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Chapter 1

Introduction

After two massive stars in orbit around each other have ended their lives in supernova explo-
sions, the resulting binary system is composed of two compact objects, of which each is either
a neutron star (NS) or a black hole (BH). The theory of general relativity predicts that the
orbital distance in this binary system decays with time as a result of the permanent emission
of gravitational waves (GW) . The latter are a manifestation of the intrinsic coupling between
spacetime and matter and they extract energy and angular momentum from the binary, only
stopping when both objects have plunged into each other and have merged to a single, axisym-
metric object. In this thesis, we concern ourselves with such a merger scenario wherein at least
one compact object is an NS and we call both possible merger constellations synonymously NS-
mergers throughout this work. The high compactness of the coalescing objects results in very
small dynamical timescales during the final stages of the merger, making this event a violent,
explosive scenario that releases substantial amounts of energy in various forms within timescales
between milliseconds and seconds. This very property makes an NS-merger an appealing site
for a variety of interesting phenomena, of which the following will be investigated in this thesis.

A likely outcome of an NS-merger is a BH surrounded by a geometrically thick remnant disk (or
‘torus’) of disrupted NS matter, of which large parts are accreted into the BH on timescales of
tens of milliseconds to seconds. Powerful outflows could be blown off of this system by means
of different mechanisms. These outflows could be sufficiently neutron-rich to allow their con-
stituents to be synthesized to heavy nuclei via rapid captures of neutrons, i.e. via the r-process,
and they could be massive enough to ascribe a sizable fraction of all r-process nuclei in our
present universe to past NS-merger events. Furthermore, an ultrarelativistic, collimated outflow
could emerge along the system axis of the post-merger configuration and it could produce a
short flash of gamma radiation, i.e. a short gamma-ray burst (GRB), far away from the merger
when the outflow becomes optically thin to photons.

Both the relevant sites of the r-process as well as the origin of GRBs are not safely identi-
fied so far, and in fact scientists have been struggling for decades to verify or falsify specific
candidate scenarios and mechanisms. Given the highly non-linear, time dependent behavior of
qualified astrophysical scenarios, which depends on a multiplicity of relevant physics and scales
of length and time, self-consistent, quantitative studies are only possible by means of numerical
computer simulations and due to limited computational resources only selected sets of models
can be studied in a somehow simplified manner within a restricted spacetime domain. In our
specific scenario of a post-merger accretion torus, the transport of neutrinos – that is, both
their emission and their absorption or annihilation – could play a substantial role in causing, or
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2 CHAPTER 1. Introduction

at least influencing, outflows that are viable to account for the aforementioned processes. By
developing and studying numerical simulations of post-merger accretion tori that incorporate
multi-dimensional, spectral neutrino transport for the first time, this thesis is intended to ex-
plore the dynamic properties of those systems, the mechanisms by which outflows are developed
therein and their according efficiencies, and the amount and thermodynamic properties of the
outflow.

In the following sections, we outline the physical background to clarify the context of our un-
dertaking and we conclude this chapter by summarizing the main points of motivation for this
thesis and its structural arrangement.

1.1 Observational context

1.1.1 R-process nucleosynthesis

The astrophysical origin of the neutron-rich elements heavier than iron is still enigmatic. How-
ever, the basic process that is viable to produce such elements has already been identified by
Burbidge et al. (1957): Free neutrons are captured by iron-group nuclei (acting as ‘seed’ nuclei)
with a rate that dominates the β-decay rate of the unstable reaction products. This is expected
to happen in an expanding astrophysical environment as soon as matter is out of nuclear statis-
tical equilibrium (NSE)1, and for the process to be efficient the abundance ratio of free neutrons
to seed nuclei (‘neutron-to-seed’ ratio) needs to be high. The typical thermodynamic conditions
that favor high neutron-to-seed ratios are (see Arnould et al., 2007; Thielemann et al., 2011,
for recent reviews), first, a high ratio of the total number of neutrons to the total number of
protons (i.e. a low electron fraction2 Ye), and second and third, a high entropy per baryon (s)
and short expansion timescale, respectively, to prevent nuclear reactions from consuming too
many free neutrons to build α-particles and out of these more heavy nuclei. Different degrees of
realization of the aforementioned conditions yield different neutron-to-seed ratios and therefore
different efficacies of the r-process. The r-process is called “weak” if elements only up to the
second r-process peak (at mass numbers of A ∼ 130 − 140) are synthesized, while it is called a
“strong” or “main” r-process if elements up to the third r-process peak (at A ∼ 200 − 220) are
produced.

Nevertheless, many details regarding the nuclear physics of the r-process as well as the as-
trophysical site that provides both the necessary thermodynamic conditions and a sufficient
amount of the ejected material have yet to be clarified. It was long believed that during a core-
collapse supernova (CCSN), when the proto-neutron star has been formed and the shock-wave
is propagating outward through the progenitor star, the thermal wind induced by neutrino ab-
sorptions in the outer layers of the proto-neutron star (the “neutrino-driven wind”) is suitable to
explain the dominant amount of r-elements in our universe, and in fact early detailed wind and
nucleosynthesis calculations produced very promising results (e.g. Meyer et al., 1992; Woosley
et al., 1994). However, subsequent calculations unveiled that the wind entropies might be too

1In NSE, strong interaction timescales are shorter than any other timescale associated with composition-
changing processes. All thermodynamic properties are then solely functions of the density, temperature and
electron fraction. For typical densities found in astrophysical environments the temperature above which NSE
sets in is about TNSE ≃ 0.3− 0.5MeV (see, e.g., Arnett, 1996).

2As usual, this quantity is defined as Ye ≡ (ne− − ne+)/nB with the number densities ne± of electrons and
positrons and the baryon number density nB.
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low to activate the strong r-process (e.g. Takahashi et al., 1994; Qian & Woosley, 1996; Thomp-
son et al., 2001; Roberts et al., 2010). Moreover, recent long-term calculations with accurate
neutrino treatment (Hüdepohl et al., 2010; Fischer et al., 2010) yield neutrino-driven winds that
are always proton-rich (Ye > 0.5) and thus do not allow for any r-processing. It is therefore
likely that another site or several other sites together might have contributed with a significant
fraction to the inventory of r-elements in our universe.

Compact object mergers of the kind considered in this thesis were already hypothesized as
possible r-process sites well before multi-dimensional simulations were performed (e.g. Lattimer
& Schramm, 1974, 1976; Meyer, 1989; Eichler et al., 1989). Neutron-star mergers have been dis-
favored as the dominant r-process sites compared to CCSNe on grounds of the much lower event
rates (by a factor of ∼ 103 − 105) than CCSNe and the long inspiral timescales (of ∼ 100Myr)
by some galactic chemical evolution models (e.g. Argast et al., 2004), because they would pos-
sibly imply a too large star-to-star scatter of abundances and would lead to a delayed galactic
enrichment of r-elements. However, considerable uncertainties enter such evolution models –
one is already given by the insecure merger rates, cf. Sec. 1.1.3 – and other, similar studies (De
Donder & Vanbeveren, 2004; Prantzos, 2006) did not exclude NS-mergers as the dominant sites
of the r-process.

Ejecta can be produced during different stages in the course of an NS-merger: Matter can
either be ejected dynamically during and right after the plunge of both compact objects into
each other, or it can be expelled after the merger of two NSs from the central object before the
latter eventually collapses to a BH, or outflow can be driven from a BH-accretion disk in case
that such a system results (see Secs. 1.2.1 and 1.2.3 for more details). The dynamical ejecta
can be examined without the need for a complicated neutrino-transport scheme and results of
several numerical simulations have served to calculate the nucleosynthetic yields of dynamically
ejected material (e.g. Freiburghaus et al., 1999; Goriely et al., 2011). Goriely et al. (2011) report
a robust, strong r-process within the ejecta that well reproduces the reference values given by the
relative solar abundances, although only for nuclei that are heavier than A ∼ 140. The outflow
and its thermodynamic properties in post-merger accretion disks are difficult to calculate since in
these systems both the emission and absorption of neutrinos actively determine the properties of
the ejecta and the partially optically thick conditions in the disks make it necessary to take into
account a full neutrino-transport scheme. Given that self-consistent simulations of post-merger
tori including energy and lepton-number transport by neutrinos have not been conducted so far,
calculations that aimed to assess the nucleosynthetic yields of ejecta from post-merger tori have
only been performed employing radical simplifications to construct the trajectories with conse-
quently very uncertain results regarding a successful r-processing (Surman et al., 2008; Metzger
et al., 2009; Caballero et al., 2012; Wanajo & Janka, 2012).

The idea (Li & Paczyński, 1998) that the nucleosynthetic activity and resulting production of
radioactive elements will heat up the expanding ejecta and could produce potentially measurable
optical signals was recently addressed by a few authors (Metzger et al., 2010b; Goriely et al.,
2011; Roberts et al., 2011) who computed, together with the r-process yields of dynamically
ejected material, optical lightcurves of the ejecta. Coined by Kulkarni (2005) as “macro-nova”
and by Metzger et al. (2010b) as “kilo-nova”, the observation and shape of such signals might
yield powerful evidence for the astrophysical site of the r-process, or for the origin of short GRBs
if those were measured simultaneously, particularly when linking the information contained in
these signals with theoretical models from numerical simulations of (post-)NS-merger scenarios.
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1.1.2 Gamma-ray bursts

Gamma-ray bursts are intense flashes of γ-radiation that are brighter than any other electro-
magnetic explosion in the universe and that have typical duration times of a few milliseconds
to several minutes. Observed for the first time by the US military satellites VELA in 1967 and
publicly noted by Klebesadel et al. (1973), several instruments/satellites have registered (e.g.
Beppo-SAX, HETE-2, BATSE) and continuously register (e.g. Swift, Fermi) GRBs, which are
detectable on average roughly once per day. The origin of GRBs was completely unclear until the
late 1990’s, which has inspired the imagination of astrophysicists to contrive more than 100 can-
didate models (see Nemiroff, 1994, for a compilation of models conceived up to 1993). However,
with the results of BATSE that GRBs are distributed isotropically over the sky and on account
of the first additional detections of GRB “afterglows” – spectrally softer counterparts in X-ray,
optical and radio bands that may last for days to weeks and that allow the precise localization
in galaxies and thus the determination of the burst luminosities – in 1997, it became clear that
GRBs are of cosmological instead of galactic origin, which led to a significant reduction in the
number of possible progenitor scenarios.

To explain several properties of the spectrum and the light curve of a GRB, the medium that
emits the γ-radiation needs to be highly relativistic, with Lorentz factors up to ∼ 102 − 103

(see Piran, 2004; Mészáros, 2006; Nakar, 2007, for reviews). The latter property not only solves
the compactness-problem of GRBs3 but also suggests that the isotropic luminosities of roughly
Lγ,obs ∼ 1050−1052 erg s−1 and total energies Eγ,obs ∼ 1049−1054 erg, inferred from observations
by assuming an isotropically emitting source, need to be reduced by some factor accounting for
the circumstance that the emission is relativistically beamed (the ‘beaming factor’) to obtain the
true luminosities and energies emitted from the source. Moreover, further estimates immediately
imply that for the medium to become optically thin to launch the prompt GRB, it must have
expanded outward to radii of about ∼ 1012 − 1015 cm away from the compact region where its
outward acceleration was originally triggered, called the “central-engine” of the GRB. Because of
the tremendous range of different length- and timescales, fully self-consistent multi-dimensional,
time-dependent calculations, which treat the outflow from the site of its launching at the central
engine all the way to its final phase where the kinetic energy is dissipated into photons, are by far
out of reach. Nevertheless, due to both sites being so far apart, the details of the central engine
that provides the primary energy reservoir of the outflow and determines its initial acceleration
and/or collimation are to some degree decoupled from the physics of the large-scale outflow and
the mechanisms that finally lead to its photon emission. This is insofar convenient as models for
GRB outflows and for central engines can be constructed fairly independently from each other,
at least concerning many matter-of-principle questions.

One popular model for the large-scale outflow is the “thermal fireball-model” (e.g. Goodman,
1986; Paczynski, 1986; Piran, 1999; Beloborodov, 2003) which assumes that a hot mixture of
electrons, positrons, photons and a few baryons adiabatically expands. This model is both
mathematically handy, because it treats a one-dimensional quasi-spherically expanding flow,
and successful concerning the efficiency of converting the internal energy into kinetic energy.

3The compactness-problem is brought about by the fact that a non-relativistically moving source with spatial
dimensions roughly determined by the shortest variation timescales of the emission of milliseconds would have
an optical depth of ∼ 1014 to Thomson scattering, which is in conflict with the fact that all γ-spectra of GRBs
are non-thermal, i.e. produced within an optically thin environment. Apart from solving the latter problem, also
other features of GRB spectra, such as achromatic breaks in the light curves, indicate a high Lorentz factor of
the emitting region.
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Other models also include magnetic fields (e.g. Usov, 1994; Drenkhahn & Spruit, 2002; Thomp-
son, 2006) and are sometimes referred to as “Poynting-flux dominated” or “magnetic-fireball
models”. However, they can be significantly more complicated since the magnetic field not only
represents an additional degree of freedom within the outflow but it may also strongly influ-
ence the transverse dynamics of the outflow (e.g. the possible collimation into a jet). Popular
mechanisms by which the prompt emission is suggested to take place are the internal (Rees &
Meszaros, 1994) and external (Rees & Meszaros, 1992) shock models. The former model assumes
successive shells within the outflow propagating with different Lorentz factors to collide with
each other to dissipate parts of their kinetic energy while the external shock model renders the
collision of the GRB outflow with the external medium responsible for the emission.

The observed dichotomy in the distribution of duration times suggests the existence of (at
least) two sub-populations (Kouveliotou et al., 1993), namely short and long GRBs with dura-
tion times of the prompt emission less and greater than ∼ 2 s, respectively, and with completely
distinct progenitor classes. Long GRBs are recorded about three times more often than short
GRBs and the detection of long GRBs in a number of cases simultaneously with supernovae (e.g.
Galama et al., 1998; Hjorth et al., 2003) suggests the association of this type of bursts with the
collapse of very massive, rotating stars. Instead of a neutron-star that is formed during a CCSN,
the “collapsar” model claims a BH to emerge in the center, around which the infalling material
from the star forms an accretion disk owing to its own angular momentum (e.g. Woosley, 1993;
Paczynski, 1998; MacFadyen & Woosley, 1999). Neutron-star mergers as the central engines of
short GRBs were suggested about two decades ago, e.g., by Eichler et al. (1989); Narayan et al.
(1992); Mochkovitch et al. (1993). In both of these progenitor scenarios for the two GRB sub-
classes a disk accreting onto a BH is imagined to form. The estimated event rates, the assumed
dynamical lifetimes of the disks and the amounts of gravitational energy that could be released
during the accretion of these disks make each scenario a well-suited candidate for a central engine
of the respective kind of GRB. Several scenarios exist of how an ultrarelativistic outflow could
emerge along the system axis. Among the most popular ones are the mechanism based on the
annihilation of neutrinos in the polar region, and the magnetically induced “Blandford-Znajek
process”. More details regarding these processes will be given in Secs. 1.2.2 and 1.2.3.

1.1.3 Gravitational waves from neutron-star mergers

As of now, 10 binary NSs (NSNS) have been discovered in our Galaxy (see e.g. Kalogera et al.,
2004, for a compilation), of which 7 are expected to merge within less than 10Gyr, but many
more are believed to exist. Binaries of the mixed type (NSBH) have not been found so far.
Although the existence of GWs that trigger the merger has so far been demonstrated only in-
directly through measurements of decreasing orbital periods in binaries, as in the case of the
famous binary pulsar PSR1913+16 (the “Hulse-Taylor binary pulsar”), there is reasonable con-
fidence that, about a century after the governing general relativistic field equations have been
formulated by Einstein, direct measurements of these “ripples in spacetime”will become feasible
with the advanced generation of the GW detectors LIGO (USA) and VIRGO (Italy) going into
operation in 2015. While the merger rates and thus the detection rates of NSNS-mergers can be
estimated from both extrapolation methods using properties of the observed binary NSs (e.g.
Kim et al., 2006) as well as population synthesis calculations4 (e.g. Belczynski et al., 2008), the

4Starting from a given initial distribution density of stars as function of their mass, population synthesis
codes essentially utilize every available information from both theory and observation to quantify the effects that
determine the number and properties of final compact object binaries, including, for instance, parametrizations
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NSBH coalescence rates can only be assessed by the latter method given the lack of observa-
tions. However, neither method is able to constrain the merger rates better than by two to
three orders of magnitude, yielding median merger rates (Abadie et al., 2010) of roughly 100
and 3Myr−1 per Milky Way equivalent galaxy for NSNS and NSBH systems, respectively, which
for the LIGO–VIRGO network both roughly translate to detection rates of O(10) per year, with
similar uncertainties.

A measurement of the GW signal from a merger, occasionally together with the coincident
information from (any kind of) electromagnetic signal, will be potentially useful concerning a
variety of aspects. Only taking into account the topics considered in this thesis, simultaneous
recordings of a short GRB or of an optical transient and a GW signal from a merger could
clarify the origin of short GRBs or of r-process viable outflow, respectively. Moreover, in case
the parameters of the progenitor binary (see next section) could be extracted from a GW signal,
theoretical models based on simulations of NS-mergers and post-merger accretion tori could,
on the one hand, be tested for consistency and eventually improved when enough information
for cross-checks is measured, and on the other hand, be used to predict important quantitative
properties (e.g. outflow masses or energies).

1.2 Theoretical picture

1.2.1 Neutron-star mergers

Before we consider theoretical models of NS-mergers, we first recapitulate some relevant notions
concerning NS physics: The conditions and constituents of matter above the nuclear saturation
density, ρnuc ≈ 2.7 × 1014 g cm−3, are unknown, on the one hand due to the complexity of the
quantum-chromodynamic many-body problem, and on the other hand because such densities are
unavailable to laboratory experiments. The equation of state (EOS) of an NS is therefore largely
uncertain and with it the mass-radius relation of an NS, which is calculated from a given EOS
using the relativistic, hydrostatic stellar-structure equations (or “Tolman-Oppenheimer-Volkoff”
equations). The maximum mass5 Mmax above which a non-rotating NS would collapse to a BH
is high (low) for ‘stiff’ (‘soft’) EOSs and most microphysical EOSs yield maximum masses in the
range Mmax = 1.5− 2.5M⊙ (e.g. Lattimer & Prakash, 2000), where M⊙ is the solar mass. With
the recent discovery of a pulsar of about 2 solar masses (Demorest et al., 2010) most soft EOSs
became ruled out.

Theoretical models of NS-mergers were first considered by Lattimer & Schramm (1974, 1976),
who also already envisaged these scenarios as possible sites for r-process nucleosynthesis. De-
tailed quantitative investigations of the dynamics of the merger phase – when the point-mass
approximation or certain equilibrium assumptions become invalid – were, however, delayed until
computers became powerful enough to handle this generically time-dependent, three-dimensional
problem (see Faber, 2009; Duez, 2010, for recent reviews). In the following, we briefly outline our

of the wind mass and angular momentum loss rates during stellar evolution, the mass transfer (“Roche lobe
overflow”) within a binary, which might also lead into a common-envelope phase of both stars, or the natal
kick distribution of the compact objects. Given that many of these individual processes are already beset with
considerable uncertainties, the final results for NS-merger rates typically contain a large set of loosely constrained
parameters.

5In this chapter we always refer to the gravitational mass, which is reduced compared to the baryonic mass by
the amount of gravitational binding energy. For the remainder of this thesis, this distinction becomes redundant
since we will not regard self-gravitation.
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Figure 1.1: Schematic illustration of the evolutionary stages of an NSNS-merger (gray lines and labels between
stages) and of an NSBH-merger (black lines and labels between stages). The typical dynamical durations of some
stages are denoted by τ . See the text for details.

present picture of the dynamics of NS-mergers, which is almost exclusively based on the results
of numerical simulations, while in Secs. 1.2.3 and 1.3 we then specifically consider post-merger
BH-accretion disks. Typically, merger simulations are initialized with both compact objects
being separated by a distance comparable to their diameter when the orbital periods are a few
milliseconds and the merger of both objects lies a few orbital revolutions ahead. Owing to the
computational demand, the evolution of (either type of) a post-merger system was not followed
longer than ∼ 20− 30ms in full merger simulations so far.

Binary neutron-star mergers

The first simulations of NSNS-mergers were performed using Newtonian physics, a polytropic
EOS6 and different approximate schemes to account for the GW emission (e.g. Oohara & Naka-
mura, 1989; Shibata et al., 1992; Rasio & Shapiro, 1992). Thereafter, the areas of focus somewhat
split: Some groups improved their models by including microphysical EOSs and approximate
schemes for neutrino emission (so-called “leakage schemes”, cf. Sec. 2.1, (e.g. Ruffert et al., 1996;
Rosswog et al., 1999), whereas other groups elaborated on the inclusion of general relativistic
effects while retaining simplified EOSs, applying post-Newtonian methods (e.g. Faber & Rasio,
2000), working in the relativistic conformal-flatness approximation (e.g. Wilson et al., 1996;
Oechslin et al., 2002; Faber et al., 2004) or treating the full general relativistic equations (e.g.

6A polytropic EOS is given by the relation P = κ ρΓ between the pressure P and density ρ, with constants
κ,Γ. This EOS can only describe adiabatic processes, i.e. dissipative processes such as shocks are ignored.
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Shibata & Uryū, 2000; Baiotti et al., 2008; Thierfelder et al., 2011). Only a few authors so
far presented studies where relativistic methods are combined with a finite-temperature, micro-
physical EOS (Oechslin & Janka, 2006; Bauswein et al., 2010) and a neutrino emission scheme
(Sekiguchi et al., 2011). Moreover, the effects of magnetic fields in merger simulations have been
examined in Newtonian physics by Price & Rosswog (2006) and in full general relativity, e.g.,
in Anderson et al. (2008); Liu et al. (2008); Giacomazzo et al. (2009).

We summarize some essential results obtained from simulations by visualizing the possible evo-
lutionary pathways during an NSNS-merger scenario in Fig. 1.1 (the gray arrows between the
individual stages refer to the case of two merging NSs). The dominant parameter in determining
the qualitative evolution and the final state of the merger is the total mass Mtot of both stars,
while the remaining relevant parameters are given by the mass ratio q of the two NSs and by
the EOS. The intrinsic angular momenta (or ‘spins’) of the NSs can to a good approximation
be neglected, on the one hand because typical realistic values of measured pulsar spins are low
compared to the orbital angular momentum of the system, and on the other hand because the
internal viscosity of both NSs is too small to cause tidal locking in a pre-merger system that
would force both stars to co-rotate (e.g. Bildsten & Cutler, 1992).

When both stars merge, the resulting object is likely to have a mass higher than Mmax. How-
ever, instead of a prompt collapse to a BH, the remnant is stabilized by differential rotation if
its mass of ≃Mtot is lower than a critical mass Mcrit,1, which depends on q and the EOS and lies
in the range of about Mcrit,1 ∼ 1.3 − 1.7Mmax (e.g. Shibata et al., 2003; Shibata & Taniguchi,
2006). The differentially rotating object is then called a “hypermassive neutron star” (HMNS)
and its lifetime is determined by the efficiency of processes that transport angular momentum
away from its center and thus cause it to become more compact. Such processes can be turbu-
lence (possibly caused by magnetic fields) or the ongoing emission of GWs. Now, if the total
mass Mtot is even smaller than Mcrit,2, which is the maximum mass of a rigidly rotating NS
and (depending on the EOS) roughly constrained by Mcrit,2 ≲ 1.2Mmax (Cook et al., 1994),
the so-formed configuration will survive as a massive NS (if Mtot ≲ Mmax) or a “supermassive
neutron star” (if Mmax ≲ Mtot ≲ Mcrit,2). If Mtot ≳ Mcrit,2, the processes that redistribute
angular momentum will eventually lead to a delayed collapse of the HMNS to a BH. Since very
high numerical resolution is a necessary condition for the reliable description of these processes,
present-day computational limits hamper the fully consistent investigation of the long-term evo-
lution of an HMNS, but estimates quantify its lifetime before collapse to ∼ 10 − 100ms (e.g.
Shibata & Sekiguchi, 2005; Duez et al., 2006).

After (prompt or delayed) collapse, some part of the disrupted NS matter can have enough
angular momentum to resist being immediately swallowed by the BH and it can form an accre-
tion torus that evolves on longer dynamical timescales of the order of ∼ 0.1 s. The torus masses
(or torus-mass estimates for when the HMNS collapses) obtained in numerical simulations vary
considerably between different binary parameters (Mtot, q and the EOS) and typically lie in the
range of Md ≃ 0.01 − 0.3M⊙; see Lee & Ramirez-Ruiz (2007) for a small compilation. Yet,
being rather small compared to the total mass evolved during a simulation, the torus mass is
a delicate quantity to accurately assess and the limited numerical accuracy of a given code can
have a non-negligible influence on the resulting value of Md (see e.g. Kiuchi et al., 2009, for a
resolution study). Further, the numerical methods employed by the various groups differ from
each other and no consistent comparison for equal physical parameters has been presented so
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far7. Concerning the qualitative trends, however, the results agree in that the torus masses
should be expected to be higher for unequal mass binaries, since then the lower-mass NS is
tidally disrupted before the plunge (with optimal values of q being about ∼ 0.7− 0.8), and for
longer durations of the HMNS phase, because then more angular momentum can be transferred
away from the center to support matter in the surrounding regions.

During the collision of both NSs about ∼ 10−3 − 10−2M⊙ of neutron-rich material can be
dynamically ejected, of which a hot component comes off the shock-heated collision interface
between the stars and a cold component originates from the tidal tails. Moreover, while in the
HMNS phase, the remnant copiously emits neutrinos and by means of a mechanism similar to
the neutrino-driven wind in a CCSN, another portion of about ∼ 10−3M⊙ of matter could be
expelled from the surface of the HMNS into the polar regions (Dessart et al., 2009).

It remains to be noted that magnetic fields (with realistic field strengths) were found to be
unessential for the dynamics of the merger (i.e. before the prompt collapse or the formation of
an HMNS), and in the case of a prompt collapse they may modify the torus mass only by a few
percent.

Neutron-star black-hole mergers

Historically, simulations of these types of mergers have experienced similar stages of progress as
the simulations of NSNS-mergers. They were first performed using purely Newtonian physics8

and a polytropic EOS in Lee & Kluzniak (1995) whereupon then were improved regarding the
microphysics and a neutrino-leakage scheme by Janka et al. (1999); Rosswog et al. (2004). Since
the first fully general relativistic simulations were performed by Shibata & Uryū (2006), various
authors, likewise using simplified EOSs, pulled forward the further exploration of the parameter
space (e.g. Etienne et al., 2008; Duez et al., 2008). Recently, the first models that apply a
microphysical EOS (Duez et al., 2010) and that include magnetic fields (Etienne et al., 2011)
have been presented.

In Fig. 1.1, the black arrows between the different evolutionary stages refer to an NSBH-merger
scenario. Besides the main parameters determined by the total mass Mtot ≡MBH +MNS (with
MBH,MNS being the mass of the BH and of the NS, respectively), the mass ratio q ≡MBH/MNS

and the EOS, here the spin of the BH is an additional relevant parameter. If the BH is heavier
than the NS by some factor qcrit, then the NS reaches the innermost stable orbit before it comes
close to its tidal disruption radius. It is therefore not tidally disrupted and is swallowed as a
whole by the BH, leaving no torus and producing no outflow. The value of qcrit depends on each
of the remaining parameters, it is about qcrit ∼ 3 − 5 for a non-spinning BH (Taniguchi et al.,
2007; Shibata et al., 2009) and it increases with higher spin of the BH parallel to the orbital
angular momentum (Etienne et al., 2009) because the innermost stable orbit shrinks with in-
creasing BH spin. For q ≲ qcrit, the neutron star becomes tidally stretched into a banana-like
configuration of which a small part retains enough angular momentum to form an accretion
torus or become partially dynamically ejected, while the remainder falls into the BH. The final

7This is, however, not a trivial undertaking in general relativistic evolution schemes. For example, the choice
of different coordinates already inhibits the results of two simulations to be compared at ‘equal times’.

8In Newtonian simulations, the BH is typically treated as a moving point mass that exerts a force described
by a Newtonian or pseudo-Newtonian potential on its surroundings. We refer the reader to Sec. 3.1.1 for the
illustration of one popular pseudo-Newtonian potential, which is used for the post-merger simulations examined
in this thesis.
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torus masses obtained from NSBH-merger simulations lie in a similar range as for NSNS-merger
simulations, including the uncertainties caused by the technical issues mentioned above. A non-
vanishing, co-rotating spin of the BH appears to be a very influential property to obtain torus
masses of Md > 0.1M⊙ (Etienne et al., 2009; Duez et al., 2010).

1.2.2 Models of accretion disks

Accretion disks (or tori) are structures of material in orbital motion near rotational equilibrium
that successively accrete onto the central objects they are girding and they occur in a variety of
realizations and on vastly different spatial scales in our universe. Besides emerging as remnants
of NS-mergers, they also appear, e.g., around proto-stellar objects that are about to form stars,
in X-ray binaries due to the mass transfer from a star to a compact object, or in the form of
active galactic nuclei (see e.g. Pringle, 1981; Balbus & Hawley, 1998; Spruit, 2010a, for reviews).
Although being extensively studied regarding many of their properties, the process causing the
central property of accretion disks, namely the mechanism that triggers the transport of angular
momentum and thus the actual accretion of matter, is not properly understood. It is well known
that the torque between differentially rotating fluid elements that is exerted by microscopic
viscosity is too small by many orders of magnitude to explain the observed mass accretion rates
(e.g. Lüst, 1952). That is, given the high Reynolds numbers of the flow, stochastic small-scale
motions, i.e. turbulence effects, have to act in such a way to generate on larger scales an effective
shear stress in the medium.

The α-viscosity approximation

The idea to ignore the origin and the detailed properties of disk turbulence and to simply
parametrize the resulting shear stress and thus render the disk flow quasi-laminar was introduced
in a seminal paper by Shakura & Sunyaev (1973). The basic ansatz is essentially similar to a
mixing-length approach and purely dimensional arguments can be inferred to directly write
down the ‘turbulent kinematic α-viscosity’ νvis. Using as characteristic quantities of the local
disk medium the sound speed cs and the Keplerian9 angular velocity ΩK, the α-viscosity reads10

νvis = αvis
c2s
ΩK

, (1.1)

where the famous parameter αvis regulates the ‘strength’ of large-scale shear stresses that drive
the accretion. However, since the underlying model of the α-viscosity is not self-consistent and
moreover the possibility of a locally varying effective shear stress is ignored in this prescription,
the value of αvis is not universal and, depending on the explicit kind and the properties of the
accretion disk the α-viscosity is intended to model, it is believed to lie somewhere between 10−3

and 10−1 for the α-model to yield the best possible physical consistency. Still, the α-prescription
is both simple and powerful, and a sizable fraction of all studies in accretion-disk theory made
use of it in one way or the other. In fact, most of the general one-dimensional, (quasi-)stationary
accretion-disk models have been constructed employing the α-prescription, as for example the
“advection-dominated accretion flow” (ADAF, Narayan & Yi, 1994) , which is radiatively inef-
ficient and ‘cooled’ only via advection of internal energy into the central BH. Not all accretion

9The attribute ‘Keplerian’ is used when referring to stationary orbits where the gravitational attraction is
exactly balanced with the centrifugal force.

10Since the expression for νvis is derived from dimensional considerations, we do not need to cling to the
original formulation of Shakura & Sunyaev (1973), but instead we may use a recipe that is more appropriate for
our multi-dimensional calculations.
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disks – particularly not the type we are intending to model – are well described by stationary
models. The ease in application of the α-prescription and its enormous success in describing
one-dimensional accretion disks inspired many modelers to investigate also geometrically thick
accretion tori in multi-dimensional time-dependent simulations by employing the α-prescription.
This allows them, by circumventing the numerical issues associated with a more elementary de-
scription of disk turbulence, to study and test generically multi-dimensional features, which
might have only been estimated before within one-dimensional models, such as convective in-
stabilities and outflows (e.g. Stone et al., 1999; Igumenshchev et al., 2000) or – in the specific
case of GRB-progenitor scenarios – neutrino emission (Lee et al., 2005) and annihilation (Mac-
Fadyen & Woosley, 1999; Setiawan et al., 2006), in a less complicated manner. We pick up on
this basic intention and make use of the α-prescription for most of the studies presented in this
thesis. By doing so, we essentially trade off all the uncertainties and numerical difficulties associ-
ated with a more elaborate description of disk turbulence for one additional free parameter, αvis.

Asking for a more self-consistent description of angular momentum transport inevitably leads
to the question of the origin of disk turbulence, that is, its underlying instability. Despite the
huge Reynolds numbers of the order of ∼ 1014 within the flow and in contrast to a Carte-
sian ideal shear flow, which is locally non-linearly unstable and thus exhibiting turbulence (e.g.
Orszag & Kells, 1980), in disk flows a purely hydrodynamic instability that generically causes
turbulence has not been found so far – a stabilizing property appears to be the nearly Keple-
rian rotation profile (e.g. Balbus & Hawley, 1998). It seems that only by additionally including
magnetic fields does an accretion disk show powerful turbulent angular momentum transport.
Still, given the fact that all discretization schemes host some small but non-vanishing amount of
numerical viscosity, nowadays any numerical simulation and also any laboratory experiment is
orders of magnitude away from mimicking systems of such high Reynolds numbers realistically
enough to safely exclude the possibility of purely hydrodynamic disk turbulence (see e.g. Lesur
& Papaloizou, 2010, for a recent hydrodynamic study).

Magnetized accretion tori

Magnetic fields in accretion disks can potentially be amplified exponentially in time, starting
from any small seed value, by virtue of the so-called “magneto-rotational instability” (MRI,
see Sec. 4.1.2 for more details) . After being grown to dynamically important field strengths,
magnetic fields provide a means to transport angular momentum, due to both the induced tur-
bulence and the magnetic shear tension. Of particular concern in many models of magnetized
accretion tori is the question of how jets could self-consistently emerge in these systems. The
various hypothesized mechanisms are divided into the class of models where the jet is powered
solely by the accretion disk (of which the standard model is based on a magneto-centrifugal
acceleration mechanism, see e.g. Spruit, 2010b for a recent review) and into the class of models
where the jet is powered by the rotating central BH. The principal process in the latter class
of models is the famous process suggested by Blandford & Znajek (1977) (BZ-process) , owing
to which a Poynting flux of magnetic energy directed outward of a rotating BH emerges and by
that extracts its rotational energy.

At the end of the 1990’s global magnetohydrodynamic (MHD) simulations of thick accretion
tori have become possible with fine enough grid resolution to describe the growth of the MRI
and the turbulent phase it leads into (Armitage, 1998; Matsumoto, 1999; Hawley, 2000). Such
kind of Newtonian studies have systematically been extended by the exploration of more corners



12 CHAPTER 1. Introduction

in the parameter space or the examination of different features of the turbulent disk (e.g. Stone
& Pringle, 2001; Hawley & Krolik, 2001, 2002; Armitage & Reynolds, 2003; Igumenshchev et al.,
2003; Machida & Matsumoto, 2003). Henceforth, the simulation codes were upgraded to treat
general relativistic magnetohydrodynamics (GRMHD) and many subsequent studies aimed at
refining the generic features of a general relativistic, non-radiative, thick accretion flow (e.g. De
Villiers et al., 2003; McKinney & Gammie, 2004; Hirose et al., 2004; Krolik et al., 2005; Hawley
& Krolik, 2006; Beckwith et al., 2008; Barkov & Komissarov, 2008). The basic conception of
most of these studies is to start with equilibrium models of thick accretion tori that either com-
pletely contain an initial magnetic field configuration or that are surrounded and threaded by an
external magnetic field, and to examine the stationary (as averaged in time) turbulent outcome
of the BH-torus system concerning its geometrical structure and its efficiency to produce out-
flows. Although having reached a highly sophisticated level in describing within a single global
simulation a magnetized accretion torus that self-consistently generates an ultrarelativistic out-
flow, most of the current global simulations of GRMHD tori ignore any microphysical aspects
such as a realistic EOS or neutrino emission (except for several studies that explicitly focus on
collapsar models, e.g. Nagataki, 2009; Harikae et al., 2009; Komissarov & Barkov, 2009; Barkov
& Baushev, 2011). Moreover, besides technical limits mainly owing to the restricted afford-
able resolution, a taxing obstacle in modeling magnetized accretion tori appears to lie in the
uncertainties associated with the initial magnetic field topology (see Chap. 4 for more details).

1.2.3 Post-merger remnant disks

Having expounded the astrophysical phenomena that could be associated with post-merger ac-
cretion disks, we now outline the emerging picture of the physics included in these systems before
reviewing in Sec. 1.3 some important studies that have led to this picture or helped improving it.

The schematic portraiture in Fig. 1.2 illustrates the relevant processes and their geometric
location, as well as typical ranges of quantities characterizing the BH-torus system. As this
system results from a violent merger wherein at least one NS was disrupted, the torus matter
is dense, hot and neutron-rich. It is made up of electrons, positrons, photons and free nucleons,
which start to recombine to helium and heavier nuclei at a few hundred kilometers away from
the BH. At these conditions of matter the optical depth of photons is so high that they are
fully thermalized and simply become advected with the gas instead of being able to cool the
torus by escaping from it. The only agent that is capable of cooling the material and thus
releasing part of its gravitational energy is represented by neutrinos, which are produced mainly
by β-processes. For densities and temperatures within the lower ends of the ranges given in
Fig. 1.2, neutrinos, once created, leave the torus without any further interactions, i.e. the torus
matter is in the optically thin, transparent regime. For higher densities and temperatures, the
coupling between matter and neutrinos becomes stronger and some neutrinos are reabsorbed on
their way out of the torus. Neutrinos then effectively transport energy and lepton number from
the innermost hot and dense regions of the torus into the surrounding cooler and more diluted
layers. In a manner that is well known from CCSNe, this continuous energy deposition caused
by the transport of neutrinos can potentially induce a subrelativistic, gravitationally unbound
outflow, which could be viable for nucleosynthesis and may thus trigger an optical transient.
Additionally, an outflow could also be powered by means of magnetic-field effects or the energy
release from nucleons recombining to α-particles. For very high densities and temperatures close
to the upper ends of the ranges given in Fig. 1.2 the interactions of neutrinos with matter occur
so frequently that neutrinos are effectively slowed down to escape from the torus and are to
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Figure 1.2: Schematic view of the structure of a post-merger BH-accretion torus within the first few hundred
milliseconds after its formation. Typical ranges of values are given for the torus mass, Md, the mass accretion
rate into the BH ṀBH, and for the densities ρ, temperatures T and electron fractions Ye within the torus. The
torus is cooled by neutrinos, which may be reabsorbed in the outer layers of the torus or may annihilate with their
corresponding antiparticles to produce electrons and positrons. Massive, subrelativistic off-axis outflows that could
occur due to neutrino absorption or other processes could allow for interesting nucleosynthesis (e.g. the r-process)
and an accompanying measurable optical transient. A diluted, ultrarelativistic outflow is believed to be generated
in the polar-axis region, either by neutrino annihilation or by magnetic effects such as the Blandford-Znajek
process, and this outflow could give rise to short GRBs at radii r far away from the central engine.

some degree ‘trapped’ within the local flow of matter, similarly to photons. In this optically
thick diffusion regime the efficiency of neutrinos to cool the torus is attenuated and is essentially
determined by the ratio of the time it takes neutrinos to diffuse out of the inner torus region to
the time it takes matter to become advected into the BH.

Besides transporting energy between different regions of the torus, neutrinos are believed to de-
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posit a considerable amount of energy into the polar regions above and below the BH by means of
annihilation with their antiparticles, producing a hot and rapidly expanding e±-fireball which, if
energetic enough, could activate a short GRB at large radii. For this to happen, enough energy
per baryon has to be supplied by annihilation to allow matter to become ultrarelativistic or,
conversely, the ‘baryon-loading’ of the e±-fireball needs to be very low. Since the BH provides a
convenient sink for material that undesirably pollutes the axis region, the BH-torus configura-
tion is a superior candidate for (short or long) GRBs compared to other scenarios that do not
comprise a central BH, including the dynamical phase and the HMNS phase in an NSNS-merger
prior to BH formation. However, it is not clear if disk winds of any kind could replenish the
axis region with baryons and therefore endanger the accomplishment of a GRB-viable outflow.
As already mentioned, magnetic fields could also play a comparably or even more important
role in accelerating a GRB-viable outflow in the baryon-poor polar region, e.g. by means of the
BZ-process or by some other MHD mechanism.

The properties and processes just explained and depicted in Fig. 1.2 designate the BH-torus
system from the time right after its formation until a typical accretion timescale Md/ṀBH of
about O(0.1 s). This is about the time during which neutrinos are copiously emitted and might
thus cause the aforementioned outflows, and exclusively this stage is considered in this the-
sis. During the subsequent phase, when the torus becomes purely ‘advective’ (i.e. radiatively
inefficient), outflows might still be generated on account of processes not including neutrinos.
However, the torus will be considerably more diluted and spread apart, so the produced outflows
could be less massive (but see Metzger et al., 2008, 2009, who find very massive late time out-
flows). Additionally, in the above consideration we ignore any material that might be expelled
into higher eccentric orbits during the merger and might become accreted at times of about tens
of seconds or later after the merger. This “late-time fallback accretion” is imagined to possibly
explain the late X-ray flaring activity observed in some short GRBs (e.g. Rosswog, 2007; Rossi
& Begelman, 2009; Metzger et al., 2010a).

1.3 Previous works

As illustrated in Sec. 1.2.3, neutrinos play a major role in a post-merger accretion torus within
its early evolution, first, for its dynamics by cooling its central, most massive regions, second by
transporting energy into its surface layers and potentially driving (or enhancing) a subrelativistic
wind, third by depositing net lepton number and thus determining the electron fraction in any
possible kind of outflow, and fourth due to their tendency to shuffle large amounts of thermal
energy into an almost baryon-free region and thus to possibly launch an ultrarelativistic fireball.
Unfortunately, treating neutrino transport in 3D mathematically exactly requires in general a
seven-dimensional Boltzmann equation to be solved (see Sec. 2.2) since the angular distribution
of propagating neutrinos is usually not trivial and therefore cannot be ignored. Even though the
complications regarding turbulent angular momentum transport are often circumvented by em-
ploying the α-prescription, the progress in modeling realistic post-merger accretion tori is drasti-
cally impeded essentially on account of the aforementioned issue, and so far no time-dependent,
multi-dimensional calculations of post-merger accretion tori exist that self-consistently treat the
transport of energy and lepton number by neutrinos and that are therefore able to describe the
realization and composition of neutrino induced outflows.

The majority of previous calculations were performed within one-dimensional treatments and of
these many are restricted to stationary models. The basic strategy of these methods is to solve
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balance equations for mass, energy and momentum while taking into account neutrino cooling,
sometimes also neutrino trapping, and exploiting certain approximations for the electron frac-
tion, such as the assumption of β-equilibrium or the balance of electron and positron capture
rates. In some cases, the local annihilation rates are also calculated above the disk, while the lat-
ter is then assumed as a perfectly thin disk lying in the equatorial plane. Clearly, the advantage
of one-dimensional studies is that they can analyze large parts of the parameter space, which is
mainly spanned by the mass accretion rate ṀBH into the BH, the strength of viscosity, αvis, and
the mass and rotation rate of the BH, MBH, ABH, but it may also be extended or rearranged to
include other parameters. The first such study of a post-merger accretion disk, taking into ac-
count a realistic EOS and assuming optically thin neutrino emission, was performed by Popham
et al. (1999), who called the BH in such systems a “hyperaccreting black hole” and coined the
term “neutrino-dominated accretion flow” (NDAF) . They found that a lower viscosity and a
higher mass accretion rate ṀBH favor a higher neutrino emission efficiency (of converting ac-
creted rest-mass energy into neutrinos) and they report for the neutrino annihilation efficiency
(of converting emitted neutrino energy into thermal energy by annihilation) that high mass ac-
cretion rates are crucial to obtain high efficiencies and that the latter also increase with greater
spin of the BH. Several similar studies followed, which investigated the transition radius in a
post-merger disk separating radiatively efficient and inefficient regions (Narayan et al., 2001),
claiming the potential importance of neutrino trapping for the neutrino emission efficiencies and
for the annihilation efficiencies in case of high mass accretion rates (Di Matteo et al., 2002;
Gu et al., 2006), and examining certain disk instabilities and the possibility and influence of a
high electron degeneracy (Kohri & Mineshige, 2002; Kawanaka & Mineshige, 2007; Janiuk et al.,
2007; Liu et al., 2007). Chen & Beloborodov (2007) improved on the aforementioned studies by
using a more consistent advection scheme for the lepton number and by including a more elab-
orate scheme to interpolate the efficiency of neutrino emission between transparent and opaque
regions. They found that the inner disk regions are very neutron rich with Ye ∼ 0.1, that gas
pressure dominates the pressure contributions from other species, and that the positron abun-
dances in the torus are reduced due to modestly degenerate electrons. Using a one-zone model
of a viscously spreading disk-annulus, Metzger et al. (2008, 2009) constructed time-dependent
models of post-merger disks which allowed them to issue statements about the disk evolution
until late times of a few 100 s, when the disk already has become advective. They argued that
when the disk is optically thick, the neutrino-driven winds would be neutron-rich, Ye ≲ 0.3,
but for an optically thin disk neutrino-driven winds with Ye ≃ 0.5 are expected due to the fact
that the neutrino spectra of both species, electron neutrinos and antineutrinos, become similar.
Moreover, they stated that once the disc becomes advective and the electron fraction ‘freezes
out’ at some value around Ye ≃ 0.3, several tens of percent of the original disk mass will become
ejected by virtue of viscous effects and recombination.

Obviously, any geometrical effect on the neutrino radiation field resulting from the fact that
the torus is not perfectly thin cannot be tackled by one-dimensional studies. To more accu-
rately assess the neutrino radiation field and the annihilation field established by a torus of
non-trivial geometry, several authors have utilized “ray-tracing” schemes, which solve a sim-
plified, stationary, radiative transfer equation along the geodesics determined by the curved,
general relativistic background metric (Jaroszynski, 1993, 1996; Birkl et al., 2007; Harikae et al.,
2010). The same method but for thin disks was employed by Zalamea & Beloborodov (2011).
These ray-tracing calculations, however, did not take into account scattering reactions and they
were computationally too expensive to perform them ‘on the fly’ within a hydrodynamic sim-
ulation; hence only individual snapshots with variable parameters of the torus and the central
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BH have been analyzed so far. The examination of equilibrium tori performed by Birkl et al.
(2007) revealed that the spin of the BH indirectly enhances the annihilation rates by leading
to a more compact and thus hotter torus. Moreover, they found that the volume integrated
annihilation rates are roughly proportional to the torus mass and that general relativistic effects
may enhance the annihilation rates locally up to an order of magnitude, whereas the volume in-
tegrals are only higher by about some tens of percent compared to their flat-metric counterparts.

The few existing multi-dimensional simulations are restrained to schemes that only account
for the emission of neutrinos but not for the dynamical effects caused by their transport and
energy deposition. Ruffert & Janka (1999) took the final configuration obtained in a Newtonian
NSNS-merger simulation, excised the central region to mimic the BH formation and evolved
the resulting BH-torus using realistic microphysics and a neutrino-leakage scheme (cf. Sec. 2.1)
to dynamically account for neutrino losses. Within post-processing steps they calculated the
(Newtonian) neutrino annihilation field for selected snapshots at fixed times. Employing a sim-
ilar technical procedure, Setiawan et al. (2006) carried on this work and additionally included
α-viscosity and a pseudo-Newtonian potential that accounts for BH rotation. They explored
various points in the parameter space spanned by Md, αvis and ABH by means of evolving in 3D
for up to 70ms an initially azimuthally averaged and manually density-scaled configuration that
was taken from the final state of the NSBH-merger simulation by Janka et al. (1999). They saw
about three times higher luminosities of electron antineutrinos than of electron neutrinos and
mostly negligible luminosities of heavy-lepton neutrinos. Moreover, they reported rising efficien-
cies of both neutrino emission and annihilation for higher values of all three of Md, αvis and ABH.

Likewise using the result of a Newtonian three-dimensional merger simulation as initial con-
figuration for a post-merger torus simulation, Lee et al. (2005) calculated in axisymmetry for
several hundreds of milliseconds the disk evolution for different viscosities and torus masses
under the influence of a purely Newtonian potential and by utilizing local source terms to ac-
count for neutrino energy losses. Their results suggest that the dynamical lifetime of the torus
is inversely proportional to the value of αvis and that a negative radial gradient in Ye induces
convection close to the BH, which is suppressed, however, for high values of αvis.

So far only two MHD studies of multi-dimensional neutrino-cooled post-merger accretion tori
exist, presented in Shibata et al. (2007); Shibata & Sekiguchi (2012). Shibata et al. (2007)
initialized several thick equilibrium tori with variable masses, each containing a single poloidal
magnetic field loop, and they evolved their systems in a general relativistic background metric
that accounted for different spins of the BH for 60ms in axisymmetry, using microphysics and
a neutrino emission scheme similarly to Lee et al. (2005). Their configuration quickly turned
into a turbulent state which was characterized by high temperature fluctuations and thus caused
high luminosity fluctuations. Similar to Setiawan et al. (2006), they also noticed an increase
of the neutrino emission efficiencies for greater ABH. However, neutrino annihilation processes
are not regarded in this study and outflow mechanisms are not discussed. Recently, Shibata &
Sekiguchi (2012) evolved, in a similar torus setup as in Shibata et al. (2007) but with vanishing
spin of the central BH, a gray two-moment system (cf. Chap. 2) to treat the neutrinos. Shibata
& Sekiguchi (2012) employed idealized microphysics (e.g. they ignored lepton number trans-
port) and they evaluated in a post-processing step the neutrino annihilation rates in the polar
region. They found that neutrinos are dominantly emitted in the polar directions and that the
annihilation rates strongly decrease for higher mass of the BH.
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1.4 Aims and organization of this thesis

A post-merger BH-torus system provides a variety of interesting physics, most of which are only
poorly understood at present. Although many studies exist that consider post-merger configura-
tions as a possible site for r-process nucleosynthesis or as the central engine of short GRBs, they
are either constrained to stationary, artificially constructed models or, in case of time-dependent
simulations, they do not consistently treat the transport of energy and lepton number by neutri-
nos. Either type of method cannot assess the dynamic properties of neutrino induced outflows,
for which only order-of-magnitude estimates exist so far. We intend to improve on that situa-
tion by developing and investigating multi-dimensional (magneto-)hydrodynamical simulations
of post-merger BH-tori that for the first time include an approximate scheme for the spectral
transport of neutrinos.

Our method of choice for the neutrino transport is a scheme that solves the evolution equa-
tions for the first two angular moments of the specific radiation intensity and that avails an
approximate analytic relation between the moments to close this set of equations, conceptually
similar to the EOS in hydrodynamics. We will motivate, present and test the neutrino-transport
scheme in Chap. 2. Subsequently, in Chap. 3 we set up a variety of simulations that model the
viscous evolution of post-merger accretion tori and we aim to answer the following matter-of-
principle questions:

• What are the geometric, energetic and species-dependent characteristics of the radiation
field emerging from the torus?

• How does cooling by neutrinos affect the dynamics of the torus, particularly its convective
instability?

• How does heating by neutrinos affect the dynamics of the torus? When and how does a
neutrino-driven wind emerge?

• How efficient are viscosity and nuclear recombination in driving outflows?

• What are the amounts and thermodynamic properties of all kinds of outflows?

• How efficient is gravitational energy converted into neutrino energy release and how ef-
ficient is the released neutrino energy converted into thermal energy by annihilation of
neutrinos in the polar region?

• Do disk winds pollute the polar regions and thus impede the arrangement of a GRB-viable
outflow?

• How do the aforementioned characteristics change for different torus masses, viscosities
and BH spins?

• What features change or are additionally introduced by magnetic effects in a magnetized
accretion torus compared to a viscous accretion torus?

For address the last mentioned issue, in Chap. 4 we present results of simulations that are
similar but include magnetic fields instead of the α-viscosity. Finally, in Chap. 5 we summarize
our results and give concluding remarks.
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1.5 Notational conventions

The conventions regarding our notation are as follows: If not explicitly stated otherwise, we
use lower-case, italic letters i, j, k . . . to denote spatial tensor components and lower-case roman
letters i, j, k . . . for grid indices. Moreover, we make use of the Einstein notation to write sums of
products of tensor components and hatted symbols, as for instance X̂, always refer to discretized
quantities. Vectors in spatial and momentum space are denoted as x and p. Concerning explicit
spatial coordinates, we use the set of symbols (x, y, z), (R,ϕ, z) and (r, θ, ϕ) for Cartesian,
cylindrical and spherical polar coordinates, respectively. The symbols c, h, kB, G and M⊙ always
refer to the speed of light, the Planck constant, the Boltzmann constant, the gravitational
constant and the solar mass, respectively.



Chapter 2

Multi-Dimensional Radiation
Hydrodynamics

In this technical chapter we describe and test the basic properties of the neutrino-transport
scheme and its coupling to the hydrodynamic equations of motion. The basic structure of the
transport scheme presented in the following and its according code implementation were devel-
oped in the course of Obergaulinger (2008) with the aim to model neutrino transport in CCSNe.
However, several aspects have been modified or newly included and here we present tests to
evaluate the method and to validate the code. In Sec. 2.1, before motivating our choice of the
employed transport scheme, we begin by briefly reviewing the other techniques that have rou-
tinely been utilized to treat neutrino effects within multi-dimensional simulations and which in
most cases have been applied to model CCSNe. Subsequently, in Sec. 2.2 we formulate the the-
oretical basis for our scheme of radiation hydrodynamics (RHD), and its discretization method
is explained in Sec. 2.3. Finally, in Sec. 2.4 we present a variety of test problems.

2.1 Overview of employed methods

Depending on the focus and the requirements of different simulations, the immense computa-
tional demand of an exact multi-dimensional solver for neutrino transport is commonly avoided
by using one of the following approximate schemes. Note that if not stated explicitly otherwise,
all studies mentioned below have considered (various aspects of) the CCSN-problem – only the
first two methods have so far been used in the context of post-merger BH-tori.

1. The simplest way to model the gas dynamics qualitatively correct while avoiding to treat
neutrinos as own degrees of freedom is to use local source terms that account for heating,
cooling or deleptonization by neutrinos and which are formulated as functions of the local
thermodynamic state of matter. These terms can be used to capture, in a parametrized
way, e.g., the deleptonization behavior during core collapse (e.g., Liebendörfer et al., 2005)
or the full shock-revival problem including proto-neutron star cooling (e.g., Nordhaus
et al., 2010; Hanke et al., 2011). In the context of NS-mergers, such a local scheme has
been used by Lee et al. (2005); Shibata et al. (2007) to take into account neutrino cooling
of a post-merger BH-torus.

19
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2. A leakage scheme, in addition to a local scheme as in 1., treats the cooling more consis-
tently by taking into account the optical depth and the geometry of the emitting region
and was utilized, e.g., in Ruffert et al. (1996); Rosswog & Liebendörfer (2003); Kotake
et al. (2004); Sekiguchi (2010); O’Connor & Ott (2010).

3. The most straightforward scheme to acquire energy conservation – while neglecting the
consistent evolution of momentum – is the method of flux-limited diffusion (FLD) that
already has a long tradition for 1D models of CCSNe (e.g., Bruenn et al., 1978; Bruenn,
1985). This scheme gives accurate results in optically thick regions but the transition to
optically thin regions has to be adjusted manually by imposing an interpolation function
that limits the fluxes to not become superluminal. Nevertheless, its transparent and prag-
matic formulation, together with its computational efficiency without the need to take
reference to the more complicated underlying Boltzmann equation (BE) at any stage of
implementation, made this approach the most frequently used one and, particularly con-
cerning multi-dimensional investigations, still the standard technique for general radiation
transport. In practice, it is used in several realizations of varying computational demand:
Herant et al. (1994) treated only the optically thick part of the computational domain
with an energy averaged (called ‘gray’) FLD scheme. Burrows et al. (1995) used a gray 1D
scheme on each radial sweep in axisymmetry, i.e. a ray-by-ray approach. The results of a
1D calculation employing multi-group (i.e. spectral) flux-limited diffusion (MGFLD) were
used in Mezzacappa et al. (1998) to couple them to a 2D hydrodynamic simulation. The
Chimera code (Bruenn et al., 2009) adopts a ray-by-ray-plus method of MGFLD that
still neglects non-radial flux densities but that allows for lateral advection and radiation
pressure gradients of neutrinos. The MGFLD version of the Vulcan/2D code (Livne
et al., 2004) exerts a “true” multi-dimensional transport and has been used for a series
of calculations both in the context of CCSNe (e.g., Walder et al., 2005; Burrows et al.,
2006; Ott et al., 2008) and for the HMNS phase in a NS-merger (Dessart et al., 2009)
(note that in some of the aforementioned studies a more accurate method, the Sn solver of
Vulcan/2D, has also been applied in separate calculations). In another MGFLD code,
Swesty & Myra (2005, 2009) additionally have included Doppler redshift and radiation
pressure effects on the level of the energy equation, though results of long-term CCSN
simulations are still missing.
Compared to accurate Boltzmann solvers in 1D-CCSN (Messer et al., 1998; Yamada et al.,
1999; Liebendörfer et al., 2004) usual FLD methods, by design, show a strong depen-
dence on the choice of the flux-limiter, particularly within the semi-transparent atmosphere
around the proto-neutron star where the usually too fast transition to free-streaming – the
flux factor can reach local deviations of up to ∼ 30−50% compared to the accurate result
on its outward trajectory – results in less effective heating in the gain-layer.
A further complication in several dimensions arises from the fact that the flux density
vector is not an evolved but a derived quantity which is always directed opposite to the
gradient of the energy density: Due to its effectively isotropic pressure, radiation in the
free-streaming limit will not keep its original flux direction after closely passing opaque
objects, instead it behaves like a gas and fills up space in every direction.

4. A recently developed approach, the isotropic diffusion source approximation (IDSA)
by Liebendörfer et al. (2009), splits the radiation field into a trapped component, described
by an equilibrium-diffusion ansatz, and a free-streaming component, of which its flux
density is obtained from a Poisson equation and its energy density has to be derived by
an interpolation procedure similar as in FLD. While its guiding principles are closest to
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FLD, the practical performance of the multi-dimensional (ray-by-ray version of) IDSA in
terms of accuracy and computational efficiency has, as yet, only been explored within a
few publications (e.g., Suwa et al., 2010; Scheidegger et al., 2010; Takiwaki et al., 2011).

5. As things are now, the large computational effort of schemes following the detailed di-
rectional dependence of the neutrino distribution, i.e. fully accurate so-called Boltz-
mann solvers, limits their applicability to ray-by-ray(-plus) approaches, thus a full multi-
dimensional Boltzmann scheme as would be needed for systems like NS-mergers and their
remnants, is and probably will be out of reach at least on intermediate timescales.
The state-of-the-art code for 2D-CCSNe is the ray-by-ray-plus method Vertex that ex-
ists in a Newtonian (Rampp & Janka, 2002; Buras et al., 2006; Marek & Janka, 2009)
and a relativistic version (Müller et al., 2010). The employed variable Eddington factor
technique (VEF) is based on the evolution of the first two moments of the specific inten-
sity, namely the energy density and the flux density (making it a two-moment transport
scheme, TMT, cf. Sec. 2.2) , of which the missing 2nd-moment, the Eddington factor, is
obtained in a separate step by solving a simplified model BE by means of a tangent-ray
procedure (e.g. Mihalas & Mihalas, 1984). The spherically symmetric core of that code
comparably competes with techniques directly discretizing the one-dimensional BE, such
as the discrete ordinate (Sn) method Boltztran (see Liebendörfer et al., 2005, for a
comparison of both methods). Recently, a fully three-dimensional Sn-solver for the CCSN
context was presented by Sumiyoshi & Yamada (2012), which was applied, however, only
to individual static background configurations of matter.

Having in mind to fill the gap between an MGFLD method, with its well-known limitations but
appreciable computational efficiency, and a VEF technique as used in Vertex, that maintains
consistency in both the energy and momentum evolution but for which in its genuinely multi-
dimensional version a Boltzmann type closure would be far too costly, we decided for a scheme
that combines the advantages of both approaches, namely a TMT scheme closed by an ana-
lytic expression for the 2nd-moment tensor, abbreviatory denoted as AEF (Analytic Eddington
Factor) technique in the following. In that way, we retain the full multi-dimensionality as in
modern MGFLD codes, but we improve on the consistency and accuracy while increasing the
computational demand on paper only by a factor of 4 in case that all three flux components
are non-vanishing (in practice, the use of a mainly explicit time integrator in our scheme may
reduce that factor, provided the circumstances described in Sec. 2.3.1 apply).

The method of multi-dimensional TMT is not new, applications considering photon transport
exist in a number of realizations (see, e.g., Stone et al., 1992; Audit et al., 2002; Hayes & Norman,
2003; González et al., 2007). Shibata et al. (2011) elaborated a formalism for TMT in general
relativity – based on the principal ideas of Thorne (1981) – which has recently been utilized in
the context of CCSN by Kuroda et al. (2012) and for BH-accretion tori by Shibata & Sekiguchi
(2012). Except for the two last mentioned works, in neutrino transport, to our knowledge,
it was only in a few investigations in 1D (on selected, stationary state emission profiles of a
proto-neutron star) that an AEF method was applied (Cernohorsky & van Weert, 1992) and/or
compared with other methods (Schinder & Bludman, 1989; Dgani & Cernohorsky, 1991; Koerner
& Janka, 1992; Bludman & Cernohorsky, 1995), although several studies concerning aspects of
the closure prescription (Cernohorsky & Bludman, 1994; Bludman & Cernohorsky, 1995; Smit
et al., 2000) and the solution strategies (Smit et al., 1997; Pons et al., 2000) further elucidated
its capabilities. It was criticized by Schinder & Bludman (1989); Janka (1991); Janka et al.
(1992), though marginally for its quantitative results (which compared to FLD exhibited a more
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accurate transition to free-streaming in a typical semi-transparent region) but rather for its
difficile numerical tractability in order to obtain stationary state solutions. The strategy we
pursue, in contrast, does not aim for purely stationary state solutions, instead it assertively
makes use of the hyperbolic eigenvalue structure of the time-dependent two-moment system.

2.2 The O(v/c) equations of radiation hydrodynamics

In this section we briefly define the basic quantities and present the equations of RHD as used
in our code.

2.2.1 The equation of radiative transfer in the comoving frame

Both the equations of hydrodynamics and of radiative transfer have their origin in the according
BE for the respective frame independent particle distribution function F , defined by

dN =
g

h3
F(x,p, t)dxdp , (2.1)

where dN is the number of particles within the phase-space volume dxdp, g is the statistical
weight of the species and h is Planck’s constant. Defining “radiation” in the present context as
a distribution of particles that move with the speed of light c and that are not subject to an
external force in an inertial frame (ṗ ≡ 0), the BE for radiative transfer in a fixed frame reads
(n = p/|p|):

1

c

∂

∂t
F + n · ∇xF = B . (2.2)

Here, and in several following cases, we suppress the functional dependencies. The “collision
integral” B ≡ B(x,p, t) is in general seven-dimensional and contains explicit integrals in mo-
mentum space, making Eq. (2.2) an integro-partial differential equation. Instead of working
with the distribution function directly, for the macroscopic view one prefers using the frame
dependent specific (i.e. monochromatic) intensity

I(x,n, ϵ, t) = (ϵ/hc)3 cF(x,p, t) , (2.3)

where1 ϵ = |p|c.
Bearing in mind that an essential part of the collision integral depends on the particle

distribution of the fluid part of the system, the commonly preferred frame of choice to measure
I in is the frame comoving with the fluid (“comoving frame”, “fluid frame”), since in that frame
the isotropy of the fluid distribution2 induces symmetries in the collision integral that make it
computationally most feasible. Using arbitrary, but fixed, Eulerian spatial coordinates defined
in a frame we denote as the laboratory frame (“lab-frame”) and momentum space coordinates
(i.e. ϵ and n) defined in the fluid frame, the comoving-frame equation of radiative transfer up
to order O(v/c) (v ≡ |v| is the velocity of the fluid as measured in the lab frame) becomes (e.g.

1We will use the terms “energy” and “frequency” interchangeably when referring to the according degree of
freedom in phase space.

2We implicitly assume the fluid to be in local thermodynamic equilibrium.
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Buchler, 1979; Kaneko et al., 1984; Munier & Weaver, 1986)

1

c

∂I
∂t

+
v · n
c2

∂I
∂t

+ nj ∂I
∂xj

+
vj

c

∂I
∂xj

+
∂

∂ϵ

[
Iϵ
(
a · n
c2

+
1

c
njnk∇jvk

)]
+

∂

∂ni

[
I
(
a · n
c2

ni − ai

c2
+

1

c
ninjnk∇jvk −

1

c
nj∇jv

i

−kijknjnk − 1

c
Γi
jkv

jnk

)]
+ I

[
2
a · n
c2

+
1

c
∇iv

i + Γi
ijn

j +
1

c
ninj∇ivj

]
= C , (2.4)

where a ≡ ∂tv, Γi
jk are the Christoffel symbols associated with the spatial coordinates and

C ≡ (ϵ/hc)3cB. Equation (2.4) can be derived from Eq. (2.2) using (2.3) and the O(v/c)
versions of the Lorentz transformations for I, ϵ and n.

2.2.2 Radiation moment equations

In order to reduce the dimensionality of the radiative transfer problem and construct the link
to the hydrodynamic system, one utilizes the fact that the specific intensity is related to the
specific (frequency integrated) energy density E (Ē), energy flux density F i (F̄ i) and pressure
tensor P ij (P̄ ij) of radiation by virtue of its angular moments of increasing order, defined by

{cE, F i, cP ij , Qijk, . . .} =

∫
dΩ I {1, ni, ninj , ninjnk, . . .}, (2.5)

and

{ Ē, F̄ i, P̄ ij , Q̄ijk, . . . } =

∫
dϵ {E,F i, P ij , Qijk, . . .} , (2.6)

where Qijk and Q̄ijk are the analog 3rd-moment quantities. Note in passing that the follow-
ing fundamental relations hold between the radiation moments, which directly follow from the
definitions in Eqs. (2.5):

|F| ≤ cE , (2.7a)

P ij ≤ E , (2.7b)

Tr(P ij) = E , (2.7c)

where ‘Tr’ is the matrix trace.
In the following, we neglect terms including the acceleration ai and the second term con-

taining the time derivative in Eq. (2.4). These terms are effectively of order O(v2/c2) for when
temporal changes of the velocity and radiation fields occur on a fluid timescale given by l/v,
where l is a characteristic length scale of changes in the hydrodynamic background and v a
typical fluid velocity (Mihalas & Mihalas 1984, but see Rampp & Janka 2002 and Lowrie et al.
2001 for comments on the second term of Eq. (2.4)). Temporal changes of these fields on the ra-
diation timescale l/c would enhance the importance of the aforementioned terms – in that case,
however, the preceding validity assumption of the O(v/c) equation may become questionable to
begin with anyway. Thus, concerning future discussions on scalings in v/c, we assume terms of
this kind to be O(v2/c2).



24 CHAPTER 2. Multi-Dimensional Radiation Hydrodynamics

Moment equations of energy transport

The system for the first two moments of Eq. (2.4), excluding the aforementioned terms of order
O(v2/c2), is obtained by performing the angular integrations as in Eq. (2.5) and it reads

∂tE +∇jF
j +∇j(v

jE) + (∇jvk)P
jk − (∇jvk)∂ϵ(ϵP

jk) = C(0) , (2.8a)

∂tF
i + c2∇jP

ij +∇j(v
jF i) + F j∇jv

i − (∇jvk)∂ϵ(ϵQ
ijk) = C(1),i , (2.8b)

where C(0) ≡
∫
dΩC and C(1),i ≡

∫
dΩniC. The colors denote the different types of velocity

dependent terms, of which each type can be physically interpreted as follows: The red terms
account for the change of the comoving-frame moments owing to their advection and compression
and the blue terms account for the change of radiation energy due to compressional work against
the radiation pressure. The green terms with i = j account for additional changes of the 1st-
moments due to compression while the ones with i ̸= j express the aberration of the flux-
density vector in case that lateral to the latter differential shearing motions occur. The orange
terms induce the change of the spectral shape of the radiation field in moving media and are
often referred to as the terms that describe the “Doppler redshift”, however, the change of the
frequency-integrated moments is not taken into account by these terms. For the explicit form
of Eqs. (2.8) in spherical polar coordinates, we refer the reader to the Appendix of Buras et al.
(2006). For an overview of the relative scaling behavior of the velocity dependent terms under
different conditions, see Appendix A of this thesis.

Equations (2.8) are the evolution equations used in our code. Note that since the source terms
in neutrino transport depend on the species and frequency, each neutrino species is evolved with
its own system of moment equations, of which each, in turn, is represented by a set of equations
that cover an individual frequency range (called “energy group”). Hence, given Nsp species and
Nϵ energy-bins, we have to process 4 × Nsp × Nϵ equations in total in our multi-dimensional,
multi-group radiation transport scheme. For the following presentation, however, we will only
indicate individual species or the energy dependence if it is demanded by the context. For later
reference, let us also write down the energy integrated, i.e. gray moment equations:

∂tĒ +∇j(F̄
j + vjĒ) +∇jvkP̄

jk = C̄(0) , (2.9a)

∂tF̄
i +∇j(c

2P̄ ij + vjF̄ i) + F̄ j∇jv
i = C̄(1),i . (2.9b)

Moment equations of number transport

The moments connected with the number transport (number density, number flux density etc.)
are given by

{N,F i
N , P ij

N , Qijk
N , . . . } ≡ ϵ−1{ E,F i, P ij , Qijk, . . . }. (2.10)

Although we do not directly use them in our code, we list the equations describing the neutrino
number evolution for completeness here. They are structurally similar to Eqs. (2.8) except for
terms associated with the energy derivatives:

∂tN +∇j(F
j
N + vjN)−∇jvk∂ϵ(ϵP

jk
N ) = ϵ−1C(0) , (2.11a)

∂tF
i
N +∇j(c

2P ij
N + vjF i

N ) + F j
N∇jv

i −∇jvk

[
Qijk

N + ∂ϵ(ϵQ
ijk
N )
]

= ϵ−1C(1),i . (2.11b)

Transformation into lab-frame

The translation of energy integrated moments from the comoving into the lab-frame can be
performed by referring to their intrinsic tensorial structure which dictates the way the Lorentz
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transformation has to be applied. The energy associated moments Ē, F̄ i, P̄ ij are components
of a 2nd-rank tensor, the energy-momentum tensor of radiation, while the number associated
0th- and 1st-moments combine to a 4-vector. This results in the following transformation rules
correct to order O(v/c) for the energy related moments

Ēlab = Ē + 2c−2 vjF̄
j , (2.12a)

F̄ i
lab = F̄ i + viĒ + vjP̄

ij , (2.12b)

P̄ ij
lab = P̄ ij +

1

c2
(viF̄ j + vjF̄ i) (2.12c)

and the number related moments

N̄lab = N̄ + c−2 viF̄
i
N , (2.13a)

F̄ i
N,lab = F̄ i

N + viN̄ . (2.13b)

These transformation rules only apply for the gray quantities; according O(v/c) expressions
for the monochromatic moments can only be formulated in terms of Taylor expansions of the
moments in energy space. The energy integrated source terms C̄(0), C̄(1),i transform into the

lab-frame source terms C̄
(0)
lab, C̄

(1),i
lab similar as N̄ and F̄N (cf. Eq. (2.13)), i.e. as a 4-vector,

since they are defined to form the RHS of a conservation law of a 2nd-rank tensor in its original
relativistic formulation. Applying the above transformation rules to the comoving-frame moment
Equations (2.9) and dropping terms of order O(v2/c2), we recover the according lab-frame
equations for the gray energy moments:

∂tĒlab +∇jF̄
j
lab = C̄

(0)
lab , (2.14a)

∂tF̄
i
lab + c2∇jP̄

ij
lab = C̄

(1),i
lab . (2.14b)

2.2.3 Source terms and coupling to hydrodynamics

Neutrino interactions

The source terms are the actual terms that introduce the microphysical properties and the
coupling of matter and radiation into the transport problem. From the various neutrino interac-
tions possible we consider only the most dominant channels here, namely the β-processes with
nucleons,

p+ e− ⇋ n+ νe , (2.15a)

n+ e+ ⇋ p+ ν̄e , (2.15b)

and nuclei,

(A,Z) + e− ⇋ (A,Z − 1) + νe , (2.16)

where (A,Z) denotes a nucleus with mass and charge number A and Z, respectively, and fur-
thermore elastic scattering processes of the above type of matter particles N ∈ {n, p, (A,Z)}
with neutrinos ν ∈ {νe, ν̄e},

N + ν ⇋ N + ν . (2.17)

Neutrinos of the µ and τ flavors are not produced on grounds of these interactions. They could
readily be accounted for by implementing the according production channels, although for the
NS-merger remnants treated in this work due to the significantly lower than nuclear densities
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the production rates of µ and τ neutrinos are reduced by several orders of magnitude compared
to electron type neutrinos (e.g. Janka et al., 1999; Ruffert & Janka, 1999).

Given the above types of reactions, the source terms in the moment Eqs. (2.8) can be written
as (e.g. Bruenn, 1985)

C(0) = cκa (E
eq − E) , (2.18a)

C(1),i = −c(κa + κs)F
i ≡ −cκtotF i , (2.18b)

where κa and κs are the combined absorption (corrected for final state Fermion-blocking) and
scattering opacities associated with the above interactions, κtot ≡ κa + κs is the total opacity
(also called ‘transport opacity’) and Eeq is the equilibrium energy density associated with the
Fermi-Dirac distribution FFD,

Eeq(ϵ, µν , T ) ≡
∫

dΩ
( ϵ

hc

)3
FFD ≡

∫
dΩ

4π

( ϵ

hc

)3 1

exp{(ϵ− µν)/T}+ 1
, (2.19)

which is a function of the fluid temperature T and the chemical potential µν of the corresponding
neutrino species.

Concerning the explicit expressions for the microphysical neutrino opacities, we use the
prescriptions and numerical evaluations as described in Rampp & Janka (2002) and which are
based on Bruenn (1985).

Note that we only include the interactions with heavy nuclei in the tests in Sec. 2.4.3 but
not in the simulations of the post-merger accretion tori in Chapters 3 and 4. For the latter
simulations we do, instead, approximately take into account the neutrino annihilation process

νe + ν̄e −→ e− + e+ (2.20)

in a passive, non-conservative way, which affects only the gas but that leaves the radiation
moments unchanged. See Sec. 2.3.6, which is dedicated to outline the details of that treatment.

Hydrodynamics

Since we evolve the radiation moments in separate equations, the coupling to the hydrodynamic
conservation laws of mass, momentum and total (kinetic plus internal) energy is realized via
source terms that account for the changes of these quantities due to the interaction with neu-
trinos. To outline the source terms, we restrict ourselves here to the basic Euler equations and
neglect additional physics, such as viscosity and magnetic fields. The evolution of the baryonic
density ρ, momentum density ρvi, total gas energy density et = ei + ρv2/2 (where ei is the
internal energy density) and electron fraction Ye is then dictated by the system

∂tρ+∇j(ρv
j) = 0 , (2.21a)

∂t(ρYe) +∇j(ρv
j) = QN , (2.21b)

∂t(ρv
i) +∇j(ρv

ivj + Pg) = Qi
M , (2.21c)

∂tet +∇j

(
vj(et + Pg)

)
= QE + vjQ

j
M . (2.21d)

The gas pressure Pg = Pg(ρ, Ye, T ) is obtained by invoking an EOS, which at the same time
provides the quantities required to compute the opacities. Depending on the interaction process,
these typically are the composition of neutrons, protons and evolved nuclei and the chemical
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potentials of each species. By virtue of the immediate physical meaning of the moments E and
F i, the source terms for the hydrodynamic equations can be identified with

QE = Q0
a +Qβ ≡ Q0

a −
∑

species

C̄(0) , (2.22a)

Qi
M =

1

c
Qi

a −
1

c2

∑
species

C̄(1),i , (2.22b)

QN = −mB

∫ ∞

0

[(
C(0)

ϵ

)
νe

−

(
C(0)

ϵ

)
ν̄e

]
dϵ , (2.22c)

where we defined the internal energy source term Qβ due to β-processes, mB is the atomic mass
unit, Q0

a and Qi
a form the 4-vector that results from νν̄-annihilation in case it is applied (cf.

Sec. 2.3.6), and the sums contain all contributions from individual neutrino species.
For consistency, let us note that the combined system of radiation transport and hydrody-

namics fulfills the following energy conservation law (neglecting the non-conservative treatment
of νν̄-annihilation):

∂t(et + Ēlab) +∇j

(
vj(et + Pg) + F̄ j

lab

)
= 0 , (2.23)

which is obtained after transforming all radiation quantities into the lab-frame and dropping
terms of order O(v2/c2) with radiation moments. Note also that the following conservation law
holds up to order O(v/c):

∂t(et + Ē) +∇j

(
vj(et + Pg) + vjĒ + viP̄

ij + F̄
)
= 0 . (2.24)

For thorough discussions about the importance of certain velocity dependent terms regarding
energy and momentum conservation, we refer to Castor (1972); Mihalas & Mihalas (1984).

Although we use the opacities for the β-processes as formulated in the references given above,
we record here the following approximate formulae (e.g. Janka, 2001) for later purposes when we
want to estimate the importance of both neutrino cooling and heating by β-processes in regions
with certain thermodynamic properties. Assuming conditions where all nuclei are dissociated
and electrons are non-degenerate, the cooling rate due to neutrino emission via both processes
in Eq. (2.15) reads

Qcool
β ≈ 145

ρ

mB

(
kBT

2MeV

)6 [MeV

s

]
. (2.25)

The inverse processes of neutrino absorption induce a heating rate that can be estimated when
assuming the neutrinos to be in a non-degenerate Fermi-Dirac spectrum of temperature Tν ,
equal flux densities |F̄| and flux factors f̄ ≡ |F̄|/Ē of νe and ν̄e, and that the fully dissociated
mixture of nucleons contains far more neutrons than protons:

Qheat
β ≈ 2

ρ

mB

1

f̄

(
|F̄|

1035 erg cm−2 s−1

)(
kBTν

4MeV

)2 [MeV

s

]
. (2.26)

2.2.4 Moment closure schemes

In order to precisely represent and evolve the full information of the specific intensity in form
of its angular moments, one would either need to follow the infinite series of moment equations,
as each evolution equation for the moment of rank m contains the moment of rank (m + 1)
within the divergence operator, or alternatively, one would need to obtain the information about
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the (m + 1)-th moment by other means to close the truncated series at the level of the m-th
moment. However, to accurately determine this closure, one would have to account for the
non-local nature of the BE and perform the angular integration at each point in space by
using costly methods such as, e.g., discrete ordinate or tangent-ray schemes. A computationally
far less demanding option is to render the (m + 1)-th moment local by assuming a functional
dependence of it on the lower moments. This is what defines the analytic closure methods, such
as FLD and AEF. Being by design approximate approaches trying to reconstruct the radiation
field from the information that is available from the evolved moments, the bases these analytic
closures are built on are diverse and vary between ad hoc simplicity arguments (e.g. Kershaw,
1976; Auer, 1984), requirements to properly fit within specific environments (e.g. Cooperstein
et al., 1986; Janka, 1991), assumptions regarding the insignificance of certain terms within the
BE itself (e.g. Levermore, 1979; Levermore & Pomraning, 1981, whose strategy is additionally
motivated by a Chapman-Enskog expansion) and statistical arguments stipulating a radiation
field of maximum entropy, i.e. the distribution of highest probability under given constraints
(e.g. Minerbo, 1978; Cernohorsky & Bludman, 1994). Clearly, such a universal relation between
angular moments does not exist, so analytic closures cannot, in general, reproduce the full
angular information contained in the distribution function, but nevertheless, they can reveal
remarkable accordance for the angular moments, which in the end are the actual quantities that
enter the RHD equations.

As prerequisite constraints, any closure prescription has to reproduce two asymptotic limits
which can directly be derived from the BE. Using the normalized moments f ≡ F/(cE), where
f ≡ |f| is the flux factor, and Dij ≡ P ij/E, the Eddington tensor, these limiting cases are for
regions of high opacity the diffusion limit, where

f −→ − 1

3κtot

∇E
E

, Dij −→ 1

3
δij (2.27)

holds, and spatially far away from any regions of interaction with matter the free-streaming
limit, in which we have

f −→ cE , Dij −→ ni
F nj

F , (2.28)

with ni
F ≡ F i/|F| denoting the direction of the flux density.

Flux-limited-diffusion method

The approach of FLD is to truncate after the 0th-moment and to derive an expression for the
flux density based on the diffusion limit. Introducing an intermediate quantity, the “Knudsen
number”R = |R|, with

R ≡ 1

ω κtot

∇E
E

, (2.29)

where

ω ≡ (κsE + κaE
eq)/(κtotE) (2.30)

is called “effective albedo”, the flux density F(E) is prescribed as

F(E) = − cΛ(R)RE , (2.31)

in which Λ(R) is the actual flux-limiter. The latter is devised to let the flux density correctly fulfill
the physical limits Eqs. (2.27), (2.28), in particular to prevent superluminal fluxes |F| > cE. Two
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common choices widely used in applications are (Bruenn et al., 1978; Levermore & Pomraning,
1981):

ΛBr(R) =
1

3 +R
and ω = 1 , (2.32a)

ΛLP(R) =
1

R

(
cothR− 1

R

)
. (2.32b)

The main drawbacks of FLD are: First, the prescription of the flux density is in general
inconsistent with the 1st-moment equation. As a direct consequence, the full RHD system
suffers from both energy and momentum non-conservation (Bruenn, 1985; Baron et al., 1989).
The violation is found (Cernohorsky & van den Horn, 1990) to be particularly significant in
the semi-transparent region for when Λ(R) undergoes the main part of the transition 1/3→ 0.
Second, since the Knudsen number, the actual independent variable evaluated by the flux-limiter,
tends to infinity as soon as the transport opacity becomes vanishingly small, sharp gradients
of κtot, e.g. near the surface of a proto-neutron star, artificially drive the flux factor to its
free-streaming value f = 1. Even though interim solutions of the above shortcomings can be
formulated, e.g. by introducing a spatially dependent artificial opacity (Janka, 1991; Dgani &
Janka, 1992) that contains the missing information of the 1st-moment equation, they introduce
further degrees of freedom, rendering the method rather tuned to special cases.

Analytic-Eddington-factor method

Having identified the deficiencies resulting from a truncation after the 0-th moment, one can
immediately see by inspection of the reduced one-dimensional system of two evolved moments,

∂t

(
E
F

)
+ ∂x

(
F

c2χE

)
=

(
κa(E

eq − E)
−cκtotF

)
, (2.33)

with P ≡ χE, that, as long as the limits χ(f → 0) = 1/3 and χ(f → 1) = 1 are fulfilled, no
further conditions on the Eddington factor χ or dependencies on, e.g., the opacity as in FLD
have to be put in by hand to reproduce both limits Eqs. (2.27), (2.28), making the two-moment
scheme more self-consistent than FLD in that respect.

In order to close Eqs. (2.8), we refer to the variety of analytic closure prescriptions that
express the Eddington factor as χ ≡ χ(f). The generalization to χ ≡ χ(f, e) with the additional
dependence on the 0th-angular moment of the distribution function e ≡ (hc/4πϵ)3E is primarily
useful to account for Fermion-blocking, however, for our present purpose we omit it. Discussions
about general properties of closures and an overview of popular closures can be found in Pons
et al. (2000); Smit et al. (2000).

Although more closures are implemented in our code, here we only list the ones used in the
course of this thesis. The statistical closure by Minerbo (1978) assumes a particle distribution
in a state of maximum entropy and with low density (e → 0). We employ the polynomial ap-
proximation derived by Cernohorsky & Bludman (1994) to circumvent the numerical inversion
of the Langevin function occurring in the original formulation of the closure. The M1 closure
(Levermore, 1984; Dubroca & Feugeas, 1999) is based on the assumption that the energy inte-
grated intensity is isotropic in some unspecified frame of reference. Finally, the closure by Janka
(1991) was obtained by fitting results of Monte-Carlo simulations performed of the neutron star
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cooling phase after core bounce. The corresponding three Eddington factors are given by

χMinerbo =
1

3
+

1

15

(
6f2 − 2f3 + 6f4

)
, (2.34a)

χM1 =
3 + 4f2

5 + 2
√

4− 3f2
, (2.34b)

χJanka =
1

3

(
1 +

1

2
f1.31 +

3

2
f3.56

)
. (2.34c)

To extend the one-dimensional closure prescription of χ to the multi-dimensional case Dij ≡
P ij/E, we further assume that the intensity is axisymmetric around some direction. It follows
(see e.g. Levermore, 1984) that this direction coincides with the direction of the flux density ni

F

and after the moment integration, Eq. (2.5), that

Dij =
1− χ

2
δij +

3χ− 1

2
ni
F nj

F , (2.35)

where χ in the multi-dimensional case is defined as

χ ≡
∫
dΩ (n · nF)

2F∫
dΩF

, (2.36)

with the distribution function F . Note that not for all closures the assumption of axisymmetry is
an additional condition above the one that is imposed to construct the closure. For example, in
case of the Minerbo closure, the condition of maximum entropy alone leads to an axisymmetric
intensity.

The spectral comoving-frame moment Equations (2.8) also contain the 3rd-moment Qijk,
which would drop out when using the energy integrated versions. Independent of the specific
closure, it follows from the condition of the intensity being axisymmetric that Qijk can generally
be written as

1

cE
Qijk =

f − q

2

(
ni
F δjk + nj

F δik + nk
F δij

)
+

5q − 3f

2
ni
F nj

F nk
F . (2.37)

In Eq. (2.37), the 3rd-moment factor,

q ≡
∫
dΩ (n · nF)

3F∫
dΩF

, (2.38)

explicitly depends on the distribution function. Therefore, only closures that dictate an explicit
functional form of the distribution function are suited for the computation of the 3rd-moment,
unless additional assumptions are given at the construction of the closure. For the Minerbo
closure, which will be applied for all simulations that employ the 3rd-moment, the factor q can
be calculated in a straightforward manner in analogy to the derivation of χ (Minerbo, 1978) and
reads

qMinerbo(χ, f) =
3χ2 − 4χ+ 2f2 + 1

2f
. (2.39)

Recently, Vaytet et al. (2011) calculated the 3rd-moment tensor Qijk also for the M1 closure.
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2.3 Numerical method

2.3.1 General considerations

Before describing the detailed numerical implementation of the two-moment transport scheme
outlined in Sec. 2.2, let us provide some comments on the general framework of the code.
Compared to many other codes on the market treating radiation hydrodynamics, probably the
most remarkable property is that the time integrator for the hyperbolic and the transport part
of the two-moment system is explicit. The worst-case time step using a naive implementation
of an overall explicit scheme would be determined by the mean free path λν in an optically
thick region to be λν/c, which in principle is unbound from below. As a consequence, a crucial
ingredient to prevent the system from breaking down to such small time steps in the diffusion
limit is to treat the source terms implicitly. Although this still implies an intrinsic radiation
time step, which is determined by a signal speed of the order of the speed of light, we decided
to use this method for the following reasons and/or advantages:

First, the physical conditions for when neutrinos become relevant near compact objects are
often associated with timescales of changes in the radiation field that are not much different than
the fluid timescales, which in turn are determined by characteristic velocities that can reach a
substantial fraction of c, making it necessary to reduce the time step even in an implicit scheme
down to values of the order of their explicit counterparts given by the Courant-Friedrichs-Lewy
(CFL) condition. Second, since all spatial operators are explicit, the common parallelization
methods can be applied with high efficiency. Third, light fronts and discontinuities in the
radiation field can be sharply resolved, which is hard to achieve with an implicit method, unless
a time step comparable to the explicit one is used. Fourth, the overall numerical implementation
is less intricate than for an implicit scheme, e.g., making it easier to locate errors or treat different
grid regions with different numerical methods.

Obviously, the main disadvantage of the explicit scheme becomes apparent, when the fluid
timescales are several orders of magnitude larger than the radiation timescales. However, this
situation is unlikely to occur for the scenarios this code was primarily written for.

2.3.2 Basic discretization scheme

The spatial and energy-space discretization scheme for all quantities is based on the finite-volume
approach. The spatial grid employs spherical polar coordinates (r, θ, ϕ) that are discretized in
each coordinate direction with (Nr, Nθ, Nϕ) zones defined by the cell boundaries ri± 1

2
, θj± 1

2
, ϕk± 1

2
,

where {i, j, k} = 1 . . . {Nr, Nθ, Nϕ}. The according cell centers are computed as ri ≡ 1/2(ri− 1
2
+

ri+ 1
2
) and analog for the other directions, and a volume element is denoted by ∆Vi,j,k.

For the grid in energy space given by Nϵ zones (or ‘energy bins’ or ‘energy groups’) we will use
ϵξ± 1

2
to denote the boundaries of the ξ’th bin, where ξ = 1 . . . Nξ, further ϵξ ≡ 1/2(ϵξ+ 1

2
+ ϵξ− 1

2
)

and ∆ϵξ ≡ ϵξ+ 1
2
− ϵξ− 1

2
label its center and width, respectively.

We define the radiation fields on the same spatial grid as the fluid quantities and the dis-
crete representations X̃ ∈ {Ẽ, F̃ i, P̃ ij , Q̃ijk} of the analytic specific radiation moments X ∈
{E,F i, P ij , Qijk} are obtained by interpreting the former as cell-volume averages of the latter
in spatial space:

X̃i,j,k,ξ ≈
1

∆Vi,j,k

∫
∆Vi,j,k

dV X . (2.40)

However, instead of explicitly using the specific radiation moments X̃, we will work with the
moments X̂ ∈ {Ê, F̂ i, P̂ ij , Q̂ijk} that are interpreted as cell-volume averages of X in spatial
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space and integrals of X over the according energy bin and which are calculated as:

X̂i,j,k,ξ ≡ ∆ϵξX̃i,j,k,ξ ≈
1

∆Vi,j,k

∫
∆Vi,j,k

dV

∫
∆ϵξ

dϵX . (2.41)

The discretized number related moments X̂N ∈ {N̂ , F̂ i
N , P̂ ij

N , Q̂ijk
N } are in a similar way related

to the analytic moments XN ∈ {N,F i
N , P ij

N , Qijk
N } and are calculated as:(

X̂N

)
i,j,k,ξ

≡ 1

ϵξ
X̂i,j,k,ξ ≈

1

∆Vi,j,k

∫
∆Vi,j,k

dV

∫
∆ϵξ

dϵX . (2.42)

The discretization of the spatial derivatives makes it necessary to reconstruct several quantities
from cell-volume averages to surface averages, which for example on the surface normal to the
positive radial direction are given by

X̂i+ 1
2
,j,k,ξ ≈

1

∆Ai+ 1
2
,j,k

∫
∆A

i+1
2 ,j,k

dA

∫
∆ϵξ

dϵX , (2.43)

where ∆Ai+ 1
2
,j,k is the corresponding surface area. The spatial reconstruction algorithms that we

use are adopted from the hydrodynamic part of the code and can be switched between piecewise-
constant/linear, high-order monotonicity preserving (MP) schemes (Suresh & Huynh, 1997) and
weighted essentially non-oscillatory (WENO) schemes (Liu et al., 1994). In what follows, we
symbolically use X̂L and X̂R to denote the reconstructed values of a quantity X̂ on the left- and
right-hand side of an interface, respectively.

The discretization scheme of the radiation moment equations relies on the operator splitting
method (e.g. Leveque, 1998), which permits us to treat each part quasi independent and with
individual numerical techniques. The treatment of different dimensions is based on a similar
splitting principle: We do not update between the coordinate sweeps so each operator associated
with a certain coordinate direction is calculated using the same data.

We first consider the semi-discrete moment equations, which are discrete in space and energy,
but not in time. Suppressing the indices {i, j, k, ξ}, we write the radiation moment Equations (2.8)
for any of the moments X̂ ∈ {Ê, F̂ i} as,

∂tX̂ + (∂tX̂)hyp + (∂tX̂)hyp,geo + (∂tX̂)vel,1 + (∂tX̂)vel,2 + (∂tX̂)vel,3 = (∂tX̂)src , (2.44)

where (∂tX̂)hyp accounts for the hyperbolic, velocity independent part of the equations, (∂tX̂)hyp,geo
are velocity independent geometric source terms that arise due to the fact that we are us-
ing curvilinear coordinates, (∂tX̂)src includes the physical source terms, and the operators
(∂tX̂)vel,l(l = 1, 2, 3) are different types of velocity dependent terms (see below).

For associating each operator in Eq. (2.44) with the according analytic terms in Eqs. (2.8),
we introduce the following notation for splitting the derivatives of a vector ai and of a tensor bij

in spherical polar coordinates into a volumetric part and a geometric part (i, j, k ∈ {r, θ, ϕ}):

(∇ia
j)vol ≡

(
1

r2
∂rr

2aj ,
1

r sin θ
∂θ sin θa

j ,
1

r sin θ
∂ϕa

j

)
, (2.45a)

(∇ia
j)geo ≡ ∇ia

j − (∇ia
j)vol , (2.45b)

(∇ib
jk)vol ≡

(
1

r2
∂rr

2bjk,
1

r sin θ
∂θ sin θb

jk,
1

r sin θ
∂ϕb

jk

)
, (2.45c)

(∇ib
jk)geo ≡ ∇ib

jk − (∇ib
jk)vol . (2.45d)
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Using these definitions, the discretized operators given in Eq. (2.44) are associated with the
following terms of the analytic moment equations:(

∂tÊ

∂tF̂
i

)
hyp

←→
(

(∇jF
j)vol

c2(∇jP
ij)vol

)
, (2.46a)(

∂tÊ

∂tF̂
i

)
hyp,geo

←→
(

0
c2(∇jP

ij)geo

)
, (2.46b)(

∂tÊ

∂tF̂
i

)
vel,1

←→
(

(∇jv
jE)vol

(∇jv
jF i)vol

)
, (2.46c)(

∂tÊ

∂tF̂
i

)
vel,2

←→
(

0
(∇jv

jF i)geo + F i(∇jv
i)

)
, (2.46d)(

∂tÊ

∂tF̂
i

)
vel,3

←→
(

(∇jvk)
[
P jk − ∂ϵ(ϵP

jk)
]

−(∇jvk)∂ϵ(ϵQ
ijk)

)
, (2.46e)(

∂tÊ

∂tF̂
i

)
src

←→
(

C(0)

C(1),i

)
. (2.46f)

In the following sections we present the discretization scheme for the above operators and the
coupling to hydrodynamics within the combined update pattern is summarized in Sec. 2.3.8.

2.3.3 Hyperbolic part

Our basic treatment of the hyperbolic part of the two-moment system follows along the lines
of Pons et al. (2000) and Audit et al. (2002). The notion is to exploit a Godunov method
(Godunov, 1959) as the basis for a high-resolution shock capturing (HRSC) scheme that solves
the local Riemann problems between discontinuous states at the interfaces of numerical cells,
closely analog to the well-known treatment in hydrodynamics. We start the presentation of its
working method by considering the one-dimensional system

∂t

(
E
F

)
+ ∂x

(
F

c2χE

)
= 0 , (2.47)

where χ = χ(f) is a function of the flux factor f ≡ F/(cE). This system is hyperbolic if the
Jacobian matrix J of the vector of fluxes (F, c2χE)T,

J =

(
0 1

c2(χ− fχ′) c2χ′

)
, (2.48)

where χ′ ≡ dχ/df , has real eigenvalues λ1D
± , given by

λ1D
± =

χ′ ±
√

χ′2 + 4(χ− fχ′)

2
c . (2.49)

All of the closures presented in Sec. 2.2.4 fulfill this condition and lead to the following properties:
In the free-streaming limit (f = 1) we have

χ = 1 , λ1D
+ = +c , λ1D

− = (χ′ − 1)c , (2.50)

while in the diffusion limit (f ≃ 0)

χ =
1

3
, λ1D

± = ± 1√
3
c (2.51)
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holds. That is, the limiting cases for the Eddington factor and the propagation speeds are
consistent with what is dictated by kinetic theory, i.e. by the BE.

The eigenvalues for the multi-dimensional extension (F → F and P → P ij using Eq. (2.35))
of Eq. (2.47) introduce an additional dependence on the angle αF between the direction of the
radiation flux vector and the direction of the derivative. This again results in analytic but rather
lengthy expressions for the eigenvalues, since they are to be obtained from the solution of a cubic
polynomial. We approximate the eigenvalues using the following linearization in cosαF:

λ±,0(αF) ≈ λ±,0(π/2) + cosαF [λ±,0(0)− λ±,0(π/2)] , (2.52)

with

λ±(0) = λ1D
± , (2.53a)

λ±(π/2) = ± c

2

√
2 +

(
1

f
+ 2f

)
χ′ − χ

(
2 +

3χ′

f

)
, (2.53b)

λ0(0) =
3χ− 1

2f
c , (2.53c)

λ0(π/2) = 0 , (2.53d)

where the set of eigenvalues has been supplemented by a third value λ0, which is not of further
relevance for us, though. The error of this approximation when using the closures in Eqs. (2.34)
is at most a few percent and therefore of minuscule relevance for the subsequent utilization. Note
that Eq. (2.53b) leads to vanishing transverse signal speeds in the free-streaming limit f = 1 for
the closures we use.

In a fashion that is commonly employed in grid-based numerical hydrodynamics, we use the
above velocities, derived for a simplified Cartesian system of equations, as input wave speeds
for an approximate Riemann-solver to obtain the numerical fluxes at each cell interface on our
spherical polar grid. We choose the two-wave solver by Harten, Lax and van Leer (HLL, Harten
et al., 1983), which approximates the final numerical interface fluxes as functions of the left-
/right-hand side fluxes FL/R and states UL/R as

FHLL ≡
λHLL
+ FL − λHLL

− FR + λHLL
+ λHLL

−
(
UR − UL

)
λHLL
+ − λHLL

−
, (2.54)

with the signal velocities λHLL
+ = max(0, λL

+, λ
R
+) and λHLL

− = min(0, λL
−, λ

R
−). All quantities

denoted by indices “L”/“R” in this flux formula are computed using the reconstructed moments
ÊL/R, F̂ i,L/R. Applying this solver, the final hyperbolic operator for the moments X̂ ∈ {Ê, F̂}
reads (

∂tX̂i,j,k,ξ

)
hyp

=
∆Ai+ 1

2
,j,kF

HLL
i+ 1

2
,j,k,ξ
−∆Ai− 1

2
,j,kF

HLL
i− 1

2
,j,k,ξ

∆Vi,j,k

+“θ” + “ϕ” , (2.55)

where we symbolically denoted the contributions from the θ- and ϕ-directions; they are obtained
in an analog manner as the radial contribution.

2.3.4 Velocity dependent terms and geometric source terms

The velocity dependent terms and the geometric source terms contain different types of expres-
sions, each treated numerically different. In the following, we present the recipes to discretize
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their constituents. Where required, the full operators are obtained as products of individual
prescriptions given below. In order to compute the terms that include velocity derivatives, we
reconstruct the velocities to obtain v̂i,L/R by using the same algorithm as for the radiation
moments.

Quasi-advection terms We denote the terms that are included in (∂tX̂)vel,1 (cf. Eq. (2.46c))
as quasi-advection terms. For their discretization we also employ an HLL type Riemann-solver
for each coordinate direction in analog fashion as in Eq. (2.54), but built out of the numerical
interface fluxes FL/R = v̂L/RX̂L/R and the signal velocities λHLL

+ = max(0, v̂L, v̂R) and λHLL
− =

min(0, v̂L, v̂R), where the v̂L/R are the reconstructed velocity components that are normal to the
interface at which the according numerical flux is computed at.

Velocity derivatives We make use of the decomposition of a covariant vector derivative as
given by Eqs. (2.45a) and (2.45b) and we employ the following finite-volume representation for
the volumetric radial derivative of the velocity:

(∇rv
i)vol ←→

∆Ai+ 1
2
,j,kv̂

i
i+ 1

2
,j,k
−∆Ai− 1

2
,j,kv̂

i
i− 1

2
,j,k

∆Vi,j,k
, (2.56)

while to obtain unique interface velocities v̂i
i+ 1

2
,j,k

we arithmetically average the reconstructed

velocities:

v̂i
i+ 1

2
,j,k

=
1

2

(
v̂i,L
i+ 1

2
,j,k

+ v̂i,R
i+ 1

2
,j,k

)
. (2.57)

The discretization of the remaining components of (∇jv
i)vol is given analogously.

Geometric source terms As geometric source terms we denote all terms that originate from
covariant derivatives of vectors or tensors in a manner defined by Eqs. (2.45). These kinds of
terms appear within (∂tX̂)hyp,geo, (∂tX̂)vel,2 and (∂tX̂)vel,3. In our specific choice of coordinates
they come in two types, either proportional to 1/r or to cot θ/r. Following the nature of the
finite-volume approach, we discretize them in the subsequent fashion:

g
1

r
←→ ĝi,j,k

∆Ai+ 1
2
,j,k −∆Ai− 1

2
,j,k

2∆Vi,j,k
, (2.58a)

g
cot θ

r
←→ ĝi,j,k

∆Ai,j+ 1
2
,k −∆Ai,j− 1

2
,k

∆Vi,j,k
, (2.58b)

where g is some function of the radiation moments or velocities and ĝi,j,k is of the same func-
tional structure, but the arguments are replaced by the corresponding discretized versions of the
quantities.

Energy-bin coupling terms In our multi-group treatment of comoving-frame radiation
transport, we allow radiation energy to be distributed between energy groups via the “red-
shift terms”, which physically reflect the fact that a radiation spectrum becomes redshifted
(blueshifted) whenever the relative velocity of the observer towards the background radiation
field decreases (increases). Due to the fact that the number of radiation energy bins in a nu-
merical scheme like ours is at least linearly proportional to the computational expense of the
simulation (in case of an implicit integration in time this dependence can be even cubic, see
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also Sec. 2.3.5) this number is strongly limited, making it necessary to employ both an accurate
and numerically robust scheme. An important property of the redshift terms is that they, albeit
being physically equivalent, have a different functional structure in the energy based moment
Equations (2.8) than in the number based moment Equations (2.11), stemming from the differ-
ent transformation behavior of the energy and number related moments. As a consequence, a
naive discretization will generally cause this term to lead to non-conservation of neutrino num-
ber and therefore lepton number (see Sec. 2.3.9 for comments on the overall global conservation
properties), which could only be avoided by solving the number based moment equations in
addition to the energy based versions effectively at least doubling the computational cost. In
the present code, we therefore implemented a second-order number conservative scheme recently
developed by Müller et al. (2010). We will briefly summarize its key features here, but for a
detailed derivation we refer the reader to the original paper.

Suppressing spatial indices and components, we write the redshift term of the 0th-moment
equation for the ξ’th energy bin as(

∂tÊξ

)
vel,3

= w

∫
∆ϵξ

(
P − ∂ϵP

∂ϵ

)
dϵ = w (P̂ξ + Fξ− 1

2
− Fξ+ 1

2
) , (2.59)

where w includes the spatially discretized velocity derivatives and P̂ξ denotes a component of

the 2nd-moment obtained by applying the closure relation to the discretized moments Êξ, F̂ξ.
With the constraint that the frequency integrated number density shall be conserved, i.e.∑

ξ

ϵ−1
ξ

(
∂tÊξ

)
vel,3

!
= 0 , (2.60)

the interface fluxes Fξ± 1
2
can be written as3

Fξ+ 1
2
= FL

ξ + FR
ξ+1 , (2.61)

with

FL
ξ =

1

1− ϵξϵ
−1
ξ+1

P̂ξγξ , FR
ξ =

1

ϵξϵ
−1
ξ−1 − 1

P̂ξ(1− γξ) . (2.62)

The weighting factor γξ can be chosen freely, but we fix it such that the interface fluxes in the
high energy tail of the spectrum do not lead to instabilities. We use

γξ =
ẽξ+ 1

2

ẽξ− 1
2
+ ẽξ+ 1

2

, (2.63)

where ẽξ+ 1
2
is the weighted harmonic mean of ẽξ and ẽξ+1, and ẽξ is the discretized 0-th angular

moment of the distribution function F and is computed as ẽξ ≡ (hc/4πϵξ)
3Êξ∆ϵ−1

ξ . At the
lower boundary in energy space we usually have the minimum energy ϵmin = 0 and therefore
F1− 1

2
= 0. For the upper boundary at ϵmax we either use an exponentially extrapolated energy

distribution for the high-energy tail or the condition that the numerical flux vanishes; both
versions are practically equivalent if ϵmax is high enough such that the uppermost energy bin is
filled with a negligible amount of energy. For the energy derivative of the 3rd-moment occurring
in the 1st-moment equation we use an analog prescription and the same weights as in Eq. (2.63).

3Note that these interface fluxes are not uniquely determined, but chosen as one specific set fulfilling the
imposed constraint of total number conservation.
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2.3.5 Physical source terms

The numerical treatment of the source terms Eqs. (2.18a),(2.18b) deserves special care because
the characteristic interaction timescale τ ≡ (cκtot)

−1 , with κtot = κa + κs, can become smaller
than the time step associated with the hyperbolic part, which is bounded by (∆t)hyp = ∆x/c
(with ∆x being a cell length). In this case, i.e. for κtot∆x > 1, the moment equations become
stiff and a simple Euler-forward method for time integration would lead to numerical instability,
preventing us from reaching the parabolic diffusion limit properly. Neglecting velocity terms,
this limit is given by4

∂tE −∇i

(
c

3κtot
∇iE

)
= cκa (E

eq − E) , (2.64a)

∂tF = 0 ,with F i = F i
D ≡ −

c

3κtot
∇iE . (2.64b)

Since we are using a scheme with time steps as small as the light-crossing times of single grid cells,
the diffusive second-order derivative term in Eq. (2.64a) is always well resolved for κtot∆x > 1,
as can be seen by evaluating its characteristic timescale

(∆t)diff ≃
(∆x)2

c/(3κtot)
≃ 3κtot∆x(∆t)hyp . (2.65)

Thus, we do not have to revert to an expensive fully implicit scheme including inter-cell depen-
dencies induced by the spatial derivatives; it is sufficient to apply an implicit-explicit operator
splitting scheme in which, separate from the remaining part of the equations, the local contribu-
tions from the sources are obtained by independently solving the partial equations containing the
radiation energy and the radiation flux density. As already indicated in Sec. 2.3.1, by treating
the sources locally in space we enjoy, on the one hand, the proficiency of the code to be highly
efficient in a parallel computing environment and, on the other hand, the possibility to locally
modify (i.e. simplify, by switching to a less costly time integrator, see below) the treatment of
the source terms wherever the interaction between matter and radiation is weak, what earns
us an additional gain in computational overhead. The latter aspect is particularly appealing
in scenarios (such as the models of the post-merger tori investigated in this thesis), wherein
the cells with negligible radiation-matter interactions make up a considerable fraction of the
computational grid.

The system of equations containing the radiation energy density (we now use the index
ν ∈ {νe, ν̄e} to denote neutrino species but we suppress spatial grid indices),(

∂tÊν,ξ

)
src

= c(κ̂a)ν,ξ

(
Êeq

ν,ξ − Êν,ξ

)
, (2.66a)

(∂têi)src = −c
∑
ν,ξ

(κ̂a)ν,ξ

(
Êeq

ν,ξ − Êν,ξ

)
, (2.66b)

(∂tn̂e)src = −c
∑
ξ

[
(κ̂a)νe,ξϵ

−1
ξ

(
Êeq

νe,ξ
− Êνe,ξ

)
−(κ̂a)ν̄e,ξϵ−1

ξ

(
Êeq

ν̄e,ξ
− Êν̄e,ξ

)]
, (2.66c)

couples the gas internal energy êi and number density n̂e ≡ ρ̂Ŷe/mB of charged leptons with the
radiation energy densities through both the opacities (κ̂a)ξ ≡ κa(êi, n̂e, ϵξ) and the equilibrium

4The RHS of Eq. (2.64a) also tends to vanish in this limit, but the strict definition of the diffusion limit does
not require local thermodynamic equilibrium.
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energy densities (Êeq)ξ ≡ Eeq(êi, n̂e, ϵξ), but, since we are not including energy-bin coupling
interactions (cf. Sec. 2.2.3) such as inelastic scattering or annihilation (note that νν̄-annihilation
is treated within a passive scheme, cf. Sec. 2.3.6) into the system of Eqs. (2.66), the radiation
energy densities are not coupled to each other.

For solving the non-linear (2Nϵ+2)× (2Nϵ+2)-system of Eqs. (2.66) implicitly by iteration,
we make use of the non-linear solver nag nlin sys sol from the NAG library5, which employs the
Broyden method for root finding. Specifically, we implemented three different options to solve
the system (2.66), each one successively simpler and computationally less expensive:

(a) We solve the Eqs. (2.66) fully implicitly using for both the opacities and the equilibrium
energy densities the values at the new time step.

(b) Like (a), but we take the opacities as given from the old time step. This reduces the com-
putational expense by the demands of re-computing the numerically complicated opacities
within each iteration level of the root finding procedure.

(c) Like (b), but we also take the equilibrium energies as given from the old time step, thus keep-
ing only the radiation energy densities implicit. Given that the only interactions accounted
for are absorption and iso-energetic scattering, this method allows us to directly solve for
each neutrino energy density Ên+1

ν,ξ without the need for a matrix inversion in energy space.

To be specific, given the thermodynamic opacities (κ̂a)
n
ν,ξ and equilibrium energies (Êeq

ν,ξ)
n

at the old time tn, the neutrino energy densities at the new time tn+1 = tn + ∆t are then
computed as:

Ên+1
ν,ξ = (Êeq

ν,ξ)
n +

(
Ên

ν,ξ − (Êeq
ν,ξ)

n
)
exp{−c(κ̂a)nν,ξ∆t} . (2.67)

In practice, we first check if matter in a cell is only weakly interacting with radiation (on the
level of the 0th-moment equations) within the time step ∆t given from the CFL condition (cf.
Sec. 2.3.8), what we assume to be the case for K ≡ maxν,ξ{c(κ̂a)ν,ξ ∆t} < 0.1. For K < 0.1,
we choose method (c), otherwise method (b) is started. Keeping in mind that the timescale of
changes in the hydrodynamics is usually considerably longer than ∆t, the direct use of method
(a) has proven to not be of necessity for our considered simulations, but for singular cases where
the matrix inversion of method (b) is unable to converge, we use method (a) as a fail-safe option.

In a second step, we obtain the source terms C(1),i of the 1st-moment equations from the operator
split equations, (

∂tF̂
i
ν,ξ

)
src

= −c(κ̂tot)ν,ξF̂ i
ν,ξ , (2.68)

which are, again assuming that the variation of the opacities within the imposed time step is
small, completely decoupled and can each be solved implicitly without any matrix inversion.
Given the definition of the matter source terms, the results of Eq. (2.68) are used to construct
the source terms for the fluid momenta and the kinetic energy(

∂tρ̂v̂
i
)
src

= − 1

c2

∑
ν,ξ

(
∂tF̂

i
ν,ξ

)
src

, (2.69a)

(∂têk)src = − v̂j
c2

∑
ν,ξ

(
∂tF̂

j
ν,ξ

)
src

. (2.69b)

5www.nag.co.uk
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The source term for the total energy of the gas is computed as the sum of the contributions
calculated in Eqs. (2.66b) and (2.69b), i.e. (∂têt)src = (∂têi)src + (∂têk)src.

Yet, there is one caveat we have to face when approaching the parabolic limit with our in-
trinsically hyperbolic scheme. In contrast to the hyperbolic system, the parabolic equation is
not associated with characteristic waves traveling with speeds between −c and +c, therefore
the ansatz of using a Riemann-solver between cell interface states is no longer justified in that
limit. To be specific, the main source of inconsistency is the numerical diffusivity induced by
the diffusive part of the Riemann-solver in Eq. (2.54),

FHLL
diff ≡

λHLL
+ λHLL

−
(
UR − UL

)
λHLL
+ − λHLL

−
, (2.70)

which for strongly varying interface states can exceed the physical diffusivity. We handle this
inconvenient feature by applying the subsequent procedure: Following Jin & Levermore (1996),
we define the local dimensionless “Peclet number”

Pei ≡ (κtot)i(∆x)i , (2.71)

which for Pei > 1 indicates that a cell is in the stiff regime (the index ‘i’ denotes a representative
grid index for any coordinate direction). After computing a corresponding Peclet number Pei+ 1

2

at the cell interface using a weighted arithmetic mean of the cell-volume averaged versions, we
modify the interface fluxes Eq. (2.54) according to

F∗
i+ 1

2

=

FHLL
i+ 1

2

if Pei+ 1
2
< 1 ,

1
2

(
FL
i+ 1

2

+ FR
i+ 1

2

)
if Pei+ 1

2
> 1 ,

(2.72)

that is, in the stiff regime we remove the diffusive part of the Riemann-solver and take averaged,
not upwinded, numerical fluxes. As a result, the hyperbolic term c2∇jP

ij for updating the flux
densities F i is then an accurate numerical representation of −cκtotF i

D (cf. Eq. (2.64b)), leading,
together with the implicitly updated source term Eq. (2.68), to a relaxation of F i to F i

D on a
timescale τ < ∆t, i.e. within one discrete time step. Consequently, the energy equation is not
polluted with excessively diffusive interface fluxes, instead the accurate (up to the order of the
reconstruction scheme) diffusive flux densities FD are employed. Our experience from several
tests (cf. Sec. 2.4, particularly Sec. 2.4.2) showed that this seemingly discontinuous jump between
both flux formulations in Eq. (2.72) only has an insignificant influence on the solution. This
is because in diffusive regions the radiation moments are usually sufficiently smooth in spatial
space (especially under usage of high-order reconstruction schemes) to cause only small diffusive
contributions FHLL

diff to the full HLL solver at the point of transition Pe = 1. This circumstance,
together with the fact that the signal velocities λHLL

± quickly converge to ±c/
√
3 renders both

versions of the fluxes in Eq. (2.72) almost identical in diffusive regions.

2.3.6 Passive implementation of νν̄-annihilation

In hyperaccretion disks, which can occur as remnants of NS-mergers but also in models of
collapsars (e.g. MacFadyen & Woosley, 1999), νν̄-annihilation6 can become the dominant source
of heating in the polar region and it might represent a key process in launching a GRB. Since

6Since we only evolve neutrinos of the electron type in our transport scheme, by ‘νν̄-annihilation’ we always
refer to the annihilation of this type of neutrinos in the course of this thesis.
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we are purely interested in describing νν̄-annihilation in low density regions – in regions of high
density the β-processes dominate all others – we only compute the source terms for the gas
energy and momentum densities without consistently reducing the radiation moments for the
corresponding amounts and without taking into account the inverse reaction of electron-positron
annihilation. The cross sections for both processes are small enough in regions where we account
for νν̄-annihilation to render this treatment a justified approximation.

To compute the source terms Q0
a and Qi

a, we start from the annihilation rate 4-vector (e.g.
Dicus, 1972; Birkl et al., 2007)

Qα
νν̄ =

1

4

σ0
m2

ec
2(hc)6

{
A1

∫ ∞

0
dϵ dϵ′

∫
4π

dΩdΩ′ ϵ3ϵ′3(pα + p′α)(1− cos θ)2FνeF ′
ν̄e

+m2
ec

4A2

∫ ∞

0
dϵ dϵ′

∫
4π

dΩdΩ′ ϵ2ϵ′2(pα + p′α)(1− cos θ)FνeF ′
ν̄e

}
, (2.73)

where the neutrino and antineutrino momentum 4-vectors pα ≡ ϵ
c(1, n

i), p′α ≡ ϵ′

c (1, n
′i), cos θ =

nin
′i, the weak interaction cross section σ0 ≃ 1.76× 10−44 cm2 and the weak coupling constants

CV , CA are contained in A1 ≡ 2
3(C

2
V + C2

A) ≈ 0.78 and A2 =
2
3(2C

2
V − C2

A) ≈ 1.06.
Using the definitions of the monochromatic and the gray radiation moments, Eqs. (2.5) and

(2.6), respectively, and further generalizing the notation for energy integration of an arbitrary
function g(ϵ) as

(g(ϵ)) ≡
∫ ∞

0
dϵ g(ϵ) , (2.74)

we express Qα
νν̄ in terms of the radiation moments as

Q0
νν̄ =

1

4

σ0
m2

ec
3

{
A1

[(
(ϵE)Ē′ + (ϵ′E′)Ē

)
− 2

c2

(
(ϵF i)F̄ ′

i + (ϵ′F ′i)F̄i

)
+
(
(ϵP ij)P̄ ′

ij + (ϵ′P ′ij)P̄ij

)]
+ m2

ec
4A2

[(
(ϵ−1E)Ē′ + (ϵ′−1E′)Ē

)
− 1

c2

(
(ϵ−1F i)F̄ ′

i + (ϵ′−1F ′i)F̄i

)] }
(2.75)

and

Qi
νν̄ =

1

4

σ0
m2

ec
4

{
A1

[
(ϵF i)Ē′ + (ϵ′F ′i)Ē − 2

(
(ϵP ij)F̄ ′

j + (ϵ′P ′ij)F̄j

)
+ (ϵQijk)P̄ ′

jk + (ϵ′Q′ijk)P̄jk

]
+ m2

ec
4A2

[
(ϵ−1F i)Ē′ + (ϵ′−1F ′i)Ē − (ϵ−1P ij)F̄ ′

j − (ϵ′−1P ′ij)F̄j

]}
. (2.76)

Since we do not want νν̄-annihilation processes to be effective in diffusive regions and regions of
significant net production of neutrinos by β-processes, we set the final terms that enter source
terms of the hydrodynamic equations according to

(Q0
a, Q

i
a) =

{
(Q0

νν̄ ,Qi
νν̄) , where ρ < 1011 g cm−3 and Qβ > 0

(0, 0) , else
, (2.77)

where Qβ is the internal energy source term including only the β-processes.
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The discretization of Eqs. (2.75) and (2.76) is managed by using Eq. (2.41) and by interpreting
g2(ϵ,X) ≡ g(ϵ) (with X ∈ {E,F i, P ij , Qijk}) as

(g2(ϵ,X))←→
∑
ξ

∆ϵξ g2(ϵξ, X̃ξ) (2.78)

in discrete energy space. The thus computed discretized annihilation rate 4-vector (Q̂0
a, Q̂

i
i) gives

rise to the following additional source terms for the fluid momenta and total gas energy (see
Sec. 2.3.8 for details of the time update):(

∂tρ̂v̂
i
)
anni

≡ 1

c
Q̂i

a , (2.79a)

(∂têt)anni ≡ Q̂0
a +

v̂j
c
Q̂j

a . (2.79b)

As a result of the fact that the cross section is proportional to powers of (1−cos θ), the annihila-
tion rate is most efficient for large-angle collisions and vanishes for parallel neutrino trajectories.
In the picture of our radiation moment scheme, this is incorporated both in the directions of the
flux densities (and resulting Eddington tensors) and in the flux factors (and resulting Edding-
ton factors). The νν̄-annihilation rate therefore does not vanish only if the flux densities are
parallel because a flux factor lower than unity means that a non-vanishing fraction of neutrinos
propagates into directions different from that of the flux density vector.

To obtain an impression of the leading order terms that determine the energy component of
the annihilation rate, note that to a good approximation this quantity can be expressed as (see
e.g. Goodman et al., 1987)

Q0
a ≃ GaLνeLν̄e

(
⟨ϵ2⟩νe⟨ϵ⟩ν̄e + ⟨ϵ2⟩ν̄e⟨ϵ⟩νe

⟨ϵ⟩νe⟨ϵ⟩ν̄e

)
, (2.80)

where the factor Ga contains the information about the geometry of and distance to the objects
that give rise to the luminosities Lνe and Lν̄e and the quantities ⟨ϵ⟩ and ⟨ϵ2⟩ are the mean
energies and mean squared energies of neutrinos.

2.3.7 Magneto-/hydrodynamics

The equations of (magneto-)hydrodynamics are integrated using a time-explicit, finite-volume
HRSC-scheme that was developed in Obergaulinger (2008) and since adopted for miscellaneous
applications (e.g. Obergaulinger et al., 2009). The scheme evolves the conserved variables
(ρ, ρv, et) and a variety of procedures for spatial reconstruction (cf. Sec. 2.3.2), Riemann-solvers
(Lax-Friedrich, HLL, HLLC, see, e.g., Toro, 1997) and time-update schemes (Total-Variation-
Diminishing Runge-Kutta schemes of up to 4th-order) can be selected. Details regarding the
numerical implementation of the viscosity and the magnetic fields together with dedicated test
problems can be found in the Appendices C and B.

2.3.8 Time-update scheme

To illustrate how the individual components explained in the preceding sections are put to-
gether, we now present the overall update scheme. We recap the fluid variables into Û ≡
{ρ̂, ˆ(ρYe), ˆ(ρv), êt}T and the radiation moments into X̂ ≡ {Ê, F̂}T and we ignore the Runge-
Kutta staging here for the sake of brevity, it is implemented essentially by iterating the whole
procedure to embed it into a Total-Variation-Diminishing-scheme (e.g. Gottlieb & Shu, 1996) of
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optional order of accuracy. The global time step ∆t that we use for both hydrodynamics and
radiation transport is computed as (i ∈ {r, θ, ϕ})

(∆t)rad = min
i,j,k,i

{
(∆x)ii,j,k

|vii,j,k|+max |(λi
±)i,j,k|

}
, (2.81a)

(∆t)hyd = min
i,j,k,i

{
(∆x)ii,j,k

|vii,j,k|+ (λfluid)i,j,k

}
, (2.81b)

∆t = CFL ·min {(∆t)rad, (∆t)hyd} , (2.81c)

where λfluid is the (in absolute value) maximum characteristic velocity of the fluid and CFL is the
chosen Courant-Friedrichs-Lewy number and (∆x)ii,j,k is the length of cell (i, j, k) in coordinate
direction i.

Given the discretization rules for all constituents of the RHD equations, the combined update
for one (partial) time step tn → tn+1 is administered as follows:

1. The operator (∂tX̂)nexp ≡ (∂tX̂)nhyp + (∂tX̂)nhyp,geo +
∑3

l=1(∂tX̂)nvel,l is computed time-

explicitly using the moments X̂n and the velocities v̂n and employing the discretiza-
tion rules described in Secs. 2.3.3–2.3.4. For limiting the numerical fluxes as dictated
by Eq. (2.72), the opacities as resulting from Ûn are utilized.

2. The purely (magneto-)hydrodynamic part (∂tÛ)nhyd without radiative source terms is com-

puted time-explicitly, i.e using Ûn (see Appendices B and C for more details about the
computation of (∂tÛ)nhyd).

3. Both the radiation moments and the fluid variables are updated according to

X̂n+ 1
2 = X̂n −∆t (∂tX̂)nexp , (2.82a)

Ûn+ 1
2 = Ûn −∆t (∂tÛ)nhyd . (2.82b)

4. The partially updated radiation moments and fluid variables are used as input for the
semi-implicit integration of the source terms (∂tX̂)src, (∂tÛ)src as described in Sec. 2.3.5,
which is symbolically written as:

X̂n+1 = X̂n+ 1
2 +∆t (∂tX̂)src

(
X̂n+1, Ûn+ 1

2 , Ûn+1
0

)
, (2.83a)

Ûn+1
0 = Ûn+ 1

2 +∆t (∂tÛ)src

(
X̂n+1, Ûn+ 1

2 , Ûn+1
0

)
(2.83b)

5. The source terms (∂tÛ)anni due to νν̄-annihilation given by Eqs. (2.77) are computed using

X̂n+ 1
2 and are employed for the final time-explicit update of Û:

Ûn+1 = Ûn+1
0 +∆t (∂tÛ)anni

(
X̂n+ 1

2

)
. (2.84)

2.3.9 Global conservation properties

We finalize our description of the numerical methods by commenting on the conservation prop-
erties of our numerical scheme. Since we are primarily concerned about the radiation part of
the scheme in this chapter, we neglect the contribution of gravitational energy in the present
consideration and we will also ignore the νν̄-annihilation treatment outlined in Sec. 2.3.6, which
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obviously is energy non-conserving. Regarding the total energy, our finite-volume formula-
tion guarantees that in the static case (|v| = 0 everywhere on the grid, which means that the
comoving-frame moments are identical to the lab-frame moments) the spatially integrated sum
of energy contributions from radiation and matter is conserved to machine accuracy. Going over
to |v| ̸= 0, we introduce global conservation errors for different reasons:

The first effect that leads to violation of total energy conservation is purely physical in nature
and can be recognized by remembering that for the construction of the energy conservation law,
Eq. (2.23), we dropped additional terms of order O(v2/c2). The underlying reason that these
terms occur is that, in contrast to the O(v/c) Lorentz transformation of the moments, the
O(v/c) transformation applied to the moment equations is not exactly invertible (this property
will be considered again in a test in Sec. 2.4.2), a feature that would only disappear if we treated
the fully relativistic moment equations. Still, we have a “total energy conservation up to order
O(v/c)”, in a non-rigorous sense.

Second, besides the appearance of non-conservative O(v2/c2) terms, a purely numerical rea-
son for non-conservation in the total energy balance is expressed by the fact that the term
(∇ivj)P

ij in the 0th-moment equation (accounting for the work the radiation accomplishes
against radiation pressure) and vi contracted with ∇jP

ij in the 1st-moment equation do not
exactly sum up to ∇i(vjP

ij) in their discrete representation, since quantities defined on spatially
different locations (cell-volume averages and cell-interface averages) enter both terms of the sum.
Instead of vanishing after spatial integration, as it is the case in the analytic representation, the
sum of both terms leaves conservation errors of order O(∆xo v/c), where o is the order of spatial
accuracy.

For the total lepton number the situation is different insofar as only the (lab-frame) 0th-
moments enter its conservation equation. A strict conservation of the spatial integral of

NLep ≡ ne− + N̄νe,lab − ne+ − N̄ν̄e,lab , (2.85)

(N̄νe,lab and N̄ν̄e,lab are obtained by applying the transformation rule Eq. (2.13a) to N̄νe and
N̄ν̄e , respectively, and ne± are the number densities of electrons and positrons) could be achieved
by combining the – in our present implementation neglected, cf. Sec. 2.2.2 – terms including
the acceleration and the 1st-moment time derivative in the 0th-moment energy equation in
such a way that the effectively evolved quantity collected within the time derivative is the lab-
frame neutrino number density, Eq. (2.13a), times ϵ. Yet, due to the fact that the redshift
terms, as explained in Sec. 2.3.4, are discretized in a number conservative fashion, we have a
global conservation property, but given by the quantity ÑLep ≡ ne− + N̄νe − ne+ − N̄ν̄e which,
assuming the terms we neglected in our moment equations are O(v2/c2), is evolved in time as
∂tÑLep = ∂tNLep + O(v2/c2), i.e. similar in accuracy to the total energy. However, keeping in
mind that the O(v/c) evolution of all number densities feeds local errors of order O(v2/c2) into
the system in any case, a strict conservation of the total lepton number independent of v/c is
only meaningful in a global sense and cannot, concerning its significance, be equated with the
according conservation property in a fully relativistic evolution.

2.4 Test problems

In this section, we present a variety of test cases for the numerical methods explained in Sec. 2.3.
Several idealized, non-microphysical tests in 1D and 2D are performed which, although they are
not directly related to typical scenarios where neutrino transport plays a role, serve to assess
the quality of the two-moment closure approximation and its coupling to the velocity field and
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to the hydrodynamic part of the code. Subsequently we analyze some selected aspects regarding
the implementation of the microphysics by comparing our results to selected reference solutions
of spherical CCSN calculations and by checking the radiation field from a BH-torus as calculated
with our scheme against the results of an according ray-tracing calculation.

In order to avoid excessive repetitions in the individual model descriptions, let us list some
recurring properties/parameters that various following tests are equipped with:

• Regarding the numerical treatment, if not stated otherwise, we employ a 5th-order MP
reconstruction method, a 2nd-order Runge-Kutta time stepping and the according HLL
Riemann-solvers for both radiation and hydrodynamics. For the tests in 1D we take a
global CFL factor of CFL= 0.7 and for the tests in 2D we take CFL= 0.5.

• We will make repeated use of two types of standard boundary conditions (BCs) that
are applied by utilizing prescriptions for the values in the boundary-zones which encircle
the computational domain. The reflective BCs for a set of (fluid or radiation) variables
are given by the definition of the reflection operator, e.g. for a boundary at x = 0 we
have for scalars such as E the relation E(0 − δx) = E(0 + δx) and for vectors such as
F we use F(0 − δx) = −F(0 + δx). The outflow BCs are not determined in such a
natural way but have to be given essentially by hand. We employ the usual 0th-order
extrapolation, but augmented with surface weights. For example, in the radial direction
we define E(rout + δr)(rout + δr)2 = E(rout)r

2
out and similar for the remaining variables.

• Note that in all of the subsequent tests where non-dimensionalized quantities are employed,
the speed of light is set to c = 1 and for the velocity the symbol β is used.

• Due to the fact that our implementation of the RHD equations is intrinsically written in
spherical polar coordinates, we employ a workaround to be able to deal with test problems
formulated in Cartesian geometry simply by using offset radii being about 4 orders of
magnitude higher than the box dimensions and accordingly rescaling the set of polar angle
coordinates.

• Except for the two tests ‘Homogeneous sphere’ and ‘Supercritical radiative shock’, we will
exclusively use the Minerbo closure Eq. (2.34a).

2.4.1 One-dimensional idealized test problems

Homogeneous sphere

The radiating homogeneous sphere is a popular test setup for radiative transfer codes (e.g.
Bruenn, 1985; Smit et al., 1997; Rampp & Janka, 2002) due to its simplistic design possessing an
analytic solution while at the same time being highly demanding on the discretized treatment of
radiative transfer. Although this is a test that is particularly well suited for intrinsic Boltzmann
solvers, while it clearly shows the limits of analytic closure methods like ours, we present it here
on the one hand to demonstrate the ability of the code to build up a stable stationary solution
despite the strong inherent discontinuity and on the other hand to get a basic impression of the
behavior of different closure prescriptions.

The setup is defined by a static sphere with radius R, within which isotropic absorption and
emission of radiation can take place owing to non-vanishing frequency independent values of the
absorption opacity κa = τ/R and the equilibrium intensity Ieq = B, with constant parameters
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Figure 2.1: Comparison of the numerical re-
sults obtained using different closures with the
analytic solution for the homogeneous sphere
test problem. On the left (right) side the re-
sults for the case of moderate (high) opacity
are plotted. The panels show from top to bot-
tom the energy density, the luminosity, the flux
factor and the Eddington factor against radius.
In the second row the values of the (constant)
luminosities outside of the sphere are given.

τ and B. The sphere is surrounded by vacuum, viz. κabs = 0 for r > R, and the velocity field
vanishes everywhere.

Our model setup is in close analogy to a similar study by Rampp & Janka (2002), only the
scaling of our parameters is slightly different. Both of our models have R = 1 and B = 4, but
they differ in that one has a moderate, τ = 4, and the other a high, τ = 26, optical depth. For
the computational domain with r ∈ [0, 12] we use a logarithmic grid of 220 zones in total, being
distributed such that ∼ 170 zones are located within the sphere. We adopt at r = 0 reflective
and at r = 12 outflow BCs. The model is initialized with a vanishing flux density and a constant
but negligible energy density.

A set of solutions for different closures and the analytic reference solution (see e.g. Smit et al.,
1997) are displayed in Fig. 2.1. As expected, none of the closures are able to “perfectly” recover
the analytic solution, as can be observed in both the luminosities outside the sphere, which are
all too low by up to 5-10%, and, much more seriously, in the flux factors that increasingly diverge
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Figure 2.2: Radiation propagating through a region with varying velocity. Panel (a) shows the three velocity
fields as functions of distance and in Panel (b) we plot the differences of the energy distributions in the two frames
β = 0, βmax. The lines are given by the analytic fully relativistic solutions while the symbols denote our numerical
results.

within the sphere for r → 0 and with higher optical depth τ . These latter differences, as noted
by Smit et al. (1997), can be traced back to the fact that the closure methods, by design, force
the radiation flux F deep inside the sphere to its diffusive asymptotic value

FD = − c

3κa
∂rE , (2.86)

(since all closures obey χ(0) = 1/3), while in contrast the analytic solution for this specific
scenario behaves like

Fanalytic ≈ −
c

κa

(
1 + 2B

κaR

)∂rE (2.87)

for r ≪ R, i.e. the closure solution can deviate by up to a factor of 3 for κa ≫ B. A smaller flux
from deep inside the sphere leads to a smaller absolute value of the energy gradient, which in
turn determines the flux and finally allows it to depart by several orders of magnitude from its
analytic value, Eq. (2.87), close to the center. Apart from this systematic digressive behavior of
the fluxes for r ≪ R, which is more of academic relevance since realistic scenarios will most likely
never have a perfect step-function as an opacity profile, the solutions obtained with different
chosen closures are all in a comparable range with the analytic solution and none of the closures
stand out as being particularly different or inferior. We note again that, for this test to be
mastered in full agreement with the analytic solution, the use of a much more complicated and
costly Boltzmann scheme would be inevitable.

Doppler redshift of free-streaming radiation

The energy-bin coupling method transacting the Doppler redshift into our scheme can immedi-
ately be tested by comparing the spectra of a free-streaming radiation field in two different frames
with non-vanishing relative velocity. We adopt the basic setup from Vaytet et al. (2011), but we
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Figure 2.3: Results for the differentially expanding atmosphere. In Panel (a) the frequency integrated energy
densities, normalized by E0 ≡ Ē(r = 0), as function of radius are shown for different maximum velocities. The
symbols denote the reference solution computed by Mihalas (1980). The inlet depicts the flux factor as obtained
by our calculation for a specific energy bin ϵ = 2 where the radiation becomes optically thin at about r = 5.5.
For comparison, we added the curves given by the flux-limiters, Eqs. (2.32a), (2.32b). In Panel (b) the spectral
distributions of the normalized energy densities are shown for the same velocities at the two radii r = 5.5, 11
where the optical depth for the part ϵ < ϵ0 of the spectrum is equal to 1 and ≈ 0, respectively. The thin solid
line displays the equilibrium distribution Eeq(ϵ).

use dimensionless units and take higher values for the maximum velocity βmax ∈ {0.01, 0.1, 0.3}.
The Cartesian spatial domain extends within x ∈ [0, 10] and is resolved by 100 equidistant grid
points, while the energy space within ϵ ∈ [0, 50] is discretized using a logarithmic grid of 40 bins
with a bin enlargement factor of ∆ϵξ+1/∆ϵξ = 1.1. At x = 0 we trigger an inflow by fixing
the radiation quantities within the boundary zones according to a photon equilibrium spectrum
E(x = 0) = ϵ3/(eϵ − 1) = F (x = 0) and the outer boundary is set to outflow. The radiation
enters velocity fields with the shape of smoothed step-functions, as shown in Panel (a) of Fig. 2.2.
Within the regions where β > 0, the redshifted, i.e. Lorentz-boosted, spectrum is analytically
given by

Eβ =
1

s

(sϵ)3

esϵ − 1
, where s ≡

√
1 + β

1− β
, (2.88)

which is valid for 0 ≤ β ≤ 1.

The differences between the spectra within the frames β = 0, βmax for both our numerical
and the analytic solutions are shown in Panel (b) of Fig. 2.2. The Doppler redshift is captured
well by our scheme, the accordance with the analytic solution converges for smaller βmax. With
increasing velocity, our O(v/c) approximation of the transport shows its limits as anticipated,
although the deviations are still at most 10% for βmax = 0.3.

Differentially expanding isothermal atmosphere

To test the combination of velocity dependent, analytically closed two-moment transport and
(simplified) matter–radiation interactions we chose a scenario already investigated by Mihalas
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(1980) (in full relativity) and Rampp & Janka (2002) (inO(v/c)), both using accurate Boltzmann
techniques, which includes an isothermal atmosphere expanding with the stationary velocity law

β(r) = βmax
r − rmin

rmax − rmin
(2.89)

and exhibiting an absorption opacity that varies in radius and energy as

κa(r, ϵ) =

{
10α
r2

e−(ϵ−ϵ0)2/∆2
+ α

r2

(
1− e−(ϵ−ϵ0)2/∆2

)
, ϵ ≤ ϵ0

10α
r2

, ϵ > ϵ0 .
(2.90)

That is, for fixed radius r, the opacity is a smoothed step-function in energy space with the transi-
tion from some value at low energies to a 10 times higher value at ϵ0 with transition width ∆. Our
model parameters are chosen to be the fixed set of {rmin, rmax, ϵ0,∆, α} = {1, 11, 3, 0.2, 10.9989}
and the maximum velocity is varied between βmax ∈ {0, 0.1, 0.3} and we use dimensionless units
in which the temperature T = 1 such that the photon equilibrium energy density is given by
Eeq(ϵ) = ϵ3/(eϵ − 1).

We set up a uniform spatial grid of 400 zones to cover an enlarged region of r ∈ [0.1, 15] in
which the additional interval [11, 15], with opacities set to zero, merely serves as a numerical
transition zone where the radiation field reaches conditions close to free-streaming so that un-
physical feedback from the outflow boundary is avoided. At r = 0.1, a reflective BC is applied.
The energy grid is composed of 40 equidistant bins within ϵ ∈ [0, 8]. We initialize the model
with a vanishing flux density and some small but negligible energy density.

For comparison, we show similar plots, see Fig. 2.3, as in Rampp & Janka (2002). The total
radiation energy density as function of radius is shown in Panel (a), where we included a set
of reference points we read off from the solution obtained by Mihalas (1980), their Fig. 5. A
remarkable fact is that the case with no expansion is already reproduced well with an accuracy
of ∼ 1% by our scheme using the analytic Minerbo closure. Although we do not have the
according data from the reference calculation, we depict the flux factor for a fiducial energy bin
with ϵ ≈ 2 (residing in the lower opacity band) in the inlet of Panel (a) to compare it with
the curves F (E)/E that result from applying the flux-limiter prescriptions Eqs. (2.32a) and
(2.32b) to our calculated distribution of E. A clear deviation of the FLD fluxes from our AEF
solution is noticeable, tending towards higher values from at least about r ≈ 10.5. The property
of the Levermore flux factor to lie beneath the AEF solution until almost twice the radius of
the radiation sphere (i.e. the point where the optical depth is unity at r ≈ 5.5) in a typical
atmosphere is not generic but can be traced back to the fact that the present atmosphere is
isothermal (in contrast to, e.g., the atmosphere of a proto-neutron star, see Sec. 2.4.3 where for
this case a similar comparison is shown) leading to an effective albedo, Eq. (2.30), of ω ≥ 1 for
all radii and with that reducing the flux factor.

By switching to β > 0 we introduce the following effects: Due to the frame dependence, the
energy and flux density of photons created deeper within the atmosphere decreases on their way
to the surface, rendered by the monotonic (in βmax) decline of the total energy density up to
r ≈ 10 in Panel (a) and the spectra given at r = 5.5 in Panel (b) of Fig. 2.3. This trend is
competed by the circumstance that, as seen by an observer at the surface, the overall fraction
of photons created in the high opacity band is lifted with increasing velocity due to the effective
redshift of the opacity jump. In essence, the coupling between matter and radiation is intensified
by the expansion, leading to higher integral values for r ≳ 10, cf. Panel (a) and in Panel (b) the
spectra at r = 11.

Both effects are captured accurately by our method, only for βmax = 0.3 we notice a deviation
up to ∼ 5% in the integral energy density, Panel (a), around r ≈ 10. As this discrepancy only
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different times t ∈ {4 × 103, 7.5 × 103, 1.3 × 104} s for
the radiative shock test problem. Each curve is plotted
in the frame in which the shock crosses x = 0 at t = 0
with a velocity vs = 2× 106 cm s−1.

arises for high velocities, we conjecture that its origin lies in the O(v/c) formulation of our basic
equations which introduces errors of the same order of magnitude into the relevant transport
terms when approximating the relativistic Lorentz factor γrel that serves as a pre-factor for

several transport terms as γrel
O(v/c)−−−−→ 1.

Supercritical radiative shock

Successively increasing the degrees of freedom taken into account, we now turn to a classic full
RHD problem to test the accurate coupling between transport and hydrodynamics, the radiative
shock tube. Having been the subject of numerous investigations, both analytically (e.g Zeldovich
& Raizer, 1966; Mihalas & Mihalas, 1984) and numerically (e.g. Ensman, 1994; Sincell et al.,
1999), these scenarios repeatedly serve as test problems for the development of new RHD codes,
such as in Turner & Stone (2001); Hayes & Norman (2003); González et al. (2007) and Vaytet
et al. (2011), of which the last mentioned work serves as a reference for our present setup.

Since the detailed physical description of radiative shocks is out of the scope of our pre-
sentation, we only briefly summarize their essential properties here. In contrast to purely hy-
drodynamic shocks, their radiative counterparts allow for energy transfer between the gas and
radiation, thus introducing cooling of the post-shock and heating of the pre-shock material. De-
pending on the shock velocity, the heating of material upstream ahead of the shock – this region
is called the radiative precursor – can become so efficient that the upstream temperature adapts
to the temperature behind the shock, making it in this case called supercritical. At that point,
both of these regions are in radiative equilibrium and separated by a sharp non-equilibrium
temperature spike, roughly as wide as the local mean free path of radiation.

We initialize our model of a supercritical radiative shock using the same basic setup as several
of the authors mentioned above, but we refer to Vaytet et al. (2011) for a direct comparison
since we are using a (spectral) two-moment scheme most similar to theirs. For the same reason,
we apply the M1 instead of the Minerbo closure for this test, although we then have to neglect
the 3rd-moment terms, due to a missing implementation for this closure. Since these terms
vanish in the energy integrated form of the RHD equations, however, the fluid quantities such as
the temperature should not be noticeably influenced by this feature, particularly in view of the
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comparably low velocities at hand. A Cartesian box of length 1011 cm is discretized by a uniform
grid of 500 cells and initially filled with a gas of density ρ = 7.78 × 10−10 g cm−3, temperature
T = 10K and gray absorption opacity κa = 3.1 × 10−10 cm−1, and furthermore with radiation
that is in equilibrium with the gas, Ē = Ēeq = aradT

4, where arad ≡ 8π5k4B/(15c
3h3) is the

radiation constant. The matter is described by an ideal gas law with adiabatic index γgas = 1.4
as Pg = (γgas − 1)ei = ρkBT/mu, where kB is the Boltzmann constant and mu is the atomic
mass unit. We take the frame of the shock, moving with vs = 2 × 106 g cm−1 relative to its
preceding medium, as our simulated inertial frame, that is, we initialize the matter within the
computational domain to have v = −vs and let the shock be developed and sustained by using
a reflective BC at x = 0 and an inflow BC at x = 1011. The latter feeds the box with new
matter having similar properties as the initial medium and is numerically realized by setting the
according boundary zones to just these values. We discretize the frequency space with 8 evenly
spaced bins between ϵ ∈ [0, 8× 1014 s−1].

The results are shown in Fig. 2.4 in form of the distributions of gas temperature Tgas and
“radiation temperature”, defined as Trad ≡ (Ē/arad)

1/4. Using an essentially similar physical
evolution model as Vaytet et al. (2011), the results we obtain with our quasi-explicit numerical
method are in good agreement with the outcome of their implicit radiation solver and shows
that our operator splitting between the radiative and hydrodynamic parts is robust and produces
reasonable results.

2.4.2 Two-dimensional idealized test problems

Shadow casting problem

We begin our presentation of 2D test problems with a rather qualitative test that puts one of the
generic advantages of using a two-moment system, compared to a one-moment scheme as FLD,
into focus, namely the ability of an opaque object to generate a shadow when being illuminated
by radiation. In FLD the flux direction is given by the gradient of the scalar energy density,
which corresponds to assuming an isotropic radiation pressure tensor, leading to the unphysical
effect that even in the free-streaming regime and orthogonal to the original flux direction a
sharp discontinuity of radiation energy is quickly smoothed out, destroying the initially forward
peaked character of the radiation field. In contrast, in a two-moment scheme the flux density
is an evolved quantity being determined by the generally non-isotropic pressure tensor. Even
though this tensor by itself is a derived quantity in the present scheme, its conceptual design is
far less restrictive than the FLD approximation and allows for both extreme cases, free-streaming
and diffusion, to be described consistently.

As it has likewise been done before for various other radiative transfer/transport codes (see
e.g. Audit et al., 2002; Hayes & Norman, 2003; Iliev et al., 2006, and references therein) we set
up a purely absorbing gas cloud being exposed to radiation in the free-streaming regime to test
the ability of radiation to cast a shadow. In a Cartesian domain with x ≡ (x, y) ∈ [0, 15]× [−5, 5]
and resolved by Nx ×Ny = 300× 200 cells we construct a source of radiation within a circular
region S centered around xS = (3, 0) with radius rS = 3/2, and we define another circular region
A centered around xA = (11, 0) with radius rA = 2 to be the purely absorbing cloud. This is
done by explicitly assigning the following locally dependent but temporally constant values for
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Figure 2.5: Contour plots
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three different times for the
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indicates the boundary of the
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the absorption opacity κa and the equilibrium energy density Eeq

κa(x) =


10 exp{−(4|x− xs|/rs)2} , x ∈ S
10 , x ∈ A
0 , else ,

(2.91a)

Eeq(x) =

{
10−1 , x ∈ S
0 , else .

(2.91b)

Scattering interactions and changes of the gas energy due to absorption and emission are ne-
glected. For all boundaries we use the outflow BCs. This gray model is then initialized with a
vanishing flux density and a small but negligible amount of energy density.
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Figure 2.6: Profiles of the energy densities across the y = 1 slice for 2D diffusion of a Gaussian pulse after time
t − t0 = 5. In Panel (a) we show the results for an overall constant opacity. The different models vary in the
chosen (uniform) resolution – for Pe > 1 (Pe < 1) we used Nx,y = 101 (Nx,y = 301) grid zones – and the uniform
velocity field with absolute value β parallel to the x-direction. The curves for the cases of non-vanishing velocity
were shifted to their initial position. To maintain a better readability, only every second zone value is plotted for
the models with high resolution. The results shown in Panel (b) are produced by the same initial Gaussian pulse
but employing a locally varying opacity and different uniform resolutions. The vertical lines denote the locations
where for each resolution the corresponding Peclet number crosses the value 1. In the model with Nx = 301, the
Peclet number is Pe < 1 everywhere.

From the numerical point of view, the present objective is to test the correct multi-dimensional
implementation of all (non-vanishing) components of the 1st-moment vector and 2nd-moment
tensor and to check the proper directional dependence of the derived signal speeds, cf. Eqs. (2.53a)
and (2.53b), which communicate the numerical fluxes between cells, cf. Eq. (2.54), and which
should be strongly suppressed orthogonal to the direction of the radiation flux in free-streaming
conditions. Note that in that respect we intentionally constructed a setup where the direction
of the flux density is not aligned with a coordinate line.

Three resulting snapshots at times t ∈ {5, 10, 15} are displayed in Fig. 2.5, where we plot
the isotropic luminosity radiated by the source, given in this two-dimensional geometry by
L = 2πrc|F| with rc ≡ |x − xS |. One can see that a clearly obscured region behind the gas
cloud emerges as a result of the radiation keeping its forward peaked character. The luminosity
behind the gas cloud is not an ideal step-function in vertical direction but it changes rather
continuously within a fan of opening angle ≈ 20◦ − 30◦. The reason for this is, first, because
radiation is not emitted from a point-like but a spatially extended source, causing the flux factor
to be |F|/E ∼ 0.98 < 1 at rc = 8, and second, due to the reduced amount of absorption near
the edges of the cloud. Altogether our code performs well in this test, the multi-dimensional
development and propagation of the radiation field and its particular feature to cast a shadow
are captured consistently.



2.4 Test problems 53

Static and dynamic diffusion

A standard test for radiation codes allowing for the treatment of optically thick regions (e.g.
González et al., 2007; Swesty & Myra, 2009) is the scenario of an initially concentrated bulge of
radiation diffusing into its environment. Being conceptually designed starting from the diffusion
approximation, FLD schemes perform this test usually well, as long as the medium is sufficiently
opaque. Two-moment schemes, on the other hand, do not per se have the energy diffusion
equation applied as a building block of their construction. Dealing with an increased number
of degrees of freedom and being mathematically of hyperbolic and not parabolic nature, they
instead have to asymptotically converge to a numerically stable system that produces similar
solutions as the diffusion equation in the optically thick regime, while not actually solving it.

For our specific method of choice that makes use of a Godunov based formulation of nu-
merical inter-cell fluxes for both the purely hyperbolic, cf. Eq. (2.54), and the advective part,
cf. Eq. (2.46c), we therefore want to test, first, if the diffusion limit, Eqs. (2.64a),(2.64b), is
reproduced accurately at all, second, the ability of the numerical system to consistently handle
dynamic diffusion, i.e. diffusion out of a moving medium, and third, its robustness under a
variation of resolution particularly focusing on the influence of modifying the numerical fluxes
in the stiff limit, cf. Eq. (2.72).

We therefore perform a set of calculations within two configurations of similar kind in a
Cartesian box given by x ≡ (x, y) ∈ [0, 2] × [0, 2]. Both configurations are initialized at time
t0 ≡ 5 with the same Gaussian pulse of energy density and according diffusive flux density
centered around x0 = (1, 1),

E(x, t0) = E0 exp

{
−|x− x0|2

4D0

}
, F(x, t0) = −D0∇E , (2.92)

where E0 = 1, D0 = 3× 10−3.
The first configuration has a spatially constant diffusion coefficient, D ≡ (3κs)

−1 = D0,
allowing us to compare the numerical results with an analytic solution given by

E(x, t) = E0
t0

t0 + t
exp

{
− |x− x0|2

4D0(t0 + t)

}
. (2.93)

For this configuration we switch between the two resolutions Nx,y = 301, 101 corresponding to
the two cases where the Peclet number, Eq. (2.72), is lower and greater than 1, respectively.
For both resolutions we also vary between a vanishing and a non-vanishing spatially constant
velocity v = (β, 0), with β = 0 and 0.1, respectively. All four cases, together with the analytic
solution, serve to detect possible weaknesses of the individual and combined numerical treatment
of diffusion and advection of radiation.

In Panel (a) of Fig. 2.6, one can see that after a simulation time of t − t0 = 5, when the
maximum value of E reached about half of its initial value E0 = 1, all models agree well with
the analytic solution and numerical issues introduced in any of the different cases cannot be
identified.

We examine a second configuration with the same initial conditions, Eqs. (2.92), (2.93),
particularly to test the correct transition from a stiff (Pe > 1) to a non-stiff (Pe < 1) region.
Instead of a constant opacity as taken for the first configuration, we now use an opacity decreasing
away from the center x0 as

κs(x, t0) =
1

3D0
exp

{
−|x− x0|2

δ2

}
(2.94)
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Figure 2.7: Radiation, starting at r = 2 with purely radial flux density, traverses an optically thin region with
a varying velocity field. In Panel (a) the absolute value (color coded) of the velocity and its polar component
(arrows) are shown for βmax = 0.1. In Panel (b) the relative deviation of the radial flux density to the case of
vanishing velocity is plotted.

on a length scale δ = 0.4. We display the results after time t−t0 = 5 for four different resolutions
in Panel (b) of Fig. 2.6, which shows that no numerical artifacts around the transition region
Pe = 1 are produced by any of the simulations, therefore, our modification of the numerical
fluxes, Eq. (2.72) works stably and accurately in this test.

Radiation traversing an optically thin region with large velocity gradients

Owing to the fact that our evolved quantities E,F are defined in the comoving frame, they
are expected to change when radiation enters regions of varying velocity even without any
interactions present. The net change, after leaving such an area and returning into the frame
the radiation initially started in, should vanish in an exact calculation. In practice, we encounter
two obstacles that spoil this feature: First, our underlying scheme for the radiation moments
neglects all contributions of order O(v2/c2) in both evolution equations which results in a loss of
the property that a transformation from one frame to another is exactly reversible, instead such
a transformation generates errors of the disregarded order O(v2/c2). Clearly, the second reason
is that we do not exactly solve the equations, but their discretized counterparts, introducing
errors of order O(∆xo) where ∆x is a typical cell length and o is the order of spatial accuracy
which is mainly determined by the reconstruction procedure.

In order to obtain a qualitative impression of how severely both aforementioned effects disturb
the radiation field generated by a spherical source, we set up a finite region with a non-vanishing
velocity of arbitrary functional shape which is being traversed by equilibrium radiation, E(r =
2, ϵ) = ϵ3/(eϵ − 1), starting with a purely radial flux density with flux factor Fr/E = 0.5 at
the inner boundary r = 2. The energy grid is chosen to have Nξ = 10 bins between ϵ ∈ [0, 30]
logarithmically distributed with enlargement factor ∆ϵξ+1/∆ϵξ = 1.3. The polar velocity field
vpol can be imagined as an eddy with radius d1 = 1 around the center at x0 = (r0, r0)/

√
2 with

r0 = 5 and the toroidal field vtor is assigned to have the same absolute value as the toroidal
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field, explicitly:

vpol =
β(x)√

2
epol , vtor =

β(x)√
2
eϕ (2.95)

with
β(x) = β0 exp

{
−(|x− x0| − d1)

2/d22
}
, (2.96)

where d2 = 0.4 and epol is given by epol·|x−x0| = 0 fixing the sign such that the eddy is streaming
in a clockwise direction, see Panel (a) of Fig. 2.7 for a visualization. We vary the maximum
value of the velocity between β0 ∈ {10−3, 10−2, 10−1} and we use the two spatial resolutions
Nr = Nθ ∈ {50, 100} between r ∈ [2, 10] and θ ∈ [0, π/2]. At r = 10 we employ an outflow
condition and compare the fluxes obtained for each velocity field and resolution with the value
received for a vanishing velocity field, i.e. the value each simulation should reveal if the handicaps
mentioned in the beginning of this section were absent. The results are displayed in Panel (b)
of Fig. 2.7 and show that for this choice of velocity field the case with low resolution already
sufficiently resolves the variations of the radiation moments induced by the underlying evolution
equations and that the latter possess the dominant type of errors as part of their approximate
construction. It can further be observed that the leading order error term representing missing
components compared to the relativistic formulation – which would be necessary to reduce the
error virtually down to zero – truly is O(v2/c2), as can be inferred by the tendency of mean
values in Fig. 2.7 which for one order in βmax roughly decrease by two orders in magnitude. For
the maximum velocity βmax = 0.1, the relative error in the flux density already lies in the range[
(F − F 0)/F 0

]
max
∼ 0.01 . . . 0.1, so that with a further increase of βmax it can be expected that

the set of neglected O(v2/c2) terms become equally important as the O(v/c) terms.
In essence, besides acquiring an impression of the quality of the O(v/c) approximation,

we assured that our implementation of the O(v/c) terms is correct and that, at least for this
stationary scenario, no contributions of order O(v/c) are missing – in any other case we would
have found an error scaling linearly with βmax.

2.4.3 Test problems including microphysics

Having assessed the quality of elementary features of our multi-dimensional transport scheme on
the basis of idealized test problems with simplified coupling between matter and radiation, we
now want to focus on genuine neutrino transport. To this end, first, we compare the radiation
field emerging from a newly-born proto-neutron star as computed with our code with refer-
ence results that were obtained using an accurate Boltzmann-solver, second, we test with high
precision the correct implementation of the opacities and the time integration of the sources,
and third, we contrast our multi-dimensional radiation field emerging from a thick torus with a
reference result calculated via ray-tracing.

Luminosity Profile of a Proto-Neutron Star

For the purpose of testing the clean implementation of the opacities and their resulting source
terms as well as the quality of the analytic closure (which again is chosen to be the Minerbo
prescription), we investigate by comparative means the properties of electron type neutrinos
and antineutrinos emitted by the proto-neutron star at a post-bounce time t = 300ms. The
reference model – model ‘Sr’ in Hüdepohl et al. (2010)7, see there for further details on the
model – was initialized with an 8.8M⊙ progenitor with O-Ne-Mg core and calculated using

7The data was provided via
http://www.mpa-garching.mpg.de/ccsnarchive/ .



56 CHAPTER 2. Multi-Dimensional Radiation Hydrodynamics

Hydro−Background / Flux Factors

0.8

0.85

0.9

0.95

1

α
l

−3

−2

−1

0

1

2

3

Lo
g 
τ

αl

τ( −
ν)
τ(ν)

0 20 40 60 80 100
Radius [km]

8

10

12

14

Lo
g 
ρ

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

− f 
  

, 
  

T 
[3

0 
M

eV
]

−f : FL Levermore

−f : FL Bruenn

−f : Vertex code

−f : our code
T
ρ

Luminosities / Mean Energies

0
2

4

6

8

10

12
14

L
 [1

051
er

g/
s]

 −
ν, Vertex code
ν, Vertex code

 −
ν, corrected
ν, corrected

 −
ν, uncorrected
ν, uncorrected

0 100 200 300 400 500
Radius [km]

0

5

10

15

20

<
 ǫ

 >
 [M

eV
]

(a) (b)

Figure 2.8: Comparison of the emission properties of the proto-neutron star at 300ms post-bounce time on a
fixed background with a dynamic reference calculation performed with the code Vertex-Prometheus including
approximate general relativistic effects. In the top of Panel (a), we show the lapse function αl and optical depths
τν . In the bottom panel, the density ρ, temperature T and mean flux factors f̄ ≡ F̄ /Ē from both calculations are
plotted. For comparison, we added the curves resulting from the flux-limiting prescriptions Eqs. (2.32a), (2.32b)
applied to our profile of the energy density. In Panel (b), we depict the luminosities (top) and mean energies
(bottom), both without and with the post-processing correction explained in the text. The green symbols denote
results of the reference calculation, of which only every 10th grid point is regarded for better visualization. Note
the different scaling of the abscissae in Panel (a) and Panel (b).

the code Vertex-Prometheus (Rampp & Janka, 2002) which employs a Newtonian transport
scheme comparable in quality to an intrinsic Boltzmann solver. The microphysical properties
for this model Sr were determined by the EOS from Lattimer & Swesty (1991) and the standard
opacities by Bruenn (1985) which, additionally to the set of interactions used in our code (listed in
Sec. 2.2.3), accounted for pair production of electron, muon and tau anti-/neutrinos via electron-
positron annihilation, for elastic scattering of all flavors of neutrinos off electrons/positrons and
for nucleon-nucleon-Bremsstrahlung.

From this calculation and for the aforementioned post-bounce time, we adopt the non-
uniform spatial grid (≈ 1150 zones from r = 0 up to r ≈ 105 km), the logarithmic energy
grid (17 bins with ϵ ∈ [0, 380MeV]) and all hydro- and thermodynamic quantities to initialize
and evolve our neutrino scheme on this fixed background. We run the setup until stationarity at
least within r ≲ 500 km is reached to compare the result with the reference neutrino data, which
in this stage of evolution changes on long enough timescales to regard it as stationary within
the radial range of interest. Thus we can test, first, the accurate calculation of the opacities for
the interactions included in our code, and second, the stable development and the shape of the
stationary luminosity profile.

Unfortunately, one caveat remains which is expressed by the fact that the transport method
of the reference calculation in an approximate way accounted for gravitational redshift and time
dilation effects by decorating the energy and time related quantities with appropriate powers
of the lapse function αl, of which the decrease from the Newtonian value αl = 1 is a measure
of the importance of relativistic effects (see Rampp & Janka, 2002 for the detailed equations
and the definition of αl). Their essential impact on the radiation is to reduce the energies
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and flux rates of neutrinos that leave the gravitational well, such that for example in a static
background with vanishing source terms the “relativistic” total luminosity Lrel ≡ 4πr2F̄ rel and
mean energy ⟨ϵ⟩rel ≡ F̄ rel/F̄ rel

N (we define the mean energy here using the 1st-moments instead of
the 0th-moments simply because the following relation Eq. (2.97b) only holds for this quantity)
fulfill

Lrel(r)αl(r)
2 = const. , (2.97a)

⟨ϵ⟩rel(r)αl(r) = const. . (2.97b)

Since metric terms of this kind are neglected in our scheme, we mitigate this shortcoming by
applying the following post-processing correction to the luminosities L0

ν ≡ 4πr2F̄ and mean
energies ⟨ϵ⟩0ν ≡ F̄ /F̄N obtained from our calculation:

We avail ourselves of the approach of the “neutrinosphere”, which in a non-rigorous sense can
be imagined as the sphere outside of that the neutrinos decouple from the medium and radiate
freely into the surrounding volume. We define the energy averaged neutrinosphere as the species
dependent location rν where the mean optical depth generated by the transport opacity,

τν(r) ≡
∫ ∞

r
⟨κtot⟩(r′)dr′ , (2.98)

with

⟨κtot⟩(r) ≡
∫∞
0 κtot(r, ϵ)F (r, ϵ) dϵ∫∞

0 F (r, ϵ) dϵ
, (2.99)

is τν(rν) = 1. Following this picture of the neutrinosphere and motivated by Eqs. (2.97a) and
(2.97b), we apply relativistic corrections to our quantities for r > rν as

Lν(r) = L0
ν(r)αl(rν)

2/αl(r)
2 , (2.100a)

⟨ϵ⟩ν(r) = ⟨ϵ⟩0ν(r)αl(rν)/αl(r) . (2.100b)

Note that the preliminary radiation quantities on the RHS’s of Eqs. (2.100a), (2.100b) (in
contrast to a strict application of Eqs. (2.97a) and (2.97b)) still contain the spatial dependence
on r. That is to account for the additional variation of Lν and ⟨ϵ⟩ν caused by non-relativistic
effects, which are, first, that above the neutrinosphere the interactions are not completely shut
off, and second, that the frame dependence of the comoving-frame quantities leads to a (small)
reduction of these quantities (which are measured in the comoving frame) in the neutrino-
driven wind which streams in positive radial direction with an increasing velocity, reaching
v ≈ 7× 108 cm s−1 at r = 500 km.

In Fig. 2.8, we plot various quantities characterizing the fixed hydrodynamic background,
as well as the mean flux factors f̄ ≡ F̄ /(cĒ), luminosities and mean energies, together with
the reference solutions where appropriate. Deep within the proto-neutron star, the production
of ν̄e via n + e+ ⇋ p + ν̄e is strongly suppressed due to the degeneracy of electrons and the
fact that they are in β-equilibrium with positrons by virtue of the reaction e− + e+ ↔ 2γ.
As a consequence, the flux density of νe’s already starts rising to noticeable values for ∼ 10 −
15 km smaller radii compared to the flux density of ν̄e. Owing to the high opacities in that
region, their local values are determined by the diffusion law (cp. Eq. (2.64b)), which in the
Vertex calculation is relativistically modified by terms including the lapse function. In our
non-relativistic calculation the latter fact leads to diffusive fluxes of νe’s that are about 10%
higher until r ≈ 25 km relative to the Vertex values. Closer to the neutrinospheres, in our
fixed background distribution these lie at about rνe ≈ 34.2 km and rν̄e ≈ 32.3 km, emission
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starts dominating absorption and the luminosities of both species increase until they reach their
maximum values behind where the gain region, i.e. the region of net absorption of neutrinos,
begins. Ignoring relativistic effects in our transport scheme, we still obtain the same relative
difference between neutrinos and antineutrinos, but the absolute values of these maxima are
about 3 − 5% higher for our uncorrected luminosities, which is in rough agreement with the
variation of α2

l within the effectively emitting part of the semi-transparent region within r ≈
25− 35 km. The trend of the luminosities for higher radii is determined by the combined effects
of absorption and Doppler as well as gravitational redshift, while the last named effect dominates
and is well reproduced by our post-processing correction, Eq. (2.100a).

The behavior of the mean energies ⟨ϵ⟩ν is captured similarly well up to the order of deviation
associated with gravitational redshift effects. Close to and below the neutron star surface the ⟨ϵ⟩ν
are as high as several times the matter temperature (in MeV) according to the fact that neutrinos
here are close to equilibrium which is described by the isotropic Fermi-Dirac distribution. Near
the neutrinospheres at rνe,ν̄e , the net radial energy flux that builds up has much lower mean
energies, which is due to the fact that the relevant opacities have an energy dependence as ∼ ϵ2

and therefore allow the release of neutrinos preferably at lower energies. As the opacities for ν̄e
have slightly lower values than for νe in the entire energy space, more ν̄e’s are emitted at higher
energies leading to mean energies that are, in accordance with the reference calculation, about
3MeV higher than for the νe’s. The relativistic correction Eq. (2.100b) for r > rν imprints
the gravitational redshift reduction on both distributions and approximates the reference curves
fairly well, leaving a visible offset for the ν̄e’s of less than 1MeV.

The remaining uncertainties due to our approximate relativistic correction and the missing
treatment of the interactions named above (although being of minor importance for this sce-
nario) inhibit us from pinpointing isolated reasons of deviations and from conducting a minute
comparison of our analytically closed transport scheme with the more sophisticated Boltzmann
technique used in the Vertex code. Nevertheless, the confrontation of the mean flux factors
obtained with our AEF scheme, f̄AEF (using the uncorrected quantities), with curves that are
implied by the FLD prescriptions (Eqs. (2.32a) and (2.32b) applied to our uncorrected distri-
bution of E(r, ϵ)), and with the reference solution f̄Vertex in Fig. 2.8 shows that the transition
to free streaming in the semi-transparent region does not occur as rapid for f̄AEF, f̄Vertex as for
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Figure 2.10: Comparison of the neutrino-radiation field emerging from a torus as computed with a ray-tracing
scheme (Panels (a)-(c)) and with our AEF method (Panels (d)-(f)). From left to right are color coded the frequency
integrated energy density of electron neutrinos Ē(νe), the annihilation rates Qa, and the radial component of the
energy integrated flux density of electron neutrinos F̄r(νe). The arrows in Panels (c) and (f) indicate the direction
and strength of F̄(νe). The numbers above the plots give the spatial integrals Ētot ≡

∫
Ē dV and Qtot

a ≡
∫
Qa dV

over the depicted, non-excised volumes, and the luminosities L ≡ 2π
∫ π

0
r2F̄r sin θdθ at r = 130 km for both species

νe and ν̄e.

the flux-limited versions, which both drift to higher values for r ≥ 35 km reaching maximum
deviations of about 10− 15% compared to f̄AEF. Although the flux factor f̄AEF is not obtained
using the same quasi-relativistic treatment that produced f̄Vertex, the fact that f̄AEF shows a
similarly prolonged transition to free-streaming as f̄Vertex, which is quite distinct from the FLD
related curves, indicates that the AEF method leads to an improvement in accuracy compared
to FLD despite the fact that, conceptually similar to FLD, an analytic closure prescription is
imposed.

Evolution of Ye in the neutrino-driven wind

We set up another test associated with the same model as above but at a later time t = 2.5 s
in the ν-driven wind phase, in which the terminal value of the lepton fraction Ye – which is a
critical quantity for nucleosynthesis – is particularly sensitive to the rates of the β-processes,
Eqs. (2.15a) and (2.15b), both in absolute value and relative to each other. To exclusively focus
on the implementation of the rates and the treatment of the source terms, we fix every quantity
(including the remaining thermodynamic variables and the radiation moments that are set to
the values of the reference calculation) besides Ye, which is evolved according to

∂tYe + v ∂rYe =
1

ρ
QN(Ye) . (2.101)
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As can be seen in Fig. 2.9, the Ye profile at t = 2.5 s is maintained after the 100ms of evolution
in a fixed background up to a minor increase in our Ye which is notably smaller than 0.01 and
probably has its origin in the fact that we fixed all background quantities instead of tracking
their (small) time-dependence.

Neutrino-radiation field around a post-merger torus

In our last test, we set up an axisymmetric equilibrium solution of a torus girding a BH and
we only evolve the radiation field that emerges from the torus while keeping all hydrodynamic
quantities fixed. The equilibrium torus is similarly constructed as the initial conditions that will
be used later in Chapters 3 and 4, see Sec. 3.1.2 for more details. In the present calculation,
we only allow for emission and absorption of neutrinos by means of β-processes, i.e. scattering
reactions are neglected, and we are only interested in the radiation and annihilation field that
surrounds the torus. Furthermore, we ignore the azimuthal velocity, i.e. the torus is static as
seen by neutrinos. For comparison with a reference result, the same model was used as input
for a ray-tracing calculation8. The latter was performed using the basic methods explained in
Birkl et al. (2007), but ignoring a curved background metric and the azimuthal velocity.

The results for the first two moments Ē, F̄ of the electron-neutrino radiation field and the
(energy component of the) annihilation rate Qa are shown in Fig. 2.10, together with several
integral values. Considering that this scenario is a tough challenge for any non-Boltzmann
type scheme, the global quantities Ētot, Q̄tot

a and L are reproduced to a remarkable degree,
whereas the highest deviation occurs in Qtot

a and results from the fact that products of two
radiation moments (from the species νe and ν̄e) enter its calculation. The local distribution of our
calculated radiation field appears to be over-pronounced in the axis region and underestimated in
the equatorial region at high radii. The reason for this is associated with the manifest deficiency
of all analytically closed moment schemes to properly describe the unperturbed superposition
of oblique radiation fronts; mathematically this is most obviously expressed by the fact that
the analytically closed moment equations are non-linear in the optically thin limit (κtot = 0),
in contrast to the underlying Boltzmann equation. In our case of an emitting torus, radiation
packets that originate from different locations of the torus and that cross each other at the poles
do not penetrate each other without interacting, but are instead slightly deflected into the radial
direction, causing the lift in F̄r and consequently in Ē and Qa. It is encouraging, however, that
the total luminosities are only lifted by about 10− 20% and that the ratio of both luminosities
(of νe and ν̄e) is accurate up to an error of less than 10%.

Although this test makes clear that our AEF scheme is an approximation that cannot replace
an accurate Boltzmann-solver, the qualitative features are well reproduced and the (local) quan-
titative features are reproduced up to the correct order of magnitude. Given that our scheme is
significantly less costly than a Boltzmann-solver and that it can therefore be used ‘on the fly’
in hydrodynamic simulations, the AEF method represents an appealing compromise between
accuracy and efficiency.

8We are indebted to Reiner Birkl for conducting the ray-tracing calculation.



Chapter 3

Investigated Models 1: Viscous
Post-Merger Tori

The numerical treatment of neutrino hydrodynamics described in Chapter 2 is in the following
applied to perform 2D-axisymmetric simulations of the possible remnant system of an NS-
merger consisting of an accretion disk around a central black hole. Since no simulations of these
systems including consistent neutrino transport have been performed so far, our simulations
do not aim to include the highest possible degree of physical consistency with the outcome
and evolution of realistic NS-merger scenarios, but instead they intend, first, to elucidate the
general characteristics of the dynamical effects of neutrinos in a black-hole accretion-disk system
and their sensitivity to the main global parameters, and second, to provide a basis of reference
for future studies that take into account an increased amount of physical aspects, such as the
evolution history of the remnant or relativistic effects. Under this proviso, we construct our
initial models using an analytic disk solution that depends on only a few parameters. In this
chapter, we do not take into account a self-consistent description of angular momentum transport
but we parametrize the latter using the α-law for the viscosity as outlined in the introduction
of this thesis. On the one hand, this is motivated by the fact that various previous works on
accretion disks in general and hyperaccretion disks in particular made use of the α-formalism
and therefore can be consulted for comparison. On the other hand, this formalism allows us
to more or less directly modulate some important characteristic quantities as the accretion rate
and the disk temperature (which are determined by viscous angular momentum transport and
viscous heating, respectively) to study their correlation to neutrino transport effects.

In Sec. 3.1 we describe the setup and evolutionary scheme of our simulations, together with
some details concerning their practical computation, and in Sec. 3.2 we collect the definitions
of most of the global quantities that facilitate the subsequent analysis. We present in detail
the results for a fiducial model in Sec. 3.3 and we compare between different models in the
subsequent sections. Finally, we summarize and discuss the results in Sec. 3.7.

3.1 Model setup

3.1.1 Gravitational potential

In our Newtonian scheme of radiation hydrodynamics we do not take into account any special or
general relativistic effects on the local dynamics such as frame dragging, gravitational redshift
or ray-bending. Still, we apply a pseudo-Newtonian potential (see e.g. Mukhopadhyay, 2002,
for a review) that reproduces the purely relativistic effect that there exists a critical orbit at a
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distance rISCO from the BH where a test particle experiences its “innermost stable circular orbit”
(ISCO) which is characterized by a local minimum of the Keplerian specific angular momentum

lK ≡
√

r3∂rΦ , (3.1)

where Φ is the gravitational potential. An extension of the famous Paczyński-Wiita potential
(Paczyńsky & Wiita, 1980) for non-rotating BHs is the potential by Artemova et al. (1996),
which takes into account the spin ABH = JBHc/(GMBH) of the BH (JBH and MBH are its
angular momentum and mass, respectively, and G is the gravitational constant) and which
reduces to the Paczyński-Wiita potential for ABH = 0. It exactly reproduces rISCO(ABH) as
given in the Kerr metric for a rotating BH (Bardeen et al., 1972) and it is given by

Φ(r) = − GMBH

rH(βA − 1)

[(
1− rH

r

)1−βA

− 1

]
, (3.2)

where

βA =
rISCO

rH
− 1 , (3.3a)

rH =
rS
2

(
1 +

√
1−A2

BH

)
, (3.3b)

rISCO =
rS
2

(
3 + z2 − sign(ABH)

√
(3− z1)(3 + z1 + 2z2)

)
, (3.3c)

z1 = 1 + (1−A2
BH)

1/3
(
(1 +ABH)

1/3 + (1−ABH)
1/3
)
, (3.3d)

z2 =
√

3A2
BH + z21 (3.3e)

and rS ≡ 2GMBH/c
2 is the Schwarzschild radius.

In Fig. 3.1, we depict as functions of ABH the radii rH and rISCO and furthermore the total
specific energy u ≡ ETP/mTP of a test particle orbiting at the ISCO, where ETP is the total
energy (including rest-mass, kinetic and gravitational energy) and mTP is the mass of the test
particle. The specific binding energy 1− u of a test particle at the ISCO provides a handy (but
not rigorous, since the internal energy contribution of the fluid is neglected in the test-particle
picture) estimate of the upper limit of radiative energy that could be released from the gas in
the disk and for the cases ABH = 0, 0.8 that are employed in our simulations the specific binding
energies are given by 1−u ≈ 5.7% and ≈ 12.2%, respectively. For the same two values of ABH,
in Panel (b) of Fig. 3.1 we show the Keplerian angular momentum lK. We will see that a high
value of ABH dramatically influences the evolution of the accretion torus, including the resulting
neutrino related effects, mainly because the accreting region (i.e. the surface of the BH) is more
compact compared to the case with ABH = 0, which allows for lower specific angular momentum
of the fluid until it reaches the ISCO.

During the evolution of the BH-torus system, the BH gains mass and angular momentum by
accretion. We update Φ for these parameters using the time integrated fluxes through the inner
radial boundary. For our selected configurations, the actual changes of Φ are only of the order
of a few percent, though.

We do not include self-gravity in our simulations. Given that the disk masses Md all are
smaller than ∼ 5 − 15% of MBH, the resulting error will certainly not affect our qualitative
results but may invoke small quantitative aberrations.



3.1 Model setup 63

Radii / Total Specific Energy

0 0.2 0.4 0.6 0.8 1
ABH

0

1

2

3

4

5

6

7

r X
 [

G
M

B
H
 /c

2 ]

0

0.2

0.4

0.6

0.8

1

u 
(r

IS
C

O
)

u (rISCO), Kerr
u (rISCO), AN
rH

rISCO

Specific Angular Momentum

0 5 10 15
r [GMBH /c2]

0

2

4

6

8

l φ
 [

G
M

B
H
/c

]

ABH = 0

ABH = 0.8

(a) (b)

Figure 3.1: Panel (a): Dependence of radii of the event horizon (black, solid line) and the ISCO (black, dashed
line) on the BH spin and the total specific energy u of a test particle as derived from the potential Eq. (3.2) (red,
solid line) and from the relativistic Kerr metric (red, dashed line). Panel (b): Radial dependence of the Keplerian
specific angular momentum for ABH = 0, 0.8 (solid and dashed line, respectively).

3.1.2 Initial model and selected parameters

For the reasons indicated in the beginning of this chapter, we do not impose an initial configu-
ration that is taken from the outcome of numerical simulations of NS-mergers (as it was done in
Ruffert & Janka, 1999; Setiawan et al., 2004; Setiawan et al., 2006; Dessart et al., 2009), but we
strive for an axisymmetric model that is easy to reproduce by means of a small set of parame-
ters. Considering that the accretion timescale is likely to be much longer than the timescale on
which the merger remnant relaxes to an approximately axisymmetric, quasi-stationary state1,
the dependence of the secular disk evolution on the detailed distribution of density and angular
momentum at the time close after the merger might not be primarily important, particularly in
view of the powerful influence of either viscous or magnetic field effects, which are estimated to
operate on sufficiently small timescales to quickly obliterate local flow features.

The disk configuration is given by an analytic equilibrium solution of the Euler equations that
can be derived by invoking a barotropic relation between density ρ0 and pressure P0(ρ0) = Kbρ

Γb
0

and a power law for the angular velocity Ω0(R) = Ω̃R−q in the cylindrical radius R ≡ r sin θ. For
all presently investigated models we use q = 2. The resulting constant angular momentum torus
repeatedly served as initial model for previous works on accretion disks in hydrodynamic (e.g.
Igumenshchev et al., 1996; Stone et al., 1999) and magnetohydrodynamic (e.g. Hawley, 2000;
Stone & Pringle, 2001) simulations. In the context of hyperaccretion disks a relativistically
extended version (Fishbone & Moncrief, 1976; Kozlowski et al., 1978) of this kind of equilibrium
solution was employed as initial model by Shibata et al. (2007) to study magnetohydrodynamic

1In case that an HMNS is formed as intermediate state and the time of relaxation to axisymmetry is therefore
prolonged, the remnant BH-torus can be expected to be closer to axisymmetry after a delayed collapse compared
to after a prompt collapse.
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disks with neutrino cooling. The density for this model is given by

ρ0(r, θ) =

[
Γb − 1

KbΓb

(
Ω̃2 (r sin θ)2−2q

2− 2q
− Φ(r) + C0

)] 1
Γb−1

, (3.4)

where C0 is a constant of integration. This function describes a torus with a well defined
boundary surface where the density and therefore also the pressure vanish. The quantities
Ω̃, C0 and Kb can be expressed in terms of the radius r̃min denoting the inner edge of the
torus, the radius r̃max of the density maximum and the value of the density maximum ρmax,0 ≡
ρ0(r̃max, π/2):

Ω̃ =
√

∂rΦ r2q−1
∣∣∣
r=r̃max

, (3.5a)

C0 = Φ(r̃min)−
Ω̃2 r̃2q−2

min

2− 2q
, (3.5b)

Kb =
Γb − 1

Γb
ρ1−Γb
max,0

(
Ω̃2 r̃2−2q

max

2− 2q
− Φ(r̃max) + C0

)
. (3.5c)

We use Γb = 4/3 throughout and we further fix the following quantities for all models while
the explicit choice of numbers is guided by typical results for remnant disks of merger calcu-
lations: The initial BH mass is MBH,0 = 3M⊙, r̃min = 3 rS(MBH,0) ≈ 27 km (where rS is the
Schwarzschild radius), and the maximum density, which scales linearly with Md,0, for a model
with disk mass Md,0 = 0.1M⊙ is set to have ρmax,0 ≈ 2.5 × 1011 g cm−3. The latter condition
determines r̃max.

We set the electron fraction to Ye,0 = 0.1 everywhere, which is a justified approximation
considering that the torus is made up of matter from the recently disrupted neutron star(s). In
addition, the resulting Ye distribution after an early transient phase of ∼ 10− 20ms is not very
sensitive to the initial profile, given that neutrinos quickly redistribute the lepton numbers.

Since only the distributions of density and pressure are provided from the above model, we
have to invoke the EOS to obtain the initial temperature T0 and consequently all remaining
thermodynamic quantities by inverting the relation P0(ρ0, T0, Ye,0).

All models investigated in this chapter are summarized in Table 3.1. The choice of our model
parameters is motivated by the intention to obtain insights about the dependences on the initial
torus mass Md,0, on the strength of viscosity αvis and on the spin ABH of the BH. We do not
consider negative values of ABH that would describe a disk in retrograde rotation with respect to
the central BH since these kind of remnants may only result from NSBH-mergers in case the BH is
very massive and its spin is anti-aligned with the orbital angular momentum. Binary NS-mergers
instead are likely to yield high positive (ABH ≳ 0.5) values for the spin parameter independent
of their initial individual spins, owing to the dominance of the orbital angular momentum prior
to the merger. Our selection of initial torus masses is knowingly tending towards higher values
than what is typically found in NS-merger simulations (e.g. Lee & Ramirez-Ruiz, 2007). The
high values were chosen because the torus loses within the first ∼ 10 − 30ms of evolution an
essential part of its mass as result of a transient stage of reconfiguration wherein the initial
equilibrium state drastically changes due to the instant activation of viscosity. Thus, at the time
when a quasi-stationary state has developed, the torus mass is considerably lower. Regarding the
viscosity parameters, the torus with αvis = 0 serves as reference case where almost no accretion
takes place and where the evolution is solely determined by neutrino related effects. The non-
zero values α = 0.005, 0.02, 0.05, 0.1 represent cases from very low to very high viscosity and all
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Model αvis Md,0 ABH,0 r̃max ρmax,0 Tmax,0 Neutrinos Neutrino
[M⊙] [M⊙] [km] [1011 g cm−3] [MeV] evolved? heating?

A0m1α2 0.02 0.1 0 50.0 2.2 4.8 yes yes
A0m3α2 0.02 0.3 0 50.0 6.5 4.9 yes yes
A0m3α5 0.05 0.3 0 50.0 6.5 4.9 yes yes
A8m1α2 0.02 0.1 0.8 47.4 2.2 5.5 yes yes
A8m1α5 0.05 0.1 0.8 47.4 2.2 5.5 yes yes
A8m3α0 0 0.3 0.8 47.4 6.5 5.6 yes yes
A8m3α0.5 0.005 0.3 0.8 47.4 6.5 5.6 yes yes
A8m3α2 0.02 0.3 0.8 47.4 6.5 5.6 yes yes
A8m3α5 0.05 0.3 0.8 47.4 6.5 5.6 yes yes
A8m3α10 0.1 0.3 0.8 47.4 6.5 5.6 yes yes
A8m5α2 0.02 0.5 0.8 47.4 10.8 5.7 yes yes
A8m3α2_NH 0.02 0.3 0 50.0 6.5 4.9 yes no
A8m3α2_NN 0.02 0.3 0.8 47.4 6.5 5.6 no no

Table 3.1: Model parameters for the viscous torus models. See text for the definition of the quantities. We also
show the values of the initial temperature maxima Tmax,0 at (r, θ) = (r̃max, π/2).

lie in the range of effective values suggested by magnetized torus simulations with MRI-induced
accretion. Finally, to analyze the individual influences of both neutrino cooling and neutrino
heating we calculate for the reference model A8m3α2 two additional versions, one without any
neutrino treatment and the other one with neutrinos but without the possibility for neutrinos to
deposit energy into the gas, which is implemented by locally setting all neutrino related source
terms to zero where the gas energy source term was positive.

All models are initialized with the above hydrodynamic configuration of the torus except
that, contrary to the above analytic prescription, the volume surrounding the torus has to be
filled with a small amount of matter due to numerical reasons. We address this aspect in the
paragraph “Numerical atmosphere” of Section 3.1.3. Moreover, at the start of the simulation all
neutrino energies and fluxes are vanishing.

All models are simulated for at least tfin ≡ 0.2 s, only a few models have been run until 0.3 s.
However, the evaluation and comparison of the global properties of each model will be carried
out based on the time tfin.

3.1.3 Details of the evolution scheme

Evolved equations, viscosity prescription and employed EOS We evolve the radiation
moment Equations (2.8) together with the viscous equations of hydrodynamics, which are given
by

∂tρ+∇j(ρv
j) = 0 , (3.6a)

∂t(ρYe) +∇j(ρv
j) = QN , (3.6b)

∂t(ρv
i) +∇j(ρv

ivj + Pg − T ij
vis) = −ρ∇iΦ+Qi

M , (3.6c)

∂tet +∇j

(
vj(et + Pg)− viT

ij
vis

)
= −ρvj∇jΦ+QE + vjQ

j
M , (3.6d)

where the viscosity tensor T ij
vis in our case does not include bulk but only shear viscosity and is

defined as

T ij
vis = ηvis(∇ivj +∇jvi − 2

3
δij∇kv

k) . (3.7)
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Each component of T ij
vis is taken into account. For the numerical implementation of the viscosity

terms, see Appendix C. We apply the α-prescription in a similar way as was done by Lee &
Ramirez-Ruiz (2002); Lee et al. (2005); Setiawan et al. (2004) in the course of multi-dimensional
simulations of post-merger tori, i.e. we use for the local dynamic viscosity the expression in
Eq. (1.1) with ηvis ≡ νvisρ and with ΩK the Keplerian angular velocity according to the Keplerian
specific angular momentum given in Eq. (3.1).

Our employed EOS is similar as the one described in Janka & Mueller (1996). The baryonic
part adopts a mixture of neutrons, protons, α-particles and heavy nuclei, the latter chosen to be
54
25Mn particles, with according mass fractions denoted as Xn, Xp, Xα and Xh, respectively. All
baryonic species are assumed to be non-relativistic, non-degenerate and in NSE. The leptonic
part of the EOS assumes an ideal Fermi gas of electrons and positrons, which can be arbitrarily
relativistic and arbitrarily degenerate. Finally, a fully thermalized photon gas completes the
mixture. All of the aforementioned species together will for simplicity be denoted as the ‘gas’
or the ‘fluid’, while ‘radiation’, if not further attributed, always refers to neutrinos. Explicit
expressions regarding the NSE composition and the individual components of the pressure,
internal energy density and entropy as functions of ρ, Ye and T can be found, e.g., in Cox &
Giuli (1968).

The main deficiencies of our simplified nuclear treatment are: In regions where the ther-
modynamic conditions truly imply NSE (T ≳ 0.3 − 0.5MeV), Ye is far below 25/54 and the
thermodynamic conditions would favor a composition dominated by heavy nuclei, free nucleons
are overestimated. In contrast, after leaving the actual NSE conditions we unphysically boost
all nuclear reaction rates by retaining the NSE and, assuming that this occurs in an expanding
outflow with Ye close to 0.5, we suppress the abundances of free nucleons that would actually
have frozen out (irrespective of the interactions with neutrinos). However, our main physical
results concerning the neutrino-driven wind should barely be affected by the aforementioned
issues because the dominant neutrino heating takes place in regions where the thermodynamic
conditions dictate fully dissociated nuclei, or conversely, neutrino-heating is attenuated in re-
gions where recombined nuclei are significantly present for either way of treating the system
of nuclear species. See e.g. Buras et al., 2006, where the deficiencies of a similar EOS were
analyzed concerning their dynamic influence on neutrino heating in the context of a CCSN.

Grids and boundary conditions For the discretization in both the r- and θ-directions we
use fixed non-uniform grids to ensure sufficient resolution in regions of small local gradients of
dynamical quantities close to the BH, while not wasting computational resources in regions with
broader structures further away from the BH. All models are calculated with the same number
of grid cells Nr × Nθ = 384 × 160 that cover the domain [rmin, rmax] × [0, π], where the inner
radial boundary rmin depends on the BH spin ABH and is chosen such that it is given by the
arithmetic average of rH and rISCO, and rmax ≡ 3 × 108 cm for all models. Starting at small
radii, the first ∼ 120 zones of the radial grid have a constant grid width of (∆r)0 = 360m that
is increased for the remaining zones with an enlargement factor of (∆r)i+1/(∆r)i ≈ 1.02. The
angular grid is designed to slightly better resolve the equatorial region, where the main disk
body is situated in, by invoking a geometrically increasing grid width in both directions away
from the equator. At the poles the angular resolution is ≈ 2.5 ◦ while at the equator it is ≈ 0.9 ◦.

We employ the standard BCs explained in Sec. 2.4. That is, for the radial grid we use outflow
BCs and in angular direction we use reflective BCs at θ = 0, π.

The neutrino energy grid is composed of Nϵ = 10 bins of which the interfaces are given by
ϵξ± 1

2
∈ {0, 4, 6.4, 9.7, 14.3, 20.8, 29.8, 42.5, 60.3, 85.2, 120}MeV.
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Numerical atmosphere All Riemann-solver based numerical schemes of Newtonian hydro-
dynamics encounter a pathology in the vacuum limit ρ→ 0 mainly because the speed of sound
drifts to infinity2 and the numerical time step therefore tends to vanish in this case. A common
method to prevent this is to define a lower “atmosphere” limit ρatmo of ρ such that it is high
enough to allow for a manageable time step but also low enough to not be of dynamic importance
relative to the physics of interest. In our specific case of a dense accretion torus that copiously
emits neutrinos, of which a fraction due to their subsequent annihilation heat up preferentially
the low density region around the polar axis close to the BH, we utilize the following spatial and
time dependent prescription for ρatmo:

ρatmo(r, t) = max

{
102

( r

1000 km

)−a(t)
, 102

}
g cm−3 , (3.8)

with
a(t) = max {1.7− 7(t/1 s), 0} . (3.9)

The time dependence is ascribed to the fact that due to accretion and cooling the emissivity of
neutrinos and therefore the heating of the low density matter by annihilation (which is roughly
proportional to the squared neutrino luminosity) decrease in time. For all cells on the grid that
have a density lower than ρatmo(r, t), we reset their density to 1.1 ρatmo(r, t). The internal and
kinetic energies as well as the fluid momenta and the electron fraction stay unchanged by this
procedure. As a consequence, matter added into a cell has a vanishing temperature and velocity.

The maximum encountered density of the atmosphere at r = 10 km (note that this radius
is only resolved in the models with ABH = 0.8) and t = 0 is therefore ≈ 2.5 × 105 g cm−3.
Considering that this value quickly decreases with time and radius, the dynamic influence of
matter being additionally fed into the system due to the above treatment, at least on the disk
and the ejecta not in the close vicinity to the polar axis, is of negligible importance.

The ambient medium in the initial configuration is set to have a density ρ0, temperature T0

and electron fraction Ye,0 of

ρ0(r) = 1.5× ρatmo(r, t = 0) , (3.10a)

T0 = 0.05MeV , (3.10b)

Ye,0 = 0.1 . (3.10c)

Fluid velocities Another inconvenience associated with our Newtonian hydrodynamic evolu-
tion scheme is the fact that matter in principle can be accelerated to velocities higher than c,
which both is non-physical and it quenches the numerical time step. Therefore we limit the fluid
velocities to 99% of the speed of light by resetting the velocity vector to

vi1 =
0.99 c

|v0|
vi0 (3.11)

for each cell that has a velocity |v0| > 0.99 c. Clearly, matter with velocities still as high as this
limit cannot be ensured to have the physically consistent behavior in our Newtonian scheme.
However, matter reaching such high velocities is almost exclusively found in the low density
funnel around the polar axis close to the BH: Here, gas either is ejected with high velocities in
case that the results of heating by annihilation dominate the gravitational attraction or, in the
opposite extreme, it falls into the BH with free-fall velocity.

2Since we are dealing with Newtonian hydrodynamics, the sound speed c2s =
(

∂Pg

∂ρ

)
s
≡ Γ1

Pg

ρ
(where s and Γ1

are the entropy and the 1st adiabatic index, respectively) is not limited by the speed of light, unlike the relativistic

case where the according expression is c2s = c2
(

∂Pg

∂(ρc2+ei)

)
s
.



68 CHAPTER 3. Investigated Models 1: Viscous Post-Merger Tori

Velocity field entering the neutrino-moment equations The neutrino evolution scheme
described in Chap. 2 is designed for systems wherein the fluid velocities are small compared to
the speed of light. This condition is not coherently fulfilled in our present scenario by existince
of two spoiling features of the flow pattern: First, independent of the density the rotational
velocities are comparable to their Keplerian counterparts, i.e. they can reach values ≳ 0.5 c for
r ≲ rISCO and second, as indicated in the preceding paragraph, low density regions around the
polar funnel are likely to evolve relativistic velocities in the radial direction.

To tackle these issues, we define a “neutrino velocity field” vν that exclusively enters the
radiation moment Equations (2.8) and which is given by (with i ∈ {r, θ}):

(vν)ϕ = 0 , (3.12a)

(vν)i =

{
sign(vi) ·min{|vi|, 0.2 c} , where ρ ≥ 109 g cm−3 ,

0 , where ρ < 109 g cm−3 .
(3.12b)

That is, the neutrinos in our axisymmetric simulations ‘see’ a non-rotating torus and outside
the isodensity surface ρ = 109 g cm−3 they are effectively transformed into the lab-frame. The
evolution of the neutrinos for regions where ρ < 109 g cm−3 can then be interpreted as if us-
ing the mixed-frame equations but neglecting the velocity dependent terms, see Appendix A.
Considering that the neutrinos couple to matter in the density regime ρ < 109 g cm−3 weak
enough to not be in the diffusive regime anymore, the scalings estimated in Appendix A suggest
that the error terms resulting from this cut-off are approximately of order O(vl/λνc), thus are
small for regions wherein the disk winds are developed and that typically have velocities of order
∼ 109 cm s−1.

To correct the νν̄-annihilation rates for frame dependent effects due to the fast expansion
of matter in the polar region, at each point where the annihilation rate 4-vector (Q̃0

a, Q̃
i
a/c) was

computed from neutrino moments defined in the frame moving with vν , we locally perform a
Lorentz transformation into the fluid frame using the relative velocity v− vν to obtain the final
annihilation rate 4-vector (Q0

a, Q
i
a/c) employed as sources in the hydrodynamic equations.

As a consequence of Eq. (3.12a), neutrino flux densities in toroidal direction are not generated
(cf. Eq. (2.8b)). Although we cannot make definite statements at this point due to the fact that
reference calculations do not exist, the stationary ray-tracing results by Birkl et al. (2007) – of
νν̄-annihilation around similar torus models as considered here – indicate that no substantial
deviations in the radiation field are induced when varying the rotational velocities. Additionally,
the disappearance of the rϕ-components of the 2nd-moment tensor P ij inhibits neutrinos to act
as an effective viscosity in regions of strong coupling with matter. However, estimates by Lee
et al. (2005); Ruffert & Janka (1999) classify the efficiency of this mechanism to transport angular
momentum as a negligible contribution compared to what any reasonable value of αvis would
engender.

Computational details The simulations that are presented in this chapter were performed
with the following numerical specifications: We employed 5th-order monotonity-preserving spa-
tial reconstruction both for the radiation part and the hydrodynamic part of the evolution
equations, and we used 2nd-order Runge-Kutta stepping for the time integration. For the hy-
drodynamic equations, the HLLC Riemann-solver was applied. Moreover, a global CFL factor
of 0.6 was chosen for the combined RHD system (cf. Sec. 2.3.8).

All computations were conducted on an IBM Power6 machine of the ‘VIP’ cluster at the
Rechenzentrum Garching. Each simulation was accomplished using two parallelization tech-
niques, one based on the shared-memory approach (OpenMP) and the other one using dis-
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tributed memory (MPI), and was dispensed on 64 individual processing units. Under usage of
the aforementioned parallelization setup and for a physical evolution time of 0.2 s (which is the
entire simulated time for most of the models), each simulation consumed about 8-15 days of
pure computation time.

3.2 Definitions of global diagnostic quantities

Before starting to analyze the results, we first clarify the notation and summarize the main
global diagnostic quantities that will be used repeatedly in the remainder of our presentation.
At any instant t in time, the disk mass Md, mass accretion rate ṀBH, accreted mass Macc and
accretion timescale τacc are computed as

Md ≡
∫

ρ dV , (3.13a)

ṀBH ≡ − 4πr2 ρ vr
∣∣
rmin

, (3.13b)

Macc ≡
∫ t

0
ṀBH(t̃) dt̃ , (3.13c)

τacc ≡ Md/ṀBH , (3.13d)

where the operator of spatial integration is abbreviatory written as
∫
dV ≡ 2π

∫ rmax

rmin

∫ π
0 r2 sin θ dθ dr.

The total luminosities L, total number luminosities LN and mean energies ⟨ϵ⟩ of emitted neu-
trinos, and the energy loss rate LBH of neutrinos ending up in the BH are calculated as

L ≡ r2
∫

dΩ F̄ r
lab,

∣∣∣∣
r=500 km

, (3.14a)

LN ≡ r2
∫

dΩ F̄ r
N,lab

∣∣∣∣
r=500 km

, (3.14b)

⟨ϵ⟩ ≡ L/LN , (3.14c)

LBH ≡ −r2
∫

dΩ F̄ r
lab

∣∣∣∣
r=rmin

, (3.14d)

where an (additional) index or argument ν ∈ {νe, ν̄e} is used to denote the species and
∫
dΩ ≡

2π
∫ π
0 sin θdθ. Moreover, we define the ratios lE , lN as

lE ≡ Lν̄e/Lνe , (3.15a)

lN ≡ LN,ν̄e/LN,νe . (3.15b)

The subscript ‘max’ always denotes the maximum value of a quantity within the computational
domain at a fixed time. For the spatial integral of a quantity we use the same symbol as for
the quantity itself but with the additional superscript ‘tot’; except for the integral Qtot

a of the
(energy component of the) annihilation rate Qa, which is only computed within the two cones
around the polar axis with half-opening angles θa ≡ 15◦:

Qtot
a ≡ 2π

∫ rmax

rmin

{∫ θa

0
Qar

2 sin θdθ +

∫ π

π−θa

Qar
2 sin θdθ

}
dr . (3.16)

This is convenient because νν̄-annihilation is in almost any case only able to accelerate the plasma
to high velocities close to the polar axis, and the restriction to a fixed volume allows for a better
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comparison between the models. Using the above conventions, we define the dynamic timescales
τν,cool, τvis,heat for neutrino cooling and viscous heating, respectively, and the cumulative released
neutrino energy ∆Eout and cumulative annihilation energy ∆Ea as

τν,cool ≡ etoti

Lνe + Lν̄e + LBH,νe + LBH,ν̄e

, (3.17a)

τvis,heat ≡ etoti

Qtot
vis

, (3.17b)

∆Eout ≡
∫ t

0

[
Lνe(t̃) + Lν̄e(t̃)

]
dt̃ , (3.17c)

∆Nout ≡
∫ t

0

[
LN,νe(t̃) + LN,ν̄e(t̃)

]
dt̃ , (3.17d)

∆Ea ≡
∫ t

0
Qtot

a (t̃)dt̃ , (3.17e)

where Qvis ≡ T ij
vis∇ivj is the local rate of viscous heating. The neutrino emission efficiency ην ,

the neutrino heating efficiency ην,heat and the annihilation efficiencies ηa, ηa,2 are defined as

ην ≡ (Lνe + Lν̄e)/(ṀBHc
2) , (3.18a)

ην,heat ≡ Q+,tot
β /(Lνe + Lν̄e) , (3.18b)

ηa ≡ Qtot
a /(Lνe + Lν̄e) , (3.18c)

ηa,2 ≡ Qtot
a /(ṀBHc

2) = ην · ηa , (3.18d)

where Q+
β = max{Qβ, 0} is the local heating rate by β-processes.

3.3 Evolution of a reference model

The reference case A8m3α2 is described in detail in this section and is compared with its associ-
ated models A8m3α2_NN and A8m3α2_NH. We will first give an overview of the dynamic evolution,
mainly addressing evolutionary features that are typical for all investigated models, and then we
analyze specific aspects, namely the neutrino emission characteristics, the influence of neutrino
cooling on the stability of the torus, the thermodynamic properties of the ejecta and the effects
of νν̄-annihilation around the polar axis.

A series of contour plots for several quantities at increasing time steps is given in Figs. 3.2–
3.9. Moreover, in Fig. 3.10 we show a variety of global quantities related to the hydrodynamic
evolution as functions of time and the radial dependence of a set of quantities in the equatorial
direction for the reference model is shown in Fig. 3.11.

3.3.1 Initial transient phase

In the first phase of evolution the initial equilibrium torus heavily reacts to the shift to a non-zero
viscosity. The viscous outward transport of angular momentum most rapidly affects the inner
torus region r < r̃max, which at t = 0 rotates with higher than Keplerian angular momentum (cf.
Panel (f) of Fig. 3.11). On a timescale comparable to the local orbital period of ≃ 1− 3ms, the
viscosity adapts the angular momentum distribution in this region to a slighly sub-Keplerian
profile and triggers an inward directed flow (vr < 0) for r < r̃max and outflow (vr > 0) for
r > r̃max in the equatorial plane. The mass accretion rate ṀBH into the BH (cf. Panel (a) of
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Figure 3.2: Contour plots for model A8m3α2 at time t = 1ms. In Panels (a)–(d), contours of the density
ρ, temperature T , entropy per baryon s and electron fraction Ye are plotted while the contours in Panels (e)–
(h) show the absolute, energy integrated flux density F̄νe ≡ |F̄νe | of electron neutrinos, the net heating rate
by β-processes Q+

β ≡ max{Qβ , 0}, the heating rate by νν̄-annihilation Qa and the absolute value of the polar

velocity vpol ≡ |vpol| =
√

v2r + v2θ . The arrows in Panel (e) indicate F̄νe , with a saturated maximum length
for F̄νe > 1036 erg cm−2 s−1, while the arrows in Panel (h) indicate vpol with a saturated maximum length for
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Figure 3.5: Same as Fig. 3.3 but at time t = 20ms and with a rescaled spatial plotting range.
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Figure 3.6: Same as Fig. 3.3 but at time t = 30ms and with a rescaled spatial plotting range.
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Figure 3.7: Same as Fig. 3.3 but at time t = 50ms and with a rescaled spatial plotting range.
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Figure 3.8: Same as Fig. 3.3 but at time t = 100ms and with a rescaled spatial plotting range.
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Figure 3.10: Time evolution of global hydrodynamic quantities for models A8m3α2 (black lines) and A8m3α2_NN
(red lines). Panel (a): Mass accretion rate, Panel (b): Torus mass and mass accreted into the BH, Panel (c):
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curves for model A8m3α2.

Fig. 3.10) rises on a similar timescale and after about ∼ 10ms of evolution it reaches its global
maximum of ṀBH ≈ 3.5M⊙ s−1. The inward flowing matter is subject to both compression and
an enhanced effectiveness of viscosity due to the higher differential rotation (viz. higher |∂rvϕ|)
closer to the BH. As a result, the maximum temperature increases to more than twice its initial
value and the locations of the density and temperature maxima drift inward to a radius close
to the ISCO, rISCO ≈ 14 km, where they remain during the entire simulation, cf. Figs. 3.10 and
3.11.

An effect that is to some degree triggered by the fact that the equilibrium torus with a
sharp boundary is discontinuously perturbed by the change to a non-vanishing viscosity at
t = 0 is found at the outer edge of the torus around the equatorial plane. Since the radial
outer boundary layers of the torus are mainly pressure supported with considerably lower than
Keplerian angular momentum (cf. Panel (f) in Fig. 3.11), they quickly react to the additional
angular momentum transported from within the inner torus layers. The torus edge flattens out
and drives, with additional energy input from the recombination of nucleons and α-particles,
a transient low-density outflow with peak velocities vr ≃ 3 − 5 × 109 cm s−1, visible, e.g., for
the red curve in Panel (e) of Fig. 3.11. This expelled matter is to some small extent further
accelerated by shock heating of the inflowing ambient medium and by neutrino absorptions.
While the shocked matter front is still propagating outwards, the more massive layers at lower
radii at some point retreat back inward as a consequence of the fact that due to the short outflow
timescale of a few milliseconds the angular momentum and pressure profiles did not adjust to
balance the gravitational attraction. Due to the ongoing transport of angular momentum and
viscous heating, the inner massive part of the torus continues to expand and it collides with
the infalling matter from the transient outflow to form, in a similar fashion as before, another
weak shock front that again expands on a dynamic timescale that is too short for the viscous
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Figure 3.11: Radial profiles of various quantities in the equatorial plane (θ = π/2) for the reference model
A8m3α2. On the left side are plotted from top to bottom the density, temperature, electron fraction and entropy
per baryon while on the right side are depicted the radial velocity, specific angular momentum l ≡ vϕr sin θ, mass
fractions Xn,Xp of neutrons and protons and mass fractions Xα, Xh of α-particles and heavy nuclei. The labels
associated with different line styles are analog for colored lines.

expansion and angular momentum transport to compensate for the gravitational pull. For some
models this process repeats quasi-periodically, each time with decreasing levels of significance.
For αvis = 0 we do not observe this effect at all. For models where a substantial neutrino-driven
outflow is generated, such as the present reference model, this emergence is superimposed and
thus quasi suppressed by the neutrino-driven wind that enters the equatorial region – for the
present model this happens at about t ∼ 20− 30ms (cf. Figs. 3.5 and 3.6).

As can be seen in Figs. 3.2–3.4, the neutrino radiation field immediately developing after
the start of the simulation exerts an instantanous impact onto matter in the low density funnel
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around the polar z-axis. By means of νν̄-annihilation, a hot electron-positron plasma, i.e. an
e±-fireball, is generated with temperatures of a few MeV and entropies per baryon of s ≳ 104 kB
up to z ≲ 100 km within the first 10ms of evolution, and it expands with velocities close to the
speed of light in all directions around the torus.

3.3.2 Disk structure

After the initial transient phase within the first ∼ 20 − 30ms, the inner massive disk has lost
about ∼ 0.05− 0.08M⊙ of matter into the BH and it then settles into a quasi-stationary state
of accretion and expansion, which is characterized by decreasing mass accretion rates ṀBH,
increasing accretion timescales τacc and decreasing maximum densities and temperatures (cf.
Fig. 3.10).

The flow morphology remains approximately similar during the entire simulation and can
be divided into the following regions: The inner torus region close to the BH contains the bulk
of the torus matter and determines most of the global features such as the accretion dynamics
and the neutrino emission. Above and below the disk midplane, within the surface regions of
the torus, the energy input from neutrinos gives rise to a thermal wind, and viscous effects tend
to inflate the torus and produce outflow mainly around the equatorial region. Finally, in the
region around the polar axis the low density funnel remains during the whole simulation.

In the inner torus region with densities ρ ≳ 108 − 109 g cm−3, a single large scale circulation
pattern occurs (see Panel (h) in Figs. 3.2–3.9), where matter moves radially inward along polar
angles of about θ ∼ 40◦ − 60◦ at the surface of the torus and moves outward in the equatorial
plane for radii r ≳ 40 − 50 km (cf. Panel (e), Fig. 3.11). For smaller radii, matter is accreted
independent of θ with almost free-fall velocity. This type of inflow–outflow circulation is a
generic feature of viscous accretion tori for most values of αvis and was seen before in semi-
analytic studies (e.g. Urpin, 1984; Regev & Gitelman, 2002) as well as numerical simulations
(e.g. Kley & Lin, 1992; Igumenshchev et al., 1996; Lee & Ramirez-Ruiz, 2002; Lee et al., 2005);
it is qualitatively present in all of our simulated models with αvis > 0. While the torus inflates
with time and the efficiency of neutrinos to drive an outflow from the surface of the torus
decreases, the overall size of the inflow region increases with time and it is stretching out to
r ∼ 600− 800 km at t = 0.3 s.

We subsequently describe the thermodynamic properties of the inner disk, which are repre-
sentative for all investigated models. In Panels (g) and (h) of Fig. 3.11, we display the mass
fractions of each baryonic species at increasing times and in Fig. 3.12 we compare the par-
tial pressure contributions and the degeneracy parameters of individual species in the equatorial
plane at a representative time t = 50ms. Neutrinos are at no time degenerate and never make up
more than a few percent of the total gas pressure in the inner torus regions. The latter property
also holds for photons. As can be seen from the slightly higher equilibrium pressure in Fig. 3.12,
neutrinos reach thermodynamic equilibrium energies between ∼ 20 − 50 km at t = 50ms only
marginally and only at early times when the densities and temperatures are still sufficiently
high (see next section for more details on the neutrino coupling with matter). Electrons are
at most, within radii r ≲ 1 − 3 × 107 cm, mildly degenerate and they do not share more than
20–30% of the total gas pressure in these regions, which is dominated by the dissociated – and
throughout non-degenerate – nucleons. At higher radii of r ∼ 200− 400 km and lower densities
and temperatures (T ≲ 1MeV), α-particles and heavy nuclei form and the baryonic pressure
loses its significance compared to the electron-positron pressure and for even lower densities in
the expanding outer layers and in the winds the photonic radiation pressure dominates. The
entropies per nucleon (cf. Panel (d) in Fig. 3.11) in the dense inner torus regions are deter-
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Figure 3.12: Thermodynamic properties of the torus in model A8m3α2 in the equatorial plane at t = 50ms.
In Panel (a), the partial pressure contributions of baryons (PB), electrons and positrons (Pe), photons (Pγ) and
neutrinos (Pν , P

eq
ν ) are shown, normalized to the total gas pressure Pg = PB + Pe + Pγ . The neutrino pressure is

approximated as Pν ≈ 1/3(Ēνe + Ēν̄e); this is an upper limit of the actual pressure exerted on the fluid and is only
valid in the isotropic diffusion limit, which tends to be reached when the Pν curve is close to P eq

ν ≡ 1/3(Ēeq
νe+Ēeq

ν̄e),
the pressure of neutrinos if they were in thermodynamic equilibrium. Panel (b) depicts the degeneracy parameters
µ/T for several species, where µe, µn, µp, µν are the chemical potentials of electrons, neutrons, protons and electron
neutrinos, respectively.

mined by free nucleons (s ≈ 5/2−Xnηn−Xpηp) and typically lie between ∼ 5− 10 kB, whereas
further outside at lower densities the entropies are radiation dominated (s ≈ 4arT

3/(3nBkB),
with radiation constant ar and baryon density nB) and very sensitive to the energy input by
neutrinos.

These properties in the inner region of our torus models are similar to what has been obtained
in the 3D models by Ruffert & Janka (1999); Setiawan et al. (2006) and in the 2D models by
Lee et al. (2005). In contrast to our results, however, Lee et al. (2005) find a characteristic
transition radius at r ∼ 100−200 km, beyond where the profiles of pressure and density become
significantly steeper and which in their applied local neutrino cooling scheme essentially separates
the optically thick, barely cooled region from the efficiently cooled region at higher radii. Our
models do not reveal such a distinct transition (see, e.g., Fig. 3.11) which is probably the result
of the generic difference between a genuine neutrino transport scheme and a simplified local
cooling or leakage scheme as used in the aforementioned works: Instead of being cooled, the
outer layers are rather heated by neutrinos. This consequence of actual transport of energy
effectively provides a mean to flatten the profiles of density and pressure.

3.3.3 Neutrino emission and cooling characteristics

Qualitative features of the radiation field We start investigating the neutrino-related
properties of the accretion torus by considering the qualitative properties of the radiation flow.
The Panels (e),(f) in Figs. 3.2– 3.9 show the flux density F̄νe ≡ |F̄νe | of νe’s and the net
heating rate Q+

β ≡ max{Qβ, 0} due to β-processes of nucleons with neutrinos, respectively.
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Figure 3.13: Emission properties of νe’s and ν̄e’s for model A8m3α2 at time t = 50ms. In Panel (a) are shown
the isotropic luminosities Lθ (black lines, for comparison we added the according curves at t = 200ms with thin
black lines) and mean energies ⟨ϵ⟩θ (red) as function of the polar angle θ, and in Panel (b) the monochromatic,
isotropic, comoving-frame luminosities Lϵ at the two polar angles θ = 0 (black) and θ = π/2 (brown) are depicted
as function of ϵ. Solid lines are used for νe and dashed lines for ν̄e. See Eqs. (3.19) for the definitions of the
quantities.

The advantage of our employed neutrino treatment in comparison to previous works that only
accounted for the emission of neutrinos without following their propagation allows us to identify
distinct regions where neutrinos are net emitted and regions where they are net absorbed. The
region of net emission is represented in Panel (f) by the black area located around the region of
highest density in the disk midplane. In analogy to the “gain radius” delimiting the net cooling
inner core from the net energy-absorbing outer layers in a CCSN, the boundary of this black area
represents the “gain surface” beyond which the gas attains instead of loses energy from neutrino
interactions. Both the geometric shape of the accretion torus and the higher emissivities closer to
the BH cause neutrinos emanating from the torus to constitute the highest flux densities around
the symmetry axis and considerably smaller flux densities for high radii around the equatorial
plane. To diagnose the radiation field concerning its dependencies on the polar angle θ and
frequency ϵ, in Fig. 3.13 we plot the quantities

Lθ ≡ 4π r2 F̄ r
lab(r, θ)

∣∣
r=500 km

, (3.19a)

⟨ϵ⟩θ ≡ F̄ r
lab(r, θ) / F̄

r
N,lab(r, θ)

∣∣
r=500 km

, (3.19b)

Lϵ ≡ 4π r2 F r(r, θ, ϵ)
∣∣
r=500 km

. (3.19c)

The radiation field of the torus is strongly anisotropic with pole-to-equator contrasts Lθ(θ =
0)/Lθ(θ = π/2) ∼ 50 for νe’s and ∼ 30 for ν̄e’s at t = 50ms, which decrease in time and at
t = 200ms have corresponding values of ∼ 30 and ∼ 15, respectively. The spectra are softer and
reveal mean energies that are reduced by ∼ 30− 40% along the equator than in polar direction.
Moreover, the mean energies of ν̄e’s are higher than the mean energies of νe’s by roughly the
same ratio, nearly independent of θ. To further elucidate the occurrence of the aforementioned
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Figure 3.14: Contours of the temperature (upper half
planes) and mean flux factor f̄ (lower half planes) as well
as arrows that indicate F̄νe (with saturated maximum
length when |F̄νe | > 5 × 1036 erg cm−2 s−1) and neutri-
nosurfaces for νe (solid lines) and ν̄e (dashed lines) at
energies ϵ ≃ 8, 12, 17.5MeV (see text around Eq. (3.20)
for the computation of the neutrinosurfaces) for model
A8m3α2 at times t = 20, 50, 200ms. The red lines de-
note contours of constant density for log{ρ/(1 g cm−3)} ∈
{7, 8, 9, 10, 11}.

characteristics, in Fig. 3.14 we plot the mean flux factor f̄ ≡ |F̄|/(cĒ) and the flux density
vector F̄ for electron neutrinos, together with the temperature and two different versions of
the frequency dependent neutrinosurfaces rν(ϵ) for three representative radiation energies. We
define the neutrinosurfaces using the optical depth τν as the surfaces where3

τν(rν , ϵ) ≡
∫ ∞

rν

κtot(r, ϵ) |dr|
!
= 1 , (3.20)

while for the neutrinosurfaces in the upper halves of each panel in Fig. 3.14 the integration
in Eq. (3.20) is performed along trajectories of constant cylindrical radii R = const. and for

3Recall from Chap. 2 that κtot is the transport opacity entering the equations of the 1st-moments of radiation,
and that a ‘neutrinosurface’ (which in the CCSN literature is commonly called ‘neutrinosphere’) can in a simplified
way be imagined as the boundary surface between an optically thick, diffusive region and its optically thin
surroundings, from which radiation is effectively emitted and thus carries away the imprint of the thermodynamic
properties present at the surface. For a more thorough treatment, we would have to distinguish between a
‘neutrino-energy surface’, where the spectrum is shaped, and a slightly further outside located ‘neutrino-number
surface’, where moreover iso-energetic scattering ceases. We neglect this subtlety here, but see e.g. Janka (1991,
1995) for detailed discussions.
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the curves in the lower half-planes the integration trajectories follow along spherical radii with
θ = const.. As the flux density arrows in the lower half-planes indicate, the neutrinosurfaces in
the upper half-planes are better applicable at small cylindrical radii, while the neutrinosurfaces
in the lower half-planes more appropriately capture the properties of radiation leaving the torus
further away from the BH around the midplane, since there neutrinos mainly propagate in
direction of r. Since the opacities of the included interaction processes are all proportional to
ϵ2 to a good approximation, neutrinosurfaces for lower energies lie deeper inside the torus than
neutrinosurfaces for higher energies. The qualitative shapes of the neutrinosurfaces reflect the
geometrical structure of the torus: The neutrinosurfaces are all close to each other for small radii
and they enclose regions that are geometrically thin (with respect to z) in the vicinity of the
BH, while at the radial outer torus edge they are more spread apart from each other due to the
more shallow profiles of ρ and T further away from the BH. The temperature field plotted in the
background of the upper half-planes in Fig. 3.14 shows that neutrinos are effectively emitted at
higher temperatures close to the BH compared to the cooler region around the midplane torus
edge further away from the BH. This property and the fact that the neutrinosurfaces, as seen
from edge-on, obscure radiation stemming from the hotter inner parts of the torus close to the
BH render the decrease of mean energies and luminosities for θ → π/2 reasonable. Owing to the
decreasing densities and temperatures, at later times (cf. Panel (c) in Fig. 3.14) neutrinosurfaces
are only present for higher energy-bins and their enclosed regions have become visibly thinner.
A consequence of the torus becoming optically thinner is that more neutrinos can propagate
through the torus without being scattered or absorbed and thus the anisotropy of luminosities,
cf. Fig. 3.13, is slightly reduced.

The neutrinosurfaces for ν̄e’s are throughout further inside the torus, i.e. they lie within
regions of higher temperatures compared to neutrinosurfaces of νe’s at the same energy ϵ. This
property justifies the higher mean energies of ν̄e’s and their less pronounced anisotropy and it
is originated in the overall reduced absorption opacities of ν̄e’s compared to νe’s. The lower
absorption opacities of ν̄e’s are a result of the smaller abundances of protons compared to
neutrons, which are absorption targets for ν̄e’s and νe’s, respectively.

Yet, since our two-moment neutrino scheme does not perfectly recover the limit of unper-
turbed superposition of radiation, the neutrino fluxes in the almost non-interacting region above
the BH probably tend to be overestimated in z-direction and thus our obtained values for the
emission anisotropy may be too high, a suspicion that is fueled by the results of the test in
Sec. 2.4.3, where we compared the non-scattering radiation field of a torus computed with our
two-moment scheme with the result of a ray-tracing calculation. Dessart et al. (2009), using
an Sn scheme, and Rosswog & Liebendörfer (2003), employing a directional evaluation of their
leakage scheme, obtained slightly lower values of about 5–15 for the anisotropy, but their torus
surrounded an HMNS instead of a BH as in our case.

Time evolution of global quantities We summarize the time evolution of several global
quantities characterizing the neutrino emission and the disk energetics in Fig. 3.15. The ratio
of luminosities of both evolved neutrino species remains, after initially being slightly higher, at
lE ≡ Lν̄e/Lνe ≃ 1.3−1.4, a property that is approximately found for all simulated models. After
a similar initial peak, the ratio of number loss rates is smaller, lN ≡ LN,ν̄e/LN,νe ≲ 1.1, as is
also immediately noticed by inspecting the mean energies, which for ν̄e’s are throughout higher
than for νe’s by about 3−4MeV. Employing typical values, the “protonization timescale” (equal
to the timescale of change of the total lepton number Ntot

Lep, cf. Eq. (2.85)) of the torus can thus
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Figure 3.15: Time evolution of global quantities related to the neutrino emission and energetics of the torus. In
the panels are shown: (a) the energy and number luminosities and the energy loss rates into the BH, (b) timescales
of neutrino cooling and viscous heating, (c) net heating rates by absorption of neutrinos, annihilation and viscous
heating, (d) neutrino emission and annihilation efficiencies, (e) cumulative neutrino energies and numbers emitted
from the BH-torus system, (f) cumulative annihilation energy, (g) mean energies of emitted neutrinos, (h) kinetic
and internal total specific energies. See Sec. 3.2 for the definitions of most plotted quantitites.

be estimated as:

τp ≡
Ntot
Lep

Ṅtot
Lep

≃
Md
mB
⟨Ye⟩

(LN,ν̄e − LN,νe)
≃ 1.2×

Md,⊙
LN,ν̄e,57

⟨Ye⟩
lN

lN − 1
≈ 0.4 s , (3.21)

where ⟨Ye⟩ is the average electron fraction of the disk,Md,⊙ ≡Md/M⊙ and LN,ν̄e,57 ≡ LN,ν̄e/(10
57 s−1)

and for the final numerical value in Eq. (3.21) we inserted ⟨Ye⟩ = 0.1, Md,⊙ = 0.3, LN,ν̄e,57 = 1
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and lN = 1.1. As a consequence of the long protonization timescale, the bulk of torus matter
is still far from being in a symmetric state, ⟨Ye⟩ = 0.5, at the end of the simulation. Yet, the
imprint of the initially higher ratio of number loss rates can be noticed in Panel (c) of Fig. 3.11,
where the equatorial profiles of Ye are plotted and which show that the neutrino emission quickly
protonizes the matter around the density maximum, from initially Ye = 0.1 to 0.3 within the
first 10ms. By that, a negative Ye-gradient in radial direction is established, which becomes
weaker but is sustained during the whole simulation and that reaches out to r ∼ 60 − 120 km
in the equatorial plane beyond where Ye increases with radius. The local maximum of Ye being
close to the BH effectively slows down the net protonization of the bulk of the torus due to
the fact that matter in this region is accreted while matter with lower Ye is continuously cycled
inward from higher radii.

In Panel (a) of Fig. 3.15, the red curves denote the neutrino energy flux rates LBH into
the BH. As a result of the high temperatures and densities in the first phase of evolution (cf.
Fig. 3.10), neutrinos are coupled sufficiently strong to the medium to be advected into the BH by
a substantial fraction of ∼ 1/2−1/3, indicating that the neutrino diffusion timescale4 τdiff in the
accreting inner region is of comparable size to the timescale τadv of advection into the BH. Using
typical values close to the BH, the latter is approximately of the order of τadv ∼ r/vr ≃ 1−10ms.
After about 20−30ms, however, the fraction Lν,BH/(Lνe+Lν̄e) has already decreased and remains
on the order of ∼ 1/30−1/20. Thus, neutrinos then diffuse out on timescales τdiff ≲ τadv, which
implies that the optical thickness of the inner torus then is low enough that the latter is efficiently
cooled by neutrinos. However, as for instance can be inferred from the existence and size of the
neutrinosurfaces in Fig. 3.14, the inner torus does not reach the proper optically thin limit
during the simulated time – since this would mean that all neutrinos, once created, leave the
torus without any subsequent absorption or scattering event – and at t = 0.3 s, the net energy
deposition rate Q+,tot

β is still as high as ∼ 1049 erg s−1 (cf. Panel (c) of Fig. 3.15).
In Panel (b) of Fig. 3.15 are shown the dynamic timescales of neutrino cooling (τν,cool) and

viscous heating (τvis,heat). In accordance with what was found above, in the first ∼ 30 − 40ms
the energy release by neutrinos cannot compensate for the viscous heating, i.e. τν,cool > τvis,heat.
Subsequently, however, viscous heating and neutrino cooling closely balance each other with
almost equal associated timescales, a property that if not fulfilled would either let the torus
become unstable after some time if heating exceeded cooling (this situation is encountered for
model A8m3α2_NN explored in Sec. 3.3.4), or it would degrade the total neutrino emission if
cooling exceeded heating (which is found for model A8m3α0 with αvis = 0, cf. Sec. 3.5). Given
the above finding that the diffusion timescales are not too high to prohibit efficient cooling,
the close encounter of both timescales is not completely surprising since both ways of energy
conversion characterized by the aforementioned timescales stabilize each other: If viscous heating
increases, the strong temperature dependence of neutrino cooling under optically thin conditions
∝ T 6 (cf. Eq. (2.25)) instantly reacts with an enhanced energy release, while in the opposite case,
for when the cooling outweighs heating, the torus contracts and the resulting higher dynamic
viscosity ∝ ρc2s triggers an increased conversion rate from kinetic to thermal energy by internal
friction.

The emission efficiency ην ≡ (Lνe +Lν̄e)/ṀBH (cf. Panel (d) of Fig. 3.15) rises from smaller

4Based on the definition of the diffusion limit (cf. Chap. 2) and on the approximate ‘radius’ dν and mean
optical depth τ̄ν of the region enclosed by the neutrinosurface in the R− z–plane, one can estimate the diffusion
timescale as τdiff ∼ 3 κ̄ d2ν/c. The explicit evaluation of this quantity (and also of the advection timescale τadv),
however, is prone to large uncertainties since mean values of the local fluid configuration have to be chosen
ambiguously. For the evaluation of the degree of neutrino trapping, we therefore refer to the relative sizes of the
more straightforwardly calculated timescales τν,cool and τvis,heat, as well as to the cooling efficiency ην for the
remainder of our analyses.
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values in the first phase of strong neutrino–matter coupling to a nearly constant value of ∼ 7%.
This corresponds to an energy loss of ∼ 60− 70MeV per single nucleon that is accreted into the
BH and is about 60% of the energy amount that a non-interacting particle would release when
being transferred from infinite radius to the ISCO on quasi-circular orbits (cf. Sec. 3.1.1). Our
obtained emission efficiency is smaller than this value mainly because the initial configuration
does not start at an infinite radius but at radii that are only a few times the radius of the ISCO.
In fact, the difference in specific energy of an orbiting test particle between the radius of the
initial density maximum of the torus and the ISCO is about ∆u(r̃max, rISCO) ≈ 8.7%.

The annihilation efficiency ηa of converting outwardly emitted neutrino energy into thermal
energy by νν̄-annihilation within the two polar cones with half-opening angles θa ≡ 15◦ (cf.
Eq. (3.16)) decreases from initially ∼ 0.3% by approximately two orders of magnitude until
the end of the simulation t = 0.3 s, which is almost one order of magnitude more than what
would result if the total annihilation rate purely scaled like Qtot

a ∝ LνeLν̄e (cf. Eq. (2.80)), since
the ratio Lνe/Lν̄e remains almost constant and both luminosities roughly drop by one order of
magnitude until t = 0.3 s. The additional decrease of ηa is caused to a smaller part by the
slight decline of the neutrino mean energies (cf. Panel (g) of Fig. 3.15) and to a greater part by
the geometrical change of the radiation field during the simulation. As already noticed earlier,
the anisotropy of the radiation field weakens as the torus becomes geometrically and optically
thinner, which means that a smaller fraction of all radiated neutrinos is emitted into the polar
region at later times. As a result, the effective part of the luminosity which gives rise to Qtot

a

and ηa drops faster than the total luminosity Lνe +Lν̄e ; this feature is representative for all our
simulated models that take νν̄-annihilation into account. The total amount of energy deposited
by νν̄-annihilation until the end of the simulation is ∆Ea ≈ 1.3 × 1049 erg while the T 90 time,
which we define here as the time difference from the start of the simulation until the time when
90% of ∆Ea has been released, is ≃ 70ms. Until that time, a fraction of about 5 × 10−5 of
the accreted rest-mass energy Maccc

2 has been converted into thermal energy by νν̄-annihilation
within the polar cones. We will more closely inspect the possibility of νν̄-annihilation to launch
a GRB-viable outflow in Sec. 3.3.6.

3.3.4 Convective instability

The shape of the curves of several global quantities in Figs. 3.10, 3.15 and the snapshots in
Figs. 3.2– 3.9 indicate that no significant overturn motions in the inner torus regions occur
in the reference model and therefore that the hydrodynamic configuration is not subject to a
relevant instability. In a viscous hydrodynamic accretion disk as the one considered here, the
local dynamic stability of a configuration can be tested with the aid of the Solberg-Høiland
criterion5 (e.g. Tassoul, 1978), which is expressed as

N2
B + ω2

epi < 0 , (3.22)

5In fact, the criterion is additionally comprised of a second inequality which for our present purposes is not
of relevance, though. Note that three specific instability criteria can be recovered from the Condition (3.22)
that are relevant for different specific conditions: For cold disks (∇P → 0) one obtains the Rayleigh criterion
∂l/∂R < 0, while for non-rotating systems an instability can be induced either purely by means of an entropy
gradient (Schwarzschild criterion) or, if different species are present, additionally by a composition gradient
(Ledoux criterion).
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Figure 3.16: Comparison of model A8m3α2_NN (Panels (a),(b)) with the reference model A8m3α2 (Panels (c),(d))
at times t = 50, 200ms. The upper half-planes show color coded the density and indicated by arrows the velocity
field (with saturated arrow length for |vpol| > 1× 108 cm s−1) and the lower panels show contours of the entropy
per baryon in units of kB (black lines, contours for s/kB > 40 are omitted) and as gray-shaded areas the regions
where the criterion for instability Eq. (3.22) is fulfilled.

where NB is the “Brunt-Väisälä frequency” or boyancy frequency6,

N2
B = −

(
∇Pg

ρ

)
·
[
1

Γ1

∇Pg

Pg
− ∇ρ

ρ

]
= −

(
∇Pg

PgρΓ1

)
·

[(
∂Pg

∂s

)
ρ,Ye

∇s+
(
∂Pg

∂Ye

)
ρ,s

∇Ye

]
, (3.23)

6For a more rigorous treatment of the regions where neutrinos and matter are tightly coupled, we actually
would have to include the neutrino properties in the definition of NB, but the dominance of the gas pressure in
the inner regions (cf. Fig. 3.12) allows us to neglect the neutrino contribution.
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(with Γ1 ≡ (∂ lnPg/∂ ln ρ)s,Ye) that describes the frequency of a fluid parcel if it is displaced in
a stratified medium in direction of ∇Pg. The quantity ωepi is the epicyclic frequency,

ω2
epi =

1

R3

∂l2

∂R
=

2Ω

R

∂R2Ω

∂R
, (3.24)

which is the frequency in which a fluid parcel in rotational equilibrium would oscillate around
its mean orbit when being displaced in direction of the cylindrical radius R. The physical
interpretation as frequencies of both quantitiesNB and ωepi obviously only holds if these numbers
are real. Only in the event of at least one of these quantities being complex can an instability
be triggered, in which case the quantity on the LHS of Inequality (3.22) becomes a measure
of the growth rate of perturbation modes. According to the Condition (3.22), our considered
accretion torus would most likely tend to be unstable if negative gradients of the entropy or
electron fraction along the equatorial radius occured and were too strong to be stabilized by
differential rotation.

In Figs. 3.10 and 3.16 we compare the reference model with its counterpart A8m3α2_NN that
has exactly the same properties but is evolved without neutrino transport. As a consequence of
the suppressed neutrino cooling in model A8m3α2_NN, the maximum temperature grows higher
than in model A8m3α2, while due to the enhanced expansion the maximum density is lower. At
about t ∼ 40−50ms, a region with excessive entropy (‘hot bubble’) develops around the midplane
and propagates radially outward. This hot bubble is unstable according to the Condition (3.22)
and it formatively influences the following torus evolution: Matter surrounding the hot bubble
immediately fills up the region drained from the rising hot bubble to become unstable again
and within the following tens of milliseconds the whole torus turns into a state of subsonic,
convective turbulence in which the torus blows up and expels matter in flare-like events.

By contrast, in the reference model A8m3α2 the neutrino emission is efficient enough in
removing thermal energy from the inner torus region to prevent the generation of a hot bubble
and thus in keeping the bulk of the torus stable. In the radial outskirts of the torus, however,
we notice (cf. Panel (d) of Fig. 3.16) several scattered patches that are formally unstable by
virtue of the Condition (3.22). In fact, these patches roughly coincide with regions where the
flow tends to form irregular structures and eddies at later times, although, being transient,
dynamic features, these circulations can hardly be described solely on grounds of the Solberg-
Høiland criterion, which by its construction assumes a stationary state that is perturbed with
small amplitudes. Due to the less energetic winds driven by neutrinos at later times, the flow
pattern in the outer regions is no longer dominated by the neutrino-driven outflow. One clearly
noticeable cause of circulations – which occur in regions that are also tagged to be unstable in
Panel (d) of Fig. 3.16 – is the interaction of the expanding torus with matter of low angular
momentum that is aggregated by the neutrino-driven wind around the equatorial plane.

Although by comparing the two models above we have conducted only a spot-check con-
cerning the issue of convective stability of general neutrino-dominated accretion flows, we see,
first, that the neutrino emission tends to prevent the phenomenon of hot bubbles emerging in
the flow and leading to convection (which is also in agreement with several 1D-studies, e.g. by
Kohri & Mineshige, 2002 and Narayan et al., 2001), and second, that the negative gradient of
the electron fraction in the equatorial plane for r ≲ 100 km (see, e.g., Fig. 3.11) is also not
sufficient to cause lepton-driven convection. In contrast, lepton-driven convection was seen in
the simulations by Lee et al. (2005); however, they used a local neutrino-cooling scheme without
consistent evolution of Ye and a purely Newtonian gravitational potential.

Let us add a note of caution here: When attempting to associate the results of a stability
analysis as performed above for a viscous accretion torus with realistic accretion flows, an im-
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portant fact one has to keep in mind is that the model of anomalous shear viscosity in accretion
disks as used here is already constructed from the underlying assumption of turbulence7 acting
on scales large enough to be the actual cause of accretion. Thus, to allow for accretion at all,
some kind of instability inducing this turbulence has to be present and in the framework of
the α-prescription this turbulence is assumed to be “averaged out” – a simplification stemming
from the original intention of the α-formalism to model one-dimensional accretion disks. In
light of this inherent inconsistency of the multi-dimensional application of the α-formalism and
the fact that turbulent transport of angular momentum is obtained in a (more) self-consistent
description when taking into account magnetic fields (cf. Chap. 4), we refrain here from a deeper
investigation of torus instabilities.

3.3.5 Outflow properties

Different agents are responsible for driving outflows at partially distinct locations: Viscous
heating enlarges the overall shape of the torus and viscous angular momentum transport con-
tinuously lifts matter on wider orbits in the equatorial direction, effectively on local timescales
τvis ∼ R2/νvis (where νvis ≡ ηvis/ρ is the kinematic viscosity coefficient, cf. Eq. (1.1)) that
strongly increase with cylindrical radius R. The energy deposition by neutrinos initiates a ther-
mal wind8 from the surface layers of the torus close to the BH. The region around the polar z-axis
remains (quasi-)evacuated and thus allows νν̄-annihilation to cause the thermal acceleration of
matter to possibly relativistic velocities. Finally, recombination of free nucleons to α-particles
and heavy nuclei releases thermal energy that may enhance the outflow at each location.

Qualitative properties of the neutrino-driven wind To better assess the distinct rami-
fication of both viscosity and neutrinos in driving outflows, let us consider model A8m3α2_NH,
which is similar to the reference model, but where net heating by neutrinos and νν̄-annihilation
has been ignored. The resulting evolution scheme of neutrinos in this model is roughly com-
parable to the neutrino leakage scheme by Ruffert & Janka (1999); Setiawan et al. (2006) and
the local neutrino cooling scheme of Lee et al. (2005), but a main difference lies in the fact
that material in the actual gain-region is neither cooled nor heated in our scheme whereas in
the aforementioned schemes matter is cooled by neutrinos everywhere (although with strongly
decreasing emission rates for lower densities). In Fig. 3.17, we compare the density, temperature
and the flow properties of this model with the reference model. The inner structure of the torus
is not visibly influenced by the suppressed energy deposition in the outer layers. The outer
layers, in contrast, exhibit an utterly different behavior without the neutrino heating and show
no (quasi-)stationary outflow, but rather quasi-periodically occuring low-density waves driven
(qualitatively similar to what has been recognized already in Sec. 3.3.1) by the interfering pro-
cesses of recombination and viscous expansion. The net amount of the outflow is therefore low
(see below for quantitative statements); the effects by viscosity and recombination alone are not
able to generate substantial outflows in this model.

By allowing neutrinos to be reabsorbed in model A8m3α2 in the region enclosing the densest
inner parts of the torus, we admit matter in this region to be exposed to substantial heating
rates that reach Q+

β ∼ 1030 − 1032 erg cm−3 s−1 (cf. Figs. 3.4–3.8) and that are highest right

7To be precise, it is not the turbulence on its own but rather the eventual correlation of vr and vϕ over a
certain length scale in a turbulent state that provides a mean to redistribute angular momentum (see e.g. Balbus
& Hawley, 1998).

8Note that only outflow solutions where a transition to supersonic velocities occurs can truly be ascribed
as ‘winds’. Solutions where the sonic point is not reached or only asymptotically reached at infinity are called
‘breezes’ (see e.g. Mihalas & Mihalas, 1984).
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Figure 3.17: Comparison of density (color coded),
temperature (black contours, with equal steps of 0.2
in logarithmic space and labels denote log{T/(1MeV)})
and velocity (arrows, with saturated length for |vpol| >
5 × 108 cm s−1) for models A8m3α2_NH (upper half-
planes) and A8m3α2 (lower half-planes) at times t =
20, 50, 100ms.

above the gain surface close to the BH. As a consequence of the dominant energy input being in
this region, most of the neutrino-driven wind is launched and its thermodynamic properties are
shaped there. The energy deposition increases the entropies and the accompanied net lepton
number deposition changes the electron fractions. The fundamental scenario of the neutrino-
driven wind emerging from the torus surface is closely analog to the wind driven off from the
surface of a nascent proto-NS during a CCSN (see the tests in Sec. 2.4.3 for some informations
about this site). However, an important dynamic difference regarding the object from which
the wind is launched is that the present accretion torus is at no time even close to hydrostatic
equilibrium, but it is rather in continuous motion, both in toroidal and azimuthal directions.
On the one hand, the centrifugal forces in the rotating disk effectively act against gravitation so
that for equal heating energies from neutrinos the BH-torus system is likely to yield higher total
outflow masses. On the other hand, the occurrence of the large-scale circulation pattern that
arises as a result of viscosity causes a large part of matter that experiences sizable energy input
by neutrinos to be located within the viscous-inflow region at the torus surface and therefore to
be advected, together with the absorbed energy, inward and to partially end up in the BH. Hence,
the neutrino-driven wind is compromised by the geometric realization of the viscous accretion
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Figure 3.18: Panel (a): Mass-outflow rates Ṁout (solid lines) and Ṁout,unb (short dashed lines) for models
A8m3α2 (black lines), A8m3α2_NN (blue lines) and A8m3α2_NH (brown lines). For model A8m3α2, we added the
mass-outflow rate Ṁcone (long dashed line, see Sec. 3.3.6 for discussion) measured at the hats of the two cones
with half-opening angle θcone = 8◦ around the polar axis at r = rout. Panel (b): Angular variation of the total
mass-outflow rate ∂Ṁout/∂θ = 2πr2outρvr sin θ for model A8m3α2 at different times.

flow and it is essentially restricted to be based above the top of the viscous inflow region, of
which the location is, in turn, dependent on the amount of thermal energy deposited in the
inferior layers. As we will see when considering different models in the following sections, the
inward advection of the absorbed energy, together with the much shorter dynamical timescales
compared to the wind phase of a CCSN (which lasts several seconds), are crucial properties that
potentially endanger the development of a powerful neutrino-driven wind in a BH-torus system
of the considered kind.

Mass-outflow rates As already mentioned in the introduction of this thesis, the total amount
and the thermodynamic properties of the outflow determine what and how many heavy nuclei
are synthesized and ultimately how important the considered BH-torus system could be as a
site for the r-process. However, relevant to nucleosynthesis are only fluid elements that become
gravitationally unbound during the evolution such that they are able to mix into the interstellar
medium at later times. Because the spacetime domain covered by our simulation is limited, we
employ the following approximate criterion to judge if matter will escape to infinity:

ũ(r) ≡ 1

ρ
(ei + ek) + Φ

∣∣∣∣
r

> 0 , (3.25)

which requires that the specific energy ũ of a fluid element at position r is positive. To account
for the proper amount Mout,unb of matter that fulfills Eq. (3.25) and that truly leaves the
domain around the accretion torus, we time-integrate the mass flux through the radial shell at
rout ≡ 1000 km to compute

Mout,unb(t) ≡
∫ t

0
Ṁout,unb(t̃) dt̃ ≡

∫ t

0
2πr2out

∫ π

0
(ρvr)|{r=rout,vr>0,ũ>0} sin θ dθ dt̃ . (3.26)
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Figure 3.19: Histograms of the distribution of mass elements ∆Mout,unb/Mout,unb of unbound, ejected matter for
model as function of: (a) the logarithmic absolute polar velocities, (b) the logarithmic entropies per nucleon, and
(c) the electron fractions. In each panel, the solid lines refer to the linear scales on the left and the dashed lines
to the logarithmic scales on the right. In the middle panel, the mass of unbound matter ejected until t = 200ms
is given.

As Mout we denote the total amount of ejected matter given by the same integration as in
Eq. (3.26) but ignoring the condition ũ > 0. One notices in Panel (a) of Fig. 3.18 that the mass
loss rates for model A8m3α2_NH heavily fluctuate on grounds of the aforementioned phenomena
and that they are lower by several orders of magnitude compared to both models A8m3α2 and
A8m3α2_NN. As soon as the convective instability at around t ∼ 50− 60ms sets in, the unsteady
outflow rates for model A8m3α2_NN reach among the highest values of all models. The outflow
rates for the reference model are smooth compared to the other models, as can be anticipated
from the earlier findings that the inner torus is stabilized by neutrino cooling and that the
neutrino-driven wind controls the behavior of the outer layers of the torus by shuffling matter
with low angular momentum into the equatorial region. In the early stages, t ≲ 100ms, the
strong neutrino-driven wind from the torus surface almost equally spreads over the entire domain
[0, π/2] in θ, see Panel (b), being only bound for small θ by the centrifugal barrier9. The
bifurcation of the outflow rates Ṁout,unb and Ṁout at later times reflects the fact that the mass
load of the neutrino-driven wind from the surface of the torus ceases and that the main part of
the outflow comes from the primarily viscously driven, slow but massive expansion around the
equatorial region.

Thermodynamic properties of the wind Let us more closely analyze the thermodynamic
properties of the outflow in model A8m3α2. The essential physics that determine the final electron
fractions in the ejecta in our torus models are qualitatively similar to what is known from the
neutrino-driven wind scenario in CCSNe: Since the capture rates of electrons and positrons
on nuclei (which are roughly ∝ T 6, cf. Eq. (2.25)) are subdominant in the outer torus layers,
owing to the lower temperatures compared to the net emitting region, the change of Ye in the
outer layers is mostly determined by the number-absorption rates of both neutrino species νe
and ν̄e. The local number-absorption rates are proportional to the local neutrino fluxes and for
a given outflowing fluid element irradiated by neutrinos the final value of Ye is determined by
the competition between neutrino absorptions – which drive Ye to its local equilibrium value
Y eq
e , see below – and outward expansion of the fluid element – which effectively slows down the

9This“centrifugal barrier”can be envisaged as the cone-shaped steep ascent of the effective potential Φeff(r, θ) ≡
l2/(2r2 sin2 θ) + Φ(r) around the z-axis that a particle with specific angular momentum l is exposed to.
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absorption rates and finally leads to the freeze-out of Ye. Using the explicit absorption rates of
νe’s and ν̄e’s on neutrons and protons, respectively, a rough estimate of the global average of
Y eq
e based on the global emission properties can be derived (Qian et al., 1993; Qian & Woosley,

1996) and gives

Y eq
e ≃

(
1 + lE

⟨ϵ⟩ν̄e − 2Qnp

⟨ϵ⟩νe + 2Qnp

)−1

≃ 0.46 , (3.27)

where Qnp ≈ 1.29MeV is the mass difference of neutrons and protons and for the numerical value
we adopted lE = 1.4, ⟨ϵ⟩νe = 12MeV and ⟨ϵ⟩ν̄e = 15MeV. Thus, given the compared to the
estimate in Eq. (3.27) much lower values of Ye in the central torus regions, ejected matter may
retain a low Ye, first, for sufficiently high ratios of neutrino fluxes of ν̄e’s to νe’s or mean-energy
ratios ⟨ϵ⟩ν̄e/⟨ϵ⟩νe , second, for sufficiently high outflow velocities, and third – a possibility that
is only provided in a generically multi-dimensional scenario such as the present BH-torus sys-
tem – if the outflow occurs along trajectories where the irradiation by neutrinos is sufficiently low.

To inspect how much of the ejected material has certain thermodynamic properties, we calculate

the distribution of mass as function of the absolute polar velocity vpol ≡ |vpol| =
√

v2r + v2θ , the

entropy per nucleon s and the electron fraction Ye for the ejected, unbound matter that enters
the integration in Eq. (3.26) between tout,0 = 0ms and tout,1 = 200ms (we neglect the outflow
for t ≳ tout,1 since the mass-flux rates are decreased by then to negligible values). We therefore
discretize each quantity using nbin = 50 bins within the intervals(

log vpol/(1 cm s−1)
)
i
∈ [8, 10.5] , (3.28a)(

log s/(1 kB nuc−1)
)
i
∈ [0, 5] , (3.28b)

(Ye)i ∈ [0, 0.6] , (3.28c)

where i = 1, . . . , nbin, and fill the bins with the masses δM = (ρvr)δS δt of fluid elements
streaming through a surface element δS at radius rout within time δt according to their values
of vpol, s, Ye. We utilize data given at times tn ∈ {0, 1, 2, . . . , 200}ms and correspondingly a
constant δt = 1ms for the calculation. The resulting histograms for the masses ∆Mout,unb

accumulated in each bin are shown in Fig. 3.19. The ejecta are not overly neutron-rich, less
than ∼ 1% of the total ejected mass of Mout,unb ≃ 3.4 × 10−3M⊙ have Ye < 0.3, while the
distribution within the range 0.3 ≲ Ye ≲ 0.5 is almost uniform. The entropy distribution peaks
around s ∼ 20 − 25 kB/nuc and strongly decreases for higher values of s. The polar velocities
of the ejecta at r = rout are throughout higher than 109 cm s−1, the distribution peak being at
∼ 0.1 c, and about ∼ 3% of the ejecta have velocities higher than 1010 cm s−1.

Setting up the link of the distributions just calculated with individual fluid elements is
difficult to achieve solely by analyzing snapshots at fixed times since the flow profiles are time
dependent. For that reason, we compute exemplary trajectories by means of the following
procedure: At the two times ttraj,1 = 50ms and ttraj,2 = 100ms and starting from the locations
rm = (rout, θm), where m = 1, . . . , 17 and θm are roughly equidistant polar angles distributed
within [0, π/2], we integrate the trajectories of fluid elements both backward in time, until
t = 0ms, and forward in time, until t = 0.3 s, by using integration steps as

x(tn+1) = x(tn)± v (x(tn)) δt . (3.29)

At each point x(tn) on a trajectory we record the density, temperature, electron fraction, entropy,
polar velocity and time tn. The results are illustrated in Fig. 3.20, with detailed information
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Figure 3.20: Properties of exemplary trajectories crossing the shell r = 1000 km at the times ttraj,1 = 50ms
(left column of plots) and ttraj,2 = 100ms (right column of plots). In each top panel are depicted the pathways
of several trajectories (white, black, red, brown). Taken at the according time ttraj,1 or ttraj,2, the density field is
color coded in the background and the blue line denotes the instantaneous transition region from gravitationally
bound to unbound matter where the specific energy ũ = 0. The lower panels show from top to bottom the
density, temperature, electron fraction, entropy per nucleon, polar velocities and times t (according to x(t)) of the
trajectories that are similarly colored in the top panels as function of the radial coordinate r.
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about the thermodynamic properties given for three trajectories that are crossing the shell
r = rout approximately at the polar angles θ̃1 ≈ 20◦, θ̃2 ≈ 50◦ and θ̃3 ≈ 90◦.

Remarkably, all outflow trajectories captured by our procedure have their origin close to-
gether in the torus-surface regions. They start at distances of around r ∼ 100 km, partially
approach the BH on grounds of viscous angular momentum transport (note that the thermody-
namic properties in Fig. 3.20 are plotted as functions of the fixed radial coordinate r) and, as
the result of the energy input by neutrinos, they reverse again, each at slightly different radii, to
finally decouple from the torus near the top of the viscous inflow region. It is not too surprising
that the starting points all lie so close together, since we found that the torus is not convective
and has a rather smooth flow profile. The result that the common origin of the trajectories
lies within the torus-surface layers close to the BH shows that the outflow of matter that orig-
inally resided near the radial outer torus edge around the equatorial plane is hampered by the
neutrino-driven outflow, which is initiated at smaller radii and that closely envelopes the torus
while propagating outwards. The part of the neutrino-driven flow that streams on trajectories
close to the brown colored ones in Fig. 3.20 originates from a layer not as hot and dense compared
to where the flow associated with the red and black trajectories started from and it is leaving
the inner torus region without being dragged as close to the BH. It is therefore less intensely
affected by neutrino radiation and it retains comparably low values of Ye and s. However, this
part of the flow leaves the torus only at early times with sufficiently high velocities to become
unbound (cf. the blue line in Fig. 3.20), since at later times the radial outer region around the
midplane is too heavily mass loaded due to both the viscous expansion and the neutrino-driven
wind material that settled there earlier. Going over from the equatorial direction θ = π/2 to the
poles, the outflow becomes faster, less neutron-rich and has higher entropies. This is because
this outflow initially more closely approximated the BH and it hence experienced a more intense
irradiation by neutrinos. The circumstance that the viscous-inflow region grows at later times
(cf. right column of plots in Fig. 3.20) results in outflow trajectories that start at higher radii,
r ≳ 100 km, and this, together with the fact that the neutrino emission is weaker at later times,
translates into lower values of vpol, s and Ye in the neutrino-driven wind. Note that the times
when the black and red trajectories cross the shell r = 200 km (which surrounds the bulk of the
torus) are about t ∼ 30 − 40ms for the left column and t ∼ 50− 70ms for the right column in
Fig. 3.20.

The properties of the trajectories just analyzed are qualitatively representative for all cal-
culated models where a substantial neutrino-driven wind develops. However, we postpone the
discussion relating our obtained outflow properties to nucleosynthesis studies to Sec. 3.7.

Polar outflow The region around the polar axis is almost depleted of baryons, i.e. the cen-
trifugal forces successfully hinder matter to enter the axis region. This means, first, that the
central torus region is sufficiently cooled by neutrinos to prevent the expansion of the surface
layers into the polar region, and second, that the neutrino-driven wind is not powerful enough
to directly enter the polar region. The low baryon loading in the axis region, together with
the heating due to νν̄-annihilation cause the (radiation dominated) entropies to rise dramati-
cally. In fact, as can be inferred from Panel (c) in Figs. 3.2–3.9, the whole high entropy tail
s ≳ 102 kB /nuc in the ejecta histogram for s, cf. Panel (b) of Fig. 3.19, is associated with the
outflow from the funnel region.

Yet, the interpretation of the physical results found in the polar region has to be conducted
with care due to the following numerical issues: Besides the earlier stages of the simulation, the
densities encountered near θ = 0 and π lie for almost all radii near the minimum values dictated
by the atmosphere prescription (cf. Eq. (3.8)), i.e. the mass of the outflow measured from the
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polar regions is almost exclusively not of physical but of numerical origin. Moreover, besides the
artificially increased mass of the polar outflow, the thermodynamic properties are influenced by
our atmosphere treatment in the following way: The velocities in the outflow are reduced, simply
by virtue of the enhanced amount of baryons and the fact that we keep the momenta (and not,
for instance, the velocities) constant when applying the atmosphere criterion. As a consequence,
fluid elements are longer irradiated by neutrinos so that the electron fractions are certainly
overestimated (recall that Ye is held constant whenever atmosphere matter is refilled). The
impact on the entropies per baryon is more uncertain since they, on the one hand, are reduced
due to the refilled material, but on the other hand they are lifted on grounds of the same
reason that causes the incremented electron fractions, that is, due to the prolonged neutrino
exposure. Another point concerns the grid resolution in θ-direction: The boundary between
the funnel and the wind matter comprises density gradients that eventually reach values of
∂ ln ρ/∂θ ∼ 0.5 − 1.5 deg−1, i.e. the density (and several other quantities) may change by an
order of magnitude per degree. Given our angular grid width near θ = 0 up to ∼ 2.5◦, we can
hardly say that this boundary is well-resolved. Therefore we cannot exclude that the shear flow
around this boundary might become unstable, primarily due to the Kelvin-Helmholtz instability
– even if the latter is already suppressed up to a certain level due to the present inclusion of
viscosity – in which case we could reckon that the funnel would likely become filled up with
more baryons.

3.3.6 Short-GRB viability

Although we have identified the aforementioned numerical handicaps, let us nevertheless address
the question if the present model could be viable to produce a jet with Lorentz factors γGRB ≳ 100
and thus to cause a short GRB. We first define a fiducial reference criterion that gives us the
half-opening angle of the funnel by

θcone ≡ min { θ , where ρ(r = 100 km, θ, t = 50ms) ≥ 106 g cm−3 } , (3.30)

applied at the representative radius r = 100 km and at time t = 50ms. For model A8m3α2, we
find θcone ≈ 8◦. Since the heating rate Qtot

a associated with νν̄-annihilation is calculated using
a different half-opening angle θa ̸= θcone, we approximate the heating rate Qtot

cone that is effective
in the two cones of half-opening angle θcone by

Qtot
cone ≃

1− cos θcone
1− cos θa

Qtot
a ≡ fz Q

tot
a , (3.31)

where we defined fz, which for the reference model is fz ≈ 0.3. An estimate of the asymptotic
Lorentz factor of the thermally accelerated matter leaving the two cones around the polar regions
with mass-flux rate Ṁcone then gives

γGRB − 1 ≃ fz Q
tot
a

Ṁconec2
≃ 5.6×

(
fz Q

tot
a

1049 erg s−1

)(
Ṁcone

10−6M⊙ s−1

)−1

, (3.32)

while for this estimate we assumed that all of the annihilation energy dumped into the funnel
is asymptotically converted into kinetic energy of purely radial outflow with perfect efficiency.
Given the annihilation rates Qtot

a as in Panel (c) of Fig. 3.15, the polar mass-outflow rates
depicted in Panel (a) of Fig. 3.18 are permanently too high by at least ∼ 1 − 2 orders of
magnitude to allow for Lorentz factors of γGRB ∼ 100. Even if we cannot say how low the
densities in the funnel would get if we could disregard the numerical atmosphere treatment, our



3.4 Different initial torus masses 99

results for the present model suggest that the funnel is likely to be further diluted to densities
below what we obtained, i.e. in the present model the acceleration of a highly relativistic polar
outflow seems not to be endangered by the pollution of the polar axis with disk material.

The cumulative amount of annihilation energy deposited in both cones is ∆Ea,z ≃ fz ∆Ea ≃
3.8 × 1048 erg. Ignoring the numerically caused mass loading of the polar cones and deploying
purely energetic arguments, if the jet carrying this amount of energy would release its whole
energy in γ-radiation that is relativistically beamed into the fraction fbeam = 2∆Ω/(4π) =
1− cos θbeam ≃ 1− cos θcone ≈ 10−2 of the sky – where 2∆Ω is the solid angle of the two cones
of half-opening angle θbeam into which γ-radiation is effectively emitted and we approximated
θbeam ≃ θcone – the outflow in the present model could account for a sufficiently high value of
the isotropic γ-ray energy Eγ ≃ ∆Ea,z/fbeam, which for short GRBs is observed to typically lie
within Eγ,obs ∼ 1049 − 1051 erg (e.g. Nakar, 2007).

3.4 Different initial torus masses

We now compare the reference model with models A8m1α2 and A8m5α2 to investigate the influ-
ence of a different initial torus mass; see Figs. 3.21 and 3.22 for a series of contour plots and the
time dependence of various global quantities, respectively.

All three models traverse a similar initial transient phase wherein the accretion rates, tem-
peratures and luminosities peak and then settle to a quasi-stationary, successively declining
behavior. The accretion rates (and therefore the torus masses) approximately remain propor-
tional to each other with proportionality constants given by the ratio of initial torus masses,
a property that mainly results from the fact that the initial total internal and kinetic energies
between the models are related by the same ratios. As a consequence, the torus masses as
functions of time are equally proportional and have the same ‘half-lifes’ t1/2 ≈ 110ms, defined
as the times when half of the torus masses have been accreted into the BH. The primary impact
of a higher initial torus mass on the neutrino radiation is that due to the higher opacities the
neutrinos are effectively slowed down to diffuse out of the torus and therefore to compensate for
the viscous heating (cf. Panel (h) of Fig. 3.22). This explains the reduced emission efficiencies
ην and the increased fractions LBH/L of neutrinos that become advected with the flow into the
BH for higher Md,0 up to t ≳ 50− 70ms (cf. Panels (j) and (d) of Fig. 3.22, respectively). For
t ≳ 50− 70ms, the aforementioned differences between the models cease and the neutrino emis-
sion efficiencies all saturate at the same, nearly constant value of ην ≃ 7%. The mean energies
of emitted neutrinos are barely affected by the different torus masses and all lie close together
at ⟨ϵ⟩νe ≈ 12MeV and ⟨ϵ⟩ν̄e ≈ 15MeV. In contrast, the efficiencies ηa of νν̄-annihilation vary
between the models since they are approximately proportional to the luminosity average of both
species. The ratios of the according luminosities between the models are reproduced to a good
degree in the ηa during the whole simulation, in that ηa remains significantly smaller for the low
mass torus than for the high mass torus, where a maximum of ηa ∼ 3×10−3 is reached at about
t ≃ 20ms.

The flow pattern is qualitatively similar in all three models, showing in the inner torus region
the single characteristic meridional circulation where matter for r ≳ 40 − 60 km flows outward
in the midplane and streams inward along the torus surface. The size of the inflowing region
(encircled by the black line close to the BH in the top right box of each panel in Fig. 3.21),
however, differs between the models; for higher masses the region is less extended in z-direction
along the torus surface. This is essentially a result of the overall tighter coupling between matter
and neutrinos for initially higher torus masses (which, e.g., is indicated by the higher ην,heat for
higher Md,0, cf. Panel (f) in Fig. 3.22), since the location of the line separating the viscous inflow
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Figure 3.21: Contour plots for models A8m1α2 and A8m5α2 at times t = 20, 50, 100ms. Each panel shows in
the top left box the electron fraction and the black lines denote the contour Xα +Xh = 0.5, in the top right box
the density and the black lines denote the contour vr = 0 and overlaid velocity arrows with saturated length for
|vpol| > 109 cm s−1, in the bottom left box the entropy per nucleon and in the bottom right box the temperature.

and the neutrino-driven outflow is mainly determined by the power of neutrino heating. This
also explains the higher peak mass-flux rates Ṁout,unb in the wind (cf. Panel (e) in Fig. 3.22) for
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Figure 3.22: Comparison of the time evolution of global quantities between the models written above in the
colors that specify the according line colors. The labels associated with different line styles are analog for colored
lines. In the panels are displayed: (a) the mass accretion rates of the BH, (b) the torus masses and the accreted
masses, (c) the luminosities L, all normalized to the electron neutrino luminosity L0 ≡ Lνe(“A8m3α2”) of the
reference model (cf. Panel (a) of Fig. 3.15), (d) the luminosities LBH/L advected into the BH normalized to
the outwardly emitted luminosities, (e) the total (Ṁout) and unbound (Ṁout,unb) mass-outflow rates through the
shell at r = 1000 km, (f) the accretion timescales and the efficiencies of neutrino heating by β-processes, (g) the
maximum densities and temperatures, (h) the viscous heating timescales and neutrino cooling timescales, (i) the
mean energies of emitted neutrinos, and (j) the efficiencies of neutrino emission and annihilation.

higher torus masses. But what causes the early, rapid decline of Ṁout,unb at about t ∼ 50−70ms
in model A8m1α2? The reason is found when considering the approximate locations where the
recombination of protons and neutrons sets in, which are indicated by the black lines in the top
left panels of Fig. 3.21. In model A8m1α2, for t ≳ 50−70ms the temperatures are not high enough
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Figure 3.23: Same as Fig. 3.19, but for models A8m1α2 (Panels (a)-(c)) and A8m5α2 (Panels (d)-(f)).

to ensure that matter, which could potentially be accelerated outward from the top of the inflow
region, is dissociated into free nucleons. The consequence is that neutrinos deposit essentially no
longer energy into the top of the inflow region, instead their heating energy is only absorbed at
lower heights z where matter continuously advects the absorbed energy inward. In the other two
models, this effect of the neutrino-driven wind becoming inefficient due to recombination is also
visible, but at later times and on longer timescales. At the end of each simulation, the masses of
unbound ejecta for the models with initial torus masses Md,0 = {0.1, 0.3, 0.5}M⊙ therefore scale
strongly non-linear in Md,0: Mout,unb ≈ {9.4 × 10−5, 3.4 × 10−3, 8.3 × 10−3}M⊙. As a caveat,
however, we have to remark that our restricted set of four baryonic species and the employed
EOS, which enforces an NSE composition at all times, might be too crude of an approximation
to surely consolidate the finding that the energy deposition becomes inefficient as abruptly as
found in model A8m1α2 (see Sec. 3.1.3 for comments regarding the EOS).

In Fig. 3.23 we show for models A8m1α2 and A8m5α2 the ejecta-mass distributions in the
quantities vpol, s and Ye that are calculated similarly as for the reference model; see Sec. 3.3.5
for details of the calculation and Fig. 3.19 on Page 94 for comparison of the present histograms
with the reference model. The distribution histograms for different initial torus masses are
qualitatively similar, which is reasonable, given the overall homogeneous flow features between
the different models. The wind in all models exhibits decreasing values in vpol, s and Ye when
going over from θ = 0 to π/2. The stronger wind generated by a heavier torus shows a slightly
broader velocity distribution and the minimum electron fraction of the bulk of ejecta is reduced
to Ye ≃ 0.3 for Md,0 = 0.5M⊙. The latter circumstance is to some degree caused by the fact
that the heavier torus remains geometrically thick for a longer time – which, in turn, is a result
of the less efficient neutrino cooling of a heavier torus – and this allows wind matter to be
launched from higher radii than in less massive tori. A higher radius translates into a smaller
amount of energy needed to gravitationally unbind the material and thus the number of neutrino
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absorptions (that drive Ye to higher values) is reduced.

3.5 Different shear viscosities

The most artificial ingredient that we employ to allow for accretion in the present hydrodynam-
ical models is the viscosity, which strength we regulate with the arbitrary parameter αvis. To
get an impression of what the impact of the viscosity is at all, we compare the reference model
with model A8m3α0 that has αvis = 0, and to see what lower and higher viscosities tends to
change compared to the reference model, we analyze models A8m3α0.5, A8m3α5 and A8m3α10.
See Figs. 3.24, 3.25 and 3.26 for contour plots and the time dependence of global quantities,
respectively.

As anticipated, owing to the missing mechanism to redistribute angular momentum, the
accretion is completely inhibited in model A8m3α0. In fact, since we started with an equilibrium
configuration, the only kind of active flow in this model, besides the slow contraction of the
torus caused by the loss of thermal energy due to neutrino emission, is the wind driven by
neutrinos. The properties of the neutrino signal reflect the fact that no substantial conversion
of gravitational energy into internal energy can take place: The luminosities, mean energies
and the νν̄-annihilation efficiency are all reduced compared to the reference model. Yet, it is
remarkable that the neutrino luminosities for t ≳ 40ms do not decline significantly faster than
in the reference model. This is a result of the continued compression of the torus (see, e.g. the
maximum densities in Panel (g) of Fig. 3.26), by which means some gravitational energy of the
outer layers of the torus is released. These layers are to some degree pressure supported and
thus, owing to the neutrino cooling, they successively recede to smaller radii. The qualitative
properties of the neutrino-driven outflow, such as the location of its creation and its geometric
flow profile are very similar to what is found for the reference model, but the time and strength
of efficient wind production is considerably reduced in model A8m3α0. After reaching its peak of
Ṁout,unb ≃ 10−2M⊙ s−1 at about t ∼ 40 − 50ms, the wind mass-flux rate decreases by several
orders of magnitude. This early decrease is mainly caused by the fact that many free nucleons in
the torus-surface layers soon recombine to α-particles, making energy deposition there inefficient.
In contrast to any of the viscous models, at the time when the outflow is no longer energetic
enough to be unbound, the supersonic wind is terminated and it turns into a convective halo of
the torus (cf. Panel (c) in Fig. 3.24) in which expelled, but gravitationally bound matter recedes
and collides with matter that continuously becomes ejected from the torus.

The main impact of a non-vanishing value of αvis on the torus evolution can directly be read
off from the various curves in Fig. 3.26: αvis primarily regulates the overall dynamical evolution
timescale of the torus. For higher αvis, the increased angular momentum transport causes higher
initial accretion rates and the quicker mass loss, in turn, effects smaller accretion rates at later
times, t ≳ 50 − 70ms. Since enhanced accretion rates translate into faster conversion rates
of gravitational energy into internal (and kinetic) energy, the maximum temperatures reveal a
similar behavior as the accretion rates relative to each other for different αvis (cf. Panel (g) of
Fig. 3.26). The higher temperatures cause higher pressures and thus the tori expand faster and
become more diluted for higher αvis, as can be seen in the contour plots in Figs. 3.24 and 3.25.

Clear trends for increasing αvis can also be identified concerning the neutrino signal: The
higher temperatures for higher αvis in the first phase t ≲ 50ms cause higher opacities and
increase (decrease) neutrino trapping (cooling), as noticed from the higher ratio of advected
neutrinos (cf. Panel (d) of Fig. 3.26) and from the lower emission efficiencies (cf. Panel (j)
of Fig. 3.26). At about t ∼ 50ms, however, the neutrino emission efficiencies all converge to
similar values (ην ≃ 7%) as were noticed for the previously investigated models, indicating
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Figure 3.24: Same as Fig. 3.21 but for models A8m3α0 (left) and A8m3α0.5 (right). Since the sign of the radial
velocities in model A8m3α0 is strongly varying, we omitted the contours vr = 0 for this model.

that the thermodynamic conditions then allow for the efficient compensation of viscous heating
by neutrino cooling (i.e. τν,cool ≃ τvis,heat, cf. Panel (h) of Fig. 3.26). The quick dilution of
the densest regions causes tori with higher viscosities to become sooner radiatively inefficient
(ην → 0). This happens for model A8m3α10 at about t ∼ 80 − 90ms while for model A8m3α5
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Figure 3.25: Same as Fig. 3.21 but for models A8m3α5 (left) and A8m3α10 (right).

this transition seems to start right at the end of the simulation. The mean energies of emitted
neutrinos rise with αvis. This can be understood from the circumstance that the inner parts of
the torus are more diluted for higher αvis, and therefore the overall decreased opacities allow a
higher fraction of high-energy neutrinos from deeper within the torus to escape. The behavior
of the annihilation efficiencies ηa (cf. Panel (j) of Fig. 3.26) relative between the models closely
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A8m3α5 (blue lines) and A8m3α10 (brown lines).

follows the according relative trends of the luminosities (cf. Panel (c) of Fig. 3.26). This is
reasonable since ηa ∝ (Lνe + Lν̄e). That is, initially the ηa are higher for models with greater
values of αvis, while at later times, when the accretion rates for the models with lower αvis are
higher, the situation is reversed.

Out of all simulated models with αvis > 0, the system in model A8m3α0.5 (torus plus
neutrino-driven wind) is closest to stationarity during the evolved time of 200ms. The peak of
the unbound mass-flux rate Ṁout,unb (cf. Panel (e) of Fig. 3.26) is about one order of magnitude
lower than in the reference model. One reason for this is that the luminosities within the first
∼ 100ms are degraded compared to the reference case, in average roughly by a factor of ∼ 2.
The other reason is indicated by the behavior of the heating efficiency ην,heat (cf. Panel (f) in
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Fig. 3.26), which is reduced by a factor of a few compared to the values in the reference model
within t ≲ 100ms. Thus the change, i.e. the expansion, of the torus structure caused by a higher
viscosity allows more neutrinos emitted from the densest parts of the torus to be reabsorbed in
the surface layers of the torus and to contribute to the acceleration of the wind. At the same
time, the shorter evolution timescale for increased viscosity causes a shorter phase of efficient
wind expulsion. The two aforementioned tendencies are also roughly satisfied for the remaining
models with αvis > 0, although the earlier decrease of the mass-flux rates Ṁout,unb for higher
αvis is less significant.

Both the more vigorous inflation and the initially higher luminosities and energy deposition
rates near the surface of the tori in models A8m3α5 and A8m3α10 cause a substantial entrainment
of the polar region with matter. On the one hand, this offers an enhanced amount of material to
absorb energy by means of β-processes and to be driven outward as a wind, simply due to the
fact that the volume of significant neutrino heating is enlarged. On the other hand, the strong
baryon loading prohibits the efficient acceleration of a baryon-poor e±-plasma to relativistic
velocities and thus the possibility of such a model to explain a short GRB, even though the
annihilation efficiencies ηa are initially highest for these models.

Model A8m3α10 represents the extreme case of very high viscosity αvis = 0.1. Apart from
the other models, in this model the (bound and unbound) outflow is mainly caused by viscosity.
Shortly after the torus has become radiatively inefficient in model A8m3α10, a hot low-density
bubble forms (cf. Panel (f) in Fig. 3.25) and it quickly expands outward through the torus, but
it does not trigger the formation of new bubbles and thus does not lead to convective activity.
At about t ∼ 160ms the outer edge of the bubble crosses the shell at r = 1000 km, causing a
strong increase of the mass-flux rates Ṁout and Ṁout,unb. However, since the investigation of the
advective phase of evolution, when the neutrino emission has ceased to negligible values, is out
of the scope of our present study, we will not further examine the emergence of this bubble.

The histograms showing the distribution of thermodynamic properties within the ejected
matter are given in Fig. 3.27. We ignore the models with αvis = 0, 0.1 for the moment and
focus only on the remaining models. With increasing αvis (see also the histograms for the
reference model in Fig. 3.19 on Page 102) all three distributions become broader in each according
thermodynamic quantity. The basic shape of each histogram is mainly engendered by outflow
that crosses r = 1000 km before t ∼ 100ms, and which is thus launched from the site of the torus
until about t ∼ 70 − 80ms. Up to this time, both the luminosities and the heating efficiencies
ην,heat are throughout enhanced for higher viscosities. Relative to the total mass of the unbound
outflow, a greater fraction of the outflow therefore obtains higher entropies and velocities for
higher αvis. This part of the outflow is associated with trajectories closer to the polar axis and
with the higher part of values in the Ye distribution. Furthermore, the stronger inflation of the
torus with incremented viscosity allows more of the outflow to originate from higher radii where
the irradiation of neutrinos is less intense. This part of the outflow leaves the domain of the
torus closer to the equatorial plane; it is slower and has lower values of vpol, s and Ye.

The outflow in model A8m3α0 is slightly more neutron-rich than in any of the models consid-
ered before, it barely reaches values of Ye = 0.5. The reason for this is that, since no viscously
induced large-scale circulation occurs and therefore no region of viscous inflow aggravates the
wind acceleration, material can be driven off from the torus surface with less energy input by
neutrinos compared to the case αvis > 0 and thus it experiences a smaller change in lepton
number.

The histograms for model A8m3α10 all show a bimodal distribution in that each of the
quantities vpol, s and Ye are allocated within two distinct intervals. According to these intervals,
the higher velocities, lower entropies and lower electron fractions result from the outflow that
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Figure 3.27: Same as Fig. 3.19, but for models A8m3α0 (Panels (a)-(c)), A8m3α0.5 (Panels (d)-(f)), A8m3α5
(Panels (g)-(i)) and A8m3α10 (Panels (j)-(l)).

is expelled before t ∼ 160ms. It is mostly driven by viscosity and, in terms of mass, most of it
is ejected around the equatorial plane where neutrinos are inefficient in changing the electron
fraction and thus allow for values of Ye almost as low as the initial value Ye = 0.1 at t = 0. The
remaining parts of the distributions originate from the aforementioned hot bubble that starts
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crossing the shell r = 1000 km at about t ∼ 160ms.

3.6 Different black-hole spin

Having so far only investigated models where the central BH has a rather large spin of ABH = 0.8,
we now contrast these models with models A0m1α2, A0m3α2 and A0m3α5, which have ABH = 0
and are thus evolved quasi with the Paczyński-Wiita gravitational potential. Although a non-
spinning central BH is very unlikely to result in an NS-merger, we want to assess the potential
influence of a low spin compared to a high spin of the central BH. See Figs. 3.28 and 3.29 for
contour plots and the time dependence of global quantities, respectively.

The radius of the ISCO for ABH = 0, rISCO ≈ 27 km, is about twice as high as in the reference
model and thus the effective surface of accretion is four times larger than in the models presented
before. The consequence is that matter is not compressed as much, causing lower temperatures
(cf. Panel (g) of Fig. 3.29) and is not obliged to lose as much angular momentum before it
is accreted as in the other models. These circumstances dramatically change the evolution
properties for all models with ABH = 0: For the models with αvis = 0.02, the half-lifes of the
tori are with t1/2 ≈ 35ms about three times shorter than for similar models with ABH = 0.8,
while the torus in model A8m3α5 has lost half of its mass already after about 20ms into the BH
(cf. Panel (b) in Fig. 3.29). Similar to the case of a high ABH, after about ∼ 40ms the neutrino
emission efficiency ην (cf. Panel (j) in Fig. 3.29) saturates at a nearly constant value which is
with ∼ 1.5− 2.5% not only lower than for the models with ABH = 0.8 (∼ 7%) but its value is
also only about ≈ 30−40% of the corresponding value of a test particle (compared to ≈ 60% for
ABH = 0.8) approaching from infinity. The main reason for this is that the torus initially resides
closer to the ISCO and thus traverses a smaller potential difference than compared to the case of
ABH = 0.8, as can be estimated from the difference of specific energies ∆u(r̃max, rISCO) ≈ 1.9% of
the two orbits at r̃max and rISCO (cf. Secs. 3.1, 3.3). Model A8m3α5 starts to become radiatively
inefficient within the simulated time, at t ∼ 130− 140ms ην decreases, together with the mean
energies, and the neutrino cooling timescale τν,cool diverges from the viscous heating timescale
τvis,heat.

Although all present models start emitting neutrinos with luminosities comparable to the
models with high ABH and deposit their energy initially with efficiencies ην,heat ∼ 10%, the
decay timescales of these conditions are too short to build up a sustained wind profile. Instead
of a fan of ejected material, only individual streaks of matter are blown off from the torus
surface by neutrino captures. The radial outer torus regions closer to the equatorial plane are
affected both by the rapid change of hydrodynamic conditions in the inner layers of the torus
and by the collective recombination into α-particles and heavy nuclei. The latter effect leads in
the models with αvis = 0.02 to the quasi-periodically recurring emergence (that was mentioned
already in Sec. 3.3) that a part of the expelled layers, which did not obtain enough energy from
recombination to become unbound, reverts and collides with the expanding inner layers to be
re-expelled again. The signature of this feature is clearly noticed in Panel (e) of Fig. 3.29 that
shows strong variations in the outflow mass-flux rates.

The annihilation efficiencies ηa (cf. Panel (j) of Fig. 3.29) are all considerably lower than for
similar models that have ABH = 0.8. This is caused, first, by the lower luminosities, and second
by the lower temperatures and thus lower mean energies of tori evolved with ABH = 0 compared
to the ones evolved with ABH = 0.8. The behavior of ηa relative between the models with
ABH = 0 is consistent with the earlier findings for tori with ABH = 0.8: They are throughout
greater for higher initial torus masses and they scale to a good degree with Md,0. For stronger
viscosity they are higher up to the time when the luminosities fall below the model with lower
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Figure 3.28: Same as Fig. 3.21 but for models A0m3α2 (left) and A0m3α5 (right).

viscosity and all efficiencies ηa drop about twice as fast as the luminosities, which suggests
that the declining purely geometric contribution entering the annihilation rates roughly follows
a similar trend between the models (see Page 88 for a discussion of the geometry factor). In
contrast to the models with ABH = 0.8, the polar region remains baryon free (up to the numerical
atmosphere contribution) for all models with ABH = 0 and due to the very weak neutrino-driven
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Figure 3.29: Same as Fig. 3.22 but for models A0m1α2 (black lines), A0m3α2 (green lines), A0m3α5 (blue lines)
and A8m3α2 (red lines).

winds, enclosed funnels only form up to heights z of a few hundred kilometers.

Owing to the different generation mechanism of most of the outflow (caused mainly by
viscosity and recombination around the equatorial plane instead of being driven by neutrinos
off the torus surface), the total amount of unbound matter is vastly smaller than in the models
with ABH = 0.8 and due to the reduced number of neutrino absorptions the electron fractions
are not raised as much above their initial value Ye = 0.1 (cf. Fig. 3.30, the according histograms
for model A0m1α2 are omitted). The dominant regimes in the velocity and entropy allocation
are roughly similar to the corresponding ABH = 0.8 models. However, all of the distribution
histograms displayed in Fig. 3.30 are somewhat less smooth than for ABH = 0.8, which is a
result of the unsteady nature of the equatorial outflow. Yet, it needs to be noted that in the
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Figure 3.30: Same as Fig. 3.19, but for models A0m3α2 (Panels (a)-(c)) and A0m3α5 (Panels (d)-(f)).

distributions of Fig. 3.30 the mass bins for higher values of vpol, s, Ye are strongly polluted
by material that was artificially created on grounds of the numerical atmosphere criterion (cf.
Eq. (3.8)). The influence of the latter in the models with ABH = 0 is insofar more prominent than
in the models with ABH = 0.8 as, first, the ejecta masses themselves are smaller by about two
orders of magnitude, and second, the volume fraction wherein atmosphere matter is continuously
fed into the system is greater than in most models with ABH = 0.8.

3.7 Discussion and comparison with existing studies

We summarize the main results obtained for our set of viscous models of post-merger tori in
Table 3.2. The time-averaged mean energies as given in Table 3.2 are for both species ν ∈ {νe, ν̄e}
defined as

¯⟨ϵ⟩ν(t) ≡ ∆Eout,ν/∆Nout,ν |t (3.33)

and the mean efficiencies η̄X , X ∈ {‘ν’, ‘a’, ‘a,2’, ‘unb’} are defined as

η̄ν(t) ≡ ∆Eout/(Maccc
2)
∣∣
t
, (3.34a)

η̄a(t) ≡ ∆Ea/∆Eout |t , (3.34b)

η̄a,2(t) ≡ ∆Ea/(Maccc
2)
∣∣
t
, (3.34c)

η̄unb(t) ≡ Mout,unb/Macc |t , (3.34d)

where ∆Eout(t) ≡ ∆Eout,νe(t) + ∆Eout,ν̄e(t). In the following we discuss selected aspects and
compare them with results of previous studies.
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Model
t1/2

Macc(tfin)
Md,0

∆Eout,νe (tfin) ∆Eout,ν̄e (tfin)
¯⟨ϵ⟩νe (tfin)

¯⟨ϵ⟩ν̄e (tfin) Lmax
νe

Lmax
ν̄e

[ms] [%] [1051 erg] [1051 erg] [MeV] [MeV] [1052 erg
s
] [1052 erg

s
]

A0m1α2 32 79 0.86 1.36 11.1 14.4 2.51 4.44
A0m3α2 32 79 2.13 3.53 10.6 14.5 3.27 7.00
A0m3α5 20 82 2.13 3.99 12.2 15.6 4.30 11.9
A8m1α2 114 59 2.88 4.03 12.4 15.9 4.42 7.45
A8m1α5 51 69 2.61 3.81 14.3 17.2 6.46 11.3
A8m3α0 – – 1.82 2.37 8.30 12.6 3.02 3.51
A8m3α0.5 >200 34 5.06 7.05 10.4 14.3 3.69 5.13
A8m3α2 110 59 6.61 9.66 12.1 15.6 6.89 11.2
A8m3α5 53 67 6.04 9.32 13.6 16.6 8.47 16.6
A8m3α10 36 68 4.14 7.08 14.4 17.1 9.11 23.9
A8m5α2 108 59 8.83 13.4 11.9 15.4 7.55 13.0
A8m3α2_NH 102 61 7.54 10.7 12.7 16.5 8.07 12.3
A8m3α2_NN 113 57 – – – – – –

Model
∆Ea(tfin) T 90 θcone Mout,unb(tfin) η̄ν(tfin) η̄a(T 90) η̄a,2(T 90) η̄unb(tfin)

[1048 erg] [ms] deg [M⊙] [%] [10−3] [10−5] [%]
A0m1α2 0.21 22 45 2.95e-6 1.57 0.18 0.26 3.7e-3
A0m3α2 1.23 34 40 2.31e-5 1.34 0.40 0.39 9.8e-3
A0m3α5 2.48 24 34 4.61e-5 1.40 0.73 0.74 1.9e-2
A8m1α2 1.80 48 20 9.39e-5 6.50 0.40 2.63 0.16
A8m1α5 4.03 26 10 3.27e-4 5.23 1.04 5.27 0.48
A8m3α0 0.15 70 36 9.65e-5 – 0.05 – –
A8m3α0.5 22.3 141 16 1.18e-3 6.69 2.04 13.94 1.17
A8m3α2 12.8 62 8 3.40e-3 5.15 1.19 5.24 1.92
A8m3α5 22.1 38 0 5.68e-3 4.27 2.44 8.39 2.82
A8m3α10 27.4 26 0 0.0265 3.10 4.19 10.86 13.1
A8m5α2 24.4 77 4 8.32e-3 4.26 1.58 5.40 2.84
A8m3α2_NH – – 37 5.52e-6 5.59 – – 3.0e-3
A8m3α2_NN – – 31 2.57e-3 – – – 1.51

Table 3.2: Summary of results obtained for the viscous accretion tori. Several quantities are measured at
time tfin ≡ 0.2 s. In the upper tableau are given from left to right the torus half-lifes, the accreted masses (cf.
Eq. (3.13c)) normalized to the initial torus masses, and for both neutrino species the cumulative energy losses by
outward neutrino emission (cf. Eq. (3.17c)), the mean energies (cf. Eq. (3.33)) and the maximum luminosities
Lmax

ν ≡ maxt{Lν(t)}. In the lower tableau are given from left to right the total annihilation energies ∆Ea(tfin)
(cf. Eq. (3.17e)), the time T 90 at which 90% of the total annihilation energy ∆Ea(tfin) has been liberated, the
half-opening angle of the polar funnel as defined in Eq. (3.30), the mass of unbound ejected matter (Eq. (3.26))
and the mean efficiencies as given in Eqs. (3.34).

Accretion timescale The half-life t1/2 of the torus is an important quantity, as it is a measure
for the time of possible wind expulsion and it is strongly correlated to the T 90 time that sets the
timescale for an eventual GRB activity. For our viscous torus models we approximately find for
t1/2:

t1/2 ≃ Kacc(ABH)α
−1
vis , (3.35)

i.e. it is rougly independent of Md,0. The term α−1
vis represents the natural scaling of the viscous

timescale (its significance is also seen in the results of Lee et al., 2005) and Kacc(ABH) is a
function solely of ABH which roughly scales as Kacc ∝ r−x

ISCO with 1 ≲ x ≲ 2 reflecting the strong
dependence of the accretion dynamics on the location of the ISCO. Note that the estimate of the
viscous timescale as τvis ∝ (αvisΩK(rISCO))

−1, which is obtained from dimensional arguments,
is not consistent if it is mutually applied to different BH spins since it would then give smaller
values for higher values of ABH.
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Torus structure and neutrino emission Many features regarding the typical torus struc-
ture and the neutrino signal are in qualitative agreement with previously investigated stationary,
one-dimensional models (Popham et al., 1999; Narayan et al., 2001; Kohri & Mineshige, 2002;
Di Matteo et al., 2002; Chen & Beloborodov, 2007) and with multi-dimensional simulations
(Ruffert & Janka, 1999; Lee et al., 2005; Setiawan et al., 2006) of neutrino-cooled hyperaccre-
tion disks. In accordance with Di Matteo et al. (2002), who emphasized that neutrino trapping
becomes important for high accretion rates (ṀBH ≳ 1M⊙ s−1, cf. Fig. 6 in their paper), we
see reduced emission efficiencies whenever such high accretion rates are reached. However, this
exclusively occurs for a limited duration, i.e. within the first ∼ 30 − 50ms of evolution and it
is more significant for higher values of Md,0 and αvis. However, despite the reduced emission
efficiencies, the maximum luminosities (cf. Table 3.2), which are always reached within this first
period of t ≲ 30 − 50ms, are monotonically increasing with all three varied parameters Md,0,
αvis and ABH. After the early phase of potential neutrino trapping, each torus model reaches
a stage of nearly constant emission efficiency ηmax

ν (ABH), which for ABH = 0 and 0.8 is about
∼ 1− 2% and ∼ 6− 7%, respectively. Comparing the time-averaged efficiencies η̄ν in Table 3.2
with ηmax

ν (ABH) shows that none of the tori experienced an extreme shortage of neutrino cooling;
even for αvis = 0.1 is η̄ν still roughly half as high as ηmax

ν (ABH) for ABH = 0.8. All models can
thus well be ascribed as NDAFs (Popham et al., 1999) and it is therefore likely that realistic
accretion tori resulting after an NS-merger are efficiently cooled by neutrinos, particularly con-
sidering that simulations suggest torus masses Md,0 rarely higher than about 0.1M⊙ (e.g. Lee &
Ramirez-Ruiz, 2007). One particular consequence of all simulated tori being efficiently cooled is
that convective instabilities are suppressed, which is in agreement with the analyses by Narayan
et al. (2001); Kohri & Mineshige (2002); Di Matteo et al. (2002).

Chen & Beloborodov (2007) found that the neutrino-cooled, inner portion of the disk gener-
ically is neutron-rich, Ye ∼ 0.1, and contains electrons that are mildly degenerate, µe/T ≃ 1−3.
They pointed out that these features result from a self-regulating negative-feedback effect of the
degeneracy on the cooling rate and vice versa. In fact, all of our tori exhibit the aforementioned
properties during most of their evolved times. A result that is likely related to these nearly
universal torus properties is our finding that the ratios lE ≡ Lν̄e/Lνe are uniformly close to
lE ≃ 1.3 − 1.5, independent of the model and the time of evolution (apart from short initial
phases where neutrino trapping causes νe’s to be stronger advected into the BH than ν̄e’s).
The fraction of luminosities lE ≡ Lν̄e/Lνe has an important leverage on the asymptotic Ye
that is attained by neutrino-driven wind material (cf. the text around Eq. (3.27)). From the
few multi-dimensional simulations of post-merger BH-accretion tori performed so far, only the
leakage scheme used in Setiawan et al. (2006) evaluates νe’s separate from ν̄e’s and thus allows
for an individual comparison. In contrast to our results, their obtained ratios of luminosities
are overall higher, lE ∼ 2 − 3 (cf. Table 2 in their paper). Moreover, the fact that Setiawan
et al. (2006) received almost equal mean energies for both species and thus ratios of number
luminosities lN ≃ lE causes their tori to protonize faster. Although our simulations employed a
more accurate neutrino treatment than the leakage scheme used by Setiawan et al. (2006), our
transport scheme still contains considerable approximations and even though the tests presented
in Sec. 2.4.3 revealed encouraging results regarding the calculated neutrino properties (such as
lE), future, more accurate computations have to show if our finding of an almost fixed and
relatively low lE is robust.

Off-axis outflow Our viscous torus models produce outflows on grounds of three mechanisms:
Viscous expansion, recombination and neutrino heating. Within the set of our models, the out-
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flow produced by viscosity and (to a smaller degree) recombination dominates the neutrino-
driven outflow in all models with ABH = 0 and the model with very high viscosity αvis = 0.1.
Being generated without experiencing numerous interactions with neutrinos, this kind of outflow
is highly neutron-rich, as it quasi advects the initially small electron fraction outward. However,
within the simulated times the most part of the viscous outflow generated in our models remains
gravitationally bound within the simulated times (except in the model with αvis = 0.1; however,
the complete dominance of the purely artificial viscosity in this model permits us to ignore this
model regarding further investigations).

On grounds of results from calculations similar to the ones performed in Lee et al. (2005),
but using a pseudo-Newtonian instead of a Newtonian potential, Lee & Ramirez-Ruiz (2007)
reported powerful outflows of the order of 10−2M⊙ s−1 driven by the recombination of free nucle-
ons to α-particles. The particular effect of recombination of free nucleons to α-particles (which
effectively heats matter by about 7.7MeV per nucleon per recombination) and heavy nuclei in
our models is difficult to disentangle from the viscous and neutrino-driven outflows. Although
its manifestation is noticeable – as in the outflow waves that partially retreat due to the fact
that the energy release by recombination is not enough to unbind all but merely a small part of
the outflow – mass fluxes as high as mentioned above are not reached by virtue of recombination
in our models. The culprit may be the different Ye evolution in the aforementioned simulations,
which employed the assumptions of neutrino-less β-equilibrium in the optically thick regions and
approximate capture-rate balance in the optically thin regions. Resulting from this prescription
for Ye, they received Ye ≈ 0.5 for equatorial radii R ≳ 200− 300 km such that the entire amount
of baryons could recombine to α-particles. Instead, in our models the radial outer torus edge
is neutron-rich when recombination sets in and hence a considerable fraction of baryons cannot
attain the large amount of binding energy that would be released by recombination into α-nuclei.

The neutrino-driven winds develop ejecta mass-flux rates that strongly vary in time and be-
tween the models on account of a number of reasons that were investigated in the previous
sections and which make clear that the dynamics determining the amount of the outflow and its
thermodynamic properties can hardly be captured by stationary one-dimensional models (e.g.
Metzger et al., 2008; Wanajo & Janka, 2012) or models that parametrize outflow trajectories
and associate them with static background configurations (e.g. Pruet et al., 2004; Surman &
McLaughlin, 2005; Surman et al., 2008; Caballero et al., 2012). Still, the general relativistic
wind model of Wanajo & Janka (2012) reveals admirable agreement regarding the outflow prop-
erties with what we receive in our dynamic simulations. Exploiting a model developed in Wanajo
et al. (2001), Wanajo & Janka (2012) interpreted radial trajectories emerging on grounds of given
neutrino luminosities from a proto-NS with variable neutrinosphere radii as outflow trajectories
starting from different locations of the surface of an accretion torus. A small part of their tra-
jectories (in terms of the total wind mass) have high velocities, high entropies and Ye close to
0.5, which correspond to our trajectories in the vicinity of the polar axis, and the major part
of their trajectories have lower velocities of a few times 109 cm s−1, entropies s ∼ 30 kB/nuc and
lower Ye, which is roughly found for our trajectories between the polar axis and the equatorial
region, although the entropy in our models peaks at smaller values s ∼ 20 kB/nuc and we rarely
obtain Ye < 0.3 within the neutrino-driven outflows. Calculating the nucleosynthesis along the
thus obtained trajectories, Wanajo & Janka (2012) reported a substantial amount of r-processed
material, however, they pointed out that the strong r-process (that operates up to mass numbers
of nuclei A ∼ 210) is only active within the fraction of the outflow that has Ye ≲ 0.2. Estimating
on grounds of these results, the lower entropies and higher electron fractions observed in the
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neutrino-driven winds in our models probably only allow for a less efficient, i.e. a weak, r-process
in the ejecta.

In contrast to Wanajo & Janka (2012), Surman et al. (2008) parametrized the geometry, ve-
locity and entropy of disk-outflow trajectories and calculated Ye and the nucleosynthesis using
the radiation field and the initial Ye from a post-merger configuration by Ruffert et al. (1996).
The pathways of their trajectories – divided into one straight line parallel to z followed by an-
other straight line in direction of θ ≈ π/4 – qualitatively agree with our outflow pathways as,
e.g., depicted for the reference model in Fig. 3.20. For trajectories with entropies higher than
∼ 30 kB/nuc and sufficiently short expansion timescales, their subsequent network calculations
unveiled a strong r-processing, while if the aforementioned conditions were not met, a weak r-
process was found for all of their trajectories. If we associate these results with our trajectories,
which at the present stage again can only happen at the level of speculations, potential strong
r-process viable material would only be found in the small portion of ejecta close to the polar
axis (i.e. represented by the black curves in Fig. 3.20), although the high Ye we calculate for
this region might endanger this suspicion.

νν̄-annihilation and short GRBs The cumulative annihilation energies ∆Ea ≡
∫
Qtot

a dt
(cf. Table 3.2 and see the compilation of curves Qtot

a (t) in Fig. 3.31) show a dependence on
the global parameters which is quite different from that of the total emitted neutrino energies:
First, although the effective T 90 times of energy release by νν̄-annihilation strongly decrease for
higher viscosity and despite the enhanced neutrino trapping, the total amount of energy ∆Ea

and the annhiliation efficiencies η̄a, η̄a,2 rise for models with viscosities αvis ≳ 0.02. This is a
result of the higher mean energies in models with higher viscosity and of the higher luminosi-
ties, which are encountered for early times t ≲ T 90, when the mass accretion rates ṀBH and
thus the rates of gravitational energy release are still higher compared to models with lower
viscosities. Interestingly, for fixed remaining parameters, the efficiency of νν̄-annihilation ap-
pears to have a local minimum close to a certain value αcrit

vis of the viscosity parameter (which
for Md,0 = 0.3M⊙ and ABH = 0.8 is estimated as αcrit

vis ∼ 0.02 based on our restricted set of
models), that is, the prolonged timescale of torus evolution for αvis < αcrit

vis overcompensates for
the lower luminosities and mean energies encountered during the early phases of torus evolution.

On the basis of post-processing individual snapshots at several time steps, Setiawan et al. (2006)
also calculated νν̄-annihilation rates, assuming that all neutrinos are directly emitted from the
species dependent neutrinosurfaces. They reported dependencies of the annihilation efficiency
ηa on the global parameters Md,0, αvis and ABH which are roughly in accordance with our re-
sults, but they claimed ηa to decay less steeply in time than the luminosities as a result of the
adjustment of luminosities of νe’s and ν̄e’s. This is contrary to our finding of an even more
steeply decreasing ηa compared to the luminosities. The discrepancy is likely to originate, first,
from the fact that, as mentioned before, our obtained ratio lE of the luminosities does not sig-
nificantly decline during the evolved time. Additionally, Setiawan et al. (2006) stated that the
overall geometry factor entering the annihilation rate (cf. Ga in Eq. (2.80)) is almost constant
during their evolution such that they do not need to recompute Ga for each time step. This
approximation could be justified in their models within their considered evolution time of 40ms,
but it is not fulfilled in our models which evolve for at least 200ms and which show a declining
degree of anisotropy of the radiation field that causes a decreasing fraction of neutrinos available
for annihilation in the polar region during the evolution (cf. Sec. 3.3.3).
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Figure 3.31: Compilation of the annihilation rates Qtot
a (cf. Eq. (3.16)) that are obtained by spatial integration

of the local rates within the polar cones with half-opening angle θa ≡ 15◦ for all models. In Panel (a), the results
for the models with ABH = 0.8 and in Panel (b) for the models with ABH = 0 are displayed. The association of
each curve of given linestyle and color with a certain model is defined by the assignments displayed in Panel (b).

So far the most sophisticated calculations of the νν̄-annihilation field around a thick accre-
tion torus (Birkl et al., 2007; Harikae et al., 2010), based on general relativistic ray-tracing
methods, only analyzed sets of configuration snapshots without a consistent hydrodynamic evo-
lution between the different snapshots and therefore those calculations cannot be consulted for
comparison regarding the time dependency of our results. Nevertheless, the tendencies of en-
hanced annihilation efficiency ηa with increasing torus mass and BH rotation are confirmed by
Birkl et al. (2007).

The question of what model, if any, could account for a short GRB cannot be tackled in an
accurate fashion based on our models, since both numerical (angular resolution, numerical at-
mosphere) as well as physical (Newtonian physics, approximate neutrino transport) limitations
of our models only allow for estimates, as were for instance deployed in Sec. 3.3.6 for the ref-
erence model. Still, while on the one hand the issue of the purely numerical mass loading in
the polar funnel inhibits a further evaluation of potential candidates (that have θcone > 0 in
Table 3.2), on the other hand we can clearly exclude all models with θcone = 0 to generate
outflows with Lorentz factors ≳ O(102), since the according tori pollute the polar region with
matter of densities far higher than the numerical lower limit by means of viscous and neutrino-
driven expansion. The exclusion is further supported by the finding that in our set of models,
which dynamically incorporate νν̄-annihilation in systems of post-merger tori for the first time,
also the significant energy release by νν̄-annihilation is not able to clean up the polar funnel
once it is contaminated with baryons, an effect that was conjectured, e.g., in Ruffert & Janka
(1999) and was found to be working up to a certain level in models of collapsars in MacFadyen
& Woosley (1999); Nagataki et al. (2007). Therefore, a combination of too high values of αvis,
Md,0 and ABH compromises the development of a relativistic fireball-jet in the present viscous
torus models.
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The energies deposited by νν̄-annihilation in our models in the polar region (i.e. ∆Ea up to
geometric corrections that account for the size of the actual funnel instead of the ideal cone with
half-opening angle θa) are upper limits of the energies that could finally be emitted in γ-rays at
the site of the actual short GRB for two reasons: First, the simulated tori have masses in the
upper range of what is expected to result from an NS-merger. Second, the conversion of thermal
to kinetic energy in the acceleration phase of the outflow and of kinetic energy to γ-rays when
producing the actual burst is not perfectly efficient. Adopting beaming fractions of the produced
γ-radiation of fbeam ≲ 10−3 − 10−2, our obtained upper limits are just high enough for our set
of viscous models to potentially explain the most energetic short GRBs that are observed to
have isotropic γ-ray energies of Eγ,obs ∼ 1051 erg (e.g. Nakar, 2007). Hence, in the more realistic
case of torus masses Md,0 ∼ 0.1M⊙ and non-perfect energy-conversion efficiencies our obtained
νν̄-annihilation energies would fail to explain the most energetic short GRBs. However, several
numerical and physical aspects of our models are idealized or are still too approximate to draw
definite conclusions regarding the (in-)ability of νν̄-annihilation to entirely power a short GRB.

Apart from the aforementioned issues, of which at least the purely quantitative ones might
be altered when using an improved physical and numerical treatment, the most striking feature
that disfavors the present viscous models to directly represent short-GRB progenitors is the fact
that the energy deposition rates that give rise to the outflow are throughout smooth in time,
owing to the torus flow being stable at any time. Given the observed small fluctuation timescales
of GRB lightcurves, any reasonable model of prompt GRB emission (such as, e.g., the internal
shock model, Meszaros et al., 1994) requires that the potential GRB flow already at the site of
the central engine is imprinted with fluctuations of similar frequencies and amplitudes, which
are then more or less directly translated into the γ-ray signal. However, we note again that the
α-prescription by itself is a macroscopic model that intends to describe turbulent shear stresses.
That is, by applying the approximations that are intrinsically associated with the α-viscosity,
we already ‘filter out’ highly variable flow features at the level of construction of our models.



Chapter 4

Investigated Models 2: Magnetized
Post-Merger Tori

The viscosity prescription employed for the models presented in the previous chapter is a powerful
tool that allows for a pragmatic and straightforward modeling of accretion disks. Still, it is only
a phenomenological method that embodies the complex small-scale physics of the accretion disk
within an effective theory for laminar flows. Its application particularly to multi-dimensional
disk systems is therefore accompanied with intrinsic uncertainties, not only regarding the value
of αvis, which more than likely is not truly a constant in space and time for a given disk, but also
related to the dynamic effects introduced by viscosity apart from angular momentum transport,
which the α-prescription originally is intended to model, such as viscous expansion and the
tendency to smear out local flow features and through that suppress potential instabilities.

Even though the actual physical mechanism that transports angular momentum in astro-
physical accretion disks is still to be settled and not free of debate (see Sec. 1.2.2 for comments
on that topic), magnetic fields are presently seen as the most promising instance to cause ac-
cretion, mainly due to the fact that the magneto-rotational instability (MRI) is likely to be
active in any astrophysically reasonable disk (cf. Sec. 4.1.2). Unfortunately, the inclusion of
magnetic fields into the evolution equations not only increases the complexity of the accretion-
disk physics, but it also renders the numerical investigation of the resulting turbulent accretion
torus considerably more challenging. The latter circumstance is partly brought about by the
fact that the discretization method of magnetohydrodynamics itself is more complicated than of
pure hydrodynamics and that it easily meets its limits in low-density regions where the magnetic
field is strong compared to fluid-based quantities, at least in our employed Newtonian treatment.
Furthermore, the capability of the numerical solution to truly reproduce the actual physical so-
lution of the underlying equations is substantially limited in simulations of strongly turbulent
MHD tori due to the fact that small length scales on which dynamically important effects, such
as magnetic-field amplification, (also) take place cannot be resolved with affordable resolutions.

Nevertheless, despite the aforementioned numerical limits that oblige us to be cautious when
interpreting the quantitative results of MHD-torus simulations, much of the essential physics
can be extracted from such torus simulations and it is instructive to compare the features of
the viscous accretion tori examined in Chap. 3 with the outcome of similar tori that ignore the
α-viscosity but which instead contain a magnetic field. However, due to the long computation
time for each MHD model (for reasons mentioned in Sec. 4.2.2) and the restricted time for
completion of this thesis, the results in this chapter rather serve as an outlook for future, more
conclusive studies.
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We begin this chapter by outlining the ideal MHD equations and the basic features of the
MRI in Secs. 4.1.1 and 4.1.2, respectively, followed by the presentation of the model setup and
the evolutionary scheme in Sec. 4.2. In Sec. 4.3 we present the results of the simulations and
finally discuss selected aspects in Sec. 4.4.

For formal discussions we will almost exclusively express the magnetic field in Heavyside-
Lorentz units, denoting it then by b, but we will use B ≡

√
4πb in CGS units (i.e. in Gauss ‘G’)

for numerical evaluations and plots.

4.1 Magnetic fields in accretion disks

4.1.1 The equations of ideal magnetohydrodynamics

The equations of MHD result from the coalescence of the Euler and the Maxwell equations
given the conditions that the considered spatial and temporal scales are large enough to neglect
microscopic effects, such as plasma and cyclotron oscillations, and that the velocities are small
compared to the speed of light such that the displacement current and the electric force density
(e.g. Jackson, 1975) can be neglected. Moreover, the ideal MHD equations are obtained when as-
suming an infinite conductivity1 of the plasma. Defining et,∗ ≡ et+em and Pg,∗ ≡ Pg+Pm (where
em ≡ Pm ≡ b2/2 are the magnetic energy density and the magnetic pressure, respectively), the
ideal MHD equations read

∂tρ+∇j(ρv
j) = 0 , (4.1a)

∂t(ρYe) +∇j(ρv
j) = QN , (4.1b)

∂t(ρv
i) +∇j(ρv

ivj + Pg,∗ − bibj) = −ρ∇iΦ+Qi
M , (4.1c)

∂tet,∗ +∇j

(
vj(et,∗ + Pg,∗)− vib

ibj)
)

= −ρvj∇jΦ+QE + vjQ
j
M , (4.1d)

∂tb−∇× (v× b) = 0 , (4.1e)

∇ · b = 0 , (4.1f)

where we have added the source terms due to neutrino transport and gravitation (cf. Secs. 2.2.3
and 3.1.1); this system represents the full set of equations that is solved in the present study next
to the neutrino moment Equations (2.8). The impact of magnetic fields on the fluid is to exert
additional forces due to magnetic pressure and magnetic tension. The magnetic field is evolved
with the induction Equation (4.1e) under the constraint of vanishing monopoles, Eq. (4.1f). Par-
ticularly the latter constraint of a divergence-free magnetic field imposes a delicate requirement
on the numerical scheme. Our evolution algorithm handles this issue by not defining the discrete
magnetic field variables as averages on cell interfaces instead of cell-volume averages but, i.e. it
utilizes a staggered-grid scheme for the magnetic fields, more specifically the constrained trans-
port scheme (Evans & Hawley, 1988) which ensures ∇ · b = 0 up to machine accuracy during
the evolution. For the numerical inter-cell fluxes of the hydrodynamic quantities we apply the
HLLD Riemann-solver (Miyoshi & Kusano, 2005) that takes into account an increased number
of characteristic waves (see below). More details regarding our employed numerical treatment
of magnetic fields are given in Appendix B.

Similar to the Euler equations and the radiation moment equations when augmented with
an analytic Eddington factor as described in Chap. 2, the Eqs. (4.1) constitute a hyperbolic

1Note that an infinite conductivity (i.e. a vanishing resistivity) renders the magnetic field unable to dissipate
its energy into internal energy by means of reconnecting field lines. However, with the amount depending on the
discretization method and the resolution, one always encounters a non-vanishing numerical resistivity in practical
calculations, similar in principle to the numerical viscosity already appearing in hydrodynamic calculations.
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set of partial differential equations and as such they describe a system wherein information is
propagated along characteristic waves traveling with individual speeds (given by the eigenvalues
of the Jacobian of the vector of fluxes contained in the divergence operators in Eqs. (4.1), see
e.g. Roe & Balsara, 1996 for the detailed eigenvalue structure of ideal MHD). In contrast
to the three characteristic waves in the purely hydrodynamic case, one ends up with seven
characteristic waves when going over to ideal MHD: The entropy wave traveling with the fluid
velocity remains, the sound waves are replaced with the slow and fast magnetosonic waves and
the purely magnetic Alfvén waves complete the set. The velocity of the latter type of waves,
called the Alfvén velocity, is given by

cA ≡ ±
b

|b|
cA , where cA ≡

|b|
√
ρ
, (4.2)

in the fluid frame.
Finally, let us record a quantity that is commonly used in MHD to estimate the local impor-

tance of magnetic fields, given by the ratio of the gas pressure to magnetic pressure

βmag ≡
Pg

Pm
, (4.3)

and which is simply referred to as “plasma-β” in the following.

4.1.2 The magneto-rotational instability

Although this instability was already recognized more than 50 years ago by Velikhov (1959);
Chandrasekhar (1960), the MRI experienced revived attention only after the analyses by Balbus
& Hawley (1991), hence why it is also called the Balbus-Hawley instability. The MRI is a
linear instability, which means that a dispersion relation and the resulting stability criteria and
perturbation growth rates can be derived using linear perturbation theory. The classical Solberg-
Høiland criterion (cf. Eq. (3.22)) for hydrodynamic instability can be generalized for a magnetic
system (Balbus, 1995) to take into account the MRI together with instabilities triggered by
entropy and/or composition gradients. Moreover, it was shown by Gammie (2004) that the
MRI operates similarly in the relativistic Kerr metric as in the Newtonian case.

We neglect entropy and composition gradients for the present purpose and focus only on the
poloidal modes, which we assume to be excited with wave vectors k ≡ kez, with z-coordinate
unit vector ez. It then follows from perturbation analysis that all modes with (Ω is the angular
velocity and R the cylindrical radius)

(k · cA)2 < −
dΩ2

d lnR
, (4.4)

will be unstable, i.e. will grow exponentially. Expressing this result differently: For small enough
k there will always exist unstable modes, as long as

dΩ

dR
< 0 , (4.5)

which is virtually fulfilled in any astrophysical accretion disk. It furthermore follows from
Eq. (4.4) that the MRI is a weak-field instability: Any arbitrarily small initial field will be
amplified, in principle (i.e. assuming that the above linear growth conditions remain valid dur-
ing the amplification) until it has reached a certain strength of which the allowed unstable wave
modes are too large in spatial extent to fit into the disk anymore.
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The wavelength λmax of the fastest growing mode for a given value of cA,z ≡ cA · ez and the
according minimal growth timescale τMRI of that mode are given by

λmax = 2π cA,z

{
−

(
1

4
+

ω2
epi

16Ω2

)
dΩ2

d lnR

}− 1
2

≃ 8π√
15

cA,z

ΩK
, (4.6a)

τMRI = 2

∣∣∣∣ dΩ

d lnR

∣∣∣∣−1

≃ 4

3

1

ΩK
, (4.6b)

where ωepi (cf. Eqs. (3.24)) and ΩK are the epicyclic frequency and the Keplerian angular
velocity, respectively, and the second equalities in Eqs. (4.6) have been obtained for the case of
Keplerian motion in a purely Newtonian potential. The poloidal MRI thus grows on the orbital
timescale, which in our considered post-merger accretion tori corresponds to a few milliseconds
close to the BH.

The simple formulae presented above can of course only make statements about the onset
of instability for infinitesimally small amplitudes. To obtain insights into the later evolution,
that is the non-linear stages of the unstable system, inevitably requires employing numerical
studies. To this end, a convenient method is chosen in local shearing box simulations, wherein
only a small patch of the accretion disk is considered such that the basic properties of the
MRI turbulence can be examined with high resolution. The aim of local studies is to establish
a numerically unambiguous connection between the properties of the turbulent state (e.g. the
average hydrodynamic and magnetic stresses and the saturated magnetic field strengths) and the
imposed physical background conditions. Concerning the latter, the most often varied instances
are the net magnetic field threading the box (e.g. Hawley et al., 1995; Guan et al., 2009), a
mechanism of explicit dissipation by means of viscosity and resistivity (e.g. Lesur & Longaretti,
2007; Fromang, 2010) or radiative energy transport (e.g. Turner, 2004), and a stratification in
z-direction (e.g. Davis et al., 2010; Shi et al., 2010; Simon et al., 2011). An interesting and up to
this day puzzling result is that numerical convergence was only achieved in the aforementioned
studies when at least one of these instances was indeed included, i.e. no converged simulation
has been reported so far for unstratified boxes with vanishing net magnetic field and no physical
dissipation (see e.g. Fromang & Papaloizou, 2007, for a discussion).

A generic property of the turbulent phase of the MRI (and also in its channel-mode, see
below) is that the magnetic, or Maxwell stress ⟨brbϕ⟩ dominates the hydrodynamic, or Reynolds
stress ⟨ρvrδvϕ⟩ by a factor of a few (where ⟨·⟩ denotes the average over a typical length scale
and δvϕ ≡ vϕ − ⟨vϕ⟩) and is thus the main driver of angular momentum transport.

For the case of an axisymmetric evolution – as in the simulations presented in this the-
sis – there are some peculiarities of the magnetic field evolution that have to be taken into
account. First and most obvious, toroidal field modes of the MRI, which require non-zero az-
imuthal wave vectors, cannot be studied in axisymmetry. Taken the structure of the induction
Equation (4.1e), a direct consequence is that if we would start our simulations with a purely
toroidal field, we would not observe any MRI activity. Second, in stark contrast to its turbulent
stage, the MRI may also develop a well-ordered mode, the “channel mode” (Hawley & Balbus,
1992), which consists of a pattern of magnetic and velocity fields that are constant in radial
direction and alternate in z-direction. Due to the strong correlation of radial and azimuthal
field components, this mode exhibits very efficient transport of angular momentum. In three
dimensions it is quickly destroyed via secondary “parasitic” instabilities (which are typically of
the Kelvin-Helmholtz type, Goodman & Xu, 1994) which lead the flow into a turbulent state,
whereas in two dimensions the channel mode may persist longer and is particularly prominent
close to the BH in our simulations. Third, since our axisymmetric simulations are set up with
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a global zero-net magnetic field and numerical dissipation is unavoidably present, the MHD
turbulence will eventually decay as a consequence of the anti-dynamo theorem (Cowling, 1934,
see also Moffatt, 1978), which states that sustained field growth by axisymmetric turbulence in
an isolated, dissipative system is not possible.

In accordance with what is stated above, comparisons between two- and three-dimensional
simulations of non-radiative, thick tori (e.g. Hawley et al., 2001; De Villiers & Hawley, 2003)
have shown that accretion in axisymmetry occurs more violently than in 3D in the early phases
but it is weaker in the long term.

4.2 Model setup

4.2.1 Initial model and selected parameters

The initial hydrodynamic configuration of the magnetic accretion tori is similar to the viscous
torus models, see Sec. 3.1.2, the only difference being that the ambient medium of the torus, as
given initially and as maintained during the simulation, is defined differently, see Sec. 4.2.2 for
details. Again, the moments of the neutrino radiation field are initially vanishing.

We attempt to conduct a matter-of-principles study using simple initial conditions for the
magnetic field that are given only by a small set of parameters. This is to offer future investiga-
tions (wherein the magnetic field is likely to be evolved consistently from well before the merger
of the compact objects) to compare with our study of manually constructed models, and to
compare our results with previous studies of thick accretion disks that employed similar initial
conditions. Our construction method of the initial magnetic field is thus along the lines of a
large number of previous numerical studies of thick accretion tori (e.g. De Villiers et al., 2003;
Shibata et al., 2007). A single poloidal field loop encircling the region of highest density in the
R − z-plane is initialized under usage of the vector potential A ≡ (Ar, Aθ, Aϕ) of the magnetic
field (where b ≡ ∇×A) by

Ar = Aθ = 0 , (4.7a)

Aϕ(r, θ) = max {Aϕ,0 (ρ0(r, θ)− ρA) , 0} . (4.7b)

In Eq. (4.7b), the initial density distribution ρ0(r, θ) is given in Eq. (3.4). The quantity ρA > 0
arranges the magnetic field to be confined to regions with densities ρ0 > ρA and is used merely for
numerical convenience to avoid small time steps right in the beginning of the simulation; we use
ρA = 1010 g cm−3 throughout this study. The normalization of the magnetic field, determined
by Aϕ,0, is chosen such that the ratio β̄mag,0 ≡ etoti /etotm |t=0 of the volume integrated internal and
magnetic energies is β̄mag,0 = 103. The reason why β̄mag,0 is not chosen considerably lower is
twofold: First, this ensures that the magnetic field is initially of minor dynamic importance and
develops the latter self-consistent in the course of the magnetohydrodynamic torus evolution.
Since the disk evolution proceeds in a turbulent, chaotic manner the intention is thus to reduce
artificial dependencies on the initial configuration. Second, by taking initial magnetic fields too
strong, the according wavelength λmax (as estimated in Eq. (4.6a)) of the fastest growing MRI
mode would exceed the thickness of the torus, leading to an attenuated MRI activity. The reason
for not choosing a considerably higher β̄mag,0 – which would mean that dynamically important
magnetic fields would grow from weaker initial seed fields on smaller length scales rendering the
initial conditions somewhat less arbitrary – is simply given by the fact that our limited amount
of grid cells is supposed to provide at least about 5-10 grid cells to resolve a single wavelength
of the fastest growing MRI modes in the dense inner region of the torus.
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Figure 4.1: Initial configuration of density (upper
panel, see Sec. 4.2.2 for the definition of the density
of matter surrounding the torus) and absolute magnetic
field (lower panel, with |B| = 0 in white regions) for the
models with ABH = 0.8 (cf. Table 4.1). Overlaid arrows
denote the direction of B.

Model β̄mag,0 Md,0 ABH,0 r̃max ρmax,0 Tmax,0 Neutrinos
[M⊙] [M⊙] [km] [1011 g cm−3] [MeV] evolved?

A0m3mag 103 0.3 0 50.0 6.5 4.9 yes
A8m3mag 103 0.3 0.8 47.4 6.5 5.6 yes
A8m3mag_NN 103 0.3 0.8 47.4 6.5 5.6 no

Table 4.1: Model parameters for the magnetic torus models. See Sec. 3.1.2 for definitions of quantities not given
in this chapter.

The initial distributions of density and magnetic field are visualized in Fig. 4.1. The chosen
parameters of our simulated models are summarized in Table 4.1. Our reference model in
this chapter, A8m3mag, is accordingly similar to the viscous reference model of Chapt. 3. Two
additional models are set up to explore the difference to the case of neglected neutrino evolution
and to the case of a vanishing spin of the central BH.

4.2.2 Details of the evolution scheme

We solve the MHD Eqs. (4.1) together with the neutrino moment Eqs. (2.8). All grids, bound-
ary conditions and modifications regarding the fluid velocities are equally employed as in the
simulations of the viscous tori, see Sec. 3.1.3. Concerning the magnetic field variables, we set the
ghost zones (being cell surfaces in our staggered-grid scheme) at both radial boundaries using
0th-order extrapolation in the transverse components (θ, ϕ), which fixes the values for the radial
component by virtue of the solenoidal constraint ∇ · b = 0. In the angular θ-direction, reflective
boundary conditions are applied.

The numerical atmosphere, in contrast, is compared to the non-magnetic calculations now
subject to a considerably more stringent condition to allow for affordable time steps, essentially
because the velocities of the fastest characteristic MHD waves (which are ≥ |b|/√ρ in abso-
lute value) easily reach critical values as soon as the magnetic field is transported out of the
dense inner torus into the dilute polar-axis region. For the present study, we therefore use the
atmosphere prescription

ρatmo(r, t) = min

{
104

( r

1000 km

)−2.5
, 5× 108

}
g cm−3 , (4.8)
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which is time independent and implies a more massive medium surrounding the torus compared
to the one that was used in the previous chapter. The evolutionary features of the main disk body
(accretion dynamics, neutrino emission, off-axis outflows etc.) are unlikely to be significantly
affected by this measure. On the contrary, the impact on the axis region is more dramatic –
since this region generically tends to exhibit low densities – and is primarily to increase the
“stagnation radius” of the transition from inflow to outflow where gravitational attraction and
outward forces (of thermal or magnetic origin) cancel each other. This radius will be shifted
to about several hundred kilometers outward, i.e. the development of a relativistic, polar jet
originating close above and below the BH, caused by any mechanism, will be strongly suppressed.

The initial configuration of the ambient medium is given by Eqs. (3.10) using the definition
of ρatmo of Eq. (4.8).

4.3 Results

In the following, we describe the dynamic properties and the global evolutionary features of
the magnetized torus, the neutrino characteristics and the properties of the outflow. If not
distinguished explicitly, the properties we report on apply similarly well to all three models,
where applicable. See Figs. 4.2–4.4 for contour plots of several quantities at fixed times for the
reference model A8m3mag and Fig. 4.5 for the time evolution of global quantities for all three
models.

4.3.1 Dynamic evolution

Initial phase An immediate consequence of the differential-rotation profile of the disk is
that the initially purely poloidal field is wound up around the symmetry axis and hence cre-
ates a toroidal field with dominant field strength around the equatorial plane (cf. Panel (j)
in Figs. 4.3, 4.4) within the first few milliseconds after the start of the simulation. The field
winding increases the ratio of the volume integrals of the magnetic and internal energy from
initially about 10−3 by almost two orders of magnitude and it moreover causes angular mo-
mentum transport and therefore accretion (cf. the first ∼ 15ms in Panel (a) of Fig. 4.5) by
means of both magnetic tension and magnetic pressure. As a result of the initial magnetic flux
being directed radially inward in the entire upper hemisphere and radially outward in the entire
lower hemisphere (cf. Fig. 4.1), the sign of the thus developed toroidal magnetic field is positive
(negative) everywhere in the upper (lower) hemisphere and the toroidal field is vanishing in the
plane z = 0, where a current sheet is formed. While the radial inner edge of the torus approaches
the BH in the midplane, the increasing magnetic pressure in the low-density layers of the torus
above and below the midplane is responsible for a transient expulsion of a highly magnetized
off-axis outflow that carries mostly toroidal magnetic field, see Fig. 4.2. This appearance is in
close analogy to the “magnetic-tower” model, coined as such by Lynden-Bell (2003) and simu-
lated, e.g., by Kato et al. (2004) in the context of collapsar models. Due to the absence of a
confining pressure (as provided by the atmosphere of the colliding star in case of the collapsar
scenario), however, the magnetic tower freely expands outward and the tightly wrapped helical
structure turns into a mostly radial field. The centrifugal barrier successfully detains significant
amounts of matter from entering the polar region, i.e. a baryon-poor funnel forms. The small
amount of matter in the funnel has negligible specific angular momentum leading in turn to an
almost vanishing toroidal magnetic field. In essence, the inner edge of the initial poloidal field
loop is advected inward into the funnel while retaining its original orientation and it remains in
this well-ordered configuration during the entire simulation.
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Figure 4.2: Contour plots for model A8m3mag at time t = 5ms. In Panels (a)–(e) are shown the contours
of the density ρ, temperature T , entropy per baryon s, electron fraction Ye, and of the quantity Bpol/Bϕ ≡√

B2
r +B2

θ/Bϕ (note that the magnetic field vanishes in the black region at the present time t = 5ms). The
contours in Panels (f)–(j) show the absolute, energy integrated flux density F̄νe ≡ |F̄νe | of electron neutrinos, the
net heating rate by β-processes Q+

β ≡ max{Qβ , 0}, the heating rate by νν̄-annihilation Qa, the radial velocity

vr, and βmag (cf. Eq. (4.3)). The arrows in Panel (f) indicate F̄νe , with a saturated maximum length for
F̄νe > 1036 erg cm−2 s−1, while the arrows in Panel (i) indicate vpol ≡ (vr, vθ, 0)

T with a saturated maximum
length for |vpol| > 2× 109 cm s−1. The black lines in Panel (d) denotes the curve where Xα +Xh = 0.5.
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Figure 4.3: Same as Fig. 4.2 but at time t = 30ms and with a rescaled spatial plotting range and with partially
rescaled color palettes.
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Figure 4.5: Comparison of the time evolution of global quantities between the models written above in the
colors that specify the according line colors. The labels associated with different line styles are analog for colored
lines. In the panels are displayed: (a) the mass accretion rates of the BH, (b) the torus masses and the accreted
masses, (c) the outwardly emitted luminosities, (d) the luminosities LBH/L advected into the BH normalized
to the outwardly emitted luminosities, (e) the ratios etotX /(Mdc

2) (X ∈ {‘k’,‘i’,‘m’}) of the spatially integrated
kinetic, internal and magnetic energies to the current rest-mass energy of the torus, (f) the accretion timescales,
(g) the maximum densities and temperatures, (h) the neutrino cooling timescales, (i) the mean energies of emitted
neutrinos, and (j) the efficiencies of neutrino emission and annihilation. See Secs. 3.2 and 3.2 for the definitions
of the quantities. Note that very short fluctuation timescales of the quantities are filtered out in our plots since
data points of finite time-resolution between ∆t ∼ 0.1− 1ms are utilized.

Onset of turbulence At about ∼ 15ms after the start of the simulation, the non-linear phase
of the MRI is initiated and the torus turns into a turbulent state, starting at small radii where
the growth rates are highest, cf. Eq. (4.6b). The turbulent motion destroys the well-ordered
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Figure 4.6: Contour plots of time averaged quantities for models A0m3mag (top row), A8m3mag (middle row) and
A8m3mag_NN (bottom row). The time intervals used for the averaging procedure are given above for the left and
right column. Five data sets per millisecond are utilized for the practical computation. The plotted quantities are
indicated next to each color bar. The black lines denote regions where the specific energy ũ = 0 (cf. Eq. (3.25)),
i.e. they delineate regions where matter is gravitationally bound from regions where matter is unbound.

configuration of the magnetic field everywhere except in the funnel region and it causes regions
of opposite sign of the toroidal magnetic field to mix into each other. The fully established
turbulent state is marked with variations of all local quantities on length scales ranging from
the grid scale to the thickness of the disk and it is efficient in transporting angular momentum
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outward; the accretion rates are of order ∼ 1M⊙ s−1. Typical poloidal absolute velocities within
the disk are ∼ 108−109 cm s−1, resulting in fluctuation timescales of many global quantities (i.e.
the ones that are mainly determined in the innermost torus region, cf. Fig. 4.5) to be of the order
of milliseconds or less. Turbulent compressional and shock heating increases the temperatures
within the torus by several MeV (up to more than 10MeV for the models with ABH = 0.8)
and leads to an immediate rise of the neutrino luminosities. The inability of the torus in model
A8m3mag_NN to release internal energy via neutrino cooling results in higher temperatures and
lower maximum densities than in the neutrino-cooled tori, however, the accretion rate and thus
the efficiency of the MRI to transport angular momentum is not visibly affected by this property.
In model A0m3mag, the less compact torus close to the BH allows for higher accretion rates and
results in lower temperatures and densities; these features were analogously noticed for the
viscous torus models in Chap. 3.

We identify in all models four characteristic regions (see also Fig. 4.6 where time-averaged
contour plots are shown) which were also found in previous studies both in two- and three-
dimensional, as well as in Newtonian and relativistic MHD calculations, see e.g. De Villiers
& Hawley (2003); McKinney & Gammie (2004) and references therein. Partially adopting the
terminology of the aforementioned authors, we distinguish the following structural components
in the system:

• The main disk body with the highest densities and temperatures resides around the mid-
plane within radii of r ≲ 1 − 2 × 107 cm, which in the radiative models is also the region
where the major part of net neutrino emission occurs (cf. Panels (f),(g) in Figs 4.2–
4.4). Here, the magnetic pressure is subdominant compared to the thermal pressure, i.e.
βmag ≫ 1.

• The main disk body is surrounded by a coronal region wherein the magnetic pressure is
higher than in the main disk body, eventually reaching βmag ∼ 1. The transition from the
main disk body to the corona is more pronounced in the neutrino cooled models and at
later times.

• Moreover, a funnel-wall jet in the form of a thin, hollow cone of unbound outflow is
nestled onto the centrifugal barrier that represents the funnel wall. Going to smaller
polar angles θ, the magnetic field exhibits a transition from a highly time-variable, small-
scale structure to a steady, large-scale, mostly radial field. The outflow is created on
grounds of a magnetocentrifugal mechanism – it is thus also seen in the non-radiative
model A8m3mag_NN – which appears to be a generic feature of thick, magnetized accretion
disks at least whenever a well-ordered, polar magnetic field forms and is maintained during
the evolution (e.g. De Villiers et al., 2005; Hawley & Krolik, 2006; Beckwith et al., 2008).
This ejection mechanism is loosely related to the mechanism suggested by Blandford &
Payne (1982), however, one important difference lies in the fact that the acceleration does
not occur due to and along the lines of a large-scale magnetic field threading the disk
but rather by the turbulent flow within the corona squeezing material onto the centrifugal
barrier. In a numerical investigation dedicated to study similar outflows, Hawley & Krolik
(2006) figured that the outward acceleration is managed by the total (gas plus magnetic)
pressure whose time-averaged contours are oblique to the contours of the effective potential
Φeff ≡ l2/(2r2 sin2 θ) + Φ(r) (where l is the roughly constant specific angular momentum
along an outflow trajectory) along which the flow is ‘directed’ outward. Both the mass
fluxes within the funnel-wall jet and the location of the boundary separating the funnel-wall
jet and the corona are highly time-variable, see Sec. 4.3.3 below.
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• Finally, the polar funnel is evacuated up to the numerically lower limit and is magnetically
dominated, βmag ≪ 1. The conditions in this region potentially (that is, if the region would
not be polluted with as much unphysical atmosphere matter as in our present simulations)
offer the plasma to be accelerated up to relativistic velocities, either thermally by νν̄-
heating or magnetically, for instance by the Blandford-Znajek (BZ) process, which to be
described would necessitate a general relativistic treatment of MHD. Using significantly
lower numerical floor values for the density in their non-radiative calculations than we
can afford with our combined neutrino-transport scheme, studies of modern GRMHD
simulations (e.g. De Villiers et al., 2005; Hawley & Krolik, 2006; Beckwith et al., 2008)
find a polar funnel that is so much depleted of baryons that the magnetic energy emag

exceeds the baryonic rest-energy ρc2, and they exert this criterion, in turn, as the defining
property of the polar funnel. Even though we do not have emag > ρc2 in our simulations,
we designate the polar region wherein ρ ≈ ρatmo (cf. Eq. (4.8)) as a ‘funnel’, as it is visibly
diluted compared to the surrounding torus walls, and we assume that the aforementioned
inequality would be fulfilled if we had employed a sufficiently low ρatmo.

Due to similar densities and temperatures, the thermodynamic conditions in the main disk body
are similar as in the viscous tori (see Sec. 3.3.2). That is, the baryonic pressure is dominant over
the partial pressures of charged leptons, photons and neutrinos and the degeneracy of electrons
is moderate and it is small for neutrinos. Moreover, the electron fractions are Ye ≲ 0.1 in the
bulk of the torus where ρ > 1010 g cm−3.

Subsequent evolution The violent turbulence in the phase described above is not maintained
and starts to cease at about t ∼ 40−50m, whereas the qualitative structure of the disk, however,
is kept unchanged. At this stage, a large part of the poloidal magnetic field resides on length
scales close to the smallest possible scale of the simulated turbulent cascade, the grid scale, at
which it will ultimately dissipate since no ‘new’ poloidal field is generated by means of dynamo
action (which is inhibited in our axisymmetric calculation). As the amplitudes of variations
of the remaining MHD quantities likewise decrease, the reduced turbulent transport of angular
momentum translates into smaller accretion rates. The remaining torus evolution in the models
with neutrino cooling is somewhat different than in the non-radiative model A8m3mag_NN: In the
latter model, the slow decay of turbulence leads at t ≃ 120ms to a complete shut-off of accretion
(up to the accretion of numerically originated atmosphere matter from within the funnel region).
In contrast, the neutrino cooling in the two other models leads to tori that gradually become
geometrically thinner and more compact. Through this, additional kinetic energy is collected
within the equatorial region which can be tapped by the magnetic field. Hence, the tori in these
models continue to accrete with, albeit highly fluctuating, roughly constant accretion rates of
a few times 10−1M⊙ s−1, of which though, to be precise, about ∼ 1 × 10−1M⊙ s−1 have to be
accounted to the accretion of purely numerical atmosphere matter. Furthermore, within radii of
about 100 − 200 km, the coronal regions in these models successively become more magnetized
(see Panel (e) of Fig. 4.5 and Panel (c) of Fig. 4.6). This effect is caused by the accumulation
of magnetic fields buoyantly rising out of the main disk body into the corona and it has been
repeatedly seen in stratified, local (e.g. Miller & Stone, 2000; Turner, 2004) and global (e.g.
Penna et al., 2010) simulations. Due to the high magnetic-field strengths, the MRI tends to be
suppressed in the the coronal region; note that this circumstance would not change if we had
performed the calculations in three dimensions or with higher spatial resolution.
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4.3.2 Neutrino emission

In Fig. 4.5 we show several global quantities associated with the neutrino emission, see Secs. 3.2
and 3.3 for the definitions of quantities not explicitly given here. All neutrino luminosities rise by
a factor of a few and start fluctuating as soon as, owing to the MRI, turbulent motions of matter
are induced and thus the temperatures are increased. The luminosities of ν̄e’s are throughout
higher than for νe’s by a factor of ∼ 1.4 − 1.6, very similar to the results of Chap. 3. They
reach their maximum values of Lν ≃ 9× 1052 erg s−1 and 5× 1052 erg s−1 for BH spin ABH = 0.8
and 0, respectively, in the strongly turbulent phase between t = 15 − 40ms whereupon they
successively decrease by about one order of magnitude until t = 0.2 s. The according emission
efficiencies ην ≡ (Lνe + Lν̄e)/(ṀBHc

2) (cf. Panel (j) of Fig. 4.5) are roughly constant until
t ∼ 100ms (apart from high-frequency fluctuations) and with ην ≃ 6 − 10% and 1 − 3% for
the two BH spins approximately similar to what was found for the viscous torus models (cf.
Chap. 3). The subsequently slowly dropping value of ην reveals that the decrease of luminosities
after t ∼ 100ms is not caused by a declining mass accretion rate (as the latter remains roughly
constant in time) but by a reduced conversion efficiency of internal energy to emitted neutrino
energy. The reason for this is that the mean temperatures in the dominantly emitting region
have dropped and thus cause reduced capture rates of electrons and positrons (recall that these
have a high temperature sensitivity ∝ T 6, cf. Eq. (2.25), and note that the maximum and
not mean temperatures are plotted in Panel (g) of Fig. 4.5). At the end of the simulations at
t = 0.2 s, the emission efficiencies for the two values ABH = 0.8 and 0 have declined to about
ην ≃ 2% and 0.5%, respectively.

The mean energies of emitted neutrinos, ⟨ϵ⟩ν in Panel (i) of Fig. 4.5, approximately follow the
tenor of the temperatures within the main disk body, i.e. within the violently turbulent phase
(15ms≲ t ≲ 50ms) they are high (⟨ϵ⟩νe(ν̄e) ≃ 11(15)MeV) and they subsequently decrease by
about 1− 2MeV, and they are throughout slightly lower in model A0m3mag than in A8m3mag.

The annihilation efficiency ηa ≡ Qtot
a /(Lνe + Lν̄e) reaches only for model A8m3mag peak

values well above 0.1% and only in the strongly turbulent phase, whereupon ηa slowly decreases
to values between than ηa ≃ 10−4 − 10−5 until t = 0.2ms. In accordance with the results
obtained for the viscous tori in the previous chapter, the annihilation efficiency for a vanishing
BH spin ABH is uniformly lower (by about one order of magnitude), which is a result of both the
lower luminosities and the less compact geometrical structure of the inner region of dominant
νν̄-annihilation.

4.3.3 Outflow properties

In Fig. 4.7, we show in Panel (a) the surface integrated mass fluxes of the total outflowing
matter Ṁout, of the unbound outflowing matter Ṁout,unb and of the inflowing matter2 Ṁin,
in Panel (b) the fluxes of partial energies transported outward by unbound matter, and in the
remaining panels the outward mass fluxes (Panels (c),(d)) and their time integrals (Panels (e),(f))
for models A8m3mag and A8m3mag_NN. All quantities are calculated at the reference radius r =
rout ≡ 1000 km. Moreover, in the contour plots in Panels (c),(d) of Fig. 4.7 and in Fig. 4.6
the black lines delineate regions of the flow wherein matter is formally unbound, i.e. where the
specific energy ũ > 0 (cf. Eq. (3.25)).

2See Sec. 3.3.5 for the explicit calculation of Ṁout and Ṁout,unb. The inward mass flux Ṁin is defined analog
as Ṁout, but only cells where vr < 0 are accounted for the surface integration. The inward mass flux Ṁin is
introduced to quantify the fraction of matter that reverts and might thus be counted several times within the
outwardly directed mass fluxes.



134 CHAPTER 4. Investigated Models 2: Magnetized Post-Merger Tori

Mass Flux at r = 1000km

0 50 100 150 200
t [ms]

10-6

10-5

10-4

10-3

0.01

0.1

1

(∂
M

/∂
t)

X
 [

M
O •
 /s

]

(∂M/∂t)in × 0.1
(∂M/∂t)out,unb

(∂M/∂t)out

Energy Flux at r = 1000km

0 50 100 150 200
t [ms]

10-3

0.01

0.1

1

10

pa
rt

ia
l e

ne
rg

y 
fl

ux
es

 [
10

51
er

g/
s]

magnetic

thermal

kinetic

(a) (b)

Model: A8m3mag

0 0.2 0.4 0.6 0.8 1
θ / π

0

50

100

150

200

t [
m

s]

Log { ∂2Mout / (∂θ∂t)  [MO • /rad/s] }

-5 -4 -3 -2 -1 0
   

Model: A8m3mag_NN

0 0.2 0.4 0.6 0.8 1
θ / π

0

50

100

150

200

t [
m

s]

Log { ∂2Mout / (∂θ∂t)  [MO • /rad/s] }

-5 -4 -3 -2 -1 0
   (c) (d)

Model: A8m3mag

0 0.2 0.4 0.6 0.8 1
θ / π

10-6

10-5

10-4

10-3

0.01

∂M
X
 / 

∂θ
  [

M
O •
 /r

ad
]

200ms

150ms

100ms

50msin

out,unbound

out,total

Model: A8m3mag_NN

0 0.2 0.4 0.6 0.8 1
θ / π

10-6

10-5

10-4

10-3

0.01

∂M
X
 / 

∂θ
  [

M
O •
 /r

ad
]

(e) (f)

Figure 4.7: Dynamical proper-
ties of the outflow as measured
at the radius r = 1000 km. In
Panel (a) are shown the total and
unbound mass outflow rates Ṁout

and Ṁout,unb, respectively, and the
inward mass fluxes Ṁin and in
Panel (b) the energy flux rates as
defined in Eqs. (4.9) only associated
with the ejected, unbound matter as
functions of time are displayed. In
Panels (c) and (d) we show for the
designated models the contours of
∂θṀout as function of the polar angle
θ and time t, where white regions in
the θ − t–plane indicate mass inflow
(i.e. ∂θṀin > 0) and the black line is
determined by the condition ũ = 0.
In Panels (e) and (f) the according
time integrated quantities ∂θMout,
∂θMout,unb and ∂θMin as functions
of θ are plotted for the labeled times.

Both types of outwardly directed mass fluxes peak within t ≲ 50ms for all models and reach
values of several 10−1M⊙ s−1. The outflow measured during this time far away from the torus
at r = 1000 km is mainly driven by the initial transient magnetic field expansion, which occurred
within t ≲ 15ms in the close vicinity of the torus, rather than by means of a stationary (and
more physically realistic) expulsion mechanism. After the quasi-stationary structure has been
established, the total mass outflow rates Ṁout gradually decrease to ∼ 1 − 3 × 10−2M⊙ s−1

until t = 0.2 s, relative to which the share Ṁout,unb representing unbound outflow declines in the
meantime roughly by an order of magnitude. Additionally, for t ≳ 0.1 s inward directed mass
fluxes occur with about Ṁin ∼ 10−2M⊙ s−1. To see which part of the flow is responsible for
what kind of outflow, we further analyze each of the three sites contributing to Ṁout: The axial
funnel, the corona and the funnel-wall jet.
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In the axial funnel the stagnation surfaces with vr = 0, beyond which outflows occur, lie at
radii of several hundred kilometers which are dictated both by the atmosphere density distri-
bution ρatmo, cf. Eq. (4.8), and the outward forces caused by magnetic pressure and thermal
heating due to νν̄-annihilation. Since both ejection mechanisms become weaker as the disc ac-
cretes into the BH, the stagnation radii increase with time and eventually reach r = rout, giving
rise to the white regions around θ = 0, π in Panels (c),(d) of Fig. 4.7. Due to the numerical
restrictions mentioned before, the calculated outflow properties within the axial funnel are not
physically reasonable and could, in principle, spoil the mass fluxes Ṁout(,unb). Nevertheless,
the mass fraction of matter expelled from within the funnel region extending to polar angles
θ < θfunnel ≃ 0.05π − 0.1π (and analogously in the lower hemisphere) is small compared to
the residual outflow (cf. Panels (e),(f) of Fig. 4.7). Although we cannot exclude that artificial
atmosphere matter entered regions with θ > θfunnel (i.e. entered the funnel-wall jet) before being
measured at r = 1000 km, this contribution is should be negligibly small compared to the dom-
inant part of ejected matter within the funnel-wall jet, simply on account of the strong lateral
density contrast between funnel and funnel-wall jet which is always more than ∼ 2 orders of
magnitude for all r (see, e.g., the contour plots in Figs. 4.3, 4.4).

In the coronal region large filamentary and time-variable structures of gas and tangled mag-
netic fields constitute a flow that slowly expands outward, not necessarily at a fixed time but
averaged in time. In analogy to the viscous disks of Chap. 3, the main driver of the equatorial
expansion is angular momentum transport. From the plots in Panels (c)-(f) of Fig. 4.7, we see
that the unbound matter expelled within polar angles 0.3π ≲ θ ≲ 0.7π originates entirely from
the initial phase – and it thus has only a transient character of minor physical relevance – and
the subsequently measured outflow into the according solid angle remains bound and partially
retracts.

The majority of unbound matter is dragged outward within the funnel-wall jet. Denoting by
θcorona the polar angle delimiting the funnel-wall jet from the corona at r = rout (represented by
the time-dependent, hemisphere-averaged polar angle associated with the two black lines closest
to θ = π/2 in the plots in Panels (c),(d) of Fig. 4.7), we notice from Panels (c)-(f) that the
lateral width rout(θcorona − θfunnel) of the funnel-wall jet, together with the amount of matter it
transports, decreases in time, and that the decrease occurs faster for the non-radiative model
A8m3mag_NN than for model A8m3mag. In Panel (b) of Fig. 4.7, we compare for both models the
partial energy fluxes, defined by3

Fkinetic ≡ ek v (4.9a)

Fthermal ≡ (ei + Pg) v (4.9b)

Fmagnetic ≡ (em + Pm) v− (v · b)b = |b|2v− (v · b)b , (4.9c)

where we only account for the contribution that is carried with all of the unbound material
through the shell at rout including the fraction originating in the funnel region, which is relatively
minuscule, though. The magnetic contribution is throughout smaller by up to an order of
magnitude compared to the kinetic-energy and thermal fluxes. This implies that in the outflow
the magnetic fields and their possible dissipation into thermal energy at some later stage would
not significantly change the (thermo-)dynamics of the outflow. The thermal fluxes appear to
make up a slightly greater part of the total energy fluxes in the outflows in model A8m3mag

3The fluxes given in Eqs. (4.9) are obtained from the decomposition of the flux transporting the total energy in
its according evolution Equation (4.1d). The fluxes Fthermal and Fmagnetic are not the actual fluxes of internal and
magnetic energy but rather the fluxes of internal and magnetic enthalpy. The magnetic-enthalpy flux as written
in Eq. (4.9c) is equal to the electromagnetic Poynting flux c (E×B)/(4π) (with E being the electric field) in ideal
MHD.
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Figure 4.8: Histograms of the distribution of mass elements ∆Mout,unb/Mout,unb of all unbound matter ejected
for t > 50ms as function of the logarithmic absolute poloidal velocities vpol (left column), the logarithmic entropies
per nucleon s (middle column) and the electron fraction Ye (right column). From top to bottom the histograms
for models A8m3mag, A0m3mag and A8m3mag_NN are shown.

compared to model A8m3mag_NN, at least until about t ∼ 120− 140ms, rendering the outflow in
the radiative model slightly hotter. However, the intense time-variability of the curves inhibits
us from positioning conclusive statements at this point.

Given the fluctuating, chaotic behavior of the flow, we have to be cautious in interpreting
the result that the radiative model A8m3mag yields a geometrically wider and enhanced amount
of outflow compared to its non-radiative counterpart A8m3mag_NN: First, the fact that regions of
net neutrino cooling and heating continuously mix into each other and are not subdivided by
a single, simple-shaped gain surface (see Figs. 4.3 and 4.4) as in the viscous case inhibits us
from utilizing the amount of (locally and globally) net absorbed energy as an indicator for the
efficiency of neutrinos in contributing to the wind acceleration. And second, the fact that we
only have this small set of simulations at hand does not allow us to ensure the robustness of this
obtained result under slight variations of the initial conditions. On the one hand, the transport
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of neutrinos may directly enhance the mass-ejection power by means of energy deposition in the
launching region. Concerning this individual process, one would expect a hotter outflow that
due to its own pressure laterally expands more on its way outward than its purely counterpart
in the non-radiative model. On the other hand, the change of the torus structure, mostly by
cooling, may represent an indirect way of neutrinos to cause the observed differences. Most
likely, a combination of both aspects will be present, but clearly more simulations have to be
performed to settle this issue; this is left to future work.

The thermodynamic properties of the unbound outflow are summarized in Fig. 4.8 which
shows the results of the binning procedure that was performed similarly for the viscous models
(see Sec. 3.3.5 for computational details), the one difference being that for the present analysis
we only account for the unbound matter that arrived r = rout for t > 50ms. By doing so, we
neglect the outflow expelled on grounds of the initial transient and regard only the interesting
part of the outflow which is generated by the quasi-stationary outflow mechanism. The overall
wind properties are remarkably similar to what was seen for the viscous torus models. That
is, the window of the most prominent fluid velocities is roughly vpol ∼ 1 − 4 × 109 cm s−1 and
most of the outflow (in terms of mass) has entropies of s ∼ 15 − 30 kB/nuc. For the radiative
models the dispersion of velocities is slightly wider than for the non-radiative model, which is
consistent with the above finding that the angular width covered by the unbound outflow in
model A8m3mag is higher than in A8m3mag_NN and thus allows for a greater variety of outflow
velocities. Compared to the viscous torus models, in the present models the tails in the high-
value regimes of velocity and entropy are missing. These tails were brought about by matter
expelled close to the polar axis, which had much lower densities than we can afford in the
present simulation. Thus, these tails are expected to likewise occur in the magnetized torus
models if they were calculated with the same numerical atmosphere prescription. Within the
domain of the electron fraction, the outflow in model A8m3mag mostly populates the interval
Ye = 0.25− 0.45, while the outflow in model A0m3mag with Ye = 0.2− 0.3 is considerably more
neutron-rich. The lower electron fractions in the latter model compared to the model with
ABH = 0.8 caused mainly by the lower luminosities and to some degree by the fact that the
outflow (i.e. the funnel-wall jet) is generated slightly further away from the BH such that the
fluid experienced less intense irradiation by neutrinos on its way outward.

4.4 Discussion

We summarize several results for the magnetized-torus models in Table 4.2. Except for the
following modifications, all definitions of the tabulated quantities can be found in Secs. 3.2,
3.3.5 and 3.7.

To account for the facts that we use a higher floor density of the surrounding medium and
that we only want to regard the outflow for t > 50ms, the quantities θcone,Mout,unb and ηunb
are computed slightly different compared to the case of the viscous tori, Eqs. (3.30), (3.26) and
(3.34d), respectively.

θcone ≡ min { θ , where ρ(r = 100 km, θ, t = 50ms) ≥ 107 g cm−3 } , (4.10a)

Mout,unb ≡
∫ 200ms

50ms
Ṁout,unb(t̃) dt̃ , (4.10b)

η̄unb ≡ Mout,unb/(Macc(170ms)−Macc(20ms)) , (4.10c)

where for the computation of the outflow efficiency ηunb we take into account an estimated
average time delay for the outflow generated at some time t to reach the shell r = 1000 km at
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Model
t1/2

Macc(tfin)
Md,0

∆Eout,νe (tfin) ∆Eout,ν̄e (tfin)
¯⟨ϵ⟩νe (tfin)

¯⟨ϵ⟩ν̄e (tfin) Lmax
νe

Lmax
ν̄e

[ms] [%] [1051 erg] [1051 erg] [MeV] [MeV] [1052 erg
s
] [1052 erg

s
]

A0m3mag 200 50 1.27 2.02 8.49 13.11 2.96 4.06
A8m3mag >200 25 2.62 4.06 9.50 13.94 4.17 7.71
A8m3mag_NN >200 18 – – – – – –

Model
∆Ea(tfin) T 90 θcone Mout,unb η̄ν(tfin) η̄a(T 90) η̄a,2(T 90) η̄unb

[1048 erg] [ms] deg [M⊙] [%] [10−3] [10−5] [%]
A0m3mag 0.20 46 21 1.04e-3 1.23 0.096 0.13 0.98
A8m3mag 2.27 47 12 5.76e-3 5.08 0.58 3.28 10.61
A8m3mag_NN – – 18 2.20e-3 – – – 5.17

Table 4.2: Summary of results obtained for the magnetized accretion tori. Apart from the redefinitions in
Eqs. (4.10), this table is equivalent to Table 3.2 that shows the results for the viscous torus models.

time ∼ t+ 30ms.

Numerical restrictions Before discussing selected physical aspects, we first want to comment
on the influence of the numerical limitations, which cannot be ignored in simulations of turbulent
systems such as the present MHD accretion tori and which have to be taken into account in the
subsequent discussions particularly when referring to quantitative features. Although we did not
present explicit resolution tests, it is clear that our simulations are not fully converged. However,
fully resolved global simulations of turbulent MHD accretion tori are not affordable at present,
even for calculations of non-radiative disks (see Hawley et al., 2011; Shiokawa et al., 2011,
for recent discussions on that topic). The primary consequences of an insufficient resolution
are expected to be the following: The growth of magnetic fields and the level and duration
of turbulence induced by the MRI are both reduced. This results in the tendencies that the
accretion rates, temperatures and thus the luminosities and νν̄-annihilation rates are attenuated.
The quantitative errors are difficult to estimate, but they can potentially be tens of percent or
even more. The second important numerical restriction in our axisymmetric models is that the
MHD turbulence generically decreases on grounds of suppressed dynamo action. Even though
the early turbulent phase in 2D (according to about the first 50ms in our simulations) was found
to be slightly more intense than in 3D (e.g. De Villiers & Hawley, 2003), the level of turbulence
is maintained in 3D while it successively decreases in 2D. This translates into the expectation
that relative to the mass on the grid the luminosities and annihilation rates would not decrease
as fast in the according 3D counterparts of our simulations.

The impact of both aforementioned issues on our obtained outflow properties is not as clear.
With enhanced MHD turbulence the absolute amount of mass ejected per time should increase on
grounds of the faster release of gravitational energy due to accretion. However, the efficiency of
outflow expulsion, as measured by η̄unb, may be sensitive to the resolution or the dimensionality
in some non-trivial way. For instance, a lower resolution enhances numerically caused field-line
reconnection and particularly in the region of the funnel-wall jet – that is located between the
funnel, which contains a large-scale field with homogeneous polarity, and the corona, which
contains turbulent small-scale fields – could the resulting magnetic-energy dissipation have a
non-negligible influence on the amount and thermodynamic properties of the outflow. However,
compared to our present results, we expect no fundamentally different outcome from simulations
of similar physical configurations but calculated with higher resolution or in 3D.
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Comparison with viscous models Concerning the local structure, the magnetized tori have
several features discriminating them from the viscous models: First, the flow pattern is turbu-
lent rather than smooth as in the viscous models. While in the viscous model the gravitational
energy is directly converted into internal energy, in the magnetized tori the internal energy is
instead mainly increased indirectly by means of turbulent motions in the flow induced by the
MRI. The resulting conditions for neutrino emission, though rather different as seen instanta-
neously, nevertheless yield mean efficiencies η̄ν that are in accordance with the viscous models,
at least for αvis < 0.1, indicating that the magnetized tori are efficiently cooled. Second, also the
time-averaged torus structure is different in that the magnetized tori do not comprise the single
large-scale circulation pattern wherein matter is driven outward around the equatorial region
and inward along the torus surface. Moreover, in the neutrino-cooled viscous tori unbound out-
flow is driven almost exclusively by neutrinos whereas we see for the magnetized tori a genuinely
magnetically driven off-axis outflow.

Concerning the global efficiency of angular momentum transport, based on the torus half-lifes
t1/2 (cp. Tables 3.2 and 4.2), the magnetized tori are comparable to viscous accretion tori that
would have αvis ∼ 0.005 − 0.01. However, as mentioned before, this value is expected to be
higher for increased resolution or in a three-dimensional calculation. Akin to what was seen in
the viscous models, the higher BH spin ABH leads to lower accretion rates but higher tempera-
tures, luminosities and νν̄-annihilation rates.

The finding that the outflow in model A8m3mag has a lower mean electron fraction than the
outflow in similar models with moderate α-viscosity αvis ≲ 0.05 (compare, e.g., with the his-
tograms for the viscous reference model in Fig. 3.19) is partially a result of the more massive
outflow in the present model: For comparable luminosities and outflow velocities, it takes longer
to increase Ye in the outflow if it is loaded with more baryons. A definite comparison between
both torus models is hampered by the fact that the torus structures in our simulated viscous
and magnetized tori are very different to begin with: In the viscous tori the outflow is induced
mostly thermally at the top of the quasi-stationary torus surface while the outflow in the present
models results from the interplay of centrifugal forces, magnetic fields and turbulent motions.

Comparison with existing studies The qualitative features seen in our magnetized-torus
simulations (i.e. the structure of the magnetic fields and the flow components as described in
the paragraph Onset of turbulence) are similar to what was seen in non-radiative Newtonian
(Hawley, 2000; Stone & Pringle, 2001) and, where applicable, general relativistic MHD simula-
tions (De Villiers & Hawley, 2003; McKinney & Gammie, 2004; De Villiers et al., 2005; Hawley
& Krolik, 2006) of thick BH-accretion tori starting with a single poloidal field loop. However,
these studies were performed in a general context – they ignored any microphysics and used an
ideal-gas EOS – and they did not attempt to specifically model NS-merger remnants; Hence,
we refrain from quantitative comparisons at this point. Nonetheless, a result that we deduce to
be consistent with 3D GRMHD calculations (De Villiers et al., 2005; Hawley & Krolik, 2006) is
that the mass flux rate of unbound outflow ejected in the funnel-wall jet considerably increases
with ABH while at the same time the mass accretion rate decreases.

The calculations that are closest to ours so far were performed by Shibata et al. (2007) and
Shibata & Sekiguchi (2012). Shibata et al. (2007) exploited a neutrino-cooling scheme similar to
Lee et al. (2005) to simulate disks with Md,0 = 0.1− 0.4M⊙ around a BH of mass MBH = 4M⊙
in two dimensions in a fixed general relativistic background, starting with initial conditions sim-
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ilar to ours (equilibrium torus containing a single poloidal field loop) and varying the spin of the
BH, the torus mass and the torus geometry. Different from our initial magnetic field with global
plasma-β of β̄mag,0 = 1000, they chose a stronger initial magnetic field with β̄mag,0 = 200 and
their evolution time spanned 60ms. Although the qualitative evolution of their models is very
similar to ours and the ranges of their global quantities are in the same ballpark as ours, the
higher initial magnetic field strength leads to an enhanced MRI turbulence with magnetic-field
energies that grow up to values equal to the internal energy until they saturate (model “D” in
Fig. 3 in their paper), i.e. almost an order of magnitude higher than in our models (cf. Panel (e)
of Fig. 4.5). Resultingly, Shibata et al. (2007) obtained higher accretion rates and higher neutrino
luminosities. In contrast, their mean emission efficiencies η̄ν were with η̄ν ∼ 1− 3% lower than
ours. However, the neutrino emission appears to be heavily sensitive to the explicit choice of the
trapping parameter that they used to regulate the density above which the material becomes
opaque to neutrinos. The qualitative structure of the torus and of the magnetic field reported
in Shibata et al. (2007) are similar to ours, but the authors did not make any statements about
outflows produced in their simulations. Where applicable, the qualitative results obtained in
Shibata et al. (2007) were recently confirmed in Shibata & Sekiguchi (2012) by calculations that
exerted a gray two-moment scheme.

Initial magnetic field and outflow A very important issue concerning the question of how
generic our obtained flow structure and the efficiencies η̄X are, is connected with the uncertainty
of the magnetic-field topology that we employ as initial condition. In a study dedicated to this
topic, Beckwith et al. (2008) took4 a variety of initial magnetic field conditions, varying the
number of poloidal field loops and also taking a purely toroidal field. On the one hand, their 2D
and 3D simulations revealed that the properties of the main disk body and the corona show only
a modest quantitative dependence on the initial field topology, with the initially toroidal field
leading to slightly lower accretion rates. This is accounted to the near-universal outcome of the
small-scale, MRI-driven turbulence. On the other hand, the formation of a large-scale magnetic
field in the polar region and with it the accomplishment and efficiency of any kind of outflow
(both in the funnel and or transported within a funnel-wall jet) was seen to be crucially depen-
dent on the existence and structure of initial poloidal field loops. With a single poloidal field
loop (such as we employ) the radially inner edge of the loop – wherein magnetic fields contribute
to the global magnetic flux with equal polarity – becomes dragged into the polar region right
in the beginning of the simulation before the MRI starts and it retains its large-scale structure,
mainly because the highly tangled field that is subsequently accreted inward stems from the part
of the initial poloidal loop that had the same global polarity. The part of the magnetic field
that originally had the opposite global polarity (recall that the global zero-net magnetic flux
is conserved) remains in the radially outer layers, which continuously expand due to angular
momentum transfer from the inner layers. On the basis of this sort of intrinsic ‘memory’ of
initial field conditions, which is an ultimate consequence of the solenoidal constraint ∇ · b = 0,
it can also be understood that for initial poloidal field loops of higher order the strength and
polarity of the funnel field changes systematically, depending on the polarity and topology of
initial field loops and the dynamics of how they become advected inward. For example, several
poloidal loops of equal polarity lined up along the equatorial direction within the initial torus
in one model of Beckwith et al. (2008) lead to the episodically recurring establishment and ex-
tinction of the funnel field. In another model by Beckwith et al. (2008) starting with a purely
toroidal magnetic field, the inability of the magnetized flow to build up a large-scale poloidal

4Even though in the present discussion we consider only the simulations by Beckwith et al., 2008, the results
obtained and conclusions drawn in De Villiers et al., 2005; McKinney & Blandford, 2009 are analog.
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field, at least within the limited time of this simulation, completely suppresses the development
of a polar funnel field, which is necessary for an efficient BZ-process (see next paragraph), and
with it of a funnel-wall jet, which represents the only channel for the production of significant
(in terms of mass) unbound outflow in this kind of models.

Based on the findings of Beckwith et al. (2008), we conjecture that in our models the prop-
erties related to the main disk body (accretion rate, neutrino emission and annihilation) should
be fairly robust under a change of the initial magnetic-field topology, and hence they should
also be approximately insensitive to the actual outcome of the magnetic-field structure resulting
after an NS-merger, at least under the condition that the magnetic-field strengths grow during
the merger (by whatever mechanism) to sufficiently high values in order to induce turbulence
into the flow of the remnant disk. In contrast, the results for the amount and properties of our
calculated outflow are afflicted with a greater uncertainty. It is possible that the permanent,
mostly magnetically driven outflow that we see in models A8m3mag and A0m3mag would be much
less powerful for other underlying field topologies. In that case, neutrino heating within the
torus-surface layers would presumably be more important in driving subrelativistic outflow off
the torus surface. Future studies have to reveal what features of the neutrino-driven winds that
have been identified for the viscous tori in Chap. 3 may be resembled in such magnetized tori
that do not feature a strong magnetically driven wind.

Our models can (and should) easily be extended to more complicated initial field topologies,
however, the necessary step to remove, or at least diminish, the contingencies regarding the
magnetic-field structure is to consistently evolve the magnetic fields from before the merger.
Assuming the cases studied by Beckwith et al. (2008) are representative concerning the on-
and off-axis, magnetically driven outflow (what has yet to be tested for the case of post-merger
remnant disks), the magnetic-field configuration that is established during and after the merger
would be crucial for both nucleosynthesis-relevant aspects and short-GRB central-engine physics.
Nevertheless, due to the high computational demands, simulations of magnetized compact object
mergers (see, e.g., Giacomazzo et al., 2011 and Etienne et al., 2011 for state-of-the-art NSNS- and
NSBH-merger calculations, respectively) still have problems evolving the post-merger phase long
and accurately enough to track the magnetic field and its shear-, MRI- and dynamo-supported
growth on all relevant length scales. Strong large-scale magnetic fields in the polar funnel have
been reported so far only from a single simulation in Rezzolla et al. (2011). However, even
though these authors report a continuous activity of unbound outflow ejection, they do not
unveil its location of origin and its expulsion mechanism.

Funnel region and short GRBs The inertia of matter dragged into the funnel are insignif-
icant compared to the magnetic field. What results is that the dynamics here are essentially
one-dimensional (that is, along the radial magnetic field lines) and solely determined by the
competition of gravitational attraction, which is artificially enhanced due to the creation of
matter whenever the density floor ρatmo is reached, and outward decreasing magnetic and ther-
mal pressure. Given the large values of ρatmo that we were forced to employ, our result that
inflow occurs up to several hundred kilometers (see, e.g., Fig. 4.4) is not physical and would be
altered regarding the according stagnation radii to values far closer to the BH horizon if we were
able to abdicate the atmosphere prescription. To facilitate the formation of a highly relativistic
outflow, the funnel region needs to be loaded with only a few baryons (see, e.g., the estimate of
γGRB given in Eq. (3.32)). Within the set of viscous torus models (cf. Chap. 3), we saw that
for high values of αvis the axis region quickly became filled up with matter due to both vis-
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cous inflation and the neutrino driven winds, and the densities there grew to values significantly
higher than the minimum densities used for our magnetized models (cf. Eq. (4.8)). We do not
know how much matter from the disk would truly be dragged into the funnel region if we had
employed a much smaller density floor ρatmo, however, no bulk motion of magnetized flow into
the funnel region is observed in our simulations. This is a result of, first, the fundamentally
different behavior of turbulent magnetic flow compared to viscous flow – more specifically the
direct conversion of gravitational into internal energy in case of a viscous flow, which leads to
an enhanced expansion of the torus – and second, the existence of the well-ordered polar field
in the funnel region that dominates the inertia of matter, forcing the fluid to move along the
essentially fixed magnetic field lines. Hence we expect that a (potentially) relativistic outflow
would occur here, driven in our Newtonian models by thermal heating due to νν̄-annihilation5,
which eventually could produce short GRBs at large radii.

The alternative paradigm of GRB central engines suggests magnetic fields to accomplish the
acceleration to high Lorentz factors, a popular and extensively studied mechanism being the
BZ-process where the electromagnetic energy is obtained directly from the BH. For this process
to work, two prerequisites are needed: First, a large-scale magnetic field, connecting the BH
horizon with large radii and ‘mediating’ the flux of electromagnetic energy, has to be present.
Second, the background spacetime and with it the magnetic field needs to be dragged around
the central BH, i.e. the BH must rotate. As a result, a toroidal magnetic field, and with it a
non-vanishing Poynting-flux, is permanently produced due to the winding of the polar field. To
reach a high ‘luminosity’ LBZ of the BH (defined as the rate of electromagnetic energy crossing
the BH horizon in outward direction), the magnetic field strength, giving rise to a magnetic flux
Ψ through the horizon, and the spin ABH of the BH have to be high. Specifically, in the original
analytic model by Blandford & Znajek (1977) LBZ is given by

LEM =
1

6c

(
ΩHΨ

8π

)2

, (4.11)

where ΩH ≡ (1 +
√

1−A2
BH)ABHc

3/(2GMBH) is the angular velocity of the BH. Less than a

decade ago it became possible to examine the BZ-mechanism in self-consistent (in the sense that
both the jet and the disk are modeled together) global GRMHD simulations and several groups
have performed extensive studies (e.g. McKinney & Gammie, 2004; McKinney, 2006; Hawley
& Krolik, 2006; Beckwith et al., 2008; Nagataki, 2009; McKinney & Blandford, 2009; Barkov
& Baushev, 2011) of the eventually emerging Poynting jet. Starting with initial conditions
that qualitatively resemble our Newtonian models (isolated initial torus containing a single
poloidal field loop), Hawley & Krolik (2006) found in their 3D simulations an efficiency ηBZ ≡
LBZ/(ṀBHc

2) of the obtained BZ-like mechanism that roughly fits

ηBZ ≃
2× 10−3

1−ABH
, (4.12)

that is, for ABH = 0.8 their models would convert the gravitational energy of the torus into
electromagnetic energy with an efficiency as high as ηBZ ≃ 10−2. Thus, although only a part of
the total Poynting flux of typically ∼ 0.1− 0.5 (McKinney & Gammie, 2004; Hawley & Krolik,
2006) is directly fed into the funnel region and may be used to accelerate polar outflows, the

5Although magnetic pressure in the vicinity of the central BH helps in accelerating the flow initially, the polar
magnetic field is quasi-static in our simulations and it quickly decreases with distance, while the energy from
νν̄-annihilation is transported away with the outflow, thermally accelerating it up to much larger radii.
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resulting energy flux would outweigh the one provided by νν̄-annihilation (cf. η̄a,2 in Table 4.2)
by a few orders of magnitude. However, as portrayed in the paragraph Initial magnetic field,
the initial configuration of the magnetic field is highly influential on ηBZ and a single poloidal
magnetic field in the initial torus is a specific configuration leads to a permanent large-scale
funnel field and with it a very high value of ηBZ. Hence, given that the actual post-merger
configuration of the magnetic field is largely unclear, there is so far no reason to believe that the
values of ηBZ given by Eq. (4.12) truly apply to a post-merger torus accreting onto a BH.
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Chapter 5

Summary, Conclusions and Outlook

The goal of this work was to investigate the early evolution of an NS-merger remnant consist-
ing of a thick accretion torus that girds a BH, with particular focus on the various kinds of
outflow that could be generated or influenced by neutrinos in this system. The occurrence of
massive, subrelativistic, neutron-rich outflows that offer conditions suitable for the r-process
would render this system a relevant contributor to the present repertoire of r-process elements
in our universe. Moreover, the generically baryon-depleted region around the symmetry axis of
the system could represent the physical environment where with the help of annihilating neu-
trino pairs an ultrarelativistic outflow is launched to generate a short GRB far away from the BH.

The proper characterization of a post-merger remnant disk and of the aforementioned types
of outflow necessitates the description of the transport of neutrinos consistently from the loca-
tion of their dominant production in the dense innermost regions of the accretion torus out to
the surrounding regions where they are partially absorbed by baryons or annihilate with their
antiparticles. However, due to the tremendous computational demand, a fully accurate calcu-
lation based on the seven-dimensional BE is out of reach. Therefore, the first part of our work
was to refine an existing approximate neutrino-transport scheme and to test its capabilities to
properly describe various physical situations. The basic approach of this scheme is to evolve
the first two angular moments of the specific radiation intensity, the scalar energy density and
the vectorial flux density, and to assume the next higher angular moment, the radiation pres-
sure tensor that is needed to close the set of moment equations, to be expressed as an analytic
function of the evolved angular moments. The resulting scheme is consistent in both extreme
regimes of radiation, the diffusion regime and the free-streaming regime, and it takes into ac-
count frame-dependent effects such as advection, aberration and Doppler redshift up to first
order in v/c.

Using the analytically closed, two-moment transport scheme in combination with a high-order
numerical scheme for hydrodynamics and employing a common prescription to approximate
turbulent angular momentum transport as effectively resulting from viscous shear stresses, we
performed a variety of simulations initialized with typical configurations that represent post-
merger accretion tori, varying the mass Md,0 of the torus, the strength of the shear viscosity
αvis and the spin ABH of the central BH. Because no such simulations with consistent energy-
dependent neutrino transport have been performed so far and since we were guided to answer
the general matter-of-principle questions that were stated in the introduction of this thesis, we
chose as initial conditions simple equilibrium torus configurations, which are functions of a small
set of parameters and are straightforward to reproduce. We took into account both neutrino
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species of the electron flavor and as possible interaction channels the β-processes and scatter-
ing processes with nucleons, as well as the gas-energy source term resulting from νν̄-annihilation.

In a second smaller set of three models we replaced the viscous α-prescription for angular mo-
mentum transport by a magnetic field, which initially was placed with an exemplary topology
of a single poloidal field loop into the torus. Models of turbulent, magnetized tori have the
advantage that the angular momentum transport is described self-consistently, but they have
the disadvantages that unaffordably high numerical resolution would be needed to resolve all rel-
evant length-scales and that certain evolutionary features may depend on the arbitrarily chosen
initial magnetic field.

Summary of results for viscous tori

The overall features concerning the hydro- and thermodynamics in the innermost torus regions
as well as of the neutrino radiation field as calculated in our simulations are nearly independent
of the varied global parameters. The generic flow pattern in the viscous models is charac-
terized by a single large-scale circulation, wherein matter approaches the BH along the torus
surface while matter flows away from the BH in the torus midplane. In all simulated tori, we
found that matter above densities ρ ∼ 1010 g cm−3 is highly neutron-rich, with electron frac-
tions of Ye ∼ 0.1, and it comprises modestly degenerate electrons. The generic thermodynamic
conditions within the net neutrino-emitting region give rise to typical neutrino luminosities of
Lνe ∼ Lν̄e ∼ 1050 − 1053 erg s−1 and they appear to substantiate a ratio lE ≡ Lν̄e/Lνe of lumi-
nosities from electron antineutrinos to electron neutrinos that nearly universally in time and for
different models is close to lE ∼ 1.3− 1.5. The emission of neutrinos is strongly enhanced in the
polar directions around the symmetry axis compared to the equatorial directions. Given that
the torus matter within the evolved times not only emits neutrinos but also absorbs and scatters
neutrinos with rates that monotonically rise with density and temperature, the reduced emis-
sion around the torus midplane can be understood as a result of the existence of torus-shaped
neutrinosurfaces, from which neutrinos are effectively emitted. Since electron antineutrinos have
reduced absorption opacities compared to electron neutrinos on account of the lower abundances
of protons than neutrons in the torus, the neutrinosurfaces of electron antineutrinos lie deeper
within the torus and thus cause electron antineutrinos to be emitted with higher mean energies
⟨ϵ⟩ than electron neutrinos, with typical values of ⟨ϵ⟩ν̄e ∼ 12− 16MeV and ⟨ϵ⟩νe ∼ 8− 12MeV.

The comparison of a radiative torus model with a similar torus that is unable to release neutrinos
revealed that neutrino-cooling is decisive for keeping the torus convectively stable. Although we
likewise encountered decreasing electron fractions in the radial direction for the model with neu-
trino transport, in contrast to the simulations by Lee et al. (2005) we did not find the negative
lepton gradient to cause convection. However, Lee et al. (2005) employed a simplified treatment
that did not consistently evolve the electron fractions.

The shear viscosity αvis and the spin ABH of the BH have a significant influence on the overall
behavior of the torus. The main impact of a higher shear viscosity αvis is to accelerate the
overall torus evolution, and thus to shorten the lifetime t1/2 of the torus (at which half of Md,0

has been accreted) due to the quicker conversion of gravitational energy into internal and ki-
netic energy. We reproduced the natural scaling behavior of t1/2 ∝ α−1

vis to a good degree in our
models. As a result, the mass-accretion rates and neutrino luminosities are initially higher, but
after some time they fall below the corresponding values of models with lower viscosity. Owing
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to a smaller radius of the ISCO, the tori in models with higher BH spin are more compact with
higher maximum densities and temperatures and they accrete more slowly onto the BH than
tori evolved with lower ABH. We found significantly prolonged torus lifetimes t1/2 for ABH = 0.8
compared to ABH = 0 roughly by a factor of ∼ 3. Compared to the global parameters αvis and
ABH, the torus mass Md,0 has a less strong influence on the torus evolution, at least within our
chosen range of Md,0 = 0.1− 0.5M⊙, and mainly exists in an enhanced and prolonged effect of
neutrino trapping within the early phase of evolution. The torus lifetimes t1/2 are not notably
sensitive to Md,0 and the mass accretion rates and luminosities are fairly proportional to Md,0.

For all investigated models, the neutrino emission efficiency ην associated with the conversion
of rest-mass energy into released neutrino energy is typically low in the first phase of the evo-
lution due to the fact that the high temperatures and densities in this phase induces a partial
trapping of neutrinos, which in turn causes a fraction of neutrinos to be advected with the fluid
into the BH. The time and the degree of significant neutrino trapping increase with the torus
mass and the viscosity. Subsequently, the emission efficiencies closely adjust to values ηmax

ν

that only depend on the BH spin and that scale with the specific gravitational binding energy
of particles near the ISCO. We find ηmax

ν ≃ 2% and ≃ 7% for ABH = 0 and 0.8, respectively.
Occasionally, the tori become radiatively inefficient when the maximum densities ρmax fall below
ρmax ∼ 109 − 1010. As averaged over the evolved time of tfin = 0.2 s, all investigated tori are
efficiently cooled by neutrinos, and until tfin = 0.2 s all BH-torus systems convert a fraction of
∼ (0.5 − 1) × ηmax

ν of the rest-mass energy that is accreted onto the BH into released neutrino
energy.

To explore the role of neutrino-energy deposition in the torus layers that surround the net
emitting region and to thus assess the importance of neutrinos in driving outflows compared to
other possible outflow mechanisms, we contrasted a torus model with full neutrino transport with
a purely neutrino-cooled torus model, where net heating by neutrinos was ignored. We found
that in the latter model the viscous angular momentum transport causes a gradual spreading
of the disk and that the outflow driven by energy release from recombination of free nucleons
to nuclei is subdominant compared to the neutrino-driven wind obtained in the model with full
neutrino transport. Hence, both viscosity and recombination on their own are unlikely efficient
agents to cause a significant outflow within the first few hundred milliseconds of evolution of
post-merger tori during which neutrinos are copiously emitted.

The location where the energy-deposition rates by neutrinos are highest is close to the cen-
tral BH at the torus surface above and below the midplane. The neutrino-driven wind emerging
from this region has similar features as the neutrino-driven wind in CCSNe. However, the follow-
ing properties are specific to neutrino-driven winds in post-merger tori: (a) Matter in the torus
rotates with velocities close to the Keplerian velocities. Compared to a non- or slowly-rotating
scenario, this effectively reduces the amount of energy that is necessary to gravitationally unbind
a fluid element by a significant fraction of the gravitational energy. (b) A substantial fraction
of the neutrino-heating energy is absorbed by matter that is moving inward along the viscously
induced circulation pattern. By virtue of the geometric outcome of the viscous flow pattern, the
efficiency of neutrinos in driving a wind is therefore attenuated. (c) The dynamical timescales
of post-merger tori are with tens to hundreds of milliseconds much shorter than the relevant
timescales in the corresponding CCSN-scenario, and they sensitively depend on the efficiency of
angular momentum transport and the spin of the central BH.
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The three aforementioned effects cause our obtained masses of unbound ejecta Mout,unb to cover
a large range of values, Mout,unb ∼ 10−6 − 10−2M⊙, that strongly vary with the global parame-
ters: For higher viscosity, the initially higher luminosities and the stronger inflation of the torus
cause a more massive wind compared to lower viscosities, but the scaling of Mout,unb is found
to be less than linear in αvis, which is partially caused by the fact that the torus lifetimes are
smaller for higher αvis. For higher initial torus masses, the fact that relatively more free nucleons
are able to absorb neutrino energy in the outer torus layers compared to a less massive torus
causes a stronger than linear scaling of Mout,unb in Md,0. The much shorter evolution timescales
and the lower luminosities in models with ABH = 0 compared to the case ABH = 0.8 only allow
for very weak neutrino-driven winds in the case without BH rotation.

To assess the potential relevance of the produced outflow for r-process nucleosynthesis, we evalu-
ated for each model the distribution of the expansion velocities, the entropies per baryon and the
electron fractions within the ejected matter, and we traced back selected outflow trajectories for
a representative model. The qualitative outcome of the neutrino-driven winds obtained in our
viscous models with respect to the aforementioned three thermodynamic quantities is roughly
similar: Matter that leaves the system closer to the polar axis is faster, has higher entropies and
is less neutron-rich compared to outflow traveling in directions closer to the equatorial direction.
This is mainly because the former part of the outflow originates in regions closer to the BH
and thus has lower angular momentum, and it is more strongly irradiated by neutrinos than
material originating farther away from the BH. In terms of mass, the majority of gravitationally
unbound neutrino-driven ejecta obtained in our calculations of viscous post-merger tori has es-
cape velocities vpol of a few times 109 cm s−1, entropies per baryon between s ∼ 20− 30 kB/nuc
and electron fractions Ye ∼ 0.3− 0.5. Electron fractions closer to the lower end of the aforemen-
tioned range are reached for higher torus masses and higher viscosities. Since the relatively small
amount of outflow in models with ABH = 0 is mostly driven by viscosity and recombination from
the equatorial outer edge of the torus and has thus experienced only few neutrino absorptions,
this outflow is neutron-rich and partially exhibits electron fractions as small as the initial value
Ye = 0.1.

Since the energy deposition rate associated with νν̄-annihilation in the polar regions depends
roughly quadratically on the average luminosity from both neutrino species, the amount ∆Ea

of thermal energy that could possibly power a GRB-viable ultrarelativistic outflow strongly de-
pends on the time evolution of the neutrino emission and hence on the dynamics of the torus.
This causes a non-monotonic behavior of ∆Ea on the viscosity: A short and highly energetic
neutrino release in tori with high viscosity can yield a similar ∆Ea as a long and less energetic
phase of neutrino emission for low viscosity, while for intermediate viscosities ∆Ea may be lower.
In contrast, for increased BH spin the instantaneous energy deposition rate Qtot

a as well as its
time integral ∆Ea always increase, because the temperatures, neutrino emission efficiencies and
torus lifetimes are all enhanced compared to a lower ABH. Moreover, as was also found by Birkl
et al. (2007), the more compact geometry of the torus for higher ABH facilitates a higher annihi-
lation efficiency ηa of converting the emitted neutrino energy into annihilation energy. Owing to
our result that the torus mass roughly scales linearly with the released luminosities while having
only a minor impact on the evolutionary features of the torus and the radiation field, we found
annihilation efficiencies and total annihilation energies that scale roughly as ηa ∝M2

d,0 ∝ ∆Ea.

We found that the smooth transition from surface emission to volume emission of neutrinos
during the torus evolution leads to a decrease of ηa that is more steep in time than the luminos-
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ity average of both neutrino species, since for a more optically thin torus configuration a smaller
fraction of all released neutrinos is emitted into the polar region. In terms of the total energy
∆Ea that is dumped into the polar cones with half-opening angle θa ≡ 15◦, we obtain maximum
values of a few times 1048 erg, which in principle would be sufficient to power short GRBs.

Summary of results for magnetized tori

Two of the three investigated models where evolved with high BH spin ABH = 0.8 and only
differ in that for one model neutrinos were completely neglected. In the third model, neutrinos
were included but the spin of the BH was taken to be ABH = 0. All three simulated magnetized
tori turn into a turbulent state shortly after the start of the simulation, which is characterized
by chaotic motions on length scales reaching from the grid scale to dimensions comparable to
the disk height, and angular momentum is transported due to turbulent motions and magnetic
tension. The qualitative quasi-stationary disk structure is similar in all three models, which,
apart from genuinely general relativistic effects, was also reported from non-radiative simulations
of general relativistic simulations of magnetized tori (e.g. De Villiers & Hawley, 2003; McKinney
& Gammie, 2004). The turbulent bulk of the disk sits around the equatorial plane, where the
gas energies dominate the magnetic energies. Above and below the midplane, the magnetic-field
energies become stronger, particularly in the neutrino-cooled models. An almost purely radial
magnetic field develops in the polar region and it dominates the dynamics of matter, forcing it
to move along the magnetic field lines and thus detaining significant amounts of matter from
entering this region, i.e. a polar funnel forms and is maintained during the evolved time. Be-
tween the funnel and the disk, a primarily magnetically driven outflow is expelled on grounds
of turbulent disk motions that push material against the centrifugal barrier represented by the
funnel walls. The velocities and entropies in the ejecta are roughly similar to what was obtained
for the viscous models, but the electron fractions reach slightly lower values mainly because the
outflow is more massive than in the according viscous tori and thus allows nucleons to escape
on average with less neutrino absorptions.

Based on the results of previous studies where the initial magnetic-field configuration was varied
(e.g. Beckwith et al., 2008) , we conjecture that the specific choice of our initial magnetic field
leads to outflow mass-flux rates near the upper limit of what could possibly be obtained for dif-
ferent magnetic-field topologies. In turn, in case the magnetically driven outflow is not realized
as dominant in realistic NS-merger scenarios or is even absent, less massive outflows driven –
or to a greater part enhanced – by neutrinos can be expected, similar in manifestation to the
outflows received in viscous torus models.

Conclusions and outlook

Our calculations intended to take the next step in combining time-dependent, multi-dimensional
(magneto-)hydrodynamic simulations with the microphysical aspects of the transport of energy
and lepton number by neutrinos and of realistic equations of state in models of post-merger
accretion tori. Both components are essential to obtain a more realistic physical picture of these
systems and to assess the importance of NS-merger remnants for nucleosynthesis and for short
GRBs. Although our simulations are based on manually constructed, idealized initial configu-
rations, the received results allow one to draw the following principal conclusions.

With an assumed NS-merger event rate of ∼ 10−5 per year per galaxy, an amount of about
∼ 10−3M⊙ of strong r-processed ejected material would be needed (e.g. Argast et al., 2004) to
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favor the systems and types of outflows considered in this thesis as the dominant source of r-
elements in our universe. Based on the nucleosynthesis results by Surman et al. (2008); Wanajo
& Janka (2012) (see also the compilation of thermodynamic conditions that allow for a strong
r-process in Hoffman et al., 1997), the high electron fractions of Ye ≳ 0.2−0.3 and low entropies
s ≲ 30 kB/nuc obtained in our simulations for the major part of ejected material disfavor the
investigated systems and outflows to be significant contributors to the inventory of neutron-rich
elements with mass numbers A ≳ 140 in the universe. This conclusion is unlikely to be sensitive
to the merger history of the disk or more advanced physical and numerical models and solution
strategies. Concerning general relativistic corrections, for instance, the nucleosynthesis calcula-
tions by Caballero et al. (2012), which are essentially similar to those in Surman et al. (2008)
but that take into account general relativistic ray-bending and redshift of neutrinos, indicate
that the final electron fractions in the outflow are slightly lifted compared to their Newtonian
counterparts.

In contrast, interesting amounts of weak r-process elements could be injected into the inter-
stellar medium by means of neutrino-driven or viscously/magnetically induced outflows, which
potentially could make up for a sizable fraction of all neutron-rich elements with masses in the
range of A ∼ 90− 140 in the chemical inventory of the universe. Our calculated outflow trajec-
tories, which have been obtained self-consistently for the first time, can be provided as input for
detailed nucleosynthesis calculations to test this expectation.

The generic funnel–disk structure obtained in most of our simulations offers a convenient envi-
ronment to launch polar jets that could cause short GRBs. Matter flows driven by neutrinos
or due to disk dynamics do not critically pollute the funnel region, and the energy release by
νν̄-annihilation is sufficiently high to render neutrinos a viable agent to initiate short GRBs,
at least up to a significant fraction. The disk winds that emerge both in the viscous and the
magnetized torus models and that enclose the baryon-poor funnel up to large radii conceivably
assist in confining and collimating the polar jets on their way outward.

The models and techniques developed suggest a number of lines for future investigations and
advances. When the post-merger torus has become radiatively inefficient a few hundred mil-
liseconds after the merger, the resulting disk configuration as calculated from our simulations
with detailed neutrino-transport could be further evolved for longer times without the computa-
tionally costly neutrino-scheme. The fate of the remaining neutron-rich material that forms the
equatorial bulk of the disk is amongst others interesting since by means of viscously/magnetically
driven angular momentum transport and due to energy release from nuclear recombination some
fraction of this disk could be ejected during the later evolution (e.g. Metzger et al., 2009). In-
stead of simulations restricted to axisymmetry, full three-dimensional simulations would allow
to assess the importance of non-axisymmetric effects, such as spiral waves or the Papaloizou-
Pringle instability, and they would facilitate a more consistent description of magnetic fields,
where the toroidal MRI as well as dynamo action could be taken into account. The upgrade
of our treatment from a Newtonian to a general relativistic framework would allow one to de-
scribe genuinely relativistic effects such as frame-dragging and the BZ-process. Moreover, more
realistic post-merger configurations from state-of-the-art simulations of NS-mergers should be
employed to establish the link of the phenomena considered in this thesis to the physics that
are relevant during the dynamical merging of the compact objects, such as the nuclear EOS and
the GW signal.



Appendix A

Relative Size of Terms in the
Radiation Moment Equations

When comparing the structure of the comoving-frame moment Equations (2.8) with their lab-
frame counterparts, Eqs. (2.14), it becomes clear that the price for working in the frame wherein
the source terms appear in their most convenient form is paid with engendering a numerous
amount of transport terms (i.e. all velocity dependent terms in the comoving-frame equations),
which, in contrast to the case when using the lab frame versions, may cause the equations
to remain of complicated mathematical behavior even in the absence of interactions between
radiation and matter, solely due to a varying velocity field. This property is criticized (e.g. by
Lowrie et al., 1999) as offering potential sources for unphysical artifacts during the evolution
generated by the O(v/c) approximation or discretization errors (we address this issue in a test in
Sec. 2.4.2, see also the discussion in Sec. 2.3.9). An alternative to the comoving-frame formulation
of the moment equations is to express the radiation moments in the lab-frame and only the
opacities in the comoving frame. In lieu of terms ‘transporting the radiation moments’ in
the comoving-frame equations, these so-called mixed-frame equations (Hsieh & Spiegel, 1976;
Mihalas & Klein, 1982) are equipped with terms ‘transporting the radiation sources’ which,
however, in the spectral formulation contain numerically cumbersome derivatives of the opacities
in energy space1. Assuming for the present purpose frequency independent opacities (‘gray
material’) without scattering interactions, the moment equations in the mixed frame to order
O(v/c) are given by

∂tĒlab +∇jF̄
j
lab = κa(Ē

eq − Ēlab) + κa
vj
c
F̄ j
lab , (A.1a)

∂tF̄
i
lab + c2∇jP̄

ij
lab = −cκtot(F̄ i

lab − viĒeq − vjP̄
ij
lab) , (A.1b)

where Ēeq ≡
∫
dϵEeq is measured in the comoving frame. Since in contrast to the comoving

frame the fluid in the lab-frame moves with velocity v as seen by the radiation field, the energy
equation now not only comprises the absorption and emission terms but also a term equal to the
rate of work done by the radiation field on the material. Moreover, in the 1st-moment equations
the coupling to matter is responsible for the advection of radiation energy and pressure, leading
to an effective advection flux.

To add some insight on the importance of the velocity dependent terms in either of the
formulations, let us give an overview of their scaling behavior in the three different typical
regimes of radiation transport: The free-streaming regime and the regimes of static and dynamic

1For an implementation in the context of neutrino transport, see Hubeny & Burrows (2007).
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diffusion. The relative size of terms can be obtained by replacing all quantities in the equations
with their characteristic scales and writing all derivatives as quotients of characteristic values.
We denote l as a typical length scale and τf ≡ l/v as typical fluid time scale and we define
F̄(lab) ≡ |F̄(lab)|. The mean free path λν ≡ κ−1

tot ≃ κ−1
a serves as the typical length scale of

interactions. Within the following considerations, we ignore the specific cases of stationarity and
radiative equilibrium. The scaling relations for these conditions are obtained by simply setting
the scaling according to the time derivatives or net absorption-emission terms, respectively, to
zero.

Free-streaming limit

In regions of weak interaction, λν ≫ l, radiation is in the wave limit and streams freely, ap-
proaching far away from the dominantly emitting regions F̄ ≈ cĒ with a pressure tensor P̄ ij that
is forward peaked in the direction ni

F ≡ F̄ i/|F̄| of the flux density, P̄ ijnF,inF,j ≈ Ē. By virtue
of the transformations in Eqs. (2.12), the same relations hold between the lab-frame moments.
Assuming that the radiation is far from equilibrium, the net absorption-emission terms roughly
scale as cκa∆Ē ≡ cκa(Ē

eq − Ē) ∼ O(c/λν)Ē and cκa∆Ēlab ≡ cκa(Ē
eq − Ēlab) ∼ O(c/λν)Ē

lab.

Using in each equation as pivotal terms the velocity independent divergence term, we can
write the relative scaling pattern for the gray comoving-frame moment Equations (2.9) as:

∂tĒ : ∇jF̄
j : ∇j(v

jĒ) : cκa∆Ē 7−→ v

c
: 1 :

v

c
:

l

λν
, (A.2a)

∂tF̄
i : c2∇jP̄

ij : ∇j(v
jF̄ i) : cκaF̄ 7−→ v

c
: 1 :

v

c
:

l

λν
. (A.2b)

Note that the terms proportional to the 2nd-moments are not individually listed in (A.2a), since
they scale similar to the advection terms containing the 0th-moments. For the same reason, we
neglect the aberration terms in (A.2b), which scale similar to the 1st-moment advection terms.

A similar analysis for the mixed-frame Equations (A.1) yields:

∂tĒ
lab : ∇jF̄

j,lab : cκa∆Ēlab : κa
vj
c F̄

j,lab 7−→ v

c
: 1 :

l

λν
:

l
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c
, (A.3a)

∂tF̄
i,lab : c2∇jP̄

ij,lab : cκaF̄
j,lab : cκa(v

iĒeq + vjP̄
ij,lab) 7−→ v

c
: 1 :

l

λν
:

l

λν

v

c
. (A.3b)

As can be noticed from (A.2) and (A.3), in the free-streaming regime neither of the velocity
terms in both formulations is greater than O(v/c) compared to the dominant divergence terms,
and the velocity terms all disappear in the mixed-frame equations in the limit of vanishing
interactions.

Static diffusion limit

In regions where interactions dominate, i.e. where λν ≪ l, the comoving-frame specific intensity
I becomes isotropic to leading order in λν/l, from which together with Eq. (2.7c) it follows that

P ij ≈ δijE/3 . (A.4)

The comoving-frame flux density is strongly suppressed due to the fact that the radiation quanta
can only effectively propagate a distance l via random walk in a time τdiff ≡ l2/(λνc). The
resulting diffusive flux is solely driven by the small angular asymmetries of I on length scales l,
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and by means of an angular expansion of this quantity (e.g. Mihalas & Mihalas, 1984), one can
derive the diffusion law :

F i ≈ −cλν

3
∇iE , (A.5)

which is also called Fick’s law. From Eq. (A.5) it follows

F̄ ∼ O(cλν

l
)Ē =⇒ F̄lab ∼ F̄ +O(v

c

l

λν
)F̄ . (A.6)

If then the fluid velocities are small so that diffusion proceeds faster than the medium moves
in space, we are in the static diffusion limit: τdiff ≪ τf then leads to v/c ≪ λν/l and from
Eqs. (A.6), (2.12) it follows that

F̄lab ≈ F̄ , F̄lab/(cĒlab) ∼ F̄ /(cĒ) ∼ O(λν/l) . (A.7)

Drawing from the fact that the net absorption-emission terms accomplish a change of radiation
energy on the diffusion time scale τdiff , we may estimate cκa∆Ē ∼ O(cλν/l

2)Ē and cκa∆Ēlab ∼
O(cλν/l

2)Ēlab. Using these results, the scaling pattern for the comoving-frame equations is:
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and in the mixed-frame equations we have:
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In both frames, the dominant terms are given by the velocity independent divergence and in-
teraction terms and both the mixed- and the comoving-frame formulations allow for an analog
interpretation of the importance of the velocity dependent terms: Independent of the frame,
the velocity dependent terms in the 0th-moment equations are small in the static diffusion limit
v/c≪ λν/l, but they become O(1) compared to the dominant term for v/c→ λν/l. In the 1st-
moment equations, the relevance of the velocity dependent terms compared to the 0th-moment
equations is reduced by a factor of about ∼ O(λ2

ν/l
2), i.e. they remain as small as O(v/c) for

when v/c→ λν/l compared to the dominant terms.

Dynamic diffusion limit

With increasing strength of interaction or, conversely, higher fluid velocities we come into the
regime of dynamic diffusion where radiation energy is advected before it can diffuse out of the
medium, τf ≲ τdiff . It follows that v/c ≳ λν/l and from Eq. (A.5) that the lab-frame flux
densities are now dominated by the advection fluxes while the comoving-frame flux densities
remain to be determined by the diffusion law, Eq. (A.5), specifically:

F̄ i,lab ≈ 4

3
viĒ , F̄ /(cĒ) ∼ O(λν/l) , F̄ lab/(cĒlab) ∼ O(v/c) (A.10)

and further
cκa∆Ē ∼ O(cλν/l

2)Ē , cκa∆Ēlab ∼ O(v/l)Ēlab . (A.11)
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Thus, the scalings in the comoving-frame equations relative to the dominant terms are:
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that is, in the 0th-moment equation the rate of change, the net absorption-emission and the
velocity dependent terms are equally important and dominate the flux divergence, while in the
1st-moment equation the situation did not change compared to the static diffusion limit, i.e. the
dominant terms remain to be the velocity independent terms.

In the mixed-frame formulation we have:
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j
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In the 0th-moment equation the velocity dependent term can dominate all others and in the
1st-moment equation the velocity dependent terms are similarly of leading order. It is in this
dynamic diffusion limit where the importance of the velocity terms is most dramatic and where
it becomes apparent that the inclusion of the velocity terms is not simply an O(v/c) correction
to the static moment equations but a crucial necessity to treat radiation transport in a medium
of high optical depths physically accurate in dynamic situations.



Appendix B

Numerical Treatment of Ideal
Magnetohydrodynamics

Although the numerical scheme of (M)HD employed for the simulations presented in this thesis
is to a large extent equal to the scheme described in Obergaulinger (2008), for consistency we
present our specifically chosen discretization method in this chapter since particularly in the
course of the constrained-transport scheme for the magnetic fields a variety of possibilities exist
of how to define and how to average quantities at different locations. Note that the subsequently
presented version of the constrained transport of the magnetic field closely follows the method
exploited in Del Zanna et al. (2007). For a comparison to other existing codes that apply a
constrained-transport scheme, we refer the reader, e.g., to Dai & Woodward (1998); Ryu et al.
(1998); Balsara & Spicer (1999); Pen et al. (2003); Gardiner & Stone (2005), and for a comparison
of other schemes to (various realizations of) the constrained-transport scheme, see Tóth (2000).

In order to present the essential properties of the method, we restrict ourselves to Cartesian
coordinates (x, y, z) here and we ignore gravitation as well as the evolution of the electron
fraction Ye. The system of evolved conservation equations, written in compact form, reads

∂tU+
∑

i∈{x,y,z}

∂iF
i(U) = 0 , (B.1a)

∂tb+∇× E = 0 , (B.1b)

where E ≡ −v × b is the electric field up to the factor 1/c. The hydrodynamic variables
U ≡ (ρ, ρv, et,∗)

T change on grounds of the divergence of the hyperbolic fluxes Fi, of which the
definition can directly be read off from Eqs. (4.1a), (4.1c) and (4.1d) by comparing them with
Eq. (B.1a).

The primarily evolved discretized hydrodynamic quantities Ûi,j,k are interpreted as cell-
volume averages of the analytic variables U, i.e. as

Ûi,j,k ≈
1

∆Vi,j,k

∫
∆Vi,j,k

U dV . (B.2)

By means of a spatial reconstruction procedure (cf. Sec. 2.3.2), we compute at each interface
between two cells a set of quantities located at the left-hand side and another set of quantities
located at the right-hand side of the interface, which are denoted e.g. for an interface normal to
the x-direction as ÛL

i+ 1
2
,j,k

and ÛR
i+ 1

2
,j,k

.

The primarily evolved magnetic-field variables are cell-interface averaged quantities. Specif-
ically, each component b̂i (i ∈ {x, y, z}) of the evolved, discretized magnetic field is defined as
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the average of the analytic variable bi over the partial surface of a cell that is normal to the
corresponding unity vector ei:

b̂x
i+ 1

2
,j,k
≈ 1

∆Ai+ 1
2
,j,k

∫
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i+1
2 ,j,k

bx dA , (B.3a)
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2 ,k

by dA , (B.3b)
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2

bz dA . (B.3c)

Out of the above primary variables, we compute the cell-volume averaged quantities b̂ii,j,k by in-
terpolating the according interface quantities using polynomials of optional order. Subsequently,
reconstruction procedures are applied to the cell-volume averaged fields b̂ii,j,k to yield the missing

transverse field components b̂it that for a given interface are parallel to this interface, e.g. for an
interface normal to the x-direction the fields (b̂yt )

L
i+ 1

2
,j,k

, (b̂yt )
R
i+ 1

2
,j,k

and (b̂zt )
L
i+ 1

2
,j,k

, (b̂zt )
R
i+ 1

2
,j,k

are

calculated.
Using the definition of Ûi,j,k, the application of Gauss’ law immediately leads to the semi-

discretized form of Eq. (B.1a):

∂tÛi,j,k ≈ −
1

∆Vi,j,k

(∫
∆A

i+1
2 ,j,k

Fx dA−
∫
∆A

i− 1
2 ,j,k

Fx dA+ “y” + “z”

)
≈ − 1

∆Vi,j,k

(
(F̂x

RS)i+ 1
2
,j,k∆Ai+ 1

2
,j,k − (F̂x

RS)i− 1
2
,j,k∆Ai− 1

2
,j,k + “y” + “z”

)
≡ −(∂tÛRS)i,j,k , (B.4)

where we symbolically indicated analog contributions in y- and z-direction and the discretized
interface fluxes F̂i

RS are approximations to the cell-interface averages of the analytic fluxes Fi. We
make use of a dimensional operator-splitting approach and at each instant in time we interpret
the fluxes F̂i

RS through each cell-interface normal to the direction of the coordinate i to be given
by the approximate solution of the one-dimensional Riemann problem. The latter is defined by
the adjacent fluid states ÛL and ÛR at the corresponding cell interface, and by the adjacent
transverse magnetic fields (b̂jt)

L, (b̂jt)
R (j ̸= i) and the longitudinal field b̂i. Note that the

divergence constraint, ∇ · b = 0, demands a unique (i.e. continuous) longitudinal magnetic-field
component in the one-dimensional Riemann problem. For all BH-torus simulations presented in
this thesis, we employed the 5-wave HLLD Riemann-solver (Miyoshi & Kusano, 2005) for the
(M)HD subsystem, while the HLLD solver reduces to the HLLC solver (e.g. Toro, 1997) in the
purely hydrodynamic case. Eventually, for the later purpose of solving the induction equation,
we also compute at each interface the two transverse velocity components (v̂jt ) (j ̸= i) that are
consistent with the Riemann-solver.

The thus obtained expression for (∂tÛRS)
n, i.e. ∂tÛRS computed at time tn, enters (∂tÛ)nhyd

that is referred to in Sec. 2.3.8. The actual value of (∂tÛ)nhyd is obtained by adding to (∂tÛRS)
n

the different contributions stemming from the use of curvilinear coordinates (i.e. the geometric
source terms), from the additional advection equation for Ye, from the gravitational potential,
and, when required, from viscosity (cf. Appendix C). All of these contributions are calculated
using the same data at time tn.
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In the following, we describe the scheme used to evolve the magnetic field. Without loss of
generality we restrain ourselves to the evolution of the x-component of the magnetic field. We
rewrite the induction Equation (B.1b) with the help of Stokes’ theorem as

∂tb̂
x
i+ 1

2
,j,k
≈ − 1

∆Ai+ 1
2
,j,k

(∫
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− Êy
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2
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2
,j,k− 1

2

)
, (B.5)

where a quantity ∆s denotes the length of a cell edge – or the cell edge itself when written as
integration range – such that, e.g., ∆si+ 1

2
,j+ 1

2
,k refers to the edge obtained from the intersection

of the two cell surfaces associated with ∆Ai+ 1
2
,j,k and ∆Ai,j+ 1

2
,k. Correspondingly, the discretized

electric fields introduced in the third and fourth lines of Eq. (B.5) are interpreted as the line
averages of E over the similarly subscripted cell edges. The remaining task for evolving the
magnetic field is thus to calculate appropriate electric fields located at the cell corners out of the
set of available velocities and magnetic fields, since the divergence-free condition, numerically
expressed as

1

∆Vi,j,k

(
b̂x
i+ 1

2
,j,k

∆Ai+ 1
2
,j,k − b̂x

i− 1
2
,j,k

∆Ai− 1
2
,j,k + “y” + “z”

)
= 0 , (B.6)

is maintained to machine accuracy when using the prescription in Eq. (B.5).
We demonstrate the computation of the cell-edge located electric fields by means of the

exemplary field Êz. For its computation, we purely make use of the following quantities that
are defined at the cell-interfaces: b̂x, v̂yt at the x-normal interfaces and b̂y, v̂xt at the y-normal
interfaces. The former pair of quantities is reconstructed in the y-direction from surface av-
erages to line averages to give the set of quantities (b̂x)L, (b̂x)R, (v̂yt )

L, (v̂yt )
R, and the latter

pair of quantities is accordingly reconstructed in the x-direction to give the set of quantities
(b̂y)L, (b̂y)R, (v̂xt )

L, (v̂xt )
R; each of the thus obtained quantities is located at the cell edges parallel

to the z-direction. We finally obtain Êz from a bidirectional upwinding procedure which is based
on the HLL-solver:

Êz = −
λx
+(v̂

x
t )

L(b̂y)L + λx
−(v̂

x
t )

R(b̂y)R − λx
+λ

x
−((b̂

y)R − (b̂y)L)

λx
+ + λx

−

+
λy
+(v̂

y
t )

L(b̂x)L + λy
−(v̂

y
t )

R(b̂x)R − λy
+λ

y
−((b̂

x)R − (b̂x)L)

λy
+ + λy

−
, (B.7)

where for the upwind velocities λx
± we take the absolute values of the minimum and maximum

wave speeds of the Alfvén waves encountered at the adjacent x-normal interfaces, and analog
values are used for λy

±.

For validating the MHD treatment, we set up a magnetized-torus model with equal physical
parameters as model ‘GT1’ of Hawley (2000); see this paper for the explicit model specifica-
tions. The domain (r, θ) ∈ [1.5, 11.5] × [0, π] in spherical polar coordinates r, θ is resolved with
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Figure B.1: Mass accretion rate in the test model of
a magnetized BH-accretion torus similar to model ‘GT1’
of Hawley (2000).

Nr × Nθ = 240 × 240 uniformly distributed grid points. The mass accretion rate into the BH,
plotted in Fig. B.1, can be compared with Fig. 5 of Hawley (2000). The turbulent character of
the system for times t ≳ 200 defies a meaningful comparison of values at individual points in
time. However, the qualitative and time-averaged quantitative features are reproduced well.



Appendix C

Numerical Treatment of Viscosity

In this chapter we outline the employed discretization scheme for the viscous components of
the hydrodynamic Equations (3.6). We denote by (∂tÛ)nhyd,0 the partial time derivative at the
time tn associated with the non-viscous (M)HD equations, cf. Appendix B, which would be
equal to (∂tÛ)nhyd used in Sec. 2.3.8 for vanishing viscosity. Similar to the solver of the non-
viscous system, the partial solver accounting for viscosity is explicit in time. Its according
contribution (∂tÛ)nvis (see below) is computed using the same hydrodynamic variables Ûn ≡
{ρ̂n, ˆ(ρYe)

n
, ˆ(ρv)

n
, ênt }T as are utilized to calculate (∂tÛ)nhyd,0. Based on the operator-splitting

approach, both contributions are added up to give (∂tÛ)nhyd ≡ (∂tÛ)nhyd,0 + (∂tÛ)nvis, which is
finally used for the time integration in each Runge-Kutta step.

Specifically, the viscous contribution (∂tÛ)vis to the spatially discretized hydrodynamic equa-
tions is associated with the following analytic terms:

(∂tÛ)vis =


∂tρ̂

∂tρ̂Ŷe
∂tρ̂v̂

i

∂têt


vis

←→


0
0

−(∇jT
ij
vis)vol − (∇jT

ij
vis)geo

−∇jviT
ij
vis

 ≡ (∂tU)vis , (C.1)

where the viscosity tensor T ij
vis is given in Eq. (3.7) and we decomposed ∇jT

ij
vis following the

prescription in Eqs. (2.45c) and (2.45d). The discretization of the viscosity operator (∂tU)vis
is realized in two steps, which in the following are schematically delineated using a single rep-
resentative grid index ‘i’. First, the cell-volume averaged, discretized versions (T̂ ij

vis)i of T
ij
vis are

constructed by using the according cell-volume averaged quantities that enter the dynamic vis-
cosity ηvis and by availing both cell-volume and cell-interface averaged versions of the velocity vi

to compute its gradients ∇jv
i by means of the procedure explained in Sec. 2.3.4. In the second

step, the reconstruction procedure is applied to the cell-volume averages (T̂ ij
vis)i to yield two

sets of cell-interface values (T̂ ij
vis)

L
i+1/2, (T̂

ij
vis)

R
i+1/2. For the scheme to remain conservative (up to

the geometric terms (∇jT
ij
vis)geo which arise from the choice of curvilinear coordinates) we need

unique numerical interface fluxes (T̂ ij
vis)i+1/2 and (v̂iT̂

ij
vis)i+1/2, which are obtained by applying

arithmetic averages in the following manner:

(T̂ ij
vis)i+1/2 ≡ 1

2

(
(T̂ ij

vis)
L
i+1/2 + (T̂ ij

vis)
R
i+1/2

)
, (C.2)

(v̂iT̂
ij
vis)i+1/2 ≡ 1

4

(
(T̂ ij

vis)
L
i+1/2 + (T̂ ij

vis)
R
i+1/2

)(
(v̂i)

L
i+1/2 + (v̂i)

R
i+1/2

)
. (C.3)

With the above fluxes, the terms (∇jT
ij
vis)vol and (∇jvjT

ij
vis) are discretized in the same way

159
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Figure C.1: Results obtained for the test problem of a viscous accretion torus similar to Model 1 in Igumenshchev
et al. (1996). The plot in Panel (a) is similar to Fig. 2 of Igumenshchev et al. (1996) and shows the mass accretion
rate in units of LE/c

2, where LE is the Eddington luminosity as given in Igumenshchev et al. (1996). Panel (b)
mimics Fig. 5 of Igumenshchev et al. (1996) and depicts contours of the specific angular momentum and specific
entropy at the given time. The gray-shaded areas indicate regions that are formally unstable to the Solberg-
Høiland criterion as given in Eq. (3.22).

as indicated in Eq. (B.4), but using the above interface fluxes instead of Fi
RS, and for the

discretization of the geometric terms (∇jT
ij
vis)geo the prescriptions summarized in Sec. 2.3.4 are

employed.
Since due to the occurrence of second-order derivatives the viscous operator (∂tÛ)vis is

not hyperbolic but parabolic (or formally speaking the system of partial differential equations
∂tU+(∂tU)vis = 0 is parabolic) the interpretation that changes in Û result from the propagation
of characteristic waves with finite characteristic speeds is not applicable to describe the influence
of (∂tÛ)vis, and therefore a CFL time-step criterion based on such wave speeds cannot be
formulated regarding the viscous operator. Nevertheless, a local viscous timescale (∆t)vis can
be identified using dimensional arguments: Denoting by (∆xi)i,j,k and (ν̂vis)i,j,k the zone extent
in direction i ∈ {r, θ, ϕ} and the grid-local kinematic viscosity, respectively, we utilize

(∆t)vis = min
i,j,k,i

{
[(∆x)ii,j,k]

2

(ν̂vis)i,j,k|

}
(C.4)

to employ the extended time-step constraint

∆t = CFL ·min {(∆t)rad, (∆t)hyd, (∆t)vis} (C.5)

instead of Eq. (2.81c) for the computation of the final numerical time step ∆t in calculations
that include viscosity.

To validate the numerical treatment of viscous hydrodynamics in our code, we set up the
equilibrium-torus configuration as initial condition and the viscosity prescription equal to ‘Model
1’ in Igumenshchev et al. (1996); see this paper for the explicit model specifications. The grav-
itational force acting on the (not self-gravitating) torus is described by the Paczyński-Wiita
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potential (cf. Sec. 3.1.1) with a gravitational radius RG ≡ rs ≡ 2GMBH/c
2. Unlike the cylindri-

cal grid made use of in Igumenshchev et al. (1996), we apply a spherical polar grid that samples
the domain (r, θ) ∈ [1.4RG, 20RG] × [0, π/2] with Nr × Nθ = 320 × 160 uniformly distributed
grid points. For comparison with the Figs. 2 and 5 of Igumenshchev et al. (1996), we plot the
mass accretion rate into the BH and contours of quantities characterizing the flow pattern at a
fiducial time in Fig. C.1. Our results compare well with the reference results and the deviations
are small enough to be attributed to the slightly different numerical techniques employed in both
calculations.



162 APPENDIX C. Numerical Treatment of Viscosity



List of Abbreviations

ADAF advection-dominated accretion flow

AEF analytic Eddington factor

BC boundary condition

BE Boltzmann equation

BH black hole

BZ-process Blandford-Znajek process

CCSN core-collapse supernova

CFL Courant-Friedrichs-Lewy (condition)

EOS equation of state

FLD flux-limited diffusion

GRB gamma-ray burst

GRMHD general relativistic magnetohydrodynamics

GW gravitational wave

HD hydrodynamics

HLL, HLLC, HLLD type of Riemann-solvers

HMNS hyper-massive neutron star

HRSC high-resolution shock-capturing (scheme)

IDSA isotropic diffusion source approximation

ISCO innermost stable circular orbit

MGFLD multi-group flux-limited diffusion

MHD magnetohydrodynamics

MP monotonicity preserving (scheme of reconstruction)

MRI magneto-rotational instability
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164 LIST OF ABBREVIATIONS

NDAF neutrino-dominated accretion flow

NS neutron star

NSBH binary configuration of a neutron star and a black hole

NSE nuclear statistical equilibrium

NSNS binary configuration of two neutron stars

RHD radiation hydrodynamics

TMT two-moment transport

VEF variable Eddington factor

WENO weighted essentially non-oscillatory (scheme of reconstruction)
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