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Abstract—We consider the minimization of the energy per bit
(or, equivalently, the maximization of the energy efficiency) in
a multiple-input single-output (MISO) broadcast channel with
rate balancing constraints, i.e., in a multiuser system where
certain fixed ratios between the rates of the various users have
to be kept. This paper deals with the practically relevant case
where the transmit strategy is restricted to simple linear filtering
without time-sharing, i.e., sophisticated coding schemes such as
dirty paper coding (DPC) are not allowed. Even though the
arising optimization problem is non-convex, it can be solved with
reasonable complexity in a globally optimal manner using the
algorithm proposed in this paper. This globally optimal solution
enables us to study the impact of rate balancing constraints on
the energy efficiency of a vector broadcast channel in numerical
simulations.

I. INTRODUCTION

With the aim of designing environmentally friendly com-

munication systems with low energy consumption, many re-

searchers have recently focused on the problem of optimizing

the energy efficiency of wireless communication systems.

Fundamental properties of this problem as well as potential

approaches to increase the energy efficiency by improvements

on the various abstraction layers of communication systems

are summarized, e.g., in [1]–[3].

In addition to works studying the energy efficiency on the

circuit level (e.g., [4]–[6]), there is a large variety of papers

concentrating on the mathematical optimization of the transmit

strategy in abstract models of single-user systems (e.g., [7]–

[13]) or multiuser systems (e.g. [14]–[22]). These works have

in common that a simple power model consisting of the

transmit power and a constant term modeling the circuit power

is used, which can be justified by the fact that various more

detailed base station power models used in the literature can

be transformed to this form [23].

In a multiuser system, the necessity to schedule users on

different carriers (e.g., [14]–[18]) and/or to deal with inter-user

interference (e.g., [18]–[22]) arises. This makes the energy

efficiency optimization of multiuser communication systems

qualitatively different from the optimization in the case of a

single-user system.

In this work, we consider a single-carrier multiple-input

single-output (MISO) broadcast channel, i.e., a multiantenna

base station transmits individual data streams to a set of

single-antenna users, and the streams can be separated in the

spatial domain, but not in the frequency domain. This setting

is qualitatively different from the multicarrier, single-antenna

broadcast channels considered in [14]–[16], the multicarrier

vector broadcast channels with exclusive assignment of car-

riers to users studied in [17], and the interference channel

from [22]. Systems similar to the one under consideration

were studied in [18]–[21]. While [18]–[20] propose subop-

timal heuristics with low complexity for the energy efficiency

optimization in MIMO or MISO broadcast channels, our recent

work [21] deals with the globally optimal energy-efficient

transmit strategy in MIMO broadcast channels.

When minimizing the energy per bit in a MIMO or MISO

broadcast channel without any further restrictions, it might

happen that some users are served with a much lower rate

than others or are even not served at all. Therefore, the aim

of this paper is to not only optimize the energy efficiency of

the considered system, but to also guarantee that the resulting

per-user rates have certain predefined ratios. In the context

of throughput maximization, the optimization with such con-

straints is usually referred to as rate balancing (e.g., [24]–

[27]). In connection with the question of energy efficiency,

rate balancing constraints were considered in [21], where the

globally optimal solution based on DPC and time-sharing was

studied.

However, in practice, even approximate DPC as in [28] has

prohibitive complexity for online implementation, and time-

sharing leads to high signaling overhead (e.g., [26]). For these

reasons, a more practical approach to the design of transmit

strategies is to allow only linear transmit and receive filters and

to exclude the possibility of time-sharing. On the other hand,

this restriction usually leads to more involved optimization

procedures due to the non-concavity of the rate equations

for systems with linear transceivers. In this paper, we will

show that the globally optimal linear transmit strategy for

energy-efficient rate balancing can, nevertheless, be found with

reasonable complexity by means of a combination of existing

power minimization algorithms and a monotonic optimization

in a single scalar variable.

Monotonic optimization has already been applied to various

communication systems (e.g., [29]–[33]). The drawback of

approaches based on monotonic optimization is a compu-

tational complexity that is exponential in the number of

optimization varibables, which is greater than or equal to the

number of users in the abovementioned papers. The problem

at hand, however, can be reformulated in a way that monotonic

optimization needs to be applied only with respect to one

variable so that the computational complexity stays polynomial

978-1-4673-0762-8/12/$31.00 ©2012 IEEE 1044



in all system parameters. This makes the algorithm practically

applicable for real-time implementation, which is not the case

for many other algorithms based on monotonic optimization.

Notation: We use •T for the transpose, •H for the conjugate

transpose, IL for the identity matrix of size L, 0 for the zero

vector, and 1 for the all-ones vector. The order relation x ≥ y

has to be understood element-wise.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink of a communication system

consisting of a base station equipped with M antennas and

K single-antenna user terminals. Assuming frequency flat

channels hH
k and additive circularly symmetric Gaussian noise

wk ∼ CN (0, σ2
k), the data transmission can be described by

yk = hH
k

K
∑

k′=1

uk′sk′ + wk (1)

where uk′ are beamforming vectors and sk′ ∼ CN (0, 1) are

circularly symmetric Gaussian data symbols.

According to [34, Section II.B], a set of per-user rates can be

achieved in a MISO broadcast channel with linear precoding

and a certain sum transmit power P =
∑K

k=1 u
H
k uk if and

only if the same rates can be achieved in the dual uplink

y =

K
∑

k=1

gk
√
pksk +w (2)

with linear receive processing and the same sum transmit

power P =
∑K

k=1 pk. In (2), pk are the uplink transmit

powers, gk = σ−1
k hk are the dual uplink channels, and

w ∼ CN (0, IM ) is the noise in the dual uplink. The per-

user rates r = [r1, . . . , rK ]T achievable by means of linear

precoding without time-sharing are then given by

rk(p) = log2






1 + pkg

H
k



IM +
∑

k′ 6=k

pk′gk′gH
k′





−1

gk






(3)

which is a function of the vector p = [p1, . . . , pK ]T.

The energy per transmitted bit can be written as

Eb =
PtotalT

RT
=

Ptotal

R
=

αP + Pc
∑K

k=1rk(p)
= α

P + c
∑K

k=1rk(p)
(4)

where T is the total transmission time, R =
∑K

k=1 rk(p) is

the sum rate, and the total power Ptotal is expressed as the

sum of a scaled version of the transmit power αP and a

term αc = Pc modeling the power consumed by the circuit

electronics apart from the power amplifier (cf., e.g., [1]). The

scalar α is included to account, e.g., for the efficiency of the

power amplifier. However, as changing α does not change the

structure of the optimizations considered in this paper, we use

α = 1 for simplicity.

Our aim is to minimize the energy per bit Eb subject to rate

balancing constraints. In order to avoid dealing with a potential

division by zero in (4) (which cannot be the optimal solution

anyway), we solve the equivalent problem of maximizing the

energy efficiency 1
Eb

[1] with rate balancing constraints, i.e.,

max
p≥0, R0

1
Tr(p)

1
Tp+ c

s.t. r(p) = R0τ (5)

for given positive relative rate targets τ = [τ1, . . . , τK ]T. In

the special case that all τk are equal, it is guaranteed that all

users are served with the same rate.

III. RATE SPACE FORMULATION

The key to an efficient solution of (5) is a rate-space

formulation similar to the one used in [35]. We define

q(ρ) =

{

r−1(ρ) if ρ ∈ R,
[∞, . . . ,∞]T otherwise

(6)

where R = {r(p) | p ≥ 0} denotes the set of rate vectors

achievable with finite sum power. According to [35], the

inverse function r−1 exists and can be evaluated by means

of any globally optimal power minimization algorithm for

vector broadcast channels with linear precoding and minimum

rate constraints. Thus, after testing the feasibility ρ ∈ R by

checking whether

K
∑

k=1

(

1− 2−ρk
)

< M (7)

as proposed in [36],1 q(ρ) can be evaluated using the algo-

rithm from [37], which is an iterative approach based on a

coupling matrix describing the crosstalk between users, or by

the fixed point iteration

pk ←
2ρk − 1

gH
k

(

IM +
∑

k′ 6=k pk′gk′gH
k′

)−1

gk

∀k (8)

proposed in [38]. Note that this fixed point iteration converges

in very few iterations (typically five to ten) and involves

the inversion of an M ×M -matrix as computationally most

complex operation in each iteration.

Using the function defined above, we can rewrite the

optimization in (5) as

max
ρ≥0, R0

1
Tρ

1
Tq(ρ) + c

s.t. ρ = R0τ (9)

which enables us to plug the equality constraint into the

objective function yielding

max
R0

R01
Tτ

1
Tq(R0τ ) + c

s.t. R0 ≥ 0. (10)

The new constraint R0 ≥ 0 was added to ensure that ρ =
R0τ ≥ 0. This leaves us with a scalar optimization problem

with a very simple constraint and an objective function that

can be evaluated numerically by efficient algorithms.

1If there exist groups of m ≤ min{K,M} channel vectors gk which
do not span an m-dimensional subspace of the CM , additional checks are
needed, cf. [36].
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IV. GLOBALLY OPTIMAL SOLUTION

As the problem under consideration is nonconvex, it is not

guaranteed that local line search methods converge to the

global optimum. In order to find the globally optimal solution,

we can apply a branch-and-bound line search based on the

following monotonicity properties of problem (10).

The numerator is obviously increasing in R0 since 1
Tτ

is a positive constant. In [35], it was shown that 1
Tq(ρ)

is non-decreasing in each component of ρ. Therefore, the

denominator is non-decreasing in R0. Having identified the

objective function of (10) as the ratio of two monotonic

functions, we can apply a modified version of the branch-

reduce-and-bound method proposed in [39] for optimization

problem involving differences of monotonic functions.

For a function f with

f(R0) =
f1(R0)

f2(R0)
, (11)

where f1(R0) ≥ 0 and f2(R0) > 0 are non-decreasing in R0,

the following bounds are valid:

f(R0) ≤ U[a,b] =
f1(b)

f2(a)
∀R0 ∈ [a, b], (12)

max
R0∈[a,b]

f(R0) ≥ L[a,b] =
f1(a)

f2(a)
. (13)

The first bound is due to the monotonicity of f1 and f2, and

the second bound is an achievability bound.

Given a set S of intervals I, the highest upper bound U =
maxI∈S UI is an upper bound to f(R0) for R0 ∈

⋃

I∈S I.

By repeatedly replacing the interval [a, b] = argmaxI∈S UI

by two subintervals
[

a, a+b
2

]

and
[

a+b
2 , b

]

, we eventually

achieve U − L < ǫ for a given error tolerance ǫ, where

L = maxI∈S LI is the highest lower bound, i.e., the current

best value.

As in [39], convergence of the method can be shown based

on the observation that the bounds become tight for b−a→ 0
if f1 and f2 are continuous, which is called consistency in

[39]. In our case, it suffices that f1 and f2 are continuous at

all points R0 for which f(R0) > 0, which is fulfilled since

continuity of r−1 was shown in [35].

Even though it follows from [40, Theorem 4] that in the

worst case, the number of branch-and-bound iterations needed

to find an ǫ-optimal solution is exponential in the number

of variables, the computational complexity of the method is

polynomial in all system dimensions in our case since the

number of variables of the branch-and-bound algorithm is

always one, no matter how the system dimensions are chosen.

V. INITIALIZATION

To initialize the algorithm with S = {I0}, we have to find

a bounded initial interval I0 = [a0, b0] which only contains

points feasible for problem (10) and which surely contains

the optimizer. The former requirement is easy to fulfill by

choosing a0 = 0, but the latter requires some thought.

As was also done in [35], we introduce the single-user rate

vector rSU(p) = [rSU,1(p), . . . , rSU,K(p)]T with

rSU,k(p) = log2
(

1 + pkg
H
k gk

)

≥ rk(p) (14)

where the inequality holds since interference is neglected in

rSU,k(p). Moreover, rSU,k(p) is increasing in p so that

rSU(1
Tq(ρ) · 1) ≥ rSU(q(ρ)) ≥ ρ for ρ ∈ R. (15)

Now let R0,opt denote the unknown optimizer of (10), and

let 1
Eb,init

> 0 denote an achievable value of (10) obtained by

plugging in an arbitrary R0,init > 0 such that R0,initτ ∈ R. To

find such an R0,init, we compute r(pinit) for an arbitrary pinit

with positive entries, and we choose R0,init such that R0,initτ ≤
r(pinit). Then, Popt = 1

Tq(R0,optτ ) must fulfill

1
TrSU(Popt1)

Popt + c
≥ R0,opt1

Tτ

1
Tq(R0,optτ ) + c

≥ 1

Eb,init

. (16)

Note that the left hand side of

1
TrSU(P1)

P + c
≥ 1

Eb,init

(17)

is semistrictly quasiconcave in P since the numerator is

concave in P and the denominator is convex in P [41], and

it can be easily verified that this left hand side tends to zero

for P → 0 and P →∞. Therefore, equality holds in (17) for

two values, which we call Pmin and Pmax, and (17) is fulfilled

for P ∈ [Pmin, Pmax]. For this reason and due to (15), we have

Popt ∈ [Pmin, Pmax] and 1
Tq(R0,initτ ) ∈ [Pmin, Pmax]. From

monotonicity and strict concavity of 1
TrSU(P1), it follows

that Pmax is the only stable fixed point of the fixed point

iteration

P ← Eb,init1
TrSU(P1)− c (18)

and Pmin is an unstable fixed point. Thus, initialized with

1
Tq(R0,initτ ) ∈ [Pmin, Pmax], the iteration (18) converges to

Pmax. This enables us to compute an upper bound rSU(Pmax1)
to the unknown optimal rate vector R0,optτ . Consequently,
rSU,k(Pmax1)

τk
for arbitrary k delivers a valid upper bound to

R0,opt, and we can set the upper boundary b0 of the initial

interval I0 = [a0, b0] to

b0 = min
k

rSU,k(Pmax1)

τk
. (19)

VI. NUMERICAL RESULTS

We compare the optimal energy per bit with and without

rate balancing constraints for systems with linear transceivers

and systems with dirty paper coding. The DPC results and

the globally optimal linear strategy without rate balancing are

computed as described in [21]. For the simulations, we have

used 1000 realizations of i.i.d. circularly symmetric Gaussian

channel coefficients with zero mean and unit variance.

In Fig. 1, we show results for a vector broadcast channel

with K = 3 users and M = 3 transmit antennas. We plot the

optimal energy per bit for various values of the circuit power

c in the four cases mentioned before. For rate balancing, we

use τ = 1, i.e., all users are served with the same rate.
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Fig. 1. Energy per bit achieved for various values of the circuit power c.

Even though it is clear that introducing rate balancing con-

straints increases the energy per bit, it is noteworthy that the

energy penalty is much more pronounced than in the numerical

simulations performed for a MIMO broadcast channel with

DPC in our recent work [21]. This can be explained as follows.

The optimal energy per bit without rate balancing constraints

is achieved by mainly serving users with good channels and

disregarding the others. In the MIMO case, the probability that

users have very different channel quality decreases due to the

additional diversity resulting from multiple receive antennas.

This makes it easier to serve all users at the same rate and,

thus, reduces the energy penalty for rate balancing.

Clearly, serving mainly the users with good channels is not

necessarily the preferred behavior of a communication system,

which makes the rate balancing solution interesting despite

its worse energy efficiency. To demonstrate this, we include

Fig. 2, which shows the average per-user rates for the best,

the worst, and the intermediate user when using the optimal

energy-efficient linear transmit strategy without rate balancing

constraints. The weakest user is served at a rate close to zero

on average, and for many channel realizations, this user is

even switched off. With rate balancing constraints, all users

are served at a rate, which is roughly equal to the rate achieved

for the intermediate user in the case without rate balancing.

In Fig. 3, we compare the energy per bit achieved with

linear transceivers and rate balancing in a system with M = 5
transmit antennas for various numbers of users. Note that

the globally optimal linear strategy without rate balancing

constraints is not included since, unlike for the rate balancing

case, its computation is exponentially complex in the number

of users and therefore not feasible for high numbers of users.

We observe that the optimal energy per bit is nearly in-

dependent of the number of users in the system apart from

the case of a very small number of users K. As long as

the spatial multiplexing gain is limited by the number of

users in the system, adding an additional user can decrease

the energy per bit and increase the sum rate obtained at

0.5 0.625 0.75 0.875 1 1.125 1.25 1.375 1.5
0

0.5

1

1.5

2

2.5

c

r k

3 Transmit Antennas, 3 Users

 

 

best user

intermediate

worst user

rate balancing

Fig. 2. Per-user rates achieved in the most energy-efficient strategy.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

K

5 Transmit Antennas, c=1.0

 

 

E
b

R/K

R

P

Fig. 3. Optimal energy per bit with rate balancing for various numbers of

users K, and corresponding per-user rate R

K
, sum rate R, and sum power P .

the most energy-efficient strategy. For high numbers of users

K ≥ 5, the multiplexing gain is limited by the M = 5
transmit antennas so that adding new users does not improve

the energy efficiency. When further increasing the number of

users, inter-user interference increases, and the energy-efficient

rate balancing solution operates at a reduced sum rate. The

reason is that the sum throughput quickly saturates for high

transmit powers in an interference-limited scenario. Thus, it

is more energy-efficient to use a lower sum transmit power

together with a lower sum rate.

VII. CONCLUSION

Using a rate-space formulation and existing power mini-

mization algorithms, we have derived an algorithm to compute

the globally minimal energy per bit in vector broadcast chan-

nels with linear transceivers and rate balancing constraints.

Although based on monotonic optimization, the algorithm

has polynomial complexity and is, therefore, not only of

theoretical interest.

The numerical simulations in this paper reveal that the

energy efficiency penalty resulting from rate balancing con-
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straints can be considerable in vector broadcast channels even

if the problem of energy-efficient rate balancing is solved in

a globally optimal manner. On the other hand, the simulation

results also make clear that the energy efficiency optimization

without rate balancing leads to very unequal per-user rates

and even to users that are not served at all. To find a transmit

strategy which is energy-efficient and fair at the same time, it

might be necessary to deploy multiple receive antennas.
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