propagated through the solu-
tion process. In order to study this behavior, the concept of well-posedness of a problem is used.

Definition C.1. Let X and Y be Hilbert spaces, R : X → Y a linear operator. The problem
R f = y is called well-posed by Hadamard if the following conditions are satisfied:

(i) Existence: For every y ∈ Y there is a f ∈ X such that R f = y.

(ii) Uniqueness: For every y ∈ Y there is at most one f ∈ X with R f = y.

(iii) Stability: The solution f depends continuously on y.

Problems for which at least one of the above conditions is violated are called ill-posed. y
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Note that in Definition C.1 the properties (i) and (ii) are of pure algebraic nature. However,
condition (iii) requires the continuity of the solution operator which involves topological structure
of the spaces X and Y .

If the data is corrupted by noise and if ran (R) , Y , we generally have yδ < ran (R). In this
case the problem (C.2) can not be solved in the classical setting. Nevertheless, we can obtain an
approximate solution f by minimizing the error term ‖y − R f ‖Y . In this case, the approximate
solution is called least-squares solution. Formally, f is a least-squares solution if

‖y − R f ‖Y = inf
{‖y − Rg‖Y : g ∈ X

}
. (C.3)

Note that, if y ∈ ran (R) ⊕ ran (R)⊥, the set of all least-squares solution is characterized by the
normal equation

R∗R f = R∗y. (C.4)

Moreover, note that the least-squares solution is not unique if R is not injective. A standard way
to restore uniqueness is to choose a least-squares solution with the smallest norm. Such solutions
are called best approximate solutions or generalized solutions of R f = y and are denoted by f †.
Formally, f † is a best approximate solution of R f = y if

|| f †||X = inf
{‖g‖X : f is a least-squares solution of R f = y

}
. (C.5)

Because of the above considerations it is very natural to study the operator which maps the
data y = R f to the best approximate solution f †.

Definition C.2 (Moore-Penrose generalized inverse). Let R : X → Y be a bounded linear oper-
ator between Hilbert spaces X and Y. The Moore-Penrose generalized inverse R† of R is defined
as

R† : D(R†) B ran (R) ⊕ ran (R)⊥ → X, y 7→ f †. (C.6)
y

Proposition C.3 (Properties of the Moore-Penrose generalized inverse, [EHN96, Sec. 2.1]). Let R
be a bounded linear operator between Hilbert spaces X and Y, then

(i) ker
(
R†

)
= ran (R)⊥ and ran

(
R†

)
= ker (R)⊥.

(ii) Let P and Q be the orthogonal projections onto ker (R) and ran (R), respectively. Then, the
four Moore-Penrose equations hold:

RR†R = R, (C.7)

R†RR† = R†, (C.8)

R†R = idX − P, (C.9)

RR† = Q|D(R†). (C.10)

These equations uniquely characterize R†.

(iii) R† has a closed graph gr(R†).

(iv) R† is bounded if and only if ran (R) is closed.
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(v) For y ∈ D(R†), f † = R†y is the unique generalized solution of R f = y. The set of all
least-squares solution is given by f † + ker (R). y

The concept of the generalized inverse, though it provides a unique solution, does not remedy
the lack of continuous dependence of the solution on the data, cf. Proposition C.3 (iv). In general
we have

R†yδ 6→ R†y for δ→ 0. (C.11)

Therefore, if the problem is ill-posed, even small data errors can cause huge reconstruction errors.
A handy tool for the study of ill-posedness is the singular value decomposition (SVD), cf. Chapter
B. Using the SVD, there is a simple representation of the Moore-Penrose generalized inverse R†.

Theorem C.4 ([EHN96, Th. 2.8]). Let R be a compact linear operator between Hilbert spaces
X and Y, and let (σn; vn, un) be a singular system for R. Then, the following statements hold.

(i) Picard condition:

y ∈ D(R†) ⇔
∞∑

n=1

|〈y, un〉|2
σ2

n
< ∞. (C.12)

(ii) For any y ∈ D(R†)

R†y =

∞∑
n=1

〈y, un〉
σn

vn. (C.13)
y

The Theorem C.4 show that a best-approximate solution of the problem R f = y exists if the
Picard condition (C.13) is satisfied. Moreover, the representation (C.13) gives a considerable
insight into the inherent ill-posedness of the problem R f = y: Since R is compact, it follows from
Theorem B.7 that σn → 0 for n → ∞. Hence, the error components are amplified by the factors
1/σn, which increase without bound. For example, if yδ,n := y + δun, then

∥∥∥yδ,n − y
∥∥∥

Y = δ, but

∥∥∥R†y − R†yδ,n
∥∥∥

X =
δ

σn
→ ∞ as n→ ∞.

This means that the reconstruction error can be arbitrarily large even if the data error is small. As
a result, the practical reconstruction algorithms are sensitive to noise. To stabilize the reconstruc-
tion a regularization strategy has to be applied, cf. Section C.3.

C.2 Classification of ill-posedness

Following the above discussion, it is obvious that the amplification of measurement errors de-
pends on the decay properties of the singular values {σn} of the operator R. The faster the decay
rate of {σn}, the more amplification of the data error is inherent in the problem. This observation
leads to the following classification of the degree of ill-posedness.

Definition C.5. Let R be a compact linear operator between Hilbert spaces X and Y, and let
(σn; vn, un) be a singular system for R. A problem R f = y is called
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(i) ill-posed of degree α if there exists α > 0 such that σn = O(n−α),

(ii) severely ill-posed if the singular values {σn} decay exponentially. y

Another classification of ill-posedness can be defined in terms of Sobolev scales, see for ex-
ample [Lou89].

Definition C.6. Let R : L2(Rn) → L2(Rn). A problem R f = y is called ill-posed of degree α > 0
if for some C1,C2 > 0

C1 ‖ f ‖2 ≤ ‖R f ‖Hα ≤ C2 ‖ f ‖2 .

The problem is called severely ill-posed if there are no such estimates. y

The above classification of the degree of ill-posedness is based on the smoothing properties of the
operator R. Definition C.6 states that the operator R is a smoothing operator of order α, i.e., the
data y is α times smoother than f . The ill-posedness is therefore pronounced by the fact that, in
order to solve the problem R f = y one has to invert this smoothing, i.e., one has to restore the non-
smooth parts of f from smooth data y. For example, Theorem 2.13 shows that the tomographic
problem R f = y, where R denotes the Radon transform, is ill-posed of order α = 1/2 in the sense
of Definition C.6.

If a problem is severely ill-posed in the sense of the above definition, one can think of the
involved operator R as a smoothing operator of order ∞. As a result, there is a dramatic loss
of information in this situation. Unfortunately, this is exactly the case in limited angle tomog-
raphy, since no Sobolev space estimate is available for the limited angle Radon transform, cf.
Section 3.5.

C.3 Regularization

In order to get stable numerical algorithms, continuous dependence of the solution operator on
the data is of great importance. To this end, regularization methods are used to compute an
approximation, say fα,δ, to f † which depend continuously on the data and tends to f † as δ→ 0.

Definition C.7. Let R : X → Y be a bounded linear operator between Hilbert spaces X and Y.
A regularization for R† is a family of linear bounded operators

{Rα}α>0 , Rα : Y → X (C.14)

if for all y ∈ D(R†) there exists a parameter choice rule

α : R+ × Y → R+ (C.15)

such that
lim sup
δ→0

{∥∥∥Rα(δ,yδ)y
δ − R†y

∥∥∥
X

: yδ ∈ Y,
∥∥∥y − yδ

∥∥∥
Y ≤ δ

}
= 0 (C.16)

and
lim sup
δ→0

{
α(δ, yδ) : yδ ∈ Y,

∥∥∥y − yδ
∥∥∥

Y ≤ δ
}

= 0. (C.17)
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For a specific y ∈ D(R†), a pair (Rα, α) is called a regularization method for solving R f = y;
α is the regularizaiton parameter and f δα := Rαyδ is called regularized solution.

If the parameter choice rule α does not depend on yδ, but only on δ, i.e., α = α(δ), then α is
called a-priori parameter choice rule. Otherwise, α is called a-posteriori parameter choice rule. y

Remark. It follows directly from Definition C.7 that for all y ∈ D(R†) it holds

lim
δ→0

Rα(δ,yδ)y
δ = R†y. (C.18)

In particular, {Rα}α converges pointwise to R† on D(R†) as α → 0. As a consequence of the
uniform boundedness principle (theorem of Banach-Steinhaus), we have for any regularization
{Rα}α that ‖Rα‖ → ∞ as α→ 0, whenever ran (R) is non-closed. y

Having introduced the notion of a regularization it is very natural to ask how to construct such
regularizations for R†. A preliminary answer to that question is given by the next proposition.

Proposition C.8 ([EHN96, Prop. 3.4]). Let Rα be a continuous operator for all α > 0. Then, the
family {Rα} is a regularization for R† if

Rα → R† pointwise on D(R†) as α→ 0. (C.19)

In this case, there exists, for every y ∈ D(R†), an a-priori parameter choice rule α such that
(Rα, α) is a regularization method for solving R f = y. y

According to Proposition C.8, the construction of regularizations for R† may be split into the
construction of continuous pointwise approximations {Rα}α of R† and the construction of appro-
priate parameter choice rules α = α(δ). In what follows, a family of bounded operators {Rα}α
that converges pointwise to R† will be called a regularization strategy for R†, [Kir96]. Now let
us assume that we have constructed a regularization strategy {Rα}α for R†. In order to derive an
appropriate parameter choice rule, let us consider the error || f δα − f †||X , where f δα = Rαyδ. Now,
we can observe that the reconstruction error of a (linear) regularization is composed of a data
error and an approximation error:∥∥∥ f δα − f †

∥∥∥
X =

∥∥∥Rαyδ − R†y
∥∥∥

X

≤
∥∥∥Rα(yδ − y)

∥∥∥
X︸           ︷︷           ︸

data error

+
∥∥∥Rαy − R†y

∥∥∥
X︸           ︷︷           ︸

approximation error

≤ δ ‖Rα‖ +
∥∥∥Rαy − R†y

∥∥∥
X .

Assuming that the a-priori parameter choice rule satisfies α(δ) → 0 as δ → 0, we can observe
that, on the one hand, the approximation error tends to zero as δ → 0. However, the data error
can be arbitrarily large since ‖Rα‖ → ∞ as α → 0. In order to turn a regularization strategy into
a regularization method, we have to design an appropriate parameter choice rule α = α(δ). A
sufficient condition is given by the next proposition.
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Proposition C.9 ([EHN96, Prop. 3.7]). Let {Rα} be a linear regularization for R†. For every
y ∈ D(R†) let α : R+ → R+ be an a-priori parameter choice rule. Then, (Rα, α) is a regularization
method if and only if

lim
δ→0

α(δ) = 0 (C.20)

and
lim
δ→0

δ
∥∥∥Rα(δ)

∥∥∥ = 0 (C.21)

holds. y

Eventually, we want to point out that the notion of regularization depends on the concept of
the solution for R f = y. In Definition C.7, we formulated the regularization with respect to the
Moore-Penrose generalized inverse R†. However, it is straightforward to reformulate Definition
C.7 with respect to a general notion of a solution. To this end, one merely has to replace R† in
the Definition C.7 by a different (more general) solution operator. For example, one possibility
is to choose a least-squares solution of R f = y which has minimum (semi-) norm on a certain
(convex) subset C of X. This leads to a different notion of the solution of R f = y. In this work,
we will use the concept of least-squares solutions which has a minimal `1-norm in an appropriate
coefficient space, cf. Chapter 4.
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