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Abstract

We investigate strategies for selection of databases and
instances for training cross-corpus emotion recognition
systems, that is, systems that generalize across different
labelling concepts, languages and interaction scenarios.
We propose objective measures for prototypicality based
on distances in a large space of brute-forced acoustic fea-
tures and show their relation to the expected performance
in cross-corpus testing. We perform extensive evaluation
on eight commonly used corpora of emotional speech
reaching from acted to fully natural emotion and limited
phonetic content to conversational speech. In the result,
selecting prototypical training instances by the proposed
criterion can deliver a gain of up to 7.5 % unweighted
accuracy in cross-corpus arousal recognition, and there is
a correlation of .571 between the proposed prototypicality
measure of databases and the expected unweighted accu-
racy in cross-corpus testing by Support Vector Machines.

1. Introduction

Cross-corpus emotion recognition from speech requires
systems that generalize across different types of labelling,
different languages, and different type of data reaching
from acted to fully natural emotion and limited phonetic
content to conversational speech. While there is a growing
amount of emotional speech data available, the question
arises how to best exploit them. The dimensional space
offers us the ability to map data labelled in emotions as
different as joyful and anxious on dimensions as arousal
and valence for unified modelling. Still, the challenge
remains to find pattern recognition techniques that gener-
alize across interaction and application scenarios.

In this paper, we investigate optimal techniques for se-
lecting training data in cross-corpus emotion recognition.
Methods for pruning atypical instances from training have
been thoroughly explored in pattern recognition [1] and
particularly speech emotion recognition [4]; still, such
experiments are usually limited to training and testing
on the same data set. On the other hand, first studies on
feature selection in cross-corpus emotion recognition sug-
gest that training optimizations do not always generalize
across different data sets [5]. In this paper, our goal is to

find objective measures for databases and instances that
are correlated with the expected accuracy in cross-corpus
emotion recognition. Particularly, we deal with the ques-
tion whether selecting the most ‘prototypical’ instances
and databases for model building enables generalization
across corpora.

We structured the remainder of this contribution as
follows: The data sets for experimentation are described
and the mapping of their original and diverse emotion la-
belling to binary arousal and valence tags is detailed out in
Sec. 2. Then, the acoustic feature brute-forcing by our ope-
nEAR toolkit and classifier training are briefly presented
in Sec. 3. Sec. 4 introduces our strategies for database
and instance selection and describes experimental results.
Finally, we conclude in Sec. 5.

2. Eight Emotional Speech Databases

As databases, we chose eight among the most frequently
used that range from acted over induced to spontaneous
affect portrayal. For better comparability of obtained per-
formances among corpora, we additionally map the di-
verse emotion groups onto the two most popular axes in
the dimensional emotion model as in [12, 14]: arousal
(i.e., passive (‘) vs. active (“+)) and valence (i. e., neg-
ative (“-”) vs. positive (“+7)). These mappings are not
straightforward—we favor better balance among target
classes. We further discretized into the four quadrants (q)
14 of the arousal-valence plane for continuous labeled
corpora. In the following, each set is shortly introduced
including the mapping to binary arousal/valence by “+”
and “-” per emotion and its number of instances.

The Danish Emotional Speech (DES) database [3]
contains professionally acted nine Danish sentences, two
words, and chunks that are located between two silent
segments of two passages of fluent text. Emotions contain
angry (+/-, 85), happy (+/+, 86), neutral (-/+, 85), sadness
(-/-, 84), and surprise (+/+, 79). The Berlin Emotional
Speech Database (EMOD) [2] features professional ac-
tors speaking ten emotionally undefined sentences. 494
phrases are commonly used: angry (+/-, 127), boredom
(-/-,79), disgust (-/-, 38), fear (+/-, 55), happy (+/+, 64),
neutral (-/+, 78), and sadness (-/-, 53). The eNTERFACE
(eNTER) [10] corpus consists of recordings of naive sub-



Table 1: Overview of the selected emotion corpora (Lab: labelers, Rec: recording environment, f/m: (fe-)male subjects).

Corpus | Lang. Speech  Emot. # Arousal # Valence #All | hrmm | #m #f | #Lab | Rec kHz
Y
ABC German  fixed acted 104 326 213 217 430 1:15 4 4 3 | studio 16
AVIC English  free natural | 553 2449 553 2449 | 3002 1:47 11 10 4 | studio 44
DES Danish  fixed acted 169 250 169 250 419 0:28 2 2 — | studio 20
EMOD | German fixed acted 248 246 352 142 494 0:22 5 5 — | studio 16
eNTER | English fixed induced | 425 852 855 422 | 1277 1:00 34 8 2 | studio 16
SAL English  free natural | 884 808 917 779 | 1692 1:41 2 2 4 | studio 16
SUSAS | English  fixed natural 701 2892 | 1616 1977 | 3593 1:01 4 3 — | noisy 8
VAM German  free natural | 501 445 875 71 946 0:47 15 32 6/17 | noisy 16
jects from 14 nations speaking pre-defined spoken con- UA [%] Test on 7 remaining databases
tent in English. The subjects listened to six successive Train on Arousal Valence
short stories eliciting a particular emotion out of angry min  max mean | min max mean
(+/-, 215), disgust (-/-, 215), fear (+/-, 215), happy (+/+, ABC 525 73.6 59.8 | 47.8 585 533
207), sadness (-/-, 210), and surprise (+/+, 215). The Air- AVIC 55,0 66.6 595 | 437 56.6 51.7
plane Behaviour Corpus (ABC) [13] is based on induced DES 588 804 666 | 49.2 641 548
mood by pre-recorded announcements of a vacation (re- EMOD | 549 729 625 | 456 605 513
turn) flight, consisting of 13 and 10 scenes. It contains eNTER | 51.1 684 60.0 | 489 579 543
aggressive (+/-, 95), cheerful (+/+, 105), intoxicated (+/-, SAL 54.1 7677 63.8 | 470 578 514
33), nervous (+/-, 93), neutral (-/+, 79), and tired (-/-, 25) SUSAS | 522 695 57.1 | 47.1 563 51.7
speech. The Speech Under Simulated and Actual Stress VAM 60.6 80.6 67.7 | 488 513 502

(SUSAS) database [9] serves as a first reference for spon-
taneous recordings. Speech is additionally partly masked
by field noise in the chosen actual stress speech samples
recorded in subject motion fear and stress tasks. SUSAS
content is restricted to 35 English air-commands in the
speaker states high stress (+/-, 1 202), medium stress (+/-
, 1276), neutral (-/+, 701), and scream (+/-, 414). The
Audiovisual Interest Corpus (AVIC) [11] consists of spon-
taneous speech and natural emotion. In its scenario setup,
a product presenter leads subjects through a commercial
presentation. AVIC is labelled in “level of interest” (loi)
1-3 having loil (-/-, 553), 10i2 (+/+, 2279), and 10i3 (+/+,
170). The Belfast Sensitive Artificial Listener (SAL) data
contains natural conversations between humans and vir-
tual agents. Per quadrant the samples are: ql (+/+, 459),
q2 (-/+, 320), q3 (-/-, 564), and g4 (+/-, 349). Finally, the
Vera-Am-Mittag (VAM) corpus [7] consists of recordings
taken from a German TV talk show. The labeling bases
on a discrete five point scale for valence, activation, and
dominance. Samples among quadrants are ql (+/+, 21),
q2 (-/+, 50), g3 (-/-, 451), and g4 (+/-, 424).

Further details on the corpora are summarized in Table
1 and found in [5, 12]. Note that in the ongoing, training
data is balanced by up-sampling to unit class distribution.

3. Acoustic Features and Classifier

We employ acoustic feature vectors of 6 552 dimensions
extracted by our open source openEAR toolkit [6], apply-
ing 39 functionals to 56 acoustic Low-Level Descriptors
(LLDs) including first and second order delta regression

Table 2: Min(imum), max(imum) and mean unweighted
accuracy (UA) when training on one of 8 databases and
testing on the 7 remaining databases. Binary classification
by linear SVM.

coefficients. LLDs comprise spectral, cepstral, voice qual-
ity, and pitch features. For straightforward reproducibility,
the feature set corresponds to the “emo-large” configura-
tion delivered with the openEAR toolkit!. As classifier, we
use Support Vector Machines constructed by Sequential
Minimal Optimization with a complexity of 0.05. The im-
plementation in the Weka toolkit [8] was used for further
reproducibility.

4. Database and Instance Selection

We evaluated our experiments in terms of unweighted
accuracy (UA), which is the average recall of the ‘+’ and
‘-> classes, as we are dealing with (sometimes heavily)
unbalanced classification problems (cf. Table 1). The
feature space was z-normalized to zero mean and unit
variance for each corpus.

4.1. Database Selection

For each of the eight databases, we evaluated the perfor-
mance in terms of UA in cross-corpus evaluation on the
seven other databases. Results are shown in Table 2. For

Ihttp://www.openaudio.eu
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Figure 1: Training database selection: Mean unweighted accuracy (UA) in cross-corpus testing—i. e., training on one
database and testing on the remaining seven—and its relation to the Euclidean distance of class centers of ‘+” and ‘-’
instances (after z-normalization), for arousal (a) and valence (b).

arousal—interestingly—training with the VAM database
of spontaneous, natural speech yields highest average UA
(67.7 %), minimum UA (60.6 % on SUSAS), and max-
imum UA (80.6 % on DES). The second best training
corpus is the DES database of acted emotions (66.6 %
mean UA). In contrast to arousal, recognition of valence
seems to be very challenging, resulting in no more than
54.8 % average UA, which is achieved by training with
DES. In fact, it is well known that valence recognition
from purely acoustic features is challenging, and even
more SO in Cross-corpus testing.

In the following, we investigated the relation between
the ‘prototypicality’ of a database and the expected UA
in cross-corpus emotion recognition when using that
database for training. As a measure of prototypicality, we
calculated the Euclidean distance d of the class center of
‘positive’ instances, X+ = E{x }, and the one of ‘nega-
tive’ instances, X_ = E{x_}. Figure la shows the results
for recognition of positive and negative arousal. Gener-
ally, training with databases that exhibit large distances
between positive and negative classes delivers higher UA;
notably, this prototypicality in the feature space does not
exactly correspond to the notion of acted vs. spontaneous
emotion: Consider the similar prototypicality measure
of the VAM and DES databases. Furthermore, training
on the highly prototypical EMOD only delivers mediocre
results (62.5 %), seemingly due to insufficient generaliza-
tion. Overall, the Spearman (rank) correlation between
d(X4,X_) and the mean UA is p = .571, which is how-
ever not of statistical significance due to the small sample
size (8).

Analogously, results for valence recognition are shown
in Figure 1b. As opposed to the arousal case, for valence
there is no clear trend as to whether one can expect a
gain by using more prototypical databases as training data
(Spearman’s p = —.060). Still, the lower recognition

rates compared to arousal are reflected in generally smaller
distance between the class centers.

4.2. Instance Selection

In a second experiment, we evaluated the effect of re-
stricting the training to prototypical instances, for each
database. To this end, we computed for each positive in-
stance x 1 the distance to the class center of the negative
instances, d(x4,X_). Then, we computed the quartiles
of the distribution of d(x,X_) and selected only the
instances corresponding to the fourth quartile (in other
words, the 25 % most prototypical positive instances). An
analogous procedure was followed for selection of nega-
tive instances, which were selected according to the dis-
tance d(x_, X ) from the positive class center. For each
database, the selected positive and negative instances were
joined, and the resulting model was evaluated on the seven
other databases. We repeated the experiment using the
50 % (quartiles 3 and 4) and 75 % (quartiles 2—4) most
prototypical instances, respectively.

Results are shown in Figure 2. For arousal recogni-
tion (Figure 2a), one gains almost 2 % absolute UA on
average across the eight databases when using only the
50 % most prototypical instances for training—this result
suggests that the ‘manual’ process of instance selection is
complementary with the instance weighting performed in
SVM optimization. The improvement is most visible for
training with the ABC database, where an absolute gain
of 7.5 % UA is achieved. However, generally a drop in
performance occurs when further restricting the amount
of training data.

Furthermore, cross-corpus valence recognition (Figure
2b) cannot generally (i. e., on average) be improved by
selecting training instances using the proposed method,
despite slight UA gains for the eNTER, EMODB, ABC
and VAM databases.
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Figure 2: Training instance selection: Relation between mean UA in cross-corpus testing—i. e., training on one database
and testing on the remaining seven—and the amount of training data chosen in order of prototypicality, measured as the

Euclidean distance from the class center of the opposite class.

5. Conclusions

We have introduced methods for database and instance
selection to better exploit the increasing amount of train-
ing material available for emotion recognition. Fore-
most, we could demonstrate that instance selection
for binary arousal recognition by our prototypicality
measure—based on Euclidean distance from the opposite
class center—generalizes across eight commonly used
databases of emotional speech. Furthermore, we have
shown an effective method to compute prototypicality of
databases, which is correlated with average performance
in cross-corpus arousal recognition. Yet, these trends are
not reflected in cross-corpus valence recognition: Neither
could instance selection improve performance, nor could
a correlation be found between accuracy and database
prototypicality.

Future work should focus on unsupervised methods for
selection of training data that are suitable for unsupervised
or semi-supervised learning from emotional speech.
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