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ABSTRACT

The performance of Bit-Interleaved Coded Modulation with It-
erative Decoding (BICM-ID) depends strongly on the applied
mapping. We analyse the use of extended mapping schemes
with more than one label per signal point: Assuming a fix sig-
nal constellation and a constant number of information bitsper
symbol, the increase in label length results in an ambiguous
mapping scheme but also provides additional parity bits which
allow the use of a stronger channel code.

We derive the optimum MAP detector and give some opti-
mized mapping schemes for 16-QAM. Simulation results in-
clude an EXIT-Chart analysis and show the considerable re-
duction of the asymptotic bit error probability.

As a consequence of the more powerful mapping, we can
obtain a very low bit error floor with extremely simple channel
codes.

I. I NTRODUCTION

Bit-Interleaved Coded Modulation is a bandwidth efficient
transmission scheme built up of a serially concatenated en-
coder, bit interleaver and mapper [1] [2].

Several approaches of combinatorial mathematics, e.g. the
Binary Switching Algorithm, the Reactive Tabu Search Algo-
rithm and the Quadratic Integer Programming [3] have been
investigated in [4] [5] for the optimization of the mapping.A
distance spectrum for the mapping has been introduced in [4]
to characterize the mapping. The free distance of the mapping
is given by the first non-zero entry in the spectrum.

Irregular PSK signal constellations with a non-uniform angle
between the signal points enable a considerable ”offset gain“
for high SNR [6]. Moreover, the use of larger label alphabets
with more than one label per signal point is suggested for PSK
signal constellations.

In this paper, we present the optimum MAP detector for
BICM-ID with mappings that are based on extended label al-
phabets. The complexity of the MAP detector is analyzed
by counting the number of additive operations and comparing
them to a traditional mapping scheme.

We describe the fundamental trade-off underlying extended
mapping schemes: Assuming a fixed signal constellation and
transmission with a constant number of information bits per
symbol, the increase in label length means an ambiguous map-
ping but also additional parity bits and a stronger channel code.
The second effect predominates for a sufficiently high number
of iterations and enables a considerableEb/N0 gain at moder-
ate SNR.

In Section II, we introduce the system model and derive the
optimum MAP detector for BICM-ID with extended mappings.
The trade-off between the ambiguity of the mapping and a more
powerful channel code is described in Section III. Section IV
is devoted to the optimization of the extended mappings and
includes some results for 16-QAM. The obtained mappings are
characterized by a distance spectrum. Section V contains some
simulation results that show the performance gains due to the
increase of the label length. The paper is summarized in Sec-
tion VI.

II. SYSTEM MODEL WITH EXTENDED MAPPINGS

We describe an extended system model of Bit-Interleaved
Coded Modulation with Iterative Decoding (BICM-ID) de-
picted in Fig. 1. A block oflI information bitsui ∈ {±1}
is encoded by a convolutional code of rateRC and memory
M . After random interleaving, a multiplexer partitions the bit
stream into blocks of lengthl which are mapped to symbolsst

according to the labeling mapµ and anN -ary signal constella-
tion χ.

Note that the label length does not necessarily fulfilll =
log2(N). The use of a larger label alphabet does not change
the channel capacity as long as an equal number of labels is
assigned to each signal point. The received signalyt = st +nt
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Figure 1: System model for Generalized Signal Shaping

is distorted by AWGN of varianceσ2
n = N0

2ES
for each real

dimension. For simplicity, we do not write any longer the time
index t. The MAP detector computes the extrinsic reliability
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information [7]:
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where the first addend of the argument of the exp function
describes the geometric Maximum Likelihood (ML) decision
metric and the second addend considers the a priori informa-
tion from previous iterations.

Let us consider the complexity of equation (1) by counting
the number of additions per L-value. There exist2l−1 differ-
ent a priori information vectorsx|xk = +1 and each expo-
nential function impliesl + 1 summations leading to totally
(l + 1)2l−1 + 2l−1 − 1 additions in the numerator of equation
(1). Consequently, the price of the extended labels is an in-
crease in complexity of the demapper.

We can simplify the MAP detector of equation (1) by sum-
mation of symbols instead of labels such that the ML metric is
computed onlyN times, i.e.
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The numerator of equation (2) requires2l−N additions less
than equation (1) and the ML metric can be reused in the de-
nominator.

III. T RADE-OFF BETWEENAMBIGUITY OF MAPPING

AND AN IMPROVED CHANNEL CODE

Traditional mapping schemes use an unambiguous mapping
which assigns one bitlabel to one signal point. Consequently,
the label length fulfillsl = log2(N).

Increasing the label lengthl results in a larger label alphabet
and an ambiguous mapping with2l/N labels per signal point.
The advantage of the increased label length is the option to use
a more powerful channel code. Let us compare two different
label alphabets of lengthl1 andl2 with l2 > l1: In both cases,
we want to obtain the same spectral efficiencyη = RC,i · li,
i ∈ {1, 2} whereas we assumed the same signal constellation
χ. A larger label lengthl2 means additional parity bits and,
thus, a lower coding rateRC,2.

Clearly, the unambiguous mapping (l = log2(N)) is opti-
mum for non-iterative BICM where any ambiguity can not be
removed. For BICM-ID, the ambiguity can be solved through
the a priori information obtained over the iterations. After a
sufficiently high number of iterations, the gain due to the more

powerful channel code predominates the loss due to the am-
biguous mapping.

IV. OPTIMIZATION OF THE EXTENDED MAPPING

We optimize the mapping with the aid of the Chernoff upper
bound [2] on the symbol error probabilityP (s → ŝ).

The cost function for the mapping without a priori informa-
tion is obtained by summation over all possibly detected bits
k = {1, . . . , l}, all transmitted and received labelsx andy

which differ in the detected bit:
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(3)
where we used the euclidian metric of [1] [4] for the AWGN
channel. For ideal a priori information, the third summation of
equation (3) is reduced to a single vector. We add up over all
possibly a priori information vectorsxap and obtain
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(4)
whereθ denotes the binary-to-decimal conversion operator and
the labelsx andy differ only in the detected bit (xk 6= yk).

A comparison of different optimization algorithms for the
mapping is given in [5]. We investigate the Binary Switching
Algoritm (BSA) which is initialized by a random assignmentµ
of the labels to the symbols. In each iteration, the cost of each
label and the total cost are calculated with equations (3,4). The
label with the largest cost is selected and a switch partner is
searched such that the decrease in total cost is maximized. If no
switch partner is found, the label with the second highest cost
will be considered. This process continues until two switch
partners are found. The realization of a switch completes an
iteration. The BSA terminates when an iteration brings no fur-
ther reduction of the total cost. 100 random initializations of
the BSA are sufficient to find the global minimum of the cost
function with high reliability [5].

Fig. 2 and 3 show optimized extended mappings for 16-
QAM, Es/N0 = 5 dB, l = {5, 6} and ideal a apriori informa-
tion.

We can derive a distance spectrum for the mapping from
equations (3,4) by replacing the exp function with theδ[m]
function which is defined byδ[0] = 1 andδ[m] = 0 for m 6= 0,
i.e. we are interested only in the number of label pairs at certain
euclidian distancesdE .

The distance spectrum with no a priori information can be
written as
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Figure 2: Extended mapping for 16-QAM withl = 5 and ideal
a priori information

For ideal a priori information, we obtain from equation (4):
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Tab. 1 and 2 compare the distance spectra of different label
lengths for 16-QAM. We restrict to mappings which are op-
timized for ideal a priori information. The unambiguous map-
ping (l = 4) is characterized by a larger free distancedM

f which
is defined as the number of zeros entries until the first non-zero
entry of the distance spectrum. The extended mapping of Fig.
3 benefits from a significantly lowerΨid(d2

E = 5α).

Table 1: Distance spectrumΨno with no a priori inform.

d2
E 0α 1α 2α 4α 5α · · · 18α

l = 6 0.04 0.19 0.15 0.15 0.19 · · · 0.02

l = 4 0 0.20 0.16 0.16 0.19 · · · 0.02

Table 2: Distance spectrumΨid with ideal a priori inform.

d2
E 0α 1α 2α 4α 5α · · · 18α

l = 6 0 0 0 0.03 0.34 · · · 0

l = 4 0 0 0 0 0.50 · · · 0

V. SIMULATION RESULTS

The iterative information transfer between the demapper and
the decoder is analysed by EXtrinsic Information Transfer
(EXIT) Charts [8]. The abscissa represents the mutual informa-
tion Ii between the coded and interleaved information bits and
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Figure 3: Extended mapping for 16-QAM withl = 6 and ideal
a priori information

the L-values at the input of the demapper whereas the ordinate
shows the mutual informationIo between the coded and inter-
leaved information bits and the L-values at the output of the
demapper. For a more detailled introduction to EXIT-Charts
we refer to [8].
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Figure 4: EXIT-Charts forη = 3, convolutional coding (M =
1), 10log(Eb/N0) = 8 dB and label lengthl = {4, 6}

Fig. 4 shows the EXIT-Charts for 16-QAM andEb/N0 = 8
dB with M = 1 convolutional coding and label lengthl ∈
{4, 6}. The curve of the demapper withl = 6 starts with a
considerably lowerIE(0) due to the ambiguity of the mapping.
Moreover, the curves of theM = 1 convolutional codes differ
significantly in form and shape: The rateRC = 1/2 code is
characterized by an almost constant moderate slope such that
the maximumIE(1) = 1 is obtained after nearly 10 iterations.
On the contrary, the poorerRC = 3/4 code is decribed by a
large slope for lowIi leading to an early intersection with the
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curve of the corresponding demapper. The EXIT-Chart also
visualizes the channel capacity which is independant of theap-
plied label length, i.e.

C = l ·
∫ 1

0

Io(Ii, l)dIi = const ∀ l. (7)

We compare the BER of two scenarios with commonη = 3
andM = 1 but differentl = {4, 6} andRC = η/l in Fig. 5. A
traditional label length means a very poor channel code which
leads to a relatively small iterative gain even if the mapping is
optimized for ideal a priori information. The extended mapping
is characterized by a strong bit error cliff which results inan
Eb/N0 gain of 4 dB at anBER = 10−3 and 6 dB at10−6 over
traditional schemes.
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Figure 5: Comparison of BER forη = 3, convolutional coding
(M = 1) and label lengthl = {4, 6}

One might think of increasing the memory length of tradi-
tional schemes because anM = 1 code is rarely used in prac-
tice. Nevertheless, an important advantage of extended map-
pings is the sufficiently low bit error floor even forM = 1. Fig.
6 depicts a comparison of BER forη = 3 where we combined
l = 4 with M = 2 versusl = 6 with M = 1. A saturation
appears for the first iteration of thel = 6 scenario due to the
ambiguity of the mapping. Thel = 4, M = 2 scheme benefits
from an earlier bit error cliff but thel = 6, M = 1 scheme
outperforms the traditional one in the bit error floor area.

When we assume the same constellationχ, the same spec-
tral efficiencyη (number of information bits per channel use)
and the same code memoryM , the extended mapping always
shows a lower bit error floor than the traditionall = log2(N)
scheme.

VI. CONCLUSION

In this paper, we have introduced overdetermined mapping
schemes with more than one label per signal point. The ex-
tended label alphabet results in an ambiguous mapping but also
allows the use of a channel code with lower coding rate. The
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Figure 6: Comparison of BER forη = 3, convolutional coding
with l = 6, M = 1 andl = 4, M = 2

effect of the stronger channel code predominates for high SNR
and leads to a considerably reduced asymptotic bit error rate.
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