
Fig. 3: Current cycle for galvanostatic experiments.

Ionic liquids

Fig. 4: Resistance ratio and electrochemical impedance 
spectra for different current densities in various cells.

Fig. 5: Geometry, concentration and potential profile in the electrolyte for a one-dimensional 

“Lithium pump” at limiting current Ilim=0.99 mA/cm² during charge.
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Fig. 1: Ionic liquid consisting of Pyr14 (left), TFSI (right) and 

Lithium ions.

• Improvement of currently developed method for binary electrolyte solutions

• Investigation of a “lithium pump” based on ionic liquids

• Development of a framework based on experiments and numerical simulations to

determine potentially concentration-dependent physical properties as, e.g.,

diffusion coefficients and transference numbers

• Ionic flux of cation in concentrated solutions or molten salts as defined in [4]:
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Fig. 2: Experimental  setup of a Lithium-ion cell 

(lithium pump).

• Anode & cathode:

Lithium foil

• Porous separator:

2 layers Cellgard 3500

• Binary electrolyte:

0.1 M LiTFSI in PC

Experimental setup “Lithium pump”:

Galvanostatic experiments:

• SwagelokTM  T-cell

• Current cycle shown in Fig.3

• Electrochemical impedance 

spectroscopy (EIS) measurement 

with Biologic VMP3 in the end of 

each interval (see Fig. 3)

Theoretical resistance of binary 

electrolyte solutions (Fig. 4):

Experimental results (see Fig. 4):

• Evaluation of mass transport 

limited current density ilim based 

on the resistance ratio R /Rbulk of 

the electrolyte solution

• High variability of the 

experimental results for the initial 

bulk resistance Rbulk and R

• Restricted to concentration -

independent diffusion 

coefficients and dilute solutions

Li+
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1) Experimental determination of limiting current 
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Determination of diffusion coefficients for binary electrolyte solutions

3) Computation of diffusion coefficients
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Diffusion coefficients of Lithium and TFSI computed based on limiting current ilim , 

conductivity κ and effective separator length δeff:
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Properties of ionic liquids:
• High chemical and thermal stability

• Broad electrochemical stability window

• Low vapor pressure

• Non-flammability

• But so far: low capacities and current densities

→ Potential electrolyte for future electrochemical storage

applications, such as e.g., Li-ion, Li-S or Li-O2 batteries

Modeling of ionic liquids:
• More complex mass transport due to interacting ions and 

absence of solvent

• Concentration-dependent physical properties

→ Key for accurate numerical simulation: 

exact determination of potentially concentration-

dependent diffusion coefficients and transference numbers

→ First step: concentration-independent diffusion coefficients 

for binary electrolyte solutions in aprotic solvent

Future work

4) Numerical simulation

General multi-ion transport equation:

• Dilute solution theory & concentration-independent physical transport properties

• DLi+= 9.8e-5 mm²/s (see, e.g., [3]), DTFSI-= 18.0e-5 mm²/s → t+= 0.35

• Mass conservation and electroneutrality condition (see, e.g., [2]):

• Ionic flux:

N
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2) Computation of effective separator length
• Effective separator length δeff: including the effect of reduced diffusion

coefficients as a result of porous diffusion media

• Conductivity measurement of pure electrolyte solution (Schott LF 1100+)

• Compression of cell changes porosity ε of separator

• Effective separator length based on bulk resistance determined with impedance

measurements and conductivity κ of the electrolyte solution:

δeff = RbulkκA

δeff = lε1.5

∂ck

∂t
+ u · ∇ck+∇ ·N

d+m
k = 0;

• Linear potential profile in the beginning (no concentration gradient) 

• Logarithmic potential profile in the end (linear concentration profile)

• Experimentally measured cell potential not reproducible (also not by including 

Nernst potential or Butler-Volmer equation) 

N. Tsiouvaras gratefully acknowledges 
scholarship from the Alexander von Humboldt 
foundation

Electrolyte CathodeAnode

effδ


