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Abstract
We present the Munich contribution to the PASCAL

‘CHiME’ Speech Separation and Recognition Challenge: Our
approach combines source separation by supervised convolu-
tive non-negative matrix factorisation (NMF) with our tandem
recogniser that augments acoustic features by word predictions
of a Long Short-Term Memory recurrent neural network in a
multi-stream Hidden Markov Model. The performance of our
source separation approach is demonstrated in a sequence of
gradually refined speech recognisers. While NMF drastically
improves performance for all investigated recognisers, best re-
sults are obtained with the multi-stream approach along with a
novel adaptation technique for noise dictionaries in supervised
NMF. On the final Challenge test set, the proposed system deliv-
ers an average keyword recognition accuracy of 87.86 % across
SNRs ranging from -6 to 9 dB, reducing the error rate from 44 %
to 12 % compared to the Challenge baseline.
Index Terms: Non-Negative Matrix Factorisation, Tandem
Speech Recognition

1. Introduction
Automatic speech recognition (ASR) over distant microphones
in a noisy environment is a challenging problem leading to a
multitude of research on signal enhancement (the front-end)
and robust recognisers (the back-end). In fact, these fields are
closely coupled: Given imperfect signal enhancement by source
separation, robust speech recognition is required to cope with
remaining interferences or even distortions induced by the sep-
aration. On the other hand, it is still commonly observed that
speech recognition performance degrades at low signal-to-noise
ratios (SNRs), so the need for source separation algorithms re-
mains.

In the last decade, monaural source separation techniques
by non-negative matrix factorisation (NMF) have emerged as
a promising technique that is portable across application sce-
narios and acoustic conditions [1–4]. For instance, the pre-
vious CHiME challenge [5] featured an NMF-based approach
for cross-talk separation [6] that used speaker models (speech
dictionaries) in a supervised NMF framework. In this contri-
bution, we use a convolutive extension of NMF that has de-
livered promising results for speech denoising [2], and use the
increased modelling power to model whole words in the speech
dictionaries.

On the other hand, regarding the back-end of our recog-
niser, we use a multi-stream recogniser employing word pre-
dictions of a bidirectional Long Short-Term Memory (BLSTM)
recurrent neural network. In our previous studies, tandem ar-
chitectures using BLSTMs have delivered excellent results in
challenging speech recognition scenarios [7, 8].

The architecture of our system is depicted in Figure 1. The
(noisy) speech signal is enhanced by convolutive NMF (as de-
scribed in Section 2). Then, acoustic features are delivered to
the BLSTM net, generating a word prediction in a secondary
feature stream that is decoded along with the acoustic fea-
tures in a Hidden Markov Model (HMM) framework (cf. Sec-
tion 3). Thereby confusions of the BLSTM can be modelled by
the HMMs, so that information from the BLSTM is exploited
in a complementary way, and additional techniques for noise-
robustness such as maximum-a-posteriori (MAP) adaptation or
multi-condition training can be seamlessly integrated. The pa-
rameterisation of the system components is described in detail
in Section 4.

We tuned and evaluated our system on the CHiME corpus,
which contains 24 200 utterances (34 speakers) of the Grid cor-
pus (17 000 in the training and 3 600 in each of the development
and test set), convolved with different impulse responses. The
development and test set are overlaid with stationary and non-
stationary noise at six different SNRs from -6 to 9 dB. Along
with noisy speech, 4 hours of pure background noise are pro-
vided. The corpus is described in detail in [9]. We present our
experimental results in Section 5, and conclude in Section 6.

To increase clarity of the following section, we introduce
the following notations: for a matrix A, Ai,j denotes the el-
ement at row i and column j. The notation A:,j , resembling
Matlab syntax, symbolises the j-th column of A (as a column
vector). We write A ⊗ B for the elementwise product of ma-
trices A and B; division of matrices is always to be understood
as elementwise. Column-wise concatenation of matrices A and
B is written as [A B]. Finally, for a matrix A ∈ RM×N and

p ≥ 0, we define
p→
A ∈ RM×N as a ‘shifted’ version of A

where the entries of A are shifted p spots to the right, filling
with zeros from the left.

2. Speech Enhancement by
Convolutive NMF

Our speech enhancement approach is based on the assumption
that speech is corrupted by additive noise:

V = V(s) + V(n), (1)

where V ∈ RM×N+ is an observed magnitude spectrogram of
noisy speech, V(s) is the (true) spectrogram of the speech sig-
nal, and V(s) is the (true) noise spectrogram. Furthermore, we
assume that both, the speech and noise spectrograms, can be
modelled as convolutions of base spectrograms (dictionaries)
X(s)(j) ∈ RM×P+ , j = 1, . . . , R(s), respectively X(n)(j), j =

1, . . . , R(n), with non-negative activations H(s) ∈ RR
(s)×N

+ ,



Figure 1: Block diagram of the proposed system: Speech enhancement by NMF and multi-stream BLSTM-HMM decoding.
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for 1 ≤ t ≤ N . Defining

W(s)(p) = [X
(s)
:,p+1(1) · · · X

(s)
:,p+1(R

(s))], (4)

p = 0, . . . , P − 1 and W(n)(p) analogously, one obtains an
NMF-alike notation of this signal model, denoting the approxi-
mation of V(s) and V(n) by Λ(s) and Λ(n):

V ≈ Λ(s) + Λ(n)

=

P−1∑
p=0

W(s)(p)
p→

H(s) +

P−1∑
p=0

W(n)(p)
p→

H(n) (5)

In the remainder of this paper, we assume that both,
W(s)(p) and W(n)(p) can be estimated from training data, as
shown in Sections 4.2 and 4.3. The speech enhancement prob-
lem is thus reduced to finding suitable non-negative coefficients
(activations) H(s) and H(n) – then, the estimated clean speech
spectrogram V̂(s) is obtained by filtering the observed spectro-
gram V:

V̂(s) =
Λ(s)

Λ(s) + Λ(n)
⊗V. (6)

To jointly determine a solution for H(s) and H(n), we itera-
tively minimise the element-wise sum of the β-divergence dβ
between the observed spectrogram V and the approximation
Λ := Λ(s) + Λ(n):

dβ(V|Λ) =

N∑
i=1

M∑
j=1

dβ(Vi,j |Λi,j), (7)

starting from a (Gaussian) random solution. In NMF-based
speech enhancement, using d1 (equivalent to Kullback-Leibler
divergence) is very popular [2, 3, 10], since it seems to provide
a good compromise between separation quality and computa-
tional effort.

The minimisation of d1 (7) is performed by the multiplica-
tive update algorithm for convolutive NMF proposed in [2, 11],
which can be very efficiently implemented using linear alge-
bra routines employing vectorisation. Note that the asymptotic
complexity of this algorithm is polynomial (O(RMNP )), and

linear in each of R := R(s) +R(n), M , N , and P . All experi-
ments for this paper were performed with the NMF implemen-
tations found in our open-source toolkit openBliSSART [12] to
enforce reproducibility of our results.

3. Multi-Stream BLSTM-HMM Recogniser

To enhance recognition accuracies, we apply our recently intro-
duced multi-stream BLSTM-HMM recogniser [8], which was
shown to prevail over conventional single-stream HMM-based
recognition in challenging ASR scenarios. Our multi-stream
system decodes both, low-level MFCC features, and frame-
wise word/keyword estimates generated by a bidirectional Long
Short-Term Memory recurrent neural network (RNN). Long
Short-Term Memory (LSTM) networks were introduced in [13]
and can be seen as an extension of conventional recurrent neu-
ral networks that enables the modelling of long-range tempo-
ral context for improved sequence labelling. They are able to
store information in linear memory cells over a longer period
of time and can learn the optimal amount of contextual infor-
mation relevant for the classification task. An LSTM hidden
layer is composed of multiple recurrently connected subnets
(so-called memory blocks). Every memory block consists of
self-connected memory cells and three multiplicative gate units
(input, output, and forget gates). Since these gates allow for
write, read, and reset operations within a memory block, an
LSTM block can be interpreted as (differentiable) memory chip
in a digital computer. Further details on the LSTM principle can
be found in [14].

In recent years, the LSTM technique has been successfully
applied for a variety of speech-based pattern recognition tasks,
including phoneme classification [14], keyword spotting [15],
and emotion recognition [16].

Another shortcoming of standard RNNs is that they have
access to past but not to future context. This can be overcome
by using bidirectional RNNs, where two separate recurrent hid-
den layers scan the input sequences in opposite directions. The
two hidden layers are connected to the same output layer, which
therefore has access to context information in both directions.

For our multi-stream BLSTM-HMM recogniser, we use a
combination of the principle of bidirectional networks and the
LSTM technique (i e., bidirectional LSTM). In every time frame
t the multi-stream HMM uses two independent observations:
the MFCC features xt and the BLSTM word prediction feature
bt. The vector xt also serves as input for the BLSTM, whereas
the size of the BLSTM input layer corresponds to the dimen-
sionality of the acoustic feature vector. The vector of BLSTM
output activations ot contains one probability score for each
word in the vocabulary at each time step (vocabulary size V ).



bt is the index of the most likely word:

bt = argmax
w

(ot,1, ..., ot,w, ..., ot,V ). (8)

In every time step the BLSTM generates a word prediction ac-
cording to Equation 8, and the HMM models x1:T and b1:T

as two independent data streams. With yt = [xt bt] being the
joint feature vector consisting of continuous MFCC and discrete
BLSTM observations and the variable a denoting the stream
weight of the first stream (i. e., the MFCC stream), the multi-
stream HMM emission probability while being in a certain state
st can be written as

p(yt|st) =

[
M∑
m=1

cstmN (xt;µµstm,Σstm)

]a
× p(bt|st)2−a.

(9)
Thus, the continuous MFCC observations are modeled via a
mixture of M Gaussians per state while the BLSTM prediction
is modeled using a discrete probability distribution p(bt|st).
The indexm denotes the mixture component, cstm is the weight
of the m’th Gaussian associated with state st, and N (·;µµ,Σ)
represents a multivariate Gaussian distribution with mean vec-
tor µµ and covariance matrix Σ. The distribution p(bt|st) is
trained to model typical phoneme confusions that occur in the
BLSTM network.

4. System Parameterisation
4.1. Preprocessing and Fourier Transform

For NMF speech enhancement, audio signals were down-mixed
from stereo to mono by averaging channels and transformed to
the spectral domain by short-time Fourier Transformation us-
ing a window size of 64 ms (corresponding to 1024 samples at
a sample rate of 16 kHz) and 75 % overlap, i. e., 16 ms frame
shift. This kind of parameterisation has been proven to deliver
excellent results in speech enhancement [2, 3] at an acceptable
computational effort. We use the square root of the Hann func-
tion for windowing both in forward and backward transforma-
tion in order to reduce artifacts, as proposed e. g., in [1].

For extraction of MFCC features, we use the common pa-
rameterisation of 25 ms Hamming windows at 10 ms frame
shift.

4.2. Speech Dictionaries

In this contribution, we computed speech dictionaries for su-
pervised NMF by an algorithm that is particularly suited to
speaker-dependent small vocabulary speech recognition tasks,
as featured in the Challenge: The task is to decode utterances
from a reverberated and noisy version of the Grid corpus con-
taining voice command utterances [9]. Our approach is based
on the observation that convolutive NMF is very well suited
to modelling spectral sequences corresponding to words [17].
Thus, in our approach each dictionary entry corresponds to a
‘characteristic’ spectrogram of a certain word (R(s) = 51).
Furthermore, speaker-dependent dictionaries can be used for the
separation since the speaker identity is assumed to be known.

Consequently, the characteristic spectrograms are obtained
from the training set by convolutive NMF as follows. For each
of the 34 speakers, we used the forced alignments, obtained by
the baseline HMM-MFCC recogniser on the noise-free training
set of the CHiME corpus [9], to extract all occurrences of each
word occurring in the training data (51 words in total). Then,
for each speaker k ∈ {1, . . . , 34} and word w ∈ {1, . . . , 51},

Figure 2: Optimisation of adaptive NMF on development set:
Keyword recognition accuracies (KA) by SNR and on aver-
age (avg), for min-/max-adaptation strategies with T = 10
/ T = 5 versus non-adaptive NMF. Single-stream multi-
condition trained recogniser with MAP adaptation (cf. Section
4.5).
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we concatenated the magnitude spectra into a matrix T(s,k,w),
which was reduced to a characteristic spectrogram w(s,k,w)(p)
by a 1-component convolutive NMF,

T(s,k,w) ≈
P−1∑
p=0

w(s,k,w)(p)
p→

h(s,k,w), (10)

and formed a speaker-dependent dictionary

W(s,k)(p) = [w(s,k,1)(p) · · · w(s,k,51)(p)]. (11)

Thereby 100 NMF iterations were used. In our experiments,
the parameter P was set to 13 based on inspection of the train-
ing set: This corresponds to a spectrogram of a 256 ms signal
segment at 64 ms window size and 16 ms frame shift, which is
enough to model single words in most utterances, and thus pro-
vides a good compromise between modelling power and com-
putational complexity.

4.3. Noise Dictionaries

In contrast to the speech, the background noise is assumed to
be highly variable among test conditions. Thus, it is desir-
able to create a noise dictionary as general as possible. To this
end, we sub-sampled the set of training noise (approx. 4 hours)
available for the Challenge, selecting 4 000 random segments
of 256 ms length, concatenated them into a spectrogram T(n),
and reduced them to a dictionary W(n)(p). Analogous to the
speech dictionary, it contains 51 characteristic noise spectro-
grams (R(n) = 51).

We considered a factorisation of the whole training noise
provided for the Challenge as not feasible taking into account
space and time complexity. Note that in contrast to noise,
speech dictionaries can be constructed from all available data,
since the training set is subdivided by words and speakers.

4.4. Adaptation of Noise Dictionaries

To gain an upper performance benchmark for the proposed de-
noising approach, assuming that the particular type of back-



Figure 3: Multi-stream recogniser: Optimisation of MFCC
stream weight a on development set by average keyword recog-
nition accuracy (KA) across SNRs from -6 to 9 dB. Preprocess-
ing by non-adaptive NMF + bandpass filter.
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ground noise is known, we adapt the general noise dictionar-
ies by an exemplar-based approach. It is somewhat similar to
the concepts in [18], yet we extend it to convolutive NMF and
use the voice activity ground truth provided in the annotation
of development and test data. Precisely, in the separation of
test utterances j we use an adaptation dictionary consisting of
T spectrograms with P frames, calculated from the background
noise encountered before the utterance.

Then, we replace entries of the general noise dictionary ac-
cording to the (sum of the element-wise) d1 divergence of the
adaptation spectrograms given the dictionary entries. From that,
two adaptation methods can be derived, replacing according to
maximum (‘max-adaptation’) or minimum divergence (‘min-
adaptation’). Best results on the development set were obtained
by min-adaptation with T = 10 (see Figure 2), corresponding
to a context size of 2.56 s before each utterance. Overall, key-
word accuracy improvements by min-adaptation are most vis-
ible for lower SNRs (-6 and -3 dB) while max-adaptation per-
forms slightly better for higher SNRs (3 dB and above). Still,
none of these differences are significant according to a one-
tailed z-test (p > 0.05, sample size 7 200). In the ongoing,
adaptive NMF refers to min-adaptation with T = 10.

4.5. Single-Stream Recognisers

As we strive to evaluate source separation and speech recog-
nition separately, we integrated speech enhancement into a
sequence of increasingly complex speech recognisers, from
the Challenge baseline towards our full-featured multi-stream
BLSTM-HMM recogniser. The Challenge baseline uses stan-
dard 39-dimensional cepstral mean normalised MFCC features
including delta and acceleration coefficients and word-level
HMMs with varying number of HMM states (4–10) and 7-
component Gaussian mixtures per state. Speaker dependent
models are created by additional EM iterations using the train-
ing utterances for each speaker.

As a first step to improve the baseline recogniser, we modi-
fied the Mel filter bank for MFCC feature extraction with a cut-
off frequency of 5 000 Hz, which – along with the preemphasis
applied by default (coefficient 0.97) – results in bandpass (BP)

Figure 4: Development set: Average speaker ratio (SR) before
(base) and after NMF, and SR gain.
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filtering. Second, we opted for MAP adaptation (with factor
τ = 5) to create the speaker dependent models instead of addi-
tional EM iterations. Third, we included multi-condition train-
ing for increased noise robustness, by mixing all 17 000 train-
ing utterances with random segments of the 4 hours of training
noise, to enforce broad coverage of SNRs and noise character-
istics. The complete training cycle, including MAP adaptation,
is then performed using clean and noisy training data instead of
just using clean training data. Note that using the adaptation set
provided by the Challenge did not further improve our results on
the development set, probably due to its small size compared to
the full training set.

4.6. Multi-Stream BLSTM-HMM

In order to form the multi-stream BLSTM-HMM recogniser,
the multi-condition, MAP adapted single-stream recogniser was
enhanced by a BLSTM feature stream. The BLSTM network
was trained on framewise word targets obtained via HMM-
based forced alignment of the training set. As network input xt
we used cepstral mean normalised MFCC features enhanced by
band pass filtering. Similar to the network configuration used
in [8], the BLSTM network consisted of three hidden LSTM
layers (per input direction) with a size of 78, 150, and 51 hidden
units, respectively. Each LSTM memory block contained one
memory cell. For training we used a learning rate of 10−5 and
a momentum of 0.9. Zero mean Gaussian noise with standard
deviation 0.6 was added to the inputs during training in order to
improve generalisation. Prior to training, all weights were ran-
domly initialised in the range from -0.1 to 0.1. Input and output
gates used tanh activation functions, while the forget gates had
logistic activation functions. The network was trained on the
51 different word targets. Training was aborted as soon as no
improvement on the development set could be observed. For
the multi-stream decoder, we applied a stream weight variable
a = 1.3 that delivered best performance on the development set
(see Figure 3). While the network was trained using the same
(partly noisy) data used for building the multi-condition single-
stream recogniser, validation and decoding was performed us-
ing features from NMF-enhanced signals.

5. Results
5.1. Development Set

Before turning to automatic speech recognition results, we eval-
uate the noise reduction by our NMF-based source separation



Table 1: Development set: Keyword recognition accuracies [%]. Recognisers: Baseline, MAP speaker adaptation, and multi-condition
training (MCT); multi-stream (MS) BLSTM-HMM with MAP and MCT. Preprocessing by non-adaptive / adaptive NMF (ANMF, min-
adaptation, T = 10) and / or bandpass filtering (BP).

Recogniser Preprocessing SNR [dB] Mean
-6 -3 0 3 6 9

Baseline - 31.08 36.75 49.08 64.00 73.83 83.08 56.30
Baseline BP 34.42 40.42 51.42 65.25 75.25 83.75 58.42
Baseline NMF + BP 62.17 67.67 73.17 78.50 83.75 86.08 75.22
Baseline ANMF + BP 61.83 67.50 74.42 78.58 84.17 86.92 75.57
MAP - 45.58 48.67 62.08 73.92 82.75 88.25 66.88
MAP BP 46.58 52.08 63.83 74.58 82.25 89.00 68.05
MAP NMF + BP 71.33 73.92 79.00 83.17 87.00 89.00 80.57
MAP ANMF + BP 70.75 73.33 78.42 84.00 87.67 89.92 80.68
MCT + MAP - 56.92 61.08 71.50 81.25 88.92 92.75 75.40
MCT + MAP BP 54.83 62.42 72.00 80.50 87.00 90.75 74.58
MCT + MAP NMF + BP 73.58 77.33 82.17 84.25 88.58 90.00 82.65
MCT + MAP ANMF + BP 74.67 77.92 81.83 85.08 88.75 90.17 83.07
MS + MCT + MAP BP 69.83 75.83 83.67 88.75 92.58 94.83 84.25
MS + MCT + MAP NMF + BP 81.50 83.00 86.75 90.58 92.25 93.67 87.96
MS + MCT + MAP ANMF + BP 81.67 82.67 87.92 91.42 92.92 94.08 88.45

on the development set. As evaluation measure, we chose the
gain in speaker ratio (SR) proposed in [2] for evaluation of
speech de-noising:

SR(f) = 10 log10
r(f(t), s(t))

r(f(t), n(t))
(12)

where r denotes correlation, f(t) is the signal to be evaluated,
s(t) is the ground truth speech signal, and n(t) the ground truth
noise signal. n(t) was estimated by (monophonic) subtraction
of the clean speech signal from the noisy signal. The average SR
of the mixed signals per SNR (baseline), as well as the average
SR of the noisy signals enhanced by convolutive NMF, and the
corresponding SR gain are shown in Figure 4. Note that while
the baseline SR appears to be linear in SNR, these measures are
not equivalent. It turns out that the gain by NMF preprocessing
is especially high for low SNRs – for -6 dB, an average SR gain
of 8.7 dB is obtained.

Keyword recognition accuracies on the development set are
shown in Table 1. Gradually refined speech recognisers deliver
better and better performance on average across SNRs from -6
to 9 dB: 68.05 % KA with MAP adaptation, 74.58 % with multi-
condition training and MAP, and 84.25 % with the multi-stream
BLSTM-HMM recogniser (baseline: 56.30 %). On the other
hand, NMF is able to boost the performance of all recogniser
types, including the highly robust multi-condition, multi-stream
BLSTM-HMM recogniser.

As expected, the strongest improvements by (adaptive)
NMF are observed for the least robust recognisers, and vice
versa. Precisely, the relative gain in keyword accuracy com-
pared to simple bandpass filtering is 29.3 % for the baseline,
18.6 % for the MAP, 11.4 % for the multi-condition + MAP, and
5.0 % for the multi-stream BLSTM-HMM recogniser. All of
these improvements are highly significant according to a one-
tailed z-test (p < 0.001, sample size 7 200). Furthermore, the
gain by signal enhancement (bandpass filtering and NMF) de-
creases with increasing SNR; notably, for 6 and 9 dB, perfor-
mance of the multi-condition trained recogniser is lowered by
employing NMF and/or bandpass filtering. Overall, ASR re-
sults are correlated with the observation of the gain in speaker

ratio (Figure 4).
In summary, however, the combination of BLSTM-HMM

recognition with NMF-based signal enhancement, enhanced by
adaptive noise dictionaries, delivers best accuracy on the de-
velopment set. Thus, this system will be used for creating our
Challenge results on the final test set.

5.2. Final Test Set

Evaluation of source separation using the various recognisers on
the final test set (Table 2) reveals the same trends found on the
development set, despite the differences in acoustic conditions:
Note that for the development and test sets, different room im-
pulse responses have been used for articifial reverberation. The
best single-stream recogniser, along with adaptive NMF, deliv-
ers a remarkable keyword accuracy of 84.35 % (50.8 % relative
improvement over the baseline), while our full-featured ANMF-
BLSTM-HMM system delivers our final Challenge result of
87.86 % accuracy, reducing error rate by 72 % relative com-
pared to the baseline. In a fully realistic setting, that is, without
adapting NMF using voice activity ground truth, 87.28 % aver-
age keyword accuracy are obtained.

6. Conclusion
We have introduced the Munich system for the CHiME Chal-
lenge, which integrates NMF-based source separation into a
tandem BLSTM-HMM speech recogniser. On the test set, we
were able to outperform the Challenge baseline by 55 % rela-
tive (31 % absolute) across six different SNRs from -6 to 9 dB.
Thereby we have enforced reproducibility of our results by us-
ing open-source software.

By evaluating source separation with a sequence of grad-
ually refined speech recognisers, we could show that robust
speech recognition architectures and source separation con-
tribute to recognition performance in a complementary way.
Furthermore, we have been able to demonstrate the portabil-
ity of our system across acoustic conditions, including different
types of reverberation, stationary and non-stationary noise.



Table 2: Final test set: Keyword recognition accuracies [%]. Recognisers: Baseline, MAP speaker adaptation, and multi-condition
training (MCT); multi-stream (MS) BLSTM-HMM with MAP and MCT. Preprocessing by non-adaptive / adaptive NMF (ANMF)
and / or bandpass filtering (BP), cf. Table 1.

Recogniser Preprocessing SNR [dB] Mean
-6 -3 0 3 6 9

Baseline - 30.33 35.42 49.50 62.92 75.00 82.42 55.93
Baseline BP 34.08 37.67 53.58 64.25 76.58 83.08 58.21
Baseline NMF + BP 64.17 69.17 76.42 80.00 84.17 87.67 76.93
Baseline ANMF + BP 63.50 68.33 77.42 79.50 83.50 87.33 76.60
MAP - 41.08 47.08 61.67 73.83 81.75 89.83 65.87
MAP BP 44.50 49.00 64.42 71.17 81.17 88.58 66.47
MAP NMF + BP 71.83 76.17 82.33 85.50 87.75 89.17 82.13
MAP ANMF + BP 71.92 75.08 81.75 86.42 87.00 90.33 82.08
MCT + MAP - 55.08 61.17 71.17 81.67 87.42 92.50 74.84
MCT + MAP BP 54.50 61.08 72.75 81.67 86.83 91.25 74.68
MCT + MAP NMF + BP 75.58 79.25 84.08 87.67 88.33 90.58 84.25
MCT + MAP ANMF + BP 74.67 80.42 83.92 88.67 87.92 90.50 84.35
MS + MCT + MAP BP 68.50 75.58 82.17 88.33 90.58 93.92 83.18
MS + MCT + MAP NMF + BP 80.33 83.50 86.67 90.00 90.25 92.92 87.28
MS + MCT + MAP ANMF + BP 79.83 84.00 87.92 90.67 91.83 92.92 87.86

Future work should focus on integration of NMF activation
features in a third feature stream, and extension of the convo-
lutive model to allow different lengths of dictionary entries, in
order to further enhance portability of the system.
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