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Abstract— Consider network coded multicast traffic over a
wireless network in the bandwidth limited regime. We formulate
the joint medium access and subgraph optimization problem by
means of a graphical conflict model. The nature of network
coded flows is not captured by classical link-based scheduling
and therefore requires a novel approach based on conflicting
hyperarcs. By means of simulations, we evaluate the performance
of our algorithm and conclude that it significantly outperforms
existing scheduling techniques.

I. I NTRODUCTION

In a multi-hop wireless network an optimal strategy to
multicast to a group of receivers is to use random linear
network coding over an optimized subgraph. Random linear
codes are capacity achieving for a given subgraph [1] and
this subgraph can be computed by means of solving a linear
or convex program [2]. The subgraph optimization is a fairly
tractable problem and furthermore solvable in a distributed
fashion making it relevant in practice. An essential assumption
of [2] is that all nodes in the network transmit on orthogonal
channels and thus conflicts due to interfering transmissions do
not arise. This is a reasonable assumption in a power limited
regime, where bandwidth is not scarce and one might sim-
ply avoid interference by orthogonalizing the entire network.
However, in many if not most scenarios wireless networks are
interference limited. To that end a high frequency reuse within
the network is necessary which has to be achieved by carefully
scheduling simultaneous transmissions.

The prevalent approach to this problem is to construct
an interference-free transmission schedule by means of some
heuristic and then to compute an optimal subgraph over this,
now essentially orthogonal, network. As an example, in [3]
the authors propose a suboptimal collision-free strategy where
two nodes cannot transmit simultaneously if they are within
two hops. While this is a practical solution, it is not clear how
it affects the overall performance of the network. Furthermore,
from a systems perspective it is unsatisfying to have one
component (the network coding subgraph) carefully optimized,
while the other essential part (the medium access) is done in
a more or less ad-hoc fashion.

To that end, we suggest a framework, where subgraph opti-
mization and channel access are treated jointly. We construct
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a hypergraph that takes into account possible transmissions
to every subset of neighbors of a node. Each such subset
is represented by a hyperarc. The essential novelty of our
approach is that we consider subsets of hyperarcs that can be
activated simultaneously without interfering. These scheduling
constraints are transformed into a conflict graph representa-
tion, where the hyperarcs are represented by nodes and the
activation constraints are given by edges: A set of hyperarcs
can be activated simultaneously only if they are not connected
by any edge in the conflict graph. As a naı̈ve approach, one
might consider a sequence of valid configurations and search
exhaustively over the network “unfolded” over time. Since
the number of valid configurations scales exponentially in
the size of the network such an approach is prohibitive from
a computational point of view. We exploit the polymatroid
representation of the rate regions associated with valid network
configurations to compute a schedule succinctly as a convex
combination of valid configurations.

The problem formulation of scheduling as finding stable sets
is well known e.g. for routed traffic in [4], for scheduling in
switches in [5], for network code construction in [6], and inthe
context of Banyan networks in [7]. For network coded traffic,
however, it gives rise to a number of novel and interesting
observations. It takes into account that nodes broadcast coded
packets to all neighbors (the wireless broadcast advantage)
and also that transmissions are subject to interference. By
guaranteeing a node successful transmission to a subset of
its neighbors and at the same time permitting conflicts on
the remaining neighbors, we are not seeking to minimize the
number of collisions per se. In fact, on can argue that we
are scheduling conflicts for the nodes not contained in the
activated hyperarc.

In summary, the novelty of our approach is that we

• formulate a precise scheduling model for network coded
traffic,

• solve the joint multi-access and subgraph optimization
problem,

• and report gains of up to90% compared to widely used
scheduling techniques.

In contrast to [8], where the authors focus on minimizing
power consumption, we consider a wireless network where
interference is the limiting factor. Furthermore, the scheduling
of broadcast transmissions is introduced in [9] in a different
context, namely in an attempt to analyze the opportunistic,
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local combination of packets belonging to multiple unicast
connections.

The remainder of the paper is organized as follows: In
Section II, we introduce the network model and illustrate the
construction of the conflict graph. In Section III, we derive
the rate region for multicast traffic in terms of an optimization
problem including explicitly the medium access constraints.
Our simulation results are presented in Section IV, whereas
the complexity in general and for certain special cases is the
focus of Section V. Finally, in Section VI, we conclude the
paper and briefly discuss opportunities for further work.

II. N ETWORK MODEL

Consider a wireless network represented by a set of nodes
N and for each nodei ∈ N a set of neighborsN(i) ⊂ N . We
assume that wheni transmits all nodes inN(i) are in radio
range and can potentially receive or experience interference1

from i. The network is assumed to operate in time slots. In one
slot a node can either broadcast one constant-length packetor
stay idle.

We will need the notion of a hypergraph, a generalization
of a graph, which is defined as follows.

Definition 1: A hypergraphH = (N ,A) is a set of nodes
N and a collection of hyperarcsA. A hyperarc(i, J) ∈ A is
a generalization of an edge, wherei ∈ N andJ ⊂ N .

From the neighborhood relation we construct a hypergraph
H = (N ,A) with N corresponding to the set of nodes in the
network. For each nodei we introduce2|N(i)| − 1 hyperarcs,
(i, J) whereJ ranges over all subsets ofN(i) excluding the
empty set.

If node i injects a packet on hyperarcJ it is received by
some subsetK ⊆ J , possiblyK being the empty set∅. Let
AiJ (τ) be the counting process describing packet injections on
hyperarcJ andAiJK(τ) be the counting processes accounting
for the packets receivedpreciselyby the subsetsK. Obviously,
we have

∑
K⊆J AiJK(τ) = AiJ (τ). We assume that for the

injection processes time averages exist, i.e.limτ→∞
AiJ (τ)

τ

exists with probability 1, is finite, and equalsziJ . Similarly,
we definelimτ→∞

AiJK(τ)
τ

= ziJK . With these assumptions
ziJ =

∑
K⊆J ziJK is the average packet injection rate on

hyperarcJ . In the remainder of the paper we will assume that
ziJK is proportional toziJ and define

piJK =
ziJK

ziJ

, (1)

to be the probability that a packet injected onJ is received
precisely by the subsetK. We call the rate vector(ziJ)(i,J)∈A

the network coding subgraph.
Once the subgraph is computed our network coding tech-

nique of choice will be the well known random network coding
[1], [2]. Roughly, that means that a node stores received packet
in its memory and upon an opportunity transmits a linear
combination of the stored packets with coefficients drawn

1A popular and slightly more general model is to assume that a node can
receive fromi if it is contained in a setN1(i) but is subject to interference
if it belongs to a supersetN2(i) ⊃ N1(i). Our framework can readily be
extended to take into account such a setup, however, for the sake of a simpler
notation we abide with the above model.

uniformly from a finite field. Coding is restricted to packets
belonging to the same user (intra-session).

Which sets of hyperarcs can transmit simultaneously with-
out a conflict depends on the system model of the network.
In networks with primary interference, e.g. spread-spectrum
systems, we restrict each node to at most communicate with
one other node in any time slot. In networks with secondary
interference we have the additional constraint that a node can
only successfully receive if all other neighbors are silent.

We will call a set of conflict-free hyperarcs a transmission
set or valid configuration, formally

Definition 2: We say that hyperarcs(i1, J1) and (i2, J2),
do not conflict if:

1) i1 6= i2,
2) i1 /∈ J2, i2 /∈ J1, and

for networks with primary interference
3a) J1 ∩ J2 = ∅, or

alternatively for networks with secondary interference
3b) J1 ∩ N(i2) = ∅, andJ2 ∩ N(i1) = ∅.
For both, the primary and the secondary interference model,

the definitions are symmetric in their arguments and therefore
give rise to an undirected graph representing the scheduling
conflicts between pairs of hyperarcs. We construct the conflict
graph as follows.

Definition 3: The conflict graphG of a hypergraphH is an
undirected graphG = (V , E), with V corresponding to the set
of all hyperarcs. Two hyperarcs are adjacent if they conflict.

We can define a valid configuration of hyperarcs as a set of
nodes in the conflict graph without any conflicting pair, i.e.a
valid configuration is a stable set.

Definition 4: A stable setS of an undirected graphG =
(V , E) is a set of nodes any two of which are nonadjacent. Its
incidence vector is a column vector of length|V|, defined as

χS
v =

{
1 if v ∈ S,

0 otherwise.
(2)

A maximalstable set is one that is not contained in any other
stable set. Amaximumstable set is a stable set of largest
cardinality. The stable set polytopePSTAB(G) is the convex
hull of the incidence vectors of all stable sets ofG.

Example To illustrate the notation, consider the hypergraph
in Fig. 1 and its corresponding conflict graph (in this particular
network both the primary and the secondary interference
model give rise to the same conflict graph) in Fig. 2. The
conflict graph has a node for each hyperarc, i.e. its set of
vertices isV = {(1, 2), (1, 3), (1, {2, 3}), (2, 4), (3, 4)} and as
it can be easily verified the stable set polytope is given by
the convex hull of the incidence vectors of the following three
stable sets{(1, 2), (3, 4)}, {(1, 3), (2, 4)}, and(1, {2, 3}).

III. T HE MULTICAST RATE REGION WITH SCHEDULING

CONSTRAINTS

Consider a hypergraphH = (N ,A) and a multicast
connection of rateR with sources ∈ N and set of sinks
T ⊂ N . We can apply the flow formulation from [2] to
compute the network coding subgraph. The rate region (in
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Fig. 1. An example of a hypergraph. Here, the node set isN = {1, 2, 3, 4}
and the hyperarc set isA = {(1, 2), (1, 3), (1, {2, 3}), (2, 4), (3, 4)}.

(1, 2)

(1, {2, 3})

(1, 3)

(2, 4)

(3, 4)

Fig. 2. The conflict graph corresponding to the hypergraph inFig. 1.

terms of supportable end-to-end throughputs as opposed to the
information theoretic rate region) for a multicast connection2

is then the set of ratesR that can be achieved subject to the
following constraints

∑

j∈K

x
(t)
iJj ≤ ziJbiJK , ∀ (i, J) ∈ A, K ⊂ J, t ∈ T, (3)

∑

{J|(i,J)∈A}

∑

j∈J

x
(t)
iJj −

∑

{j|(j,I)∈A,i∈I}

x
(t)
jIi =






R i = s,

−R i = t,

0 else,
(4)

∀ i ∈ N , t ∈ T,

x
(t)
iJj ≥ 0, ∀ (i, J) ∈ A, j ∈ J, t ∈ T, (5)

z = (ziJ ) ∈ PSTAB(G), (6)

where we define

biJK =
∑

{L⊂J|L∩K 6=∅}

piJL. (7)

We assumepiJL, the probability that a packet injected on
hyperarc(i, J) is received by precisely the set of nodesL ⊂ J ,
to be a constant.

The last constraint (6) explicitly accounts for interference
by requiring the network coding subgraphz to lie in the

2The extension to multiple multicast connections with intra-session coding
is straightforward and, again, only omitted to simplify exposition and notation.

stable set polytope of the conflict graph. Any vector in the
stable set polytope can be written as a convex combination of
schedules and therefore the demanded rate can be transmitted
if we choose the granularity of time slots sufficiently fine. This
is analogous to the Birkhoff-von Neumann decomposition of
load matrices for scheduling in switches [5].

We can rewrite the linear program to yield a formulation
with substantially fewer variables. A similar technique isused
in [2], however, the following transformation and its proofare
more general. Let for alli ∈ N andj ∈ N(i)

x
(t)
ij =

∑

J⊂N(i)

x
(t)
iJj , (8)

with the understanding thatx(t)
iJj = 0 if j /∈ J , and consider

the following formulation in terms of the new variablesx
(t)
ij

∑

j∈K

x
(t)
ij ≤

∑

J⊂N(i)

ziJbiJK , (9)

∀ i ∈ N , K ⊂ N(i), t ∈ T,

∑

j∈N(i)

x
(t)
ij −

∑

{j|i∈N(j)}

x
(t)
ji =






R i = s,

−R i = t,

0 else,

(10)

∀ i ∈ N , t ∈ T,

x
(t)
ij ≥ 0, ∀ i ∈ N , j ∈ N(i), t ∈ T, (11)

z ∈ PSTAB(G), (12)

where consistently with definition (7),biJK is well defined
even if K is not a subset of J.

Lemma 1:The rate region described by (3)-(6) is equivalent
to the rate region given by the reduced formulation (9)-(12).

Proof: The new flow conservation constraint (10) is just
a reformulation in terms of the new flow variables. What we
have to show is the equivalence of the constraints (9) and (3).
For a fixed nodei, we have a number of hyperarcs, and for
each hyperarc(i, J) constraint (3) gives us a rate region for
the flowsx

(t)
iJj . The claim is that the rate region for the sum of

these flows as defined in (8) is given by the sum of the facets
defining their rate regions. One direction is easy to show since,
clearly, we have

∑

j∈K

x
(t)
ij =

∑

j∈K

∑

J⊂N(i)

x
(t)
iJj ≤

∑

J⊂N(i)

ziJbiJK . (13)

The other direction, that these bounds are also achievable is
not trivial. In general, for convex polytopes defined by linear
inequalities, the polytope generated by their Minkowski sum
is not equal to the one defined by the sum of their individual
constraints. In this case, however, we can exploit the special
structure of the polytopes in (3). They arepolymatroids, due
to the fact thatbiJK , when viewed as a function ofK, is
a submodular function. Indeed, it is straightforward to verify
from definition (7) that

biJK + biJL = biJ(K∩L) + biJ(K∪L). (14)
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Fig. 3. Maximum rate of a multicast connection with one sender and two
receivers as a function of the number of network nodes.

For two polymatroids, given by submodular set functions
f1 andf2 respectively, i.e.

Pfi
:=

{
x ∈ R

|J|
+ :

∑

K⊂J

xj ≤ fi(K) ∀K ⊂ J

}
(15)

it is a well-know fact (see e.g. [11, Thm. 44.6, p. 781]) that
the convex hull of their Minkowski sum is equivalent to the
sum of the inequalities defining them, i.e.

Pf1+f2
= Pf1

+ Pf2
. (16)

Since we consider a finite sum of polymatroids, our result
follows readily.

IV. SIMULATION RESULTS

To get an idea of the performance gains of our approach
we conduct simulations over random network topologies. For
each random instance, we assume that a number of nodes
are uniformly scattered over a square region with unit node
density. Two nodes are in radio range if their distance is below
some threshold, the radius of connectivity, which we take to
be 1.8. The number of neighbors of a node is restricted to5.
We consider the leftmost node to be the sender, multicasting
to two receivers, the two rightmost nodes. Transmissions are
subject to erasures which may be due to distance attenuation
and Rayleigh fading. When a node transmits a neighbor at
distanced will receive the packet correctly ifγd−2 ≥ β where
γ is a unit mean exponential variable andβ = 1

4 is our chosen
SNR threshold, otherwise the packet is lost completely. We
assume secondary interference constraints.

In Fig. 3, we compare the performance of our approach
with two commonly used scheduling techniques. In the fully
orthogonal model [2] all nodes in the network are assigned
orthogonal channels, making the network interference-free.
In the two-hop constraints model (see e.g. [3] for such a
scheduling protocol) transmissions are scheduled such that if
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Fig. 4. The number of schedules which appear in the optimal solution of our
scheduling algorithm. We consider schedules with a time sharing coefficient
equal to or greater than0.001.

node i transmits all nodes in a two-hop neighborhood are
silent, eliminating the possibility of a node being in radio
range of two simultaneous transmissions. Both, the orthogonal
and the two-hop constraint model eliminate interference atthe
expense of suboptimal bandwidth reuse. We see that this is
apparently a rather wasteful way of operating a interference
limited wireless network. Furthermore, for the networks of
moderate size that we consider the two-hop constraint is
almost as restrictive as full orthogonalization. On the other
hand, a significant increase in bandwidth efficiency is possible
as we can see by the performance of our scheduling algorithm.

Fig. 4 shows the average number of network configurations
comprising the optimal solution of our algorithm. Apparently,
typically a rather small number of schedules is involved. This
observation might be significant in the design of schedulingal-
gorithms and particularly in seeking low-complexity solutions
with a small optimality gap.

V. ON THE COMPLEXITY OF THE SCHEDULING PROBLEM

The stable set polytope membership of the network coding
subgraph (12) can be a difficult constraint. In general, the ques-
tion whether a point belongs to the stable set polytope cannot
be answered in polynomial time, except for certain special
classes of graphs. By the equivalence between optimization
and separation3, these are the graphs, for which a maximum
stable set can be computed in polynomial time. We conclude:

Theorem 1:The joint subgraph optimization and schedul-
ing problem, i.e. maximizing a linear function over (9)-(12),
can be solved in polynomial time if a maximum stable set in
G can be found in polynomial time.

Proof: If a stable set inG can be found in polynomial
time, then we can also decide if a vector belongs toPSTAB(G)
in polynomial time. Since we assumed that the number of
constraints grows polynomially in the size of the network (by

3The optimization problem is to maximizec′x over a polytopeP , the
corresponding separation problem is to decide whetherx ∈ P and if not to
display a violated constraint. As a consequence of the ellipsoid method the
polynomial time solvability of one of the problems implies the polynomial
time solvability of the other [10].
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limiting the number of neighbors) we can also verify if a vector
belongs to (9)-(11) in polynomial time. Since we are able to
solve the separation problem in polynomial time we can also
optimize over the polytope (9)-(12) in polynomial time.

There are a many classes of graphs with polynomial stable
set algorithms, see e.g. [11] for an extensive survey. A graph
family with particularly good algorithmic properties are the so
calledperfect graphs. They have a polynomial time maximum
stable set algorithm, and furthermore their stable set polytope
can be described by clique inequalities (for general graphs
these are necessary but not sufficient).

Definition 5: An graph is perfect if and only if for every
induced subgraph the clique number equals the chromatic
number.

Proposition 1: The following characterizations of perfect
graphs are equivalent [11]:

• The complement of a perfect graph is perfect.
• A graph is perfect if and only if it contains no odd holes

(induced subgraphs that are cycles of odd length) and
antiholes (their complements).

• PSTAB(G) = PQSTAB(G),
where

PQSTAB(G) =




x ∈ R
|V|
+ :

∑

q∈Q

xq ≤ 1 ∀ cliquesQ ⊂ V





(17)

is called thefractional stable set polytope.
Even if the graph is not perfect, yet not too far from being

perfect, as measured by theimperfection ratio[12], there exist
good polynomial-time approximation algorithms for the stable
set problem. In general, the hardness of approximating the
problem depends on the imperfection ratio. Another general
approach is to replace the stable set polytope constraint with
a smaller convex polytopêP ⊂ PSTAB(G) that has a simpler
structure and to optimize over the latter. This is, in fact, exactly
what is being done in the two scenarios that we compare our
algorithm with. In the fully orthogonal scheme, we effectively
optimize over P̂O = CH

{
χ(i,N(i))

}
, i ∈ N , whereas the

two-hop constraint polytope is simply given by|N | linear
constraints. For every nodei, the transmission rates of nodes
within a two-hop neighborhood ofi must sum to at most one.

More generally, consider a collection of maximal stable
setsSi, i ∈ I and the convex hull of their incidence vectors
P̂ = CH

{
χSi

}
, i ∈ I. Ideally, the volume of̂P should be not

much smaller than the volume ofPSTAB(G) and P̂ should
be the convex hull of a relatively small number of vectors.
A possible strategy might be to choose an initial collection
of stable sets and then iterate between computing the optimal
network coding subgraph with respect to this set and updating
the collection of stable sets which would yield a sequence of
increasing rate regions (see also [8] for a related approach).
For updating the set of valid configurations we could use
the sensitivity information, that comes as a by-product of
optimizing the network coding subgraph.

VI. CONCLUSION AND FURTHER WORK

We have suggested an algorithm for jointly solving the
network coding subgraph and the scheduling problem in

wireless network coded multicast. The key construction is a
conflict graph representing all possible valid configurations
of the network. As simulation results show our approach
outperforms widely used scheduling techniques significantly.
We believe that our scheduling framework is an important first
step in understanding scheduling for network coded multicast
traffic and can be useful in algorithm design and performance
analysis of both optimal and heuristical scheduling algorithms.

Concerning further work, we believe that our achievability
result is a first step in designing off-line and online scheduling
algorithms. In switching theory the achievability resultshave
been the basis for optimal off-line algorithms (e.g. BVN-
decomposition) and suboptimal, and yet provably good online
algorithms (e.g. iSLIP [13]). The maximum stable set is a
widely encountered practical problem and while its worst case
complexity is exponential [14], there exist good approximation
algorithms. Finally, it is desirable to investigate decentralized
solutions and their performance. The network coding subgraph
can be computed in a distributed way [2], so the challenge lies
in finding efficiently stable sets in a decentralized fashion(see
e.g. [15] for a simple algorithm) and combining this with the
subgraph optimization.
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