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Abstract— Consider network coded multicast traffic over a a hypergraph that takes into account possible transmission
wireless network in the bandwidth limited regime. We formulate to every subset of neighbors of a node. Each such subset
the joint medium access and subgraph optimization problem ¥ is represented by a hyperarc. The essential novelty of our

means of a graphical conflict model. The nature of network . .
coded flows is not captured by classical link-based schedaly approach is that we consider subsets of hyperarcs that can be

and therefore requires a novel approach based on conflicting activated simultaneously without interfering. These sictieg
hyperarcs. By means of simulations, we evaluate the perforance constraints are transformed into a conflict graph represent

of our algorithm and conclude that it significantly outperforms  tion, where the hyperarcs are represented by nodes and the
existing scheduling techniques. activation constraints are given by edges: A set of hypsrarc
can be activated simultaneously only if they are not coretkect
I. INTRODUCTION by any edge in the conflict graph. As a naive approach, one

In a multi-hop wireless network an optimal strategy ténight cqnsider a sequence of valid configuration_s and s_earch
multicast to a group of receivers is to use random line§xhaustively over the network “unfolded” over time. Since
network coding over an optimized subgraph. Random lineile number of valid configurations scales exponentially in
codes are capacity achieving for a given subgraph [1] atlee size of t_he netvv_ork suc_h an approach_ is prohibitive frpm
this subgraph can be computed by means of solving a linéaicOmputational point of view. We exploit the polymatroid
or convex program [2]. The subgraph optimization is a fai”pepr_esentgnon of the rate regions assomated_wnh vatidor&
tractable problem and furthermore solvable in a distribut&onfigurations to compute a schedule succinctly as a convex
fashion making it relevant in practice. An essential asgionp combination of valid configurations.
of [2] is that all nodes in the network transmit on orthogonal The problem formulation of scheduling as finding stable sets
channels and thus conflicts due to interfering transmissitm is well known e.g. for routed traffic in [4], for scheduling in
not arise. This is a reasonable assumption in a power limitéditches in [5], for network code construction in [6], andfie
regime, where bandwidth is not scarce and one might sifgentext of Banyan networks in [7]. For network coded traffic,
ply avoid interference by orthogonalizing the entire natwo however, it gives rise to a number of novel and interesting
However, in many if not most scenarios wireless networks a@bservations. It takes into account that nodes broadcastico
interference limited. To that end a high frequency reusaiwit packets to all neighbors (the wireless broadcast advantage
the network is necessary which has to be achieved by carefldnd also that transmissions are subject to interference. By
scheduling simultaneous transmissions. guaranteeing a node successful transmission to a subset of

The prevalent approach to this problem is to construiés neighbors and at the same time permitting conflicts on
an interference-free transmission schedule by means o sdite remaining neighbors, we are not seeking to minimize the
heuristic and then to compute an optimal subgraph over thidimber of collisions per se. In fact, on can argue that we
now essentially orthogonal, network. As an example, in [3Jre scheduling conflicts for the nodes not contained in the
the authors propose a suboptimal collision-free stratelggrey activated hyperarc.
two nodes cannot transmit simultaneously if they are within In summary, the novelty of our approach is that we
two hops. While this is a practical solution, it is not cleamh

) « formulate a precise scheduling model for network coded
it affects the overall performance of the network. Furtheren

L L traffic,
from a systems perspective it is unsatisfying to have one, s,ye the joint multi-access and subgraph optimization
component (the network coding subgraph) carefully optaujz problem

while the other essential part (the medium access) is done in
a more or less ad-hoc fashion.
To that end, we suggest a framework, where subgraph opti-
mization and channel access are treated jointly. We caststru /N contrast to [8], where the authors focus on minimizing
power consumption, we consider a wireless network where
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local combination of packets belonging to multiple unicastniformly from a finite field. Coding is restricted to packets
connections. belonging to the same user (intra-session).

The remainder of the paper is organized as follows: In Which sets of hyperarcs can transmit simultaneously with-
Section Il, we introduce the network model and illustrate thout a conflict depends on the system model of the network.
construction of the conflict graph. In Section Ill, we derivén networks with primary interference, e.g. spread-spewtr
the rate region for multicast traffic in terms of an optimiaat systems, we restrict each node to at most communicate with
problem including explicitly the medium access constsintone other node in any time slot. In networks with secondary
Our simulation results are presented in Section IV, whereimserference we have the additional constraint that a nagle ¢
the complexity in general and for certain special casesas thnly successfully receive if all other neighbors are silent
focus of Section V. Finally, in Section VI, we conclude the We will call a set of conflict-free hyperarcs a transmission
paper and briefly discuss opportunities for further work.  set or valid configuration, formally

Definition 2: We say that hyperarcg, J;) and (is, Jo),
Il. NETWORK MODEL do not conflict if:

Consider a wireless network represented by a set of noded) “ 7 12, _
N and for each nodéc N a set of neighbord/ (i) ¢ . We 2) in ¢ Ja i ¢ 1, and
assume that when transmits all nodes iV (i) are in radio [0 nétworks with primary interference
range and can potentially receive or experience intertefen 33) JiNJ2 =10, or
from i. The network is assumed to operate in time slots. In odternatively for networks with secondary interference
slot a node can either broadcast one constant-length packet 3p) J, N N(iz) =0, andJ, N N (i) = 0.

stay idle. _ ~_ For both, the primary and the secondary interference model,
We will need the notion of a hypergraph, a generalizatiqe definitions are symmetric in their arguments and theeefo
of a graph, which is defined as follows. give rise to an undirected graph representing the schegiulin
Definition 1: A hypergraph = (', A) is a set of nodes ¢onflicts between pairs of hyperarcs. We construct the @nfli
N and a collection of hyperarcd. A hyperarc(i, J) € A is graph as follows.
a general|zat|oln of an edge, whe’re N andJ CN. Definition 3: The conflict graplg of a hypergrapt is an
From the n@ghborhood relatllon we construct a hyp?rgraghdirected graplg = (V, £), with V corresponding to the set
H = (N, A) with N corresponding to the set of nodes in thgy g hyperarcs. Two hyperarcs are adjacent if they conflict
network. For each nodewe introduce2 V()| —1 hyperarcs,  \we can define a valid configuration of hyperarcs as a set of
(i, J) where.J ranges over all subsets (i) excluding the npoges in the conflict graph without any conflicting pair, ge.
empty set. o _ valid configuration is a stable set.
If node s injects a packet on hy_perart it is received by  pefinition 4: A stable setS of an undirected graply =
some subsek” C .J, possibly K being the empty seff. Let (1) ¢) js a set of nodes any two of which are nonadjacent. Its

A; (1) be the counting process describing packet injections ¢4kidence vector is a column vector of leng¥|, defined as
hyperarc/ and A4,k (7) be the counting processes accounting

for the packets receivaateciselyby the subset&’. Obviously, s _J1 ifves, @)

we have) .-, Aijx (1) = Ais(7). We assume that for the Xo = 0 otherwise.

iniecti c i ist Ii Ais(7)

injection processes time averages exist, lisi, o, = A maximalstable set is one that is not contained in any other

exists with probability 1, is finite, and equats;. Similarly,

Ak (1)

o . 7’ stable set. Amaximumstable set is a stable set of largest
we definelim,_, ., =52 = z ;. With these assumptions

T o cardinality. The stable set polytog®&r45(G) is the convex
iy = YgcyZiJK 1S the average packet injection rate Of) ;o the incidence vectors of all stable setsthf
hyperarc/. In the remainder of the paper we will assume that

z;yk IS proportional toz;; and define Example To illustrate the notation, consider the hypergraph
ZiTK in Fig. 1 and its corresponding conflict graph (in this patac
PiJK = P (1) network both the primary and the secondary interference

. . ) ) model give rise to the same conflict graph) in Fig. 2. The
to be the probability that a packet injected dnis received conflict graph has a node for each hyperarc, i.e. its set of

precisely by the subsét. We call the rate vectalz; ), 7)c.a vertices isV = {(1,2),(1,3), (1,{2,3}), (2,4), (3,4)} and as

the network coding subgraph it can be easily verified the stable set polytope is given by

Once the subgraph is computed our network coding te(‘tlﬂ'e convex hull of the incidence vectors of the followingetiar

nique of choice will be the well known random network codingtable sets(1,2), (3,4)}, {(1,3), (2,4)}, and (1, {2,3)})
[1], [2]. Roughly, that means that a node stores receivellgiac PR R A s

in its memory and upon an opportunity transmits a linear

L : . I1l. THE MULTICAST RATE REGION WITH SCHEDULING
combination of the stored packets with coefficients drawn

CONSTRAINTS

1A popular and slightly more general model is to assume thatce rcan Consider a hypergrapfit = (N,.A) and a multicast

receive froms if it is contained in a setVy (i) but is subject to interference connection of rateR with sources € N and set of sinks
if it belongs to a superseN2 (i) D Ni(z). Our framework can readily be

extended to take into account such a setup, however, forakeeaf a simpler T Cc N. We can apply the flow formulation from [2] to .
notation we abide with the above model. compute the network coding subgraph. The rate region (in



e stable set polytope of the conflict graph. Any vector in the
stable set polytope can be written as a convex combination of
schedules and therefore the demanded rate can be tramsmitte

9 if we choose the granularity of time slots sufficiently findi§
is analogous to the Birkhoff-von Neumann decomposition of
load matrices for scheduling in switches [5].

9 We can rewrite the linear program to yield a formulation

with substantially fewer variables. A similar techniqueuged
Fig. 1. An example of a hypergraph. Here, the node séfis- {1,2, 3,4} in [2], however, the following transformation and its praog
and the hyperarc set id = {(1,2), (1,3), (1,{2,3}), (2,4), (3,4)}. more general. Let for all € A" andj € N (i)

7y = > 95 (®)
with the understanding thatg?j =0if j ¢ J, and consider

the following formulation in terms of the new variable%)

Zx(t)ﬁ Z 2igbigK, )

JjEK JCN (i)

Vie N,KCN(),teT,

R 1=35
(1,3) (3,4) )
</ o)=Y al={-R i=t (0
JEN(3) {5lieN(G)} 0 else
Fig. 2. The conflict graph corresponding to the hypergrapFign 1.
VieN,teT,
e >0, VieN,jeN(i)teT, (11)
terms of supportable end-to-end throughputs as opposée to t
information theoretic rate region) for a multicast conimet 2 € Psrap(9), (12)
is then the set of rateR that can be achieved subject to thgynere consistently with definition (7),,x is well defined
following constraints even if K is not a subset of J.

Lemma 1:The rate region described by (3)-(6) is equivalent

Z wu < zigbigx, V@, J)eEAKCIteT, (3) to the rate region given by the redu_ced formul_ation (9)-(_12)
/ Proof: The new flow conservation constraint (10) is just

eK
! a reformulation in terms of the new flow variables. What we
R . have to show is the equivalence of the constraints (9) and (3)
) Z =% For a fixed node, we have a number of hyperarcs, and for
Z waa - Z _ i =R 1=t each hyperar¢i, J) constraint (3) gives us a rate region for
LG, J)eAr s Ul DeAiel} 0 else the flowsz!"),. The claim is that the rate region for the sum of
_ (4)  these flows as defined in (8) is given by the sum of the facets
VieN,teT, defining their rate regions. One direction is easy to showesin
20 >0, Vi, J)eAjeteT, (5) clearly, we have
(t) b
2= (2i) € Pspap(9), (6) Z T Z Z le_] < Z 2igbigK - (13)
jeK JEK JCN(4) JCN(i)
where we define The other direction, that these bounds are also achievable i
bisk = Z DiJL- (7) not trivial. In general, for convex polytopes defined by &ne
(LCTILNK#0} inequalities, the polytope generated by their Minkowskinsu

is not equal to the one defined by the sum of their individual
constraints. In this case, however, we can exploit the apeci

structure of the polytopes in (3). They apelymatroids due

to be a constant. to the fact thatb;;x, when viewed as a function ok, is

The last constraint (6) explicitly accounts for interfecen a submodular function. Indeed, it is straightforward toifyer
by requiring the network coding subgraphto lie in the from definition (7) that

We assume; ., the probability that a packet injected on
hyperard3, J) is received by precisely the set of nodes J,

2The extension to multiple multicast connections with irgession coding
is straightforward and, again, only omitted to simplify esjtion and notation. bigr +bisr = bijxnr) + bisxur)- (24)
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Fig. 3. Maximum rate of a multicast connection with one serafed two
receivers as a function of the number of network nodes.

node i transmits all nodes in a two-hop neighborhood are
For two polymatroids, given by submodular set function%“em’ eIiminaFing the possibility .of_a node being in radio
£, and f, respectively, i.e. range of two S|multaneogstransm|s$|o_ns. Bc_)th, the orthaljo
' and the two-hop constraint model eliminate interferendbeat
expense of suboptimal bandwidth reuse. We see that this is
} (15) apparently a rather wasteful way of operating a interfegenc
limited wireless network. Furthermore, for the networks of
o moderate size that we consider the two-hop constraint is
it is a well-know fact (see e.g. [11, Thm. 44.6, p. 781]) thalinsst a5 restrictive as full orthogonalization. On theeoth
the convex hull of their Minkowski sum is equivalent to thg,5nq 3 significant increase in bandwidth efficiency is fmesi
sum of the inequalities defining them, i.e. as we can see by the performance of our scheduling algorithm.
Pf 5, = Pj, + Py, (16) Fig. 4 shows the average number of network configurations
) ) o ) comprising the optimal solution of our algorithm. Appatgnt
Since we consider a finite sum of polymatroids, our resylfically a rather small number of schedules is involvedsTh
follows readily. observation might be significant in the design of scheduding
B gorithms and particularly in seeking low-complexity sabuts
with a small optimality gap.

Py = {xeRj >z < filK) VK CJ
KcJ

IV. SIMULATION RESULTS
To get an idea of the performance gains of our approackl. ON THE COMPLEXITY OF THE SCHEDULING PROBLEM

we conduct simulations over random network topologies. FOrtha stable set polytope membership of the network coding
each random instance, we assume that a number of nodggqraph (12) can be a difficult constraint. In general, tresg

are uniformly scattered over a square region with unit nogig "\ hether a point belongs to the stable set polytope danno
density. Two nodes are in radio range if their distance iewel ) answered in polynomial time, except for certain special
some threshold, the rad"%s of connectivity, ‘,Nh'Ch we take [9asses of graphs. By the equivalence between optimization
be 1.8. The number of neighbors of a node is restricted.to 4 separatich these are the graphs, for which a maximum

We consider the leftmost node to be the sender, multicastigg e set can be computed in polynomial time. We conclude:
to two receivers, the two rightmost nodes. TransmissioBs ar Thaorem 1:The joint subgraph optimization and schedul-
subject to erasures which may be due to distance attenuat problem, i.e. maximizing a linear function over (9)-{12

and Rayleigh fading. When a node transmits a neighbor @i, e solved in polynomial time if a maximum stable set in
distanced will receive the packet correctly ifd—2 > 3 where G can be found in polynomial time.

~ is a unit mean exponential variable afid= % is our chosen Proof: If a stable set ing can be found in polynomial

SNR threshold, oth_erwise the packet is_ lost completely. Wﬁne, then we can also decide if a vector belong®@ 4 (G)
assume secondary interference constraints. in polynomial time. Since we assumed that the number of

In Fig. 3, we compare the performance of our approaghynsiraints grows polynomially in the size of the networi (b
with two commonly used scheduling techniques. In the fully

orthogonal model [2] all nodes in the network are assignedThe optimization problem is to maximize'z over a polytopeP, the

orthogonal channels, making the network interference-fresorresponding separation problem is to decide whether P and if not to
isplay a violated constraint. As a consequence of theselip method the

h h i del f h ¢
In the t.WO' Op constraints _m(? € (See e.g. [3] or SPC rﬁlynomial time solvability of one of the problems impligset polynomial
scheduling protocol) transmissions are scheduled sudhifthaime solvability of the other [10].



limiting the number of neighbors) we can also verify if a \ict wireless network coded multicast. The key construction is a
belongs to (9)-(11) in polynomial time. Since we are able toonflict graph representing all possible valid configunagio
solve the separation problem in polynomial time we can aled the network. As simulation results show our approach
optimize over the polytope (9)-(12) in polynomial time. m outperforms widely used scheduling techniques signiflgant
There are a many classes of graphs with polynomial staliée believe that our scheduling framework is an important firs
set algorithms, see e.g. [11] for an extensive survey. Algraptep in understanding scheduling for network coded mutica
family with particularly good algorithmic properties afeetso traffic and can be useful in algorithm design and performance
calledperfect graphsThey have a polynomial time maximumanalysis of both optimal and heuristical scheduling athaons.
stable set algorithm, and furthermore their stable settppyy =~ Concerning further work, we believe that our achievability
can be described by clique inequalities (for general graplesult is a first step in designing off-line and online scHiedu
these are necessary but not sufficient). algorithms. In switching theory the achievability resuisve
Definition 5: An graph is perfect if and only if for every been the basis for optimal off-line algorithms (e.g. BVN-
induced subgraph the cligue number equals the chromadiscomposition) and suboptimal, and yet provably good enlin

number. algorithms (e.g. iSLIP [13]). The maximum stable set is a
Proposition 1: The following characterizations of perfectwidely encountered practical problem and while its worsteca
graphs are equivalent [11]: complexity is exponential [14], there exist good approxioma
« The complement of a perfect graph is perfect. algorithms. Finally, it is desirable to investigate decalited

« A graph is perfect if and only if it contains no odd holesolutions and their performance. The network coding sysigra
(induced subgraphs that are cycles of odd length) awsdn be computed in a distributed way [2], so the challenge lie

antiholes (their complements). in finding efficiently stable sets in a decentralized fashee
e Psrap(G) = Posran(9), e.g. [15] for a simple algorithm) and combining this with the
where subgraph optimization.
_ VI, i
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V1. CONCLUSION AND FURTHER WORK France.

We have suggested an algorithm for jointly solving the
network coding subgraph and the scheduling problem in



