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1 INTRODUCTION 
 
Wildfires are common in geographic areas where the 
climate is sufficiently moist for vegetation growth 
but also features extended dry hot periods, such as 
the Mediterranean area, Southeast Australia, Central 
and Southern California, or South Africa. Long peri-
ods of drought and hot temperatures, combined with 
strong winds and unmanaged biomass, make such 
areas naturally fire-prone. Besides climate, human 
interventions also play an important role in the oc-
currence of wildfires. Humans have used fire for 
their interests throughout history and the result is 
observable in the mosaic landscapes of the Mediter-
ranean. The regeneration of pastures, land use 
change, suppression of natural vegetation to imple-
ment crops, land clearing activities or revenge are all 
human motives that caused and still cause wildfires 
(Leone et al. 2009).  

Although wildfire incidents have always accom-
panied vegetation growth, statistical evidence sug-
gests an increase in the severity of wildfires during 
the past three decades (FAO (Food and Agricultural 
Organization of the United Nations) 2001, Joint Re-
search Center (IES) 2006). In the Mediterranean, 
long periods of high above-average temperatures 
and draught, especially in the summer months, have 
produced large fires with severe impacts on vegeta-
tion, animals, crops, human lives and properties. 
Record temperatures occurring during recent sum-
mer periods (Southeast Australia 2009, Russia 2010) 

lead to extreme wildfire events that were associated 
with huge socio-economical costs. In addition, sce-
narios of global warming suggest that wildfires will 
become more frequent and more intense in the future 
(Wotton et al. 2003, Flannigan et al. 2005, Munich 
RE 2010). 

When modeling wildfires, it is commonly distin-
guished between the ignition and the behavior (in-
cluding the spread) of the wildfires. This paper fo-
cuses on the occurrence of wildfires, which here is 
defined as the event that a fire has ignited and has 
spread to an extent that it is registered. Therefore, to 
model the occurrence of a fire it is necessary to con-
sider factors leading to ignition as well as its initial 
spread.   

The research on wildfire occurrence addresses the 
questions on when, where and why wildfires are 
triggered and start to grow. The answer to these 
questions requires understanding of the interrelations 
among biotic and abiotic factors and multidiscipli-
nary approaches are thus needed for modeling fire 
risk. Multiple authors have investigated the role of 
weather conditions and fuels on fire occurrences, in-
cluding (Chou & Chase 1993; Chuvieco et al. 2004; 
Wotton & Martell 2005; Camia & Amatulli 2009). A 
statistical approach is presented by Preisler et al. 
(2004), who use logistic regression to produce fire 
probability maps for the state of Oregon. In their 
study, the following variables are identified as hav-
ing a significant impact on the probability of wild-
fire occurrence: spatial location; seasonality; eleva-
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tion; 1000-h fuel moisture; dry bulb temperature; 
state of weather (e.g. clear skies, broken clouds, 
thunderstorm).  

The interdisciplinary approach to natural hazard 
risk modeling can be supported efficiently by Bayes-
ian networks (BN). Based on acyclic graphs, BN en-
able to model the probabilistic dependence among a 
large number of variables influencing the risk. The 
causalities expressed by the arcs between the varia-
bles make BN not only convenient for graphical 
communication of the interrelations between the in-
fluencing factors (qualitative part), but also include, 
through conditional probability tables, a quantitative 
probabilistic model (Jensen & Nielsen 2007). In oth-
er words, the graphical representation of the depend-
ence structure among stochastic variables makes it 
easy to understand intuitively and facilitates the con-
sistent modeling of complex problems involving 
many variables. For these reasons, BN are increas-
ingly applied for risk assessment of natural hazards, 
e.g. for rock-fall hazards (Straub 2005), avalanches 
(Grêt-Regamey & Straub 2006), tsunamis (Blaser et 
al. 2009) and earthquakes (Bayraktarli et al. 2005, 
Bensi 2010, Kuehn et al. in press). Dlamini (2009) 
developed a BN model for wildfire occurrence, 
which is used to analyze the influence of 12 biotic 
and abiotic variables on wildfire occurrence in Swa-
ziland, including land cover, elevation, mean annual 
rainfall and mean annual temperature.  

In this paper, we attempt to construct a BN model 
for wildfire occurrence, which includes the effect of 
weather, vegetation and humans and deals with the 
problem of non observable variables. In contrast to 
Dlamini (2009), our BN model is based on continu-
ous (3hr or 6hr) weather data and can thus serve for 
prediction purposes. The Fine Fuel Moisture Code 
of the Canadian Fire Weather Index (Van Wagner 
1987) is utilized in the BN to model the effect of 
weather conditions on the fire occurrence. The mod-
el is applied to the Greek Mediterranean island of 
Rhodes. 

 
 

2 METHODOLOGY 

2.1 Bayesian Networks 

Bayesian Networks (BN) are directed acyclic graphs 
and consist of nodes, arcs and probability tables at-
tached to the nodes (Jensen & Nielsen 2007). Each 
node represents a discrete random variable, i.e. its 
sample space consists of a finite set of mutually ex-
clusive states. The arcs describe the assumed de-
pendence structure among the random variables, 

whereby it is common to describe these relations 
with family terms. In the example BN of Figure 1, 
�� is the child of �� and ��, and �� and �� are the 
parents of ��. Nodes that are not directly connected 
can be conditionally independent of each other (this 
depends on the network structure and the available 
evidence, as described by the d-separation rules, see 
e.g. Pearl 1988). A conditional probability table 
(CPT) is attached to each of the nodes, giving the 
probability of the variable to be in one of its states 
conditioned on the states of its parents. If we consid-
er a BN with discrete random variables � �
���, … , �
�, then the full (joint) probabilistic model 
of these variables is the joint Probability Mass Func-
tion (PMF), ��� � ���, … , ���, which can be 
specified with the help of the chain rule: 

 
��� � ���|����, … , ��������|����, … , ��� 

… ���|������� (1)  

 
 
By making use of the independence assumptions 

encoded in the graphical structure of the BN, this 
chain rule reduces to:  
 

��� � � ���|������
�

���
 (2)  

 
wherein �����, are realizations of the parents of ��. 
In other words, the joint probability mass function 
(PMF) of all random variables in the BN is simply 
the product of the conditional PMFs of each individ-
ual random variable given its parents. Therefore, the 
graphical structure of the BN, together with the con-
ditional PMFs Pr��|������, are sufficient for spec-
ifying the full (joint) probabilistic model of � �
���, … , ���. 
 
 

 
 

Figure 1: A simple Bayesian  Network. X1 and X2 are the par-
ents of X3, and X3 is the child of X1 and X2. 
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Although the definition of BN does not require 
the links to represent causal relations, it should be 
checked that the implied conditional independence 
assumptions in the BN correspond to observations of 
the real world. However, ensuring causality among 
variables will commonly lead to less complex and 
more intuitive BN models (Jensen & Nielsen 2007, 
Straub & Der Kiureghian 2010), and is thus prefera-
ble.  
 

2.2 BN for Fire Ignition  

In this study we construct a BN to estimate wildfire 
occurrence rates based on temporal and spatial data 
(Figure 2). Here, the spatial reference of the model is 
the municipality level (administrative unit), to ac-
count for the available data (i.e. fire records that are 
available only for a municipality without geo-
reference). The temporal reference is one day. 
Therefore, the BN represents the factors influencing 
wildfire occurrence in a municipality (as specified 
by the corresponding node) during a particular day. 

The nodes of the model represent variables influ-
encing wildfire occurrence. Grey nodes represent the 
variables used for the calculation of the daily fuel 
moisture and are treated separately in the parameter 
estimation, as described in paragraph 3.3. Every 
node has a number of discrete mutually exclusive 
states, meaning that continuous random variables 
(such as Area or Human population density) are dis-
cretized.  

The nodes Municipality, Area and Human popu-
lation density are deterministic, and can be deter-
mined from spatial and demographic data. Land 
cover has labeled states that are related to fuel type 
(e.g. forest, natural grasslands, olive groves, artifi-
cial surface, etc.) and the probability of occurrence 
of each fuel type is taken as the proportion of the ar-
ea covered within a municipality.  

The node FFMC (Fine Fuel Moisture Code) rep-
resents the continuous variable fuel moisture. The 
node is a child of the weather variables (temperature, 
wind speed, relative humidity and precipitation) and 
the fuel moisture of the previous day. The daily val-
ues of FFMC are calculated deterministically as de-
scribed in paragraph 3.3.  

The node Occurrence rate represents the mean 
number of wildfire occurrences per day and km². In 
this model, the rate is a function only of land cover, 
human population density and FFMC, which in-
cludes all weather related variables. The occurrence 
rate is not observable and is estimated based on his-
torical data.  

For given daily rate of occurrence and land area, 
the number of wildfires during a day can be modeled 
by a Poisson distribution, assuming independence 
among fire events for given occurrence rate. The 
CPT of the number of occurrences   is therefore ob-
tained as, 

 

 
Figure 2: Bayesian Network for fire occurrences. 
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Pr � !| #, $� � #$�%

!! exp*#$� ,
! � 0,1,2, …  (3)  

wherein λ [day��km��] is the occurrence rate and α 
[km²] is the area. 
 

2.3 Fine Fuel Moisture Code (FFMC) 

The Canadian Forest Fire Weather Index (FWI) is 
one of the most widely used indexes for the evalua-
tion of fire risk in relation to weather conditions 
(Lawson & Armitage 2008). Having as input easily 
observable weather parameters, FWI provides with 
its six standard components (three fuel moisture 
codes and three fire behavior indexes) numeric rat-
ings of relative potential for wildfire. One constitu-
ent of the FWI is the Fine Fuel Moisture Code 
(FFMC), which provides a numeric rating of the dai-
ly moisture content of litter and other cured fine 
fuels, and which is used in the BN to express the in-
fluence of daily weather changes on the flammabil-
ity of the fuels.  

The FFMC acts as an indicator of the relative 
ease of ignition and flammability of fine fuels and is 
calculated through a moisture balance. FFMC rating 
is on a scale of 0 to 100. Higher values represent 
lower moisture contents and hence greater flamma-
bility. Any value above 70 is considered high and 
any value above 90 is considered extreme. The four 
weather variables needed to calculate FFMC are dry-
bulb temperature, relative humidity, wind speed and 
precipitation. The first three are recorded at noon 
and the precipitation value is the 24 h total rainfall 
from noon to noon [in mm].  

Rainfall leads to a decrease in FFMC, while tem-
perature, together with relative humidity and wind 
speed, affect the rate at which the FFMC increases 
due to drying. Relative humidity also affects the 
equilibrium moisture content, which is the lowest 
moisture content that a fuel will reach for a given 
combination of weather conditions.  

 

2.4 Parameter Estimation 

It is possible to learn both the structure and the pa-
rameters of a BN with historical data and expert 
knowledge (Jensen & Nielsen 2007). Here, we con-
sider the structure of the BN known (Figure 2), i.e. it 
is based on our knowledge of the process, and the 
learning process reduces to the task of estimating the 
parameters of the conditional probability distribu-
tions.  

The random variable “Occurrence rate” in the BN 
of Figure 2 is a hidden variable, also called latent 
variable (Russell & Norvig 2003). Although hidden 

variables are not observable, they are included in the 
model because they allow reducing the number of 
parameters required to specify a BN. The Expecta-
tion-Maximization (EM) algorithm is used to solve 
the problem of learning the conditional probability 
distributions of the hidden variables. The algorithm 
involves two steps that are performed iteratively, 
namely the computation of expected values of hid-
den variables (E-step) and the maximization of the 
parameter likelihood, using the expected values as if 
they were observed values (M-step).  

In case of a BN let � denote the observed values, 
Z the hidden variables, and 3 the parameters of the 
model. Then the 4th iteration of the EM algorithm is 
(Russell & Norvig 2003): 

 

3�� � argmax3  6 �789�, 3����:
8

ln =3|�, 8� (4)  

 
=3|�, 8� is the likelihood of 3 for given observa-
tions � and 8. The summation operation in Eq. (4) 
corresponds to the E-step, the maximization opera-
tion to the M-step. 
 
 
3 CASE STUDY 

3.1 Rhodes 

The Greek Mediterranean island of Rhodes has been 
chosen as a case study area, because it represents 
quite adequately the climate and the mixed land uses 
of fire-prone Mediterranean regions. The island is 
located in the south eastern part of the Aegean Sea, 
its area is 1409 km² and in 2001 the number of per-
manent residents was 115.334 (Hellenic Statistical 
Authority). On the administrative level, the island is 
divided into 43 municipalities. The inner part of the 
island is mountainous with the highest elevation at 
1215 m. The climate of Rhodes is a dry summer sub-
tropical climate (Mediterranean) with wet winter and 
long dry summer periods and an annual mean tem-
perature of around 22 °C. The natural vegetation 
consists of evergreen shrubs, genista, pine forests 
and mixed forests with cypresses. The main agricul-
tural activities on the island are the cultivation of ol-
ives and vines. Wildfires are common on Rhodes; 
wildfires occurring in September 2008 led to a 
burned area of 122 km², according to recordings of 
the Greek Fire Service.  

 

3.2 Data Sources 

Both spatial and temporal explicit data are used in 
this study. The elevation of the island has been taken 
from the Advanced Spaceborne Thermal Emission 
and Reflection radiometer (ASTER) Global Digital 
Elevation Model (GDEM). ASTER GDEM is a pro-
ject of the Ministry METI of Japan and NASA. The 
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spatial resolution is 15 meters in the horizontal 
plane. Pre-production estimated accuracies were 
20m for vertical data and 30m for horizontal data at 
95% confidence. Three GeoTIFF data sets cover the 
whole area of the island (ASTGTM_N35EO27, 
_N36EO27, _N35EO28).  

To obtain information on land cover, the 2000 
version of Corine Land Cover (CLC) is utilized (Eu-
ropean Environment Agency). CLC provides con-
sistent localized geographical information on the 
land cover of the 12 Member States of the European 
Community in a scale of 1:100.000. The CLC is the 
result of the combination of information from differ-
ent sources, including satellite images, aerial photo-
graphs, topographic maps, thematic land cover maps 
and ground truth surveys (the minimum unit map-
ping was set at 25 ha (0.25 km²)) and is classified in 
44 types. Out of these, only 25 are present on the is-
land.  

A thematic map with the administrative boarders 
of municipalities of the island, provided by 
Agroland SA, is utilized. Demographic data on the 
population of each municipality in 2001 was ob-
tained from the Hellenic Statistical Authority.  

Historical data on the occurrences of fires during 
the period 2000-2009 were obtained by the statistical 
department of the Greek Fire Service. The data of-
fered information on the date of fire occurrence and 
the municipality that it occurred. 

The spatial data are edited and processed with 
ArcGIS 9.3. Data related to the mean elevation, land 
cover classes and area are then extracted for each of 
the 43 municipalities.  

 

3.3 Determining the model  

For the calculation of FFMC, weather data on tem-
perature, relative humidity, wind speed and precipi-
tation for the years 2000-2009 were obtained from 
the German Weather Service. The measurements 
were made at the Greek official weather station at 
the airport of Rhodes (36°24' N, 28°05' E, 11m). 
Temperature, relative humidity and wind speed are 
recorded in 3-hour intervals. The daily values at 
noon are extracted and used as an input for the 
FFMC calculations. In the case of missing values of 
relative humidity and wind speed at noon, values 
from the previous measurement at 09:00 are utilized. 
In the case of a missing temperature value, the rec-
orded value of the previous day at noon is taken. 
Since there is only one official weather station on 
the island, the weather variables at other locations 
are inferred from the data obtained at this station. 
For temperature, the value in each municipality is 
estimated based on the normal lapse rate of tempera-
ture of 0.65°C/100m (Gabler et al. 2008). Conse-
quently the temperature for each municipality at 
noon >?@A is, 

 

>?@A � >BC * 0.0065 G HI?@A (5)  

 
where >BC is the measured temperature at the weath-
er station at noon and  HI?@A is the mean elevation of 
the municipality. For all other weather variables, the 
values in the municipalities are taken as the value 
recorded at the weather station. The calculation of 
the FFMC at each municipality is based on the for-
mulation given in Van Wagner & Pickett (1985). 

The parameters of the BN are determined through 
the EM algorithm. The numerical implementation is 
carried out with the Hugin software. In total 109.994 
records, corresponding to daily values for 7 years 
(2000; 2004–2009), each for 43 municipalities, are 
used for parameter estimation. 

 

3.4 Results 

The main result of the parameter estimation is the 
PMF of the occurrence rate conditional on the 
FFMC, the land cover and the human population 
density. To show the influence of each of these three 
factors individually, we evaluate the BN by fixing 
only the corresponding factor. Because the factors 
are not d-separated in the BN (they are connected 
through the common node municipality), they are 
statistically dependent. Therefore, this approach 
slightly overestimates the influence of the individual 
factors. By also fixing the remaining factors, this ef-
fect was investigated and found to be small. The ad-
vantage of fixing only one factor at a time is that the 
results are then averaged over the remaining factors 
and are thus more representative, since they are ef-
fectively based on a larger number of underlying da-
ta. 

Figure 3 shows the mean occurrence rate for dif-
ferent ranges of human population density. The oc-
currence rate increases with increasing values of 
human population density.  

 
Figure 3: Mean fire occurrence rate and human population den-
sity. 

 
A slight influence of the land cover on the mean 

occurrence rate is observable (Figure 4). The agri-
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cultural areas (arable land, permanent crops of vine-
yards and olive groves, heterogeneous agricultural 
areas) have higher mean occurrence rates than the 
natural/semi natural areas (forests, scrub/herbaceous 
vegetation and natural grasslands, open spaces with 
little or no vegetation). In heterogeneous agricultural 
areas, where complex cultivation patterns and set-
tlements are mixed, the occurrence rate is the highest 
among all land covers.  

 
Figure 4: Mean fire occurrence rate and land cover type. 

 
FFMC is found to have only slight influence on 

the occurrence rate, which is estimated as 8.35x10-4 
[Nr.Occurrences x day-1 x km-2] for FFMC values in 
the range of 0 – 40 and 8.59x10-4 [Nr.Occurrences x 
day-1 x km-2] for FFMC values in the range of 95 – 
100. To facilitate interpretation of this result, Figure 
5 shows calculated FFMC values for year 2000, to-
gether with daily precipitation and the observed 
number of fires. The FFMC values are generally 
high, and the only large changes occur during and 
after rainfall events.  
 

 
Figure 5: FFMC values at a representative municipality, to-
gether with observed precipitation at the weather station and 

total number of wildfire occurrences on the island for year 
2000. 

Figure 6 shows histograms of FFMC values cal-
culated for days with zero, one or two recorded 
wildfires. These three conditional histograms and the 
corresponding conditional means and standard devi-
ations exhibit similar trends, which supports the 
findings from the BN.  
 
 

 
 

Figure 6: Histograms of FFMC for a representative municipali-
ty, conditional on the recorded number of fires occurring on the 
island. 

 
4 DISCUSSION 
 
Many authors have suggested that a majority of fires 
occurring in Southern Europe are due to acci-
dent/negligence or arson and thus strongly influ-
enced by the presence of humans (Leone et al. 
2009). This is supported by the results in Figure 3, 
which show that the population density has a distinct 
influence on the occurrence rate of wildfire. A 
somewhat weaker dependence of the wildfire occur-
rence rate on the land cover is also observed (Figure 
4), which seems to indicate that agricultural activi-
ties lead to an increased occurrence rate.   

The results show that for the investigated area, 
FFMC is only a weak indicator for the rate of wild-
fire occurrence. This might be explained by the fact 
that FFMC was developed for the climate and vege-
tation specific to Canada. In Rhodes, precipitation 
events are rare from May to September (Figure 5). 
As a result, the FFMC remains high (>80%) during 
this period, in which most of the wildfires occur. 
However, it is also observed from Figure 5 that the 
meteorological conditions have a clear effect on the 
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occurrence of fires. The model must therefore be 
improved by utilizing more expressive meteorologi-
cal indicators. One option is to utilize the entire Ca-
nadian Fire Weather Index, which also includes a 
numeric rating of the moisture content of deeper or-
ganic layers. Alternatively, other fuel moisture in-
dexes might prove to be more representative for the 
South European climate and vegetation.  

Once an improved description of meteorological 
conditions is established, the proposed Bayesian 
Network model, since it is based on daily weather 
data, can serve for prediction purposes and early 
warning. In addition, it can be continuously updated 
with new observations of weather conditions and 
wildfire occurrences, leading to an improved model 
in the future. Future work towards these goals in-
clude the validation of the model and linking a GIS 
to the model for better visualization of the results to 
support the management of wildfire prevention 
measures.  

 
 

5 CONCLUSIONS 
 
A Bayesian Network for wildfire occurrences is con-
structed and its parameters are learned based on 
temporal and spatial data. The model includes the ef-
fect of weather, vegetation and humans on the wild-
fire occurrences and deals with non-observable vari-
ables. In the investigated Mediterranean area, it is 
found that human population density has a distinct 
influence on the occurrence rate. Land cover is also 
found to influence, if only slightly, the occurrence of 
fires. The employed fuel moisture index, which in 
the model represents the influence of meteorological 
conditions, is shown to be only a weak indicator for 
the rate of wildfire occurrence. Future work is need-
ed to identify improved meteorological indicators.  
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