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Abstract. This paper proposes a real-time speech enhancement frame-
work working in presence of multiple sources in reverberated environ-
ments. The aim is to automatically reduce the distortions introduced
by room reverberation in the available distant speech signals and thus
to achieve a significant improvement of speech quality for each speaker.
The overall framework is composed by three cooperating blocks, each
one fulfilling a specific task: speaker diarization, room-impulse response
identification and speech dereverberation. In particular the speaker di-
arization algorithm is essential to pilot the operations performed in the
other two stages in accordance with speakers’ activity in the room. Ex-
tensive computer simulations have been performed by using a subset of
the AMI database: Obtained results show the effectiveness of the ap-
proach.
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1 Introduction

Multi-party meetings surely represent an interesting real-life acoustic scenario
where speech-based Human-Machine interfaces, which have been gaining an in-
creasing scientific and commercial interest worldwide, find application. In this
kind of scenario, multiple speakers are active (sometimes also simultaneously)
in a reverberated enclosure. The presence of overlapping speech sources and of
the reverberation effect due to convolution with room Impulse Responses (IRs)
strongly degrades the speech quality and a strong signal processing intervention
is required on purpose. Moreover, another important issue in this type of systems
is represented by the real-time constraints: The speech information often needs
to be processed while the audio stream becomes available, making the complete
task even more challenging.



Several solutions based on Multiple-Input Multiple-Output (MIMO) systems
have been proposed in the literature to address the dereverberation problem un-
der blind conditions [1]. However, up to the authors’ knowledge, very few con-
tributions are targeted to face the problem in multi-party meetings, also taking
the real-time constraints into account. The main issue to solve consists in coor-
dinating the blind estimation of room IRs with the speech activity of different
speakers. In this work a real-time speaker diarization algorithm has been im-
plemented for this purpose. Its aim is first to inform when and how the blind
channel estimation algorithm has to operate. Once the IRs are estimated, the
dereverberation algorithm can finalize the process and allows to yield speech
signals of significantly improved quality. Also, at this level the information pro-
vided by the speaker diarizer allows the adaptive filter in the dereverberation
algorithm to work only when speech segments of the same speaker occur at the
same channel.

It must be observed that some of the authors [2, 3] have recently developed a
real-time framework able to jointly separate and dereverberate signals in multi-
talker environments, but the speaker diarization stage has been used at most as
an oracle and not as a real algorithm. In [4, 5], the speaker diarization system
has been included but it is not able to work in blind mode, since it needs the
knowledge of microphone position. The present contribution is aimed to face
these lacks and represents an additional step in the automatization process of
the overall speech enhancement framework in real meeting scenarios.

In order to evaluate the achievable performances, several simulations have
been performed employing a subset of the AMI corpus [6]: The speech quality
improvement, assessed by means of two different objective indexes, allowed the
authors to positively conclude about the approach effectiveness. Nevertheless,
there is space for improvements and some refinements are foreseen in the near
future to increase the framework robustness to the speaker diarization errors.

The paper outline is the following. In Section 2 the overall speech enhance-
ment framework, aimed at dereverberating the speech sources is described. Sec-
tion 3 is targeted to discuss the experimental setup and performed computer
simulations. Conclusions are drawn in Section 4.

2 The proposed Speech Enhancement Framework

Assuming M independent speech sources and N microphones; the relationship
between them is described by an M x N MIMO FIR (Finite Impulse Response)
system. According to such a model and denoting (-)” as the transpose operator,
the following equations (in the time and z domain) for the n-th microphone
signal hold:

zn (k) = Z b Sm (K, L), Xn(2) = Z Hy (2) S (2), (1)

where hym = [hnm.o Puma -« ham.pn,—1]7 is the Ly-taps IR between the n-th
microphone and m-th source s,,(k, L) = [$m (k) sm(k—1) ... spm(k—Lp+1)]7,
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Fig. 1. Block diagram of the proposed framework.

with (m = 1,2,.... M, n = 1,2,..., N). The objective is recovering the original
clean speech sources by means of a ‘context-aware’ speech dereverberation ap-
proach: Indeed, such a technique has to automatically identify who is speaking,
accordingly estimating the unknown room IRs and then apply a knowledgeable
dereverberation process to restore the original speech quality. To achieve such a
goal, the proposed framework consists of three main stages: speaker diarization
(SDiar), blind channel identification (BCI) speech dereverberation (SDer). As
aforementioned, something close has been proposed by part of the authors of
this contribution in the recent past [2, 3], but with two noteworthy differences:

— A real speaker diarization algorithm has never been included into the speech
enhancement framework operating in multi-party meetings: Indeed in [3],
the SDiar has been assumed to operate according to an oracle fashion. Here,
SDiar takes as input the microphone observables and for each frame, the
output P; is 1 if the i-th source is the only active, and 0 otherwise. In such
a way, the framework is able to detect when to perform or not to perform
the required operation. Both the BCI and the SDer take advantage of this
information, activating the estimation and the dereverberation process, re-
spectively, only when the right speaker is present in the right channel. It is
important to point out that the usage of speaker diarization algorithm allows
to consider the system composed by the only active source and the N mi-
crophones as a Single-Input Multiple-Output (SIMO) which can be blindly
identified in order to perform the dereverberation process.

— Here the separation stage has not been comprised: Indeed this stage fulfils
its task when overlapping segments occur and these segments need to be
automatically detected by means of a specific procedure within the SDiar
block. Future works will thus be targeted to develop an overlap-detector
algorithm in order to integrate the separation stage into the algorithmic
architecture.

The block diagram of the proposed framework is shown in Fig. 1. The three
aforementioned algorithmic stages are now briefly described.



Blind Channel Identification Stage. Considering a real-time scenario adap-
tive filtering techniques are the most suitable. In particular the so-called Un-
constrained Normalized Multi-Channel Frequency-domain Least Mean Square
algorithm (UNMCFLMS) [7] represents an appropriate choice in terms of esti-
mation quality and computational cost. Though allowing the estimation of long
IRs, the UNMCFLMS requires a high input signal-to-noise ratio. Here the noise
free case have been assumed and future developments will consider some refine-
ment to make the algorithm work also in presence of significant noise power.

Speech Dereverberation Stage. Given the SIMO system corresponding to
source S, let us consider the polynomials G5, »(z),n =1,2,..., N as the dere-
verberation filters to be applied to the SIMO outputs to provide the final esti-
mation of the clean speech source s,,, according to the following:

N
Spn(z) = Z Gs,, n(2) X0 (2). (2)
n=1

The dereverberation filters can be obtained using the well known Bezout’s The-
orem. However, such a technique requires a matrix inversion that, in the case
of long IRs, can be a heavy operation in terms of computational cost. Instead,
here an adaptive solution, as presented in [8], is efficiently adopted in order to
satisfy the real-time constraints.

Speaker Diarization Stage. The algorithm taken here as reference is the one
proposed in [9], which consists in segmenting liverecorded audio into speaker-
homogeneous regions with the goal of answering the question “who is speaking
now?”. For the system to work online, the question has to be answered on small
chunks of the recorded audio data, and the decisions must not take longer than
real-time. In order to do that, two distinct operating modes are foreseen for the
SDiar system: The training and the online recognition one.

In training mode, the user is asked to speak for one minute. The voice is
recorded and transformed in the Mel-Frequency Cepstral Coefficient (MFCC)
features space. The speech segments detected by means of a Ground-truth Voice
Activity Detector (acting as SDiar entry-algorithm in both operating modes)
are then used to train a Gaussian Mixture Model (GMM), by means of the
Expectation-Maximization (EM) algorithm. The number of Gaussians is 100
and the accuracy threshold value (to stop EM iterations) equal to 10%.

In the actual recognition mode, the system records and processes chunks of
audio as follows: At a first stage, MFCC features are extracted and Cepstral
Mean Subtraction (CMS) is applied (to deal with stationary channel effects).

In the subsequent classification step, the likelihood for each set of features is
computed against each set of Gaussian Mixtures obtained in the training step.
As stated in [9], 2's chunks of audio and a frame-length of 25 ms (with frame-shift
equal to 10 ms) have been used, meaning that a total of 200 frames are examined
to determine if an audio segment belongs to a certain speaker in the non-speech
model. The decision is reached using majority vote on the likelihoods.
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Fig. 2. Room setup.

3 Computer Simulations

The overall framework depicted in Fig. 1 has been developed on a freeware
software platform, namely NU-Tech [10], suitable for real-time audio processing.
NU-Tech allows the developer to focus on the algorithm implementation without
worrying about the interface with the sound card. The ASIO protocol is sup-
ported to guarantee low latency times. NU-Tech architecture is plug-in based:
An algorithm can be implemented in C++ language to create a NUTS (NU-Tech
Satellite) that can be plugged in the graphical user interface.

The acoustic scenario under study is made of an array of five microphones
placed on the meeting table (located in a small office) and four speakers around
them, as depicted in Fig. 2. A similar setup is used in the AMI [6] sub-corpus
addressed in simulations described later on. Such a corpus contains the ‘IS’
meetings, well suited for evaluation of algorithms working in multi-party con-
versational speech scenarios: Indeed they have been used in [9] to test the per-
formances of the speaker diarization system.

The headset recordings of this database have been used as original speech
sources and then convolved with IRs generated using the RIR Generator tool
[11], thus synthetically generating the microphone signals. No background noise
has been added. Three different reverberation conditions have been taken into
account corresponding to Tgg = 120, 240, 360 ms respectively, with IRs 1024 taps
long. The real-time factor corresponding to this parametrization is equal to 0.6,
split into 0.15 for SDiar and 0.45 for both BCI and SDer.

Two quality indexes have been used to evaluate the algorithm performances.
First the Normalized Segmental Signal-to-Reverberation Ratio (NSegSRR) has
been used, which is defined as follows [1]:

Sm
NSegSRR = 101log;, <||(1/a|)|§ ”_2 ol ) , m=1,....M (3)
m m |2




where, s, and §,,, are the desired direct-path signal and recovered speech signal
respectively and « is a scalar assumed stationary over the duration of the mea-
surement. Of course, in calculating the NSegSRR value, the involved signals are
assumed to be time-aligned. The higher the NSegSRR value, the better it is.

Finally, to evaluate the BCI algorithm performances, the Normalized Pro-
jection Misalignment (NPM) has been used:

NPM (k) = 201ogyq ([le (F)[I/[hl]), (4)

where e(k) = h— %ht(k) is the projection misalignment, h is the real IR
vector whereas h;(k) is the estimated one at the k-th iteration (i.e., the frame

index). In this case, the lower the NPM value, the better it is.

3.1 Experimental Results

Computer simulations discussed in this section are related to the meeting I51009b
of the corpus [6]. It has a total length of 33'15” and all the four participants are
female speakers. The amount of speaking time for each speaker, including over-
lap, is 7747",5'10”, 720", 9’00 for speaker s1, s2, s3 and s4 respectively, whereas
the total overlap is 3'05".

As stated in previous section, three distinct acoustic scenarios have been
addressed, corresponding to the aforementioned T values: For each of them the
non-processed and processed cases have been evaluated. Moreover two operating
modes for the SDiar system have been considered: ‘oracle’ (diarization coincides
with manual AMI annotations) and ‘real’ (speakers’ activity is detected by means
of the algorithm described in Section 2).

Experimental results presented in Table 2, clearly show that consistent NPM
and NSegSRR improvements are registered in processed audio files due to the use
of the proposed algorithmic framework. The reported values have been calculated
assuming that all algorithms have reached convergence, i.e. considering the last
2 seconds of each speaker. NPM values have to be referred to an initial value
of about 0dB, obtained initializing the overall channel IRs vector to satisfy the
unit-norm constraint [7] while NSegSRR values for the non-processed audio files
are reported in Table 1.

Table 1. NSegSRR values for non-processed audio files of meeting 151009b.

NSegSRR (dB)

Teo $1 S2 S3 S4
120 ms -4.98 -4.77 -6.78 -4.18
240 ms -6.11 -6.45 -20.06 -9.59
360 ms -6.61 -7.56 -27.55 -11.76

With regards to Table 3, the SDiar system has shown a Diarization Error
Rate (DER) [9] equal to: 6.36% (Ts0 = 120ms), 6.61% (Tgo = 240ms) and



7.16% (Teo = 360ms). The speech enhancement framework performances de-
crease when the real SDiar system is employed: this is mainly due to the occur-
rence of speaker errors (i.e. the confusion of one speaker identity with another
one) which makes the BCI algorithm convergence problematic, thus reducing the
dereverberation capabilities of the SDer procedure. Nevertheless still significant
improvements are obtained w.r.t. the results attained in the non-processed case
study (see Table 1). Moreover, it must also be underlined that IRs could be
estimated during the SDiar training phase (performed using 60s of speech for
each speaker), thus accelerating the overall system convergence fulfilment in the
real testing phase. However in this way the authors want to stress the fact that
the IRs can be estimated continuously even if some changes, such as speaker
movements, occur in the room. Similar results have been obtained with other
meeting data and thus they have not been reported for the sake of conciseness.

Table 2. ‘Oracle’ Speaker Diarization case study: NPM and NSegSRR values for dere-
verberated audio files of meeting 1S51009b.

NPM (dB) NSegSRR (dB)

Ts0 s1 S2 S3 S4 s1 S2 s3 S4
120 ms -13.23 -3.09 -6.16 -9.02 6.65 5.83 5.11 6.67
240 ms -10.96 -1.70 -6.74 -10.19 7.00 1.29 5.68 6.69
360 ms -11.52 -1.90 -7.83 -12.69 6.87 1.07 5.25 5.54

Table 3. ‘Real’ Speaker Diarization case study: NPM and NSegSRR values for dere-
verberated audio files of meeting 151009b.

NPM (dB) NSegSRR (dB)

Tso0 s1 S2 S3 S4 s1 S2 83 S4
120 ms -12.27 -0.69 -1.99 -7.80 3.52 2.97 2.21 8.11
240 ms -6.47 -0.20 -1.08 -4.05 -0.17 -1.13 -0.84 0.25
360 ms -4.48 -0.11 -0.67 -2.75 -3.06 -4.23 -5.04 -2.90

4 Conclusions

In this paper, an advanced multi-channel algorithmic framework to enhance the
speech quality in multi-party meetings scenarios has been developed. The overall
architecture is able to blindly identify the impulse responses and use them to
dereverberate the distorted speech signals available at the microphone. A speaker
diarization algorithm is also part of the framework and is needed to detect the
speakers’ activity and provide the related information to steer the blind channel
estimation and speech dereverberation operations in order to optimize the per-
formances. All the algorithms work in real-time and a PC-based implementation
of them has been discussed in this contribution. Performed simulations, based
on a subset of the AMI corpus, have shown the effectiveness of the developed
system, making it appealing for applications in real-life human-machine interac-
tion scenarios. However, as aforementioned, some refinements to make the BCI



algorithm more robust to errors in speakers’ activity detection are currently un-
der test. As future works, the impact of noise will be considered and suitable
procedures will be developed to reduce its impact. Moreover, the application of
the proposed framework in keyword spotting [12], dominance estimation [13],
emotion recognition [14] tasks or similar will be analysed.
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