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1 INTRODUCTION 
 
Modern railway systems are equipped with automat-
ic signaling and train protection and warning sys-
tems (TPWS) that control train movement and en-
sure the attention of the driver. In spite of reliable 
signaling and TPWS, trains are still passing signals 
at dangers (so-called SPAD events) (Duffey, et al., 
2003). These SPAD events can lead to train derail-
ment, head on collision with another train, collision 
with infrastructure and other adverse consequences. 
A significant number of severe accidents caused by 
SPAD occurred in the recent past (Whittingham, 
2004). A recent study shows that the most fatal col-
lisions and train derailments in Europe since 1980 
were caused by SPAD (Evans, 2011).  

Investigations have been carried out to identify 
the critical components that lead to SPAD and train 
derailment due to it. The classical way of modeling 
such events is by means of Fault Tree (FT) analysis, 
which allows modeling and analyzing safety critical 
components in engineering systems. It is a top-down 
approach, which provides a logical framework for 
understanding and assessing the scenarios leading to 
system failure. The FT method is well explained in 
(Limnios, 2007) and (NASA, 2002). Examples of 
FT applied to railway systems include the modeling 
of errors made by train drivers (Dhillon, 2007), reli-
ability evaluations of railway power supply (Chen, 

Ho, & Mao, 2007) and safety analysis of railway 
brake system (Heilmann, et al., 2007).   

The FT methodology has limitations in modeling 
complex systems. This motivates an investigation in-
to the use of Bayesian Networks (BNs) for modeling 
and analyzing SPAD and other safety critical events 
in railway systems. BNs are probabilistic models 
that enable a concise representation of the depend-
ence among random variables.  The BN allows com-
bining systematic, expert and factual knowledge 
about the system and is a flexible and compact form 
of system representation (Khakzad, et al., 2011). 
References on the application of BNs to engineering 
safety, risk and reliability can be found in (Straub & 
Kiureghian, 2010) and (Lampis & Andrews, 2009). 
Only few examples of BN applied to railway sys-
tems can be found. (Marsh & Bearfield, 2007) use 
BN for the representation of a parameterized fault 
tree for SPAD; (Oukhellou, et al., 2008) develop a 
BN model for identifying and classifying rail defects 
based on sensor data. 

In this paper, it is studied whether the use of BN 
provides significant advantages over the FT meth-
odology for modeling safety risks in railway sys-
tems. The causes of train derailment due to SPAD 
are analyzed and the safety risk model train derail-
ment due to SPAD is constructed using FT and then 
translated into a BN. The two methods are compared 
with respect to different modeling and analysis as-
pects that are relevant for railway systems.              
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2 SIGNAL PASSING AT DANGER (SPAD) 
 
SPAD events occur when trains do not stop before a 
red light. SPAD can be caused by faulty brakes, high 
train speed, defective signals and train drivers 
wrongly reading and responding to cautionary sig-
nals (Whittingham, 2004). SPAD events can lead to 
train derailment, collision with infrastructure or col-
lision with other trains. To prevent SPAD, modern 
railways have automatic signaling systems, which 
stop the trains whenever components of the system 
fail to perform their function. These signals ensure 
an adequate distance between the trains to avoid col-
lisions. Train drivers follow these signals along the 
railway track in order to proceed further and switch 
railway lines. Additionally, trains are equipped with 
train protection and warning systems (TPWS) that 
further ensure safe train movement. This system 
prevents SPAD by automatically applying the brakes 
if the train speed is too high.   

3 FAULT TREE MODELLING 

The Fault Tree (FT) is a common technique used for 
logical representation of a technical system for the 
purpose of safety and reliability analysis. It provides 
a rational framework for modeling the possible sce-
narios leading to system failure. It is a deductive 
method in which an undesired event – called Top 
Event (TE) – is postulated and the scenarios leading 
to the TE are identified. These scenarios originate 
from so-called basic events, and are described by a 
series of logical operators and intermediate events 
leading to the TE. The system is analyzed in the con-
text of its operational and safety requirements and 
environment to find all combinations of basic events 
that will lead to the occurrence of the TE  (Stewart 
& Melchers, 1997). The basic assumptions of the 
standard FT methodology are 
 the FT is based on events, it can thus only repre-

sent random variables with binary states; 
 basic events are statistically independent; 
 the relationship between events is represented by 

logical gates.   
The basic constituents of the FT analysis used in this 
paper are shown in Figure 1 and explained below. 
 Basic event: a triggering event for the TE, e.g. 

human error, failure of a system component. 
 Intermediate event: events other than TE & basic 

events, defined through gates. 
 OR gate: the output event occurs if one of the in-

put events occur; 
 AND gate: the output event occurs if all input 

events occur; 
 NOT gate: the output event occurs if the input 

event does not occur; 

 Repeat bar: the intermediate event (and the 
events leading to it) are repeated.  

 

 
Figure 1. Graphical symbols for Fault Tree. 

 
In the quantitative analysis of the FT, the probability 
of the TE is computed as a function of the probabil-
ity of the basic events, by identifying (minimal) cut-
sets. Algorithms for these computations are provided 
in (Bertsche, 2008) and (Aven, 2008). By using im-
portance measures, the criticality of each basic event 
towards system failure can be determined 
(Borgonovo, et al., 2003). Here, the diagnostic im-
portance factor ܨܫܦሺாሻ from  (Assaf & Dugan, 2004) 
is used, which for the basic event ܧ is defined as the 
conditional probability of ܧ given system failure ܨ௦: 
 

ሺாሻܨܫܦ ൌ Prሺܨ|ܧ௦ሻ ൌ
Prሺܨ௦ ∩ ሻܧ
Prሺܨ௦ሻ

 (1) 

This importance measure has the disadvantage that it 
strongly depends on the marginal probability of the 
basic event		ܧ. (If the event has probability	Prሺܧሻ ൌ
1, the  ܨܫܦሺாሻ is always 1, independent of the logical 
relation between ܧ and	ܨ௦.) 

3.1 Modeling SPAD and subsequent train 
derailment using fault tree 

Figure 2 shows the FT for SPAD from (Marsh, et al., 
2007). This FT represents a railway system with 
TPWS. The possible scenarios leading to SPAD are 
(a) the combined failure of TPWS and driver errors, 
and (b) a failure to break because of slip between the 
wheels and the rails, which is caused by high train 
speed and poor adhesion. The basic events of these 
two scenarios are summarized in Table 1. 
 
Table 1. Basic events in the fault tree for SPAD. 

Basic event        Description 
Train approaching 
red signal

Train is running towards a red signal 

Slip Sliding of train due to poor adhesion 
TPWS fails TPWS fail while passing a signal
Driver errors in 
brake application

Driver fails to react to a signal in time
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Figure 2. Fault tree for SPAD, after (Marsh, et al., 2007). 

 
 
SPAD events can lead to a number of possible con-
sequences, including train derailment, head on colli-
sion with another train as well as collision with in-
frastructure. For illustrational purposes, only train 
derailment due to SPAD is considered hereafter.  

SPAD alone does not lead to train derailment; 
additional factors must be present. A train can derail 
when (1) the signal is followed by a turnout point 
that is not set or when (2) the signal is followed by a 
curve and train speed is high. The basic events de-
scribing these additional factors (causes of train de-
railment given SPAD) are summarized in Table 2 
and are included in the FT in Figure 3, modeling 
train derailment due to SPAD. 
 
Table 2. Causes (basic events) of train derailment given SPAD. 

Event         Description 
High train speed Speed of the train passing a signal is 

greater than 60 miles/hour  
Curve in Track 
alignment 

Railway track is not straight after 
passing a signal. It has curves.

Turnout/point not 
set 

There is a turnout/point in the follow-
ing section with prevented route  

3.2 Advanced aspects of FT modeling applied to 
train derailment due to SPAD 

The FT for the modeling of train derailment due to 
SPAD shown in Figure 3 fails to address several 
types of dependences among basic events. These de-
pendences, which should be included in an advanced 
FT model as described in (Xing & Amari, 2008), are 
summarized below. 

 
Figure 3. Fault Tree for train derailment due to SPAD. 

 

3.2.1 Advanced aspect 1: Common cause failures 
The FT in Figure 3 assumes that the basic events are 
statistically independent. This does not hold for the 
basic events ,,Slip’’ and ,,High train speed’’; they 
are dependent since a high train speed is required for 
the train to slip. Therefore, high train speed is a 
shared root cause, also called common cause failure 
(CCF). When CCFs are ignored, the safety risks will 
be (1) overestimated if the FT is dominated by series 
(OR gate) components and (2) underestimated if the 
FT has many components in parallel (AND gate).  

3.2.2 Advanced aspect 2: Disjoint events 
The basic events “Slip” and “Driver errors in brake 
application” in the FT of Figure 3 cannot occur 
jointly, because slip requires that brakes are applied. 
These events are therefore mutually exclusive (dis-
joint) events and are not statistically independent. 

3.2.3 Advanced aspect 3: Multistate components  
The events of FT in Figure 3 correspond to random 
variables with binary states (fail-success). The FT 
cannot directly model multistate components or mu-
tually exclusive system states. However, such multi-
state modeling is often required for representing dif-
ferent conditions of a component or system. As an 
example, for the train derailment due to SPAD, two 
different system states (situations) must be distin-
guished: 

Situation 1: SPAD occurs due to slip. This im-
plies that brakes are applied when passing the red 
signal. In this situation, derailment will only occur if 
the distance between the signal and the turnout point 
(the overlap length) is sufficiently small. Otherwise 
the train will come to a stop before the turnout point. 



Derailment due to a curvature in the track is negligi-
ble since the train speed is already limited due to the 
application of the brakes. 

Situation 2: SPAD occurs because brakes are not 
applied, corresponding to occurrence of the interme-
diate event ,,Driver errors and protection failures’’. 
In this situation, derailment can occur independently 
of the overlap length due to (1) a turnout in the fol-
lowing section with prevented route and (2) a curva-
ture in the following section.  

3.3 Advanced fault tree for train derailment caused 
by SPAD  

The above discussed statistical dependences among 
the events in a FT can be included using advanced 
FT modeling techniques (Xing & Amari, 2008). 
However, in most cases these techniques lead to an 
exponential increase in the size of the FT structure 
with increaing dependences. As an example, Figure 
4 shows the FT for train derailment due to SPAD 
where the above discussed dependences are includ-

ed. Note that this FT contains several repeat bars, i.e. 
parts of the fault tree are repeated, and the advanced 
FT is thus significantly larger than the standard FT 
in Figure 3.  

Because of the repetition of intermediate events 
in the advanced FT of Figure 4, a large number of 
basic events appear multiple times in the FT struc-
ture. These repeated basic events can be interpreted 
as common cause failures. In total, there are six 
CCFs (ܧଵ, ,ଷܧ ,ସܧ ,ହܧ ,଻ܧ  To account for these .(଼ܧ
CCFs in the computation of the probability of sys-
tem failure (here: the probability of train derailment 
due to SPAD), so called common cause events 
(CCE) are introduced. The CCEs are a set of mutual-
ly exclusive and collectively exhaustive events, de-
fined as 

 
ଵܧܥܥ ൌ ଵതതതܧ ∩ ଷതതതܧ ∩ ସതതതܧ ∩ ହതതതܧ ∩ ଻തതതܧ ∩ തതത଼ܧ
ଶܧܥܥ ൌ ଵܧ ∩ ଷതതതܧ ∩ ସതതതܧ ∩ ହതതതܧ ∩ ଻തതതܧ ∩  തതത଼ܧ

																										⋮ 

ଶలܧܥܥ ൌ ଵܧ ∩ ଷܧ ସܧ	∩ ∩ ହܧ ∩ ଻ܧ ∩  ଼ܧ

(2) 

 
 

Figure 4. Advanced Fault Tree model for train derailment due to SPAD including dependences. 
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There are a total of 2଺ CCEs for the case of 6 CCFs. 
For each CCE, the conditional probability of the top 
event Prሺܶܧܥܥ|ܧ௜ሻ	is computed, which is achieved 
by setting the probabilities of the basic events corre-
sponding to the CCFs to 0 or 1 respectively. The un-
conditional probability of the TE, Prሺܶܧሻ is then 
calculated by means of the total probability theorem 
as 

Prሺܶܧሻ ൌ෍Prሺܶܧܥܥ|ܧ௜ሻ ⋅ Prሺܧܥܥ௜ሻ

ଶల

௜ୀଵ

  (3) 

The dependence among the disjoint events “Slip” 
and “Driver errors in brake application” is modeled 
by introducing a NOT gate (gate 9 in Figure 4), 
which ensures that the slip event only occurs if the 
brake is applied. The multistate property of the sys-
tem (situations) is modeled by copying parts of the 
FT and then combining these copies with OR gates.   

4 BAYESIAN NETWORKS 

Bayesian Networks (BNs) are graphical probabilistic 
models of a set of dependent random variables. The 
nodes in network are random variables and the di-
rected links between them represent their depend-
ence structure. The resulting graph must be acyclic. 
If ଵܺ has a link pointing to ܺଶ, then ଵܺ is called a 
parent of ܺଶ and ܺଶ is called a child of ଵܺ. Each 
random variable ௜ܺ is defined conditional on its par-
ents ܽ݌ሺ ௜ܺሻ. Here only BNs with discrete random 
variables are considered and each random variable 
௜ܺ is thus described by a table of conditional proba-

bility mass functions (PMF) ݌ሾݔ௜|ܽ݌ሺݔ௜ሻሿ. 
Consider a Bayesian network with random varia-

bles X =	ሾ ଵܺ, …,ܺ௡ሿ. The joint probability mass 
function of X is the product of the conditional 
PMFs: 

ሻܠሺ݌ 	ൌ ,ଵݔ൫݌ ,ଶݔ … , ௡൯ݔ ൌෑ݌ሾݔ௜|ܽ݌ሺݔ௜ሻሿ

௡

௜ୀଵ

  (4) 

For a general introduction to BN and the modeling 
of statistical dependence in BNs, the reader is re-
ferred to (Jensen, et al., 2007). 

4.1 Bayesian Networks representation of advance 
aspects of Fault Tree  

Any FT can be translated into a BN, as shown in 
(Bobbio, et al., 2001). The FT of Figure 4 is mapped 
into an equivalent BN, shown in Figure 5. To this 
end, all basic and intermediate events are represent-
ed by corresponding random variables (nodes); the 
dependences among these are included through cor-
responding directed links and associated conditional 
probabilities. As an example, Table 3 shows the 
modeling of an AND gate. 

 
Table 3. AND gate for TPWS & driver errors (T&DE).  
TPWS failure Yes  No 
Driver errors Yes No Yes No 
Pr(T&DE = Yes) 1 0 0 0 
Pr(T&DE = No) 0 1 1 1 

 
 

 
 
Figure  5. Bayesian Network for train derailment due to SPAD. 

 
 
In the following it is outlined how the advanced FT 
modeling aspects introduced in Section 3.2 can be 
efficiently represented in the BN. 

4.1.1 Advanced aspect 1: Common cause failures  
In the advanced FT of Figure 4 a large number of 
CCFs is introduced to model dependences. In the 
BN, the dependencies can be directly introduced by 
adding corresponding links. The CCF ,,high train 
speed’’ is accounted for by introducing the link from 
,,High train speed’’ to ,,Slip’’ and “Speed and 
alignment”. 

4.1.2 Advanced aspect 2: Disjoint events 
Modeling of disjoint events is straightforward in the 
BN. A link is added between the corresponding two 
random variables and the conditional probability ta-
ble of the child node is defined accordingly. An ex-
ample is given in Table 4. The event “TPWS failure 
and driver errors” and the event “slip” are mutually 
exclusive, as discussed previously. A link is added 
from the node “TPWS failure and driver errors” and 
the probability of slip given “TPWS failure and 
driver errors” is set to zero (compare column 2 and 
column 6 in the conditional probability table of Ta-
ble 4). 
 



Table 4. Conditional probability table for node “Slip” 
High train speed High Controlled

Poor adhesion Yes No Yes No

TPWS & 
 driver errors 

Yes No Yes No Yes No Yes No 

Slip 0 1 0 0 0 0 0 0

No slip 1 0 1 1 1 1 1 1

  

4.1.3 Advanced aspect 3: Multistate components  
The system states (situations) presented in section 
3.2.3 can be represented directly by introducing a 
corresponding node in the BN. This node has three 
states, corresponding to the two situations described 
previously as well as a third state corresponding to 
no-derailment conditions. The corresponding condi-
tional probability table is shown in Table 5.  
 
Table  5. Conditional probability table for node ,,Situations’’. 
Overlap length Shorter Greater 

TPWS fails & driver 
errors 

Yes No Yes No 

Slip Yes No Yes No Yes No Yes No

Situation 1 - 0 1 0 - 0 0 0 

Situation 2 - 1 0 0 - 1 0 0 

No-derailment 
conditions 

- 0 0 1 - 0 1 1 

 
 
The random variable ,,Train derailment due to 
SPAD’’, corresponding to the TE of the FT, is mod-
eled by introducing the links from four random vari-
ables as shown in Figure 5. The train will derail if 
SPAD and either situation 1 or situation 2 occur to-
gether in the presence of derailment conditions. The 
dependences among theses random variables are 
shown in Table 6.  

5 RESULTS  

The random variables in the BN are assigned the 
same probabilities as the basic events in the FT. 
Hence, the two models result in the same probability 
of train derailment due to SPAD. The computation 
of the diagnostic importance factor ܨܫܦ of the vari-

ous basic events, as defined in Eq. (1), is straight-
forward with the BN model. The posterior probabil-
ity of every random variable given the TE is directly 
obtained when applying standard BN inference algo-
rithms (Jensen & Nielsen, 2007). With the FT mod-
el, the ܨܫܦ can be obtained from application of 
Bayes’ rule. Table 7 presents the DIF values com-
puted with the two methods.  
 
Table 7. Diagnostic importance factor of the basic events, as 
computed with FT and BN.  
Event DIF 

Train approaching red signal 100% 
Turnout/point not set 99.7% 
TPWS & driver errors 82.4% 
High train speed 18.7% 
Shorter overlap length 18.0% 
Poor adhesion 20.0% 
Curve in track alignment 4.3% 

6 DISCUSSION 

Both BN and FT are capable to handle the various 
dependences arising in the safety analysis of railway 
systems, including common cause failures, multi-
state components and disjoint events. Both the net-
work structure of the FT and the conditional proba-
bility tables of the BN grow exponentially with 
increasing dependence among the basic events.  

The FT has the advantage that it graphically 
shows the logical relations between the basic events 
and the top event. It is a well-known methodology 
that can be applied relatively easily by non-experts. 
However, as illustrated by the example provided in 
this paper, the resulting FT becomes non-intuitive 
and difficult to handle when dependences are pre-
sent.   
The application of BN to railway safety is not com-
mon practice in the industry. It requires some addi-
tional expertise and understanding in comparison 
with FT analysis. BN has the disadvantage that the 
logic relations between components of the system 
(e.g. AND, OR) cannot be directly observed from 
the graphical representation. However, the BN has 
strong advantages when modeling dependences in 

 
Table 6. Conditional probability table for node “Train derailment due to SPAD”.  

SPAD Yes No 

Situations Situation 1 Situation 2 
No-derailment 

conditions Situation 1 Situation 2 
No-derailment 

conditions 

Turnout/point  Not set Set Not set Set Not set Set Not set Set Not set Set Not set Set 
Speed & 
alignment Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No

Yes 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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the system. Because it was developed to efficiently 
represent complex probabilistic dependence among 
random variables, the resulting graphical model is 
concise even for systems with complex dependenc-
es. Because it is a general-purpose modeling tool, 
the BN has the advantage of flexibility. Any BN 
model can easily be extended. As an example, con-
sider the case where experts are uncertain or disa-
gree on the probability of basic events. This can be 
directly included by adding a node “Expert” in the 
BN and defining the probabilities of the basic events 
conditional on the state of this node.    

7 CONCLUSIONS 

The use of Fault Tree (FT) and Bayesian Networks 
(BN) for modeling safety risks in railway systems 
was illustrated for the case of train derailment 
caused by SPAD events. Various types of depend-
ences among the basic events leading to the failure 
are discussed and implemented in the FT and BN 
models. It is observed that the BN is more suitable to 
handle these dependences. 
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