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ABSTRACT

This paper addresses utility maximization problems in the

half-duplex two-way multiple-input multiple-output (MIMO)

relay channel, where the relay uses the decode-and-forward

strategy. Perfect channel information at all nodes and a time

division duplex communication protocol with per node peak

power constraints for every protocol phase are assumed. For

this scenario, we show how solutions to the considered class

of problems can efficiently be determined by means of a dual

decomposition approach.

Index Terms— Two-way relay channel, MIMO, half-

duplex, decode-and-forward, utility maximization.

I. INTRODUCTION

The two-way relay channel models the scenario where

two terminals want to exchange information with the aid of

a relay. It was introduced in [1], where the authors showed

that a significant portion of the loss in spectral efficiency

suffered in the one-way relay channel due to the half-duplex

constraint can be compensated when bidirectional communi-

cation is considered. As a result, many other scientific papers

have since addressed the half-duplex two-way relay chan-

nel in combination with various communication protocols

and relay strategies that include decode-and-forward (DF),

compress-and-forward (CF), and amplify-and-forward (AF).

For a short and very incomplete list of references, see for

example [2]–[5] and references therein.

A general outer bound C on achievable rate regions for the

half-duplex two-way MIMO relay channel was established

in [6], assuming time division duplex (TDD) communication

protocols with per node peak power constraints for every

protocol phase. In addition, an achievable rate region RDF

based on the relay using DF was presented, which is a

superset of all previously known rate regions that can be

achieved with the decode-and-forward scheme. The main

contribution of [6], then, was to derive parameterizations of

C and RDF that allow to efficiently evaluate these regions by

means of a dual decomposition approach.

In this work, we consider utility maximization problems

on the above-mentioned achievable rate region RDF, where

the utility is a nondecreasing and concave function of the rate

vector. It is demonstrated how the parameterization of RDF

and the dual decomposition approach proposed in [6] can

also be used to efficiently determine solutions to this class of

problems. Moreover, we take a closer look at the problems

for specific utilities that are associated with various well-

known fairness criteria: max-min fairness [7], proportional

fairness [8], and α-fairness [9], which is a generalization of

the first two fairness measures.

The remainder of this paper is organized as follows. Sec. II

introduces the system model for the half-duplex two-way

MIMO relay channel. In Sec. III, we address the utility

maximization problems to be solved and show that optimal

solutions can be obtained in an efficient manner using a dual

decomposition approach. Numerical results are presented in

Sec. IV before we conclude in Sec. V.

II. SYSTEM MODEL

We consider the restricted half-duplex two-way relay

channel in this paper, i.e., the bidirectional communication

is restricted in the sense that the encoders of the two

terminal nodes can neither cooperate, nor are they able to use

previously decoded information to encode their messages.

The most general communication protocol for this channel

is composed of all six phases (network states) where either

one or two nodes transmit [10]. Obviously, no information

is conveyed when no or all nodes transmit at the same time

(the latter due to the half-duplex constraint). The six phases

are characterized as follows:

1) Node 1 transmits to node 2 and the relay:
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3) Node 1 and node 2 transmit to the relay:
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4) The relay transmits to node 1 and node 2:
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5) The relay and node 2 transmit to node 1:

y
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6) The relay and node 1 transmit to node 2:
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Here, HAB denotes the channel gain matrix from node A

to node B, where we have assumed that all channels remain

constant for all six network states in order to simplify the

notation. However, this is without loss of generality since

we require all channels to be perfectly known at all nodes

as well as perfect synchronization between all nodes for the

discussions below. The circularly symmetric additive white

Gaussian noise n
(i)
A received at node A during phase i is

assumed to be independent of the noise n
(j)
B received at

another node B for all phases j = 1, . . . , 6 and independent

of n
(j)
A for all j 6= i. A transmit covariance matrix

R
(i)
A = E

[

x
(i)
A x

(i),H
A

]

(1)

is associated with each node A that transmits in the i-th

phase. This node A is then subject to a peak power constraint

of the form tr
(

R
(i)
A

)

≤ P
(i)
A . Furthermore, if nodes A and

B transmit simultaneously during phase i, we have a joint

transmit covariance matrix
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III. UTILITY MAXIMIZATION

The general utility maximization problems we consider in

this paper read as

max
z

u(z) s. t. z ∈ RDF ⊂ R
2
+, (3)

where u(z) is nondecreasing and concave in z. RDF denotes

the rate region that is achievable in the half-duplex two-

way relay channel with a communication protocol being

composed of all the six phases specified in Sec. II (perfor-

med in exactly that order) and the relay using the decode-

and-forward strategy [10]. Assuming both perfect channel

state information (CSI) and perfect synchronization, all rate

vectors z ∈ RDF can be achieved with a jointly Gaussian

input distribution that factors as
∏6

i=1 pX(i)
1 X

(i)
2 X

(i)
R

, where

p
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(3)
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1
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(3)
2

[6]. Since the Gaussian distribution

is completely determined by its mean and covariance, the

optimal zero mean input for phase i is specified by R(i).

Moreover, a convenient parameterization of RDF is given by

RDF =
{

z ∈ R
2
+ :Az ≤

6
∑

i=1

τiBiri,

6
∑

i=1

τi = 1,

τi ≥ 0, ri ∈ Ri, ∀i = 1, . . . , 6
}

. (4)

Here, Ri ⊂ R
2
+ is a compact convex set that is parameterized

by means of the (joint) transmit covariance matrix R(i) and

associated with the i-th phase of the transmission protocol,

whose duration is denoted by τi. For example, the set R1

corresponding to the first phase of the protocol is given by

R1 =
{

r ∈ R
2
+ : r1 ≤ log det

(

I+H1RR
(1)HH

1R

)

,

r2 ≤ log det
(

I+H12R
(1)HH

12

)

,

R(1) � 0, tr
(

R(1)
)

≤ P
(1)
1

}

. (5)

Each row of A = [ 1 1 0 0 1
0 0 1 1 1 ]

T
selects one of the constraints

on z as defined in RDF, and the corresponding rows of

the matrices Bi ∈ {0, 1}5×2 specify the structures of these

constraints with regard to the sets Ri. For all details on

the parameterization of RDF and its properties, we refer the

reader to [6].

In the following, we will make use of the aforementioned

parameterization of RDF in order to solve problem (3) for

different utility functions. First, max-min fair rate allocation

is addressed (the problem can be tackled more directly than

the general one), and subsequently, we consider general uti-

lities with a closer look at proportional and α-fairness. We

do not elaborate on weighted sum rate maximization over

RDF here because this is already covered in [6].

III-A. Max-Min Fairness

One of the most common fairness criteria is max-min

fairness [7]. The rate vector z ∈ RDF ⊂ R
2
+ is max-min

fair if it maximizes the utility u(z) = maxmin{z1, z2} over

the rate region RDF. For our system model, the max-min fair

rate vector is obtained as the solution of the following utility

maximization problem:

max
z,τi,ri

min{z1, z2} s. t. 0 ≤ Az ≤
6

∑

i=1

τiBiri,

6
∑

i=1

τi = 1,

τi ≥ 0, ri ∈ Ri, ∀i = 1, . . . , 6. (6)

Noting that Az = [ z1 z1 z2 z2 z1+z2 ]
T
, we define the vector

c = [ 1 1 1 1 2 ]T and reformulate (6) as

max
y,τi,ri

y s. t. 0 ≤ yc ≤
6

∑

i=1

τiBiri,

6
∑

i=1

τi = 1,

τi ≥ 0, ri ∈ Ri, ∀i = 1, . . . , 6. (7)

This is a convex optimization problem for which strong dua-

lity holds so that we can equivalently solve the dual problem.

To this end, we use the (vector-valued) Lagrangian multiplier

λ to incorporate the constraints yc ≤
∑6

i=1 τiBiri into the

objective function. This leads to the Lagrangian function

L(y, ri, τi,λ) = y − λT
(

yc−
6

∑

i=1

τiBiri

)

(8)

and the corresponding dual function

Θ(λ) =







max
i=1,...,6

(

max
ri∈Ri

λTBiri

)

if cTλ ≥ 1,

+∞ otherwise.
(9)



In order to determine the max-min fair rate vector, we thus

need to solve the dual problem

min
λ

max
i=1,...,6

(

max
ri∈Ri

λTBiri

)

s. t. λ ≥ 0, cTλ ≥ 1. (10)

This can be done using the cutting plane method [11]

as described in [6]. In each iteration of the cutting plane

algorithm, the dual function Θ(λ) must be evaluated, which

requires to solve six weighted sum rate (WSR) maximization

problems, one over each of the convex sets Ri. For this

purpose, standard SDP solvers like SDPT3 that are capable

of dealing with log-det terms in the objective function may

be applied [6]. The max-min fair rate vector and the optimal

time shares τi are finally obtained by primal reconstruction.

III-B. General Utility Functions

In this section, we consider general nondecreasing and

concave utility functions. Using the parameterization of RDF,

the following utility maximization problem results:

max
z,τi,ri

u(z) s. t. 0 ≤ Az ≤
6

∑

i=1

τiBiri,

6
∑

i=1

τi = 1,

τi ≥ 0, ri ∈ Ri, ∀i = 1, . . . , 6. (11)

Since u(z) is assumed to be concave, strong duality holds

again. Like in the previous subsection, we incorporate the

constraints Az ≤
∑6

i=1 τiBiri into the objective function,

which eventually yields the dual function

Θ(λ) = sup
z≥0

{

u(z)− λ
T
Az

}

+ max
i=1,...,6

(

max
ri∈Ri

λ
T
Biri

)

.

(12)

The dual function decomposes as Θ1(λ) +Θ2(λ), where

Θ2(λ) is equal to the maximum weighted sum rate over all

sets Ri as known from the max-min problem, and Θ1(λ) =
supz≥0

{u(z) − λTAz} is obtained from a convex optimi-

zation problem that only depends on z. As the utility is

assumed to be nondecreasing, the supremum may be infinity

for general λ. Without changing the original problem, this

can be prevented by adding the constraint z ≤ d if it is gua-

ranteed that d ≥ z, ∀z ∈ RDF. We may for example choose

any d that is larger than the vector of optimal unidirectional

rates. The dual problem is then given by

min
λ

{

max
0≤z≤d

{

u(z)− λTAz
}

+ max
i=1,...,6

(

max
ri∈Ri

λTBiri

)

}

s. t. λ ≥ 0. (13)

We can of course apply the standard cutting plane method

to this problem again. However, instead of approximating the

whole dual function Θ(λ), it is also possible to introduce

a cut each for Θ1(λ) and Θ2(λ) in every iteration [12].

While this increases the complexity of the master program,

fewer iterations are usually needed to approximate Θ(λ)
accurately. As the complexity is dominated by the evaluation

of the dual function, this is a worthwhile tradeoff here.

Let us now have a closer look at Θ1(λ) for the utili-

ty associated with α-fairness [9], which is a generalization

of max-min and proportional fairness [8]. In particular, a

proportional fair rate allocation is obtained by considering

α-fairness with α = 1, and as α becomes large, α-fairness

converges to that of max-min. The utility function associated

with α-fairness is given by

uα(z) =

{

∑2
k=1 log(zk) if α = 1,

∑2
k=1(1− α)−1z1−α

k if α > 0, α 6= 1.
(14)

Note that uα(z) is differentiable and concave for all α > 0.

The necessary and sufficient condition for z∗ to maximize

uα(z)− λ
T
Az over the set 0 ≤ z ≤ d is [11]

(

∇uT
α(z

∗)− λTA
)

(z − z∗) ≤ 0, ∀0 ≤ z ≤ d. (15)

Since uα(z) is additive and increasing in every component,

it hence follows for λ ≥ 0 that

z∗k = min
{

(λTAek)
−1/α, dk

}

, (16)

where ek is the unit vector with a one as the k-th entry and

zeros elsewhere, and dk is the k-th entry of d.

We therefore have a closed-form expression for Θ1(λ)
and its maximizer, which means that we do not have to

approximate Θ1(λ) in the dual problem (13). The downside

of this approach, however, is that the master program is not

a linear program but a general convex optimization problem.

Since the evaluation of Θ1(λ) is very cheap, it might thus

be preferable to approximate both Θ1(λ) and Θ2(λ). In any

case, the complexity of evaluating the dual function is again

dominated by the six WSR maximization problems.

IV. NUMERICAL RESULTS

In this section, numerical results for the utilities asso-

ciated with max-min and proportional fair rate allocation

are provided. The example scenario we consider is the line

network depicted in Fig. 1. This is a commonly used geo-

metry where d12 = 1 is fixed and the relay is positioned on

the line connecting the two terminals such that d1R = |d|
and d2R = |1 − d|. The channel gain matrices HAB are

assumed to be random and independent, where the entries

of HAB are independent and identically distributed complex

Gaussian random variables with zero mean and variance d−4
AB .

In addition, we assume that the channels are reciprocal, i.e.,

HAB = HT
BA. The transmit power of node A is the same for

every phase i, i.e., P
(i)
A = PA. Finally, note that all results are

averaged over a number of independent channel realizations,

where perfect CSI is assumed for every realization.

1 R 2

d

1

1− d

Fig. 1. Line network.
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Fig. 2. Comparison of optimal max-min and proportional fair utility values for different antenna and power configurations;

solid curves: P1 = P2 = PR = 10, dashed curves: P1 = 30, P2 = PR = 10.

Fig. 2 compares the optimal max-min and proportionally

fair utility values for different network configurations, where

the results are averaged over 100 channel realizations (250

for N1 = N2 = NR = 1). Not surprisingly, substantial gains

are achieved by equipping all nodes with multiple antennas.

For all symmetric scenarios, we see that the utilities do

not heavily depend on the relay position, but the best relay

position clearly is in the middle between the terminals. If one

terminal has more antennas and/or transmit power than the

other one, the utility increases as the relay is moved closer

to the terminal with less antennas/power, whereby the effect

is stronger for max-min fairness.

For an absolute accuracy of ε = 10−3, the average number

of cutting plane iterations ranged from 5–12, depending on

the choice of parameters and utility function. Note that both

Θ1(λ) and Θ2(λ) were approximated in the case of propor-

tional fairness. These relatively small numbers of required

iterations confirm that the approach proposed in this paper

allows to efficiently solve the considered class of utility

maximization problems.

V. CONCLUSION

We presented a generic method to efficiently solve utility

maximization problems in the half-duplex two-way MIMO

relay channel when the relay uses the decode-and-forward

strategy. To this end, a dual decomposition approach was

proposed, and we discussed how the resulting dual problems

can be tackled by means of the cutting plane algorithm. For

max-min, proportional, and α-fairness, we concluded that

the complexity of the proposed method is dominated by six

weighted sum rate maximization problems, which can be

solved using standard SDP tools. Finally, we remark that our

approach is also applicable to other communication protocols

that are often considered in the literature.
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