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Abstract 

A generic framework for stochastic modeling of deterioration processes is proposed, 

based on dynamic Bayesian networks (DBN). The framework facilitates computationally 

efficient and robust reliability analysis and, in particular, Bayesian updating of the model 

with measurements, monitoring and inspection results. These properties make it ideally 

suited for near-real time applications in asset integrity management and deterioration 

control. The framework is demonstrated and investigated through two applications to 

probabilistic modeling of fatigue crack growth. 
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Introduction 

The modeling of deterioration is subject to significant uncertainty, which arises from a 

simplistic representation of the actual physical processes (typically through empirical or 

semi-empirical models) and from limited information on material, environmental and 

loading characteristics. This uncertainty has been addressed in stochastic models of 

deterioration processes in the past  (Committee on Fatigue and Fracture Reliability 1982; 

Yang 1994; Melchers 1999). Additionally, observations of the deterioration processes or 

influencing factors (e.g., from inspection and monitoring) have been included in the 

models through Bayesian updating (Tang 1973; Madsen et al. 1986), in particular in the 

context of life-cycle optimization and inspection planning (Thoft-Christensen and 

Sørensen 1987; Pedersen et al. 1992; Straub and Faber 2006). In principle, the methods 

of structural reliability enable efficient Bayesian updating of any stochastic model with 

any kind of information (Madsen et al. 1986). In reality, however, algorithmic difficulties 

occur (Sindel and Rackwitz 1998), which can make the computations cumbersome and 

hinder the implementation in software that is run by engineers who are not experts in 

structural reliability methods. 

This paper proposes a novel computational framework for evaluating stochastic 

deterioration models. The strength of the framework is its computational efficiency and 

robustness when performing Bayesian updating. It is based on Bayesian networks (BN), a 

modeling tool that originated in computer science (Pearl 1988; Jensen 2001; Russell and 

Norvig 2003), but has recently had a number of applications in engineering risk and 

reliability analysis (Faber et al. 2002; Friis-Hansen 2004; Grêt-Regamey and Straub 2006; 

Langseth and Portinale 2007). Few researchers have applied BN in the context of 

deterioration modeling. Friis-Hansen (2001) studies the application of BN for 

deterioration modeling and inspection planning by means of an example considering 

fatigue crack growth; Montes-Iturrizaga et al. (2009) use BN for optimizing inspection 

efforts for offshore structures subject to multiple deterioration mechanisms; Attoh-Okine 

and Bowers (2006) present an empirical model of bridge deterioration using Bayesian 

networks. In contrast to these previous publications, which make use of the BN 
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capabilities mainly for modeling the system aspects or for optimizing inspection and 

maintenance decision, the present paper focuses on the deterioration modeling. The 

resulting computational framework enables efficient and robust reliability updating for 

realistic deterioration models. By robust it is understood that the reliability updating can 

be performed in an automated manner, not requiring the input from an expert in 

reliability analysis. This is in contrast to existing efficient computational methods, such 

as first/second-order reliability methods (FORM/SORM), importance sampling or subset 

simulation, and facilitates the implementation in software that can be used by the lay 

engineer for the planning of inspection, repair and maintenance activities, as well as in 

automated alarm systems based on monitoring data. 

The proposed framework is demonstrated and investigated through two applications 

considering fatigue crack growth, which are representative for a large number of 

deterioration mechanisms subject to uncertainty. 

Relation to Markov process models 

Dynamic Bayesian networks (DBN) can be interpreted as a generalization of Markov 

process models, which have frequently been applied for the modeling of deterioration 

(Bogdanoff and Kozin 1985; Spencer and Tang 1988; Cesare et al. 1992; Ishikawa et al. 

1993; Rocha and Schuëller 1996; Mishalani and Madanat 2002). Markov deterioration 

processes are characterized by the fact that for a given condition at time 1t , the condition 

at any future time 2 1t t  is statistically independent of the condition at any past time 

0 1t t . It is noted that the Markovian assumption does not hold in engineering practice, 

where epistemic uncertainties are prevalent (Yang 1994; Melchers 1999; Mishalani and 

Madanat 2002). Epistemic uncertainties are often time-invariant (e.g., uncertainties due to 

simplistic parametrical models, due to limited statistical data for empirical models, or due 

to incomplete knowledge of influencing parameters), thus invalidating the Markovian 

assumption. To overcome this shortcoming, here a deterioration model is formulated that 

corresponds to a Markov process model conditional on time-invariant random variables. 

The DBN technique enables the efficient computation of such models. 

Among Markov process models, it can be distinguished between two fundamentally 

different approaches: models that are based on an underlying parametric model (Ishikawa 
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et al. 1993) and models that are purely empirical (Cesare et al. 1992; Mishalani and 

Madanat 2002). The latter are typically finite space Markov chain models. Although the 

DBN approach can be applied to both models, this paper focuses on parametric models, 

which are preferable in that they facilitate learning and transferability. 

Dynamic Bayesian networks 

The textbooks by Pearl (1988), Jensen (2001) and Russell and Norvig (2003) provide an 

introduction to BN. In the following, a concise introduction to BN is given, limited to the 

case of discrete random variables, i.e., random variables that are defined in a finite space.  

BN are probabilistic models based on directed acyclic graphs that represent ( )p x , the 

joint probability mass function (PMF)  of a set of random variables X . The space of X , 

i.e., the number of outcome states of X  for which ( )p x  must be computed, increases 

exponentially with the number of variables in X , but BN enable an efficient modeling by 

factoring the joint probability distribution into conditional (local) distributions for each 

variable.  

X1

X2 X3  

Figure 1. A simple Bayesian network. 

A simple BN is illustrated in Figure 1. It consists of three discrete random variables 

1 2 3, ,X X X . 1X  is a parent of 2X  and 3X , which are children of the former. The PMF of 

each variable is defined conditional on its parents and the joint PMF of this network is 

given as a product of these conditional probabilities: 

       1 2 3 1 2 1 3 1, ,p x x x p x p x x p x x   (1) 

Wherein ( | )i jp x x  is the conditional PMF of iX  given j jX x . More generally, the joint 

probability mass function for any BN having discrete variables is given as 
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where ipa  is the set of realizations of the parents of iX . The basic supposition of BNs is 

that each variable iX  is independent of all other variables for given values of the 

variables in its Markov blanket, which includes the parents of iX , the children of iX  and 

the parents of the children of iX .  

The BN allows entering evidence: probabilities in the network are updated when new 

information becomes available. For example, when the state of 2X  in the network in 

Figure 1 is observed to be e , this information propagates through the network and the 

joint PMF of 1X  and 3X  change according to Bayes’ rule to  
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(3) 

Consequently the marginal posterior probabilities of 1X  and 3X  are also updated. Note 

that the common influencing variable 1X  introduces dependence between 2X  and 3X , 

but evidence can change the dependence among variables in the network; in the above 

example, if 1X  is known, 2X  and 3X  become independent. For given sets of evidence, it 

is possible to infer the independence assumptions encoded in the graphical structure using 

the rules of d-separation (Pearl 1988).  

Dynamic Bayesian networks (DBN) are a special class of Bayesian networks, which 

represent stochastic processes. They consist of a sequence of slices, each of which 

consists of one or more BN nodes. The slices are connected by directed links from nodes 

in slice i to nodes in slice i+1. Figure 2 shows an example of a DBN. If the model 

structure and the conditional probability tables are identical for all slices except the first, 

then the DBN is homogenous. As for any BN, the joint PMF of the variables in the DBN 

is defined through Equation (2), but a number of inference algorithms are available that 

are developed especially for the DBN structure (Murphy 2002).  

X0 X1 X2 XT

YTY2Y1Y0  
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Figure 2. An example of a dynamic Bayesian network. 

Modeling deterioration processes using dynamic Bayesian networks 

Probabilistic modeling of deterioration processes 

Consider a parametric deterioration model h  that describes the state of deterioration as a 

function of time t , a set of time-invariant model parameters θ , a set of time-variant 

model parameters ( )t tω ω  and the initial condition 0d . Deterioration is expressed by 

defect dimensions td  or an empirical damage index td  at time t , e.g., for fatigue, td  is 

either (a) the depth and/or length of a crack when using a fracture mechanics (FM) based 

model or (b) the Palmgren-Miner damage when using the empirical model based on SN-

curves. The model is written in generic form as 

   0 1, , , ,..., , 0t td d t h t d t  θ ω ω  (4) 

The proposed DBN model does not replace the parametric deterioration model h . Instead, 

the DBN model provides a computational framework that allows accurate and efficient 

evaluation of td  based on the prior stochastic model of the parameters and including all 

observations of the deterioration process and any of the parameters. The DBN also 

facilitates learning about the model parameters θ  and 1,..., tω ω  based on the 

observations. 

Hereafter, we limit ourselves to modeling deterioration as a discrete time process. 

Furthermore, in accordance with common deterioration models, we require that the 

dependence among the td  is conditionally Markovian, i.e.,  

   0 1 1 1, , , , ,..., , , , 1,2,...,t t t t t tf d d d f d d t T  θ ω ω θ ω  (5) 

where f  denotes the probability density function (PDF). Note that 1( | , , )t t tf d d  θ ω  can 

vary with t , i.e., the conditional Markov process is not homogenous in the general case. 

Additionally, we require that the time-variant model parameters tω  are a Markov process 

conditional on θ  and 1td  , i.e.,  

   1 1 0 1 1 1,..., , ,..., , , , , 1, 2,...,t t t t t tf d d f d t T    ω ω ω θ ω ω θ  (6) 
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Since td  is dependent on the time-invariant uncertain model parameters θ  for given 1td  , 

the deterioration process is not Markovian in the unconditional case, i.e., in general it is 

0 1 1( | , , ) ( | )t t t tf d d d f d d  . 

Limitations of the model framework 

In the generic model, the model parameters tω  and td  are assumed to be Markov 

processes, conditional on θ . This represents a limitation, which, however, is not critical 

in practice, because most stochastic models of deterioration fit at least approximately in 

this scheme. In particular, models with exclusively time-invariant random variables are a 

special instance of the framework. Examples of time-variant models that fit into the 

above framework are deterioration models based on a Gaussian process ( )X t  with 

exponential autocovariance function, Equation (7), since this process is Markovian 

(Ishikawa et al. 1993). 

       2
1 2 1 2 2 1, cov , expXX X XR t t X t X t t t         (7) 

Fortunately, deterioration process models in the literature almost exclusively utilize an 

exponential autocovariance function. Even if the process is not Gaussian, the Markovian 

assumption might still be a reasonable approximation. As an example, consider the 

lognormal process ( )Y t  with median 1, which can be obtained from a zero-mean 

Gaussian process ( )X t through the transformation ( ) exp ( )Y t X t . Since 
2 3exp ( ) 1 ( ) ( ) / 2! ( ) / 3! ...X t X t X t X t     , the first-order approximation of ( )Y t  is 

( ) 1 ( )Y t X t   and the first-order approximation of the autocovariance function is 

1 2 1 2( , ) ( , )YY XXR t t R t t , see also (Ortiz and Kiremidjian 1988). If the process ( )Y t  has an 

exponential autocovariance function, then ( )X t  and ( )Y t  are approximately Markovian. 

This is utilized in an application later in this paper. 

Representation of the deterioration model as a dynamic Bayesian network 

We represent the generic deterioration model as a DBN in Figure 3. Here, the vectors 

1,..., Tθ θ  are introduced to ensure that the time slices are identical. These vectors are 

related by the deterministic function 1, 2,...,t t t T θ θ and 1 θ θ . Introducing these 

additional parameter vectors has no effect on the computational efficiency of the model, 

yet it can facilitate the model building process and graphical representation of the model. 
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Figure 3. Generic DBN deterioration model. 

 

The links in the DBN shown in Figure 3 correspond to the assumptions of statistical 

independence among the variables of the generic deterioration model described above. 

Removing links in a DBN is equivalent to making additional independence assumptions 

in the model. Therefore, any DBN that is created by removing links from the generic 

DBN in Figure 3 is a special case of the generic DBN model. As a consequence, the 

inference algorithm for the generic DBN as presented later can be applied to such DBNs.  

The nodes in the generic model represent vectors of variables (e.g., most models have 

more than one time-invariant model parameter θ ). Often, it will be computationally 

beneficial to consider the variables in these vectors as individual nodes in the network. 

To separate variables allows exploiting conditional independence of variables in the BN, 

which can increase the computational efficiency of the models.  

Including observations in the model 

A main motivation for the DBN modeling approach is its computational efficiency and 

robustness for Bayesian updating when new evidence is available. Observations can be 

available of the initial conditions, the extent of the deterioration td  and the model 

parameters θ  and 1,..., tω ω . Examples of such observations are results from inspection 

and monitoring, observations of the environmental parameters (e.g., measurements of the 

chemical and physical properties of liquid and gas in a pipeline), observations of 

failure/survival events. Often these are indirect observations, i.e., observation that only 

provide an indication of the true parameter values. 
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Most observations will be independent of the past given the states of the DBN at the time 

of the observation. Under that condition, each time-slice of the generic DBN can be 

treated individually by adding the observations as variables in that time-slice. Figure 4 

shows the inclusion of an inspection result tZ  in the model. Such an inspection result can 

be a discrete random variable (with two states “indication” and “no-indication” of a 

defect) or a continuous random variable (a measured defect size). In the former case, the 

inspection is characterized by a Probability of Detection (PoD) model, in the latter case 

through a measurement accuracy. In either case it is assumed that the inspection result at 

time t is independent of all other random variables for given deterioration condition td . 

The corresponding quantitative model is known as the likelihood function in the context 

of Bayesian updating, ( | ) Pr( | )t t t t tL d z Z z d  . This function fully defines the variable 

tZ  in the DBN. Any inspection result is included in the model by instantiating the 

variable tZ  with the observed outcome (evidence). When evaluating the DBN with the 

evidence, the model is automatically updated.  

 

Observations

Damage variables

Time-invariant 
parameters

Time-variant 
parameters ωt

dt

θt

Zt  

Figure 4. Including an inspection event (observation) in the DBN. 
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Computational aspects 

Continuous versus finite state space models 

Most variables in deterioration models are defined in a continuous space. Approximate 

inference algorithms such as Markov Chain Monte Carlo (MCMC) (Gilks et al 1996; 

Beck and Au 2002) allow working with BN that involve continuous random variables, 

yet this flexibility comes at a price. While it is possible to prove convergence of the 

algorithms in the limit, the rate of convergence is unknown and can be extremely slow, 

therefore, the algorithms might not converge in practical applications. This problem is 

intensified by the fact that the resulting DBN models can be very large, and that the 

Gibbs sampler, which is an efficient MCMC inference algorithm for large BN, cannot 

handle deterministic relations among variables (Hrycej 1990). Approximate inference 

algorithms might therefore not be suitable for many of the envisaged applications, which 

involve the updating of the probabilistic model in a near-real-time manner, and they will 

not be studied further here. However, as long as the amount of evidence is low, 

approximate inference algorithms such as stochastic simulation or evidence weighting 

perform well and are easily implemented. This will be used for validation purposes of the 

discrete model. 

In the remainder of the paper, we focus on DBN models wherein all random variables are 

defined in a finite space. The nodes in the generic DBN model shown in Figure 3 and 

Figure 4 are defined through probability tables representing the conditional PMFs 

1( | )t tp θ θ , 1 1( | , , )t t t tp d ω ω θ , 1( | , , )t t t tp d d  ω θ  and ( | , , )t t t tp dz ω θ . If random 

variables are defined in a continuous space, they must be replaced by corresponding 

discrete random variables, as described later.  
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Exact inference in the dynamic Bayesian network model 

We can distinguish between a number of inference problems in temporal models (Russell 

and Norvig 2003). Those most relevant in the context of deterioration modeling are 

filtering, prediction and smoothing2. We can summarize these inference problems as: 

 Filtering (or monitoring): The task of computing the posterior distribution over 

the state at time t  given evidence up to time t , i.e., 1( , , | ,..., )t t t tp dθ ω z z .  

 Prediction: The task of computing the posterior distribution over the state at a 

future time T  given evidence up to time t , i.e., 1( , , | ,..., )T T T tp dθ ω z z , with 

t T .  

 Smoothing: The task of computing the posterior distribution over the state at a 

past time t  given evidence up to time T , i.e., 1( , , | ,..., )t t t Tp dθ ω z z  , with t T .  

For DBN with discrete random variables, a number of exact inference algorithms exist 

for these tasks (Murphy 2002; Russell and Norvig 2003), some of which are implemented 

in commercial and free BN software (Murphy 2001). In the Appendix, an adopted 

version of the “forward-backward” algorithm is introduced. The main constituents of this 

algorithm are  

 the forward operation (for time t ), which computes 1( , , | ,..., )t t t tp dθ ω z z  by 

means of a recursive algorithm as presented in the Appendix;  

 the backward operation (for time t ), which computes 1( ,..., | , , )t T t t tp dz z θ ω  by 

means of a recursive algorithm as presented in the Appendix.  

Filtering is performed by simply applying the forward operation for time t . Predicting is 

performed by applying the forward operation for time T , whereby the likelihood 

                                                 

2 Another inference task is learning of the conditional probability tables defining the nodes. 

However, since the DBN model is based on a parametric deterioration model, data is not used to 

learn the conditional probability tables, e.g., 1( | , , )t t tp d d  θ ω . Instead, the probability 

distributions of the time-invariant model parameters θ  are updated with the observations.  
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functions for 1,...,t Tz z  are set equal to one: ( | ) 1i ip d z , 1, ,i t T    (i.e., no 

evidence is entered for these variables). Finally, smoothing is carried out by performing 

both the forward operation and the backward operation for time t . We then obtain 

     0 0 1, , | ,..., , , | ,..., ,..., | , ,t t t T t t t t t T t t tp d p d p dθ ω z z θ ω z z z z θ ω  (8) 

Equation (8) is an application of Bayes’ rule, whereby the forward operation result 

1( , , | ,..., )t t t tp dθ ω z z  is the prior probability. The likelihood function is 

1( ,..., | , , )t T t t tp dz z θ ω , the result of the backward operation, because of independence of 

1,...,t Tz z  from 1,..., tz z  for given , ,t t tdθ ω , as prescribed by the DBN structure. 

Let the number of states of , ,t t td ω θ  be , ,dm m mω θ , respectively. As demonstrated in the 

Appendix, the computation time for filtering is 2 2[( ) ]d dO m m m m m tω ω θ , whereas it is 
2 2[( ) ]d dO m m m m m Tω ω θ  for predicting and smoothing. Therefore, the computational 

performance is determined by the number of states utilized for representing the variables, 

in particular td  and tω . The discretization of the random variables defined in a 

continuous space is thus a critical part of the framework.   

Discretization of continuous random variables 

All random variables that are defined in continuous space are replaced by equivalent 

variables defined in a finite space. It is suggested to perform this discretization 

sequentially, i.e., one variable at the time, and to proceed according to the hierarchy in 

the BN, i.e., parents are discretized before their children.  

Consider discretization of a single random variable X . This variable has a set of parent 

variables ( )P pa XX  and a set of children variables ( )C ch XX . Its corresponding 

discrete variable is X̂  and has Xm  states, which are denoted by ( )ˆ kx , 1 Xk m  . The 

Xm  states of X̂  correspond to mutually exclusive, collectively exhaustive intervals in the 

space of the original variable X . Because of the hierarchal discretization order, all 

variables in PX  are discrete. 

The continuous random variable X  is replaced in the BN with the discrete random 

variable X̂ . Therefore, the conditional PMF of X̂  given ( )l
P PX x  must be defined, as 

well as the conditional distribution of CX  given ( )ˆ ˆ kX x . The conditional PMF of X̂  is  
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     ( ) ( ) ( ) ( )ˆ k l l l
P X k P X k Pp x F x F x  x x x  (9) 

wherein XF  is the cumulative distribution function (CDF) of X , which is conditional on 
( )l

P PX x , and kx  and kx  are the lower and upper boundaries of the interval 

corresponding to state k . 

The distribution of CX  conditional on ( )ˆ ˆ kX x  is approximated by 

     ( ) ( )ˆ ˆ, ,
k

C C

k

x
k k

C P C P X
x

F x F x f x x dx




 X Xx y x y  (10) 

in which Py  are realizations of all random variables that are parents to CX  excluding X . 

The approximation in Equation (10) is twofold. First, it is assumed that the distribution of 

X  is independent of PY  for given X̂ , which does not hold in the general case, although 

it does in many special instances. Second, an assumption about ( )ˆ( | )k
Xf x x  must be made, 

because ( )Xf x  is unknown. (Remember that the variable X  in the BN is only defined 

conditional on PX .)  A straightforward choice is the uniform distribution for ( )ˆ( | )k
Xf x x : 

 ( ) 1
ˆ ,k

X k k
k k

f x x x x x
x x

 
   


 (11) 

The uniform assumption is not suitable if the interval is only bounded on one side. In 

such a case, it is suggested to apply an exponential PDF, e.g., for the case of an interval 

with only a lower bound: 

   ( )ˆ exp ,k
X k kf x x x x x x         (12) 

  can be freely selected to best represent the original distribution.  

When X  has no parents, ( )Xf x  is known and no approximation is required. Then 
( )ˆ( | )k

Xf x x  is simply the original PDF of X , truncated in the range k kx x x    . 

Choice of the discrete intervals 

The approximation in Equation (10) introduces an unknown error, which becomes zero in 

the limit as the size of the discretization intervals approaches zero. The choice of these 

intervals, therefore, is crucial for the accuracy of the results as well as the computational 
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performance of the algorithms. This choice is application-specific, but some general 

considerations are made and a heuristic for the selection is presented in the following 

Obviously, the goal is to select the discretization scheme that provides sufficient accuracy 

at maximum computational speed. Additionally, the scheme must ensure flexibility with 

respect to potential evidence that may become available in applying the model. Evidence 

will update the marginal distributions of the random variables in the model, thus 

increasing the difficulty in selecting an optimal discretization scheme a-priori. It is 

crucial that the discretization scheme leads to accurate results for all possible 

combinations of evidence. There is potential for an adaptive procedure, whereby the 

discretization scheme is adjusted as evidence becomes available (Neil et al 2007), but this 

is not further considered here since it is our aim to keep the procedure as simple as 

possible. For the same reason, only homogenous DBN models are considered, i.e., we 

require that the discretization scheme is the same for all time slices.  

Consider discretization of a single random variable X . First, we identify the probable 

range of values of X . The probable range of values is defined so that the a-priori 

probability of a variable being outside that range is smaller than p  for all time slices t . 

The value of p  will determine the minimum probability value that can be computed 

accurately with the model. For most practical applications, in particular when the 

probability of the failure event is of interest, 610p   will be sufficient. 

Next, we determine the discretization intervals in the space of X  within the probable 

range of values. These intervals are assigned without consideration of the a-priori 

distribution of X , to ensure flexibility with respect to potential evidence. The simplest 

choice would be intervals with equal lengths. However, it is recommended to account for 

the influence of X  on the deterioration damage td . To this end, intervals of equal length 

are assigned in the space of ( )xT x , with ( )xT x  being a suitable transformation such that 

the relation between ( )xT x  and td  is approximately linear. In most cases, it will be 

sufficient to select a simple functional form for ( )xT x , such as ( ) ln( )xT x x  or 

( ) exp( )xT x x . Finally, the interval borders Bx  are established as a function of the upper 

bound ubx  and the lower bound lbx  of the probable range of X  as 

         12 : : :
2

x ub x lb
B X x x lb x ub

X

T x T x
m T T x T x

m
  

   
x  (13)  
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(1)Bx  and ( 1)B Xm x  are set equal to the borders of the physically admissible domain of 

X . The number of discrete states, Xm , is adjusted to achieve the optimal balance 

between accuracy and speed. A higher value is chosen for variables with a higher 

importance (e.g., as appraised by a sensitivity measure on the reliability index a-priori). 

Finally, the resulting discretization scheme must be validated by comparing results for a 

few selected evidence cases with results obtained by alternative computation methods 

(typically crude simulation, which has the advantage of being unbiased and robust). 

Application I: Fatigue crack growth modeling involving time-invariant 

random variables only 

This example presents the application of the DBN model to a representative fracture 

mechanics (FM) based fatigue model that involves only time-invariant random variables. 

The aim of this example is to study the effect of discretization and to compare the 

performance of the DBN model with other numerical solutions, such as the second-order 

reliability method (SORM) and crude Monte Carlo simulation (MCS). For the sake of the 

example, a simple model is chosen from Ditlevsen and Madsen (1996). Crack growth is 

described by Paris’ law, Equation (14). 

   d

d

ma n
C S a n

n
      (14) 

a  is the crack length, n  is the number of stress cycles, S  is the stress range per cycle 

(constant stress amplitudes are assumed) and C  and m  are empirically determined 

model parameters. In this formulation of Paris’ law, the geometry correction factor is one, 

which in theory corresponds to the case of a crack in a plate with infinite size. With the 

boundary condition 0( 0)a n a  , this differential equation can be solved for the crack 

size as a function of the number of cycles n , (Ditlevsen and Madsen 1996): 

   
  1
1 2

1 22
01

2

m

mm mm
a n C S n a


          

 (15) 

The event of failure is described by the limit state function g  as a function of ( )a n  and 

the critical crack length ca : 
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 cg a a n   (16) 

The performance of the structural element is represented through the binary variable E . 

Failure of the element { 0}E   occurs if 0g  , and its complement { 1}E  , the survival 

event, occurs if 0g  . The probabilistic model is summarized in Table 1. 

Table 1. Parameters of the fatigue crack growth application with time-invariant parameters. 

Variable Distribution Mean Standard 

dev. 

Correlation 

a0 [mm] Exponential 1 1 - 

ac [mm] Deterministic 50 - - 

S [Nmm-2] Normal 60 10 - 

ln(C), m [*1] Bi-Normal [-33; 3.5] [0.47; 0.3] ln(C),m= -0.9 

   *1) dimension corresponding to N and mm 

 

Since this model contains only time-invariant parameters, we have, in terms of the 

generic model, [ , , ]S C m θ  and t td a . In analogy to Equation (15), we obtain the 

deterministic function for ta : 

 
  1
1 2

1 22
11 , 1,...,

2

m

mm m
t t

m
a C S n a t T





            
 (17) 

n  is the number of stress cycles during one time step. If the model were implemented 
with each variable as a separate node, the space of θ  would consist of S C mm m m mθ  

states. To reduce mθ , and consequently computation time, we make use of the fact that 

the two variables ,S C  can be replaced by a single variable 2(1 / 2) m mq m C S n     in 

Equation (17). The dimension of the space of θ  is reduced, and it is q mm m mθ . The 
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resulting DBN, including inspection results tZ , is shown in 
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Figure 5. 
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Figure 5. Fatigue crack growth as a DBN, case with time-invariant parameters. 

In the numerical implementation, we choose 510n  . The discretization scheme for the 

random variables is summarized in Table 2. It is noted that this discretization scheme is 

likely suboptimal, because of the strong statistical dependence between q  and m . To 

optimize the discretization scheme, the joint space of q  and m  should be considered, but 

the present discretization scheme is considered sufficiently accurate and efficient. The 

numbers of discrete states of  S  and lnC  have little effect on the computational speed, 
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because for given values of q  and m  the remaining variables of the model are 

statistically independent of S  and lnC . It is, therefore, sufficient to evaluate the prior 

distribution of q  and m , then update all variables in the model according to the proposed 

algorithm, and then compute the posterior PMF of S  and ln C  based on the posterior 

joint PMF of q  and m . The computation time for this last step is orders of magnitude 

lower than for performing a forward or backward operation. 

The PMF of S  and m  are obtained analytically using Equation (9); ( | )p C m  is 

computed from the cumulative bi-Normal distribution; ( | , , )p q s m C  and 

1( | , , )t t t tp a a m q  are evaluated using MC simulation with 104 samples. Finally, 

1( | )t tp m m   and 1( | )t tp q q   are unit diagonal matrixes.  

 

Table 2. Discretization scheme. 

iable Probable range ( )xT x  Number of 
states mi 

Final interval boundaries 

mm] 0.01 – 50 ln(at) 80 0, exp{ln(0.01):[ln(50)-ln(0.01)]/78:ln(50)},  

2.0 – 5.0 exp(m) 30 0, ln{exp(2):[exp(5)-exp(2)]/28  

1] -1.0 – (-10-3) ln(-q) 35 - , -exp[0:ln(10-3)/33:ln(10-3)],   

[N/mm] 10 – 110 S 52 0, 10:2:110,  

C) [*1] (-35.3) – (-30.7) ln(C) 48 - , -35.3:0.1:-30.7,   

*1) dimension corresponding to N and mm 
 

Including evidence 

Inspections of the structural element are carried out in intervals of 106 cycles and it is 

assumed that all inspections result in no-indication (i.e., no defect is found). In the 

numerical example, we consider the following PoD model (with D  being the event of 

detection): 

     Pr 1 exp /10mmtZ D a PoD a a      (18) 
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Obviously, the probability of no-detection at time t  conditional on a is 

Pr( | ) 1 ( )tZ D a PoD a   . As described earlier, evidence is included by instantiating 

the inspection variables tZ  in the DBN with the observed events (here: no-indication) at 

the times of inspection. 

Results 

The results obtained with the DBN are compared to results obtained with MCS and 

SORM, in terms of the reliability index 1[Pr( 1)]E     with 1  being the inverse 

normal CDF. For the unconditional case (no observations), the results are shown in 

Figure 6. 
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Figure 6. Results for the unconditional case. 

For the case including inspection results, we apply the filtering inference algorithm, i.e., 

the reliability index   after n  cycles is computed by consideration of all inspection 

results up to n  cycles, but neglecting later inspection results. The results are shown in 

Figure 7.  
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Figure 7. Results for the conditional case (no indication of a defect at all inspections). 

 

The results in Figure 6 and Figure 7 demonstrate the accuracy of the DBN approach. 

Besides facilitating efficient computation of the reliability as a function of time, the DBN 

model enables updating of the distribution of all random variables in the model with 

given inspection results. As an example, Figure 8 presents the updated complementary 

CDF of the stress ranges S  for different evidence cases. 
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Figure 8. Updating of the distribution of stress ranges S  with inspection results. 

 

Computational performance 

With the DBN established, the computation of the results presented here takes in the 

order of 10 CPU seconds on a standard PC with a 2.0 GHz processor with a Matlab-based 

program. The computation time increases linearly with the number of time steps 

considered (the 10 CPU seconds correspond to 100 time steps), but is independent of the 

number of observations. 

Application II: Fatigue crack growth as a stochastic process 

Fatigue crack growth has frequently been modeled by a random process model (Ortiz and 

Kiremidjian 1988; Lin and Yang 1985; Yang and Manning 1996; Zheng and Ellingwood 

1998; Beck and Melchers 2004). To demonstrate the applicability of the DBN framework 

for such models, the model suggested by Yang and Manning (1996) is utilized in a 

numerical example. Equation (19) shows the model in its generic format. 
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   d ( )
,

d cg

a n
Y n g a n

n
   θ  (19) 

( )a n  is the crack size after n cycles and [ ]cgg   can be any deterministic crack growth law 

as a function of ( )a n  and of time-invariant parameters θ . The simplistic crack growth 

law considered in this example is the same as in the previous example, i.e.,  

 ( ), ( )
m

g a n C S a n    θ  (20) 

( )Y n  in Equation (19) is a stationary lognormal process with a median value equal to 1 

and standard deviation Y . The autocovariance function of ( )Y n  is of an exponential 

form: 

     2
1 2 1 2 2 1, cov ( ), ( ) expYY Y YR n n Y n Y n n n       (21) 

The parameter Y  is a measure of the correlation time for ( )Y n . 

For given values of  θ  and 0a , Yang and Manning (1996) present an analytical solution 

for the probability of the crack exceeding a given value ca : 

   0.5 0
0

ln ln ( | , ) / ( )
Pr ( ) | ,

( )
c

c

n n a a n
a a n a

n

  
    

θ
θ  (22) 

This solution is a second-order approximation, based on the assumption that 

0( ) ( )W Y n dn  
 
is a lognormal process. 0.5 0( | , )cn a aθ  is the median number of cycles to 

reach ca , computed as 

 0

0.5 0( | , )
,

ca

c
a

da
n a a

g a
 θ

θ
 (23) 

For the crack growth law in Equation (20), it is 

   1 2 1 2
0

0.5 0 / 2

1
( | , )

1 2

m m
c

c m m

a a
n a a

C S m

  
      

θ  (24) 

The remaining parameters in Equation (22) are obtained as follows (for details refer to 

(Yang and Manning 1996)). 

    1/ 2
2 2 2 2
ln ln( ) exp 2 1 ( )exp ( )Y Yn n n


         (25) 
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  1/ 2
2 2 2

ln( ) ln 1 ( )exp ( )Yn n n         (26) 

2
2

2

2
( ) exp 1Y

Y Y

n n
n

n

  
         

 (27) 

where 2
lnY  is the variance of ln ( )Y n .  

The solution in Equation (22) is applied to verify the results obtained with the DBN 

model. The unconditional Pr[ ( )]ca a n  is computed from 0Pr[ ( ) | , ]ca a n a θ  by means 

of numerical integration.  

In the numerical investigations, the parameter values provided in Table 3 are applied. Y , 

the correlation length of ( )Y n , is modeled as a random variable. 

 

Table 3. Parameters of the stochastic process crack growth model example. 

Variable Distribution Mean Standard 
dev. 

Correlation 

a0  [mm] Exponential 1 1 - 

ac  [mm] Deterministic 50 - - 

S  [Nmm-2] Deterministic 60 - - 

ln(C)  [*1] Deterministic -30.0 - - 

m  [-] Deterministic 3.0 - - 

Y(n)  [-] Lognormal 1.2 0.8 Equation (21) 

Y  [cycles] Lognormal 106 106 - 

     *1) dimension corresponding to N and mm 
 

 

DBN modeling 

The DBN model for this example is shown in Figure 9. The binary variable E  represents 

the performance of the structural element (failure { 0}E   or survival { 1}E  ). The 

potential evidence that is included in the DBN model are measurements tM  of the crack 

depth. tM  is assumed to be Normal distributed with mean equal to the true crack depth 
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ta  and standard deviation 1mmM  . This DBN model assumes that the Lognormal 

process ( )Y n , represented by the variables tY , is Markovian, which represents a first-

order approximation as discussed earlier.  
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Figure 9. Fatigue crack growth as a DBN, random process model. 

 

The discretization scheme is summarized in Table 4. The PMFs ( )Yp  , 1( )p Y  and  

0( )p a  are calculated analytically from Equation (9); 1( | , )t t Ytp Y Y   , 1( | , )t t tp a a Y  and 

( | )t tp M a  are calculated using the approximations in Equations (11) and (12), assuming 

that tY  is constant during one time slice. The correlation coefficient between tY  and 1tY   is 

given by Equation (21). The number of cycles between the slices is 510n  . For 100 

time slices, this discretization scheme leads to CPU times in the order of 1-10 seconds on 

a standard PC with a 2.0 GHz processor for the presented results. 
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Table 4. Discretization scheme for the random process example. 

Variable Probable 
range 

TX(x) Number of 
states mi 

Final interval boundaries 

at  [mm] 0.01 – 50 ln(at) 81 0, exp[ln(0.01) : ln(50) ln(0.05)

80

 : ln(50)],  

tY   [-] 
0.0 – 7.0 

tY  31 0.0 : 0.175 : 7.0,   

Y  [cycles] 103 – 109 log(Y) 21 0, 10^[3 :0.3: 9],   

Mt  [mm] Same discretization as at 

 

Numerical results 

Figure 10 presents a comparison of the DBN results with the solution based on second-

order approximation, in terms of the reliability index for the case of no measurements. It 

is observed that the first-order Markovian approximation for tY  has little influence on the 

reliability index. The deviation of the DBN result from the second-order results for small 

numbers of cycles is mainly due to the approximation in the discretization of tY , as found 

from additional numerical investigations, which are not reported here for brevity. When 

doubling the number of discrete states for tY , the difference between the two solutions 

becomes negligible. 
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Figure 10. Result for the random process crack growth example – unconditional case. 
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To demonstrate the model updating with measurements of the deterioration size, the 

model is updated with the measurement results summarized in Table 5. Figure 11 

presents the resulting posterior mean of the crack depth for filtering (including evidence 

up to t ) and for smoothing (including all evidence). 

Table 5. Measurement results. 

Measurement times  [105 cycles] 10 20 30 40 50 60 70 80 90 
Measurements Mt  [mm] 0.3  0.3  0.3  0.5  1.0  3.5  5.0  10.0  12.0 
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Figure 11. Posterior mean of the crack depth ( )a n . 

 

For the same measurements, Figure 12 presents the posterior mean of the stress range 

process 1/( ) mS Y n   for two values of the correlation length Y . For higher values of Y , 

larger differences are observed between the posterior and the prior mean of 1/( ) mS Y n  . 

(The latter is 63.7N/mm2 in both cases.) This effect is expected, because higher 

correlation implies that a measurement at time t provides more information about the 

process at other times (Straub and Faber 2007). 
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Figure 12. Posterior mean of the stress range process 1/( ) mS Y n   for two different values 
of the correlation length. 

The updating of the probability distribution of model parameters based on inspection 

results is straightforward with the DBN. Exemplarily, the measurement results in Table 5 

are utilized to update the distribution of the correlation length Y . This results in a 

posterior distribution of Y  that has mean value 61.1 10  and standard deviation  
60.95 10 . These values are close to the prior values, which indicates that the 

measurement results contain little information on Y . This is in agreement with other 

results, which are not reported here, showing that the value of Y  has little effect on the 

reliability and the probability distribution of the crack depth, despite its significant impact 

on the posterior probability distribution of the stress range process. However, it is 

conceivable that learning about the correlation length is possible by collecting 

measurement data from a larger number of specimens, in particular in combination with 

other information, e.g., on the initial crack depth. 

Concluding remarks 

The aim of the DBN framework is to provide a computationally robust and efficient 

approach to probabilistically assess the condition and the reliability of structural elements 

subject to deterioration when observations are available. Figure 6, Figure 7 and Figure 10 
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demonstrate the accuracy of the framework for computing the reliability of deteriorating 

structural elements. Figure 8 illustrates the capability of the DBN approach for Bayesian 

updating of the uncertain model parameters. Finally, Figure 11 and Figure 12 

demonstrate the capabilities of the DBN framework in monitoring the performance of 

structures subject to deterioration in a near-real time manner. Based on these results, it is 

concluded that the proposed framework has a huge potential for applications in 

monitoring, inspection, maintenance and repair planning.  

The DBN framework is limited with respect to the number of random variables that can 

be included, due to the exponential increase in computation time with the number of 

random variables in the general case. However, as illustrated by the introduction of the 

auxiliary random variable q  in the first application, it is often possible to reduce the 

number of time-invariant random variables by reformulating the problem. Furthermore, at 

present most practically relevant deterioration models contain only a small number of 

random variables. 

Future work should aim at extending the presented framework to consider multiple 

structural elements. This is relevant for the asset integrity management of structural 

systems, but also for parameter estimation from experiments. Such an extension could be 

based on formulating the PMF of the time-invariant parameters θ  and the initial damage 

condition 0d  conditional on so-called hyper-parameters Α  that are common to all 

structural elements (i.e., the hyper-parameters are introduced as common parents to the 

variables θ  and 0d  of all elements). The DBNs representing the individual elements are 

then connected through the Α  node, which allows passing information between the 

elements, such that the information collected for one element is used to update the 

probabilistic model of all elements. Depending on the type of dependence among the 

system elements, different models can be envisaged and should be investigated. The 

flexibility of the BN methodology will facilitate such developments. 
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Appendix – Inference algorithm 

This Appendix presents algorithms for the forward and the backward operation, which 

form the basis for all inference, as summarized earlier. The algorithms are based on 

algorithms originally developed for Hidden Markov Models (HMM) (Russell and Norvig 

2003) and are here adopted to the proposed deterioration modeling framework. They 

approximately correspond to the frontier algorithm presented by Murphy (2002). 

Forward computation 

We compute 1( , , | ,..., )t t t tp dθ ω z z  through a recursive algorithm. By considering the 

independence assumptions encoded in the BN structure, as shown in Figure 3 and Figure 

4, we obtain the following relationships: 

     0 0 1, , | ,..., , , | ,..., |t t t t t t t t t tp d p d p dω θ z z ω θ z z z  (28) 
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Equations (28) and (29) establish the relationship between 1 1 1 1 1( , , | ,..., )t t t tp d    ω θ z z  

and 1( , , | ,..., )t t t tp dθ ω z z . Starting from 1 1 1 0 1( , , | , )p d ω θ z z , it is thus possible to 

compute all 1( , , | ,..., )t t t tp dθ ω z z  for any t recursively. 

In principle it is not necessary to determine the proportionality constant in Equation (28), 

but to prevent underflow it is recommended to normalize 1( , , | ,..., )t t t tp dθ ω z z  at each 

time step of the recursive algorithm. 

If there is no evidence at a time t , the corresponding likelihood function can be set equal 

to one, i.e., ( | ) 1t tp d z . This is equivalent to omitting Equation (28) in the forward 

operation. 
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Backward computation 

The backward-part of the algorithm computes the likelihood 1( ,..., | , , )t T t t tp dz z θ ω . By 

considering the independence assumptions encoded in the BN structure, we obtain the 

following relationships: 
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1( ,..., | , , )t T t t tp dz z θ ω  is computed recursively, starting from 1( | , , ) 1T T T Tp d z θ ω . 

Typically, values of 1( ,..., | , , )t T t t tp dz z θ ω  can become very small. To prevent 

underflow, it is recommended to normalize 1( ,..., | , , )t T t t tp dz z θ ω  at every step, i.e., we 

multiply  1,..., | , ,t T t t tp dz z θ ω  with a normalization factor t  in Equation (30) above. 

t can be chosen freely, the results computed in this paper were obtained with  
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θ ω

z z θ ω  (31) 

Computational performance of the algorithms 

Let the number of states of , ,t t td ω θ  be , ,dm m mω θ , respectively. The computation time 

for calculating 1( , , | ,..., )t t t tp dθ ω z z  is then 2 2[( ) ]d dO m m m m m tω ω θ . To verify this result, 

consider the last line of Equation (29) and note that the computation is performed from 

right to left. 2[ ]dO m m m tω θ  time is spent in multiplying the elements of 1 1( | , , )t t t tp d  ω ω θ  

with the terms on its right, and 2[ ]dO m m m tω θ  time is spent in multiplying the elements of 

1( | , , )t t t tp d d  ω θ  with the terms on its right. The summation over 1tθ does not have to be 

performed; since  1|t tp θ θ  takes value one if 1t tθ θ  and zero otherwise, it is 

sufficient to exchange 1tθ  with tθ . It is noted that a simple Markov chain model would 

require a computation time of 2 2 2( )dO m m m tω θ , which is orders of magnitude higher. Based 
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on similar consideration, the computation time required for the backward operation is 

determined as 2 2[( ) ( )]d dO m m m m m T t ω ω θ . It follows that the computation time for 

filtering is 2 2[( ) ]d dO m m m m m tω ω θ , whereas it is 2 2[( ) ]d dO m m m m m Tω ω θ  for predicting 

and smoothing.  
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