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Abstract. Max-stable processes have proved to be useful for the statistical modelling of spatial
extremes. Several families of max-stable random fields have been proposed in the literature.
One such representation is based on a limit of normalised and rescaled pointwise maxima of
stationary Gaussian processes that was first introduced by Kabluchko et al. (2009). This paper
deals with statistical inference for max-stable space-time processes that are defined in an
analogous fashion. We describe pairwise likelihood estimation, where the pairwise density of
the process is used to estimate the model parameters. For regular grid observations we prove
strong consistency and asymptotic normality of the parameter estimates as the joint number
of spatial locations and time points tends to infinity. Furthermore, we discuss extensions to
irregularly spaced locations. A simulation study shows that the proposed method works well
for these models.

1. Introduction

Max-stable processes have proved to be useful in the modelling of spatial extremes. Typi-
cally, meteorological extremes like heavy rainfall or extreme wind speeds are modelled using
extreme value theory. As an example consider radar rainfall measurements which are given
on a grid for several time points. To analyse the extremal dependence structure in space
and time one can take maxima of the rainfall measurements over several locations and over
a certain time range as for instance daily maxima.

Several families of max-stable processes have been proposed in the literature including,
for example, Brown and Resnick (1977), de Haan (1984), Kabluchko et al. (2009), and
Schlather (2002). Recently, models for extreme values observed in a space-time setting
have generated a great deal of interest. First approaches can be found in Davis and Mikosch
(2008), Huser and Davison (2012), Kabluchko (2009), and Davis et al. (2011).

In this paper, we follow the approach considered in Davis et al. (2011), who extend
the max-stable process introduced in Kabluchko et al. (2009) to a space-time setting. The
process is constructed as the limit of normalised and rescaled maxima of independent replica-
tions of some stationary Gaussian space-time process. The underlying correlation function
of the Gaussian process is assumed to belong to a parametric model, whose parameters
describe smoothness of the correlation function near the origin. As pointed out in Davis
et al. (2011), the resulting parametric model is very general since the condition imposed
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is satisfied by a broad class of correlation functions. The limit process is then given by
a Brown-Resnick process with a specific extremal dependence structure resulting from the
assumption on the underlying correlation function.

The main difficulty in deriving parameter estimates in such models is the fact that
the finite-dimensional distribution function and, thus, the density is intractable, which
precludes the use of standard maximum likelihood procedures. On the other hand, pairwise
likelihood methods, where only the pairwise density is needed, can be implemented. These
methods go back to Besag (1974), and there is an extensive literature available dealing with
applications and properties of the estimates, see for example Cox and Reid (2004), Lindsay
(1988), Varin (2007), or Varin and Vidoni (2005). Recent work concerning the application of
pairwise likelihood methods to max-stable random fields can be found in Huser and Davison
(2012) and Padoan et al. (2009).

We first study the asymptotic behaviour of the pairwise likelihood estimates for the
Brown-Resnick process for locations which lie on a regular grid and equidistant time points.
In contrast to previous studies we assume a spatial and temporal dependence structure
and show consistency and asymptotic normality of the pairwise likelihood estimates for a
jointly increasing number of spatial locations and time points. In addition, theorems in
the literature addressing asymptotic properties for pairwise likelihood estimates often have
restrictive assumptions which might not be reasonable in practical applications. For the
setting considered in this paper very weak assumptions are sufficient. In particular, we only
need standard assumptions on the parameter space and an identifiability condition for the
pairwise density. In addition we discuss two extensions of our results to settings, where
locations are irregularly spaced.

Our paper is organized as follows. In Section 2 we introduce the max-stable space-time
process for which inference properties will be considered in subsequent sections. Section
3 describes pairwise likelihood estimation and the particular setting for our model. In
Sections 4 and 5 we prove strong consistency and asymptotic normality, when locations
lie on a regular grid and for equidistant time points. In Section 6 we discuss two possible
ways of redefining the set of spatial locations, which can be irregularly spaced, for which
consistency and asymptotic normality of the pairwise likelihood estimates still holds. A
simulation study evaluating the performance of the estimates is presented in Section 7.

2. Description of the model

We start with the process that will be used for modelling extremes in space and time; details
can be found in Davis et al. (2011). Let

{
Z(s, t), s ∈ Rd, t ∈ [0,∞)

}
denote a stationary

space-time Gaussian process on Rd × [0,∞) with mean zero and variance one. Stationarity
here means that for all h ∈ R

d and u ≥ 0, the process {Z(s+ h, t+ u), s ∈ R
d, t ∈ [0,∞)}

has the same finite-dimensional distributions as Z. For the correlation function

ρ(h, u) = E [Z(s, t)Z(s+ h, t+ u)] ,

where h ∈ Rd is the spatial lag and u ≥ 0 is the time lag, we make the following assumption
that will be used throughout the paper.

Assumption 2.1. There exist sequences of constants sn → 0, tn → 0 as n → ∞, such
that

(logn)(1 − ρ(snh, tnu)) → δ(h, u) > 0, as n→ ∞.
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Assumption 2.1 is natural in the context of stationary space-time models; the correlation
function tends to one at a certain rate as the space-time lag approaches zero. The following
proposition is a space-time extension of a result in Kabluchko et al. (2009), which was also
considered in Davis et al. (2011). It can also be derived from Theorem 2 together with
Theorem 6 in Kabluchko (2011).

Proposition 2.2. Let
{
Zj(s, t), s ∈ Rd, t ∈ [0,∞)

}
, j = 1, . . . , n, be independent repli-

cations of the space-time Gaussian process described above and let {ξj , j ∈ N} denote points
of a Poisson random measure on (0,∞] with intensity measure ξ−2dξ. Suppose Assump-
tion 2.1 is satisfied. Then the random fields

{
ηn(s, t)), s ∈ R

d, t ∈ [0,∞)
}
, defined for n ∈ N

by

ηn(s, t) =

n∨

j=1

− 1

log(Φ(Zj(sns, tnt)))
, s ∈ R

d, t ∈ [0,∞), (1)

converge weakly in the space of continuous functions on Rd×[0,∞) to the stationary Brown-
Resnick process

η(s, t) =

∞∨

j=1

ξj exp {Wj(s, t)− δ(s, t)} , (2)

where the deterministic function δ is given in Assumption 2.1 and
{
Wj(s, t), s ∈ Rd, t ∈ [0,∞)

}
,

j ∈ N are independent replications of a Gaussian process with stationary increments,
W (0, 0) = 0, E(W (s, t)) = 0 and covariance function, given for s1, s2 ∈ Rd, t1, t2 ∈ [0,∞)
by

Cov (W (s1, t1),W (s2, t2)) = δ(s1, t1) + δ(s2, t2)− δ(s1 − s2, t1 − t2),

where s1 − s2 is defined componentwise. The bivariate distribution function of η can be
expressed in closed form (based on a well-known result by Hüsler and Reiss (1989)) for
x1, x2 > 0 as

F (x1, x2) = exp

{
− 1

x1
Φ

(
log x2

x1

2
√
δ(h, u)

+
√
δ(h, u)

)
− 1

x2
Φ

(
log x1

x2

2
√
δ(h, u)

+
√
δ(h, u)

)}
,

(3)
where Φ denotes the standard normal distribution function.

Many correlation functions satisfy the following condition, which will be used through-
out.

Condition 2.3. The correlation function has an expansion around zero, given by

ρ(h, u) = 1− θ1‖h‖α1 − θ2|u|α2 +O(‖h‖α1 + |u|α2), h ∈ R
d, u ∈ R,

where 0 < α1, α2 ≤ 2 and θ1, θ2 > 0.

Remark 2.4. The condition is satisfied by many space-time correlation functions in-
cluding, for example, Gneiting’s class of correlation functions; cf. Gneiting (2002). For a
detailed analysis of Gneiting’s class and further examples we refer to Davis et al. (2011),
Section 4, where Condition 2.3 is proved for several classes of correlation functions. Note
that Condition 2.3 is restricted to isotropic correlation functions. A natural generalization
for possibly anisotropic correlation functions would be written as

ρ(h1, . . . , hd, u) = 1−
d∑

j=1

θj |hj |αj − θd+1|u|αd+1 +O
( d∑

j=1

|hj |αj + |u|αd+1

)
.
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Condition 2.3 allows for an explicit expression of the limit function δ in Assumption 2.1:

δ(h, u) = θ1‖h‖α1 + θ2|u|α2 , (4)

where the scaling sequences (sn)n∈N and (tn)n∈N can be chosen as sn = (logn)1/α1 and
tn = (logn)1/α2 . The parameters α1, α2 ∈ (0, 2] relate to the smoothness of the underlying
Gaussian process in space and time, where the case α1 = α2 = 2 corresponds to a mean-
square differentiable process. A further property of the model defined in Proposition 2.2 is
a closed form expression for the tail dependence coefficient given by

χ(h, u) = lim
x→∞

P
(
η(s1, t1) > F←η(s1,t1)(x) | η(s2, t2) > F←η(s2,t2)(x)

)
,

where h = s1−s2 and u = t1− t2. As derived in Section 3 of Davis et al. (2011), we obtain

χ(h, u) = 2
(
1− Φ(

√
δ(h, u))

)
= 2

(
1− Φ(

√
θ1‖h‖α1 + θ2|u|α2)

)
. (5)

3. Pairwise likelihood estimation

In this section, we describe the pairwise likelihood procedure for estimating the parameters
of the Brown-Resnick process (2), when the underlying correlation function satisfies Condi-
tion 2.3. Composite likelihood methods have been used whenever the full likelihood is not
available or intractable. We present the general definition of composite and pairwise likeli-
hood functions for a space-time setting in Section 3.1. Afterwards, we rewrite the pairwise
likelihood for regular grid observations.

3.1. Composite likelihood estimation for the space-time setting
Composite likelihood methods go back to Besag (1974) and Lindsay (1988) and there is
now a vast literature available, from a theoretical and an applied point of view on the topic.
For more information we refer to Varin (2007), who presents an overview of existing models
and inference including extensive references. In the most general setting the composite
log-likelihood function is given by

lc(ψ,x) =

q∑

i=1

wi log fψ(x ∈ Ai),

where for i = 1, . . . , p the sets Ai describe measurable events and the wi are non-negative
weights associated to the events. From this general form special composite likelihood func-
tions can be derived. The (weighted) pairwise log-likelihood function is defined by

PL(ψ;x) =

n∑

i=1

n∑

j=1

wi,j log fψ(xi, xj), (6)

where x = (x1, . . . , xn) is the data vector, fψ(xi, xj) is the density of the bivariate observa-
tions (xi, xj), and the wi,j are weights which can be used for example to reduce the number
of pairs included in the estimation. The parameter estimates are obtained by maximizing
(6).
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As noted in Cox and Reid (2004), for dependent observations, estimates based on the
composite likelihood need not be consistent or asymptotically normal. This is important
for space-time applications, since all components may be highly dependent across space
and time. We describe the pairwise likelihood estimation for observations from the Brown-
Resnick process (2), where the underlying correlation function satisfies Condition 2.3. The
resulting parameter vector is given by ψ = (θ1, α1, θ2, α2). The pairwise likelihood for a
general setting with M locations s1, . . . , sM and T time points 0 ≤ t1 < · · · < tT < ∞ is
given by

PL(M,T )(ψ) =

M−1∑

i=1

M∑

j=i+1

T−1∑

k=1

T∑

l=k+1

w
(M)
i,j w

(T )
k,l log fψ(η(si, tk), η(sj , tl)), (7)

where w
(M)
i,j ≥ 0 and w

(T )
k,l ≥ 0 denote spatial and temporal weights, respectively, and fψ

is the bivariate density given as derivative of the distribution function in (3). Since it is
expected that space-time pairs, which are far apart in space or in time, have only little
influence on the dependence parameters to be estimated, we define the weights, such that
in the estimation only pairs with a maximal spatio-temporal distance of (r, p) are included,
i.e.,

w
(M)
i,j = 1{‖si−sj‖≤r}, w

(T )
k,l = 1{|tk−tl|≤p}, (8)

where ‖ · ‖ denotes any arbitrary norm on Rd. The pairwise likelihood estimates are given
by

(θ̂1, α̂1, θ̂2, α̂2) = argmax
(θ1,α1,θ2,α2)

PL(M,T )(θ1, α1, θ2, α2). (9)

Using the definition of the weights in (8), the log-likelihood function in (7) can be rewritten
as

PL(M,T )(ψ) =

M−1∑

i=1

M∑

j=i+1

‖si−sj‖≤r

T−p∑

k=1

min{k+p,T}∑

l=k+1

log fψ(η(si, tk), η(sj , tl)). (10)

3.2. Pairwise likelihood estimation for regular grid observations
The proof of strong consistency and asymptotic normality in Sections 4 and 5 is based on
the assumption that locations lie on a regular grid and that time points are equidistant.
The following condition summarizes the sampling scheme.

Condition 3.1. We assume that the locations lie on a regular d-dimensional lattice,

Sm =
{
(i1, . . . , id), i1, . . . , id ∈ {1, . . . ,m}

}
.

Further assume that the time points are equidistant and given by the set {1, . . . , T }.

For later purposes, we rewrite the pairwise log-likelihood function under Condition 3.1
in the following way. Define Hr as the set of all vectors with non-negative integer-valued
components h without the 0-vector, which point to other sites in the set of locations within
distance r, i.e.,

Hr = N
d ∩B(0, r)\{0},
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where B(0, r) = {s : ‖s‖ < r}. Nott and Rydén (1999) call this the design mask. We
denote by |Hr| the cardinality of the set Hr. In our application, we will use design masks
according to the Euclidean distance; for example with d = 2 (cf. Figure 1),

H3 = {(1, 0), (0, 1), (1, 1), (0, 2), (2, 0), (1, 2), (2, 1), (2, 2), (0, 3), (3, 0)} .

Using Condition 3.1 and the design mask, the pairwise log-likelihood function in (9) can be
rewritten as

PL(m,T )(ψ) =
∑

s∈Sm

T∑

t=1

∑

h∈Hr

s+h∈Sm

p∑

u=1

t+u≤T

log fψ(η(s, t), η(s+ h, t+ u))

=
∑

s∈Sm

T∑

t=1

gψ (s, t; r, p)−R(m,T )(ψ), (11)

where

gψ(s, t; r, p) =
∑

h∈Hr

p∑

u=1

log fψ(η(s, t), η(s+ h, t+ u)), (12)

and R(m,T )(ψ) is a boundary term, given by

R(m,T )(ψ) =
∑

s∈Sm

T∑

t=1

∑

h∈Hr

s+h/∈Sm

p∑

u=1

t+u>T

log fψ(η(s, t), η(s+ h, t+ u)). (13)

Figure 1 depicts a spatial grid with length m = 6, where the inner square is the set of
observed locations Sm and the points in the outer polygon are endpoints of pairs which are
in the boundary term R(m,T ). The figure visualizes the case H2, which is represented by
the quarter circles.

4. Strong consistency of the pairwise likelihood estimates for regular grid obser-
vations

In this section we establish strong consistency for the pairwise likelihood estimates based on
regular grid observations introduced in Section 3.2. For univariate time series models Davis
and Yau (2011) proved strong consistency of the composite likelihood estimates in full detail.
For max-stable random fields with replicates, which are independent in time, Padoan et al.
(2009) showed consistency and asymptotic normality for the pairwise likelihood estimates.
In contrast to previous studies, where either the spatial or the time domain increases, we
show strong consistency as the space-time domain increases jointly.

4.1. Ergodic properties for max-stable processes
Stoev and Taqqu (2005) introduced extremal integrals as an analogy to sum-stable integrals.
We briefly explain the notion of an extremal integral. The basis for the definition are α-
Fréchet sup-measures. Given a measure space (E, E , µ) with σ−finite, positive measure
µ, the set-indexed random process {Mα(A), A ∈ E} is called an independently scattered
α−Fréchet sup-measure with control measure µ, if
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Figure 1. Visualization of the boundary term R
(m,T ) for d = 2, m = 6 and any fixed time point; the

set Sm of locations is the inner square and the outer polygon represents the endpoints of pairs in the
boundary

(a) for disjoint A1, . . . , An ∈ E , the random variables Mα(A1), . . . ,Mα(An) are indepen-
dent,

(b) for A ∈ E
P (Mα(A) ≤ x) = exp

{
−µ(A)x−α

}
1{x>0},

i.e., Mα(A) is α−Fréchet distributed with scale parameter µ(A)1/α,

(c) for disjoint Aj ∈ E , j ∈ N, with
⋃
j∈N Aj ∈ E ,

Mα

( ⋃

j∈N

Aj

)
=
∨

j∈N

Mα(Aj).

For a non-negative simple function f : E → R, f(x) =
∑n

j=1 aj1Aj
(x), where A1, . . . , An ∈

E are disjoint, the extremal integral
e∫
is defined by

e∫

E

f(x)Mα(dx) :=

n∨

j=1

ajMα(Aj),

and the integral is independent of the representation of f . This definition can be extended
stepwise from simple functions to nondecreasing sequences of simple functions and finally
to any non-negative function f : E → R satisfying

∫
E(f(x))

αµ(dx) < ∞. Based on the
extremal integral representation of max-stable processes Stoev (2008) establishes conditions
under which a max-stable process is ergodic. Wang et al. (2011) extend these results to a
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spatial setting. In the following, let τ(h1,...,hd,u) denote the multiparameter shift-operator.
In accordance with the definitions and results in Wang et al. (2011), we define ergodic and
mixing space-time processes.

Definition 4.1. Let
{
η(s, t), s ∈ Rd, t ∈ [0,∞)

}
be a strictly stationary space-time pro-

cess. The process is called

(a) ergodic, if for all A,B ∈ σ
{
η(s, t), s ∈ Rd, t ∈ [0,∞)

}

lim
m1,...,md,T→∞

1

m1 · · ·mdT

m1∑

h1=1

· · ·
md∑

hd=1

T∑

u=1

P
(
A ∩ τ(h1,...,hd,u)(B)

)
= P (A)P (B),

(14)
where m1, . . . ,md, T → ∞ means that each individual component of (m1, . . . ,mk, T )
tends to infinity.

(b) mixing, if
lim
n→∞

P
(
A ∩ τ(s1,n,...,sd,n,tn)(B)

)
= P (A)P (B), (15)

for all sequences {(s1,n, . . . , sd,n, tn), n ∈ N} with max {|s1,n|, . . . , |sd,n|, |tn|} → ∞.

Note in (14) that in contrast to the ergodic theorem in Wang et al. (2011), the number
of terms in each sum is not equal, since we have an additional sum for the time compo-
nent. Using Theorem 6.1.2 in Krengel (1985), we can relate the conventional definition of
ergodicity to the one given above. We focus on max-stable processes with extremal integral
representation

η(s1, . . . , sd, t) =

e∫

E

U(s1,...,sd,t)(f)dM1, (16)

where U(s1,...,sd,t) : L1(µ) → L1(µ) given by U(s1,...,sd,t)(f) = f ◦ τ(s1,...,sd,t) is a group of
max-linear automorphisms with U(0,...,0,0)(f) = f , M1 is an independently scattered 1−
Fréchet random sup-measure with control measure µ, where (E, µ) can be chosen as the
standard Lebesgue space (R, λ). The following result is a direct extension of the uniparam-
eter theorem established in Stoev (2008), Theorem 3.4, and its multiparameter counterpart:

Proposition 4.2 (Wang et al. (2011), Theorem 5.3). The max-stable process de-
fined in (16) is mixing, if and only if

∫

E

U(s1,n,...,sd,n,tn)(f) ∧ U(0,...,0,0)(f)dµ =

∫

E

U(s1,n,...,sd,n,tn)(f) ∧ fdµ→ 0, (17)

for all sequences {(s1,n, . . . , sd,n, tn)} with max {|s1,n|, . . . , |sd,n|, |tn|} → ∞ as n→ ∞.

Wang et al. (2011) showed that the ergodic theorem stated above holds for mixing
max-stable processes with extremal integral representation (16) in the case of T = m.
The extension to the multiparameter case where T 6= m is a simple generalization using
Theorem 6.1.2 in Krengel (1985), which is a multiparameter extension of the Ackoglus
ergodic theorem. Ergodic properties of Brown-Resnick processes have been studied for the
uniparameter case in Stoev and Taqqu (2005) and Wang and Stoev (2010). The Brown-
Resnick process (2) has a stochastic representation

{ e∫

E

exp {W (s, t)− δ(s, t)} dM1, s ∈ R
d, t ∈ [0,∞)

}
, (18)
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where M1 is a random 1-Fréchet sup-measure on the probability space (Ω, E ,P) on which
the Gaussian processW is defined. The intensity is P, the probability measure which defines
the Gaussian process W . We summarize the results in the following proposition.

Proposition 4.3. If δ satisfies (4), the Brown-Resnick process given above in (18) is
mixing in space and time. The strong law of large numbers holds: for every measurable
function g : R → R such that E [|g(η(s1, 1))|] <∞;

1

mdT

m∑

i1=1

· · ·
m∑

id=1

T∑

t=1

g(η((i1, . . . , id), t)) =
∑

s∈Sm

T∑

t=1

g(η(s, t))

a.s.→ E [g(η((1, . . . , 1), 1))] = E [η(s1, 1)] m,T → ∞.

4.2. Consistency for large m and T
In the following we show that the pairwise likelihood estimate resulting from maximizing
(11) for the Brown-Resnick process (2) is strongly consistent.

Theorem 4.4. Assume that the correlation function ρ satisfies Condition 2.3 such that
δ(h, u) = θ1‖h‖α1 + |u|α2 with parameter vector ψ = (θ1, α1, θ2, α2). Suppose further that
the true parameter vector ψ∗ = (θ∗1 , α

∗
1, θ
∗
2 , α
∗
2) lies in a compact set Ψ, which does not

contain 0 and which satisfies for some c > 0

Ψ ⊆ {min {θ1, θ2} > c, α1, α2 ∈ (0, 2]} . (19)

Assume also that the identifiability condition

ψ = ψ̃ ⇔ fψ(η(s1, t1), η(s2, t2)) = f
ψ̃
(η(s1, t1), η(s2, t2)), (20)

is satisfied for all s1, s2 ∈ Sm, t1, t2 ∈ {t1, . . . , tT }. It then follows that the pairwise likelihood
estimate

ψ̂ = argmax
ψ∈Ψ

PL(m,T )(ψ) (21)

for observations from the Brown-Resnick process (2) is strongly consistent, i.e., ψ̂
a.s.→ ψ∗

as m,T → ∞.

Remark 4.5. For the identifiability condition (20) we consider different cases according
to the maximal space-time lag (r, p) included in the composite likelihood. The pairwise
density depends on the spatial distance h and the time lag u only through the function
δ(h, u) = θ1‖h‖α1 + θ2|u|α2 . For specific combinations of (r, p) not all parameters are
identifiable. Strong consistency still holds for the remaining parameters. Table 1 lists the
various scenarios.

Proof (Theorem 4.4). To show strong consistency of the estimates (21) we follow
the method of Wald (1946). From (11) we show

1

mdT
PL(m,T )(ψ) =

1

mdT

( ∑

s∈Sm

T∑

t=1

gψ (s, t; r, p)−R(m,T )(ψ)
)
a.s.→ PL(ψ),

as m,T → ∞, where PL(ψ) := E [gψ(s1, 1; r, p)] and gψ and R(m,T )(ψ) are defined in (12)
and (13), respectively.

We use the following three steps.
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Table 1. Identifiable parameters corresponding to different maximal space-time
lags (r, p) included in the pairwise likelihood function.
Maximal spatial lag r Maximal temporal lag p Identifiable parameters

0 1 θ2
0 > 1 θ2, α2

1 0 θ1

> 1 0 θ1, α1

1 1 θ1, θ2
1 > 1 θ1, θ2, α2

> 1 1 θ1, α1, θ2
> 1 > 1 θ1, α1, θ2, α2

(C1) Strong law of large numbers: Uniformly on the compact parameter space Ψ,

1

mdT

∑

s∈Sm

T∑

t=1

gψ (s, t; r, p)
a.s.−→ PL(ψ) = E [gψ(s1, 1; r, p)] , m, T → ∞,

(C2) 1
mdTR(m,T )(ψ)

a.s.→ 0, m, T → ∞, and

(C3) the limit function PL(ψ) in (C1) is uniquely maximized at the true parameter vector
ψ∗ ∈ Ψ.

We first prove (C1). For fixed ψ ∈ Ψ the convergence in (C1) follows immediately from
Proposition 4.3 together with the fact that gψ in (12) is a measurable function of lagged
versions of η(s, t). To prove uniform convergence we have from (3) for x1, x2 > 0

log fψ(x1, x2) = −V (x1, x2) + log(V1(x1, x2)V2(x1, x2)− V12(x1, x2)),

V (x1, x2) = Φ(q1)/x1 +Φ(q2)/x2,

V1(x1, x2) =
∂V (x1, x2)

∂x1
, V2(x1, x2) =

∂V (x1, x2)

∂x2
, V12(x1, x2) =

∂2V (x1, x2)

∂x1∂x2
,

and

q1 = q1(x1, x2) =
log(x2/x1)

2
√
δ(h, u)

+
√
δ(h, u) and q2 = q2(x1, x2) =

log(x1/x2)

2
√
δ(h, u)

+
√
δ(h, u).

For x1, x2 > 0 the log-density log fψ(x1, x2) can be bounded as follows.

|log fψ(x1, x2)| = |−V (x1, x2) + log(V1(x1, x2)V2(x1, x2)− V12(x1, x2)|
≤ |Φ(q1)/x1|+ |Φ(q2)/x2|+ |V1(x1, x2)V2(x1, x2)− V12(x1, x2)|

≤ 1

x1
+

1

x2
+

1

x21x
2
2

+
1

2
√
δ(h, u)

(
1

x21x
2
2

+
1

x31x2
+

1

x21x
2
2

+
1

x1x32
+

1

x21x2
+

1

x1x22

)

+
1

4δ(h, u)

(
1

x21x
2
2

+
1

x31x2
+

1

x1x32
+

1

x21x
2
2

+

∣∣∣∣
q1
x21x2

+
q2
x1x22

∣∣∣∣
)
,

where Φ(·) ≤ 1 was used. Finally note that

q1
4δ(h, u)x21x2

=
log(x2/x1) + 2δ(h, u)

8(δ(h, u))3/2x21x2
≤ 1

8(δ(h, u))3/2x31
+

1

4
√
δ(h, u)x1x22

.
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Since the marginal distributions of the Brown-Resnick process (2) are assumed to be
standard Fréchet, it follows that for every fixed location s ∈ Sm and fixed time point
t ∈ {1, . . . , T } the random variable 1/η(s, t) is standard exponentially distributed with all
moments finite. Using Hölder’s inequality, it follows that

E [|log fψ(η(s1, t1), η(s2, t2))|] ≤ K1 +
K2

2
√
δ(h, u)

+
K3

4δ(h, u)
+

K4

8(δ(h, u))3/2
,

where K1,K2,K3,K4 > 0 are finite constants. Since the parameter space Ψ is assumed to
be compact and together with assumption (19), δ can be bounded away from zero, i.e.,

δ(h, u) ≥ min {θ1, θ2} (‖h‖α1 + |u|α2) > c(‖h‖α1 + |u|α2) > c̃ > 0, (22)

where c̃ > 0 is independent of the parameters. Therefore,

E [|log fψ(η(s1, t1), η(s2, t2))|] < K1 +
K2

2
√
c̃
+
K3

4c̃
+

K4

8c̃3/2
=: K5 <∞, (23)

where K5 > 0. From (22) and (23) it follows that

E

[
sup
ψ∈Ψ

|log fψ(η(s1, 1), η(s1 + h, 1 + u))|
]
<∞,

which implies E
[
supψ∈Ψ |gψ(s1, 1, r, p)|

]
< ∞. By Theorem 2.7 in Straumann (2004) uni-

form convergence in (C1) follows.

Turning to (C2), note from (13) that by similar arguments as above

E

[∣∣∣∣
1

mdT
R(m,T )(ψ)

∣∣∣∣
]

≤ 1

mdT

∑

s∈Sm

∑

h∈Hr

s+h/∈Sm

T∑

t=1

p∑

u=1

t+u>T

E [|log fψ(η(s, t), η(s+ h, t+ u))|]

≤ 1

mdT

∑

s∈Sm

∑

h∈Hr

s+h/∈Sm

T∑

t=1

p∑

u=1

t+u>T

K5 ≤ K5K6

mT
→ 0, m, T → ∞,

where we used the bound derived in (23) and the fact that the number of space-time points
in the boundary is of order md−1 (independent of T ) and, therefore, can be bounded by
K6m

d−1 with K6 > 0 a constant independent of m and T .

We denote by Bm,T the set of “boundary” points, i.e.,

Bm,T = {s ∈ Sm : s+ h /∈ Hr} × {t ∈ {1, . . . , T } : t+ u > T }.

Then,

R(m,T )(ψ) =
∑

h∈Hr

p∑

u=1

∑

(s,t)∈Bm,T

log fψ(η(s, t), η(s + h, t+ u)).
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By Proposition 4.3 and (23) it follows uniformly on Ψ, that

∑

h∈Hr

p∑

u=1

1

|Bm,T |
∑

(s,t)∈Bm,T

log fψ(η(s, t), η(s+ h, t+ u))

→ E

[
∑

h∈Hr

p∑

u=1

log fψ(η(s1, 1), η(s1 + h, 1 + u)

]
, m, T → ∞.

Therefore,

1

mdT
R(m,T )(ψ) ≤ K6

mT

∑

h∈Hr

p∑

u=1

1

|Bm,T |
∑

(s,t)∈Bm,T

log fψ(η(s, t), η(s+ h, t+ u))
a.s.−→ 0,

since E [| log fψ(η(s, t), η(s+ h, t+ u))|] <∞. This proves (C2).
To prove (C3), note that by Jensen’s inequality

E

[
log

(
fψ(x1, x2)

fψ∗(x1, x2)

)]
≤ log

(
E

[
fψ(x1, x2)

fψ∗(x1, x2)

])
= 0

and, hence,
PL(ψ) ≤ PL(ψ∗)

for all ψ ∈ Ψ. So, ψ∗ maximizes PL(ψ) and is the unique optimum if and only if there is
equality in Jensen’s inequality. However, this is precluded by (20). ✷

5. Asymptotic normality of the pairwise likelihood estimates for regular grid obser-
vations

In order to prove asymptotic normality of the pairwise likelihood estimates resulting from
maximizing (11) we need the following results for the pairwise log-density. The proofs can
be found in Appendix A.

Lemma 5.1. Consider the Brown-Resnick process in (2), where the underlying correla-
tion function satisfies Condition 2.3. Further assume that all conditions from Theorem 4.4
hold.

(1) The gradient of the bivariate log-density satisfies

E

[
|∇ψ log fψ(η(s1, t1), η(s2, t2))|3

]
<∞

(2) The Hessian of the pairwise log-density satisfies

E

[
sup
ψ∈Ψ

∣∣∇2
ψ log fψ(η(s1, t1), η(s2, t2))

∣∣
]
<∞.

The absolute values of the vector in (1) and the matrix in (2) are perceived componentwise.

Assuming asymptotic normality of the pairwise score function ∇ψPL(m,T )(ψ) it is relatively
routine to show that the pairwise likelihood estimates are asymptotically normal. We
formulate the first result.
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Theorem 5.2. Assume that the conditions of Theorem 4.4 hold. In addition, assume
that a central limit theorem holds for the gradient of gψ defined in (12) in the following
sense

1

md/2
√
T

∑

s∈Sm

T∑

t=1

∇ψgψ∗(s, t; r, p)
d−→ N (0,Σ), m, T → ∞, (24)

where ψ∗ is the true parameter vector and Σ is some covariance matrix. Then it follows
that the pairwise likelihood estimate in (21) satisfies

md/2
√
T (ψ̂ −ψ∗) d−→ N (0, F−1Σ(F−1)T ), m, T → ∞,

where
F = E

[
−∇2

ψgψ∗(s1, 1; r, p)
]
.

Proof. We use a standard Taylor expansion of the pairwise score function around the
true parameter vector and obtain

md/2
√
T (ψ̂ −ψ∗) = −

(
1

mdT
∇2
ψPL

(m,T )(ψ̃)

)−1(
1

md/2
√
T
∇ψPL(m,T )(ψ∗)

)

= −
(

1

mdT

∑

s∈Sm

T∑

t=1

∇2
ψgψ̃(s, t; r, p)−

1

mdT
∇2
ψR(m,T )(ψ̃)

)−1

×
(

1

md/2
√
T

∑

s∈Sm

T∑

t=1

∇ψgψ∗(s, t; r, p)− 1

md/2
√
T
∇ψR(m,T )(ψ∗)

)

= −(I1 − I2)
−1(J1 − J2),

where ψ̃ ∈ [ψ̂,ψ∗]. By (24) J1 converges weakly to a normal distribution with mean 0 and
covariance matrix Σ. By using the same arguments as in the proof of Theorem 4.4 together

with (24) we have that J2
P→ 0. Since the underlying space-time process in the likelihood

function is mixing, it follows that the process
{
∇2
ψgψ(s, t; r, p), s ∈ Zd, t ∈ N

}
is mixing as

a measurable function of mixing and lagged processes. To prove the uniform convergence
we verify that

E

[
sup
ψ∈Ψ

∣∣∇2
ψgψ(s1, 1; r, p)

∣∣
]
<∞.

This follows immediately from Lemma 5.1. Putting this together with the fact that ψ̃ ∈
[ψ̂,ψ∗], and because of the strong consistency of ψ̂, it follows that

I1
a.s.−→ E

[
∇2
ψgψ∗(s1, 1; r, p)

]
=: −F.

Using the strong law of large numbers for
{
∇2
ψ log fψ(η(s, t), η(s + h, t+ u)

}
it follows in

the same way as in the proof of Theorem 4.4 that I2
a.s.→ 0 as m,T → ∞. Combining these

results, we obtain by Slutzky’s lemma

md/2
√
T (ψ̂ −ψ∗) d−→ N (0, F−1Σ(F−1)T ), m, T → ∞.

✷

In the next section we provide a sufficient condition for (24).
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5.1. Asymptotic normality and α-mixing
In this section we consider asymptotic normality of the parameters estimates for the Brown-
Resnick process in (2). Under the assumption of α-mixing of the random field the key is to
show asymptotic normality for the pairwise score function. For an increasing time domain
and fixed number of locations asymptotic normality of the pairwise likelihood estimates
was shown in Huser and Davison (2012). The main difference between a temporal setting
and a space-time setting is the definition of the α-mixing coefficients and the resulting
assumptions to obtain a central limit theorem for the score function.

We apply the central limit theorem for random fields established in Bolthausen (1982)
to the pairwise score function of the pairwise likelihood in our model. In a second step
we verify the α-mixing conditions for the Brown-Resnick process (2), where the underlying
correlation function satisfies Condition 2.3. First, we define the α-mixing coefficients in a
space-time setting as follows. Define the distances

d((s1, t1), (s2, t2)) = max

{
max
1≤i≤d

|s1(i)− s2(i)|, |t1 − t2|
}
, s1, s2 ∈ Z

d, t1, t2 ∈ N,

d(Λ1,Λ2) = inf {d((s1, t1), (s2, t2)), (s1, t1) ∈ Λ1, (s2, t2) ∈ Λ2} , Λ1,Λ2 ⊂ Z
d × N,

where sk = (sk(1), . . . , sk(d)), k = 1, 2. Let further FΛi
= σ {η(s, t), (s, t) ∈ Λi} for i = 1, 2.

The mixing coefficients are defined for k, l ∈ N and n ∈ N ∪ {∞} by

αk,l(n) = sup {|P (A1 ∩A2)− P (A1)P (A2)| : Ai ∈ FΛi
, |Λ1| ≤ k, |Λ2| ≤ l, d(Λ1,Λ2) ≥ n}

(25)
and depend on the sizes and the distance of the sets Λ1 and Λ2.

A space-time process is called α-mixing, if αk,l(n) → 0 as n → ∞ for all k, l > 0. We
assume that the process

{
η(s, t), s ∈ Zd, t ∈ N

}
is α-mixing with mixing coefficients defined

in (25), from which it follows that the space-time process

{
∇ψgψ(s, t; r, p), s ∈ Z

d, t ∈ N
}
. (26)

is α-mixing for all ψ ∈ Ψ. We apply Bolthausen’s central limit theorem this process. By
adjusting the assumptions on the α-mixing coefficients we obtain the following proposition.

Proposition 5.3. We consider the Brown-Resnick process (2) with δ(h, u) = θ1‖h‖α1+
θ2|u|α2 . Assume, that the following conditions hold:

(1) The process
{
(η(s, t), s ∈ Zd, t ∈ N

}
is α-mixing.

(2) The α-mixing coefficients in (25)satisfy
∞∑
n=1

ndαk,l(n) <∞ for k+ l ≤ 4(|Hr|+1)(p+1) and α(|Hr|+1)(p+1),∞(n) = o(n−(d+1)).

(3) There exists some β > 0 such that

E

[
|∇ψgψ∗(s, t; r, p)|2+β

]
<∞ and

∞∑

n=1

ndα(|Hr |+1)(p+1),(|Hr|+1)(p+1)(n)
β/(2+β) <∞.
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Then,

1

md/2
√
T

∑

s∈Sm

T∑

t=1

∇ψgψ∗(s, t; r, p)
d→ N (0,Σ), m, T → ∞,

where Σ =
∑
s∈Zd

∑
t∈N

Cov (∇ψgψ∗(s1, 1; r, p),∇ψgψ∗(s, t; r, p)).

Recent work by Dombry and Eyi-Minko (2012) deals with strong mixing properties for
max-stable random fields. By using a point process representation of max-stable processes
together with coupling techniques, they show that the α-mixing coefficients can be bounded
by a function of the tail dependence coefficient. A direct extension to the space-time setting
gives the following lemma.

Lemma 5.4 (Dombry and Eyi-Minko (2012), Corollary 2.2). Consider a station-
ary max-stable space-time process

{
η(s, t), s ∈ Zd, t ∈ N

}
with arbitrary tail dependence co-

efficient χ(h, u). The α-mixing coefficients (25) satisfy

αk,l(n) ≤ kl sup
max{‖h‖,|u|}≥n

χ(h, u) and αk,∞(n) ≤ k
∑

max{‖h‖,|u|}≥n

χ(h, u).

In the following we show that Proposition 5.3 applies for the Brown-Resnick process (2)
with tail dependence coefficient χ as in (5). By using the inequality for the normal tail

probability 1− Φ(x) = Φ(x) ≤ e−x
2/2 for x > 0 it follows that

αk,l(n) ≤ 4kl sup
max{‖h‖,|u|}≥n

(1 − Φ(
√
δ(h, u))) ≤ 4kl sup

max{‖h‖,|u|}≥n

exp

{
−δ(h, u)

2

}

= 4kl sup
max{‖h‖,|u|}≥n

exp

{
−1

2
(θ1‖h‖α1 + θ2|u|α2)

}

≤ 4kl sup
max{‖h‖,|u|}≥n

exp

{
−1

2
min {θ1, θ2} (max {‖h‖, |u|})min{α1,α2}

}
.

For n→ ∞, the right hand side tends to zero for all k, l ≥ 0. Thus,
{
η(s, t), s ∈ Zd, t ∈ N

}

is α-mixing. Furthermore, for k + l ≤ 4(|Hr|+ 1)(p+ 1) the coefficients satisfy

∞∑

n=1

ndαk,l(n) ≤ 4kl

∞∑

n=1

nd sup
max{‖h‖,|u|}≥n

exp

{
−1

2
(θ1‖h‖α1 + θ2|u|α2)

}

≤ 4kl

∞∑

n=1

nd exp

{
−1

2
min {θ1, θ2}nmin{α1,α2}

}
<∞.

In addition,

nd+1α(|Hr|+1)(p+1),∞(n) ≤ nd+1(|Hr|+ 1)(p+ 1)
∑

x≥n

exp

{
−1

2
min {θ1, θ2}xmin{α1,α2}

}
,

where the right hand side converges to zero as n→ ∞, which finally proves (2). As for (3),
from Lemma 5.1 and using β = 1 we know that

E

[
|∇ψgψ∗(s, t; r, p)|(2+β)

]
<∞.
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By the same arguments as in the proof of (2) above the second condition in (3) holds.
By combining the above results with Theorem 5.2 we obtain asymptotic normality for

the parameter estimates ψ̂ for an increasing number of space-time locations. We summarize
this result as follows.

Theorem 5.5. Assume that the conditions of Theorem 4.4 hold. Then,

(mdT )1/2(ψ̂ −ψ∗) d→ N (0, F−1Σ(F−1)
⊺

), m, T → ∞,

where
F = E

[
−∇2

ψgψ∗(s1, 1; r, p)
]

and
Σ =

∑

s∈Zd

∑

t∈N

Cov (∇ψgψ∗(s1, 1; r, p),∇ψgψ∗(s, t; r, p)) .

Remark 5.6. Unfortunately, we cannot provide a closed form expression for the asymp-
totic covariance matrix. The matrix F is the expected Hessian matrix of the pairwise log-
likelihood function and an estimate is given by its empirical version

F̂ = −
∑

s∈Sm

T∑

t=1

∑

h∈Hr

p∑

u=1

∇2
ψ log f

ψ̂
(η(s, t), η(s+ h, t+ u)),

which can be obtained numerically from the optimization routine used to maximize the pair-
wise likelihood function. The calculation of Σ or estimates for Σ seems to be a difficult task.
We therefore rely on resampling methods like the bootstrap or on the jackknife for obtaining
estimates of the variance and confidence regions. For example a block bootstrap procedure
could be applied which approximates the distribution of ψ̂ − ψ. The situation here is sim-
ilar to the estimation of the extremogram, where bootstrap methods have been suggested to
construct asymptotically correct confidence bands (see Davis and Mikosch (2009) and Davis
et al. (2012)). The justification of resampling methods is the subject of another paper.

6. Extension to irregularly spaced locations

So far we have assumed that the spatial sampling locations lie on a regular grid. In the
following we discuss two settings, where the locations are irregularly spaced.

6.1. Deterministic irregularly spaced lattice
One way to extend our results to irregularly spaced locations is to invoke the ideas in Bai
et al. (2012) as adapted from Jenish and Prucha (2009). Let

D ⊂ R
d × [0,∞)× R

d × [0,∞)

denote an infinitely countable lattice such that all elements of D have distances of at least
d0 > 0:

‖(s1, t1, s2, t2)− (s3, t3, s4, t4)‖ > d0

for any (s1, t1, s2, t2), (s3, t3, s4, t4) ∈ D, where ‖ · ‖ is an arbitrary norm. Note that D
describes pairs of space-time locations. Further let {Dn : n ∈ N} be a sequence of arbitrary
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finite subsets of D satisfying |Dn| → ∞ as n → ∞, where | · | denotes the cardinality. In
addition the sets Dn contain only pairs of space-time locations for which ‖s1 − s2‖ ≤ r,
|t1 − t2| ≤ p and at least one of the lags ‖s1 − s2‖ and |t1 − t2| is larger than zero. The
pairwise log-likelihood function (see general definition in (10)) is now given by

PL(n)(ψ) =
∑

(s1,t1,s2,t2)∈Dn

log fψ(η(s1, t1), η(s2, t2)).

Denote by S ×T the sampling region with cardinality |S ×T | = n. To prove consistency of
the pairwise likelihood estimates Theorems 2 and 3 in Jenish and Prucha (2009) are used
to show that the pairwise log-likelihood function satisfies a law of large numbers. Using
the same arguments as in Theorem 4.4 in Section 4.2 we can show that the estimates are
consistent, i.e.,

ψ̂
P→ ψ

∗, n→ ∞.

Compared to the conditions needed to prove Theorem 4.4 the stronger assumption that
the pairwise log-density is uniformly L1+δ integrable (for a definition see Section 3.1 in Bai
et al. (2012)) has to be shown. For the Brown-Resnick process (2) and the assumptions in
Theorem 4.4 this can be verified in a similar fashion as in the derivation of the upper bound
for the log-density in the proof of Theorem 4.4, (C1).

To show asymptotic normality of the estimates, Bai et al. (2012) use Theorem 1 in Jenish
and Prucha (2009) assuming eight conditions, where the first two define the setting for the
space-time locations. For the Brown-Resnick process with δ(h, u) = θ1‖h‖α1 + θ2|u|α2 and
together with the assumptions in Theorem 4.4 all conditions except their Assumptions (7)
and (8) can be shown. For our setting, Assumptions (7) and (8) in Bai et al. (2012) are
equivalent to

nVar(∇ψPLn(ψ)) → Σ and E
[
∇2
ψPL

n(ψ)
]
→ F, n→ ∞, (27)

for all ψ ∈ Ψ, where F and Σ are positive definite matrices. Note that by using Theorem
2 and 3 in Jenish and Prucha (2009) together with the arguments in the proof of Theorem
5.2 we can show the first part of Assumption 8 in Bai et al. (2012), i.e.

sup
ψ∈Ψ

∣∣∣∇2
ψPL

(n)(ψ)− E

[
∇2
ψPL

(n)(ψ)
]∣∣∣→ 0.

Altogether, in contrast to the regular grid case we have two additional assumptions (27),
which must be checked for the sampling scheme employed.

6.2. Random locations generated by a Poisson process
In the following we assume that locations are taken at random locations. For simplicity we
consider a spatial random field and no time component. We use the ideas and results in
Karr (1986) and Li et al. (2008) to redefine the pairwise likelihood function and to show that
the resulting estimates are asymptotically normal. Let {η(s), s ∈ Rd} be the max-stable
random field defined analogously to (2), where δ is now given by δ(h) = θ1‖h‖α1 , and let N
denote a Poisson random measure with mean measure νλ(·), where λ is Lebesgue measure,
i.e., N is a stationary homogeneous Poisson process with intensity parameter ν which is
assumed to be known. As before, we denote by Sm the set of possible spatial locations
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where the process is observed. Suppose that the set Sm is convex and compact. Following
Karr (1986) we define

N (2)(ds1, ds2) = N(ds1)N(ds2)1{s1 6=s2}, s1, s2 ∈ Sm.

The pairwise log-likelihood function is now given by

PL(m)(ψ) =

∫

Sm

∫

Sm

w(s1 − s2) log fψ(η(s1), η(s2))N (2)(ds1, ds2), (28)

where w is some positive weight function. We adapt Lemma A.2 Li et al. (2008) to show
that the pairwise score function satisfies a central limit theorem. The variance calculation
is different from Li et al. (2008) in the sense that we investigate the pairwise score function
instead of a kernel smoothed estimator of a covariance function, which requires different
arguments.

Lemma 6.1. Assume that locations are generated by a stationary homogeneous Poisson
process N with intensity ν. Suppose further that the following conditions hold.

(a) The sets Sm satisfy

λ(Sm) = O(md), and λ(∂Sm) = O(md−1),

where λ denotes the Lebesgue measure and ∂Sm is the boundary of Sm.

(b) The random field {η(s), s ∈ Rd} is α-mixing with mixing coefficients as in (25) for
which hold

sup
k∈N

1

k2
αk,k(r) = O(r−ǫ), for some ǫ > 0.

(c) Let w be a positive weight function satisfying
∫

Rd

w(u)du <∞ and

∫

Rd

w(u)2du <∞.

(d) The gradient of the bivariate log-density satisfies

E [|∇ψ log fψ∗(η(s1), η(s2))|] <∞ and E
[
|∇ψ log fψ∗(η(s1), η(s2))|2

]
<∞.

(e) Define Sm − Sm as the the set of all pairwise differences in Sm and let

Aψ∗(s1, s2) = ∇ψ log fψ∗(η(s1), η(s2)).

Then,
∫∫∫

(Sm−Sm)3

w(v1)w(v3 − v2)E [Aψ∗(v1,0)Aψ∗(v2,v3)]

× λ(Sm ∩ (Sm + v1) ∩ (Sm + v2) ∩ (Sm + v3))

λ(Sm)
dv1dv2dv3

→
∫∫∫

Rd×Rd×Rd

w(v1)w(v3 − v2)E [Aψ∗(v1,0)Aψ∗(v2,v3)] dv1dv2dv3, m→ ∞.
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(f) There exists β > 0, such that

sup
m>0

E

[
|
√
λ(Sm)∇ψPL(m)(ψ∗)|2+β

]
< Cβ

for some constant Cβ > 0.

Then
1√
λ(Sm)

∇ψPL(m)(ψ∗)
d→ N (0,Σ), m→ ∞,

where

Σ =
2

ν2

∫

Rd

w2(v)E
[
A2
ψ∗(v,0)

]
dv +

4

ν
Var




∫

Rd

w(u)Aψ∗(u,0)du





+

∫∫∫

Rd×Rd×Rd

w(v1)w(v3 − v2)Cov [Aψ∗(v1,0), Aψ∗(v2,v3)] dv1dv2dv3. (29)

Proof. We calculate the expectation and the variance of the pairwise score function
∇ψPL(m)(ψ∗). By using standard properties of the Poisson process it follows that

E

[
∇ψPL(m)(ψ∗)

]
= E



∫∫

Sm×Sm

w(s1 − s2)Aψ∗(s1, s2)N
(2)(ds1, ds2)




= ν2
∫∫

Sm×Sm

w(s1 − s2)E [Aψ∗(s1, s2)] ds1ds2 = 0,

To calculate the variance note that

λ(Sm)−1Var(ν−2∇ψPL(m)(ψ∗))

= λ(Sm)−1ν−4
∫∫∫∫

S4
m

w(s1 − s2)w(s3 − s4)E [Aψ∗(s1, s2)Aψ∗(s3, s4)]

× E

[
N (2)(ds1, ds2)N

(2)(ds3, ds4)
]
.

The expectation E
[
N (2)(ds1, ds2)N

(2)(ds3, ds4)
]
can be calculated by using standard prop-

erties of the Poisson process leading to seven terms as stated in Karr (1986) or Li et al.
(2008). In the limit, some of these terms are the same. We calculate the three representative
different parts. We denote by ǫs(·) the Dirac measure.

λ(Sm)−1ν−4
∫∫∫∫

S4
m

w(s1 − s2)w(s3 − s4)E [Aψ∗(s1, s2)Aψ∗(s3, s4)] ν
2ds1ds2ǫs1(ds3)ǫs2(ds4)

= λ(Sm)−1ν−2
∫∫

S2
m

w2(s1 − s2)E
[
A2
ψ∗(s1 − s2,0)

]
ds1ds2

= ν−2
∫

Sm−Sm

w2(u)E
[
A2
ψ∗(u,0)

] λ(Sm ∩ (Sm + u))

λ(Sm)
du = (1)
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Since λ(Sm ∩ (Sm + u))/λ(Sm) → 1 as m → ∞ for every fixed u ∈ Rd (see Lemma 3.2 in
Karr (1986)), and due to the fact that

∫

Sm−Sm

w2(u)E
[
A2
ψ∗(u,0)

] λ(Sm ∩ (Sm + u))

λ(Sm)
du ≤

∫

Sm−Sm

w2(u)E
[
A2
ψ∗(u,0)

]
du

→
∫

Rd

w2(u)E
[
A2
ψ∗(u,0)

]
du <∞

it follows by dominated convergence that (1) converges to

ν−2
∫

Rd

Var (w(u)Aψ∗(u,0)) du.

Using similar arguments,

λ(Sm)−1ν−4
∫∫∫∫

S4
m

w(s1 − s2)w(s3 − s4)E [Aψ∗(s1, s2)Aψ∗(s3, s4)] ν
3ds1ds2ǫs1(ds3)ds4

= λ(Sm)−1ν−1
∫∫∫

S3
m

w(s1 − s2)w(s1 − s4)E [Aψ∗(0, s2 − s1)Aψ∗(0, s4 − s1)] ds1ds2ds4

= ν−1
∫∫

(Sm−Sm)2

w(v1)w(v2)E [Aψ∗(v1,0)Aψ∗(v2,0)]
λ(Sm ∩ (Sm + v1) ∩ (Sm + v2))

λ(Sm)
dv1dv2

→ ν−1Var




∫

Rd

w(u)Aψ∗(u,0)du



 .

For the last term we obtain

λ(Sm)−1ν−4
∫∫∫∫

S4
m

w(s1 − s2)w(s3 − s4)E [Aψ∗(s1, s2)Aψ∗(s3, s4)] ν
4ds1ds2ds3ds4

=

∫∫∫

(Sm−Sm)3

w(v1)w(v3 − v2)E [Aψ∗(v1,0)Aψ∗(v2,v3)]

× λ(Sm ∩ (Sm + v1) ∩ (Sm + v2) ∩ (Sm + v3))

λ(Sm)
dv1dv2dv3.

Altogether, as m→ ∞,

Var((λ(Sm))−1/2∇ψPL(m)(ψ∗)) → Σ

= 2ν−2
∫

Rd

Var(w(v)Aψ∗(v,0))dv + 4ν−1Var



∫

Rd

w(u)Aψ∗(u,0)du




+

∫∫∫

Rd×Rd×Rd

Cov [w(v1)Aψ∗(v1,0), w(v3 − v2)Aψ∗(v2,v3)] dv1dv2dv3.
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The central limit theorem for ∇ψPL(m)(ψ∗) follows in exactly the same way as in Lemma
A.2. together with Lemma A.4. in Li et al. (2008). ✷

In a second step we show that the estimates resulting by maximizing the pairwise log-
likelihood function in (28) are asymptotically normal.

Theorem 6.2. In addition to the conditions in Lemma 6.1 assume that

(h) E

[
|∇2
ψ log fψ∗(η(s1), η(s2))|

]
<∞ and E

[
|∇2
ψ log fψ∗(η(s1), η(s2))|2

]
<∞, and

(i) sup
ψ∈Ψ

∫

Rd

w(u)E
[
∇2
ψ log fψ(η(u), η(0))

]
du <∞, and

(j) further, as m→ ∞ and for fixed ψ ∈ Ψ,

∫∫∫

(Sm−Sm)3

w(v1)w(v3 − v2)E [∇ψAψ(v1,0)∇ψAψ(v2,v3)]

× λ(Sm ∩ (Sm + v1) ∩ (Sm + v2) ∩ (Sm + v3))

λ(Sm)
dv1dv2dv3

→
∫∫∫

Rd×Rd×Rd

w(v1)w(v3 − v2)E [∇ψAψ(v1,0)∇ψAψ(v2,v3)] dv1dv2dv3.

Then, the pairwise likelihood estimate ψ̂ is asymptotically normal:

√
λ(Sm)(ψ̂ −ψ∗) d→ N (0, F−1Σ(F−1)

⊺

), m→ ∞,

where Σ is defined in (29) and

F =

∫

Rd

w(u)E
[
∇2
ψ log fψ∗(η(u), η(0))

]
du.

and

Proof. For the second derivative of the pairwise log-likelihood function (28) we obtain
for fixed ψ ∈ Ψ

E

[
λ(Sm)−1ν−2∇2PL(m)(ψ)

]
= λ(Sm)−1

∫∫

Sm×Sm

w(s1 − s2)E [∇ψAψ(s1, s2)] ds1ds2

=

∫

(Sm−Sm)

w(u)E [∇ψAψ(s1 − s2,0)]
λ(Sm ∩ (Sm + u))

λ(Sm)
du

→
∫

Rd

w(u)E [∇ψAψ(u,0)] du, m→ ∞.

Using the same argument as for the pairwise score function it follows that
Var(λ(Sm)−1ν−2∇2

ψPL
(m)(ψ)) → 0. This shows pointwise convergence of∇2

ψPL
(m)(ψ̃) to
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∫

Rd

w(u)E
[
∇2
ψ log fψ(η(u), η(0))

]
du. The uniform convergence is implied by Assumption (i).

Therefore,
λ(Sm)−1ν−2∇2

ψPL
(m)(ψ) → F.

Using a Taylor expansion

0 = ∇ψPL(m)(ψ̂) =
1

λ(Sm)ν2
∇ψPL(m)(ψ∗) +

(
1

λ(Sm)ν2
∇2
ψPL

(m)(ψ̃)

)
(ψ̂ −ψ∗),

we obtain

√
λ(Sm)(ψ̂ −ψ∗) = −

(
1

λ(Sm)ν2
∇2
ψPL

(m)(ψ̃)

)−1(
1√

λ(Sm)ν2
∇ψPL(m)(ψ∗)

)
.

Together with the central limit theorem for the pairwise score function (Lemma 6.1) it
follows that √

λ(Sm)(ψ̂ −ψ∗) d→ N (0,Σ).

✷

Remark 6.3. First note that the rate of convergence here is
√
λ(Sm) = O(md/2) (see

Assumption (a)) which is the same as for regular grids. For the max-stable random field in
(2) satisfying Condition 2.3, Assumption (d) was shown in Lemma 5.1. Assumptions (f)
and (h) can be shown in the same way as Lemma 5.1. The condition (b) on the α-mixing
coefficients is easily verified using Lemma 5.4, from which follows that

1

k2
αk,k(r) ≤ exp{−θ1rα1 /2} ≤ Cr−α1 ,

where C > 0 is some constant.

7. Simulation study

We illustrate the small sample behaviour of the pairwise likelihood estimation for spatial
dimension d = 2 in a simulation experiment. The setup for this study is:

(a) The spatial locations consisted of a 10× 10 grid

S10 =
{
s(i1,i2) = (i1, i2), i1, i2 ∈ {1, . . . , 10}

}
.

The time points are chosen equidistantly, 1 < · · · < T = 100.

(b) One hundred independent Gaussian space-time processes Zj(sns, tnt), j = 1, . . . , 100
were generated using the R-package RandomFieldswith covariance function ρ(snh, tnu).
We use the following correlation function for the underlying Gaussian random field.

ρ(h, u) = (1 + θ1‖h‖α1 + θ2|u|α2)−3/2.

Assumption 2.1 is fulfilled and the limit function δ is given by

lim
n→∞

(logn)(1− ρ(snh, tnu)) = δ(h, u) =
3

2
θ1‖h‖α1 +

3

2
θ2|u|α2 ,

where sn = (logn)1/α1 and tn = (log n)1/α2 .
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(c) The simulated processes were transformed to standard Fréchet margins using the
transformation −1/ log(Φ(Zj(s, t))) for s ∈ S10 and t ∈ {1, . . . , T }.

(d) The pointwise maximum of the transformed Gaussian random fields was computed
and rescaled by 1/1000 to obtain an approximation of a max-stable random field, i.e.,

η(s, t) =
1

1000

1000∨

j=1

− 1

log (Φ(Zj(sns, tnt)))
, s ∈ S10, t ∈ {1, . . . , T } .

(e) The parameters θ1, α1, θ2 and α2 for different combinations of maximal space-time
lags (r, p) were estimated by maximizing (11). The program is adjusted such that it
takes care of identifiability issues, when some of the parameters are not identifiable,
cf. Remark 4.5.

(f) Steps (a)-(e) are repeated 100 times.

Note first, that we only get an approximation of a Brown-Resnick process since we cannot
choose n = ∞. There is not doubt that the simulation of the marginal distribution is
accurate. Before estimating the parameters we checked the bivariate extremal dependence
structure by estimating the tail dependence coefficient separately in time and space. A
comparison with simulations from the bivariate limit distribution function showed that the
realizations are appropriate. Figures 2 and 3 show the resulting estimates as a function
of (r, p), where the true parameter set is given by ψ∗ = (θ∗1 , α

∗
1, θ
∗
2 , α
∗
2) = (0.06, 1, 0.04, 1).

Figure 2 shows boxplots of the resulting estimates for the spatial parameters θ1 and α1.
The horizontal axis shows the different maximal space-time lags included in the pairwise
likelihood function from (11). We also show qq-plots against a normal distribution for all
parameters and different combinations of r and p in Figure 4. In addition to the graphical
output we calculate the root mean square error (RMSE) and the mean absolute error (MAE)
to see how the choice of (r, p) influences the estimation.

We make the following observations. As already pointed out by Davis and Yau (2011)
and Huser and Davison (2012), there might be a loss in efficiency if too many pairs are
included in the estimation. This can be explained by the fact that pairs get more and more
independent as the space-time lag increases. Adding more and more pairs to the pairwise
log-likelihood function can introduce some noise which decreases the efficiency. This is
evident in Figure 3 for the temporal parameter α2, where the estimates vary more around
the mean as more pairs are included in the estimation.

An interesting observation for our model is that using a maximal spatial lag of 0 or a
maximal temporal lag 0, respectively, leads to very good results. For the spatial parameters,
the space-time lags which lead to the lowest RMSE and MAE are (2, 0) for θ1 and (2, 0)
(RMSE) or (3, 0) (MAE) for α2 (see Table 2), i.e., we use all pairs within a spatial distance
of 2 or 3 at the same time point. Basically, this suggests that we could also estimate the
spatial parameters based on each individual random field for fixed time points and then
take the mean over all estimates in time. The same holds for the time parameters θ2 and
α2, where the best results in the sense of the lowest RMSE and MAE are obtained for the
space-time lags (0, 3), i.e., if we use all pairwise densities corresponding to the space-time
pairs (s, t1) and (s, t2), where |t2 − t1| ≤ 3 (see Table 3). The reason for this observation
is that the parameters of the underlying space-time correlation function get “separated” in
the extremal setting in the sense that for example a spatial lag equal to zero does not affect
the temporal parameters θ1 and α1 and vice versa.
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Table 2. RMSE and MAE based on 100 simulations for the spatial estimates θ1 and α1 for different
combinations of maximal space-time lags (r, p).

θ1 (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (2,0) (2,1) (2,2)

RMSE 0.0099 0.0118 0.0121 0.0122 0.0123 0.0124 0.0103 0.0104 0.0105
MAE 0.0071 0.0090 0.0092 0.0093 0.0094 0.0095 0.0080 0.0081 0.0081

(2,3) (2,4) (2,5) (3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

RMSE 0.0104 0.0104 0.0104 0.0106 0.0107 0.0108 0.0108 0.0107 0.0108
MAE 0.0081 0.0081 0.0081 0.0082 0.0083 0.0083 0.0084 0.0083 0.0084

α1 (2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (3,0) (3,1) (3,2)

RMSE 0.1338 0.1398 0.1530 0.1492 0.1543 0.1569 0.1351 0.1409 0.1579
MAE 0.1078 0.1124 0.1154 0.1137 0.1233 0.1252 0.1050 0.1106 0.1127

(3,3) (3,4) (3,5) (4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

RMSE 0.1596 0.1639 0.1649 0.1423 0.1483 0.1614 0.1673 0.1735 0.1751
MAE 0.1228 0.1291 0.1297 0.1120 0.1176 0.1114 0.1276 0.1372 0.1385

Table 3. RMSE and MAE based on 100 simulations for the spatial estimates θ2 and α2 for different
combinations of maximal space-time lags (r, p).

θ̂2 (0,1) (0,2) (0,3) (0,4) (0,5) (1,1) (1,2) (1,3) (1,4)

RMSE 0.0182 0.0182 0.0182 0.0182 0.0182 0.0184 0.0183 0.0183 0.0183
MAE 0.0171 0.0171 0.0171 0.0171 0.0171 0.0173 0.0172 0.0171 0.0171

(1,5) (2,1) (2,2) (2,3) (2,4) (2,5) (3,1) (3,2) (3,3)

RMSE 0.0183 0.0187 0.0186 0.0185 0.0185 0.0185 0.0188 0.0188 0.0186
MAE 0.0171 0.0175 0.0174 0.0173 0.0174 0.0173 0.0176 0.0176 0.0174

α̂2 (0,2) (0,3) (0,4) (0,5) (1,2) (1,3) (1,4) (1,5) (2,2)

RMSE 0.1317 0.1269 0.1280 0.1289 0.1442 0.1401 0.1426 0.1438 0.1463
MAE 0.1008 0.0989 0.1015 0.1035 0.1086 0.1079 0.1139 0.1147 0.1179

(2,3) (2,4) (2,5) (3,2) (3,3) (3,4) (3,5) (4,2) (4,3)

RMSE 0.1532 0.1580 0.1619 0.1473 0.1531 0.1589 0.1642 0.1549 0.1607
MAE 0.1242 0.1275 0.1294 0.1169 0.1223 0.1273 0.1317 0.1233 0.1284
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Figure 2. Estimates for θ1 and α1 (spatial parameters) as a function of maximal space-time lags
(r, p). Each boxplot represents the estimates for 100 simulations. The dashed line represents the
true value.
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Figure 3. Estimates for θ2 and α2 (spatial parameters) as a function of maximal space-time lags
(r, p). Each boxplot represents the estimates for 100 simulations. The dashed line represents the
true value.
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Figure 4. QQ-plots for estimates against normal distribution, where for each parameter we chose a
random combination of r and p.
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A. Proof of Lemma 5.1

In the following, we use the same abbreviations as in the proof of Theorem 4.4. The gradient
of the bivariate log-density with respect to the parameter vector ψ is given by

∇ψ log f(x1, x2) =
∂ log f(x1, x2)

∂δ
∇ψδ.

Assume in the following that all parameters θ1, α1, θ2 and α2 are identifiable. Since all
partial derivatives

∂δ

∂θ1
= ‖h‖α1 ,

∂δ

∂θ2
= |u|α2 ,

∂δ

∂α1
θ1α1‖h‖α1−1,

∂δ

∂α2
= θ2α2|u|α2−1,

as well as all second order partial derivatives can be bounded from below and above for
0 < min {‖h‖, |u|} ,max {‖h‖, |u|} < ∞ using assumption (19) and, independently of the
parameters θ1, θ2, α1 and α2, it suffices to show that

Eψ∗

[∣∣∣∣
∂ log fψ(η(s1, t1), η(s2, t2))

∂δ

∣∣∣∣
3
]
<∞

and

Eψ∗

[
sup
ψ∈Ψ

∣∣∣∣
∂2 log fψ(η(s1, t1), η(s2, t2))

∂δ

∣∣∣∣

]
<∞.

Since δ can be bounded away from zero using assumption (19), we can treat δ as a constant.
For simplification we drop the argument in the following equalities. Define

V1 =
∂V

∂x1
, V2 =

∂V

∂x2
, and V12 =

∂2V

∂x1x2
.

The partial derivative of the bivariate log-density with respect to δ has the following form

∂ log fψ
∂δ

= −∂V
∂δ

+ (V1V2 − V12)
−1

(
∂V1
∂δ

V2 + V1
∂V2
∂δ

− ∂V12
∂δ

)
.

We identify stepwise the “critical” terms, where “critical” means higher order terms of
functions of x1 and x2. To give an idea on how to handle the components in the derivatives,
we describe one such step. Note that (V1V2 − V12)

−1 can be written as

(V1V2 − V12)
−1 =

x1x2

g1

(
1
x1
, 1
x2
, 1
x1x2

, 1
x2
1

, 1
x2
2

) ,

where g1 describes the sum of the components together with additional multiplicative fac-
tors. By using

∂Φ(q
(1)
ψ )

∂δ
=
q
(1)
ψ

2δ
ϕ(q

(1)
ψ ) and

∂ϕ(q
(1)
ψ )

∂δ
= −

(q
(1)
ψ )2

2δ
ϕ(q

(1)
ψ ),

where q
(1)
ψ = log(x2/x1)/(2

√
δ) +

√
δ, we have

∂V1
∂δ

V2 = g2

(
1

x21, x
2
2

,
q1
x21x

2
2

,
q21
x21x

2
2

,
1

x31x2
,
q1
x31x2

,
q21
x31x2

,
1

x1x32
,
q1)

2

x1x32

)
,
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where g2 is a linear function of the components. By combining the two representations
above, we obtain that all terms in
(V1V2 − V12)

−1(∂V1/∂δ)V2 are of the form

| log x1|k1 | log x2|k2
xk31 x

k4
2

, k1, k2, k3, k4 ≥ 0. (30)

The second derivative of the bivariate log-density with respect to δ is given by

∂2 log fψ
(∂δ)2

=− ∂2V

(∂δ)2
− (V1V2 − V12)

−2

(
∂V1
∂δ

V2 + V1
∂V2
∂δ

− ∂V12
∂δ

)2

+ (V1V2 − V12)
−1

(
∂2V1
(∂δ)2

V2 + 2
∂V1
∂δ

∂V2
∂δ

+ V1
∂2V2
(∂δ)2

− ∂2V12
(∂δ)2

)

Stepwise calculation of the single components shows that all terms are also of form (30).
This implies that for both statements it suffices to show that for all k1, k2, k3, k4 ≥ 0

E

[
(log η(s, t))k1 (log η(s, t))k2

|η(s, t)|k3 |η(s, t)|k4
]
<∞.

Since η(s, t) is standard Fréchet log(η(s, t)) is standard Gumbel and 1/η(s, t) is standard
exponential. Using Hölder’s inequality, we obtain

E

[ | log(η(s, t))|k1 | log(η(s, t))|k2
|η(s, t)|k3 |η(s, t)|k4

]

<
(
E
[
| log(η(s, t))|4k1

]
E
[
| log(η(s, t))|4k2

])1/2
(
E

[∣∣∣∣
1

η(s, t)

∣∣∣∣
4k3
]
E

[∣∣∣∣
1

η(s, t)

∣∣∣∣
4k4
])1/2

<∞,

since all moments of the exponential and the Gumbel distributions are finite.


