
Technische Universität München

Fakultät für Mathematik

Lehrstuhl für Wahrscheinlichkeitstheorie

Cutoff and cookies – interacting walks in

random environment

Thomas Kochler
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Introduction

This thesis consists of two parts which differ in the considered model. In the first part,

we study random walks in random environment (RWRE) and in the second part cookie

branching random walks (CBRW). The focus of the first part will be on the mixing

properties of transient RWRE and we prove whether there is a cutoff or not. In the

second part of this thesis we give an explicit criterion for the recurrence/transience of

CBRW.

RWRE as well as CBRW are models of random motion in random media whose

probabilistic investigation started in the seventies. The randomness of the media mod-

els irregularities (due to impurities, fluctuations etc.) of the environment in which the

motion takes place. During the last forty years, there has been a lot of research in

this area, however, the understanding of multidimensional random media is still not

satisfactory.

In the first part of this thesis, we consider the (one-dimensional nearest neighbour)

RWRE in discrete time on Z. This model was first studied by Chernov in [Che62] and

Temkin in [Tem72] as a toy model for the replication of DNA sequences. In contrast

to a random walk in a deterministic environment, the transition probabilities at each

position are not fixed but random themselves.

A RWRE has two parts of randomness: The first part is choosing an environment

according to an environment distribution P and the second part is considering a Markov

chain (Xn)n∈N0 in this chosen environment. The measure averaging over both parts

of randomness is called the annealed measure of the RWRE. Given one fixed environ-

ment the law of the Markov chain (Xn)n∈N0 is called quenched law. Therefore, it is

possible to get two types of statements. We call the first type – statements with re-

spect to the annealed measure – annealed and such statements can be interpreted as

statements for (Xn)n∈N0 averaged over all possible environments. The second type of

statement is called quenched and here properties of the RWRE are considered which

hold for almost every environment. We want to emphasize that (Xn)n∈N0 is a Markov

chain only with respect to the quenched law but not with respect to the annealed mea-

sure. Thus, it is not surprising that sometimes one needs different techniques to prove

quenched or annealed statements and we will see that one cannot always go from one

to the other.

In this thesis, we assume the environment distribution P to be a product measure
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INTRODUCTION

such that at every position x of Z a value ωx between 0 and 1 is chosen independently

of all the other positions according to the same distribution. Given one realization of

this (0, 1)-valued random variables, we can define a nearest neighbour random walk on

Z: Given that the random walk is at position x, it moves with probability ωx to the

right and with probability (1− ωx) to the left.

In the following, we first give an overview on the historical development and introduce

the quantities of the environment which determine the behaviour of the RWRE. For

simplicity’s sake, we usually omit the assumptions of the results for which we refer to

Section 1.2 and the quoted papers.

The first seminal work on one-dimensional RWRE was published 1975 by Solomon (cf.

[Sol75]). In this work, he gave a criterion for recurrence and transience respectively.

In analogy to the nearest neighbour random walk in a deterministic environment, one

might expect the critical parameter to depend on the mean drift E[ω0−(1−ω0)], which

turns out not to be the case. Solomon showed that for P-almost every environment

a RWRE is recurrent if and only if E ln ρ0 = 0, where ρ0 := 1−ω0

ω0
is the ratio of the

probabilities to move to the left and to the right.

If the RWRE is transient, it is a natural question to ask at which speed the walk

escapes to infinity. Also in [Sol75], Solomon showed that the asymptotic linear speed

lim
n→∞

Xn
n

can be zero as well as positive. A transient RWRE is called ballistic if it has a

positive linear speed and sub-ballistic otherwise. For a RWRE which is transient to the

right the critical parameter is Eρ0 and the RWRE is ballistic if and only if Eρ0 < 1.

Even a very simple environment distribution P which just chooses between two values

α and 1− α with probabilities

P(ωx = α) = p, and P(ωx = 1− α) = 1− p, 0 < p, α < 1 (1)

shows all these different regimes. In this example, we can easily compute the quantities

E ln ρ0 and Eρ0. For the phase diagram see Figure 1.

In the case of a recurrent RWRE, there is a remarkable slowdown. In 1982, Sinai

proved (cf. [Sin82]) that with respect to the annealed measure a recurrent RWRE

normalized by (lnn)2 converges in distribution. In this paper, Sinai introduced the

potential associated with the environment (cf. Section 1.5) which is a very important

tool for analysing one-dimensional RWRE and was often used afterwards.

Shortly after Solomon’s paper, Kesten, Kozlov and Spitzer proved annealed limit laws

(cf. [KKS75]) for the transient regime. They assumed that there exists a κ > 0 which

solves the following equation

Eρκ0 = 1. (2)

2
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0

1

1

p

α

p = 1
2

α = 1
2

transient and sub-ballistic

transient and ballistic

Figure 1: Phase diagram for the model according to (1). We note that the RWRE is

recurrent only for the cases α = 1
2 or p = 1

2 and that the case α = 1
2 corresponds to the case

of a simple random walk. Further, the RWRE is transient to the right for the top right and

bottom left quarter and transient to the left for the top left and bottom right quarter. 1

In [KKS75], Kesten, Kozlov and Spitzer provided sequences (an)n∈N, (bn)n∈N for all

κ > 0 such that Xn−an
bn

converges in distribution and they identified the corresponding

annealed limit distributions. Their analysis revealed that all environment distributions

P which belong to the same κ show the same limiting behaviour. The only regime for

which we have an annealed central limit theorem is the case κ > 2. Their proofs rely

on an embedded branching process first introduced in [Koz73]. Further, we note that

Enriquez, Sabot and Zindy in 2008 (cf. [ESZ09]) and together with Tournier in 2010

(cf. [ESTZ10a]) refined the annealed limit laws of [KKS75] for κ < 2.

The first quenched limit results for (Xn)n∈N0 in the transient regime were obtained in-

dependently by Goldsheid in [Gol07] and Peterson in [Pet08]. They proved a quenched

central limit theorem for κ > 2 but in contrast to the annealed result the centering

depends on the environment. The first step to identify a quenched limit distribution

for κ < 1 and 1 < κ < 2 was made by Peterson and Zeitouni in [Pet09] and [PZ09], re-

spectively. They proved that for almost every environment and any choice of sequences

(an)n∈N and (bn)n∈N there exist no non-trivial distributional limit of Xn−an
bn

(only along

subsequences). An important part of their proofs is a close analysis of the associated

potential.

Very recently Peterson and Samorodnitsky in [PS10] and [PS11] identified a

quenched limit in a weaker sense. They considered the quenched distribution of Xn

(suitably centered and scaled) as a random probability measure and identified a dis-

tributional limit on the space of random probability measures on R which can be

expressed using Poisson point processes. To prove this, they first showed a limit result

for the quenched distribution of the (suitably centered and scaled) hitting times Tn

1This figure is adapted from Figure 6.1 in [Hug96].
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of position n. Enriquez, Sabot, Tournier and Zindy in [ESTZ10b] and Dolgopyat and

Goldsheid in [DG10] independently of each other and independently of Peterson and

Samorodnitsky gave similar limit results for the quenched distribution of Tn.

In 2000, Comets, Gantert and Zeitouni (cf. [CGZ00]) proved quenched and annealed

large deviation results for ergodic environments which, of course, include i.i.d. environ-

ments. Also by analysing the potential very carefully, Fribergh, Gantert and Popov

(cf. [FGP10]) recently proved quenched and annealed moderate deviations for the tran-

sient sub-ballistic regime (κ ≤ 1). From their results, one easily can derive that for

κ < 1 at time n the distance to the origin is almost surely roughly of order nκ .

In contrast to the multidimensional case, a transient nearest neighbour RWRE on Z
has only one way to escape to infinity and has to hit all positions on its way. Further,

we note that Tn can be decomposed into a sum of n independent (with respect to the

quenched law) increments Tn =
∑n

i=1(Ti−Ti−1) and therefore is a lot easier to analyse.

Very often one first proves a statement for the sequence of hitting times (Tn)n∈N and

then transfers it into a statement for the walk.

In this thesis, we investigate the regime in which the RWRE is transient to the right.

As mentioned above, we also gain a good understanding (of the behaviour we are later

interested in) while first analysing the asymptotics of (Tn)n∈N. The constant κ defined

by (2) plays an important role and we note that the annealed expectation of (Tn)s

exists only for s < κ.

We first investigate the quenched expectation and the quenched variance of Tn as

random variables with respect to the law of the environment for the cases in which the

analogous annealed quantities are infinite. The first main result is Theorem 1.4.5, where

we show that for κ < 1 the quenched expectation is roughly of order n
1
κ and for κ < 2

we prove that the quenched variance is roughly of order n
2
κ . A good understanding of

the fluctuations of the potential will be the key tool for these proofs. Afterwards, we

use this result to analyse the mixing behaviour of transient RWRE on {0, ..., n}. To

avoid problems with the periodicity of the model, we consider the lazy RWRE. The

transition probabilities of the lazy RWRE are the same as for the RWRE, but in every

step we first in addition toss a coin to decide if we move or if we stay at the current

position.

From the convergence theorem for aperiodic and irreducible Markov chains we know

that the quenched law of the RWRE on {0, ..., n} converges to its associated stationary

distribution in the long run. The mixing properties of a Markov chain give information

about how long we have to wait until the law of the Markov chain is very close to the

stationary distribution. The behaviour we are interested in is the cutoff phenomenon

(cf. Definition 1.3.3). If a sequence of Markov chains exhibts a cutoff, asymptotically

the transition to stationarity is very sharp in the following sense: For a long time,

the law of the Markov chain does not approach its stationary distribution at all and
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then very rapidly – around the so called cutoff time – the distance to the stationary

distribution drops to zero. Therefore, the existence of a cutoff shows us for example how

long we should run a simulation to end with a Markov chain whose law is approximately

the associated stationary distribution. On the one hand, if we stop before the cutoff

time, we end with a Markov chain whose distribution is still close to the starting

distribution. On the other hand, it is useless to run a simulation a lot longer than

the cutoff time. For a historical development and an overview of existing results see

Section 3.1.

In Theorem 1.4.1 and Theorem 1.4.2, we show that there is a phase transition for the

(quenched) cutoff behaviour of lazy transient RWRE. For κ < 1, we show that the

transition to stationarity is not sharp enough as required for a cutoff and for κ > 1

we prove that the lazy RWRE exhibits a cutoff. The following observation will be

crucial for the proofs. With the help of the potential, we divide the environment into

different blocks and we will identify “deep blocks” in which the RWRE spends most of

its time before it hits position n. We remark that, in contrast to many other results,

our assumptions do not exclude all lattice distributions. For example, the non-lattice

assumption excludes all environment distributions of the form (1) which are mostly

covered by our results. Further, we determine the order of the time around which the

transition to stationarity takes place (cf. Theorem 1.4.3).

The second part of this thesis is based on the paper “Cookie branching random walks”

by the author et al. (cf. [BKKMP11]). Our model is related to the excited random

walk model introduced by Benjamini and Wilson in 2003 (cf. [BW03]). This model has

attracted a lot of attention during the last years and informally can be described in

the following way. The behaviour of the random walker depends on whether he finds

himself in an already visited site, or not. This model is also frequently called cookie

random walk (CRW). The idea of this interpretation is that initially all sites contain

one cookie, and when the site is visited, the cookie from the site is eaten and this

changes the behaviour of the random walker in that step.

The paper [BW03] introduced the CRW on Zd. When the random walker visits

a vertex of Zd for the first time he eats the cookie and this gives him an arbitrarily

small (but fixed) drift in one direction. On subsequent visits to that vertex the walker

chooses one of the neighbours uniformly at random. In [BW03], they proved that the

CRW on Zd is transient if and only if d ≥ 2 and therefore they showed that the small

drift on the first visit is already enough to turn the simple random walk on Z2 from

a recurrent into a transient walk. Further, they showed that there is a positive linear

speed for dimensions d ≥ 4 which was later extended to dimensions d = 2 and d = 3

(cf. [MPRV12] or [Kozm03], [Kozm05]). In [Zer05], Zerner introduced an extension

of this model, called multi-excited random walk. In this model, there can be several

cookies at every vertex. As long as there are cookies at a vertex, the random walker

eats one cookie on every visit which changes his behaviour in that step. If there are

5
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initially two cookies at every vertex of Z, Zerner showed that both recurrence and

transience are possible depending on the strength of the drift the random walker gets

by eating a cookie.

After 2003 the CRW has been studied for different initial cookie distributions in

many subsequent papers. For the one-dimensional case, where, as usual, more complete

results are available, we refer to [BS08], [KZ08] and for the multi-dimensional case and

trees respectively, compare [BS09], [BR07], [HH10], [MPRV12].

A further ingredient for the CBRW model are branching random walks (BRW). A

BRW on a state space X consists of two parts of randomness: an offspring distribution

µ and a transition mechanism P of a random walk on X . The evolution of the BRW can

be described in the following way. At time 0, there is one particle at some position of

X . This particle now first produces offspring according to µ and then dies. Afterwards,

the newly created particles perform independently of each other one step of the random

walk described by P . In the following steps this procedure is repeated independently of

each other by all alive particles. We call a BRW transient if almost surely only finitely

many particles visit the starting point and recurrent otherwise. For a general overview

on BRW we refer to [Shi11].

In the second part of this thesis we study a BRW on Z with initially one cookie at

every integer. In contrast to a CRW, here the transition and branching parameters

depend on whether the particle finds a cookie or not. The cookie of a vertex is eaten

when the vertex is visited by at least one particle and the behaviour of all particles

which visit this vertex at that time is changed in the next step. We thus call our model

cookie branching random walk (CBRW). We note that a CBRW can also be interpreted

as a random walk in a random environment but here the walk is interacting with the

environment.

During the last years, there also has been research on BRW in random environment,

where the environment is modeled as in the first part of this work (cf. [CP07a], [CP07b],

[Mue08], [GMPV10]). To our knowledge, the situation when the behaviour of the BRW

is changed in the already visited sited was previously not considered.

However, it is interesting to note that there is a model that lies in some sense

in between the excited random walk and the CBRW. It is usually called frog model

(cf. [AMPR01]), and can be described in the following way: the particles do not branch

in already visited sites, and when one or several particles visit a new site, exactly one of

them is allowed to branch. Another interpretation is that initially every site contains

a number of sleeping particles and an active particle is placed somewhere; when an

active particle enters a site which contains sleeping particles, those are activated too.

The main results of the second part are Theorems 5.3.1 - 5.3.3, where we give an ex-

plicit and complete characterisation for the recurrence/transience of CBRW. It turns

out that the critical parameter is the mean number of offspring of an embedded branch-

ing process. The most interesting case is the case in which the branching random walk

6
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without cookies is transient. Here we show that adding a cookie can change the be-

haviour of the walk.

The work is structured as follows: The first part (Chapters 1 - 4) treats transient

RWRE. In the first chapter we formally introduce the model. Then we give some

of the known results and preliminary considerations. In Section 1.4, we present our

results. In the last section, we construct a set of “typical” environments on which

calculations are simplified and which will be very helpful for the following chapters.

In the second chapter, we prove our first main result (Theorem 1.4.5) on the almost

sure behaviour of the quenched expectation and quenched variance of Tn. Further, we

prove two lemmata for the quenched variance of the crossing time of “deep blocks”.

In the third chapter, we first give an introduction to the cutoff phenomenon in

general. Then we prove that a transient lazy RWRE exhibits a cutoff for κ > 1 and

that there is no cutoff for κ < 1 (Theorem 1.4.1 and Theorem 1.4.2). Further, we

compare our results with the case of a deterministic environment. In the last section

of this chapter, we analyse the mixing time of the lazy RWRE.

In the forth chapter, we derive statements about the asymptotic behaviour of the

spectral gap using our results from Chapter 3.

In the second part (Chapter 5), we analyse the CBRW. We first introduce the model

and give recurrence/transience criteria for BRW and CRW. Afterwards, in Section 5.3,

we state our criterion for the recurrence/transience of CBRW. In the last section, we

prove our main results Theorems 5.3.1 - 5.3.3.

7
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Chapter 1

Transient RWRE

1.1 Model

Let ω := (ωk)k∈Z be a family of i.i.d. random variables taking values in (0, 1). We

denote the distribution of ω by P and the corresponding expectation by E. Further,

we define the sequence ω̃ := (ω̃k)k∈N by

ω̃k :=

{
1 for k = 0,

ωk for k > 0
(1.1.1)

and for n ∈ N the sequence ωn := (ωnk )k∈{0,..,n} by

ωnk :=





1 for k = 0,

ωk for k = 1, ..., n− 1,

0 for k = n.

After choosing an environment ω at random according to the law P, we define the

random walk in random environment (RWRE) as the nearest neighbour random walk

(Xk)k∈N0 on Z with transition probabilities given by ω: With respect to P z
ω (z ∈ Z),

(Xk)k∈N0 is the (time homogeneous) Markov chain on Z with P z
ω(X0 = z) = 1 and

P z
ω [Xk+1 = i+ 1 | Xk = i] = ωi,

P z
ω [Xk+1 = i− 1 | Xk = i] = 1− ωi. (1.1.2)

for k ∈ N0, i ∈ Z. Analogously, we define P z
ω̃ as the distribution of a RWRE on N0

with reflection in 0 and P z
ωn as the distribution of a RWRE on {0, ..., n} with reflection

in 0 and n.

As usual, P z
ω is called the quenched law of (Xk)k∈N0 starting from X0 = z and we

denote by Ez
ω the corresponding quenched expectation. Let ZN0 be the space of the

paths of the RWRE and let F be the associated σ-algebra generated by all cylinder

9



CHAPTER 1. TRANSIENT RWRE

sets. By Pz := P×P z
ω we denote the measure on

(
(0, 1)Z × ZN,

(
B(0,1)

)Z ⊗F
)

defined

by the relation

Pz(B × F ) =

∫

B

P z
ω(F )P(dω), B ∈

(
B(0,1)

)Z
, F ∈ F ,

where B(0,1) is the Borel-σ-algebra on (0, 1). The expectation under Pz is denoted by

Ez. We will refer to Pz and Ez as the annealed law and the annealed expectation

respectively. If z = 0, we simply write Pω, Eω, P and E.

1.2 Classical results and basic notation

In this section, we state classical results in particular about the limit behaviour of

transient RWRE. Further, we introduce some basic notation.

First, for i ∈ Z we define

ρi :=
1− ωi
ωi

, Wi :=
i∑

j=−∞

i∏

k=j

ρk (1.2.1)

and for i ∈ N

W 0
i :=

i∑

j=1

i∏

k=j

ρk. (1.2.2)

In the following, we assume that the expectations E ln ρ0 < 0, Eρ0 and E (ρ0)−1 exist

whenever they appear.

1.2.1 Recurrence/transience and linear speed

In the first seminal work on RWRE, Solomon proved (cf. [Sol75]) a criterion for recur-

rence/transience:

Theorem 1.2.1 (cf. Theorem 1.7 in [Sol75]). Let P be a product measure such that

(ωx)x∈Z is i.i.d. with 0 ≤ ω0 < 1 or 0 < ω0 ≤ 1 P-a.s.

(a) If E ln ρ0 < 0, then lim
n→∞

Xn =∞ P-a.s.

(b) If E ln ρ0 > 0, then lim
n→∞

Xn = −∞ P-a.s.

(c) If E ln ρ0 = 0, then (Xn)n∈N0 is Pω-a.s. recurrent for P-almost every environment

ω; in fact lim inf
n→∞

Xn = −∞ and lim sup
n→∞

Xn =∞ P-a.s.

10
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Further, let

Tn := min{l ∈ N0 : Xl = n}

be the first hitting time of position n. One can recursively compute an explicit formula

for the quenched expectation of Tn as a function of the environment (cf. (2.1.14) in

[Zei04]), and if we assume E ln ρ0 < 0, we have (cf. [Sol75])

Ei
ωTi+1 = 1 + 2Wi < ∞ P-a.s. (1.2.3)

and therefore Ei
ω̃Ti+1 = 1+2W 0

i for i ∈ N. Note that the fact that ρk is an i.i.d. sequence

yields

ET1 = 1 + 2EW0 = 1 +
∞∑

k=1

(Eρ0)k

and consequently

ET1 < ∞ iff Eρ0 < 1. (1.2.4)

In [Sol75], Solomon analysed the limiting behaviour of the hitting times and determined

the speed of the RWRE:

Theorem 1.2.2 (cf. Theorem 1.16 in [Sol75]). Let P be a product measure such that

(ωx)x∈Z is i.i.d. with 0 ≤ ω0 < 1 or 0 < ω0 ≤ 1 P-a.s and let E ln ρ0 6= 0.

(a) If Eρ0 < 1, then lim
n→∞

Tn
n

=
1 + Eρ0

1−Eρ0

P-a.s.

(b) If E (ρ0)−1 < 1, then lim
n→∞

T−n
n

=
1 + E (ρ0)−1

1−E (ρ0)−1 P-a.s.

(c) If (Eρ0)−1 ≤ 1 ≤ E (ρ0)−1, then lim
n→∞

Tn
n

=∞ = lim
n→∞

T−n
n

P-a.s.

If we assume that

lim
n→∞

Tn
n

= α ∈ (0,∞] P-a.s.,

we can easily determine the limit of (Xn)n∈N0 itself (cf. Lemma 2.1.17 in [Zei04]). Let

kn be the unique random integer such that

Tkn ≤ n < Tkn+1.

We note that we therefore have

Xn < kn + 1 and Xn ≥ kn − (n− Tkn)

11



CHAPTER 1. TRANSIENT RWRE

and hence
kn
n
−
(

1− Tkn
n

)
≤ Xn

n
≤ kn + 1

n
.

Further, the definition of kn yields

kn
kn + 1

kn + 1

Tkn+1

<
kn
n
≤ kn

Tkn
,

and, using that lim
n→∞

Tn
n

= α P-a.s., we get

1

α
≤ lim inf

n→∞
Xn

n
≤ lim sup

n→∞

Xn

n
≤ 1

α
P-a.s.

Therefore, we can conclude:

Theorem 1.2.3 (cf. Theorem 1.16 in [Sol75]). Let P be a product measure such that

(ωx)x∈Z is i.i.d. with 0 ≤ ω0 < 1 or 0 < ω0 ≤ 1 P-a.s and let E ln ρ0 6= 0.

(a) If Eρ0 < 1, then lim
n→∞

Xn

n
=

1−Eρ0

1 + Eρ0

P-a.s.

(b) If E (ρ0)−1 < 1, then lim
n→∞

Xn

n
= −1−E (ρ0)−1

1 + E (ρ0)−1 P-a.s.

(c) If (Eρ0)−1 ≤ 1 ≤ E (ρ0)−1, then lim
n→∞

Xn

n
= 0 P-a.s.

1.2.2 Annealed and quenched limit laws

In the following, we will compare the annealed and quenched limit laws of RWRE which

are transient to the right (E ln ρ0 < 0). Most of the results in this section require the

following assumptions:

(a) Let P be an i.i.d. product measure such that

−∞ ≤ E ln ρ0 < 0.

(b) There exists 0 < κ <∞ for which we have

Eρκ0 = 1, Eρκ0 log+ ρ0 <∞.

(c) The distribution of ln ρ0 is non-lattice.

In [KKS75], Kesten, Kozlov and Spitzer provided annealed limit laws:

Theorem 1.2.4 (cf. Theorem 1 in [KKS75]). Let assumptions (a)-(c) hold and further

let vP := lim
n→∞

Xn

n
. Then the following limit laws hold for (Xn)n∈N0 with respect to the

annealed law:

12
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(a) If κ < 1, then
Xn

nκ
converges to a stable law with index κ.

(b) If κ = 1, then there exists a sequence δ(n) ∼ c(lnn)−1n such that
Xn − δ(n)

n(lnn)−2

converges to a stable law with index 1.

(c) If 1 < κ < 2, then
Xn − nvP

n
1
κ

converges to a stable law with index κ.

(d) If κ = 2, then
Xn − nvP√

n lnn
converges to a normal distribution.

(e) If κ > 2, then
Xn − nvP√

n
converges to a normal distribution.

The approach Kesten, Kozlov and Spitzer used in [KKS75] was first to prove anal-

ogous statements for the hitting times (Tn)n∈N using an associated branching process

(with immigration) and then to transfer these results to (Xn)n∈N0 . We further notice

that the boundary cases κ = 1 and κ = 2 are the most difficult cases. Enriquez, Sabot

and Zindy in [ESZ09] and together with Tournier in [ESTZ10a] refined the results for

the non-Gaussian regime (κ < 2) and they gave an explicit probabilistic representation

for the appearing stable laws.

The question about a quenched analogue of this result was recently considered in sev-

eral papers and we will see that for κ < 2 the annealed stable behaviour comes from

the fluctuations in the environment and not from the walk itself.

Theorem 1.2.5 (cf. Theorem 1.2, 1.3 in [PZ09]). Let assumptions (a)-(c) hold and let

κ < 1.

(a) For P-almost every environment ω there exist random subsequences tm = tm(ω)

and um = um(ω) such that for any δ > 0,

lim
m→∞

Pω

(
Xtm − um
(ln tm)2

∈ [−δ, δ]
)

= 1.

(b) For P-almost every environment ω there exist a random subsequence

nkm = nkm(ω) of nk = 22k and a random subsequence tm = tm(ω) such that

lim
m→∞

ln tm
lnnkm

=
1

κ
,

and

lim
m→∞

Pω

(
Xtm

nkm
≤ x

)
=

{
0, if x ≤ 0,
1
2
, if 0 < x <∞.

13
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Since we will later use the same property of the environment which causes the strong

localisation behaviour in (a), we will shortly present the strategy of the proof. For the

case κ < 1, Peterson and Zeitouni identified a sequence of small blocks of the environ-

ment for which the expected crossing time is very large compared to the expected time

to

reach these blocks. Further, all of these blocks are “typically” smaller than (lnn)2

and thus, for a suitable choice of time points, the RWRE is (with high probability)

located within these blocks. We remark that we will refine the arguments in such a

way that we are able to prove a version of Theorem 1.2.5 (a) under weaker assumptions

(cf. Theorem 1.4.4).

Theorem 1.2.6 (cf. Theorem 1.1, Theorem 1.2 in [Pet09]). Let 1 < κ < 2 and

vP := lim
n→∞

Xn

n
. Then P-a.s. there exist random subsequences nkm = nkm(ω) and

nlm = nlm(ω) of nk = 22k and non-deterministic random variables νkm,ω and νlm,ω such

that

(a)

lim
m→∞

Pω

(
Xtkm

− nkm
vP
√
νkm,ω

)
= Φ(x) ∀ x ∈ R,

(b)

lim
m→∞

Pω

(
Xtlm

− nlm
vP
√
νlm,ω

)
= Ψ(x) ∀ x ∈ R,

where Φ and Ψ denote the distribution function of a standard normal distribution and

an exponential distribution with parameter 1 respectively and tk := tk(ω) = bEωTnkc.

We notice that this theorem precludes the existence of a quenched analogue of

Theorem 1.2.4 for 1 < κ < 2. The key to find these random subsequences is again

to look at small blocks of the environment whose expected crossing times are large.

Since these blocks are far apart and (with high probability) a transient RWRE does

not backtrack to far, these blocks are “almost” independent. To obtain a Gaussian

limit, Peterson identified a subsequence (nkm)m∈N for which none of these blocks in the

interval [0, nkm ] dominates and then proved the Lindeberg-Feller condition for triangu-

lar arrays. For part (b) of the theorem, Peterson showed that it is also possible to find

a subsequence (nlm)m∈N such that there is one single block in the interval [0, nlm ] for

which the variance of the crossing time of this block is approximately of the same size

as the variance of Tnlm . Further, he showed that the crossing time of these dominating

blocks is approximately exponentially distributed.

Recently, Peterson and Samorodnitsky in [PS10], Enriquez, Sabot, Tournier and Zindy

in [ESTZ10b] and Dolgopyat and Goldsheid in [DG10] independently of each other
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identified a limit for the quenched distribution of suitably centered and rescaled hit-

ting times in a weaker sense. They considered

µn,ω := Pω

(
Tn − EωTn

n
1
κ

∈ ·
)

as a random variable on the space of probability measures on R equipped with the

topology of convergence in distribution ([PS10],[DG10]) and the topology of conver-

gence in Wasserstein distance ([ESTZ10b]), respectively. Recall that the Wasserstein

distance W 1(µ, ν) between two probability measures µ and ν on R is given by

W 1(µ, ν) := inf
(X,Y ) :

X∼µ,Y∼ν

E |X − Y | .

In [ESTZ10b], Enriquez, Sabot, Tournier and Zindy showed that for large n the

quenched law of µn,ω is approximately a law of a weighted sum of centered exponential

random variables. For a random variable X let L(X) denote the law of X.

Theorem 1.2.7 (cf. Theorem 1 in [ESTZ10b]). Let assumptions (a)-(c) hold and let

κ < 2. Then we have

W 1

(
µn,ω, L

(
1

n
1
κ

n0−1∑

k=0

Eω
(
Tνk+1

− Tνk
)
ek

))
n→∞−→ 0 in P-probability

with ek := ek − 1, where (ek)k∈N are i.i.d. exponential random variables of parameter

1 and independent of ω. For the definition of (νk)k∈N0 and n0 see (1.5.1) and (1.5.4),

respectively.

In [PS10], [ESTZ10a] and [DG10], the authors identified a distributional limit of

µn,ω in terms of a Poisson point process. Since we would have to introduce further

notation to state the precise results, we refer to the papers for more details. We note

that these results cover the non-Gaussian regime (0 < κ < 2) and also show that no

quenched analogue of Theorem 1.2.4 is possible. Further, Peterson and Samorodnitsky

also identified a distributional limit of the quenched distributions of Xn (cf. [PS10] and

[PS11]).

In contrast to the non-Gaussian regime, there is a quenched analogue of Theorem 1.2.4

for κ > 2:

Theorem 1.2.8 (cf. Theorem 5 in [Gol07] and Theorem 3.4.2 in [Pet08]). Let assump-

tions (a) and (b) hold and let the environment be uniformly elliptic (i.e. ∃ δ > 0 s.t.

ω0 ∈ [δ, 1 − δ] P-a.s.). Further, let P be α-mixing with α(n) = exp(−n lnn)1+η for

some η > 0. Then we have

lim
n→∞

Pω

(
Xn − bn(ω)

σ
√
n

)
= Φ(x),

for a suitable centering bn(ω) depending on the environment and a suitable constant

σ > 0.
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We note that the results in [Gol07] and [Pet08] also hold for certain other ergodic

environments and that in [Pet08] a quenched functional CLT is shown. The approach

they use is again to show a quenched CLT for the hitting times and then to transfer

the result to (Xn)n∈N0 . A first quenched CLT for the hitting times (but not for the

walk) was obtained by Alili (cf. Theorem 5.1 in [Ali99]).

1.3 Assumptions and preliminary considerations

Throughout this work, we make the following assumptions on the environment distri-

bution P:

Assumption 1. E ln ρ0 < 0.

Assumption 2. There exists a unique κ > 0 such that

E[ρκ0 ] = 1 and E[ρκ0 ln+ ρ0] <∞.

From now on, we always assume Assumptions 1 and 2. We sometimes need a further

technical assumption which we mention if it is needed:

Assumption 3. Let D be the support of the distribution of ln ρ0 with respect to P.

Then D ∪ {0} is non-lattice.

Remark 1.3.1.

1. Assumption 1 implies transience to the right (cf. Theorem 1.2.1).

2. The constant in Assumption 2 has a significant influence on the behaviour of the

RWRE. If it exists, its value separates the ballistic (κ > 1) from the sub-ballistic

(κ ≤ 1) regime. By the law of large numbers (cf. Theorem 1.2.2 and Theorem 1.2.3),

we have

lim
n→∞

Xn

n
= lim

n→∞
n

Tn
=

1

ET1

= vP P-a.s.

and vP > 0 if and only if κ > 1 (cf. (1.2.4)). We will also refer to the case vP > 0 as the

case with positive linear speed. Further, we notice that due to Lemma 2.4 in [DPZ96]

we have for all 0 < s < κ and n ∈ N

E (Tn)s ≤ csn
s < ∞

for a suitable constant cs > 0 but

E (T1)κ = ∞.

3. We note that Assumptions 1 and 2 exclude all deterministic environments.

4. Notice that Assumption 3 is weaker than the condition that the distribution of ln ρ0

is non-lattice, which is used for example in [KKS75], [Gol07], [PZ09], and [Pet09] to
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show annealed and quenched limit theorems. In particular, our setting includes many

environment distributions which consist of just two possible choices for the transition

probabilities. These distributions are all excluded in the above papers because for such

choices of the transition probabilities the distribution of ln ρ0 is always lattice.

We proceed to the definitions of the mixing time and the cutoff:

For each n ∈ N let (Un
k )k∈N0 be an aperiodic and irreducible Markov chain on a finite

state space Ωn and let (πn)n∈N denote the sequence of associated stationary distribu-

tions. Further, we assume

|Ωn| n→∞−→ ∞.

Definition 1.3.2. For the sequence (Un
k )k∈N0 the mixing time tmix(n) is defined by

tmix(n) := min

{
l ∈ N : dn(l) ≤ 1

4

}
,

where

dn(l) := max
x∈Ωn

∥∥Px(Un
l ∈ ·)− πn(·)

∥∥
TV

(1.3.1)

and || · ||TV denotes distance in total variation.

We note that due to the convergence theorem for a sequence of aperiodic and

irreducible Markov chains we have that tmix(n) is finite for every fixed n because

dn(l)
l→∞−→ 0.

Nevertheless, in most cases tmix(n) tends to infinity with growing state space. In this

work, we are interested in the growths rate of tmix(n) as a function of n. Further, we

notice that dn(k) can be interpreted as the worst case distance to stationarity after k

steps.

Next, we define the cutoff phenomenon for a sequence of aperiodic and irreducible

Markov chains. This effect describes a sharp transition of the total variation distance

of the distribution of the Markov chain and its stationary distribution from 1 to 0 in a

small window around the mixing time.

Definition 1.3.3. The sequence (Un)n∈N exhibits a cutoff with cutoff times (tn)n∈N
and window size (fn)n∈N if

(1) fn = o(tn),

(2) lim
c→∞

lim inf
n→∞

dn(tn − cfn) = 1 and

(3) lim
c→∞

lim sup
n→∞

dn(tn + cfn) = 0.

17
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We refer to Chapter 3 for a more detailed introduction to the cutoff phenomenon

and an overview on existing results.

To avoid problems with the periodicity of the model, we study the lazy RWRE (Yk)k∈N0 ,

which is – as (Xn)n∈N0 under Pωn – a nearest neighbour random walk on {0, ..., n} and

moves according to the following rules: First, we toss a fair coin to decide if the random

walk moves or stays at its position. If we decide to move, the random walk moves to the

left and right with the same probabilities as the RWRE given by ωn described in (1.1.2):

With respect to P z
ωn , (Yk)k∈N0 is the Markov chain on {0, ..., n} with P z

ωn(Y0 = z) = 1

and with the following transition probabilities: For i ∈ {0, ..., n} and k ∈ N we have

P z
ωn [Yk+1 = i+ 1 | Yk = i] =

ωni
2
,

P z
ωn [Yk+1 = i | Yk = i] =

1

2
,

P z
ωn [Yk+1 = i− 1 | Yk = i] =

1− ωni
2

. (1.3.2)

Further, for n ∈ N let

(Zk)k∈N =
(
1{Yk−1 6=Yk}

)
k∈N (1.3.3)

be the sequence of random variables indicating if the random walk (Yk)k∈N0 moves

or stays at its position. Therefore, (Zk)k∈N is under P z
ω a sequence of i.i.d. Bernoulli

random variables with success probability 1
2
. Note that the lazy RWRE is transient

or has positive linear speed if and only if the underlying RWRE is transient or has

positive linear speed. Furthermore, let

T Yn := min {k ∈ N : Yk = n}

be the first time that the lazy RWRE hits position n.

The next Lemma relates the quenched expectation and quenched variance of T Yn with

the corresponding quantities of Tn.

Lemma 1.3.4. We have

(a) EωT
Y
n = 2EωTn,

(b) VarωT
Y
n = 4VarωTn + 2EωTn.

Proof. For k ∈ N we define

τk := inf

{
l ∈ N :

l∑

k=1

Zk = k

}

18
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and note that τk is negative binomially distributed with parameters k and 1
2

(waiting

for the kth success). Thus, we have

Eω

[
T Yn

∣∣∣Tn = k
]

= Eωτk = 2k

and we get

EωT
Y
n = Eω

[
Eω

[
T Yn

∣∣∣Tn
]]

= 2EωTn.

To obtain (b), we first consider

Eω

[(
T Yn
)2
∣∣∣Tn = k

]
= Eω

[
(τk)

2
]

= 2k + 4k2

and we therefore get together with (a)

VarωT
Y
n = Eω

[
Eω

[(
T Yn
)2
∣∣∣Tn
]]
−
(
EωT

Y
n

)2

= 4Eω(Tn)2 + 2EωTn − 4 (EωTn)2

= 4VarωTn + 2EωTn.

�

Further, we note that analogously we can show that

EωnT
Y
n = 2EωnTn and VarωnT

Y
n = 4VarωnTn + 2EωnTn. (1.3.4)

1.4 Results

In the following, we investigate for which κ > 0 a sequence of lazy RWRE on

({0, ..., n})n∈N exhibits a cutoff. We show that although the lazy RWRE is transient

to the right for all κ > 0, we only observe a sharp transition of the distance in total

variation to its stationary distribution in the case of positive linear speed (κ > 1). Let

tωmix(n) denote the mixing time of the lazy RWRE with respect to Pωn .

Theorem 1.4.1. Let Assumptions 1 and 2 hold and assume κ > 1. Then for P-almost

every environment ω a sequence of lazy RWRE (Y n
k )k∈N0 on ({0, ..., n})n∈N exhibits a

cutoff with cutoff times

tω(n) := 2Eωn(Tn)

and window size

fω(n) :=
√

Varωn(Tn).
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Note that although E(T 2
n) = ∞ for κ ≤ 2, we have Varωn(Tn) < ∞ for P-almost

every environment ω (cf. Theorem 1.4.5) and all κ > 0. We remark that for n ∈ N
dn(k) is only defined for k ∈ N and monotone decreasing in k. For simplicity’s sake,

we omit the ceiling function in the results.

In the case κ < 1 we show that there is no cutoff:

Theorem 1.4.2. Let Assumptions 1-3 hold and assume κ < 1. Then for P-almost

every environment ω a sequence of lazy RWRE (Y n
k )k∈N0 on ({0, ..., n})n∈N does not

exhibit a cutoff.

To prove that for κ < 1 there is no cutoff under Assumptions 1-3, we show that for

P-almost every environment ω the window within which the total variation distance

drops from 1 to 0 has the same order as the mixing time, and therefore the transition

cannot be sharp in the sense of a cutoff.

Furthermore, we determine the order of the mixing time:

Theorem 1.4.3. Let Assumptions 1 and 2 hold. Then for P-almost every environment

ω we have

(a) lim
n→∞

ln tωmix(n)

lnn
=

1

κ
for 0 < κ ≤ 1 and

(b) lim
n→∞

tωmix(n)

n
= 2ET1 for κ > 1.

With the help of the construction in the proof of Theorem 1.4.2 we can prove the

“strong localisation” theorem of Peterson and Zeitouni (cf. Theorem 1.2 in [PZ09])

under the weaker Assumptions 1-3. In [PZ09], they additionally assume that the

distribution of ln ρ0 is non-lattice with respect to P.

Theorem 1.4.4. Let Assumptions 1-3 hold and assume κ < 1. Then for P-almost

every environment ω there exist environment dependent sequences tm = tm(ω) and

um = um(ω) such that for any δ > 0 we have

lim
m→∞

Pω

(
Xtm − um
(ln tm)2 ∈ [−δ, δ]

)
= 1.

The theorem shows that the RWRE at time tm is with high probability in an interval

of length (ln tm)2. Note that the localisation theorem is related to (but cannot be

deduced from) Theorem 1.1 in [GS02] where Gantert and Shi prove that for 0 < κ ≤ 1

there exists an environment dependent sequence of times (tm)m∈N at which the local

time of the RWRE is a positive fraction of n. They used the same assumptions as

[PZ09] for their proof.
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To decide if there is a cutoff or not, we have to control the distance in total variation

very precisely. In Chapter 3, we show that we can give sharp bounds based on estimates

of the quenched expectation and quenched variance of Tn. In Chapter 2 we prove the

following P-a.s. behaviour of these quantities, which we then use to prove Theorems

1.4.1 - 1.4.3.

Theorem 1.4.5. Let Assumptions 1 and 2 hold. Then we have

(a) lim
n→∞

lnEω (Tn)

lnn
= max

{
1

κ
, 1

}
P− a.s.,

(b) lim
n→∞

ln Varω (Tn)

lnn
= max

{
2

κ
, 1

}
P− a.s.

Note that because we consider an i.i.d. environment, the shift Θ on the product

space is ergodic with respect to P. Therefore, Birkhoff’s ergodic theorem yields the

following stronger statements for the cases in which the annealed expectation and the

annealed variance, respectively, exist:

For κ > 1 we have

lim
n→∞

EωTn
n

= lim
n→∞

1

n

n−1∑

j=0

EΘ−jωT1 = ET1 P− a.s. (1.4.1)

and for κ > 2 we get

lim
n→∞

VarωTn
n

= lim
n→∞

1

n

n−1∑

j=0

V arΘ−jω(T1) = E(VarωT1) P− a.s. (1.4.2)

Using the monotonicity of the function dn(k) in k (cf. Exercise 4.4 in [LPW09]), we

can deduce a version of Theorem 1.4.1 with a deterministic cutoff window size from

Theorem 1.4.5 and equation (1.4.2):

Corollary 1.4.6. Let Assumptions 1 and 2 hold and assume κ > 1. Then for P-almost

every environment ω and all 0 < δ < 1 − 1
κ

a sequence of lazy RWRE (Y n
k )k∈N0 on

({0, ..., n})n∈N exhibits a cutoff with cutoff times

tω(n) := 2Eωn(Tn)

and (deterministic) window size

fκω (n) :=

{
n

1
κ

+δ for 1 < κ ≤ 2
√
n for κ > 2.
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For 1 < κ < 2, we do not believe that the cutoff window size can be replaced by

n
1
κ for P-almost every environment. If we additionally assume that the distribution of

ln ρ0 is non-lattice, we have due to Theorem 1.3 in [Pet09]

lim
n→∞

P
(
n−

2
κVarωTn ≤ x

)
= Lκ

2
,b(x),

where Lκ
2
,b(x) denotes the distribution function of a stable distribution for some con-

stant b > 0. To get a cutoff window size of n
1
κ , we would need a P-almost sure

convergence of n−
2
κVarωTn which we do not believe to be true.

Further, to state a version of Theorem 1.4.1 with deterministic cutoff times, one

has to analyse the order of the deviation of EωTn from nET1, which is not precisely

known so far. Due to equation (1.4.1), we know that it is of order o(n). Therefore,

it is possible to state a version of the cutoff with (deterministic) cutoff times 2nET1

and window size chosen to be the maximum of n
1
κ and the order of the just mentioned

deviations. But at least for the case κ > 2 this enlarges the window size because in

this case the proofs of the CLT (cf. Theorem 5.1 in [Ali99], Theorem 3.1.1 in [Pet08]

and Theorem 3 in [Gol07]) have shown that the deviation is bigger than
√
n which is

also the reason why there is no CLT with deterministic centering.

There is a close connection between the mixing time and the spectral gap of a

Markov chain (cf. Theorem 4.1.1). Let P̃ ω
n denote the transition matrix of the lazy

RWRE with respect to Pωn and let gap(P̃ ω
n ) denote its spectral gap. In Chapter 4 we

show:

Theorem 1.4.7. Let Assumptions 1 and 2 hold.

(a) Let κ < 1 and additionally assume Assumption 3. Then we have for P-almost

every environment ω

lim inf
n→∞

ln gap
(
P̃ ω
n

)

lnn
= −1

κ
.

(b) Let κ > 1. Then we have for P-almost every environment ω

lim
n→∞

gap
(
P̃ ω
n

)
· n = ∞.

(c) Let 1 < κ < 2 and additionally assume that the distribution of ln ρ0 is non-lattice

with respect to P. Then we have for P-almost every environment ω

lim sup
n→∞

ln gap
(
P̃ ω
n

)

lnn
≤ 1− 2

κ
.

In particular, Theorem 1.4.7 (c) shows that we have

lim
n→∞

gap
(
P̃ ω
n

)
= 0
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for 1 < κ < 2. This is in sharp contrast to the case of a deterministic environment,

where the spectral gap of a random walk with drift to the right is bounded away from

0 uniformly in n (cf. Remark 4.1.4).

1.5 Estimates on the environment

In this section, we have a closer look at the environment. For this purpose, we anal-

yse the potential associated with the environment, which was introduced by Sinai in

[Sin82]. A good understanding of the potential will be the key to analyse the quenched

expectation and quenched variance of Tn in the next chapter. The potential, denoted

by (V (x))x∈Z, is a function of the environment ω defined in the following way:

V (x) :=





−
−1∑

i=x

ln ρi if x ≤ −1,

0 if x = 0,
x−1∑

i=0

ln ρi if x ≥ 1.

Due to Assumption 1 (E ln ρ0 < 0), the potential is a random walk with negative

drift. But there are some “blocks” of the environment where the potential is increasing.

We will see that the height of these increases depends on κ and that the RWRE needs

most of the time before it hits position n to cross the highest increase of the potential

in the interval [0, n]. We note that an increase of the potential in x means that the

probability to move to the left (i.e. x−1) is higher than to move to the right (i.e. x+1).

In contrast to that, at positions where the potential decreases it is the other way around.

For the influence of the parameter κ on the shape of the potential see Figure 1.3 and

Figure 1.4 on page 34.

In the following, we use the partition of the potential in blocks introduced in

[PZ09] (cf. Figure 1.1). We define “ladder locations” (νi(ω))i∈Z of the environment ω

by

νi(ω) :=





sup {n < νi+1(ω) : V (n) < V (k) ∀ k < n} for i ≤ −1,

0 for i = 0,

inf {n > νi−1(ω) : V (n) < V (νi−1(ω))} for i ≥ 1.

(1.5.1)

If no confusion is possible, we often drop the dependence of ω and simply write (νi)i∈Z.

The portion of the environment [νi, νi+1) is called the ith block. Note that the block

from ν−1 to −1 is different from all the other blocks.
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Figure 1.1: On the definition of the ladder locations.

Next, we define another measure Q on the environments by

Q(·) := P(·|R), where R :=

{
ω ∈ Ω :

−1∑

i=−k
ln ρi < 0,∀ k ∈ N

}
. (1.5.2)

We notice that P(R) > 0 due to Assumption 1 and that the sequence (νi − νi−1)i∈Z is

i.i.d. with respect to Q. Further, we define for i ∈ Z

Hi := max
νi≤j<νi+1

(V (j)− V (νi)) = max
νi≤j<k<νi+1

(V (k)− V (j)) (1.5.3)

as the height of the ith block (cf. Figure 1.2) and for n ∈ N let

n0 := max{l ∈ N0 : νl ≤ n} (1.5.4)

denote the number of the block to which n belongs.

Later, we estimate the height of blocks using results on the asymptotic of the maximum

of random walks with negative drift. First, let us assume that the distribution of ln ρ0

is non-lattice. Then, additionally assuming Assumptions 1 and 2, Theorem 1 in [Igl72]

yields constants 0 < K1 < K2 such that for h > 0 we have

K1 exp(−κ · h) ≤ P (S ≥ h) ≤ K2 exp(−κ · h), (1.5.5)

where S := max
j≥0

V (j) denotes the maximum of the potential on N0.

Next, let the distribution of ln ρ0 be concentrated on x + yZ for x ∈ R, y ∈ R>0.
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V (x)

x

ν−1

0

νi νi+1

bb

bb

bb bb

Hi

Figure 1.2: On the definition of Hi. Note that this realisation cannot be seen under Q

because here we have V (ν−1) < 0.

Therefore, the potential is a Markov chain with i.i.d. increments of a lattice distribution.

Again assuming Assumptions 1 and 2, we get for the case in which the potential is

aperiodic using E19.4 in [Spi76] with r = exp(κ)

K ′1 exp(−κ · (y · n+ x)) ≤ P (S ≥ y · n+ x) ≤ K ′2 exp(−κ · (y · n+ x)), (1.5.6)

for n ∈ N and constants 0 < K ′1 < K ′2. If the potential V (·) is a periodic Markov

chain with period d ∈ N, we still have that (V (nd + k))n∈N0 is aperiodic for every

k ∈ {0, ..., d − 1} and therefore we get the same asymptotic as in (1.5.6) using the

minimum and the maximum, respectively, of the appearing constants.

Now combining (1.5.5) and (1.5.6), we get that under Assumptions 1 and 2 there exist

constants 0 < C̃1 < C1 such that we have for all h > 0

C̃1 exp(−κ · h) ≤ P (S ≥ h) ≤ C1 exp(−κ · h). (1.5.7)

In the next lemmata, we identify “typical” and “good” subsets of the environment,

which simplify calculations in the following.

First, we show that it is very unlikely for the potential to stay at a certain level for a

long time because of the negative drift. We define

B1(n) :=
{
@ k ∈ N, i, j ∈ {−n, ..., n} : j − i ≥ k(lnn)2, V (j) > V (i)− k lnn

}

(1.5.8)
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as the set of environments for which on the interval [−n, n] the potential decreases at

least by k lnn every d(k lnn)2e steps. In particular, we have for environments ω ∈ B1(n)

that all blocks in the interval [−n, n] are smaller than (lnn)2.

Lemma 1.5.1. We have

P
(
B1(n)c

)
= O

(
n−2
)
.

Proof. First, we note that for k ∈ N we have
{
∃ j ≥ k(lnn)2 : V (j) > −k lnn

}

⊆
{
V
(
bk(lnn)2c

)
> −

(
k +

4

κ

)
lnn

}
∪
{

max
j≥k(lnn)2

(
V (j)− V

(
bk(lnn)2c

))
>

4

κ
lnn

}

(1.5.9)

because either V
(
bk(lnn)2

)
c is bigger than −

(
k + 4

κ

)
lnn or there has to be an increase

of the potential of more than 4
κ

lnn afterwards. Using (1.5.7), we get for arbitrary

l ∈ N

P

(
max
j≥l

(
V (j)− V (l)

)
>

4

κ
lnn

)
= O

(
n−4
)
.

This together with (1.5.9) yields

P
(
B1(n)c

)

= P
(
∃ k ∈ N, i, j ∈ {−n, ..., n} : j − i ≥ k(lnn)2, V (j) > V (i)− k lnn

)

≤

⌊
2n

(lnn)2

⌋
∑

k=0

2nP
(
∃ j ≥ k(lnn)2 : V (j) > −k lnn

)

≤

⌊
2n

(lnn)2

⌋
∑

k=0

2n

(
P

(
V
(
bk(lnn)2c

)
> −

(
k +

4

κ

)
lnn

)

+ P

(
max

j≥k(lnn)2

(
V (j)− V

(
bk(lnn)2c

))
>

4

κ
lnn

))

≤

⌊
2n

(lnn)2

⌋
∑

k=0

2nP

(∣∣∣V
(
bk(lnn)2c

)
− bk(lnn)2cE ln ρ0

∣∣∣ > |E ln ρ0|
2

bk(lnn)2c
)

+O
(
n−2
)
. (1.5.10)

Since the potential is a sum of i.i.d. random variables with finite exponential moments

in a neighbourhood of zero due to Assumption 2 and negative expectation due to
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Assumption 1, we can apply Cramér’s Theorem (cf. Theorem 2.2.3 in [DZ98]) to obtain

an upper bound for (1.5.10), that is

P
(
B1(n)c

)
≤ 4n2 exp

(
− c(lnn)2

)
+O

(
n−2
)

for a constant c > 0, and this finishes the proof. �

Further, we show that the first n appearing blocks on the right side of 0 and on the

left side of 0 are together not to wide.

Lemma 1.5.2. We have

P
(
Bc

2(n)
)

= O
(
n−2
)
,

where

B2(n) := {−2ν̄n ≤ ν−n, νn ≤ 2ν̄n} with ν̄ := Eν1.

Proof. First, we show that (νi−νi−1) has exponential tails for all i ∈ Z6=0. Again using

Cramér’s Theorem for the sequence (ln ρk)k∈Z, we get for large x > 0 and i ∈ Z6=0

P
(
νi − νi−1 > x

)
= P

(
ν1 > x

)

≤ P (V (bxc) ≥ 0)

≤ P
(∣∣V (bxc)− bxcE ln ρ0

∣∣ ≥ |E ln ρ0|bxc
)

≤ exp
(
− c · x

)

for a constant c > 0. Thus, we have

E exp
(
c̃ · ν1

)
< ∞ ∀ c̃ < c

and therefore we also can apply Cramér’s Theorem for the sequence (νi− νi−1)i∈Z6=0 to

obtain

P

(
n∑

i=1

(νi − νi−1) > 2ν̄n

)
+ P

( −1∑

i=−n+1

(νi − νi−1) >
3

2
ν̄n

)
= O

(
n−2
)
. (1.5.11)

Furthermore, we have due to Lemma 1.5.1

P
(
ν−1 < −(lnn)2

)
≤ P

(
B1(n)c

)
= O

(
n−2
)
,

and this together with (1.5.11) finishes the proof. �

Next, we are interested in the height of the highest block in the interval [−n, n].

We define

B3(n) :=

{
max
−n≤i≤n

max
k≥i

(V (k)− V (i)) ≤ 1

κ

(
lnn+ 2 ln lnn

)}

and notice:
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Lemma 1.5.3. For P-almost every environment ω there exists a N(ω), such that

ω ∈ B3(n) for all n ≥ N(ω).

For a proof see for instance Lemma 3.4 in [FGP10].

Furthermore, we are interested in a lower bound for the height of the highest block in

[−n, n]. We define

B4(n) :=

{
max
−n≤i≤n

max
k≥i

(V (k)− V (i)) >
1

κ
(lnn− 4 ln lnn)

}

and note:

Lemma 1.5.4. We have

P
(
B4(n)c

)
= O

(
n−2
)
.

For a proof see for instance Lemma 3.5 in [FGP10].

As a next step, we want to analyse the frequency of the appearance of blocks with

certain heights. We therefore define for 0 < a < 1 (cf. (1.5.4) for a definition of n0)

Dn(a) :=

{∣∣∣∣
{

0 ≤ i ≤ n0 : Hi ≥
a

κ

(
lnn+ 2 ln lnn

)} ∣∣∣∣ < n1−a
}
.

In the next lemma, we show that asymptotically we do not have “too many” high

blocks:

Lemma 1.5.5. For all m ∈ N we have

P
(
D(n,m)c

)
= O

(
n−2
)
,

where

D(n,m) :=
m−1⋂

l=1

Dn

(
l

m

)
. (1.5.12)

Proof. Because m is fixed, it is enough to show

P

(
Dn

(
l

m

)c)
= O

(
n−2
)

for arbitrary l,m ∈ N, l < m.

First, we note that the number of blocks with a height of more than l
κm

(
lnn+2 ln lnn

)

can stochastically be dominated by a binomial random variable Bl
n with parameters n

and success probability

P

(
S ≥ l

κm

(
lnn+ 2 ln lnn

))
,
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where S = maxj≥0 V (j) denotes the maximum of the potential on N0. Due to (1.5.7)

we have

P

(
S ≥ l

κm

(
lnn+ 2 ln lnn

))
= C1 ·

(
n · ln(n)2

)− l
m . (1.5.13)

Therefore, we get

P

(
Dn

(
l

κm

)c)
≤ P

(
Bl
n ≥ n1− l

κm

)
.

Now, using the exponential Markov inequality, this together with (1.5.13) yields:

P

(
Dn

(
l

κm

)c)
≤ exp

(
−n1− l

m

)
· E exp(Bl

n)

= exp
(
−n1− l

m

)
·
(

1 + C1(e− 1)
(
n(lnn)2

)− l
m

)n

≤ exp
(
C1(e− 1)(lnn)−

2l
mn1− l

m − n1− l
m

)

= O
(
n−2
)
, (1.5.14)

where we used that we have 1+x ≤ exp(x) for x ≥ 0 to obtain the second last line. �

Further, we define for 0 < a < 1

En(a) :=

{
@ n ≤ k < n+ (lnn)2 :

max
n≤l<k

(V (k)− V (l)) >
a

κ
lnn, max

k<i<j≤k+(lnn)2
(V (j)− V (i)) >

1− 3a
4

κ
lnn

}

as the set of environments which do not have two “large” increases of the potential in

a “small” interval after n.

Lemma 1.5.6. For all 0 < a < 1 we have

P
(
En(a)c

)
= O

(
n−(1+a

5 )
)
.

Proof. For environments ω ∈ En(a)c we have two “large” increases of the potential in

the interval [n, n + 2(lnn)2]. The first increase is bigger than a
κ

lnn and the second

bigger than
1− 3a

4

κ
lnn. We therefore have

P
(
En(a)c

)
≤ (lnn)4 ·P

(
S ≥ a

κ
lnn
)
·P
(
S ≥ 1− 3a

4

κ
lnn

)
≤ (lnn)4C2

1n
−(1+a

4
),

where we used (1.5.7) to obtain the last inequality. �
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Now, we want to use Lemma 1.5.6 to show that for n large enough in the interval

[0, n] we do not find two “big” increases of the potential in an interval of size 2(lnn)2.

We define

E(n, a) :=

{
@ 0 ≤ k ≤ n : max

k−(lnn)2≤l<k
(V (k)− V (l)) >

a

κ
lnn,

max
k<i<j≤k+(lnn)2

(V (j)− V (i)) >
1− 3a

4

κ
lnn

}

and we observe:

Lemma 1.5.7. For all 0 < a < 1 and P-almost every environment ω there exists N(ω)

such that we have ω ∈ E(n, a) for all n ≥ N(ω).

Proof. Let

N0(ω) := min {j ≥ 0 : ω ∈ Ei(a) ∀ i > j}

and let

M(ω) := max

{
max

k<r<s≤k+(lnN0(ω))2
(V (s)− V (r)) :

k ∈ [0, N0(ω)] with max
k−(lnN0(ω))2<l<k

(V (k)− V (l)) >
a

κ
lnN0(ω)

}

be the maximal increase of the potential in an interval of size (lnN0(ω))2 after an

increase of more than a
κ

lnN0(ω) in the interval [0, N0(ω)].

Due to Lemma 1.5.6 and the Borel-Cantelli lemma, we have that N0(ω) is finite for P-

almost every environment ω. Now, we take N(ω) large enough such that N(ω) ≥ N0(ω)

and

1− 3a
4

κ
lnN(ω) ≥M(ω).

Then, for n ≥ N(ω) let K be the size of the maximal increase of the potential in an

interval of size (lnn)2 after an increase of more than a
κ

lnn in the interval [0, n]. Then,

we have

K ≤ M(ω) ≤ 1− 3a
4

κ
lnn

if the increase is in the interval [0, N0(ω)] or if the increase is in the interval (N0(ω), n]

we have

K ≤ 1− 3a
4

κ
lnn

by the definition of N0(ω). �
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Next, we prove three technical statements, which will help us to compare the

quenched expectations and the quenched variances with respect to Pω and Pωn in

the next chapters.

Lemma 1.5.8. We have for P-almost every environment ω

(a) C−(ω) :=
−1∑

j=−∞
exp

(
− V (j)

)
< ∞,

(b) C+(ω) :=
∞∑

j=0

exp
(
V (j)

)
< ∞,

(c) D−(ω) :=
−1∑

j=−∞
exp

(
− V (j + 1)

) (
Wj +W 2

j

)
< ∞.

Before we prove the lemma, we note that due to (1.2.3) we have

EωTn − EωnTn = 2
n−1∑

j=0

(
Wj −W 0

j

)

= 2
n−1∑

j=0

0∑

i=−∞
exp

(
V (j + 1)− V (i)

)

= 2
n−1∑

j=0

exp
(
V (j + 1)

) 0∑

i=−∞
exp

(
− V (i)

)

≤ 2
(
C−(ω) + 1

)
C+(ω),

which, using Lemma 1.5.8, yields

lim
n→∞

EωTn
EωnTn

= 1 (1.5.15)

for P-almost every environment ω.

Proof of Lemma 1.5.8. First, we note that for P-almost every environment ω by the

SLLN there existis N1(ω) large enough such that

V (j) ≥ −E ln ρ0

2
j for all j ≤ −N1(ω), (1.5.16)

V (j) ≤ E ln ρ0

2
j for all j ≥ N1(ω).

Due to Assumption 1 (E ln ρ0 < 0), we therefore get that for P-almost every environ-

ment ω we have

max{C−(ω), C+(ω)} < ∞
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and this finishes the proof of (a) and (b).

Next, we note that Lemma 1.5.1 and 1.5.3 together with the Borel-Cantelli lemma yield

N2(ω) := inf{k ∈ N : ω ∈ B1(n) ∩B3(n) ∀ n ≥ k} < ∞ P-a.s.

We get for j ≤ −N2(ω)

Wj =

j∑

i=2j+1

exp
(
V (j + 1)− V (i)

)
+

2j∑

i=−∞
exp

(
V (j + 1)− V (i)

)

≤ (−j) (−2j)
1
κ (ln(−2j))

2
κ +

2j∑

i=−∞

1

i2

≤ (−j)2+ 1
κ , (1.5.17)

where we used for the second last inequality that for ω ∈ B3(−2j) the biggest in-

crease of the potential in the interval [2j, j] is smaller than 1
κ

(
ln(−2j) + 2 ln ln(−2j)

)
.

Further, we used that since (−i) − (−j) ≥ 2(ln(−i))2 for all i ≤ 2j, we have

V (j)− V (i− 1) < −2 ln i for i ≤ 2j and ω ∈ B1(−i).

Next, we notice that for −N2(ω) < j ≤ 0 we get

Wj =

j∑

i=((−N2(ω))∧2j)+1

exp
(
V (j + 1)− V (i)

)
+

(−N2(ω))∧2j∑

i=−∞
exp

(
V (j + 1)− V (i)

)

≤ N2(ω)2+ 1
κ , (1.5.18)

where we this time used that by the definition of N2(ω) we have ω ∈ B3(N2(ω)) and

ω ∈ B1(−i) for all i ≤ (−N2(ω)) ∧ 2j.

Using (1.5.17) and (1.5.18), we get

D−(ω) =
−1∑

j=−∞
exp

(
− V (j + 1)

) (
Wj +W 2

j

)

≤ 2
−1∑

j=−∞
exp

(
− V (j + 1)

)
W 2
j + 2C−(ω)

≤ 2

−N2(ω)∑

j=−∞
exp

(
− V (j + 1)

)
W 2
j + 2

−1∑

j=−N2(ω)+1

exp
(
− V (j + 1)

)
W 2
j + 2C−(ω)

≤ 2

−N2(ω)∑

j=−∞
exp

(
− V (j + 1)

)
(−j)4+ 2

κ + 2C−(ω)
(
N2(ω)4+ 2

κ + 1
)
. (1.5.19)
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Due to (1.5.16), we have that the sum in (1.5.19) is P-a.s. summable. Therefore,

together with (a) we can conclude

D−(ω) <∞

for P-almost every environment ω. �

We define

C :=
{
ω : max{C−(ω), C+(ω), D−(ω)} <∞

}
,

where we have P(C) = 1 due to Lemma 1.5.8.

As the last step in this section, we combine all the results of the previous lemmata and

define what we will call a “good” and “typical” environment:

Lemma 1.5.9. For all m ∈ N, 0 < a < 1 and for P-almost every environment ω,

there exists N(ω) such that

ω ∈ B(n) ∩D(n,m) ∩ E(n, a) ∀ n ≥ N(ω),

where

B(n) := B1(n) ∩B2(n) ∩B3(n) ∩B4(n) ∩ C.

Proof. The statement follows directly from the Borel-Cantelli lemma together with

Lemma 1.5.1 - 1.5.8. �

For these “good” and “typical” environments, we have a lower and an upper bound

on the height of the highest block in the interval [0, n] and we know that the potential

does not stay at a certain level for a long time. In addition to that, we can control

the number of high blocks and do not have two large increases in a small interval. For

the influence of κ on the shape of the potential compare the following two simulations

(Figure 1.3 and Figure 1.4). We see that the potential in both cases follows the line

with slope −E ln ρ0 = −0.14 but the fluctuations are a lot bigger in the case in which

κ is smaller.
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Figure 1.3: Simulation of the potential of an environment distribution with κ = 2.39 and

E ln ρ0 = −0.14.
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Figure 1.4: Simulation of the potential of an environment distribution with κ = 0.19 and

E ln ρ0 = −0.14.
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Chapter 2

Quenched expectation and

quenched variance

We will see that the distance in total variation of the distribution of the lazy RWRE

with respect to Pωn to its stationary distribution can be bounded using the tails of Tn
(cf. Chapter 3). To show a cutoff, we need to control the fluctuations of Tn very

precisely. The main result of this chapter is Theorem 1.4.5. For κ < 1 and for

P-almost every environment, we show that the quenched expectation of Tn is of order

n
1
κ . Further, we prove that for κ < 2 the quenched variance of Tn is of order n

2
κ . We

notice at this point that the annealed expectation and variance of Tn are infinite for

these κ. Furthermore, we analyse the quenched variance of the crossing time of “deep”

blocks.

2.1 Asymptotic of the quenched expectation and

quenched variance

A formula for the quenched variance as a function of the environment is given in

equation (2.1) in [Gol07]. In our notation, we get for k ∈ Z (cf. (1.2.1) for the definition

of Wi)

Varω
(
Tk+1 − Tk

)
= 4

(
Wk +W 2

k

)
+ 8

k−1∑

i=−∞
exp

(
V (k + 1)− V (i+ 1)

)
·
(
Wi +W 2

i

)
.

(2.1.1)

This yields for n ∈ N

Varω
(
Tn
)

= 4 ·
n−1∑

j=0

(
Wj +W 2

j

)
+ 8 ·

n−1∑

j=0

j−1∑

i=−∞
exp

(
V (j + 1)− V (i+ 1)

)
·
(
Wi +W 2

i

)
.

(2.1.2)
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By equations (2.1.1) and (2.1.2) we see that the quenched variance of Tn is not –

as the expectation – a function of the sequence (Wj)j∈N0 . But we will see that the

Wj-terms in (2.1.2) still determine the order of Varω(Tn). First, we give an upper bound

for Wj depending on the biggest increase of the potential in a small neighbourhood to

the left of j.

Lemma 2.1.1. For ω ∈ B1(n)∩C and n large enough such that C−(ω) < lnn we have

for j = 1, ..., n (cf. (1.5.4) for the definition of j0)

W 0
j < Wj ≤ (lnn)2

(
1 + 2 exp

(
V (j + 1)− V (νj0)

))
.

For νi+1 < n and n large enough, we note that Lemma 2.1.1 yields for ω ∈ B1(n)∩C
(cf. (1.5.3) for the definition of Hi)

max
j∈[νi,νi+1)

Wj ≤ (lnn)2 + 2(lnn)2 exp(Hi). (2.1.3)

Therefore, we get together with (1.2.3) and using that for ω ∈ B1(n) all blocks in the

interval [−n, n] are smaller than (lnn)2

Eνi
ω Tνi+1

≤ 2(lnn)4 + 2(lnn)4 exp(Hi).

Proof of Lemma 2.1.1. We note that the first inequality of the statement follows di-

rectly by the definition. Further, for all j ∈ N0 we have by the definition of the ladder

locations (νk)k∈N0 (cf. (1.5.1))

max
0≤k≤j

(
V (j + 1)− V (k)

)
= V (j + 1)− V (νj0).

For ω ∈ B1(n)∩C we therefore get for j ≥ ν1 and n large enough (cf. Lemma 1.5.8 for

the definition of C−(ω))

Wj =

j∑

k=−∞
exp

(
V (j + 1)− V (k)

)

≤
−1∑

k=−∞
exp

(
V (j + 1)− V (k)

)
+

⌈
j

d(lnn)2e

⌉
∑

l=2

j−(l−1)d(lnn)2e+1∑

k=j−ld(lnn)2e+2

exp
(
V (j + 1)− V (k)

)

+

j∑

k=j−d(lnn)2e+2

exp
(
V (j + 1)− V (k)

)
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≤ exp
(
V (j + 1)

)
C−(ω) +

⌈
(lnn)2

⌉
⌈

j

d(lnn)2e

⌉
−1

∑

l=1

exp
(
− l lnn

)

+

j∑

k=j−d(lnn)2e+2

exp
(
V (j + 1)− V (k)

)

≤ 2(lnn)2 exp
(
V (j + 1)− V (νj0)

)
,

where we used the definition of the set B1(n) for the second last inequality and that

exp
(
V (j)

)
< exp

(
V (j + 1)− V (νj0)

)
for j ≥ ν1 to obtain the last inequality. Further,

for j = 1, ..., ν1 − 1 and n large enough we have

max
j∈{1,...,ν1−1}

Wj ≤ (lnn)2.

�

For environments ω which belong to the “typical” and “good” sets constructed in

Section 1.5, we next prove with the help of Lemma 2.1.1 that for κ < 1 the quenched

expectation EωTn is roughly of size n
1
κ and that the quenched variance Varω (Tn) is

roughly of size n
2
κ for κ < 2.

Proof of Theorem 1.4.5. For environments ω ∈ B(n) we have due to (1.2.3) and (2.1.3)

(cf. (1.5.4) for the definition of n0)

EωTn = n+ 2
n−1∑

i=0

Wi ≤ n+ 2

n0∑

j=0

(
(νj+1 ∧ n)− νj

)
(lnn)2

(
1 + 2 exp(Hj)

)

≤ 3n(lnn)2 + 4(lnn)4

n0∑

l=0

exp(Hl) (2.1.4)

because for ω ∈ B1(n) every block in the interval [0, n] is smaller than (lnn)2.

Next, we recall that for environments ω ∈ D(n,m) (cf. (1.5.12) for the definition)

we have for all i ∈ {1, ...,m − 1} at most n1− i
m blocks with a height of more than

i
κm

(lnn+ 2 ln lnn). We therefore get for environments ω ∈ B(n) ∩ D(n,m)

n0∑

l=0

exp
(
Hl

)
≤

m−1∑

i=0

n0∑

l=0

exp
(
Hl

)
1{ i

κm
(lnn+2 ln lnn)≤Hl≤ i+1

κm
(lnn+2 ln lnn)}

≤
m−1∑

i=0

exp

(
i+ 1

κm
(lnn+ 2 ln lnn)

)
n1− i

m

≤ (lnn)
2
κ

m−1∑

i=0

n
(i+1)+κ(m−i)

κm , (2.1.5)
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where we additionally used that for environments in B(n) the highest block in [0, n] is

smaller than 1
κ
(lnn+ 2 ln lnn) due to the definition of B3(n).

Let δ > 0 be arbitrary and m large enough, such that

1

m
<

δ

2
. (2.1.6)

Further, we note that the function (i + 1) + κ(m − i) is increasing in i for

κ ≤ 1 and decreasing for κ > 1. Therefore, (2.1.4) and (2.1.5) yield for environments

ω ∈ B(n) ∩ D(n,m) and n large enough

EωTn ≤ 3n(lnn)2 + 4(lnn)4+ 2
κ

m−1∑

i=0

n
(i+1)+κ(m−i)

κm

≤





3n(lnn)2 + 4m(lnn)4+ 2
κn

m+κ
κm if κ ≤ 1

3n(lnn)2 + 4m(lnn)4+ 2
κn

1+κm
κm if κ > 1

≤




n

1
κ

+δ if κ ≤ 1

n1+δ if κ > 1.

Since δ > 0 was arbitrary, Lemma 1.5.9 yields

lim sup
n→∞

lnEω(Tn)

lnn
≤ max

{
1

κ
, 1

}
(2.1.7)

for P-almost every environment ω.

To obtain the lower bound, we note that Tn ≥ n and therefore in the case κ ≥ 1 there

is nothing to show. For the case κ < 1 we can use that for environments ω ∈ B4(n)

we know that in the interval [0, n] there exists a block with a height of more than
1
κ
(lnn− 4 ln lnn) and we therefore have

EωTn = n+ 2
n−1∑

i=0

Wi ≥ (lnn)−
4
κn

1
κ .

Thus, Lemma 1.5.9 together with (2.1.7) finishes the proof of part (a).

Next, we analyse VarωTn. For j = 0, ..., n we define

Hr
j (n) := max

j≤k≤j+d(lnn)2e
(V (k + 1)− V (j + 1))

as the biggest increase of the potential in a neighbourhood of size (lnn)2 to the right of

position j. We get for the quenched variance of Tn by changing the order of the sum-

mation in equation (2.1.2) for environments ω ∈ B(n) and n large enough (cf. Lemma
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1.5.8 for the definition of C+(ω) and D−(ω))

Varω (Tn) = 4
n−1∑

j=0

(
Wj +W 2

j

)
+ 8

n−1∑

j=0

−1∑

i=−∞
exp

(
V (j + 1)− V (i+ 1)

) (
Wi +W 2

i

)

+ 8
n−2∑

i=0

n−1∑

j=i+1

exp
(
V (j + 1)− V (i+ 1)

) (
Wi +W 2

i

)

= 4
n−1∑

j=0

(
Wj +W 2

j

)
+ 8D−(ω)

n−1∑

j=0

exp(V (j + 1))

+ 8
n−2∑

i=0



i+d(lnn)2e−1∑

j=i+1

exp
(
V (j + 1)− V (i+ 1)

)

+
n−1∑

j=i+d(lnn)2e
exp

(
V (j + 1)− V (i+ 1)

)

(Wi +W 2

i

)

≤ 4
n−1∑

j=0

(
Wj +W 2

j

)
+ 8D−(ω)C+(ω)

+ 8
n−2∑

i=0

(
(lnn)2 exp

(
Hr
i

)
+ (lnn)2

∞∑

k=1

n−k
)
(
Wi +W 2

i

)

≤ 12(lnn)2

n−1∑

i=0

(
1 + exp

(
Hr
i

)) (
Wi +W 2

i

)
. (2.1.8)

We notice that for all i = 0, ..., n we have

(V (i+ 1)− V (νi0)) +Hr
i (n) = max

i≤k<i+d(lnn)2e
(V (k + 1)− V (νi0))

≤ max
i0≤k≤i0+d(lnn)2e

Hk.

Therefore, Lemma 2.1.1 yields for ω ∈ B(n) and n large enough as an upper bound for

(2.1.8)

Varω (Tn) ≤ 24(lnn)6

n−1∑

i=0

(
1 + exp

(
Hr
i

)) (
1 + 2 exp

(
V (i+ 1)− V (νi0)

))2

≤ 24(lnn)6

n−1∑

i=0

(
1 + exp

(
Hr
i

)) (
2 + 8 exp

(
2 (V (i+ 1)− V (νi0))

))
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≤ 192(lnn)6

n−1∑

i=0

(
exp

(
Hr
i + 2 (V (i+ 1)− V (νi0))

)
+ exp

(
Hr
i

)

+ exp
(
2 (V (i+ 1)− V (νi0))

))
+ 48(lnn)6n

≤ 576(lnn)10

n0∑

l=0

exp
(
2Hl

)
+ 48(lnn)6n. (2.1.9)

Analogously to (2.1.5), we get for environments ω ∈ B(n) ∩ D(n,m)

n0∑

l=0

exp
(
2Hl

)
≤

m−1∑

i=0

n0∑

l=0

exp
(
2Hl

)
1{ i

κm
(lnn+2 ln lnn)≤Hl≤ i+1

κm
(lnn+2 ln lnn)}

≤
m−1∑

i=0

exp

(
2
i+ 1

κm
(lnn+ 2 ln lnn)

)
n1− i

m

≤ (lnn)
4
κ

m−1∑

i=0

n
2(i+1)+κ(m−i)

κm . (2.1.10)

Let δ > 0 be arbitrary and m chosen as in (2.1.6). Note that the function

2(i+1)+κ(m−i) is increasing in i for κ ≤ 2 and decreasing for κ > 2. We therefore get

as an upper bound for VarωTn, using equations (2.1.9) and (2.1.10) for environments

ω ∈ B(n) ∩D(n,m), and n large enough

Varω (Tn) ≤ 576(lnn)10+ 4
κ

m−1∑

i=0

n
2(i+1)+κ(m−i)

κm + 48(lnn)6n

≤





576m(lnn)10+ 4
κn

2m+κ
κm + 48(lnn)6n if κ ≤ 2

576m(lnn)10+ 4
κn

2+κm
κm + 48(lnn)6n if κ > 2

≤




n

2
κ

+δ if κ ≤ 2

n1+δ if κ > 2.
(2.1.11)

Since δ > 0 was arbitrary, (2.1.11) together with Lemma 1.5.9 yields

lim sup
n→∞

ln Varω(Tn)

lnn
≤ max

{
2

κ
, 1

}
(2.1.12)

for P-almost every environment ω.

Now we turn to the lower bound. We first consider the case κ < 2. For environments

ω ∈ B4(n) we have at least one block with a height of more than 1
κ
(lnn − 4 ln lnn).

Together with (2.1.2) this yields for environments ω ∈ B4(n)

Varω(Tn) ≥ max
0≤i≤n−1

W 2
i ≥ exp

(
2

κ
(lnn− 4 ln lnn)

)
= (lnn)−

8
κn

2
κ . (2.1.13)
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For κ ≥ 2 we have

Varω(Tn) ≥
n−1∑

i=0

Wi ≥
n−1∑

i=0

exp
(
V (i+ 1)− V (i)

)
=

n−1∑

i=0

ρi

and applying the SLLN we get

Varω(Tn) ≥ 1

2
nEρ0 P− a.s. (2.1.14)

for all n large enough. Note that due to Jensen’s inequality we have Eρ0 ≤ (Eρκ0)
1
κ = 1

for κ > 1.

Lemma 1.5.9 combined with (2.1.13) and (2.1.14) shows that for P-almost every envi-

ronment ω we have

lim inf
n→∞

ln Varω(Tn)

lnn
≥ max

{
2

κ
, 1

}
,

which together with (2.1.12) finishes the proof of part (b). �

2.2 Lower bound for the quenched variance of the

crossing time of high blocks

In this section, we analyse the crossing time of high blocks. Later, we will use the

results of this section in particular for the deepest block in the interval [0, n]. We prove

that the quenched expectation and the quenched variance of the crossing time of high

blocks are of the same order. This will be important for the proof that there is no

cutoff in the case of κ < 1.

First, we define a modified RWRE which we force not to backtrack too far. Let

(X̃
(n)
k )k∈N0 be the random walk which has the same transition probabilities as

(Xk)k∈N0 with the following additional condition: After reaching a new block νk for

the first time, the process forms from that time on a random walk in the environment

ω̃k, which is defined by

ω̃ki :=

{
1 for i = ν(k−d(lnn)2e)∨0,

ωi else.

Now, the transition probabilities stay the same until the process reaches the next

new block to the right. From that time on, the process forms a random walk in the

environment ω̃k+1 and so on. Due to this definition, the process (X̃
(n)
k )k∈N0 cannot

backtrack more than d(lnn)2e blocks after reaching a new block for the first time.

41



CHAPTER 2. QUENCHED EXPECTATION AND QUENCHED VARIANCE

Note that there exists a coupling of the processes (Xk)k∈N0 and (X̃
(n)
k )k∈N0 such that

we have

X̃
(n)
k ≥ Xk

for all k ∈ N0 with equality holding until the process (Xk)k∈N0 backtracks more than

dln(n)2e blocks for the first time. For n ∈ N we define

T̃ (r)
n : inf

{
k : X̃

(r)
k = n

}
(2.2.1)

as the first time the restricted process which backtracks not more than d(ln r)2e blocks

hits position n. We further define

A(n) :=
{
Tn = T̃ (n)

n

}
(2.2.2)

as the event that the random walk with reflection (X̃
(n)
k )k∈N0 reaches position n at the

same time as the random walk (Xk)k∈N0 . The next lemma shows that for analysing

the distance in total variation of the distribution of the RWRE and its stationary

distribution it is sufficient to consider the distribution of (X̃
(n)
k )k∈N0 .

Lemma 2.2.1 (cf. Lemma 4.5 in [PZ09]). For all k ∈ {1, ..., n} we have for P-almost

every environment ω (cf. (1.1.1) for the definition of ω̃)

lim
n→∞

P k
ω̃

(
A(n)c

)
= 0.

Proof. We get for all k ∈ {1, ..., n} and all ε > 0 using the Markov inequality

P
(
P k
ω̃ (A(n)c) > ε

)
≤ 1

ε
P
(
P k
ω̃ (A(n)c)

)
. (2.2.3)

The event A(n)c only occurs if the random walk (Xt)t∈N0 does at least (lnn)2 steps to

the left. We therefore get

P
(
P k
ω̃ (A(n)c)

)
≤

n−1∑

i=(d(lnn)2e)∨k
P
(
P i
ω̃

(
Tbi−(lnn)2c <∞

) )

≤
(
n− (lnn)2

)
·P
(
P
d(lnn)2e
ω (T0 <∞)

)
,

where we used for the last inequality that the sequence (ρk)k∈Z is i.i.d. with respect to

P. Due to Lemma 3.3 in [GS02], there exists a constant c > 0 such that

P

(
P
d(lnn)2e
ω (T0 <∞)

)
≤ exp

(
− c(lnn)2

)
.

We thus showed that the probabilities in (2.2.3) are summable and an application of

the Borel-Cantelli lemma finishes the proof. �
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Lemma 2.2.2. For environments

ω ∈ F (νn+1) := B(νn+1) ∩ E
(
νn+1,

2

3

)
∩ C, (2.2.4)

n large enough such that C−(ω) < lnn and blocks with

Hn >
3

4κ
ln(νn+1) (2.2.5)

we have
(
Eνn
ω Tνn+1

)2

≤ 4V arω
(
Tνn+1 − Tνn

)
.

Further, we have
(
Eνn
ω̃ Tνn+1

)2

≤ 4V arω̃
(
Tνn+1 − Tνn

)
(cf. (1.1.1) for the definition of

ω̃) and
(
Eνn
ω T̃

(n)
νn+1

)2

≤ 4V arω

(
T̃

(n)
νn+1 − T̃ (n)

νn

)
(cf. (2.2.1) for the definition of T̃

(n)
νn ).

Proof. First, we note that due to (1.2.3) we have

(
Eνn
ω Tνn+1

)2

=

(
(νn+1 − νn) + 2

νn+1−1∑

j=νn

Wj

)2

= (νn+1 − νn)2 + 4(νn+1 − νn)

νn+1−1∑

j=νn

Wj + 4

νn+1−1∑

j=νn

W 2
j + 8

νn+1−2∑

j=νn

νn+1−1∑

l=j+1

WjWl.

Together with (2.1.1) this yields

(
Eνn
ω Tνn+1

)2

− V arω(Tνn+1 − Tνn)

=
(
νn+1 − νn

)2
+ 4
(
νn+1 − νn − 1

) νn+1−1∑

j=νn

Wj (2.2.6)

+ 8

νn+1−2∑

j=νn

νn+1−1∑

l=j+1

Wj

(
Wl − exp

(
V (l + 1)− V (j + 1)

)(
1 +Wj

))
(2.2.7)

− 8
νn−1∑

i=−∞

νn+1−1∑

j=νn

exp
(
V (j + 1)− V (i+ 1)

) (
Wi +W 2

i

)
. (2.2.8)

Note that (2.2.8) is negative, since all terms of the sums are positive and therefore can

be neglected on our way to find an upper bound.

Next, recall that for ω ∈ B1(νn+1) blocks in the interval [−νn+1, νn+1] are smaller than
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(ln νn+1)2, and thus we obtain using Lemma 2.1.1 for ω ∈ F (νn+1) the following upper

bound for (2.2.6)

(
νn+1 − νn

)2
+ 4
(
νn+1 − νn − 1

) νn+1−1∑

j=νn

Wj ≤
(

ln νn+1

)4
+ 4
(

ln νn+1

)6 (
1 + 2 exp

(
Hn

))

≤ exp (2Hn)

≤ V arω
(
Tνn+1 − Tνn

)
. (2.2.9)

Furthermore, we observe that for j < l we have

Wl − exp
(
V (l + 1)− V (j + 1)

)(
1 +Wj

)

=
l∑

k=−∞
exp

(
V (l + 1)− V (k)

)

− exp
(
V (l + 1)− V (j + 1)

)
(

1 +

j∑

k=−∞
exp

(
V (j + 1)− V (k)

)
)

=





l∑

k=j+2

exp
(
V (l + 1)− V (k)

)
if j < l − 1

0 if j = l − 1.

This simplifies (2.2.7) for environments ω ∈ F (νn+1) to

8

νn+1−2∑

j=νn

νn+1−1∑

l=j+1

Wj

(
Wl − exp

(
V (l + 1)− V (j + 1)

)(
1 +Wj

))

= 8

νn+1−3∑

j=νn

νn+1−1∑

l=j+2

Wj

l∑

k=j+2

exp
(
V (l + 1)− V (k)

)

≤ 8 ln(νn+1)4 exp
(
Hn

) νn+1−3∑

j=νn

Wj1
{
Wj≤ exp(Hn)

8 ln(νn+1)
6

}

+ 8

νn+1−3∑

j=νn

Wj1
{
Wj>

exp(Hn)

8 ln(νn+1)
6

} νn+1−1∑

l=j+2

l∑

k=j+2

exp
(
V (l + 1)− V (k)

)

≤ exp
(
2Hn

)
+ 8

νn+1−3∑

j=νn

Wj1Wj>
exp

(
Hn

)
8 ln(νn+1)

6


νn+1−1∑

l=j+2

l∑

k=j+2

exp
(
V (l + 1)− V (k)

)
.

(2.2.10)
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To get an upper bound for (2.2.7), we therefore have to control the last two sums

in (2.2.10). We note that for an environment ω ∈ F (νn+1) and νn < j < νn+1 with

Wj >
exp(Hn)

8 ln(νn+1)6
we have

exp
(
V (j + 1)− V (νn)

)
≥ exp

(
Hn

)

17 ln(νn+1)8

because otherwise

Wj =

j∑

k=−∞
exp

(
V (j + 1)− V (k)

)

≤
νn−d(ln νn)2e∑

k=−∞
exp

(
V (j + 1)− V (k)

)
+ d(ln νn)2e

+ (j + 1− νn + d(ln νn)2e) exp
(
V (j + 1)− V (νn)

)

≤ 2(ln νn)2 + 2(ln νn)2 exp
(
Hn

)

17 ln(νn+1)8

≤ exp
(
Hn

)

8 ln(νn+1)6
.

Thus, we get for ω ∈ F (νn+1) using assumption (2.2.5)

V (j + 1)− V (νn) ≥ 2

3κ
ln(νn+1). (2.2.11)

This yields the following upper bound for the summands in (2.2.10) for environments

ω ∈ F (νn+1)

8Wj1
{
Wj>

exp(Hn)

8 ln(νn+1)
6

} νn+1−1∑

l=j+2

l∑

k=j+2

exp
(
V (l + 1)− V (k)

)

≤ 8Wj1
{
Wj>

exp(Hn)

8 ln(νn+1)
6

} ln(νn+1)4 (νn+1)
1
2κ

≤ W 2
j 1

{
Wj>

exp(Hn)

8 ln(νn+1)
6

}, (2.2.12)

where we used that for ω ∈ E
(
νn+1,

2
3

)
the potential does not increase more than

1
2κ

ln(νn+1) on the interval {j, ..., νn+1} due to (2.2.11).

For environments ω ∈ F (νn+1), (2.2.10) and (2.2.12) together now imply the fol-
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lowing upper bound for (2.2.7)

8

νn+1−2∑

j=νn

νn+1−1∑

l=j+1

Wj

(
Wl − exp

(
V (l + 1)− V (j + 1)

)(
1 +Wj

))

≤ exp
(
2Hn

)
+

νn+1−3∑

j=νn

W 2
j

≤ 2Varω
(
Tνn+1 − Tνn

)
. (2.2.13)

Therefore, (2.2.9) and (2.2.13) finally yield

(
Eνn
ω (Tνn+1)

)2

− Varω
(
Tνn+1 − Tνn

)
≤ 3Varω

(
Tνn+1 − Tνn

)
.

Note that the proof of the statement is the same for ω̃ instead of ω and for T̃
(n)
νn+1

instead of Tνn+1 . The considered quenched expectation in these cases is even smaller.

In line (2.2.8), the number of summands is different in these cases but since they are

all negative we can use the same upper bound 0 for all cases. �

Lemma 2.2.3. For P-almost every environment ω we have

lim sup
n→∞

Eω̃(Tn)− Eω̃
(
Tn−d2(lnn)2e

)
√

Varω̃ (Tn)
≤ 2.

Proof. First, we note that for environments ω ∈ E
(
n, 2

3

)
we have at most one increase

of the potential of more than 2
3κ

lnn in the interval [n − d2(lnn)2e , n]. Therefore, we

get for ω ∈ B(n) ∩ E
(
n, 2

3

)
∩ C and n large enough

Ean
ω̃ (Tn)√

Varω̃ (Tn)
≤ 1√

Varω̃ (Tn)

n−1∑

k=n−d2(lnn)2e
Ek
ω̃Tk+1

(
1{Hk0≤ 2

3κ
lnn} + 1{Hk0> 2

3κ
lnn}

)

≤ 1√
Varω̃ (Tn)

(
d2(lnn)2e(lnn)2

(
n

2
3κ + 1

)
+ 2
√

Varω̃ (Tn)
)
,

where we additionally used Lemma 2.1.1 and 2.2.2 to obtain the last line. Lemma

1.5.9 and Theorem 1.4.5 (note that Theorem 1.4.5 is also true for ω̃) now finish the

proof. �
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2.3 Uniform Integrability

Lemma 2.3.1. Assume Assumptions 1 and 2. For any ε < 1
3
, there exists an η > 0

such that for

An :=

{
∃ i, j ∈ N, 1 ≤ i ≤ n : Hi >

1− ε
κ

lnn, Eνi
ω

(
T̃ (n)
νi+1

)j
> 3j!2j

(
Eνi
ω T̃

(n)
νi+1

)j}

we have (cf. (1.5.2) for the definition of Q)

Q
(
An
)

= o
(
n−η
)
.

Proof. The proof of this Lemma is a refinement of the proof of Lemma 5.9 in [PZ09],

where they additionally use that the distribution of ln ρ0 is non-lattice. We first consider

a modification of the environment. For x ∈ Z we define ω(x) by

ω
(x)
i :=

{
1 if i = x,

ωi if i 6= x

as the environment which is the same as ω with an added reflection at x. Therefore,

(Xn)n∈N0 forms under P x
ω(x) a random walk in the environment ω with a reflection at

its starting point x.

Let (X?
t )t≥0 be the continuous time version of (Xn)n∈N0 constructed in such a way

that there exists a family (ζk)k∈N of independent exponentially random variables of

parameter 1 indicating the times of the jumps of (X?
t )t≥0. Therefore, we can couple

(Xn)n∈N0 and (X?
t )t≥0 such that for all k ∈ N we have

X?
Υk

= Xk, where Υk :=
k∑

i=1

ζi.

Additionally, we choose the family (ζk)k∈N to be independent of the environment and

define T ?k as the hitting time of position k of (X?
t )t≥0. Note that

T ?k =

Tk∑

i=1

ζi,

and thus, using Wald’s identity, we have for all k > x

Ex
ω(x)T

?
k = Ex

ω(x)Tk. (2.3.1)

Further, we note that for n ∈ N the sum of n independent exponentially distributed

random variables is Erlang distributed with parameters 1 and n, and due to Lemma

A.1 we have for all n ∈ N

P x
ω(x)

(
n∑

i=1

ζi ≥ n

)
≥ 1

3
.
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Therefore, we get for all k > x and all j ∈ N

P x
ω(x) (T ?k > Tk) =

∞∑

l=k−x
P x
ω(x)

(
T ?k > Tk

∣∣∣ Tk = l
)
· P x

ω(x) (Tk = l − x)

=
∞∑

l=k−x
P x
ω(x)

(
l∑

i=1

ζi > l

)
· P x

ω(x) (Tk = l)

≥ 1

3
,

and this yields for t > 0

1

3
P x
ω(x) (Tk > t) ≤ P x

ω(x) (Tk > t) · P x
ω(x) (T ?k > Tk)

= P x
ω(x) (Tk > t, T ?k > Tk)

≤ P x
ω(x) (T ?k > t) . (2.3.2)

Using Kac’s moment formula (cf. (6) in [FP99]) and the Markov property, we obtain

for k > x

Ex
ω(x) (T ?k )j ≤ j!

(
Ex
ω(x)T

?
k

)j

because we have Ex
ω(x)T

?
k > Ey

ω(y)T
?
k for all y ∈ (x, k). Together with (2.3.1) and (2.3.2)

this yields

1

3
Ex
ω(x) (Tk)

j =
1

3

∞∫

0

jtj−1P x
ω(x) (Tk > t) dt ≤

∞∫

0

jtj−1P x
ω(x) (T ?k > t) dt

= Ex
ω(x) (T ?k )j ≤ j!

(
Ex
ω(x)T

?
k

)j
= j!

(
Ex
ω(x)Tk

)j
. (2.3.3)

Next, we define

ωi? := ω

(
νi−d(lnn)2e

)
,

and we get using (2.3.3)

Eνi
ω

(
T̃ (n)
νi+1

)j
≤ E

νi−d(lnn)2e
ωi?

(
Tνi+1

)j

≤ 3j!
(
E
νi−d(lnn)2e
ωi?

Tνi+1

)j

≤ 3j!
(
E
νi−d(lnn)2e
ωi?

Tνi + Eνi
ω T̃

(n)
νi+1

)j
.

Due to the shift invariance of Q for ladder locations, this yields

Q(An) ≤ Q

(
∃ i ≤ n : Hi >

1− ε
κ

lnn, E
νi−d(lnn)2e
ωi?

Tνi > Eνi
ω T̃

(n)
νi+1

)
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2.3. UNIFORM INTEGRABILITY

≤ nQ

(
H1 >

1− ε
κ

lnn, E
ν−d(lnn)2e
ω T̃

(n)
0 > n

1−ε
κ

)

= nQ

(
H1 >

1− ε
κ

lnn

)
Q
(
E
ν−d(lnn)2e
ω T̃

(n)
0 > n

1−ε
κ

)
, (2.3.4)

where we used in second last line that

E
ν−d(lnn)2e
ωi?

T0 ≤ E
ν−d(lnn)2e
ω T̃

(n)
0

and in the last equality that H1 is independent of the environment to the left side of

0. Now, for ω ∈ B1(n) we have due to (1.2.3)

E
ν−d(lnn)2e
ω T̃

(n)
0 =

−1∑

k=−d(lnn)2e
Eνk
ω T̃

(n)
νk+1

≤ d(lnn)4e+ 2
−1∑

k=−d(lnn)2e

νk+1−1∑

i=νk

j∑

j=νk−d(lnn)2e

exp
(
V (i+ 1)− V (j)

)

≤ 3(lnn)6

−1∑

k=−d(lnn)2e
exp

(
Hk

)
. (2.3.5)

Further, we note that Q(H1 > h) = P(H1 > h). Then, (2.3.5) together with (1.5.7)

yields for arbitrary ε > 0 and large n (cf. (1.5.2) for the definition of R)

Q
(
E
ν−d(lnn)2e
ω T̃0 > n

1−ε
κ

)

≤ Q


3(lnn)6

−1∑

i=−d(lnn)2e
exp(Hi) > n

1−ε
κ


+ Q (B1(n)c)

≤
(
(lnn)2 + 1

)
Q

(
H1 >

1− ε
κ

lnn− 7 ln lnn

)
+ P (R) P (B1(n)c)

≤ 2C1(lnn)
7
κ

+2n−(1−ε),

where we used that P
(
B1(n)c

)
= O(n−2) by Lemma 1.5.1. Plugging this in (2.3.4), we

get again using (1.5.7)

Q
(
An
)
≤ 2C1(lnn)

7
κ

+2n−1+2ε = o
(
n−1+3ε

)
.

This finishes the proof for all ε < 1
3
. �

To get an asymptotic behaviour with respect to P, we change the set An slightly

in such a way that it does not depend on the environment to the left side of 0. We

get:
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Corollary 2.3.2. Assume Assumptions 1 and 2. For any ε < 1
3
, there exists an η > 0

such that for

Ãn :=

{
∃ i, j ∈ N, (lnn)2 < i ≤ n : Hi >

1− ε
κ

lnn, Eνi
ω

(
T̃ (n)
νi+1

)j
> 3j!2j

(
Eνi
ω T̃

(n)
νi+1

)j}

we have

P
(
Ãn

)
= o

(
n−η
)
.

Lemma 2.3.3. Let (an)n∈N be a (environment dependent) subsequence of nk = 22k and

there exists ε < 1
3

such that we have for all n ∈ N

Han−1 >
1− ε
κ

ln(νan). (2.3.6)

Then the sequence


(
T̃

(an)
νan − T̃

(an)
νan−1

E
νan−1
ω T̃

(an)
νan

)2


n∈N

is uniformly integrable with respect to Pω for P-almost every environment ω.

Proof. At first, we note that the distribution of T̃
(an)
νan − T̃

(an)
νan−1 under Pω is the same as

the distribution of T̃
(an)
νan under P

νan−1
ω .

We have for all blocks an and all c > 0

1
(
E
νan−1
ω T̃

(an)
νan

)2

∫

{
T̃

(an)
νan

>
√
cE

νan−1
ω T̃

(an)
νan

}
(
T̃ (an)
νan

)2

dP νan−1
ω

=
c
(
E
νan−1
ω T̃

(an)
νan

)2

P
νan−1
ω

(
T̃

(an)
νan >

√
cE

νan−1
ω T̃

(an)
νan

)

(
E
νan−1
ω T̃

(an)
νan

)2

+
1

(
E
νan−1
ω T̃

(an)
νan

)2

∞∫

√
cE

νan−1
ω T̃

(an)
νan

2tP νan−1
ω

(
T̃ (an)
νan

> t
)
dt

= cP νan−1
ω

(
T̃ (an)
νan

>
√
cEνan−1

ω T̃ (an)
νan

)
+

∞∫

√
c

2xP νan−1
ω

(
T̃ (an)
νan

> xEνan−1
ω T̃ (an)

νan

)
dx.

(2.3.7)

Due to (2.3.6), Corollary 2.3.2 and the fact that (an)n∈N is growing at least as fast

as 22n , the Borel-Cantelli lemma yields that for P-almost every environment ω there

exists a N = N(ω) such that we have

Eνan−1
ω

(
T̃ (an)
νan

)j
≤ 3j!2j

(
Eνan−1
ω T̃ (an)

νan

)j
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for all j ∈ N and all n ≥ N .

We have T̃
(an)
νan ≥ 0 by the definition, and therefore we obtain for n ≥ N and P-almost

every environment ω

Eνan−1
ω exp

(
T̃

(an)
νan

4E
νan−1
ω T̃

(an)
νan

)
=

∞∑

j=0

1

j!

E
νan−1
ω

(
T̃

(an)
νan

)j

4j
(
E
νan−1
ω T̃

(an)
νan

)j ≤
∞∑

j=0

3

2j
= 6.

Then, applying Markov inequality yields for n ≥ N and P-almost every environment

ω

P νan−1
ω

(
T̃ (an)
νan

> xEωT̃
(an)
νan

)
≤ 6 exp

(
−x

4

)
, x ≥ 0.

Thus, for all n ≥ N and P-almost every environment ω we get as an upper bound

for (2.3.7)

1
(
E
νan−1
ω T̃

(an)
νan

)2

∫

{
T̃

(an)
νan

>
√
cE

νan−1
ω T̃

(an)
νan

}
(
T̃ (an)
νan

)2

dP νan−1
ω

≤ 6c exp

(
−
√
c

4

)
+ 12

∫ ∞
√
c

x exp
(
−x

4

)
dx

= 6c exp

(
−
√
c

4

)
+ 12

(
4
√
c+ 16

)
exp

(
−
√
c

4

)

= 6 exp

(
−
√
c

4

)(
c+ 8

√
c+ 32

)
.

Therefore, we conclude that we have for P-almost every environment ω

lim
c→∞

sup
n∈N

∫

{
T̃

(an)
νan

>
√
cE

νan−1
ω T̃

(an)
νan

}
(

T̃
(an)
νan

E
νan−1
ω T̃

(an)
νan

)2

dP νan−1
ω

= max
n∈{1,...,N−1}

lim
c→∞

∫

{
T̃

(an)
νan

>
√
cE

νan−1
ω T̃

(an)
νan

}
(

T̃
(an)
νan

E
νan−1
ω T̃

(an)
νan

)2

dP νan−1
ω

+ lim
c→∞

sup
n≥N

∫

{
T̃

(an)
νan

>
√
cE

νan−1
ω T̃

(an)
νan

}
(

T̃
(an)
νan

E
νan−1
ω T̃

(an)
νan

)2

dP νan−1
ω

= 0,
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which shows that 

(
T̃

(an)
νan − T̃

(an)
νan−1

E
νan−1
ω T̃

(an)
νan

)2


n∈N

is uniformly integrable with respect to Pω for P-almost every environment ω. �
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Chapter 3

Cutoff

In the first section of this chapter, we give an introduction to the cutoff phenomenon

and an overview of existing results. Then, we prove our main results Theorem 1.4.1 and

Theorem 1.4.2. We show that a sequence of transient lazy RWRE on ({0, ..., n})n∈N
exhibits a cutoff under Assumptions 1 and 2 for κ > 1 and that there is no cutoff for

κ < 1 if we additionally assume Assumption 3. In Section 3.5, we compare our main

results with the case of a deterministic environment. Further, in the last section of this

chapter we prove that the mixing time of a transient RWRE is roughly of order n
1
κ for

κ ≤ 1 and P-almost surely of order n for κ > 1.

3.1 Introduction and overview

For each n ∈ N let (Un
k )k∈N0 be an aperiodic and irreducible Markov chain on a finite

state space Ωn and let (πn)n∈N denote the sequence of associated stationary distribu-

tions. Further, we assume

|Ωn| n→∞−→ ∞
and recall the definition of dn(l) (cf. Definition 1.3.2).

From the convergence theorem for irreducible and aperiodic Markov chains, we know

that for all n ∈ N we have

dn(l)
l→∞−→ 0.

Further, we know that dn(l) is decreasing in l (cf. Exercise 4.4 in [LPW09]) and we

have

dn(0)
n→∞−→ 1.

We recall that tmix(n) is defined as the first time at which the distance to stationarity is

smaller than 1
4
. In general, we expect that tmix(n) is growing in n and tends to infinity

as n goes to infinity. But the next easy example shows that this is not always the
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case. Let us consider the simple random walk on the complete graph with n vertices.

The random walk moves from its current position to one of its n− 1 neighbours with

probability 1
n

and stays at its current position with probability 1
n
. The associated

stationary distribution is the uniform distribution on the n vertices and we observe the

following “unusual” behaviour. Since the distribution after one time step is already

the uniform distribution, we have for all n ∈ N

dn(1) = 0 and tmix(n) = 1.

The properties of dn mentioned before the example yield a general shape of the

transition to stationarity but we will see that the transition still can look very different

from example to example. In the following, we give examples which differ in the size

of the window in which the transition to stationarity takes place. The quantity we use

to distinguish the different cases is

Σ := sup
0<ε< 1

2

lim sup
n→∞

tεmix(n)

t1−εmix(n)
∈ [1,∞], (3.1.1)

where for 0 < c < 1 we define

tcmix(n) := min {k ∈ N : dn(k) ≤ c} .

A big value of Σ (especially Σ =∞) indicates a slow transition to stationary (cf. Figure

3.1).

dn(k)

k

1
1− ε

0.5

ε
0

t1−ε
mix (n) tεmix(n)

Figure 3.1

1. Σ =∞:

This case includes all sequences of chains which show a slow transition to

stationarity even if considered on the time-scale of the mixing time tmix(n). An easy

example of a chain for which we have Σ = ∞ is the simple random walk on a cy-

cle with n vertices. If n is odd, we note that this chain is irreducible and aperiodic

and that the stationary distribution is the uniform distribution on the n vertices. In
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Theorem 2 of Chapter 3 in [Dia88] it is shown that for 7 ≤ n and arbitrary k we have

∥∥Pn(Xk ∈ ·)− π
∥∥
TV
≥ 1

2
exp

(
−π

2

2

k

n2
− π4

11

k

n4

)
.

Furthermore, for 7 ≤ n2 ≤ k and n odd, there exist the following upper bound

∥∥Pn(Xk ∈ ·)− π
∥∥
TV
≤ exp

(
−π

2

2

k

n2

)

of the same order. Using these bounds, we get

tmix(n) ≤ 2 ln 4

π2
n2

for large odd n and

tεmix(n) ≥ − ln(2ε)

π2
n2

for ε < 1
2
. Therefore, we can conclude

Σ ≥ sup
0<ε< 1

2

lim sup
n→∞

tεmix(2n+ 1)

tmix(2n+ 1)
≥ sup

0<ε< 1
2

− ln(2ε)

2 ln 4
= ∞.

We note that for the lazy simple random walk on {0, ..., n} with reflection in 0 and n

we also have Σ =∞ (cf. Section 3.5).

2. Σ <∞:

We say that a sequence of Markov chains for which we have Σ < ∞ exhibits a

pre-cutoff. In this case the time within the total variation distance drops from 1 to 0

has at most the same order as the mixing time.

For the cutoff phenomenon (which we are mainly interested in), this condition is

not strong enough. For this it is required that the transition from 1 to 0 takes place

in a window whose size is negligible compared to the order of the mixing time. More

precisely, a sequence of Markov chains exhibits a cutoff if we have

lim
n→∞

tεmix(n)

t1−εmix(n)
= 1 (3.1.2)

for all ε > 0. Another equivalent characterisation, which provides a good illustration

(cf. Figure 3.2) of the cutoff phenomenon, is given in the following lemma:

Lemma 3.1.1 (cf. Lemma 18.1 in [LPW09]). The sequence ((Un
k )k∈N0)n∈N exhibits a

cutoff if and only if

lim
n→∞

dn (c · tmix(n)) =

{
1 if c < 1,

0 if c > 1.
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dn(k)

k

1

0.5

0
tnmix

Figure 3.2: If we rescale the time by the mixing time, Lemma 3.1.1 states for sequences

with a cutoff that the function dn(·) approaches a step function. 1

We note that a sequence of simple random walks on the complete graph with n

vertices fulfils condition (3.1.2) but of course we are more interested in examples with

a growing mixing time in n.

The definition of the cutoff phenomenon in (3.1.2) or Lemma 3.1.1 only considers the

question if the transition is sharp, but does not specify the time it takes for the total

variation distance to drop from 1 to 0. This leads to the following definition:

Definition 3.1.2 (cf. Definition 1.3.3). The sequence ((Un
k )k∈N0)n∈N exhibits a cutoff

with cutoff times (tn)n∈N and window size (fn)n∈N if

(1) fn = o(tn),

(2) lim
c→∞

lim inf
n→∞

dn(tn − cfn) = 1 and

(3) lim
c→∞

lim sup
n→∞

dn(tn + cfn) = 0.

We note that a smaller order of the window size implies a sharper transition to

stationarity.

The first example for which a cutoff was proved (although the term cutoff was not

introduced until [AD86]) is the case of random transpositions on the symmetric group

by Diaconis and Shahshahani in [DS81]. They were motivated by the analysis of

algorithms to generate random permutations. A very easy algorithm to generate a

random permutation of the first n integers consists of the following two steps in every

iteration:

First, choose a random integer uniformly between 1 and n and then transpose this

1This figure is adapted from Figure 18.1 in [LPW09].

56



3.1. INTRODUCTION AND OVERVIEW

integer with 1. We continue this procedure such that in the jth step we choose a

random integer uniformly between j and n and afterwards transpose this integer with

the number which is at position j at that time.

It is easily seen that for n ≥ 2 the distribution of the permutation after n − 1

iterations is the uniform distribution on the set of all permutations of the first n integers.

Diaconis and Shahshahani compared this algorithm with the algorithm which chooses

in every iteration 2 integers independently of each other and uniformly between 1 and

n and then transposes these integers. The distribution of the permutation is never

exactly uniform. But how long do we have to wait until it is approximately uniform

and is this time possibly smaller than n− 1?

In [DS81], Diaconis and Shahshahani proved that there is a cutoff in the situation

of the second algorithm with cutoff times 1
2
n lnn and window size n, and thus they

answered both questions. Asymptotically, this shows that we have to wait at least

about 1
2
n lnn steps to be close to the uniform distribution. Further, we know that the

convergence to stationarity of the first algorithm is a lot faster because for large n the

distance in total variation to stationarity after n−1 iterations is still very close to 1 for

the second algorithm while the distribution of the first algorithm is already uniform.

In the following years mainly Aldous and Diaconis examined the transition to sta-

tionarity of card shuffling algorithms. A reasonable algorithm should in the long run

approach the uniform distribution on all permutations of the deck. The question they

tried to answer is: How long do we have to wait to be reasonable close to this distri-

bution?

Aldous identified a cutoff for the case of the riffle-shuffle (and the random walk on

the hypercube) in [Ald83]. Then, in [AD86] Aldous and Diaconis proved the cutoff

phenomenon for the top-in-at-random card shuffling. In this fundamental work the

expression cutoff was first used. The paper “Trailing the dovetail shuffle to its lair”

published by Bayer and Diaconis in 1992 (cf. [BD92]) is the probably most famous

paper in this context. Their result was also on the cutoff of the riffle shuffle and

improved the result in [Ald83]. It even attracted attention of a general audience. The

New York Times wrote on 09.01.1990 (cf. [Kol90]) as their headline

“In shuffling cards, 7 is winning number.”

More precisely, you should riffle a deck of 52 cards (used for example in blackjack) 7

times to end with a totally random order of cards. Further, one can conclude from

their result that the order of the cards after riffling 5 times is with high probability

as bad as at the start and riffling more than 9 times is useless because the cards are

already in a random order (cf. Figure 3.3).

To state their precise result, we first describe the mathematical model they used to

model the riffling of n cards (cf. Section 8 in [LPW09]):

Let M be a binomial(n, 1/2) random variable and split the deck into its top M cards

and its bottom n−M cards. The two piles are then held over the table and cards are
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d52(k)

k

1
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Figure 3.3: On the distance in total variation of distribution of the riffle shuffle algorithm

to its stationary distribution for a deck with 52 cards.

dropped one by one, forming a single pile again, according to the following recipe: If at

a particular moment, the left pile contains b cards and the right pile contains c cards,

then drop the card on the bottom of the left pile with probability b
b+c

and the card on

the bottom of the right pile with probability c
b+c

. Repeat this procedure until all cards

have been dropped.

They proved:

Theorem 3.1.3 (cf. Theorem 2 in [BD92]). Let Pm
n denote the distribution of a deck

of n cards after m riffle shuffles (starting from the deck in order) and let πn denote the

uniform distribution. Then we have for m = 3
2

log2(n) + θ and large n

∥∥Pm
n − πn

∥∥
TV

= 1− 2Φ

(
− 2−θ

4
√

3

)
+O

(
1

n
1
4

)
,

where Φ denotes the distribution function of a standard Gaussian random variable.

We want to emphasize that in this situation there is a very sharp transition which

can be seen at the fact that the cutoff window size can be chosen as a constant. The

theorem yields that for large n we have

dn

(
3

2
log2(n)− 5

)
≥ 0.99 and dn

(
3

2
log2(n) + 5

)
≤ 0.01.

The mixing properties of models in the statistical mechanics have also been studied a

lot recently. In these models, the stationary distribution is the equilibrium distribution,

and therefore identifying a cutoff is very helpful for simulations. During the last years,

there have been proofs for a cutoff in several spin systems (cf. for example [LLP10],

[LS09], and [LS12]).
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In general, proving a cutoff turns out to be a challenging task even if one is not

interested in the window size. The proofs usually require a very detailed analysis of the

family of underlying distributions and there are still nearly no necessary and sufficient

conditions to answer the question when to expect a cutoff. But nevertheless there

are a lot of examples which are believed to have a cutoff. In 2004 Peres (cf. [Per04])

formulated a very simple condition just involving the mixing time and the spectral gap

of the transition matrix (cf. Chapter 4 for more details). He conjectured that a family

of Markov chains exhibits a cutoff if and only if the product of the mixing time and the

spectral gap of the transition matrix tends to infinity as n goes to infinity. It turned

out that this conjecture is not true in general (cf. Aldous’ example, Section 6 in [CS08])

but still yields a necessary condition:

Lemma 3.1.4 (cf. Lemma 18.4 in [LPW09]). For a sequence of irreducible and ape-

riodic Markov chains with spectral gaps (gapn)n∈N and mixing times (tmix(n))n∈N, if

gapn · tmix(n) is bounded above, then there is no pre-cutoff.

Despite the fact that it turned out that this product-condition does not imply

a cutoff in general, Peres still conjectures that there is an equivalence between the

existence of a cutoff and the validity of this product-condition for many natural types

of chains. Recently, this was proved for birth and death chains (cf. [DLP10]).

In the rest of this chapter, we are interested in the mixing properties (and especially

the cutoff phenomenon) of transient RWRE on Z. In the case Σ = ∞, we have seen

that a simple random walk on the cycle does not exhibit a cutoff. If we choose one

d-regular (d ≥ 3) graph out of the set of all d-regular graphs uniformly at random,

Lubetzky and Sly proved in [LS10] that with high probability the simple random walk

on this d-regular graph exhibits a cutoff. Further, it is known that the simple random

walk with drift on {0, ..., n} exhibits a cutoff (cf. Section 3.5).

3.2 Stationary distribution

To show a cutoff or to prove that no cutoff is possible, we need to understand very

precisely which events have a high probability with respect to the stationary distri-

bution. In this section, we show that the mass of the stationary distribution of the

RWRE under Pωn is asymptotically concentrated on the interval [n− 2(lnn)2, n].

At first, we note that for x = 2, ..., n− 1 we have

ωx−1

(
exp

(
− V (x)

)
+ exp

(
− V (x− 1)

))

= exp
(
− V (x)

)
=
(
1− ωx

)(
exp

(
− V (x+ 1)

)
+ exp

(
− V (x)

))

59



CHAPTER 3. CUTOFF

and
(
1− ω1

)(
exp

(
− V (2)

)
+ exp

(
− V (1)

))
= 1 · exp

(
− V (1)

)
= ωn0 ,

ωn−1

(
exp

(
− V (n)

)
+ exp

(
− V (n− 1)

))
= exp

(
− V (n)

)(
1− ωnn

)
.

Therefore, the reversible (and hence stationary) probability distribution of the

RWRE (Xn)n∈N0 under Pωn is defined by

πωn(0) :=
exp

(
− V (1)

)

Cn
,

πωn(x) :=
exp

(
− V (x+ 1)

)
+ exp

(
− V (x)

)

Cn
for x = 1, ..., n− 1, (3.2.1)

πωn(n) :=
exp

(
− V (n)

)

Cn
,

where

Cn :=
n−1∑

x=1

(
exp

(
− V (x+ 1)

)
+ exp

(
− V (x)

))
+ exp

(
− V (n)

)
+ exp

(
− V (1)

)

(3.2.2)

= 2
n∑

x=1

exp
(
− V (x)

)

is the normalizing constant.

Lemma 3.2.1. We have

lim
n→∞

πωn
( [
n− 2(lnn)2, n

))
= 1

for P-almost every environment ω.

Proof. We get

πωn
(
[0, n− 2(lnn)2)

)

=

bn−2(lnn)2c∑
x=1

(
exp

(
− V (x+ 1)

)
+ exp

(
− V (x)

))
+ exp

(
− V (1)

)

2
n∑
x=1

exp
(
− V (x)

)

≤
2n exp

(
− min

0≤i≤bn−2(lnn)2c
V (i)

)
+ exp(−V (1))

2 exp
(
− V (n)

)

= n exp

(
V (n)− min

0≤i≤bn−2(lnn)2c
V (i)

)
+ exp

(
V (n)− V (1)

)
. (3.2.3)
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By the definition of B1(n), we know that for all i ≤ n− 2(lnn)2 we have

V (n)− V (i) < −2 ln(n).

For environments ω ∈ B1(n), this therefore yields as an upper bound for (3.2.3)

πωn
(

[0, n− 2(lnn)2)
)
≤ 2n exp

(
− 2 lnn

)
+ exp

(
V (n)− V (1)

)

=
2

n
+ exp

(
V (n)− V (1)

)
,

which shows that for ω ∈ B1(n) we have

lim
n→∞

πωn
( [
n− 2(lnn)2, n

] )
= 1.

Lemma 1.5.1 and the Borel-Cantelli lemma now finish the proof. �

Note here that with respect to Pωn the lazy random walk (Yk)k∈N0 has the same

stationary distribution πωn as (Xk)k∈N0 .

Remark 3.2.2.

Let πSRW
n denote the stationary distribution of the simple random walk (in deterministic

environment) on {0, ..., n} with reflection in 0 and n (cf. Section 3.5). In this case, the

formula of the stationary distribution (cf. (3.2.1)) simplifies to

πSRW
n (k) =

1

n
for k ∈ {1, ..., n− 1} and

πSRW
n (0) = πSRW

n (n) =
1

2n
.

Further, let us consider the nearest neighbour random walk on {0, ..., n} with reflection

in 0 and n and transition probabilities p
2

to move to the right, 1−p
2

to move to the left

and 1
2

to stay at the current position. We get for the associated stationary distribution

for k = 0, ..., n

πpn(k) =

p
1−p − 1

(
p

1−p

)n+1

− 1

(
p

1− p

)k
.

If p > 1
2
, this yields

lim
n→∞

πpn

(
[n− f(n), n]

)
= 1, (3.2.4)

for all functions f for which we have lim
n→∞

f(n) =∞.
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3.3 Cutoff for κ > 1

In this section, we prove Theorem 1.4.1. In a first step, we show that we can bound

the distance in total variation of the lazy RWRE to its stationary distribution using

the hitting times Tn.

Lemma 3.3.1. We have for all n, k ∈ N

max
x∈{0,...,n}

∥∥P x
ωn(Yk ∈ ·)− πωn

∥∥
TV
≤ Pωn

(
T Yn > k

)
.

Proof. We have for all k ∈ N using Corollary 5.3 in [LPW09]:

max
x∈{0,...,n}

∥∥P x
ωn(Yk ∈ ·)− πωn

∥∥
TV
≤ max

x,y∈{0,...,n}
P ~z
ωn

(
min{s ∈ N : Y x

s = Y y
s } > k

)
,

(3.3.1)

where for all x, y ∈ {0, ..., n} under P ~z
ωn we consider a coupling (Y x

k , Y
y
k )k∈N0

of two

lazy RWRE on {0, ..., n} with P ~z
ωn (Y x

0 = x, Y y
0 = y) = 1 and marginal distribution P x

ωn

and P y
ωn , respectively, defined in the following way: Until the two chains meet for the

first time, the chains move according to the following two steps: First, we toss a coin

to decide which chain moves. After that, the chosen chain performs a step of a RWRE

in the environment ωn described in (1.1.2) and the other chain stays at its position.

After they met for the first time, we move them together according to the law of a lazy

RWRE.

Note that due to this coupling the two chains cannot cross each other without meeting,

and therefore we have

max
x,y∈{0,...,n}

P ~z
ωn (min{s ∈ N : Xx

s = Xy
s } > t) ≤ Pωn

(
T Yn > t

)
,

which together with (3.3.1) yields the statement. �

Proof of Theorem 1.4.1. First, we note that due to (2.1.2) and Theorem 1.4.5 we have

for κ > 1 and P-almost every environment ω

√
Varωn(Tn) ≤

√
Varω(Tn) = o(n). (3.3.2)

Therefore, (1) in Definition 1.3.3 is valid for

tω(n) := 2Eωn(Tn) and fω(n) :=
√

Varωn(Tn)

because we have for P-almost every environment ω due to (1.4.1)

1 ≤ lim
n→∞

Eωn(Tn)

n
≤ lim

n→∞
Eω(Tn)

n
= ET1.
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Further, we define

t+ω (c, n) := dtω(n) + c · fω(n)e.
Then, using Lemma 1.3.4, Lemma 3.3.1 and Chebyshev’s inequality, we get

dn
(
t+ω (c, n)

)
= max

x∈{0,...,n}

∥∥∥P x
ωn(Yt+ω (c,n) ∈ ·)− πωn

∥∥∥
TV

≤ Pωn
(
T Yn > t+ω (c, n)

)

≤ Pωn
(∣∣∣T Yn − EωnT Yn

∣∣∣ > c
√

Varωn(Tn)
)

≤ 1

c2

Varωn(T Yn )

Varωn(Tn)
. (3.3.3)

Therefore, Theorem 1.4.5 together with (1.3.4) and (2.1.14) yields for P-almost every

environment ω

lim
c→∞

lim sup
n→∞

dn
(
t+ω (c, n)

)
≤ lim

c→∞
4 +O(1)

c2
= 0,

and thus we showed (2) in Definition 1.3.3.

As the last step, we are interested in the lower bound of the cutoff. The idea is to

show that before the cutoff window the lazy RWRE with start in 0 has with high

probability not reached position dn − 2(lnn)2e and therefore is still in the interval

[0, n− 2(lnn)2). On the other hand, the mass of the stationary distribution πωn is for

large n concentrated on the interval [n− 2(lnn)2, n] due to Lemma 3.2.1. We define

t−ω (c, n) := btω(n)− c · fω(n)c and an := n−
⌈
2(lnn)2

⌉
.

Then, we get for c and n large enough using (1.3.4)

Pωn
(
Yt−ω (c,n) ≥ an

)
≤ Pωn

(
T Yan ≤ t−ω (c, n)

)

≤ Pωn
(
T Yan − EωnT Yan ≤ −c

√
VarωnTn + 2Ean

ωnTn

)

≤ Pωn
(∣∣T Yan − EωnT Yan

∣∣ ≥ c

2

√
Varωn(Tn)

)
, (3.3.4)

where to obtain the last inequality we used that we have for P-almost every environ-

ment ω due to Lemma 2.2.3

c− 2Ean
ωnTn√

Varωn(Tn)
>
c

2

for all n ≥ n(ω) and c large enough.

Now, again applying Chebyshev’s inequality and (1.3.4), we get as an upper bound for

(3.3.4) for c and n large enough

Pωn
(
Yt−ω (c,n) ≥ an

)
≤ Varωn(T Yan)

Varωn(Tn)
· 4

c2
=

4Varωn (Tan) + 2EωnTan
Varωn(Tn)

· 4

c2
.
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Finally, using Lemma 3.2.1, Theorem 1.4.5 and (2.1.14), we conclude that we have for

P-almost every environment ω

lim
c→∞

lim inf
n→∞

dn
(
t−ω (c, n)

)

= lim
c→∞

lim inf
n→∞

max
x∈{0,...,n}

∥∥∥P x
ωn

(
Y n
t−ω (c,n)

∈ ·
)
− πωn

∥∥∥
TV

≥ lim
c→∞

lim inf
n→∞

(
πωn

(
[n− 2(lnn)2, n]

)
− Pωn

(
Yt−ω (c,n) ≥ n− 2(lnn)2

))

≥ 1− lim
c→∞

lim sup
n→∞

4Varωn(Tan) + 2EωnTan
Varωn(Tn)

· 4

c2

= 1− lim
c→∞

16 +O(1)

c2
= 1,

which shows (3) in Definition 1.3.3. �

In the next proposition, we consider the question if the window size in Theorem

1.4.1 is optimal. Under stronger assumptions, we prove that the exponent of n of the

window size fω(n) =
√

VarωnTn is optimal which is 1
κ

for 1 < κ ≤ 2 and 1
2

for κ > 2

due to Theorem 1.4.5.

Proposition 3.3.2. Let Assumptions 1 and 2 hold.

(a) Let 1 < κ < 2 and additionally assume that the distribution of ln ρ0 is non-lattice.

Then for P-almost every environment ω and all δ > 0 the cutoff window size has

to be bigger than n
1
κ
−δ.

(b) Let κ > 2. Then for P-almost every environment ω the optimal cutoff window

size is
√
n.

Proof. First, we assume 1 < κ < 2. Then, Theorem 1.1 in [Pet09] yields that for

P-almost every environment ω there exists an environment dependent subsequence

nkm = nkm(ω) of nk = 22k such that

Tnkm − EωTnkm√
Varω

(
T

(dkm )
nkm − T (dkm )

nkm−1

)
d−→ N (0, 1) (3.3.5)

with dkm = nkm − nkm−1. Further,
d−→ means convergence in distribution and see

(2.2.1) for the definition of the hitting times T
(r)
n of the restricted process. Note that

the proof of this theorem needs the assumption that the distribution of ln ρ0 is non-

lattice.

64



3.3. CUTOFF FOR κ > 1

Recall that the random variables (Zk)k∈N indicate if the lazy RWRE moves in step k

or stays at its position. We get using Lemma 3.3.1

lim inf
n→∞

dn

(⌈
2EωTn − 2n

1
κ
−δ
⌉)

≤ lim inf
n→∞

Pωn
(
T Yn >

⌈
2EωTn − 2n

1
κ
−δ
⌉)

≤ lim inf
n→∞

Pω

(
Tn > EωTn − n

1
κ
−δ −

√⌈
2EωTn − 2n

1
κ
−δ
⌉)

+ lim inf
n→∞

Pω




⌈
2EωTn−2n

1
κ−δ
⌉

∑
i=1

(
(1− Zi)− 1

2

)

√
1
4

⌈
2EωTn − 2n

1
κ
−δ
⌉ > 2




≤ lim
m→∞

Pω




Tnkm − EωTnkm√
Varω

(
T

(dkm )
nkm − T (dkm )

nkm−1

) > −
n

1
κ
−δ

km
+

√⌈
2EωTn − 2n

1
κ
−δ
⌉

√
Varω

(
T

(dkm )
nkm − T (dkm )

nkm−1

)




+
(

1− Φ(2)
)
, (3.3.6)

where to obtain the last inequality we applied the CLT for the i.i.d. sequence (Zi)i∈N
and used that EωTn is of order n due to (1.4.1) (κ > 1). With a similar proof as for

Lemma 1.5.4, we can find for all m large enough and for P-almost every environment ω

a block with a depth of more than 1
κ

(lnnkm − 4 ln lnnkm) in the interval (nkm−1, nkm ].

Therefore, we have

Varω

(
T (dkm )
nkm

− T (dkm )
nkm−1

)
> (nkm)

2
κ
−δ .

Now, additionally using (3.3.5), we get an upper bound for (3.3.6), that is

lim inf
m→∞

dnkm

(⌈
2EωTn − 2n

1
κ
−δ
⌉)
≤ 1

2
+ Φ(−2) < 1.

Finally, we can conclude that the cutoff window size has to be bigger than n
1
κ
−δ for all

δ > 0.

Next, we assume κ > 2. A similar proof as in Theorem 5.1 in [Ali99] yields

T Yn − EωT Yn√
n

d−→ N (0, σ2),

for a suitable σ > 0.
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Recall that 2EωTn = EωT
Y
n (cf. Lemma 1.3.4) and thus we get using Lemma 3.3.1

lim inf
n→∞

dn
(
d2EωTn −

√
ne
)
≤ lim inf

n→∞
Pω
(
T Yn > EωT

Y
n −
√
n
)

= 1− Φ

(
− 1

σ

)
= Φ

(
1

σ

)
< 1.

Therefore, the order of the cutoff window size has to be bigger or equal to
√
n. Corollary

1.4.6 then shows that this is the optimal size. �

3.4 No cutoff for 0 < κ < 1

In this section, we consider the case κ < 1. We show that in this case the transition to

stationarity is not as sharp as required for the cutoff phenomenon. To show this, we

first construct an environment dependent sequence of deep blocks in which the RWRE

(with start in 0) spends most of its time before it hits the endpoint of this deep block

(cf. Lemma 3.4.4). Afterwards, we show that the existence of this sequence excludes

that the lazy RWRE exhibits a cutoff.

The following construction basically refines the arguments of Section 4 in [PZ09], where

the authors additionally use that the distribution of ln ρ0 with respect to P is non-

lattice. For k ∈ N we define

nk := 22k and dk := nk − nk−1. (3.4.1)

Lemma 3.4.1. Assume Assumptions 1 and 2 and let κ ≤ 1. Then for any 0 < δ < 6
κ

we have

P
(
EωT̃

(dk+1)
νnk

≥ n
1
κ

+δ

k

)
= o

(
n
− δκ

3
k

)
.

Proof. First, we recall that for n ∈ N (X
(n)
k )k∈N0 is a restricted RWRE which cannot

backtrack more than d(lnn)2e blocks after reaching a new block for the first time.

For ω ∈ B1(2ν̄nk) ∩ B2(nk) (cf. Lemma 1.5.2 for the definition of ν̄) we have that all

blocks in the interval [−νnk , νnk ] are smaller than (ln(2ν̄nk))
2, and therefore we get

using equation (1.2.3)

EωT̃
(dk+1)
νnk

= νnk + 2

nk∑

j=1

νj−1∑

i=νj−1

i∑

l=νj−1−d(ln dk+1)
2e+1

exp
(
V (i+ 1)− V (l)

)

≤ 2ν̄nk + 2dln(2ν̄nk)e6
nk∑

j=1

(
1 + exp

(
Hj

))
.
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This yields for arbitrary 0 < δ

P
(
EωT̃

(dk+1)
νnk

≥ n
1
κ

+δ

k

)

≤ P
({
EωT̃

(dk+1)
νnk

≥ n
1
κ

+δ

k

}
∩B1(2ν̄nk) ∩B2(nk)

)
+ P

(
B1(2ν̄nk)

c
)

+ P
(
B2(nk)

c
)

≤ P

(
2ν̄nk + 2dln(2ν̄nk)e6

nk∑

j=1

(
1 + exp(Hj)

)
≥ n

1
κ

+δ

k

)
+O

(
n−2
k

)
, (3.4.2)

where we used Lemma 1.5.1 and Lemma 1.5.2 to obtain the last inequality. To complete

the proof of this Lemma, we therefore have to show that the first term in (3.4.2) is of

order o
(
n
− δκ

3
k

)
for all 0 < δ < 6

κ
.

First, we observe that for all 0 < β < κ ≤ 1 we have due to (1.5.7)

E exp(βH1) =

∫ ∞

0

P

(
H1 >

1

β
ln t

)
dt ≤ C1

∫ ∞

0

t−
κ
β dt < ∞.

Therefore, we get for large k and all 0 < β < κ ≤ 1 using the Markov inequality and

that (Hi)i∈N is an i.i.d. sequence under P

P

(
2ν̄nk + 2dln(2ν̄nk)e6

nk∑

j=1

(
1 + exp(Hj)

)
≥ n

1
κ

+δ

k

)

≤ P

(
nk∑

j=1

exp(Hj) ≥ n
1
κ

+ δ
2

k

)

≤ n
−β( 1

κ
+ δ

2)
k E

(
nk∑

j=1

exp(Hj)

)β

≤ n
−β( 1

κ
+ δ

2)
k nkE exp(βH1)

= n
−βδ

2
+(1−β

κ)
k E exp(βH1), (3.4.3)

where in the first line we used that for large k and all δ > 0 we have

n
1
κ

+δ

k

2ν̄nk + 2dln(2ν̄nk)e6
≥ n

1
κ

+ δ
2

k .

Now, choosing β in (3.4.3) to be arbitrarily close to κ and combining this with (3.4.2)

finishes the proof for all 0 < δ < 6
κ
. �
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Lemma 3.4.2. Assume Assumptions 1 and 2 and let κ < 1. Then we have for P-

almost every environment ω

lim
k→∞

E
νnk−1
ω T̃

(dk)
νnk
− µk

EωT̃
(dk)
νnk
− µk

= 1,

where

µk := max
{
Eνj−1
ω T̃ (dk)

νj
: nk−1 < j ≤ nk

}
.

Proof. First, we note that for all environments ω and all k the fraction in the statement

is obviously smaller or equal to 1. Thus, we only have to show the lower bound. Let

ε > 0 be arbitrary. Then, we get for 0 < δ < 6
κ

P

(
E
νnk−1
ω T̃

(dk)
νnk
− µk

EωT̃
(dk)
νnk
− µk

≤ 1− ε
)

= P
(
E
νnk−1
ω T̃ (dk)

νnk
≤ (1− ε)EωT̃ (dk)

νnk
+ εµk

)

= P
(
EωT̃

(dk)
νnk−1

≥ ε
(
EωT̃

(dk)
νnk
− µk

))

≤ P

(
EωT̃

(dk)
νnk−1

≥ ε
(
EωT̃

(dk)
νnk
− µk

)
, EωT̃

(dk)
νnk
− µk >

1

ε
n

1
κ

+δ

k−1

)

+ P

(
EωT̃

(dk)
νnk
− µk ≤

1

ε
n

1
κ

+δ

k−1

)

≤ P
(
EωT̃

(dk)
νnk−1

≥ n
1
κ

+δ

k−1

)
+ P

(
EωT̃

(dk)
νnk
− µk ≤

1

ε
n

1
κ

+δ

k−1

)
, (3.4.4)

where due to Lemma 3.4.1 the first term on the right side of (3.4.4) is of order o
(
n
− δκ

3
k−1

)

and hence summable in k. Next, we analyse the second term and we first note that

because of the choice of the sequence (nk)k∈N we have for δ < 1
3κ

and k large enough

1

ε
n

1
κ

+δ

k−1 =
1

ε

(
22k−1( 1

κ
+δ)
)
≤
(

22k−1·2( 1
κ
−δ)
)

= n
1
κ
−δ

k

and hence

P

(
EωT̃

(dk)
νnk
− µk ≤

1

ε
n

1
κ

+δ

k−1

)
≤ P

(
EωT̃

(dk)
νnk
− µk ≤ n

1
κ
−δ

k

)
. (3.4.5)

But

EωT̃
(dk)
νnk
− µk ≤ n

1
κ
−δ

k
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implies, that the expected crossing time E
νj−1
ω T̃

(dk)
νj has to be smaller than n

1
κ
−δ

k for

at least nk − 1 blocks. Therefore, we get using equation (1.5.7) and the fact that

exp(Hj−1) < E
νj−1
ω T̃

(dk)
νj

P
(
EωT̃

(dk)
νnk
− µk ≤ n

1
κ
−δ

k

)
≤ nk

(
1−P

(
H1 >

(
1

κ
− δ
)

lnnk

))nk−1

≤ nk exp

(
−(nk − 1)P

(
H1 >

(
1

κ
− δ
)

lnnk

))

≤ nk exp
(
−(nk − 1)C̃1n

−1+δκ
k

)
. (3.4.6)

Finally, (3.4.5) and (3.4.6) yield that for δ < 1
3κ

the second probability in (3.4.4) is

also summable in k for all ε > 0, and thus the Borel-Cantelli lemma gives us the lower

bound of the statement for P-almost every environment ω. �

Lemma 3.4.3. Assume κ < 1 and let P̂ be an environment distribution on Z which

fulfils Assumptions 1 and 2 and additionally has the property that the distribution of

ln ρ0 is non-lattice with respect to P̂. Further, we define

Q̂(·) := P̂(·|R), where R =

{
ω ∈ Ω :

−1∑

i=−k
ln ρi < 0,∀ k ∈ N

}
.

Then we have for any C > 1

lim inf
n→∞

Q̂


∃ k ∈

[
1,
n

2

]
: exp(Hk) ≥ C

∑

j∈[1,n]\{k}
Eνj−1
ω T̃ (n)

νj


 > γLκ,b(1)C−κ,

where γ > 0 is a constant and Lκ,b denotes the distribution function of a stable random

variable with index κ and characteristic function

L̂κ,b(t) = exp

(
−b|t|κ

(
1− it|t|−1 tan

(
1

2
πκ

)))
.

For a proof see Lemma 4.1 in [PZ09].

We note that in the proof the assumption that the distribution of ln ρ0 is non-lattice is

needed to use that n−
1
κEωTνn converges with respect to Q̂ in distribution to a stable

distribution with characteristic function L̂κ,b.

Further, we note that the lower bound in Lemma 3.4.3 only depends on κ which

is defined by the equation EP̂ρ
κ = 1. Therefore, we get the same lower bound

for all environment distributions P̂ which fulfil the previous assumptions for the same

κ. Furthermore, we have P̂(R) > 0 since EP̂ ln ρ0 < 0 by Assumption 1.
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Lemma 3.4.4. Assume Assumptions 1-3 and let κ < 1. For P-almost every environ-

ment ω, there exists a random subsequence am = am(ω) such that

exp
(
Ham

)
≥ m2EωT̃

(am)
νam−1

.

Proof. First, we consider the following modification of our environment:

With respect to P (on a possibly enlarged probability space), let (Γk)k∈Z be a sequence

of i.i.d. Bernoulli random variables with success probability 1
2

and further let let (Γk)k∈Z
be independent of the environment ω. We define a new environment τ := (τk)k∈Z by

τk := ωk1{Γk=0} +
1

2
1{Γk=1}, k ∈ Z.

Recall that the quantities (ρk(τ))k∈Z, (νk(τ))k∈Z and (Hk(τ))k∈Z depend on the envi-

ronment, and we have for k ∈ Z

ρk(τ) = ρk(ω)1{Γk=0} + 1{Γk=1}.

Note that we get an environment with the same distribution as ω by “deleting”

the “1
2
’s” in τ (which are at positions k with Γk = 1) and defining ω0 = τl with

l = inf{m ∈ N0 : Γm = 0} as the environment in 0. We define

∆ : (0, 1)Z −→ (0, 1)Z, τ 7→ ∆(τ)

to be the function which realises this “deleting procedure” (cf. Figure 3.4). Further,

for a set of environments A we define

∆(A) := {∆(µ) : µ ∈ A} .

We note that we have

V (νk(τ)) = V
(
νk
(
∆(τ)

))
and Hk(τ) = Hk

(
∆(τ)

)

and

P∆(τ) = P, (3.4.7)

where P∆(τ) denotes the image measure of ∆(τ) with respect to P.

Due to the definition, we still have that τ is an i.i.d. environment with

E (ρ0(τ))κ = P (Γ0 = 0) E(ρ0(τ))κ + P (Γ0 = 1) 1κ = 1,

E ln ρ0(τ) =
1

2
E ln ρ0(ω) < 0 and

E
[
(ρ0(τ))κ ln+ ρ0(τ)

]
=

1

2
E
[
(ρ0(ω))κ ln+ ρ0(ω)

]
< ∞.
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V∆(τ)(k)

ν−1(τ)

k

ν1(∆(τ)) ν2(∆(τ)) ν3(∆(τ))ν−1(∆(τ))

V∆(τ)

(
ν1(∆(τ))

)

V∆(τ)

(
ν2(∆(τ))

)

V∆(τ)

(
ν3(∆(τ))

)

b

b

b
b

b

b
b

b

b

b
b

b

b

Vτ (k)

k

ν1(τ) ν2(τ) ν3(τ)

b b

b

b b b
b

b b

b
b b

b

b

b
b b

b b b

b

Figure 3.4: A realisation of the “deleting procedure” ∆. Note that here we have Γk = 0 for

k ∈ {−8,−7,−4,−3,−1, 0, 2, 3, 4, 5, 7, 10} and Γk = 1 for k ∈ {−9,−6,−5,−2, 1, 6, 8, 9}.

In particular, τ still fulfils Assumptions 1 and 2 for the same κ as ω. Note that the

distribution of ln ρ0(τ) is non-lattice with respect to P because of Assumption 3.

As the next step, we want to use Lemma 3.4.3 in order to find a sequence of events on

which we have one dominating block in the environment τ . Afterwards, with the help

of the function ∆ we will transfer this property back to the environment ω.
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For k ∈ N and C > 1 we define (cf. (3.4.1) for the definition of dk)

AC,k :=



µ ∈ (0, 1)Z : ∃j ∈

(
nk−1, nk−1 +

dk
2

]

with exp
(
Hj(µ)

)
≥ C

∑

k∈[nk−1,nk]\{j}
Eνk(µ)
µ T̃

(dk)
νk+1(µ)



 .

Note that this event only depends on the increments of the potential between

νnk−1−d(ln dk)2e(µ) and νnk(µ). Further, we have

nk−1 −
⌈
(ln dk)

2
⌉
> nk−2 for k ≥ 4.

Therefore, with respect to P the events (AC,2k)k∈N are all independent of each other.

Using (3.4.7), we get

P (AC,k) = Pτ
(
∆−1(AC,k)

)
≥ Pτ (AC,k) (3.4.8)

because due to (1.2.3) and by the definition of Wi (cf. (1.2.1)) we have for all k ∈ N

Eνk(∆(τ))
ω T̃

(dk)
νk+1(∆(τ)) ≤ Eνk(τ)

τ T̃
(dk)
νk+1(τ).

Further, since for k ≥ 2 the events AC,k do not depend on the environment on the left

side of 0, they have the same probability under Q as under P. The shift invariance of

ladder locations of Qτ together with Lemma 3.4.3 yields for all C > 1

lim inf
k→∞

P (AC,k) = lim inf
k→∞

Q (AC,k)

≥ lim inf
k→∞

Qτ (AC,k)

≥ lim inf
k→∞

Qτ


∃j ∈

[
1,
dk
2

]
: exp(Hj(µ)) ≥ C

∑

j∈[1,dk]\{j}
Eνj−1(µ)
µ T̃

(dk)
νj(µ)




≥ Cκ,

for a κ depending constant Cκ > 0.

Since the events (AC,2k)k∈N are independent, we can conclude using the Borel-Cantelli

lemma that for each C > 1 and for P-almost every environment ω infinitely many

of the events AC,2k occur. Hence, for P-almost every environment ω we can find a

random subsequence km of integers such that for each m there exists an

am ∈
(
nkm−1 , nkm−1 +

dkm
2

]
with

exp(Ham(ω)) ≥ 2m2
(
E
νnkm−1

(ω)
ω T̃

(dkm )

νam−1 (ω) + Eνam (ω)
ω T̃

(dkm )

νnkm
(ω)

)
. (3.4.9)
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Therefore, (3.4.9) and Lemma 3.4.2 yield for m large enough

exp
(
Ham(ω)

)
≥ 2m2

(
E
νnkm−1

(ω)
ω T̃

(dkm )

νam−1 (ω) + Eνam (ω)
ω T̃

(dkm )

νnkm
(ω)

)

= 2m2
(
E
νnkm−1

(ω)
ω T̃

(dkm )

νnkm
(ω) − µkm

)

≥ m2
(
EωT̃

(dkm )

νnkm
(ω) − µkm

)

≥ m2EωT̃
(dkm )

νam−1(ω).

For k ∈ N we have

dk −
(
nk−1 +

dk
2

)
=

1

2
22k − 3

2
22k−1

= 22k−1

(
22k−1−1 − 3

2

)
> 0,

and therefore am < dkm . Since allowing less backtracking only decreases the crossing

time, we finally get

exp
(
Ham(ω)

)
≥ m2EωT̃

(dkm )

νam−1(ω) ≥ m2EωT̃
(am)
νam−1(ω).

�

Now, we are able to prove that a sequence of lazy RWRE on ({0, ..., n})n∈N cannot

exhibit a cutoff for κ < 1:

Proof of Theorem 1.4.2. In the following, we use the sequence of deep blocks of Lemma

3.4.4 in order to construct two sequences of the same order as the mixing time with

the property that along the first (smaller) one the distance to stationarity is bounded

away from 1 and along the second (bigger) one bounded away from 0.

In Lemma 3.4.4, we constructed for P-almost every environment ω a sequence (jm)m∈N =

(jm(ω))m∈N which fulfils

exp (Hjm−1) ≥ m2Eω

(
T̃ (jm)
νjm−1

)
(3.4.10)

for all m ∈ N. Obviously, this can only be the case, if block jm− 1 is the highest block

in the interval [0, νjm ]. Therefore, for environments ω which are additionally in F (νjm)

(cf. (2.2.4) for the definition of F (νjm)), we have that condition (2.2.5) holds. Hence,

we can use Lemma 2.2.2 to obtain that for ω ∈ F (νjm) we have
(
Eνjm−1
ω

(
T̃ (jm)
νjm

))2

≤ 4Varω

(
T̃ (jm)
νjm
− T̃ (jm)

νjm−1

)
. (3.4.11)

Further, we note that the laws of

(
T̃

(jm)
νjm − T̃

(jm)
νjm−1

E
νjm−1
ω T̃

(jm)
νjm

)

m∈N
=


 T̃

(jm)
νjm − T̃

(jm)
νjm−1

Eω

(
T̃

(jm)
νjm − T̃

(jm)
νjm−1

)




m∈N
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are tight with respect to Pω due to the Markov inequality. Thus, Prohorov’s Theorem

yields that there exists a subsequence
(
νjmk

)
k∈N such that

T̃
(jmk )
νjmk

− T̃ (jmk )
νjmk−1

E
νjmk−1

ω T̃
(jmk )
νjmk

d−→ Z (3.4.12)

for some positive random variable Z as k →∞, where
d→ means convergence in distri-

bution.

Note that (jmk)k∈N is a subsequence of (nk)k∈N = (22k)k∈N by construction. Therefore

and due to (3.4.10), assumption (2.3.6) of Lemma 2.3.3 is valid for ω ∈ F (νjmk ) (using

the property of set B4(νjmk )), and we get that for P-almost every environment ω the

sequence




 T̃

(jmk )
νjmk

− T̃ (jmk )
νjmk−1

E
νjmk−1

ω T̃
(jmk )
νjmk




2

k∈N

is uniformly integrable with respect to Pω. Thus, the first two moments of

T̃
(jmk )
νjmk

− T̃ (jmk )
νjmk−1

E
νjmk−1

ω T̃
(jmk )
νjmk

converge to the corresponding moments of Z for P-almost every environment ω as

k →∞.

Further, for P-almost every environment ω we have ω ∈ F (n) for all n large enough

due to Lemma 1.5.9. Hence, using (3.4.11), we get for P-almost every environment ω

Varω(Z) = lim
k→∞

1
(
E
νjmk−1

ω T̃
(jmk )
νjmk

)2 Varω

(
T̃

(jmk )
νjmk

− T̃ (jmk )
νjmk−1

)
≥ 1

4
.

Therefore, for P-almost every environment ω we have that the distribution of Z with

respect to Pω cannot be the Dirac measure in 1. Since EωZ = 1, there exists an interval

(a, b) with a < 1 < b, such that

lim
k→∞

Pω

(
T̃

(jmk )
νjmk

− T̃ (jmk )
νjmk−1 > a · Eνjmk−1

ω T̃
(jmk )
νjmk

)
< 1, (3.4.13)

lim
k→∞

Pω

(
T̃

(jmk )
νjmk

− T̃ (jmk )
νjmk−1 < b · Eνjmk−1

ω T̃
(jmk )
νjmk

)
< 1. (3.4.14)

Using Lemma 3.3.1, we get (cf. (2.2.2) for the definition of A(n) and cf. (1.3.3) for the
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definition of (Zk)k∈N)

dn

(⌈
(a+ b) · EωT̃ (n0)

n

⌉)
≤ Pωn

(
T Yn > (a+ b) · EωT̃ (n0)

n

)

≤ Pω̃ (A(n)c) + Pωn

(
T̃ (n0)
n >

(
a+

1

4
(b− a)

)
· EωT̃ (n0)

n

)

+ Pω̃




⌈
(a+b)·EωT̃ (n0)

n

⌉
∑

i=1

(
1− Zi

)
>

(
3

4
b+

1

4
a

)
· EωT̃ (n0)

n


 .

We note that for arbitrary a > 0 we have Pωn
(
T̃

(n0)
n > a

)
≤ Pω

(
T̃

(n0)
n > a

)
, and

therefore, we get

lim inf
n→∞

dn

(⌈
(a+ b) · EωT̃ (n0)

n

⌉)

≤ lim
k→∞

(
Pω̃
(
A
(
νjmk

)c)
+ Pω

(
T̃

(jmk )
νjmk

>

(
a+

1

4
(b− a)

)
EωT̃

(jmk )
νjmk

))
,

where we additionally used that 3
4
b+ 1

4
a > a+b

2
and thus by Cramér’s Theorem

Pω̃




⌈
(a+b)·EωT̃ (n0)

n

⌉
∑

i=1

(
1− Zi

)
>

(
3

4
b+

1

4
a

)
· EωT̃ (n0)

n


 n→∞−→ 0.

Further, we note that due to (3.4.10) we have

EωT̃
(jmk )
νjmk−1

EωT̃
(jmk )
νjmk

≤
EωT̃

(jmk )
νjmk−1

Wjmk−1

≤
EωT̃

(jmk )
νjmk−1

exp(Hjmk−1)
≤ 1

m2
k

,

which together with Lemma 2.2.1 and equation (3.4.13) yields

lim inf
n→∞

dn

(
(a+ b) · EωT̃ (n0)

n

)

≤ lim
k→∞

(
Pω

(
T̃

(jmk )
νjmk−1 >

1

4
(b− a)EωT̃

(jmk )
νjmk

)

+Pω

((
T̃

(jmk )
νjmk

− T̃ (jmk )
νjmk−1

)
> a · EωT̃ (jmk )

νjmk

))

≤ lim
k→∞


 4

b− a
EωT̃

(jmk )
νjmk−1

EωT̃
(jmk )
νjmk

+ Pω

((
T̃

(jmk )
νjmk

− T̃ (jmk )
νjmk−1

)
> a · EωT̃ (jmk )

νjmk

)



≤ lim
k→∞

(
4

b− a ·
1

mk

+ Pω

((
T̃

(j
m2
k

)

νjmk
− T̃ (jmk )

νjmk−1

)
> a · EωT̃ (jmk )

νjmk

))

< 1. (3.4.15)
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Next, we want to construct a sequence of (bigger) time points of the same order as

(a + b) · EωT̃ (n0)
n at which the distance to stationarity is strictly bigger than 0. We

define the sequence (am)m∈N by

am := bνjm + 2(ln νjm)2c,
and using (3.4.10) we get for ω ∈ F (am)

exp(Hjm−1) ≥ 1

2
m2
(
EωT̃

(jm)
νjm−1

+ Eνjm
ω T̃am

)

because after the “large” increase in block jm − 1 there cannot be a second “large”

increase in the interval [νjm , am] for environments ω ∈ E
(
am,

2
3

)
⊂ F (am). Therefore,

we can conclude for ω ∈ F (am)

EωT̃
(jm)
νjm−1 + E

νjm
ω T̃am

EωT̃
(jm)
am

≤ EωT̃
(jm)
νjm−1 + E

νjm
ω T̃am

exp(Hjm−1)
≤ 2

m2

m→∞−→ 0,

which yields

E
νjm−1
ω T̃

(jm)
νjm

EωT̃
(jm)
am

m→∞−→ 1. (3.4.16)

Let ε > 0 be small enough such that
(

3
2
− ε
)
b+ 1

2
a > b+ a. We get

Pωn

(
Y⌈

(( 3
2
−ε)b+ 1

2
a)·EωT̃ (n)

n

⌉ ≥ n− 2(lnn)2

)

≤


Pωn

(
Tbn−2(lnn)2c < (1− ε) b · EωT̃ (n)

n

)

+ Pω̃




⌈
(( 3

2
−ε)b+ 1

2
a)·EωT̃ (n)

n

⌉
∑

i=1

(1− Zi) <
(

1

2
b+

1

2
a

)
· EωT̃ (n)

n





 (3.4.17)

Due to the choice of ε, Cramér’s Theorem yields

Pω̃




⌈
(( 3

2
−ε)b+ 1

2
a)·EωT̃ (n)

n

⌉
∑

i=1

Zi <

(
1

2
b+

1

2
a

)
· EωT̃ (n)

n


 n→∞−→ 0. (3.4.18)

Again due to Lemma 1.5.9, we have that ω ∈ F (n) for P-almost every environment ω

and all n large enough. Thus, we get for P-almost every environment ω using (3.4.17)

and (3.4.18) (cf. (2.2.2) for the definition of the set A(n))

lim inf
n→∞

Pωn

(
Y⌈

(( 3
2
−ε)b+ 1

2
a)·EωT̃ (n)

n

⌉ ≥ n− 2(lnn)2

)

≤ lim
k→∞

(
Pωn

(
T̃

(jmk )
νjmk

< (1− ε)b · EωT̃ (jmk )
amk

)
+ Pω̃

(
A
(
νjmk

)c))
.
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Further, using that
(
T̃

(jmk )
νjmk

− T̃ (jmk )
νjmk−1

)
has the same distribution with respect to Pω as

with respect to Pωn , we get together with (3.4.16) and Lemma 2.2.1

lim inf
n→∞

Pωn

(
Y⌈

(( 3
2
−ε)b+ 1

2
a)·EωT̃ (n)

n

⌉ ≥ n− 2(lnn)2

)

≤ lim
k→∞

(
Pω

((
T̃

(jmk )
νjmk

− T̃ (jmk )
νjmk−1

)
< b · Eνjmk−1

ω T̃
(jmk )
νjmk

))
.

Finally, this together with (3.4.14) and Lemma 3.2.1 yields

lim sup
n→∞

dn

(⌈((
3

2
− ε
)
b+

1

2
a

)
· EωT̃ (n)

n

⌉)

≥ lim sup
n→∞

(
πωn
( [
n− 2(lnn)2, n

] )
− Pωn

(
Y⌈

(( 3
2
−ε)b+ 1

2
a)·EωT̃ (n)

n

⌉ ≥ n− 2(lnn)2

))

≥ 1− lim
k→∞

Pω

((
T̃

(jmk )
νjmk

− T̃ (jmk )
νjmk−1

)
< b · Eνjmk−1

ω T̃
(jmk )
νjmk

)

> 0. (3.4.19)

Since for a < b we have

a+ b <

(
3

2
− ε
)
b+

1

2
a,

(3.4.15) and (3.4.19) show that the order of the window size has to be bigger or equal

to the order of EωT̃
(n)
n . But due to Theorem 1.4.3, this is the order of the mixing time.

Consequently, the sequence of lazy RWRE (Yn)n∈N0 cannot exhibit a cutoff defined in

Definition 1.3.3. �

The construction of the environment dependent sequence of high blocks is the key

for the strong localisation theorem in [PZ09]. We are therefore able to prove Theorem

1.2 in [PZ09] under the weaker Assumptions 1-3:

Proof of Theorem 1.4.4. We can follow the proof of Theorem 1.2 in [PZ09]. We note

at this point that Lemma 3.4.4 refines Corollary 4.4 in [PZ09] where we only need

Assumption 3 instead of the stronger assumption that the distribution of ln ρ0 is non-

lattice with respect to P. �

3.5 Simple random walk and biased random walk

In this section, we compare the results of the previous sections with the case in which

we have a deterministic environment.
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Theorem 3.5.1. Let (Pn)n∈N denote the transition matrices of the lazy simple random

walk on {0, ..., n} with reflection in 0 and n. Then the sequence (Pn)n∈N does not exhibit

a pre-cutoff.

Proof. Let tSRW
mix (n) denote the mixing time and gap(Pn) the spectral gap of the lazy

simple random walk on {0, ..., n} with reflection in 0 and n. Due to Proposition 10.14

in [LPW09], we have

tSRW
mix (n) ≤ 2 max

0≤x,y≤n
EyTx + 1 = 2E0Tn + 1.

Using that the effective resistance between 0 and n is n, the Commute Time Identity

(cf. Proposition 10.6 in [LPW09]) yields

tSRW
mix (n) ≤ 2n2 + 1.

Now, in the situation of the lazy simple random walk on {0, ..., n} we can calculate the

eigenvalues of the transition matrix explicitly and get for the spectral gap (cf. Remark

4.1.4)

gap(Pn) = O
(
n−2
)
.

Therefore, Lemma 3.1.4 yields that there is no pre-cutoff. �

Next, we consider the lazy simple random walk on {0, ..., n} with a drift to the right

and reflection in 0 and n.

Theorem 3.5.2 (cf. Theorem 18.2 in [LPW09]). Suppose p > 1
2
. Let (Yk)k∈N0 be

the lazy nearest neighbour random walk on {0, ..., n} with reflection in 0 and n and

transition probabilities p
2

to move to the right, 1−p
2

to move to the left and 1
2

to stay at

the current position. Then (Yk)k∈N0 has a cutoff with cutoff times

tn :=
2n

2p− 1

and window size
√
n.

Proof. Note that we can also use the proof of Theorem 1.4.1 for a deterministic envi-

ronment ωni := p for 0 < i < n and use (3.2.4) instead of Lemma 3.2.1. In the case of

a deterministic environment, the quenched expectation and the quenched variance are

deterministic, we have (cf. (1.2.3))

EpTn = n+ 2
n−1∑

i=0

i∑

j=1

(
1− p
p

)i−j+1

= n+ 2
n−1∑

i=0

(
p

2p− 1

(
1−

(
1− p
p

)i+1
)
− 1

)

= n

(
1 + 2

1− p
2p− 1

)
+ c1 + o(1)

=
n

2p− 1
+ c1 + o(1)
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for a suitable constant c1 > 0 just depending on p. Further, we note that we have for

all i ∈ N

W 0
i =

i∑

j=1

(
1− p
p

)i−j+1

≤ 1− p
2p− 1

=: c2,

and therefore we get (cf. (2.1.2))

Varp(Tn) = 4 ·
n−1∑

j=0

(
W 0
j +

(
W 0
j

)2
)

+ 8 ·
n−1∑

j=0

j−1∑

i=−∞
exp(V (j)− V (i)) ·

(
W 0
i +

(
W 0
i

)2
)

≤ 4n
(
c2 + c2

2

)
+ 8

(
c2 + c2

2

) n−1∑

j=0

j−1∑

i=−∞

(
1− p
p

)j−i

≤ c3n

for a constant c3 > 0. Obviously, we also have

Varp(Tn) ≥ c4n

for 0 < c4 < c3. Therefore, the lazy simple random walk on {0, ..., n} with a drift to

the right as described in Theorem 3.5.2 exhibits a cutoff with cutoff times tn := 2n
2p−1

and window size
√
n. �

The mixing properties of the transient RWRE consequently lie between those of a

simple random walk and those of a random walk with drift to the right (both in deter-

ministic environment). A comparison of the associated potentials helps to understand

why. While the potential of a simple random walk is 0 for all x, the potential of a

random walk with drift to the right
(
p > 1

2

)
is a line with slope ln 1−p

p
< 0. In contrast

to that, the potential of a RWRE with a very large κ is not a line. But it still follows

a line with slope E ln ρ0 < 0 and has just very small excursions (cf. Lemma 1.5.3). For

smaller κ, the excursions are larger and start to dominate the behaviour of the RWRE.

Although the potentials look very different, the associated stationary distributions

look for all κ > 0 very similar to the case of a random walk with drift to the right

(cf. Lemma 3.2.1 and (3.2.4) and Figures 1.3 and 1.4 on page 34).

3.6 Mixing time

In this section, we analyse the mixing time of a sequence of lazy RWRE on

({0, ..., n})n∈N and prove Theorem 1.4.3.

Proof of Theorem 1.4.3. At first, let us assume κ ≤ 1. For large n, we get using the
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Markov inequality and due to Lemma 3.3.1

dn (d12Eωn(Tn)e) ≤ Pωn
(
T Yn > d12Eωn(Tn)e

)

≤ Pωn (Tn > 5Eωn(Tn)) + Pωn



d12Eωn (Tn)e∑

i=1

Zi > 7Eωn(Tn)




≤ 1

4

and therefore

tωmix(n) ≤ d12EωnTne ≤ d12EωTne.
Due to Theorem 1.4.5 (a), this yields for κ ≤ 1

lim sup
n→∞

ln(tωmix(n))

lnn
≤ 1

κ
. (3.6.1)

Further, for the lower bound of the mixing time we get for any constant c > 0

dn

(⌊
cn

1
κ (lnn)−

4
κ

⌋
− 2
)

≥ πωn
(
[n− 2(lnn)2, n]

)
− Pωn

(
Y⌊

cn
1
κ (lnn)−

4
κ

⌋
−2
≥ n− 2(lnn)2

)

≥ πωn
(
[n− 2(lnn)2, n]

)
− Pωn

(
T Ybn−2(lnn)2c ≤

⌊
cn

1
κ (lnn)−

4
κ

⌋
− 2
)

≥ πωn
(
[n− 2(lnn)2, n]

)
− Pωn

(
Tbn−2(lnn)2c <

⌊
cn

1
κ (lnn)−

4
κ

⌋
− 1
)
. (3.6.2)

To reach position bn − 2(lnn)2c, the lazy RWRE has first of all to cross the highest

block on the interval [0, bn − 2(lnn)2c]. For environments ω ∈ B4(bn − 2(lnn)2c), we

have at least one block with a height of more than 1
κ

(
ln
(
n
2

)
− 4 ln lnn

)
. Now, we use

Proposition 4.2 in [FGP10] which yields an upper bound on the probability that the

crossing time of a high block is small:

Lemma 3.6.1. There exists γ > 0 such that for any 0 ≤ x < y ≤ n and h ∈ [x, y] we

have

P x
ωn(Ty < s) ≤ γ(1 + s)

πωn(h)

πωn(x)
.

For a proof see Proposition 4.2 in [FGP10].

Applying this Lemma to equation (3.6.2), we get for c := 1

γ·21− 1
κ

and environments

ω ∈ B4(bn− 2(lnn)2c)

dn

(⌊
cn

1
κ (lnn)−

4
κ

⌋
− 2
)
≥ πωn

(
[n− 2(lnn)2, n]

)
− γ · c · 2 1

κ

= πωn
(
[n− 2(lnn)2, n]

)
− 1

2
.
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Finally, Lemma 1.5.9 and Lemma 3.2.1 yield for P-almost every environment ω and

large n

tωmix(n) ≥
⌊

1

γ · 21− 1
κ

n
1
κ (lnn)−

4
κ

⌋
− 2.

and therefore

lim inf
n→∞

ln tωmix(n)

lnn
≥ 1

κ
.

This together with (3.6.1) shows that for κ ≤ 1 and P-almost every environment ω we

have

lim
n→∞

ln tωmix(n)

lnn
=

1

κ
.

In Theorem 1.4.1, we show that a sequence of lazy RWRE exhibits a cutoff for κ > 1.

Therefore, the mixing time has the same order as the cutoff times, and due to equations

(1.4.1), (1.5.15) and Lemma 1.5.8 we have

lim
n→∞

1

n
· tωmix(n) = 2ET1

for P-almost every environment ω. �
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Chapter 4

Spectral gap

In this chapter, we use the connection between the mixing time and the spectral gap to

derive statements about the asymptotic behaviour of the spectral gap of a lazy RWRE

from the results in Chapter 3.

4.1 Lower and upper bounds

Let P be the transition matrix of a reversible and irreducible Markov chain with finite

state space Ω and let

1 = λ1(P ) > λ2(P ) ≥ . . . ≥ λ|Ω|(P ) ≥ = −1

denote the corresponding eigenvalues in decreasing order. We define

λ?(P ) := max{|λ| : λ is an eigenvalue of P, λ 6= 1}

as the largest absolute-value of all non trivial eigenvalues of P and

gap(P ) := 1− λ?(P )

as the spectral gap of P . Further let

P̃ :=
1

2

(
P + I|Ω|

)

be the transition matrix of the corresponding lazy Markov chain on the same state

space Ω and I|Ω| denotes the |Ω| × |Ω| unity matrix.

We note that for all 1 ≤ i ≤ |Ω| we have

λi

(
P̃
)

=
1 + λi(P )

2

and therefore

λi

(
P̃
)
≥ 0.
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This yields

gap
(
P̃
)

=
1− λ2(P )

2
.

The mixing time of a Markov chain can be bounded from below and above by its

spectral gap:

Theorem 4.1.1. Let P be the transition matrix of a reversible and irreducible Markov

chain with finite state space Ω and stationary distribution π. Further, let πmin :=

min
x∈Ω

π(x) and tmix denote the mixing time. Then we have

ln 2
(
gap(P )−1 − 1

)
≤ tmix ≤ ln

(
4

πmin

)
gap(P )−1.

For a proof see Theorem 12.3 and 12.4 in [LPW09].

The following Theorem gives a connection between the cutoff phenomenon and the

asymptotic of the spectral gap:

Theorem 4.1.2. Let ((Y n
k )k∈N0)n∈N be a sequence of lazy irreducible birth-and-

death chains with transition matrices (P̃n)n∈N and mixing times (tnmix)n∈N. Then

((Y n
k )k∈N0)n∈N exhibits cutoff iff

lim
n→∞

tnmix · gap
(
P̃n

)
= ∞.

Furthermore, the cutoff window size is at most the geometric mean between the mixing

time and the inverse of the spectral gap of P̃n.

For a proof see Corollary 2 in [DLP10].

The last two theorems give us the following lower bound for the spectral gap if there

is no cutoff:

Corollary 4.1.3. Let ((Y n
k )k∈N0)n∈N be a sequence of lazy irreducible birth-and-death

chains with transition matrices (P̃n)n∈N and mixing times (tnmix)n∈N. If ((Y n
k )k∈N0)n∈N

does not exhibit a cutoff, then we have

c1 ≤ lim inf
n→∞

gap
(
P̃n

)
· tnmix ≤ c2

for constants 0 < c1 ≤ c2 <∞.

Proof. If ((Y n
k )k∈N0)n∈N does not exhibit a cutoff, we can use Theorem 4.1.2 to obtain

lim inf
n→∞

gap
(
P̃n

)
· tnmix < ∞.

Furthermore, the lower bound of Theorem 4.1.1 yields

(tnmix)−1 = O
(

gap
(
P̃n

))

which shows the lower bound of the corollary. �
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From now on, let P ω
n and P̃ ω

n denote the transition matrices of a RWRE (Xk)k∈N0

and a lazy RWRE (Yk)k∈N0 , respectively, with respect to Pωn . With the help of Theorem

4.1.1 and 4.1.2 we can now proof Theorem 1.4.7:

Proof of Theorem 1.4.7. First we assume 0 < κ < 1. Part (a) of the Theorem follows

directly by Theorem 1.4.2, Theorem 1.4.3 (a) and Corollary 4.1.3.

Next, we assume κ > 1. Then due to Theorem 1.4.1 the sequence of lazy RWRE

(Y n
k )k∈N0 exhibits for P-almost every environment ω a cutoff with cutoff times

tω(n) = 2EωnTn.

Therefore, Theorem 4.1.2 yields

lim
n→∞

gap
(
P̃ ω
n

)
· tωmix(n) = ∞ P− a.s.

and together with (1.4.1) we get

lim
n→∞

gap
(
P̃ ω
n

)
· n = ∞ P− a.s.

Further, for 1 < κ < 2 we know due to Proposition 3.3.2 that for P-almost every

environment ω the cutoff window size has to be bigger than n
1
κ
−δ for all δ > 0 if we

additionally assume that the distribution of ln ρ0 is non-lattice. Together with Theorem

4.1.2 we can conclude

gap
(
P̃ ω
n

)
= O

(
n−

2
κ

+δ · tωmix(n)
)

P− a.s.

for all δ > 0. Finally, (1.4.1) yields that for 1 < κ < 2 and P-almost every environment

ω we have

lim sup
n→∞

ln gap
(
P̃ ω
n

)

lnn
= 1− 2

κ
< 0,

which finishes the proof of part (b). �

Remark 4.1.4.

For nearest neighbour random walks on {0, ..., n} with (n + 1) × (n + 1) transition

matrix

An =




ps + pl pr 0 0 . . . 0

pl ps pr 0 . . . 0

0 pl ps pr . . . 0
...

...
. . . . . . . . .

...

0 0 0 . . . pl ps + pr



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with pl + ps + pr = 1, pl, ps, pr > 0, we can calculate the eigenvalues of An explicitly

(for example cf. Theorem 3.3 in [Par09]). We get that the eigenvalues of An are given

by λ = 1 and

λk = 2
√
pl · pr cos

(
π · k
n+ 1

)
+ ps, for 1 ≤ k ≤ n.

Therefore, we get for the second largest eigenvalue of a lazy symmetric random walk(
ps = 1

2
, pl = pr = 1

4

)
using Taylor expansion around 0

λ2(Asymm
n ) =

1

2
+

1

2
cos

(
π

n+ 1

)
= 1− π2

2(n+ 1)2
+O

(
n−4
)
,

which yields that

gap(Asymm
n ) = O

(
n−2
)
.

For lazy random walks with positive drift
(
ps = 1

2
, pr > pl

)
, we get that for all n ∈ N

λ2(Adrift
n ) ≤ 1

2
+ 2
√
pl · pr < 1.

Therefore, the spectral gap is bounded by 1
2
− 2
√
pl · pr > 0 uniformly in n.
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Chapter 5

Cookie branching random walks

In this chapter, we consider cookie branching random walks on Z. We give an explicit

and complete criterion for the recurrence/transience behaviour for the case in which

there is one cookie at every integer.

5.1 Model and basic notation

In order to define the cookie branching random walk (CBRW), we first have to choose

the initial configuration of the cookies. We restrict ourselves to the case in which we

have one cookie at every non-negative integer and no cookies at the negative integers.

Thus, denoting by cn(x) the number of cookies at position x ∈ Z at time n ∈ N0, this

situation is described through

c0(x) :=

{
1, if x ≥ 0,

0, if x < 0.

As it turns out, the above configuration of cookies is a natural choice for an initial

configuration in order to point out the essential differences in the evolution of the

process. In particular, further results for the initial configuration (c0(x) = 1 for all x ∈
Z) can be derived easily (cf. Section 5.6). At time 0 the CBRW starts with one initial

particle at the origin. To specify the evolution of the population of particles, we need

the following ingredients:

• the cookie offspring distribution µc =
(
µc(k)

)
k∈N0

with mean mc :=
∞∑
k=1

kµc(k);

• the cookie transition probabilities pc ∈ (0, 1), qc := 1− pc;

• the no-cookie offspring distribution µ0 =
(
µ0(k)

)
k∈N0

with meanm0 :=
∞∑
k=1

kµ0(k);

• the no-cookie transition probabilities p0 ∈ (0, 1), q0 := 1− p0.
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We say a particle produces offspring according to a offspring distribution µ = (µ(k))k∈N0

if the probability of having k offspring is µ(k). With these above quantities fixed, the

population of particles evolves at every discrete time unit n ∈ N0 according to the

following rules:

(1) First, every existing particle produces offspring independently of the other par-

ticles. Each particle either reproduces according to the offspring distribution µc
if there is a cookie at its position or according to µ0 otherwise. After that the

parent particle dies.

(2) Second, after the branching the newly produced offspring particles move inde-

pendently of each other either one step to the right or one step to the left. Again

the movement depends on whether the particles are at a position with or without

a cookie. If there is a cookie, each particle moves to the right (left) with prob-

ability pc (qc). Otherwise, if there is no cookie, the transition probabilities are

given by p0 and q0.

(3) Finally, each cookie which is located at a position where at least one particle

has produced offspring is removed. Note that different particles share the same

cookie if they are at a position with a cookie at the same time. Moreover, due

to the chosen initial configuration of the cookies only the leftmost cookie can be

consumed at every time step.

We now introduce some essential notations and assumptions. Since we do not want

the process to die out, we assume that

µc(0) = µ0(0) = 0

holds. Further to avoid additional technical difficulties, we suppose that we have

M := sup {k ∈ N0 : µc(k) + µ0(k) > 0} < ∞. (5.1.1)

In fact, we believe that the results remain true if we replace (5.1.1) by the assumption

that the cookie and the no-cookie offspring variance is finite. In the following we want

to distinguish different particles of the CBRW by using the usual Ulam-Harris labelling.

Therefore, we enumerate the offspring of every particle and introduce the set

V :=
⋃

n∈N0

Nn

as the set of all particles which may be produced at some time in the whole process.

Thereby N0 consists of the root ∅ which denotes the initial particle. In this setting,

ν = (ν1, ν2, . . . , νn) ∈ V

labels the particle which is the νn-th offspring of the particle (ν1, ν2, . . . νn−1). By

iteration we can trace back the ancestral line of ν to the initial particle ∅. Further,
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we denote the generation (length) of the particle ν ∈ V by |ν|, and for two particles

ν, η ∈ V we write

ν � η (respectively, ν � η)

if ν is a descendant of the particle η (respectively, if ν is a descendant of η or η itself).

We use the same notation

ν � U (respectively, ν � U)

for some set U ⊆ V if there is a particle η ∈ U with ν � η (respectively, ν � η). With

the above notations, we can consider the actually produced particles in the CBRW.

For n ∈ N0 and x ∈ Z let

Zn(x) ⊂ Nn ⊂ V

denote the random set of particles which are at position x at time n. Thus

Zn :=
⋃

x∈Z
Zn(x)

is the set of all particles which exist at time n and using this we can define

Z :=
⋃

n∈N0

Zn

as the set of all particles ever produced. Then, for every particle ν ∈ Z we write Xν

for its random position in Z and the collection of all positions of all particles

(Xν)ν∈Z

is what we call CBRW. Further, we denote the position of the leftmost cookie by

l(n) := min{x ∈ N : cn(x) = 1}.

Now, we are able to define the set of particles Z(l)n which is crucial for our considera-

tions:

Z(l)n := Zn(l(n))

The particles that belong to Z(l)n are located at the position of the leftmost cookie

and thus they are the only particles which produce offspring according to µc. We call

the process
(
Z(l)n

)
n∈N0

leading process (and use the abbreviation LP) since it contains

the rightmost particles if Z(l)n 6= ∅. One key observation for the understanding of the

CBRW is that the particles in the LP constitute a Galton-Watson process (GWP) as

long as there are particles in the LP. The associated mean offspring is given by pcmc

and thus we call the LP supercritical (respectively, subcritical, or critical) when pcmc

is greater than 1 (respectively, smaller than 1, or equal to 1).

As it is usually done in the context of branching random walks, we now define three

different regimes:
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Definition 5.1.1. A CBRW is called

(1) strongly recurrent if a.s. infinitely many particles visit the origin, i.e.

P
(
|Zn(0)| −−−→

n→∞
0
)

= 0,

(2) weakly recurrent if P
(
|Zn(0)| −−−→

n→∞
0
)
∈ (0, 1),

(3) transient if P
(
|Zn(0)| −−−→

n→∞
0
)

= 1.

We mention that these regimes may have different names in the literature; for

instance, strong local survival, local survival, and local extinction of [GMPV10] corre-

spond to strong recurrence, recurrence, and transience of this chapter. The transient

regime may be subdivided into transient to the left (resp. transient to the right) if the

negative (resp. positive) integers are visited infinitely many times.

5.2 Branching random walk and cookie random

walk

Criteria for the recurrence/transience behaviour of branching random walks (BRW)

and cookie random walks (CRW) are well-known in the literature.

In our setting the BRW of interest is the process related to the behaviour of the particles

without cookies. In the following we call this process BRW without cookies. It is a

BRW in the usual sense started with one particle at 0, with offspring distribution µ0

and transition probabilities p0, q0 to the nearest neighbours. In this case we have the

following proposition that goes back to classical work of Biggins [Big76], Hammersley

[Ham74], and Kingman [Kin75]; for a proof we refer to Theorem 18.3 in [Per99] and

Theorem 3.2 in [GM06].

Proposition 5.2.1. The BRW without cookies is

(1) transient to the right iff

p0 >
1

2
and m0 ≤

1

2
√
p0q0

,

(2) transient to the left iff

p0 <
1

2
and m0 ≤

1

2
√
p0q0

,

(3) and strongly recurrent in the remaining cases.
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On the other hand, if we consider a CBRW with

µ0(1) = µc(1) = 1, p0 =
1

2
and c0(x) = 1 ∀ x ∈ Z

our model corresponds to the exited random walk model on Z introduced by Benjamini

and Wilson in 2003 (cf. [BW03]). In [BW03], they analysed the excited random walk

on Zd which evolves in the following way: If the random walker visits a vertex for the

first time, he steps right with probability (1+ε)/(2d), left with probability (1−ε)/(2d),

and in other directions with probability 1/(2d). On subsequent visits to a vertex, the

walker chooses one neighbour uniformly at random. This model is also frequently called

cookie random walk (CRW) and the interpretation of the cookies is the same as in the

CBRW model. Initially, there is one cookie at every vertex, and when the random

walker visits a vertex for the first time he eats the cookie and this gives him a drift

in one direction. Afterwards, the cookie is removed and on subsequent visits to that

vertex the random walker chooses one of the neighbours uniformly at random. The

following theorem says that this modification of the walk is already enough to turn the

simple random walk on Z2 from a recurrent into a transient walk.

Theorem 5.2.2 (cf. Theorem 4 in [BW03]). Suppose pc ∈ (1/2, 1]. Then the CRW is

transient iff d ≥ 2.

Note that by a paper of Davis (cf. [Dav99]) it was already known that an excited

random walk on Z is recurrent.

Further, it is interesting to notice that there is both recurrence and transience possible

if we consider a CRW on Z with initially two cookies at every integer of Z.

Theorem 5.2.3 (cf. Theorem 12 in [Zer05]). Suppose c0(x) = 2 ∀ x ∈ Z and let

p0 = 1
2
. Then the CRW is recurrent iff pc ∈ [1/4, 3/4].

5.3 Results

First, we define

ϕ` :=





1
2p0m0

(
1−

√
1− 4p0q0m2

0

)
, if m0 > 1,

min
{

1, q0
p0

}
, if m0 = 1

(the meaning of the quantity ϕ` is explained in Section 5.4 below).

Next, we formulate the main results of this part of the thesis. Theorems 5.3.1 - 5.3.3

give a complete classification of the process with respect to weak/strong recurrence in

the sense of Definition 5.1.1.
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Theorem 5.3.1. Suppose that the BRW without cookies is transient to the right.

(a) If the LP is supercritical, i.e. pcmc > 1 holds, then

(i) the CBRW is strongly recurrent iff pcmcϕ` ≥ 1,

(ii) and the CBRW is transient iff pcmcϕ` < 1.

(b) If the LP is subcritical or critical, i.e. pcmc ≤ 1 holds, then the CBRW is tran-

sient.

Theorem 5.3.2. Suppose that the BRW without cookies is strongly recurrent.Then

the CBRW is strongly recurrent, no matter whether the LP is subcritical, critical or

supercritical.

Theorem 5.3.3. Suppose that the BRW without cookies is transient to the left.

(a) If the LP is supercritical, i.e. pcmc > 1 holds, then the CBRW is weakly recurrent.

(b) If the LP is critical or subcritical, i.e. pcmc ≤ 1 holds, then the CBRW is tran-

sient.

5.4 Preliminaries

In this section, we define an embedded Galton-Watson process (GWP) which will be

very helpful for the proofs in the next section. Further, we collect some known facts

about GWP.

Analogously to the notation which we use for the CBRW, let
(
Yν
)
ν∈Y denote the BRW

without cookies. Thereby Y denotes the set of all ever produced particles and (for

every ν ∈ Y) Yν denotes the random position of the particle ν. We define

Λ+
0 = Λ−0 := 1,

Λ+
n :=

∑

ν∈Y
1{Yν=n, Yη<n ∀η≺ν},

Λ−n :=
∑

ν∈Y
1{Yν=−n, Yη>−n ∀η≺ν} (5.4.1)

for n ∈ N. Here Λ+
n (respectively, Λ−n ) denotes the random number of particles which

are the first in their ancestral line to reach the position n (respectively, −n). In

addition, we define

ϕr := E[Λ+
1 ],

ϕ` := E[Λ−1 ]. (5.4.2)
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Note that we have

P
(
Λ+

1 <∞
)

= P
(
Λ−1 <∞

)
= 1

if the BRW without cookies
(
Yν
)
ν∈Y is transient. In this case the processes

(
Λ+
n

)
n∈N0

and
(
Λ−n
)
n∈N0

are both GWPs. An important observation is that ϕr and ϕ` can be

expressed using the first visit generating function of the underlying random walk. Thus,

denote by Xn the nearest neighbour random walk defined by

P(Xn+1 = x+ 1 | Xn = x) = p0

P(Xn+1 = x− 1 | Xn = x) = q0.

The first visit generating function is defined by

F (x, y|z) =
∞∑

n=0

P(Xn = y,Xk 6= y ∀k < n | X0 = x)zn.

A (short) thought reveals that ϕr = F (0, 1|m0) and ϕ` = F (0,−1|m0) and standard

calculations yield the following formulas; for both arguments one might also consult

Chapter 5 in [Woe09].

Proposition 5.4.1. If the BRW without cookies is transient, we have

ϕr =
1

2q0m0

(
1−

√
1− 4p0q0m2

0

)
, (5.4.3)

and

ϕ` =
1

2p0m0

(
1−

√
1− 4p0q0m2

0

)
. (5.4.4)

Remark 5.4.2.

A natural special case is the situation where µ0(1) = 1. In this model particles can

only branch at positions with a cookie. In sites without cookies the process reduces

to an asymmetric random walk
(
Yn
)
n∈N0

on Z with transition probabilities p0 and q0.

Here ϕr and ϕ` simplify to the probabilities of an asymmetric random walk to ever

reach +1 or −1, respectively, i.e.

ϕr = P
(
∃n ∈ N : Yn = +1

)
= min

{
1, p0

q0

}

and

ϕ` = P
(
∃n ∈ N : Yn = −1

)
= min

{
1, q0

p0

}
.

Remark 5.4.3.

The quantities ϕr and ϕ` play an important role for our argument. As long as the

particles do not reach a cookie, the particles in the CBRW behave as in the BRW

without cookies. If we assume for example that the BRW without cookies is transient

to the right, then ϕ` < 1 and the probability of a particle to produce an offspring which

moves n steps to the left before hitting a cookie again decays like F (n, 0|m0) = (ϕ`)
n.
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Next, we collect some known facts about Galton-Watson processes that will be

needed in the sequel. An important tool for the proofs is to identify GWPs which are

embedded in the CBRW. For the rest of this chapter the processes
(
GW super

n

)
n∈N0

,
(
GW sub

n

)
n∈N0

and
(
GW cr

n

)
n∈N0

shall denote a supercritical, subcritical or critical GWP started with z ∈ N parti-

cles with respect to the probability measure Pz. Furthermore, let T super, T sub and T cr

denote the time of extinction corresponding to the above GWPs, i.e.

T super := inf{n ≥ 0 : GW super
n = 0}

and analogously for the subcritical and critical case.

Proposition 5.4.4. For a subcritical GWP
(
GW sub

n

)
n∈N0

with strictly positive and

finite offspring variance there is a constant c > 0 such that

lim
n→∞

P1

(
GW sub

n > 0
)

E1

[
GW sub

1

]n = c.

For a proof see for instance Theorem 2.6.1 in [Jag75].

Proposition 5.4.5. For a critical GWP
(
GW cr

n

)
n∈N0

with strictly positive and finite

offspring variance there is a constant c > 0 such that

lim
n→∞

nP1 (GW cr
n > 0) = c.

For a proof see for instance Theorem I.9.1 in [AN72]. Using the inequality 1− x ≤
exp(−x) we obtain the following consequence of Proposition 5.4.5.

Proposition 5.4.6. For the extinction time T cr of a critical GWP with strictly positive

and finite offspring variance there exists a constant C > 0 such that

Pz
(
T cr ≤ n

)
≤ exp

(
−C z

n

)

for all n ∈ N and for all z ∈ N.

Proposition 5.4.7. For the extinction time T cr of a critical GWP with strictly positive

and finite offspring variance there exists a constant C > 0 such that

Pz
(
T cr = n

)
≤ C

z

n2

for all n ∈ N and for all z ∈ N.

Proof. Due to Corollary I.9.1 in [AN72] (with s = 0), there is a constant c > 0 such

that

lim
n→∞

n2P1

(
T cr = n+ 1

)
= c.

Therefore, we get for n ∈ N

Pz
(
T cr = n

)
≤ z P1

(
T cr = n

)
= z

1

(n− 1)2

(
c+ o(1)

)
≤ C

z

n2

for a suitable constant C > 0. �
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5.5 Proofs of the main results

5.5.1 Proof of Theorem 5.3.1

Proof of part (a).

In this part of the proof we suppose pcmc > 1, i.e. the LP is supercritical. For n ∈ N
we define inductively the n-th extinction time and the n-th rebirth time of the LP by

τn := inf
{
i > σn−1 : |Z(l)i| = 0

}
,

σn := inf
{
i > τn : |Z(l)i| ≥ 1

}

with σ0 := 0 and inf ∅ :=∞. Since p0 > 1/2 and the LP is supercritical we have that

P(σn <∞ | τn <∞) = 1

and

P(τn+1 =∞ | τn <∞) ≥ P(τ1 =∞) > 0

for all n ≥ 0. Hence, we a.s. have

σ∗ := inf{n ∈ N0 : |Z(l)i| ≥ 1 ∀ i ≥ n} < ∞. (5.5.1)

It is a well-known fact that conditioned on survival a supercritical GWP with finite

second moment normalized by its mean converges to a strictly positive random variable

(e.g. see Theorem I.6.2 in [AN72]). Considering the LP seperately on the sets {σ∗ = k}
for k ∈ N0 yields

lim
n→∞

|Z(l)n|
(pcmc)n

= W > 0 (5.5.2)

for a strictly positive random variable W .

(i) Now, we suppose pcmcϕ` ≥ 1. For n ∈ N0, let us introduce

Ln :=
{
ν ∈ Zn+1(l(n)− 1) : ν � Z(l)n

}
.

The set Ln contains all particles that are produced in the LP at time n and then leave

the LP to the left. Thus they are located at the position l(n) − 1 at time n + 1. We

define for n ∈ N0 the sets

An :=
{
∃ ν � Ln : Xν = 0

}
.

In order to show strong recurrence of the CBRW it is now sufficient to proof that

P
(

lim sup
n→∞

An

)
= 1. (5.5.3)

As a first step to achieve this, we consider the events

Bn :=
{
|Ln| ≥

(
pcmc)

nn−1, n ≥ σ∗
}
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for n ∈ N0 and show that

P
(

lim inf
n→∞

Bn

)
= 1. (5.5.4)

This provides a lower bound for the growth of |Ln| for large n. To see that (5.5.4)

holds, we define

Cn :=
{
|Z(l)n| ≥ (pcmc)

nn−1/2
}

and notice that due to (5.5.2) we have

P
(

lim inf
n→∞

Cn

)
= 1. (5.5.5)

We observe that, given the event Cn, the random variable |Ln| can be bounded from

below by a random sum of d(pcmc)
nn−1/2e i.i.d. Bernoulli random variables with success

probability qc. For a sum S(n) of n i.i.d. Bernoulli random variables with success

probability qc a large deviation bound yields

P
(
S(n) ≤ qc

2
· n
)
≤ exp

(
− I1 · n

)
(5.5.6)

for all n ∈ N0 and some I1 > 0 (see for instance Theorem 2.2.3 and Exercise 2.2.23 in

[DZ98]). Therefore by using (5.5.6), we get

P
({
|Ln| < (pcmc)

n · n−1
}
∩ Cn

)

≤ P
(
|Ln| < (pcmc)

n · n−1
∣∣∣ Cn

)

≤ P

(
S
(
d(pcmc)

n · n−1/2e
)
<

(pcmc)
n · n−1

d(pcmc)n · n−1/2e · d(pcmc)
n · n−1/2e

)

≤ exp
(
−I1 · (pcmc)

n · n−1/2
)

(5.5.7)

for large n. Since the sum over the upper bound in (5.5.7) converges, we can conclude

(using the Borel-Cantelli lemma) that we have

P

(
lim sup
n→∞

({
|Ln| < (pcmc)

nn−1
}
∩ Cn

))
= 0. (5.5.8)

Since σ∗ <∞ a.s., (5.5.8) together with (5.5.5) yields (5.5.4).

Next, we observe that on {n ≥ σ∗} the amount of offspring of every particle in Ln which

ever moves 1, 2, . . . steps to the left for the first time in their genealogy constitutes an

embedded GWP in the CBRW. Its mean is given by ϕ`, where ϕ` < 1 holds since the

BRW without cookie is transient to the right (cf. Remark 5.4.3). Additionally, Lemma

B.1 yields that the second moment of this GWP is finite. Using Proposition 5.4.4, we
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therefore get

P
(
An | |Ln| ≥ (pcmc)

nn−1, n ≥ σ∗
)
≥ 1− (1− c(ϕ`)n)(pcmc)nn−1

≥ 1− exp
(
−c(ϕ`)n(pcmc)

nn−1
)

≥ 1− exp
(
− c
n

)

≥ C
n

(5.5.9)

for some c, C > 0. Here we used that the position of a particle ν ∈ Ln is bounded

by n (in fact by n − 1). Notice also that we have pcmcϕ` ≥ 1 by assumption. Since

1Bn is measurable with respect to the σ-algebra generated by |Ln| and σ∗, we have for

i, j ∈ N with i < j

P

(
j⋂

n=i

(
Ac
n ∩Bn

)
)

= E

[
E

[
j∏

n=i

1Ac
n∩Bn

∣∣∣∣∣ |Li|, . . . , |Lj|, σ
∗
]]

= E

[( j∏

n=i

1Bn

)
1{i≥σ∗}E

[
j∏

n=i

1Ac
n

∣∣∣∣∣ |Li|, . . . , |Lj|, σ
∗
]]

.

Now, we observe that on {i ≥ σ∗} the random variables
(
1Ac

n

)
i≤n≤j are conditionally

independent given |Li|, . . . , |Lj| and σ∗. This holds because on {i ≥ σ∗} all the particles

in
⋃j
n=i Ln start independent BRWs which cannot reach the cookies anymore. For

the same reason on {i ≥ σ∗} each of the random variables (1Ac
n
)i≤n is conditionally

independent of (|Lk|)k 6=n given |Ln| and σ∗. Using these two facts we obtain

E

[(
j∏

n=i

1Bn

)
1{i≥σ∗} · E

[
j∏

n=i

1Ac
n

∣∣∣∣∣ |Li|, . . . , |Lj|, σ
∗
]]

= E

[
j∏

n=i

(
1Bn1{i≥σ∗}E

[
1Ac

n

∣∣ |Li|, . . . , |Lj|, σ∗
] )
]

= E

[
j∏

n=i

1BnE
[
1Ac

n

∣∣ |Ln|, σ∗
]
]
. (5.5.10)

With the help of (5.5.9) and (5.5.10) we can now conclude that we have

P

(
j⋂

n=i

(
Ac
n ∩Bn

)
)

= E

[
j∏

n=i

1BnE
[
1Ac

n

∣∣ |Ln|, σ∗
]
]

≤
j∏

n=i

(
1− C

n

)
−−−→
j→∞

0. (5.5.11)

Therefore, for all i ∈ N we have

P

( ∞⋂

n=i

(
Ac
n ∩Bn

)
)

= 0,
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which implies

P
(

lim inf
n→∞

(
Ac
n ∩Bn

))
= 0. (5.5.12)

Since (5.5.4) holds, (5.5.12) yields

P
(

lim inf
n→∞

Ac
n

)
= 0.

Thus, we have established (5.5.3) and so (i) of Theorem 5.3.1(a) is proven.

(ii) Now suppose pcmcϕ` < 1. Again we consider the event

An =
{
∃ ν � Ln : Xν = 0

}

but in contrast to (i) we here show in a first step that we have

P

(
lim sup
n→∞

An

)
= 0.

Similar to (i), for ε > 0 we define the event

B′n :=
{
|Ln| ≤

(
pcmc + ε

)n
, l(n)− 1 ≥ n·(1− ε)

}

and as above we show that

P
(

lim inf
n→∞

B′n

)
= 1. (5.5.13)

Analogously to the definition of Cn, we define C ′n :=
{
|Z(l)n| ≤ (pcmc + ε

2
)n
}

and

observe that due to (5.5.2) we have

P
(

lim inf
n→∞

C ′n

)
= 1. (5.5.14)

Then we can make use of a very similar argument as above based on a large deviation

bound for the sum of M · b(pcmc + ε
2
)nc i.i.d. Bernoulli random variables with success

probability qc (cf. (5.5.7)). This time we just have to take into account that each

particle produces at most M offspring. Therefore, we have

P
({
|Ln| > (pcmc + ε)n

}
∩ C ′n

)
≤ exp

(
− I2 ·

(
M · b(pcmc + ε

2
)nc
))

for large n and some I2 > 0 . Anyway, we can conclude that we have

P

(
lim sup
n→∞

({
|Ln| >

(
pcmc + ε

)n} ∩ C ′n
))

= 0.

Together with (5.5.14) this implies

P
(

lim inf
n→∞

{
|Ln| ≤

(
pcmc + ε

)n})
= 1. (5.5.15)
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Moreover due to the fact that σ∗ <∞ (cf. (5.5.1)), we a.s. have

lim
n→∞

l(n)

n
= 1

and this together with (5.5.15) yields (5.5.13).

Due to (5.5.13) it is enough to consider the behaviour of the process on the sets(
B′n
)
n∈N0

. Using Proposition 5.4.4 for the same embedded GWP with mean ϕ` < 1 as

in equation (5.5.9), we can estimate the probability that there exists a particle in Ln
which has a descendant returning to the origin in the following way:

P
(
An ∩B′n

)
≤ P

(
An
∣∣B′n
)

= 1− P
(
@ ν � Ln : Xν = 0

∣∣B′n
)

≤ 1−
(

1−
(
ϕ`
)n·(1−ε) ·

(
c+ o(1)

))(pcmc+ε)n

(5.5.16)

Note that for x ∈ [0, 1
2
] we have 1 − x ≥ exp(−2x). Since ϕ` < 1 (cf. Remark 5.4.3),

we have
(
ϕ`
)n·(1−ε) ·

(
c+ o(1)

)
∈ (0, 1

2
] for large n ∈ N and therefore we get

(
1−

(
ϕ`
)n·(1−ε) ·

(
c+ o(1)

))(pcmc+ε)n

≥ exp
(
−2 ·

(
ϕ`
)n·(1−ε) ·

(
c+ o(1)

)
· (pcmc + ε)n

)

for large n. This together with (5.5.16) and the estimate 1− exp(−x) ≤ x yields

P
(
An ∩B′n

)
≤ 1− exp

(
−2 ·

(
ϕ`
)n·(1−ε) ·

(
c+ o(1)

)
· (pcmc + ε)n

)

≤ 2 ·
(
ϕ`
)n·(1−ε) ·

(
c+ o(1)

)
· (pcmc + ε)n (5.5.17)

for large n ∈ N. Since pcmc ·ϕ` < 1 holds, we can choose ε > 0 small enough such that

we still have (
pcmc + ε

)
· (ϕ`)1−ε < 1.

Thus for such a choice of ε, the Borel-Cantelli lemma implies

P

(
lim sup
n→∞

(An ∩B′n)

)
= 0.

This together with (5.5.13) shows

P

(
lim sup
n→∞

An

)
= P

(
lim sup
n→∞

{
∃ ν � Ln : Xv = 0

})
= 0. (5.5.18)

To show that (5.5.18) suffices for the transience of the CBRW, we define

N := sup{n ∈ N0 : ∃ ν � Ln : Xν = 0}
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and observe that due to (5.5.18) we a.s. have N < ∞. Further, for every particle ν

(except for the initial particle) which is located at the origin there is a largest n ∈ N0

for which ν has an ancestor in Ln. Thus we have

∑

ν∈Z
1{Xν=0} ≤

∑

ν∈Z
|ν|≤σ∗

1{Xν=0} +
N∨σ∗∑

n=σ∗

∑

ν∈Ln

∣∣{η � ν : Xη = 0
}∣∣.

Since we have σ∗, N <∞ a.s. and since for every ν ∈ Ln with n ≥ σ∗ the offspring of

ν behave as a BRW without cookies, which is transient to right by assumption, we a.s.

have ∑

ν∈Z
1{Xν=0} < ∞.

Therefore, we can finally conclude that a.s. only finitely many particles visit the origin,

i.e. the CBRW is transient. This completes part (a) of the proof. �

Proof of part (b)

In this part of the proof we suppose that the LP is subcritical or critical, i.e. that

pcmc ≤ 1. We start with Lemma 5.5.1, which states that except for finitely many

times the particles at a single position x ∈ Z produce an amount of offspring which is

close to the expected amount as long as there are many particles at this position. To

do so, we first split the set of particles Zn(x) into the following two sets

Z+
n+1(x) := {ν ∈ Zn+1(x) : ν � Zn(x− 1)},

Z−n+1(x) := {ν ∈ Zn+1(x) : ν � Zn(x+ 1)}

containing the particles which have moved to the right or to the left from time n to

time n + 1. For ε > 0, which we specify later (cf. (5.5.36) and (5.5.53)), we introduce

the following sets:

D+
n (x) := {x < l(n), |Zn(x)| ≥ n} ∩

({ |Z+
n+1(x+ 1)|
|Zn(x)| < (p0m0 − ε)

}

∪
{

(p0m0 + ε) <
|Z+

n+1(x+ 1)|
|Zn(x)|

})
,

D−n (x) := {x < l(n), |Zn(x)| ≥ n} ∩
({ |Z−n+1(x− 1)|

|Zn(x)| < (q0m0 − ε)
}

∪
{

(q0m0 + ε) <
|Z−n+1(x− 1)|
|Zn(x)|

})
,

E+
n := {Z(l)n ≥ n} ∩

({ |Z(l)n+ 1|
|Z(l)n| < (pcmc − ε)

}

∪
{

(pcmc + ε) <
|Z(l)n+ 1|
|Z(l)n|

})
,
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E−n := {Z(l)n ≥ n} ∩
({ |Z−n+1(l(n)− 1)|

|Z(l)n| < (qcmc − ε)
}

∪
{

(qcmc + ε) <
|Z−n+1(l(n)− 1)|

|Z(l)n|

})
,

Fn := E+
n ∪ E−n ∪

⋃

x∈Z

(
D+
n (x) ∪D−n (x)

)
. (5.5.19)

Lemma 5.5.1. We have

P

(
lim sup
n→∞

Fn

)
= 0. (5.5.20)

Proof of Lemma 5.5.1. A large deviation estimate (note that the number of offspring

of a single particle is bounded by M) for the random sum |Z+
n+1(x+ 1)| of |Zn(x)| i.i.d.

random variables with mean p0m0 yields

P
(
|Z+

n+1(x+ 1)| > (p0m0 + ε)|Zn(x)|
∣∣∣σ(|Zn(x)|)

)
≤ exp

(
− |Zn(x)|C1

)
(5.5.21)

for some constant C1 > 0 and

P
(
|Z+

n+1(x+ 1)| < (p0m0 − ε)|Zn(x)|
∣∣∣σ(|Zn(x)|)

)
≤ exp

(
− |Zn(x)|C2

)
(5.5.22)

for some constant C2 > 0. From (5.5.21) and (5.5.22) we can conclude

P
(
D+
n (x)

)
≤ exp(−nC1) + exp(−nC2). (5.5.23)

The same argument leads to analogue estimates for the sets D−n (x), E+
n and E−n with

constants Ci > 0 for i = 3, . . . , 8. Since at time n ∈ N0 particles can only be located

at the n+ 1 positions −n,−n+ 2, . . . , n− 2, n, we get

P

(
E+
n ∪ E−n ∪

⋃

x∈Z

(
D+
n (x) ∪D−n (x)

))
≤ 2(2 + 2(n+ 1)) exp(−nC)

for C := min
i=1,...,8

Ci > 0. Therefore, the Borel-Cantelli lemma implies (5.5.20). �

In the considered case the CBRW behaves very differently depending on whether we

have p0m0 ≤ 1 or p0m0 > 1:

(i) For p0m0 ≤ 1 the offspring of a single particle which move to the right in every

step behave as a critical or subcritical GWP as long as the particles do not reach

the cookies. Therefore, we can expect that the amount of particles which reach a

cookie at the same time is not very large. More precisely, we will show in Propo-

sition 5.5.2 that the amount of particles in the LP does not grow exponentially.

(ii) For p0m0 > 1 the amount of offspring which moves to the right in every time

step in the corresponding BRW without cookies constitutes a supercritical GWP.
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Therefore, the number of particles at the rightmost occupied position in the

BRW without cookies a.s. grows with exponential rate p0m0 > 1. In this

case the following proposition shows that the amount of particles in the LP is

essentially bounded by the growth rate of the rightmost occupied position of the

corresponding BRW without cookies.

Proposition 5.5.2. For every α > max{1, p0m0} =: m∗ we have

P
(

lim inf
n→∞

{|Z(l)n| < αn}
)

= 1. (5.5.24)

Proof of Proposition 5.5.2. For the proof we start with the following lemma which

states that a large LP at time n leads to a long survival of the LP afterwards (except

for finitely many times). For β > 0 we define

Gn := Gn(β) :=
{
|Z(l)n| ≥ n, τ(n) ≤ β log |Z(l)n|

}
, (5.5.25)

where

τ(n) := inf{` ≥ n : |Z(l)`| = 0} (5.5.26)

denotes the time of the next extinction of the LP beginning from time n.

Lemma 5.5.3. There exists some β > 0 such we have

P

(
lim sup
n→∞

Gn

)
= 0. (5.5.27)

Proof of Lemma 5.5.3. Let us first look at a subcritical GWP
(
GW sub

n

)
n∈N0

with repro-

duction mean pcmc < 1 and strictly positive, finite offspring variance and its extinction

time T sub. Assuming that we have an initial population of z ∈ N particles, we get using

Proposition 5.4.4

Pz(T
sub ≤ n) =

(
1− P(GW sub

n > 0)
)z

≤
(
1− c(pcmc)

n
)z

≤ exp
(
− c(pcmc)

nz
)

≤ exp
(
−C z

n

)
,

for suitable constants c, C > 0. Together with Proposition 5.4.6 we conclude that in

the two cases of a subcritical and a critical LP there exists C > 0 such that we have

for n ∈ N

P
(
|Z(l)n| ≥ n, τ(n) ≤ β log |Z(l)n|

)
≤ exp

(
−C n

β log(n)

)
.

Therefore, the Borel-Cantelli lemma implies (5.5.27). �
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In the following we want to investigate the behaviour of the CBRW on the set

Hn0 :=
⋂

n≥n0

(
F c
n ∩Gc

n

)
(5.5.28)

for fixed n0 ∈ N0. On this set we have upper and lower bounds for

|Z+
n+1(x+ 1)|
|Zn(x)| and

|Z−n+1(x− 1)|
|Zn(x)|

for positions x ∈ Z containing at least n particles at time n ≥ n0 (cf. (5.5.19)).

Additionally, we have a lower bound for the time for which a LP with at least n

particles at time n ≥ n0 will stay alive afterwards (cf. (5.5.25)). Note that we have

P
(

lim inf
n→∞

(
F c
n ∩Gc

n

))
= lim

n→∞
P(Hn) = 1 (5.5.29)

due to Lemma 5.5.1 and Lemma 5.5.3.

For the next lemma we need some additional notation. We define

σ0 := inf{n > n0 : |Z(l)n− 1| = 0, |Z(l)n| 6= 0, l(n) ≤ n− 2n0 − 1},

which is the time of the first rebirth of the LP after time n0 for which we have

l(σ0)− (σ0 − n0) ≤ −2n0 − 1 + n0 = −n0 − 1.

This implies

Zn0

(
l(σ0)− (σ0 − n0)

)
= 0, (5.5.30)

which is an important fact which we make use of in the following calculations (cf.

Figure 5.1). Since the LP is critical or subcritical and the BRW without cookies is

transient to the right, we a.s. have σ0 <∞. We now define the random times

τn := inf{` > σn : |Z(l)`| = 0} − σn, for n ≥ 0,

σn := inf{` > σn−1 + τn−1 : |Z(l)`| 6= 0}, for n ≥ 1,

which denote the time period of survival and the time of extinction of the LP, induc-

tively. Due to the assumptions of the CBRW all of these random times are a.s. finite.

Using (5.5.30) we see that we have

Zn0

(
l(σj)− (σj − n0 + k)

)
= 0 (5.5.31)

for all j, k ∈ N0.

As the next step of the proof, we state the following upper bounds for the size of the

restarted LP at time σj+1 on the set Hn0 :
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Lemma 5.5.4. For arbitrary γ > 0 and large n0 we have

|Z(l)σj+1| ≤ (m∗ + 3γ)σj+1 (5.5.32)

on Hn0 ∩ {σj+1 = σj + τj + 2} ∩ {|Z(l)σj| ≤ (m∗ + γ)σj},
|Z(l)σj+1| ≤ |Z(l)σj| · (m∗ + 4γ)τj (5.5.33)

on Hn0 ∩ {σj+1 = σj + τj + 2} ∩ {|Z(l)σj| > (m∗ + γ)σj},
|Z(l)σj+1| ≤ (m∗ + 2γ)σj+1 (5.5.34)

on Hn0 ∩ {σj+1 > σj + τj + 2},

where m∗ = max{1, p0m0}.

Proof of Lemma 5.5.4. First we choose 0 < δ < γ in such a way that

1 + δ ≤ m∗ + 2γ

m∗ + γ
, 1 + δ ≤

(
m∗ + 3γ

m∗ + 2γ

)β log(m∗+γ)

, (5.5.35)

where β > 0 satisfies Lemma 5.5.3. Then we choose ε > 0 for the definitions of the

sets
(
Fn
)
n∈N0

(cf. (5.5.19)) sufficiently small such that

pcmc + ε ≤ 1 + δ,
p0m0 + ε

p0m0 − ε
≤ 1 + δ, p0m0 + ε ≤ m∗ + γ. (5.5.36)

For the upcoming estimates we use the following properties of the set Hn0 . For n > n0

we have

1.) |Zn−1(x− 1)| ≤ n− 1 (5.5.37)

on Hn0 ∩ {|Zn(x)| = 0},

which means that there cannot be very many particles at position x− 1 one time step

before n if we know that the position x stays empty at time n. Similarly, the knowledge

of |Zn(x)| gives us upper estimates for (|Zn−k(x−k)|)k∈N. If we are in the case in which

the cookies are always to the right of the considered positions, we have for n > n0

2.) |Zn−1(x− 1)| ≤ z · (p0m0 − ε)−1 + n− 1

on Hn0 ∩ {|Zn(x)| = z, l(n− 1) > (x− 1)},
|Zn−k(x− k)| ≤ z · (p0m0 − ε)−k + (n− 1) · (p0m0 − ε)−k+1 (5.5.38)

on Hn0 ∩ {|Zn(x)| = z, l(n− 1) > (x− 1)}
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for n−k ≥ n0. The first estimate is easily obtained using a proof by contradiction and

an iteration of it yields the second inequality.

We obtain similar estimates for the size of the LP before the next extinction at time

τ(n) (for the definition of τ(n) see (5.5.26)):

3.) |Z(l)n+ 1| ≤ z · (pcmc + ε) +M · n
on Hn0 ∩ {Z(l)n = z},

|Z(l)n+ 2| ≤ z · (pcmc + ε)2 + 2 ·M · (n+ 1) ·max{1, pcmc + ε}
on Hn0 ∩ {|Z(l)n| = z} ∩ {τ(n) ≥ n+ 2},

|Z(l)n+ k| ≤ z · (pcmc + ε)k + k ·M · (n+ k − 1) · (1 + δ)k−1 (5.5.39)

on Hn0 ∩ {|Z(l)n| = z} ∩ {τ(n) ≥ n+ k}.

Now, we introduce two processes (Φn)n∈N and (Ψn)n∈N, which help us – together with

the estimates (5.5.37), (5.5.38), and (5.5.39) – to control the number of particles that

restart the LP at time σj+1 (cf. Figure 5.1 and 5.2). For j ∈ N0 and n ∈ N we define

Φn := Φ(j)
n := Zn(l(σj+1)− σj+1 + n)

and

Ψn := Ψ(j)
n := Zn(l(σj+1)− σj+1 + 2 + n).

For sake of a better presentation we drop the superscript j and write just Φn and Ψn

if there is no room for confusion. We observe that we have

|Φn+1| = |Ψn| = 0 (5.5.40)

for all n ≤ n0 due to (5.5.31). Furthermore, by definition we have

Φσj+1
= Z(l)σj+1 (5.5.41)

and

|Ψσj+1
| = |Ψσj+1−1| = |Ψσj+1−2| = 0. (5.5.42)

Again, we split the set of particles Φn into the particles which have moved one step to

the right from time n− 1 to time n and the particles which have moved to the left:

Φ+
n := Z+

n (l(σj+1)− σj+1 + n),

Φ−n := Z−n (l(σj+1)− σj+1 + n)

To obtain an upper bound for Φσj+1
= Z(l)σj+1, we use the following recursive struc-

ture. We have

|Φ−n | ≤ M |Ψn−1|
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position x ∈ Z

time n ≥ 0

l(σj)− (σj − n0)
≤ −n0 − 1

l(σj) l(σj) + τj
= l(σj+1)

n0

σj

σj + τj

σj+1

= σj + τj + 2
?

(
Zσj+1−n

(
l(σj+1)− n

) )
n∈N0

(
Zσj+τj−n

(
l(σj) + τj − n

) )
n∈N0

cookie/no particles

cookie/particles

no cookie/no particles

no cookie/
potentially particles
no cookie/potentially
particles without influence
potentially a cookie/
potentially particles
without (direct) influence

? position of interest

Figure 5.1: The LP is restarted at time σj+1 two time steps after the last extinction at

time σj + τj . The two diagonals represent the processes (Φn)n∈N and (Ψn)n∈N.

for n ∈ N due to assumption (5.1.1). Moreover, on Hn0 we have

|Φ+
n | ≤ |Φn−1|(p0m0 + ε) +Mσj+1

for n0 + 2 ≤ n ≤ σj+1 (since the particles reproduce and move without cookies) and

these two facts yield

|Φn| = |Φ+
n |+ |Φ−n | ≤ |Φn−1|(p0m0 + ε) +Mσj+1 +M |Ψn−1| (5.5.43)

for n0 + 2 ≤ n ≤ σj+1. Using (5.5.40), (5.5.42), and σj+1 − n0 − 1 iterations of the

recursion in (5.5.43), we obtain the following upper bound for the particles which start

the LP at time σj+1 on Hn0 :

|Φσj+1
| ≤ M

σj+1−n0−1∑

k=3

|Ψσj+1−k|(p0m0 + ε)k−1 +Mσj+1

σj+1−n0−1∑

k=1

(p0m0 + ε)k−1

≤ M

σj+1−n0−3∑

k=1

|Ψσj+1−k−2|(p0m0 + ε)k+1 +Mσ2
j+1(m∗ + γ)σj+1 . (5.5.44)

Note that this bound just depends on σj+1 and the process (Ψn)n∈N. For this reason

we now take a closer look at (Ψn)n∈N and distinguish between the following two cases:
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• In the first case we assume that the LP restarts right after it has died out and

we therefore have σj+1 = σj + τj + 2. In this case the process (Ψn)n∈N coincides

with the LP between time σj and σj + τj (cf. Figure 5.1).

• In the second case we assume that we have σj+1 > σj + τj + 2. From this we

know that there are no particles in the LP at time σj+1− 2 and thus the process

(Ψn)n∈N is always left of the cookies (cf. Figure 5.2).

In both cases the crucial observation is that the amount of particles in (Ψn)n∈N does

not exceed a certain level since none of its offspring reaches the leftmost cookie at time

σj+1 − 2.

• At first, we consider the case Hn0 ∩ {σj+1 = σj + τj + 2}.

We apply the estimations (5.5.38) and (5.5.39) to give upper bounds for

|Ψσj+1−k| = |Ψσj+τj+2−k|
for 1 ≤ k ≤ σj+1 − n0. We know by definition of σj that we have

l(σj − 1) = l(σj) > l(σj)− 1.

Thus, we can apply (5.5.38) and conclude that on the set Hn0 for 1 ≤ k ≤ σj − n0 we

have

|Ψσj−k| = |Zσj−k(l(σj)− k)| ≤ |Z(l)σj|(p0m0 − ε)−k + σj(p0m0 − ε)−k+1

and by using (5.5.39) for 0 ≤ k ≤ τj − 1 we get

|Ψσj+k| = |Z(l)σj + k| ≤ |Z(l)σj|(pcmc + ε)k + kM(σj + k − 1)(1 + δ)k−1.

Applying these two estimates to (5.5.44) yields

|Φσj+1
| ≤ M

τj∑

k=1

|Ψσj+(τj−k)|(p0m0 + ε)k+1 +M

σj+τj−n0−1∑

k=τj+1

|Ψσj−(k−τj)|(p0m0 + ε)k+1

+Mσ2
j+1(m∗ + γ)σj+1

≤ M

τj∑

k=1

(
|Z(l)σj|(pcmc + ε)τj−k

+ (τj − k)M(σj + τj − k − 1)(1 + δ)τj−k−1
)

(p0m0 + ε)k+1

+M

σj+τj−n0−1∑

k=τj+1

(
|Z(l)σj|(p0m0 − ε)−k+τj

+ σj(p0m0 − ε)−k+τj+1
)

(p0m0 + ε)k+1 +Mσ2
j+1(m∗ + γ)σj+1
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≤ τ 2
jM

2(|Z(l)σj|+ σj+1)(1 + δ)τj−1(m∗ + γ)τj+1

+ σj+1M
(
|Z(l)σj|+ σj(p0m0 − ε)

)(p0m0 + ε

p0m0 − ε

)σj
(p0m0 + ε)τj+1

+Mσ2
j+1(m∗ + γ)σj+1

≤ 2M2σ2
j+1(|Z(l)σj|+ σj+1)(1 + δ)σj+τj−1(m∗ + γ)τj+2 +Mσ2

j+1(m∗ + γ)σj+1 .

(5.5.45)

Here we used (5.5.36) in the last two steps.

If we first investigate |Z(l)σj+1| on the subset

{|Z(l)σj| ≤ (m∗ + γ)σj} ∩Hn0 ∩ {σj+1 = σj + τj + 2},
on which we have a limited amount of particles in Z(l)σj, we get by using (5.5.45)

|Z(l)σj+1| = |Φσj+1
|

≤ 2M2σ2
j+1

(
(m∗ + γ)σj + σj+1

)
(1 + δ)σj+τj−1(m∗ + γ)τj+2

+Mσ2
j+1(m∗ + γ)σj+1

≤ 3M2(σj+1 + 1)3(1 + δ)σj+1(m∗ + γ)σj+1

≤ (m∗ + 3γ)σj+1

for n0 and thus σj+1 ≥ n0 large enough due to (5.5.35). This shows (5.5.32) in

Lemma 5.5.4.

On the other hand, if we consider the remaining subset

{|Z(l)σj| > (m∗ + γ)σj} ∩Hn0 ∩ {σj+1 = σj + τj + 2},
(5.5.45) yields

|Z(l)σj|−1|Z(l)σj+1| = |Z(l)σj|−1|Φσj+1
|

≤ 2M2σ2
j+1(1 + σj+1)(1 + δ)σj+τj−1(m∗ + γ)τj+1

+Mσ2
j+1(m∗ + γ)τj+2

≤ 3M2(σj + τj + 3)3(1 + δ)σj(m∗ + 2γ)τj+2

≤ 3M2(σj + τj + 3)3(1 + δ)
1

β log(m∗+γ) τj(m∗ + 2γ)τj+2

≤ (m∗ + 4γ)τj
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position x ∈ Z

time n ≥ 0

?

cookie/no particles

cookie/particles

no cookie/no particles

no cookie/
potentially particles
no cookie/potentially
particles without influence
potentially a cookie/
no particles
potentially a cookie/
potentially particles
without (direct) influence

? position of interest

l(σj+1)− 2− (σj − 2)
≤ −n0 − 1

l(σj+1)

n0

σj+1 − 2

σj+1

(
Zσj+1−n

(
l(σj+1)− n

) )
n∈N0

(
Zσj+1−2−n

(
l(σj+1)− n

) )
n∈N0

Figure 5.2: The LP is restarted at time σj+1 more than two time steps after the last

extinction at time σj + τj . The two diagonals represent the processes (Φn)n∈N and (Ψn)n∈N.

for n0 and thus σj ≥ n0 large enough. Thereby we used (5.5.35) and the fact that

we have {τj > β log
(
(m∗ + γ)σj

)
} on the considered set (cf. Lemma 5.5.3). This

shows (5.5.33) in Lemma 5.5.4.

• We now turn to the set Hn0 ∩ {σj+1 > σj + τj + 2}. First, we observe that on this

set, due to (5.5.37), we have

|Ψσj+1−2−1| = |Zσj+1−2−1(l(σj+1)− 1)| ≤ σj+1 − 2− 1 ≤ σj+1 (5.5.46)

since |Ψσj+1−2| = |Zσj+1−2(l(σj+1))| = 0 holds. Further, we observe that the particles

which belong to (Ψn)n∈N are always to the left of the cookies. In particular, we have

l(σj+1 − 2− 1) = l(σj+1) > l(σj+1)− 1.

Therefore, we can apply (5.5.38) and conclude, by using (5.5.46),

|Ψσj+1−2−k| = |Zσj+1−2−k(l(σj+1)− k)|

≤ σj+1(p0m0 − ε)−k + (σj+1 − 2− 1)(p0m0 − ε)−k+1

≤ 2σj+1(p0m0 − ε)−k (5.5.47)
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for 2 ≤ k ≤ σj+1 − 2− n0.

With the help of (5.5.44) and (5.5.47) we get on the set Hn0 ∩ {σj+1 > σj + τj + 2}

|Φσj+1
| ≤ M

σj+1−n0−3∑

k=1

|Ψσj+1−2−k|(p0m0 + ε)k+1 +Mσ2
j+1(m∗ + γ)σj+1

≤ M

σj+1−n0−3∑

k=1

2σj+1(p0m0 − ε)−k(p0m0 + ε)k+1 +Mσ2
j+1(m∗ + γ)σj+1

≤ 2Mσ2
j+1

(
p0m0 + ε

p0m0 − ε

)σj+1−n0−3

(p0m0 + ε) +Mσ2
j+1(m∗ + γ)σj+1

≤ 3Mσ2
j+1(m∗ + γ)σj+1

≤ (m∗ + 2γ)σj+1

for n0 and thus σj+1 ≥ n0 large enough. Here we used (5.5.35) and (5.5.36) in the last

two steps. This shows (5.5.34) in Lemma 5.5.4. �

We now return to the proof of Proposition 5.5.2. First, we choose γ ∈ R with

0 < 6γ < α−m∗

and n0 large enough such that the estimations (5.5.32), (5.5.33) and (5.5.34) from

Lemma 5.5.4 hold. Using these estimations, we can conclude that on Hn0 we a.s. have

η := inf{n ≥ n0 : |Z(l)σn| < (m∗ + 5γ)σn} < ∞. (5.5.48)

To see this, we just have to see what happens on the event

Hn0 ∩
k⋂

j=1

({
|Z(l)σj| > (m∗ + γ)σj

}
∩
{
σj+1 = σj + τj + 2

})
.

On this set we can use (5.5.33) k times in a row and we get

|Z(l)σk| ≤ |Z(l)σ0|
k∏

j=1

(m∗ + 4γ)τj ≤ |Z(l)σ0|(m∗ + 4γ)σk ,

from which we conclude that (5.5.48) indeed holds on Hn0 .

Again by using the three estimations (5.5.32), (5.5.33), and (5.5.34) of Lemma 5.5.4,

we can see inductively that on the set Hn0 we have

|Z(l)σn| ≤ (m∗ + 5γ)σn
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for all n ≥ η. Additionally, if we assume

|Z(l)σn + i− 1| ≤ (m∗ + 5γ)σn+i−1,

we see inductively by using (5.5.39) that on the set Hn0 we have for all n ≥ η and for

all 1 ≤ i ≤ τn − 1

|Z(l)σn + i| ≤ |Z(l)σn + i− 1|(pcmc + ε) + (σn + i− 1)M

≤ (m∗ + 5γ)σn+i−1(pcmc + ε) + (σn + i− 1)M

≤ (m∗ + 5γ)σn+i−1(m∗ + γ) + (σn + i− 1)M

≤ (m∗ + 6γ)σn+i < ασn+i

for n0 (and thus also σn ≥ n0) large enough. Since by definition of (σn)n∈N0 and

(τn)n∈N0 the LP is empty at the remaining times, we conclude that we have

P
(

lim inf
n→∞

(
Hn ∩ {|Z(l)n| < αn}

))
= 1. (5.5.49)

Finally, Lemma 5.5.1 and Lemma 5.5.3 imply that

P
(

lim inf
n→∞

Hn

)
= 1,

and this together with (5.5.49) yields (5.5.24). �

After having investigated the growth of the LP, we are now interested in the speed at

which the cookies are consumed:

Proposition 5.5.5. (a) There exists λ > 0 such that we a.s. have

lim inf
n→∞

l(n)

n
> λ. (5.5.50)

(b) In fact, for p0m0 > 1 we a.s. have

lim
n→∞

l(n)

n
= 1. (5.5.51)

Proof of Proposition 5.5.5. (a) We compare the CBRW with the following process

(Wn)n∈N0 , that behaves similarly to an excited random walk. It is determined by

the initial configuration W0 := 0 and the transition probabilities

P
(
Wn+1 = Wn + 1 | (Wj)1≤j≤n

)
=





0 on

{
max

j=0,1,...,n−1
Wj < Wn

}

p0 on

{
max

j=0,1,...,n
Wj > Wn

}
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and

P
(
Wn+1 = Wn − 1 | (Wj)1≤j≤n

)
=





1 on

{
max

j=0,1,...,n−1
Wj < Wn

}

q0 on

{
max

j=0,1,...,n
Wj > Wn

}

for n ∈ N0. The process (Wn)n∈N0 moves to the left with probability 1 every time it

reaches a position x ∈ N0 for the first time and otherwise it behaves as an asymmetric

random walk on Z with transition probabilities p0 and q0. For the random times

Tx := inf{n ∈ N0 : Wn = x} (for x ∈ N0),

we notice that
(
Tx+1 − Tx

)
x∈N0

is a sequence of i.i.d. random variables with

E[T1 − T0] = E[T1] = 1 +
2p0

2p0 − 1
.

Therefore, the strong law of large numbers implies that we a.s. have

lim
x→∞

Tx
x

= lim
x→∞

1

x

x−1∑

i=0

(Ti+1 − Ti) = E[T1 − T0] = 1 +
2p0

2p0 − 1
< ∞.

Since we can couple the CBRW and the process (Wn)n∈N0 in a natural way such that

we have

max
ν∈Zn

Xν ≥ Wn

for all n ∈ N0, we can conclude that (5.5.50) holds for 0 < λ <
(

1 + 2p0
2p0−1

)−1

.

(b) We start this part of the proof with the following lemma:

Lemma 5.5.6. For a CBRW with m0 > 1, there exists γ > 1 such that we a.s. have

lim
n→∞

|Zn|
γn

=∞. (5.5.52)

Proof of Lemma 5.5.6. Let us treat the case where mc > 1 first. Let
(
Vn,k

)
n,k∈N be

i.i.d. random variables with

1− P(V1,1 = 1) = P(V1,1 = 2) = min

{ ∞∑

i=2

µ0(i),
∞∑

i=2

µc(i)

}
,

and we define the corresponding GWP
(
Z̃n
)
n∈N0

by Z̃0 := 1,

Z̃n+1 :=
Z̃n∑

i=1

Vn+1,i.
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Observe, that E[V1,1] > 1. A standard coupling argument reveals that

Z̃n ≤ |Zn|.

Now, the claim follows since Z̃n grows exponentially, e.g. Theorem I.10.3 on page 30

in [AN72].

The other case is similar: Consider now the i.i.d. random variables
(
Vn,k

)
n,k∈N with

1− P(V1,1 = 1) = P(V1,1 = 2) = min{q0, qc}
∞∑

i=2

µ0(i),

and define as above the corresponding GWP
(
Z̃n
)
n∈N0

. For the coupling we observe

that the probability of every particle in the CBRW to produce a particle which moves

to the left is bounded from below by min{q0, qc}. Such a particle cannot be at a

position with a cookie and therefore its offspring distribution is given by
(
µ0(i)

)
i∈N0

.

Eventually, the corresponding coupling yields

Z̃n ≤ |Z2n|

and the claim follows as above. �

We now return to the proof of Proposition 5.5.5(b). Let us choose ε > 0 such that

p0m0 − ε > 1. (5.5.53)

We use this ε for the definition of the sets
(
Fn
)
n∈N0

and
(
Hn

)
n∈N0

, see (5.5.19) and

(5.5.28). Due to Lemma 5.5.6 we can choose γ > 1 such that we a.s. have

lim
n→∞

|Zn|
γ2n

= ∞ and γ2 < p0m0 − ε. (5.5.54)

In addition, we choose n0 sufficiently large such that we have for all n ≥ n0

γn > n, γn(qcmc − ε) > (n+ 1), γβ log(γn)(qcmc − ε) ≥ 1 (5.5.55)

for some β > 0 which fulfills Lemma 5.5.3. In the following we again investigate the

behaviour of the CBRW on the set Hn0 on which the process does not show certain

unlikely behaviour after time n0 (cf. (5.5.19) and (5.5.25)). We show that already the

offspring of one position with “many” particles cause the leftmost cookie to move to

the right with speed 1. For this, we introduce the random time

η := inf{n ≥ n0 : ∃x ∈ Z such that |Zn(x)| ≥ γn}.

At time η we have sufficiently many particles at the random position

x0 := sup{x ∈ Z : Zη(x) ≥ γη}.
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Due to (5.5.54) we a.s. have η <∞ since at time n only n+1 positions can be occupied.

Additionally, we introduce the random time

σ0 := inf{n ≥ η : l(n) = x0 + n− η}

at which offspring of the particles belonging to Zη(x0) can potentially reach the LP

for the first time after time η. Since pcmc ≤ 1, the LP dies out infinitely often and

therefore we a.s. have σ0 <∞. Then, we define inductively the random times

τj := inf{n ≥ σj : |Z(l)n| = 0} − σj, for j ≥ 0,

σj := inf{n ≥ σj−1 + τj−1 : |Z(l)n| 6= 0}, for j ≥ 1,

denoting the time period of survival and the time of the restart of the LP after time

σ0. Due to (5.5.55) we have

|Zη(x0)| ≥ γη ≥ η (5.5.56)

which allows us to use the lower bound for |Z+
η+1(x0 + 1)| on Hn0 . By using (5.5.54)

and (5.5.56) we get on the set Hn0 ∩ {l(η) > x0}

|Zη+1(x0 + 1)| ≥ |Z+
η+1(x0 + 1)| ≥ γη(p0m0 − ε) ≥ γη+1.

Iterating the last step, we see that on the set Hn0 ∩ {l(η + k) > x0 + k} we have

|Zη+k(x0 + k)| ≥ γη+k

and therefore we conclude that

|Z(l)σ0| = |Zη+σ0−η(x0 + σ0 − η)| ≥ γη+σ0−η = γσ0

holds on Hn0 . In the following we see that already the offspring particles of Z(l)σ0 which

move to the left at time σ0 and afterwards move to the right in every step lead to a

very large LP at the next restart at time σ1. To see this, we first notice that (5.5.55)

implies on the set Hn0

|Zσ0+1(l(σ0)− 1)| ≥ |Z−σ0+1(l(σ0)− 1)| ≥ γσ0(qcmc − ε) ≥ (σ0 + 1)

since we have |Zσ0(l(σ0))| ≥ γσ0 > σ0. An iteration of this together with (5.5.54)

and (5.5.55) yield for k ∈ N

|Zσ0+1+k(l(σ0)− 1 + k)| ≥ |Z+
σ0+1+k(l(σ0)− 1 + k)|

≥ γσ0(qcmc − ε)(p0m0 − ε)k

≥ γσ0+2k(qcmc − ε) ≥ σ0 + 2k + 1 ≥ σ0 + k + 1
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on the set Hn0 ∩ {τ0 ≥ k − 1}. In particular, this implies

|Z(l)σ0 + τ0 + 2| = |Zσ0+τ0+2(l(σ0) + τ0)|

≥ γσ0+2(τ0+1)(qcmc − ε)

≥ γσ0+τ0+2γβ log(γσ0 )(qcmc − ε) ≥ γσ0+τ0+2 > 0

on the set Hn0 . Here we used that, due to Lemma 5.5.3, we have τ0 ≥ β log(γσ0) and re-

called (5.5.55) for the last inequality. Further, we conclude that we have

σ1 = σ0 + τ0 + 2 on Hn0 , which implies that the LP is restarted two time steps after it

has died out at time σ0 + τ0. Iterating this argument finally implies

|Z(l)σj+1| ≥ γσj+1 and σj+1 = σj + τj + 2 (5.5.57)

for all j ∈ N0 on the set Hn0 . For

β∗ := β log(γ) > 0

we further conclude from (5.5.57) and Lemma 5.5.3 by induction that on Hn0 we have

for j ∈ N0

τj ≥ βσj log(γ) ≥ β∗(1 + β∗)jσ0 (5.5.58)

and thus

σj+1 = σj + τj + 2 ≥ (1 + β∗)jσ0 + β∗(1 + β∗)jσ0 = (1 + β∗)j+1σ0. (5.5.59)

Hence, on the set Hn0 we have for n ≥ σ0

l(n)

n
≥ l(σ0) + n− σ0 − 2|{j ≥ 0 : σj + τj ≤ n}|

n

≥
l(σ0) + n− σ0 − 2 log(n)−log(σ0)

log(1+β∗)

n
−−−→
n→∞

1.

Here we used (5.5.57) in the first step and in the second step we used the fact that due

to (5.5.58) and (5.5.59) we have

σj + τj ≥ (1 + β∗)j+1σ0

for j ∈ N0. This yields that on the set Hn0 we have

lim
n→∞

l(n)

n
= 1.

Since by (5.5.29) we have

lim
n→∞

P(Hn) = 1,

we finally established (5.5.51). �
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With Proposition 5.5.2 and Proposition 5.5.5 we are now prepared to prove Theo-

rem 5.3.1(b). Similarly to the proof of Theorem 5.3.1(a), we introduce the event

An := {∃ν � Ln : Xν = 0, Xη < l(|η|)∀Ln ≺ η ≺ ν}

with Ln = {ν ∈ Zn+1(l(n)−1) : ν � Z(l)n} for n ∈ N. On An, there exists a particle ν

which returns to the origin after time n and additionally the last ancestor of ν which

has been at a position containing a cookie was the ancestor at time n. For λ0, γ > 0,

which we will choose later (cf. (5.5.61) and (5.5.63)), we get the following estimate with

m∗ = max{1, p0m0}:

P
(
An | {l(n) ≥ nλ0} ∩ {Z(l)n ≤ (m∗ + γ)n}

)

= 1− P
(
Acn | {l(n) ≥ nλ0} ∩ {Z(l)n ≤ (m∗ + γ)n}

)

≤ 1− P
(

Λ−dnλ0−1e = 0
)M(m∗+γ)n

.

Here we used the fact that the number of offspring of every particle belonging to Ln
which return to the origin is bounded by the amount of offspring in Λ−l(n)−1. Addition-

ally, we have

|Ln| ≤ M |Z(l)n|
due to assumption (5.1.1). Since the GWP

(
Λ−n
)
n∈N0

with mean ϕ` is subcritical we

can use Proposition 5.4.4 to obtain for some constants c, C > 0

P
(
An ∩ {l(n) ≥ nλ0} ∩ {Z(l)n ≤ (m∗ + γ)n}

)
≤ 1−

(
1− c(ϕ`)dnλ0−1e)M(m∗+γ)n

≤ 1− exp
(
−2c(ϕ`)

dnλ0−1eM(m∗ + γ)n
)

≤ 2c(ϕ`)
nλ0−1M(m∗ + γ)n

=C(ϕ`)
nλ0(m∗ + γ)n (5.5.60)

for large n. In the above display we used the inequalities 1−x ≥ exp(−2x) for x ∈ [0, 1
2
]

(note that we have ϕ` < 1) and 1− exp(−x) ≤ x for all x ∈ R.

(i) Let us first assume that we have m∗ = max{1, p0m0} = 1:

We choose

λ0 =
1

2
· λ

for some λ > 0 which fulfills Proposition 5.5.5(a). We have

ϕ` ≤ 2q0m0 < 1

and therefore can choose γ > 0 such that

(ϕ`)
λ0(m∗ + γ) ≤ (2q0m0)λ0(1 + γ) ≤ (1− γ). (5.5.61)
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By applying (5.5.61) to (5.5.60), we get

P
(
An ∩ {l(n) ≥ nλ0} ∩ {Z(l)n ≤ (m∗ + γ)n}

)
≤ o(1)(1− γ)n.

Therefore, the Borel-Cantelli lemma implies

P

(
lim sup
n→∞

(
An ∩ {l(n) ≥ nλ0} ∩ {Z(l)n ≤ (m∗ + γ)n}

))
= 0. (5.5.62)

Thereby, Proposition 5.5.2 and Proposition 5.5.5 together with the choices of λ0 and γ

yield

P
(

lim inf
n→∞

(
{l(n) ≥ nλ0} ∩ {Z(l)n ≤ (m∗ + γ)n}

))
= 1.

Finally, we can conclude from (5.5.62) that we have

P

(
lim sup
n→∞

An

)
= 0,

which implies the transience of the CBRW in this case.

(ii) We now assume that we have m∗ = p0m0 > 1:

Due the assumption of the transience of the BRW without cookies, we have

ϕ`p0m0 ≤ 2q0m0 · p0m0 ≤
1

2
.

Therefore, we can choose 0 < γ < 1 such that

(ϕ`)
1−γ(p0m0 + γ) ≤ 3

4
. (5.5.63)

For λ0 := 1− γ, (5.5.60) and (5.5.63) imply

P
(
An ∩ {l(n) ≥ nλ0} ∩ {Z(l)n ≤ (m∗ + γ)n}

)
≤ C

(
3

4

)n
.

Again by applying the Borel-Cantelli lemma, we get

P

(
lim sup
n→∞

(
An ∩ {l(n) ≥ nλ0} ∩ {Z(l)n ≤ (m∗ + γ)n}

))
= 0.

Additionally, Proposition 5.5.2 and Proposition 5.5.5 together with the choices of λ0

and γ yield

P
(

lim inf
n→∞

(
{l(n) ≥ nλ0} ∩ {Z(l)n ≤ (m∗ + γ)n}

))
= 1.

Therefore, we conclude that we have

P

(
lim sup
n→∞

An

)
= 0,

which implies the transience of the CBRW in the case p0m0 > 1. �

117



CHAPTER 5. COOKIE BRANCHING RANDOM WALKS

5.5.2 Proof of Theorem 5.3.2

For this theorem we only have to make sure that the cookies cannot displace the cloud

of particles too far to the right. But similar to the case of a cookie random walk (cf.

[BS08]) one single cookie at every position x ∈ N0 is not enough for such a behaviour.

We divide the proof of the theorem into two cases. At first we consider the case

m0 = 1, i.e. particles can only branch at positions with a cookie, and in the second

part we consider the case m0 > 1.

(a) Let us first assume m0 = 1. In this case the BRW without cookies reduces to

a nearest neighbour random walk on Z and is therefore strongly recurrent iff p0 = 1
2

holds. For x ≥ 0 let us denote the random time at which the cookie at position x is

eaten by

Tx := inf{n ∈ N0 : ∃ν ∈ Zn with Xν = x}.

For ν ∈ Z let (ν, e1) := (ν, 1) denote the first offspring particle of ν and similarly we

define (ν, en) := (ν, 1, . . . , 1) where we add n ones to the vector ν. Since we assume

that each particle has at least one offspring, we have

P
(
(ν, en) ∈ Z

∣∣ν ∈ Z
)

= 1 ∀n ∈ N.

By assumption we have p0 = 1
2
. Therefore, for every ν ∈ Z the process

(
X(ν,en)

)
n∈N0

behaves like a symmetric random walk started at the random position Xν as long as

the particles do not reach a cookie. Since qc is the probability for the particle (ν, e1)

to move to the left and 2
x+1

is the probability for a symmetric random walk started in

x− 1 to reach 0 before x+ 1, we can conclude that

P
(
∃η � ν : Xη = 0, Xτ ≤ x ∀ν � τ � η

∣∣ν ∈ Z, Xν = x
)

≥ P
(
∃n ∈ N : X(ν,en) = 0, X(ν,em) ≤ x ∀m ≤ n

∣∣ν ∈ Z, Xν = x
)

= qc ·
2

x+ 1
.

With the help of the inequality 1− x ≤ exp(−x) this yields for N ∈ N0

P
(
@ ν ∈ Zn, n ≥ N : Xν = 0

)

≤ P
(
@ ν ∈ Zn, n ≥ TN : Xν = 0

)

≤
∞∏

x=N

P
(
@ ν � Z(l)Tx : ∃η � ν such that Xη = 0, Xτ ≤ x ∀ν � τ � η

)
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≤
∞∏

x=N

(
1− qc · 2

x+1

)

≤ exp

(
−
∞∑

x=N

qc · 2
x+1

)
= 0.

This implies that arbitrarily late a particle returns to the origin with probability 1,

which yields the strong recurrence of the CBRW.

(b) Now we suppose that we have m0 > 1. From Proposition 5.2.1 we know that we

have

log(m0) > −1

2
log (4 · p0 · q0) = I(0)

where I(·) denotes the rate function of the nearest neighbour random walk on Z with

transition probabilities p0 and q0. Since the rate function is continuous on (−1, 1),

there even exists 0 < ε < 1 such that

log(m0) > I(−ε).

Let
(
Sn
)
n∈N0

denote such a nearest neighbour random walk started in 0 and with

transition probabilities p0 and q0. We have

lim
n→∞

1

n
logP

(
Sn ≤ −nε

)
=

{
−I(−ε) for 2p0 − 1 > −ε
0 for 2p0 − 1 ≤ −ε

}
≥ −I(−ε).

Therefore, for every δ > 0 there exists k0 such that

P
(
Sk0 ≤ −k0ε

)
≥ exp

(
− k0(I(−ε) + δ)

)
.

This yields for the BRW without cookies
(
Yν
)
ν∈Y that

E
[ ∑

ν∈Yk0

1{Yν≤−k0ε}
]
≥ (m0)k0 exp

(
− k0(I(−ε) + δ)

)
> 1 (5.5.64)

for δ > 0 small enough. Therefore, we can conclude that the embedded GWP of those

particles which move at least k0ε to the left between time 0 and k0, between k0 and

2k0 and so on is supercritical and therefore survives with strictly positive probability

psur. Let us now turn back to the CBRW. For every existing particle the probability

P
(
∃η ∈ Z : η � ν, |η| − |ν| = k0, Xη = Xν − k0 | ν ∈ Z

)
≥ min(qc, q0)qk00

to produce an offspring which moves k0 times to the left in the next k0 time steps is

bounded away from 0. From this we conclude that the probability

P
(
∃η ∈ Z : η � ν, Xτ ≤ l(|ν|) ∀ν � τ � η, Xη ≤ 0 | ν ∈ Z

)
≥ qcq

k0
0 psur =: c > 0

(5.5.65)
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for every existing particle in the CBRW to produce an offspring which moves to the

negative semi-axis before it hits the cookies again is also bounded away from 0. Thereby

the lower bound is a lower estimate for the probability for each existing particle in the

CBRW to produce an offspring which moves k0 times to the left in the next k0 time

steps and then starts a surviving embedded GWP which moves at least k0ε to the left

between time 0 and k0, between k0 and 2k0 and so on. Since the particles we consider

for this embedded GWP cannot hit the cookies in between, this GWP has the same

probability for survival psur as in the case of the BRW without cookies (cf. (5.5.64)).

Using (5.5.65), we can conclude the strong recurrence of the CBRW since the particles

on the negative semi-axis behave as the strongly recurrent BRW without cookies before

they can reach a cookie again. �

5.5.3 Proof of Theorem 5.3.3

Proof of part (a).

Here, we suppose that the LP is supercritical, i.e. pcmc > 1. On the one hand the

probability that all particles which are produced in the first step move to the left and

their offspring then escape to −∞ without returning to 0 is strictly positive since every

offspring particle starts an independent BRW without cookies at position −1 as long

as the offspring does not return to the origin. Thereby the probability for the BRW

started at −1 never to return to the origin is strictly positive since the BRW without

cookies is transient to the left by assumption.

On the other hand the LP which is started at 0 is a supercritical GWP and therefore

survives with positive probability. If it survives, a.s. infinitely many particles leave the

LP (to the left) at time n ≥ 1. Afterwards each of those particles starts a BRW without

cookies at position n− 1 ≥ 0 since the offspring cannot reach a cookie again. Each of

those BRWs without cookies will a.s. produce at least one offspring which visits the

origin since the BRW without cookies is transient to the left by assumption. �

Proof of part (b).

Here, we suppose that the LP is critical or subcritical, i.e. pcmc ≤ 1. In the following

we want to consider the following three quantities. The first one is the amount of

particles in the LP. The second one is the number of particles which are descendants

of the non-LP particles of generation n and which are the first in their ancestral line

to reach the position l(n). Thus these particles can potentially change the position

of the leftmost cookie. The third group is the number of offspring particles of the

generation n which will not reach the position of the leftmost cookie anymore. More

precisely, for all n ∈ N0 we define (observe that Xν = l(n) implies that |ν| = n):

ζ1(n) := |Z(l)n|,
ζ2(n) :=

∑

ν�Zn\Z(l)n

1{Xν=l(n), Xη<l(n)∀η≺ν},
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ζ3(n) :=
∑

ν∈Zn\Z(l)n

1{Xη<l(n), ∀η�ν}.

Note that for the definition of ζ2(n) we count the amount of descendants of the non-LP

particles at time n which will reach the position l(n) in the future. Thus the type-2

particles belong to a generation larger than n.

In the following we want to allow arbitrary starting configurations from the set

S :=

{
(a, b) ∈ NZ

0 × N0 :
∑

k∈Z
a(k) <∞, max{k ∈ Z : a(k) > 0} ≤ b

}
.

Here a contains the information about the number of particles at each position k ∈ Z
and b is the position of the leftmost cookie. In particular, every configuration of the

CBRW which can be reached within finite time is contained in the set S. For each

(a, b) ∈ S we consider the probability measure P(a,b) under which the CBRW starts in

the configuration (a, b) and then evolves in the usual way.

The main idea of the proof is the following. We show that there is a critical level for the

total amount of the type-1 and type-2 particles. Once this level is exceeded the total

amount has the tendency to fall back below this level. There are two reasons which

cause this behaviour. On one hand, the expected amount of type-2 particles which

stay type-2 particles for another time step decreases every time the leftmost cookie is

consumed by a type-1 particle. On the other hand, if there are many type-1 particles,

the LP survives for a long time with high probability and meanwhile the remaining

particles have time to escape to the left.

For the proof we need to know the relation between the type-1 and type-2 particles.

Thereby we have to distinguish between two different situations. In the first one, there

are type-1 particles at time n and therefore the leftmost cookie is consumed. In the

second case there are no type-1 particles and therefore the position of the leftmost

cookie does not change. Let us first assume that there are type-1 particles at time n.

Then, on the set {ζ1(n) 6= 0} we a.s. have

E(a,b)

[
ζ1(n+ 1) | ζ1(n), ζ2(n)

]
= ζ1(n)pcmc,

E(a,b)

[
ζ2(n+ 1) | ζ1(n), ζ2(n)

]
= ζ1(n)qcmc(ϕr)

2 + ζ2(n)ϕr. (5.5.66)

Here the last equality holds since each type-1 particle produces an expected amount of

qcmc particles which leave the LP to the left. To decide how many of these particles

are type-2 particles at time n + 1 we have to count the number of their offspring

which will reach position l(n+ 1) = l(n) + 1 in the future. For each of these particles

the distribution of this random number coincides with the distribution of Λ+
2 whose

expectation is given by (ϕr)
2. Additionally, since one cookie is consumed the amount of

type-2 particles, which are still type-2 particles at time n+ 1, decreases in expectation

121



CHAPTER 5. COOKIE BRANCHING RANDOM WALKS

by ϕr. Observe that due to the transience to the left of the BRW without cookies, the

process
(
Λ+
n

)
n∈N0

is a GWP with mean ϕr < 1 (cf. Remark 5.4.3).

Let us now assume that the LP is empty. Then, on {ζ1(n) = 0} we a.s. have

E(a,b)

[
ζ1(n+ 1) + ζ2(n+ 1) | ζ1(n), ζ2(n)

]
= ζ2(n), (5.5.67)

since the position of the leftmost cookie does not change, i.e. l(n+1) = l(n). Therefore,

each type-2 particle of time n either still is a type-2 particle at time n+ 1 or becomes

a type-1 particle.

(i) First, we deal with the subcritical case, i.e. pcmc < 1. For fixed h ∈ N (which will

be specified later, cf. (5.5.69)) we define the following random times

ηn+1 :=

{
(ηn + h) ∧ inf{i > ηn : ζ1(i) = 0}, if ζ1(ηn) > 0,

(ηn + h) ∧ inf{i > ηn : ζ1(i) > 0}, if ζ1(ηn) = 0,

for n ∈ N0 and η0 := 0. Note that we have ηn+1 − ηn ≤ h. For n ∈ N0 we define

ξ1(n) := ζ1(ηn), ξ2(n) := ζ2(ηn)

as the amount of type-1 and type-2 particles along the sequence (ηn)n∈N0 and the

associated filtration Fn := σ
(
ξ1(i), ξ2(i), ηi : i ≤ n

)
. We want to adapt Theorem 2.2.1

of [FMM95] and start with the following lemma:

Lemma 5.5.7. For suitable (large) h, u ∈ N we have

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn] ≤ ξ1(n) + ξ2(n) (5.5.68)

a.s. on {ξ1(n) + ξ2(n) ≥ u} for all (a, b) ∈ S.

Proof of Lemma 5.5.7. Let us fix (a, b) ∈ S. We choose h ∈ N large enough such that

(
pcmc

)h
+ qcmc

h−1∑

i=0

(
pcmc

)i
(ϕr)

h−i+1 <
1

2
(5.5.69)

and

(ϕr)
h <

1

2
. (5.5.70)

Such a choice is possible since pcmc < 1 and ϕr < 1. Then, we fix c = c(h) such that

0 < c ≤ 1

Mh
(1− ϕr) (5.5.71)

holds. Recall that the particles in the LP constitute a subcritical GWP. Let(
GW sub

n

)
n∈N0

denote such a GWP (with the same offspring distribution). Then, for

every δ > 0 there is u = u(δ, h, c) ∈ N such that

Pbuc/(c+1)c
(
GW sub

h ≥ 1
)
≥ 1− δ (5.5.72)
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since the probability for each existing particle to have at least one offspring which

moves to the right is strictly positive.

We now verify (5.5.68) separately on the following three sets:

A1 := {ξ1(n) + ξ2(n) ≥ u} ∩ {ξ1(n) = 0},
A2 := {ξ1(n) + ξ2(n) ≥ u} ∩ {0 < ξ1(n) ≤ cξ2(n)},
A3 := {ξ1(n) + ξ2(n) ≥ u} ∩ {ξ1(n) > cξ2(n)}.

Note that A1 ∪ A2 ∪ A3 = {ξ1(n) + ξ2(n) ≥ u}.

• On the set A1 there is no particle in the LP between time ηn and time ηn+1 by

definition. Thus, the position of the leftmost cookie does not change during this period.

Hence we a.s. have

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn]1A1 = ξ2(n)1A1

due to (5.5.67).

• On the set A2 there is at least one particle in the LP and thus the leftmost cookie

is consumed at time ηn. Using ηn+1 − ηn ≤ h and the fact that the total number of

offspring of each particle is bounded by M , we a.s. obtain on the set A2

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn] ≤
(
ξ1(n)Mh + ϕrξ2(n)

)

≤ ξ2(n)
(
cMh + ϕr

)

≤ ξ2(n).

Here we used (5.5.71) in the last step.

• Next, recall that

Ln =
{
ν ∈ Zn+1(l(n)− 1) : ν � Z(l)n

}

denotes the number of particles which leave the leading process to the left at time n.

Using (5.5.66) we a.s. get on the set A3

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn]

= E(a,b)

[(
ξ1(n+ 1) + ξ2(n+ 1)

)
1{ηn+1−ηn<h} | Fn

]

+ E(a,b)

[(
ξ1(n+ 1) + ξ2(n+ 1)

)
1{ηn+1−ηn=h} | Fn

]
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≤
(
Mh−1ξ1(n) + ϕrξ2(n)

)
E(a,b)

[
1{ηn+1−ηn<h} | Fn

]

+ (ϕr)
hξ2(n)E(a,b)

[
1{ηn+1−ηn=h} | Fn

]

+ E(a,b)

[
|Z(l)ηn + h|1{ηn+1−ηn=h}

∣∣∣Fn
]

+
h−1∑

i=0

E(a,b)


 ∑

ν�Lηn+i

1{Xν=l(ηn)+h,Xη<l(ηn)+h∀η≺ν}1{ηn+1−ηn=h}

∣∣∣∣∣∣
Fn


 .

Here in the second step we used that on the set {ηn+1 − ηn < h} (in expectation) the

proportion at most ϕr of the type-2 particles does not escape to the left since at least

one cookie is consumed. On the set {ηn+1−ηn = h} we consider three summands. The

first corresponds to the type-2 particles at time ηn that are still type-2 particles at time

ηn+1. The second corresponds to the particles that are still in the LP at time ηn+1 and

the third to the particles which have left the LP in the meantime. Using (5.5.66) and

the fact that we have at least buc/(c+ 1)c type-1 particles on the set A3, we continue

the calculation and obtain that on the set A3 we a.s. have

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn] ≤
[
(
Mh−1ξ1(n) + ϕrξ2(n)

)
Pbuc/(c+1)c

(
GW sub

h = 0
)

+ (ϕr)
hξ2(n) +

(
pcmc

)h
ξ1(n)

+
h−1∑

i=0

ξ1(n)(pcmc)
i(qcmc)(ϕr)

h−i+1

]

≤
(
Mh−1δ +

1

2

)
ξ1(n) +

(
ϕrδ +

1

2

)
ξ2(n)

≤ ξ1(n) + ξ2(n)

for δ = δ(M,h, ϕr) sufficiently small. Here we used (5.5.69), (5.5.70), and (5.5.72) for

the latter estimates. �

(ii) We now turn to the case when we have a critical leading process, i.e., pcmc = 1.

Again for some c > 0, which we specify later (cf. (5.5.74)), we inductively define the

following random times

ηn+1 :=

{
ηn + 1, if ζ2(ηn) ≥ cζ1(ηn),

inf{n > ηn : ζ1(n) = 0}, if ζ2(ηn) < cζ1(ηn),

for n ∈ N0 and η0 := 0. Similarly to above, we define for n ∈ N0

ξ1(n) := ζ1(ηn), ξ2(n) := ζ2(ηn)
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and the associated filtration

Fn := σ
(
ξ1(i), ξ2(i), ηi : i ≤ n

)
.

Analogously to Lemma 5.5.7, we continue with the following

Lemma 5.5.8. For suitable (large) u ∈ N we have

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1)|Fn] ≤ ξ1(n) + ξ2(n) (5.5.73)

a.s. on {ξ1(n) + ξ2(n) ≥ u} for all (a, b) ∈ S.

Proof of Lemma 5.5.8. Let us fix (a, b) ∈ S. Again for some u = u(c) ∈ N, which we

specify later (cf. (5.5.85)), we introduce the following sets

A1 := {ξ1(n) + ξ2(n) ≥ u} ∩ {ξ2(n) ≥ cξ1(n)},
A2 := {ξ1(n) + ξ2(n) ≥ u} ∩ {ξ2(n) < cξ1(n)}.

and show (5.5.73) on the sets A1 and A2 separately.

• On the set A1 we a.s. have

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1)|Fn] ≤ 1{ξ1(n)=0}ξ2(n) + 1{ξ1(n)>0} (ϕrξ2(n) +Mξ1(n))

≤ 1{ξ1(n)=0}ξ2(n) + 1{ξ1(n)>0}
(
ϕrξ2(n) +Mc−1ξ2(n)

)

≤
[
1{ξ1(n)=0} + 1{ξ1(n)>0}

(
ϕr +Mc−1

)]
ξ2(n)

≤ ξ2(n)

for any

0 < c ≤ M (1− ϕr)−1 . (5.5.74)

Thereby we used that on the set A1 we have ηn+1 = ηn + 1. If ξ1(n) = 0 holds, then no

cookie is eaten at time ηn and therefore we have ξ2(n+ 1) = ξ2(n). If ξ1(n) > 0 holds,

the leftmost cookie is consumed and therefore in expectation the amount of the type-2

particles is reduced by the factor ϕr.

• Next, to investigate the behaviour on the set A2, consider first the case

(ξ1(n), ξ2(n)) = (v, 0) with v ∈ N. From this we can easily derive the general case

later on since each time a cookie is consumed the number of type-2 particles is reduced

by the factor ϕr < 1. Therefore, the type-2 particles do not essentially contribute to
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the growth of the process. We have:

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn]1{(ξ1(n),ξ2(n))=(v,0)}

= E(a,b)[ξ2(n+ 1)|Fn]1{(ξ1(n),ξ2(n))=(v,0)}

=
(
E(a,b)

[
ξ2(n+ 1)1{ηn+1−ηn≤v1/3} | Fn

]

+
∑

j>v1/3

E(a,b)

[
ξ2(n+ 1)1{ηn+1−ηn=j} | Fn

] )
1{(ξ1(n),ξ2(n))=(v,0)} (5.5.75)

We now consider the first summand in (5.5.75). For this we define

E0 :=

{
max

`=1,...,bv1/3c
ζ1(ηn + `) ≤ v2/3

}
,

Ek :=

{
max

`=1,...,bv1/3c
ζ1(ηn + `) ∈

(
2k−1v2/3, 2kv2/3

]}
for k ≥ 1,

in order to control the maximum number of particles in the LP. Using these definitions,

we write

E(a,b)

[
ξ2(n+ 1)1{ηn+1−ηn≤v1/3}

∣∣∣ Fn
]

=
∞∑

k=0

E(a,b)

[
ξ2(n+ 1)1Ek∩{ηn+1−ηn≤v1/3}

∣∣∣ Fn
]

≤ v1/3Mv2/3P(a,b)

(
ηn+1 − ηn ≤ v1/3

∣∣ Fn
)

+
∞∑

k=1

v1/3M2kv2/3P(a,b)

(
Bk(n, v) | Fn

)
,

(5.5.76)

where we used the notation

Bk(n, v) :=
{
∃` ∈ {ηn + 1, . . . , ηn+1} : ζ1(`) > 2k−1v2/3, ηn+1 − ηn ≤ v1/3

}
.

Note here that each particle that leaves the LP starts a new BRW without cookies (as

long as the offspring particles do not reach a cookie again) which is transient to the left

by assumption. Thus for each of those particles the expected number of descendants

which reach the position l(ηn+1) (and therefore are type-2 particles at time ηn+1) is less

than one since they have to move at least two steps to the right. Now we observe that

on the set {(ξ1(n), ξ2(n)) = (v, 0)} we a.s. have

P(a,b)

(
ηn+1 − ηn ≤ v1/3

∣∣ Fn
)

= Pv
(
T cr ≤ v1/3

)
(5.5.77)

and

P(a,b)

(
Bk(n, v)

∣∣ Fn
)
≤ v1/3Pd2k−1v2/3e

(
T cr ≤ v1/3

)
(5.5.78)
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where T cr denotes the extinction time of a critical GWP whose offspring distribution

is given by the number of particles produced by a single particle in the LP which stay

in the LP. (Note that this coincides with the number of type-1 offspring of a type-1

particle.) Now we apply (5.5.77), (5.5.78) and Proposition 5.4.6 to (5.5.76) and a.s.

obtain

E(a,b)

[
ξ2(n+ 1)1{ηn+1−ηn≤v1/3}

∣∣∣Fn
]
1{(ξ1(n),ξ2(n))=(v,0)}

≤
[
Mv exp

(
−C v

v1/3

)
+
∞∑

k=1

M2kv4/3 exp

(
−C 2k−1v2/3

v1/3

)]
1{(ξ1(n),ξ2(n))=(v,0)}

= o(v)1{(ξ1(n),ξ2(n))=(v,0)} (5.5.79)

where C > 0 is the constant of Proposition 5.4.6.

Now we deal with the second summand in (5.5.75). For some δ ∈ (0, 1
3
) and j ∈ N

we introduce the events

F 0
j :=

{
max

`=1,...,bjδc
ζ1

(
ηn + j − bjδc+ `

)
≤ j2δ

}
,

F k
j :=

{
max

`=1,...,bjδc
ζ1

(
ηn + j − bjδc+ `

)
∈
(
2k−1j2δ, 2kj2δ

]}
for k ≥ 1,

and

G0
j :=

{
max
`=1,...,j

ζ1(ηn + `) ≤ j1+δ

}
,

Gk
j :=

{
max
`=1,...,j

ζ1(ηn + `) ∈
(
2k−1j1+δ, 2kj1+δ

]}
for k ≥ 1.

On the events Gk
j we control the maximum number of particles in the LP up to time j,

whereas on F k
j we control the maximum number during the bjδc time steps before j.

We observe that on the event F k
j ∩G`

j not more than M · 2`j2+δ particles leave the LP

up to time ηn+ j−bjδc (because of G`
j). Each of those particles starts a BRW without

cookies and in average it contributes not more than (ϕr)
bjδc+1 ≤ (ϕr)

jδ to the number

of type-2 particles at time ηn+j. Similarly, on F k
j ∩G`

j not more than M2kj3δ particles

leave the LP from time ηn + j − bjδc + 1 to time ηn + j (because of F k
j ). Further, it

holds that each particle that leaves the LP starts a new BRW without cookies and for

each of those particles the expected number of descendants which reach the position

l(ηn+1) is less than one since they have to move at least two steps to the right. Thus,

we have

E(a,b)

[
ξ2(n+ 1)1Fkj ∩G`j∩{ηn+1−ηn=j} | Fn

]

≤
(
M2`j2+δ (ϕr)

jδ +M2kj3δ
)
P(a,b)

(
F k
j ∩G`

j ∩ {ηn+1 − ηn = j}
∣∣Fn

)
. (5.5.80)
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Now suppose that ` ≥ k and (k, `) 6= (0, 0). Then due to Proposition 5.4.6 we have

P(a,b)

(
F k
j ∩G`

j ∩ {ηn+1 − ηn = j}
∣∣ Fn

)

≤ P(a,b)

(
∃i ∈ {1, . . . , j} : ζ1(ηn + i) > 2`−1j1+δ, ζ1(ηn + j) = 0

∣∣Fn
)

≤ jPd2`−1j1+δe (T cr ≤ j)

≤ j exp
(
−1

2
C2(`+k)/2jδ

)
. (5.5.81)

If otherwise k ≥ ` and (k, `) 6= (0, 0), then again due to Proposition 5.4.6 we have

P(a,b)

(
F k
j ∩G`

j ∩ {ηn+1 − ηn = j}
∣∣Fn
)

≤ P(a,b)

(
∃i∈ {j − bjδc+ 1, . . . , j} : ζ1(ηn + i) > 2k−1j2δ, ζ1(ηn + j) = 0

∣∣Fn
)

≤ jPd2k−1j2δe
(
T cr ≤ jδ

)

≤ j exp
(
−1

2
C2(`+k)/2jδ

)
. (5.5.82)

With the help of (5.5.81) and (5.5.82) together with (5.5.80) we a.s. obtain

E(a,b)

[
ξ2(n+ 1)1{ηn+1−ηn=j} | Fn

]

=
∞∑

k,`=0

E(a,b)

[
ξ2(n+ 1)1Fkj ∩G`j∩{ηn+1−ηn=j}

∣∣∣Fn
]

≤
(
Mj2+δ (ϕr)

jδ +Mj3δ
)
P(a,b) (ηn+1 − ηn = j | Fn)

+
∑

(k,`)6=(0,0)

(
M2`j2+δ(ϕr)

jδ+M2kj3δ
)
j exp

(
−1

2
C2(`+k)/2jδ

)

≤ O
(
j3δ
)
P(a,b) (ηn+1 − ηn = j | Fn) +

∞∑

i=1

O
(
j1+3δ

)
(i+ 1)2i exp

(
−1

2
C2i/2jδ

)
.

(5.5.83)

By Proposition 5.4.7, on the set {(ξ1(n), ξ2(n)) = (v, 0)} we a.s. have

P(a,b) (ηn+1 − ηn = j | Fn) ≤ C
v

j2
,
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and therefore (5.5.83) yields

E(a,b)

[
ξ2(n+ 1)1{ηn+1−ηn=j} | Fn

]
1{(ξ1(n),ξ2(n))=(v,0)}

=

[
O(j3δ−2)v +

∞∑

i=1

O(j1+3δ)(i+ 1)2i exp
(
−1

2
C2i/2jδ

)
]
1{(ξ1(n),ξ2(n))=(v,0)}

≤
[
O(j3δ−2)v+O(j1+3δ) exp

(
−1

4
C2

1
2 jδ
)

∞∑

i=1

(i+ 1)2i exp
(
−1

4
C2i/21

)
]
1{(ξ1(n),ξ2(n))=(v,0)}

= O(j3δ−2)v1{(ξ1(n),ξ2(n))=(v,0)}. (5.5.84)

Using the estimates (5.5.79) and (5.5.84) for the two summands in (5.5.75), we conclude

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1)|Fn]1{(ξ1(n),ξ2(n))=(v,0)}

≤
[
o(v) + v

∑

j>v1/3

O(j3δ−2)
]
1{(ξ1(n),ξ2(n))=(v,0)}

= vo(v)1{(ξ1(n),ξ2(n))=(v,0)},

and therefore there exists v0 ∈ N such that

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn]1{(ξ1(n),ξ2(n))=(v,0)} ≤ v1{(ξ1(n),ξ2(n))=(v,0)}

for v ≥ v0.

For the general case, in which we can also have type-2 particles at time ηn, we notice

that for

u ≥ (1 + c)v0 (5.5.85)

we have

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn]1A2 ≤
[
ξ1(n) + ξ2(n)

]
1A2

since on A2 the type-2 particles which exist at time ηn evolve independently of the LP

until time ηn+1. �

Now we fix u ∈ N such that Lemma 5.5.7 and Lemma 5.5.8 hold. Further, we define

τ := inf{n ∈ N0 : ξ1(n) + ξ2(n) ≤ u}.
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Due to Lemma 5.5.7 and, respectively, Lemma 5.5.8, we see that in the subcritical (i.e.

pcmc < 1) as well as in the critical (i.e. pcmc = 1) case

(
ξ1(n ∧ τ) + ξ2(n ∧ τ)

)
n∈N0

is a non-negative supermartingale with respect to (Fn)n∈N0 and P(a,b) for arbitrary

(a, b) ∈ S. Thus, it converges P(a,b)-a.s. to a finite random variable X (a, b). Since we

have ξ1(n∧ τ) + ξ2(n∧ τ) ∈ N0 for all n ∈ N0 and since the probability for this process

to eventually stay at a constant level v > u for all times is equal to 0, we conclude that

X (a, b) ≤ u

holds P(a,b)-a.s. Therefore, for all (a, b) ∈ S we have

P(a,b) (∃n ∈ N0 : ξ1(n) + ξ2(n) ≤ u) = 1,

and hence

P(a,b) (∃n ∈ N0 : ζ1(n) + ζ2(n) ≤ u) = 1. (5.5.86)

We now introduce the following random times

σi := inf{n > τi : l(n) = l(τi) + 2}, for i ≥ 0,

τi := inf{n ≥ σi−1 : ζ1(n) + ζ2(n) ≤ u}, for i ≥ 1,

with τ0 := 0. Thereby σi denotes the first time at which two more cookies have been

eaten since τi. Moreover, we observe that

(
Y (n)

)
n∈N0

:=
((
Zn(x)

)
x∈Z, l(n)

)
n∈N0

is a Markov chain with values in S, which can only reach finitely (thus countably)

many states within finite time. Therefore, (5.5.86) yields for i ∈ N0

P(e0,0)

(
τi+1 <∞ | σi <∞

)
= 1 (5.5.87)

where (e0, 0) denotes the usual starting configuration with one particle and the leftmost

cookie at position 0. Finally, we have

P(e0,0)

(
σi =∞ | τi <∞

)
≥
(
qcP(Λ+

1 = 0)
)Mu

=: γ ∈ (0, 1). (5.5.88)

This inequality holds since at the first time after τi, at which any particle reaches the

leftmost cookie again, there are not more than u type-1 particles. Each of those type-1

particles cannot produce more than M particles in the next step. Afterwards, the

probability for any direct offspring of the type-1 particles to move to the left and then

produce offspring which escape to −∞ is given by qcP(Λ+
1 = 0). All the remaining

type-2 particles escape to the left with probability P(Λ+
1 = 0) since one more cookie
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has been eaten. In this case, only one more cookie is consumed after the random time

τi implying σi =∞.

Using (5.5.87) and (5.5.88) we can conclude

P(e0,0)

(
σi <∞ ∀ i ∈ N

)

≤ P(e0,0)

(
σk <∞

)

= P(e0,0)

(
σ0 <∞

) k∏

i=1

P(e0,0)

(
σi <∞ | τi <∞

)
P(e0,0)

(
τi <∞ | σi−1 <∞

)

≤
(
1− γ

)k −−−→
k→∞

0.

In particular this implies that a.s. only finitely many cookies are consumed and this

yields that the CBRW is transient. �

5.6 Final remarks

In this section, let us consider a CBRW with one cookie at every position x ∈ Z, i.e.,

c0(x) := 1 ∀x ∈ Z. In this case the leftmost cookie on the positive semi-axis

l(n) = min{x ≥ 0 : cn(x) = 1}

and the rightmost cookie on the negative semi-axis

r(n) := max{x ≤ 0 : cn(x) = 1}

are of interest. With these two definitions we can introduce the right LP

L+(n) := Zn(l(n))

and the left LP

L−(n) := Zn(r(n)).

Using Theorems 5.3.1, 5.3.2, and 5.3.3 and the symmetry of the CBRW with regard to

the origin, one can derive the following results:

Theorem 5.6.1. Suppose that the BRW without cookies is transient to the right.

(a) If the right LP is supercritical, i.e. pcmc > 1 holds, then

(i) the CBRW is strongly recurrent iff pcmcϕ` ≥ 1,

(ii) the CBRW is weakly recurrent iff pcmcϕ` < 1 and qcmc > 1,

(iii) the CBRW is transient iff pcmcϕ` < 1 and qcmc ≤ 1.
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(b) If the right LP is subcritical or critical, i.e. pcmc ≤ 1 holds, then

(i) the CBRW is weakly recurrent iff the left LP is supercritical, i.e. qcmc > 1,

(ii) the CBRW is transient iff the left LP is subcritical or critical, i.e. qcmc ≤ 1.

Theorem 5.6.2. Suppose that the BRW without cookies is strongly recurrent. Then

the CBRW is strongly recurrent, no matter which kinds of right and left LP we have.

Theorem 5.6.3. Suppose that the BRW without cookies is transient to the left. Due

to the symmetry of the process we get the same result as in Theorem 5.6.1 if we just

replace right LP by left LP, pc by qc and ϕ` by ϕr.
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Appendix A

Erlang distribution

In this chapter, we show that the probability that an Erlang distribution with pa-

rameters 1 and n is bigger than its expectation n is bounded from below by 1
3

for all

n ∈ N.

Lemma A.1. For n ∈ N let Xn be an Erlang distributed random variable with param-

eters 1 and n. Then we have for all n ∈ N

P (Xn ≥ n) ≥ 1

3
.

Proof. Let n ≥ 2 and recall that the Lebesgue density of an Erlang distribution with

parameters 1 and n is given by

f(1,n)(x) :=
xn−1

(n− 1)!
exp(−x)1[0,∞)(x).

We get as the derivative of f(1,n) for x > 0

f ′(1,n)(x) =
xn−2

(n− 2)!
exp(−x)

(
1− x

n− 1

)
,

and we note that f(1,n) has its maximum at position n−1 because we have f(1,n)(x) > 0

for all x and f(1,n)(0) = 0, limx→∞ f(1,n)(x) = 0.

Next, we show that for y ∈ (0, n− 1] we have

f(1,n)(n− 1− y) < f(1,n)(n− 1 + y), (A.1)

which is equivalent to
(

1 +
y

n− 1

)
exp

(
− y

n− 1

)
−
(

1− y

n− 1

)
exp

(
y

n− 1

)
> 0

for y ∈ (0, n− 1]. Now, substituting y
n−1

by z shows that it is enough to prove that the

function

g(z) := (1 + z) exp(−z)− (1− z) exp(z)
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is strictly positive for all z ∈ (0, 1]. We get

g′(z) = exp(−z)− (1 + z) exp(−z) + exp(z)− (1− z) exp(z)

= z(exp(z)− exp(−z)).

Therefore, we have g′(z) > 0 for z > 0 and since g(0) = 0 this yields g(z) > 0 for all

x > 0. Thus, we can conclude (A.1).

Using (A.1), we get

P
(
Xn ∈

[
0, n− 1

))
≤ P

(
Xn ∈

[
n− 1, 2(n− 1)

))

and therefore

P
(
X ∈

[
0, n− 1

))
≤ 1

2
. (A.2)

We note that due to Stirling’s approximation we have for all n ∈ N

f(1,n)(n− 1) =
(n− 1)n−1

(n− 1)!
exp(−(n− 1)) ≤ 1√

2πn
exp

(
− 1

12n− 11

)
≤ 1√

2πn
.

This together with (A.2) yields for n ≥ 6

P (Xn ≥ n) = 1− P
(
X ∈

[
0, n− 1

))
− P

(
X ∈

[
n− 1, n

))

≥ 1

2
− 1√

2πn
≥ 1

3
. (A.3)

The distribution function of a Erlang distributed random variable with parameters 1

and n is given by

F(1,n)(x) =

(
1− exp(−x)

n−1∑

i=0

xi

i!

)
1[0,∞)(x),

and therefore we get

F(1,1)(1) = 0.37, F(1,2)(2) = 0.41, F(1,3)(3) = 0.42, F(1,4)(5) = 0.43, F(1,5)(5) = 0.44,

which together with (A.3) finishes the proof. �
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Second moment of Λ−1

Lemma B.1. We have E
[ (

Λ−1
)2
]
< ∞.

Proof. For the second moment of Λ−1 (cf. (5.4.1) for the definition) we get by distin-

guishing the particles by their last common ancestor:

E
[(

Λ−1
)2
]

= E

[(∑

τ∈V
1{τ∈Y}1{Yτ=−1, Yη>−1 ∀η≺τ}

)
·
(∑

ν∈V
1{ν∈Y}1{Yν=−1, Yσ>−1 ∀σ≺ν}

)]

=
∑

ω∈V
E

[
1{ω∈Y} · 1{Yω=−1, Yη>−1 ∀η≺ω}

]

+
∑

ω∈V

M∑

`=1

∑

τ∈V

M∑

n=1
n6=`

∑

ν∈V
E

[
1{(ω,`,τ)∈Y} · 1{Y(ω,`,τ)=−1, Yη>−1 ∀η≺(ω,`,τ)}

· 1{(ω,n,ν)∈Y} · 1{Y(ω,n,ν)=−1, Yη>−1 ∀η≺(ω,n,ν)}

]

(B.1)

Here the first sum consists of the products of identical factors and the second sum

of mutually different factors. Since the branching and the movement of the particle

are independent, we can analyse the dependence of the factors in the last expectation

separately. We a.s. have for n 6= ` on {(ω, `, τ) ∈ Y}:

E
[
1{(ω,n,ν)∈Y}

∣∣∣ σ
(
1{(ω,`,τ)∈Y}

) ]
=P
(

(ω, n) ∈ Y
∣∣∣(ω, `) ∈ Y

)
· P
(
ν ∈ Y

)

≤P
(
ν ∈ Y

)
(B.2)
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Further for n 6= `, we a.s. have on {Yη > −1 for η � ω}:

E
[
1{Y(ω,n,ν)=−1, Yη>−1 ∀η≺(ω,n,ν)}

∣∣∣ σ
((
Yη
)
η�(ω,`,τ)

) ]

=
∞∑

k=0

E
[
1{Yω=k, Y(ω,n)=k+1} · 1{Y(ω,n,ν)−Y(ω,n)=−1−(k+1), Yη−Y(ω,n)>−1−(k+1) ∀η≺(ω,n,ν)}

∣∣∣Yω
]

+
∞∑

k=0

E
[
1{Yω=k, Y(ω,n)=k−1} · 1{Y(ω,n,ν)−Y(ω,n)=−1−(k−1), Yη−Y(ω,n)>−1−(k−1) ∀η≺(ω,n,ν)}

∣∣∣Yω
]

=
∞∑

k=0

1{Yω=k} · p0 · P
(
Yν = −k − 2, Yη > −k − 2 ∀η ≺ ν

)

+
∞∑

k=0

1{Yω=k} · q0 · P
(
Yν = −k, Yη > −k ∀η ≺ ν

)
(B.3)

Note that

P
(
Yν = 0, Yη > 0 ∀η ≺ ν

)
=

{
1 for ν = ∅
0 for ν 6= ∅

.

Moreover, we observe for k ∈ N0

∑

ν∈V
P
(
ν ∈ Y

)
· P
(
Yν = −k, Yη > −k ∀η ≺ ν

)
= E

[
Λ−k
]

= E
[
Λ−1
]k ≤ 1. (B.4)

By applying (B.2), (B.3) and (B.4) to (B.1) we get:

E
[(

Λ−1
)2
]
≤ E

[
Λ−1
]

+
∑

ω∈V

M∑

`=1

∑

τ∈V
M · E

[
1{(ω,`,τ)∈Y} · 1{Y(ω,`,τ)=−1, Yη>−1 ∀η≺(ω,`,τ)}

·
∞∑

k=0

1{Y(ω,n)=k} ·
(
p0 · E

[
Λ−k+2

]
+ q0 · E

[
Λ−k
])
]

≤E
[
Λ−1
]

+M ·
∑

ω∈V

M∑

`=1

∑

τ∈V
E

[
1{(ω,`,τ)∈Y} · 1{Y(ω,`,τ)=−1, Yη>−1 ∀η≺(ω,`,τ)}

]

= E
[
Λ−1
]

+M · E
[
Λ−1
]
<∞

�
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