
1 INTRODUCTION 

When assessing the deterioration reliability of struc-
tures, the probability of the structure (or component) 
reaching an adverse state F  is of interest. In rein-
forced concrete (RC) structures subject to corrosion 
of the reinforcement, F  might represent initiation 
of corrosion, spalling of the concrete, a critical loss 
of cross-section or failure of the structure due to cor-
rosion (Stewart and Val 2003. In many instances, in-
formation on the deterioration process becomes 
available during the service life of the structure, e.g. 
through measurements, inspection or monitoring of 
structures, which can be used to update the reliabili-
ty estimate. This information is commonly uncertain 
and often indirect. 

Uncertain information represented by an event Z  
is considered by determining the conditional proba-
bility of failure given the information event Z , de-
fined as 
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The process of computing this conditional probabili-
ty is commonly referred to as Bayesian updating or 
information updating. It has been applied in the con-
text of structural reliability since the 1970s (e.g. 
Tang 1973).  

In structural reliability, failure events F  and in-
formation events Z  are described by domains   
in the outcome space of the basic random variables 

),,,( 21 nXXX X . The failure domain F  is de-
fined in terms of continuous limit state functions 

)(xg . In the simplest case, it is  
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In the general case, F  is defined in terms of a 
number of limit state functions (e.g., Der Kiureghian 
2005), corresponding to systems of components that 
are defined by limit state functions. For the purpose 
of the present paper, the formulation in (2) is suffi-
ciently general; extension to the system application 
is straightforward (Straub submitted). 

Information obtained on the system, e.g. in the 
form of measurements, monitoring, inspection, ob-
served system performance, is also described in 
terms of continuous limit state functions )(xh and 
corresponding domains. Information is said to be of 
the inequality type if it can be written as 
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and it is said to be of the equality type if it can be 
written as  
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Structural reliability methods (SRM) solve Eq. (1) 
by computing integrals in the space of X : 
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If information is exclusively of the inequality type, 
Eq. (3), evaluation of the above integrals is 
straightforward using any of the available SRM. 
However, if the information event Z  is of the 
equality type, the integrals result in zero, since these 
events have zero probability a-priori. Direct applica-
tion of SRM is thus not possible in this case. 

Solutions to overcome this problem have been 
suggested by Madsen (1987) and the group of 
Rackwitz (e.g. Schall et al. 1988). Madsen’s solution 
is based on inserting a dummy random variable and 
then computing probability sensitivities with respect 
to this variable. The solutions of the Rackwitz group 
are based on computing surface integrals, using first- 
or second order approximations of the surfaces 

0)( xih . These solutions are implemented in the 
Strurel software (Gollwitzer et al. 2006). Both Mad-
sen’s and Rackwitz’ methods are efficient and, in 
many cases, represent a sufficiently accurate approx-
imation. However, in cases where FORM/SORM so-
lutions are not sufficiently accurate or in which it is 
difficult to identify the joint design point, these me-
thods should not or cannot be used. Furthermore, it 
is often difficult to appraise the error made by the 
first- or second-order approximation. 

Recently, the author has proposed a novel method 
for solving Eq. (5) using SRM when information is 
of the equality type (Straub submitted). The method 
is based on transforming equality information into 
inequality information, which enables the direct use 
of Eq. (5) using any SRM. The aim of the present 
paper is to study the application of the methodology 
to deterioration reliability problems in spatially dis-
tributed systems. For such systems, commonly a 
large number of reliability problems must be solved 
simultaneously, which requires that the applied algo-
rithms are robust and efficient. 

2 BAYESIAN UPDATING WITH EQUALITY 
INFORMATION USING STOCHASTIC 
SIMULATION 

This section presents a summary of the method de-
scribed in Straub (submitted), with slight modifica-
tions in view of the considered application to deteri-
oration reliability updating in spatially distributed 
systems.  

2.1 Describing information through likelihood 
functions 

We note that in statistics, information is not com-
monly described in the form of domains Z . In-
stead, the usual way to describe (uncertain) informa-
tion on X  is by means of the likelihood function, 
which is defined as 
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As noted in Straub (submitted), any domain Z  
can be translated into a likelihood function. Howev-
er, it is often more convenient to directly identify the 
likelihood function. As an example, consider a mea-
surement ms  of a system characteristic )(Xs . The 
measurement has an additive error   that is a zero 
mean random variable uncorrelated with X . The 
limit state function ),( Xh  describing this equality 
information as well as the corresponding likelihood 
function are given in the following, with )(f  be-
ing the PDF of  .  
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For the case of several observations mZZ ,...,1  with 
corresponding likelihood functions )(xiL , it is al-
ways possible to combine the likelihood functions 
into a single likelihood function )(xL . E.g., if mea-
surements are uncorrelated for given xX  , it is 
simply )()( 1 xx i

m
i LL  . It is thus sufficient to con-

sider only the case of a single likelihood function 
describing combined observations 

mZZZ  ...1 in the following.  

2.2 Transform equality information into equivalent 
inequality information 

Let P  be a random variable with uniform distribu-
tion in the range [0,1] and let c  be a constant that 
is selected so that 1)(0  xcL  for all x . In this 
case, the following identity holds for given values of 

xX  : 
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Let   denote the proportionality constant in the li-
kelihood definition given in Eq. (6). By combining 
with Eq. (9), we obtain 
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It follows that the probability of the information 
event Z  is  
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Next, we define the event )}({ xcLPZe   through 
the limit state function 

)(),( xx cLpphe   (12) 

and the corresponding domain  ),( pZe x  
}0),({ phe x . This has the same form as the domains 

describing inequality information, Eq. (3). Equation 
(11) can now be rewritten to  
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The second identity follows from 1)( pf . Accor-
dingly, )Pr( ZF   is obtained as 
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The conditional probability of F  given Z  is 
therefore 
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Here, the proportionality constant   disappears. 
Both integrals in Eq. (15) can be computed using 
any SRM. The denominator corresponds to a com-
ponent reliability problem, the nominator to a paral-
lel system reliability problem. 

2.3 Simple importance sampling techniques for 
evaluating the conditional reliability 

When considering spatial deterioration reliability, 
the conditional probability )|Pr( ZF  must be com-
puted for different locations in space. Therefore, a 
large number of evaluations of the integrals in Eq. 
(15) are potentially required. It is therefore impor-
tant to find a SRM that provides an optimal trade-off 
between computational robustness and efficiency. 
Robustness means that a method can be applied 
without problem specific adjustments and efficiency 
means that only a limited number of evaluations of 
the limit state functions are required. 

 As shown in Straub (submitted), FORM/SORM 
techniques are not generally suitable due to the fact 
that the limit state surfaces 0),( phe x , which de-
scribe the information, are generally highly non-
linear. As shown in Straub (submitted), by applying 
an advance importance sampling schemes around 
the design point (axis-parallel importance sampling), 
accurate results can be achieved efficiently. Unfor-
tunately, the method cannot generally be considered 
robust, because of the need to find a different design 
point for the computation of the conditional proba-
bility at every location.  

Monte Carlo simulation (MCS) is the most robust 
SRM. However, as shown in Straub (2010), MCS 
becomes highly inefficient when more than just a 
few observations are available, due the fact that the 
effective number of samples available to compute 
the conditional reliability diminishes with increased 
information content of Z . For this reason, direct 

application of MCS to solve the integrals in (15) is 
not recommended. 

As an optimal trade-off between robustness and 
efficiency, the use of a simple importance sampling 
(IS) scheme is suggested. The IS estimator for the 
conditional probability )|Pr( ZF  in Eq. (15) is 
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wherein the samples ix  and ip  are simulated from 
a distribution with sampling density ),( px . Fol-
lowing Straub (2010), ),( px  is split into   

)|()(),( 21 xxx pp    (17) 

where )(1 x  is the sampling PDF of X  and 
)|(2 xp  is the conditional sampling density of P  

given xX  . An optimal conditional sampling den-
sity )|(2 xp  that is valid for any application of 
Eq. (16) is given as 
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If it holds that 0)( xL  for any x , then 
1]0),([ iie phI x  for any value of ip  that is sam-

pled from the above conditional density )|(2 xp . 
In this case, Eq. (16) reduces to 
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Note that the constant c  disappears when using 
this sampling density. For the case of selecting the 
prior PDF of X  as its sampling density, i.e., 

)()(1 ii f xx X , the above reduces to the MCS solu-
tion of  
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where )|( Zf x  is the posterior distribution of X  
given the information Z . 

For spatially distributed systems described by 
homogenous probabilistic deterioration models, it is 
suggested in Straub (2010) to use as sampling densi-
ty )(1 x  a distribution centered around the design 
point iux   corresponding to failure at location i  
(a-priori, i.e. before the observation). This implies 
the use of a different sampling density for compu-
ting the reliability at every location i . However, the 
identification of the design point iu  is straightfor-
ward, since it suffices to find the values of the de-
sign point for the variables at the location i . These 
values are identical for any i , due to the assumption 
of homogeneity. The design point values of the ran-
dom variables at the other locations are then found 



as the mode of the conditional distributions, which 
are readily identified if the random fields are mod-
eled by a Gaussian copula (the Nataf model).  

In Straub (2010) it was found that a sampling 
density )(1 x  with a Multinormal distribution with 
mean equal to the design point iu  and covariance 
function equal to that of the prior distribution 

)( if xX  performs well. This sampling density is ap-
plied in the following application.    

3 APPLICATION TO SPATIAL RELIABILITY 
UPDATING OF CORROSION IN RC 
STRUCTURES 

We consider a reinforced concrete (RC) surface that 
is subject to corrosion of the reinforcement caused 
by chloride ingress. The method presented in the 
previous section is applied to compute the spatial 
probability of corrosion conditional on measure-
ments of chloride penetration. These measurements 
are obtained from cores taken at discrete locations of 
the surface. 

3.1 Spatial model of chloride-induced 
reinforcement corrosion 

We utilize a diffusion model to describe chloride in-
gress and initiation of corrosion at the reinforce-
ment, which corresponds to a simplified version of 
the probabilistic models developed in the Duracrete 
project (fib 2006). The chloride concentration zC  
at a depth z  at time t  is described by the follow-
ing solution of the one-dimensional linear diffusion 
equation: 
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where sC  is the concentration of chloride at the 
concrete surface, 0C  is the concentration of chlo-
rides in the concrete at time zero, D  is the diffu-
sion coefficient and erf()  is the error function. In 
the Duracrete model, sC  is given for different envi-
ronmental conditions, 0C  is set equal to zero and 
D  is expressed as a function of several variables 
that represent various material characteristics. For 
simplicity, we here let D  be a single random varia-
ble. 

The random variables, including their probabilis-
tic model, are explained in Table 1. The values ap-
proximately correspond to a concrete surface in a 
parking deck with water-to-cement ratio equal to 
0.4, which is exposed to splash water containing 
deicing salts.  

Table 1. Probabilistic model for one location. 

Parameter Dimension Distrib. Parameters 
W: Cover depth mm LN  = 40.0;      

 = 8.0.   
D : Diffusion 
coefficient 

mm2/yr LN  = 20.0;      
 = 10.0.   

CS : Cl surface 
concentration  

Mass-% of 
cement 

Normal  = 3.10;      
 = 1.23. 

Ccr : Critical Cl 
concentration 

Mass-% of 
cement 

Normal  = 0.8;       
 = 0.1. 

 
The considered surface area has size 5m10m; for 
the analysis it is discretized in 200 elements with 
size 0.5m0.5m. This choice is made based on the 
correlation lengths of the random variables that vary 
with space (see Malioka (2009) for a review of dis-
cretization approaches). The random variables that 
are considered to vary over the area are summarized 
in Table 2, together with the corresponding correla-
tion length Xr .  

Table 2. Modeling of spatial variability. 

Parameter Correlation length rX [m] 
W: Cover depth 1m 
D : Diffusion coefficient 2m 
CS : Cl surface concentration  1m 
Ccr : Critical Cl concentration 1m 

 
All spatially varying random variables X  are de-
scribed by homogenous Gaussian random fields with 
exponential covariance function: 

)exp(][Cov Xijji rd,XX   (22) 

wherein ijd  is the distance between two points i  
and j  on the concrete surface. The joint distribu-
tion of the random variables in the random field is 
described by a Gaussian copula (i.e. the Multinormal 
distribution in the case of sC  and crC , and the 
Multilognormal distribution in the case of W  and 
D ). 

3.2 Failure event 

Here, we define failure F  as the event of corrosion 
initation, which occurs when the chloride concentra-
tion wC  exceeds the critical chloride concentration 

crC . With the diffusion model, the limit state func-
tion for corrosion in element i  at time t  is ob-
tained as 
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3.3 Measurements 

We consider measurements of chloride concentra-
tion made by taking cores from the concrete at se-



lected locations im,x . The chloride contents zC  at 
various depths mz  are obtained by chemical analy-
sis of the ground-up concrete. According to the dif-
fusion model, zC  at location j  and depth mz  is 
given as 
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The uncertainty in the concentration measurement is 
modeled by an additive Normal distributed error 
with zero mean and standard deviation 2.0  
[mass-% of cement], which is assumed to be statisti-
cally independent from one measurement to the 
next. The likelihood function for one measurement 
of chloride concentration ),( mm zjc  at location j  
is accordingly: 
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3.4 Numerical investigations 

Concrete cores are taken at time 10mt  years from 
the surface at different locations. For each core, the 
chloride content is measured at two depths 

mm201 mz  and mm402 mz . Two hypothetical 
cases of measurement outcomes are considered, as 
summarized in the following tables: 

Table 3. Measurements case 1 [in mass-% of cement]. 

Location (x and y directions) cm(j,20mm) cm(j,40mm) 
a: x = 3.0, y = 2.5 1.0 0.6 
b: x = 7.0, y = 2.5 0.5 0.3 

Table 4. Measurements case 2 [in mass-% of cement]. 

Location (x and y directions) cm(j,20mm) cm(j,40mm) 
a: x = 1.0, y = 1.0 0.3 0.1 
b: x = 9.0, y = 1.0   0.5 0.3 
c: x = 1.0, y = 4.0 0.6 0.1 
d: x = 9.0, y = 4.0   0.9 0.3 
e: x = 5.0, y = 2.5  1.4 0.5 

 
The probability of corrosion at every point of the 
concrete surface, conditional on these measure-
ments, is evaluated with the importance sampling 
method described above with 105 samples. The 
computation of the results presented hereafter takes 
in the order of 100 CPU seconds on a standard 1.6 
GHz PC.  

The a-priori probability of corrosion as a function 
of time is shown in Figure 1. Since no location-
specific information is available prior to the mea-
surements, this probability is identical at all loca-
tions.  
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Figure 1. Probability of corrosion prior to measurements 
(SORM solution). 
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Figure 2. Probability of corrosion conditional on the 
chloride measurements from Table 3. 

For case 1, Figure 2 shows the conditional probabili-
ty of corrosion for different years. The two mea-
surement locations can be clearly identified from the 
spatial distribution of the probability. Measurement 



a gives higher observed chloride concentrations and 
consequently the updated probabilities around the 
location of this measurement are higher. The oppo-
site is observed for measurement b, which gives 
lower values of mc . The results also reflect the cor-
relation length of the uncertain model parameters, 
which are between 1m and 2m. At the points furthest 
away from the measurements (at the corners), the 
updated probability of corrosion is close to the prior 
probability without measurements. 

For case 2, Figure 3 shows the conditional proba-
bility of corrosion for different years. Measurement 
e, in the center of the area, shows by far the highest 
concentrations of chlorides. Because there are more 
measurements available in comparison to case 1, the 
spatial variability in the updated probability values 
is higher. There is also higher scatter in the result, 
which reflects a decrease in the accuracy of the 
probability estimates obtained with the employed IS 
approach, as compared to case 1. This is due to the 
fact that )Pr( eZ  decreases with increasing amount 
of information. As shown in Straub (2010), lower 
values of )Pr( eZ  lead to lower accuracy with these 
simulation methods.   
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Figure 3. Probability of corrosion conditional on the 
chloride measurements from Table 4. 

CONLUDING REMARKS 
The application presented in this paper demonstrates 
the potential of the method proposed in Straub 
(submitted) for Bayesian updating of spatial proba-
bilistic models of deterioration with information that 
is obtained at discrete points in space. In the pre-
sented application, this information is the measured 
chloride content at discrete points in the concrete 
surface.   

The new method proceeds by transforming equal-
ity information into equivalent inequality informa-
tion. In this way, Bayesian updating of the probabil-
istic model and the reliability estimate with any 
information can be performed using simple simula-
tion techniques. These techniques have the advan-
tage of being robust, which is of particular relevance 
in the context of spatially distributed systems, where 
a large number of conditional probabilities must be 
computed.  

As the amount of information increases, the accu-
racy of the presented simulation techniques decreas-
es. Further investigations are ongoing on how the 
techniques can be improved for problems where the 
amount of information is significantly higher. This is 
particularly relevant when measurements are made 
continuously in space. 
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