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Abstract

Visual perception is one of the most important areas of vision-based robot control.
The visual information is expected to be fast, accurate and reliable in providing real-time
information of dynamical surroundings. Due to the limitation of computation capability,
the performance of vision-based control systems, in particular of highly dynamic visual
servo control systems, is often impacted by the low sampling rate of the visual feedback.
In order to overcome the low sampling rate problem, networked visual servo control,

which integrates networked computational resources for parallel image processing, is con-
sidered for high-speed and high-performance vision-based control due to its merits of easy
maintenance, high flexibility and robustness. In contrast to conventional visual servoing,
a communication network is involved in the feedback loop for large volume image data ex-
change, which challenges the control design and the communication strategy. Besides, with
the advances in neuroscience research biologically inspired vision system attracts increas-
ing attention. The insect-inspired vision is computationally cheap, particularly suitable
for real-time applications, and to date, however, less applied for closed loop control.
This thesis provides a comprehensive development concept for a high-speed networked

visual servo control system, which merges different design issues including communication,
control performance, stability, and network usage. A real-time transport protocol is devel-
oped for large volume image data transmission and thus, a cloud computing platform is
established enabling high sampling rate visual feedback. A novel switching control law is
proposed based on the analysis of sampled-data stochastic systems with time-varying feed-
back time delays. With regard to limited communication resources the cost-performance
trade-off is addressed by innovative strategies of sending rate scheduling. Besides, this
thesis summarizes guidelines for the design of an insect-inspired high-speed vision system
for robot control. The emphasis lies on accurate motion estimation and stability of the
closed loop system. A motion estimation algorithm based on a lookup table and a stable
system with high feedback gains and delays are designed based on an investigation of an
insect-inspired motion detector. The proposed approaches are validated by experiments
conducted on seven/one degrees-of-freedom robotic manipulators. The experimental re-
sults show superior performance compared to the conventional counterpart. The work
presented in this thesis contributes to the perception and control of robotics systems, and
provides valuable insights for the future work in the framework of high-speed visual servo
control.
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Zusammenfassung

Visuelle Wahrnehmung ist eine der Hauptkomponenten für Systeme zur Roboter-
regelung. Von visuellen Sensoren wird eine echtzeitfähige und präzise Darstellung einer
dynamischen Umgebung erwartet. Auf Grund der begrenzten Rechenleistung ist die Ef-
fizienz der bildbasierten Regelung, insbesondere der hochdynamischen Regelung, häufig
durch die geringe Abtastrate des visuellen Feedbacks eingeschränkt.
Um das Problem der geringen Abtastrate zu umgehen, werden vernetzte Sichtsysteme

zur Regelung verwendet, welche verteilte Rechenressourcen zur parallelen Bildverarbeitung
mit ein beziehen. Dies ermöglicht eine hochfrequente und hocheffiziente bildbasierte
Regelung auf Grund von einfacher Handhabung, hoher Flexibilität und Robustheit. Im
Gegensatz zur konventionellen bildbasierten Regelung wird ein Kommunikationsnetzwerk
in die Feedbackschleife integriert, um große visuelle Datenmengen auszutauschen. Dieser
Ansatz ist eine Herausforderung sowohl für das Regelungskonzept als auch für die Kommu-
nikationsstrategie. Außerdem gilt im Rahmen der aktuellen neurobiologischen Forschung
die Aufmerksamkeit immer mehr den biologisch inspirierten Sichtsystemen. Im Bezug auf
die Rechenleistung sind die Insekten-inspirierten Sichtsysteme dabei sehr effizient, was zu
einer Eignung für Echtzeitanwendungen führt. Bisher werden die genannten Systeme aber
noch wenig im geschlossenen Regelkreis verwendet.
Diese Dissertation schlägt ein umfassendes Entwurfskonzept für hochfrequente vernetzte

bildbasierte Regelungssysteme vor. Dabei werden Aspekte wie Kommunikationsstrategie,
Regelgüte und Netzwerkressourcen berücksichtigt. Ein Echtzeit-Transportprotokoll für
den Austausch einer großen Menge von Bilddaten über das Kommunikationsnetz wird
entwickelt. Folglich entsteht eine Cloud-Computing Plattform, die visuelles Feedback
mit einer hohen Abtastrate ermöglicht. Basierend auf der Analyse abgetasteter Werte
von stochastischen Systemen mit variablen Zeitverzögerungen wird ein neuartiges schal-
tendes Regelungskonzept vorgeschlagen. Unter Berücksichtigung der begrenzten Netzw-
erkressourcen wird durch die Regelung der Senderaten ein Kompromiss zwischen Kosten
und Regelgüte getroffen. Darüber hinaus befasst sich diese Dissertation mit der Er-
forschung hochfrequenter Insekten-inspirierter Systeme zur bildbasierten Roboterregelung.
Das Hauptaugenmerk liegt dabei auf der präzisen Bewegungsschätzung und der Stabilität
des geschlossenen Regelkreises. Dies erfolgt auf der Grundlage einer ausführlichen Anal-
yse der intrinsischen Charakteristika von Insekten-inspirierten Bewegungsdetektoren. Ziel
dabei ist es, einen auf Look-up Tabelle basierenden Algorithmus zur Bewegungsschätzung
und ein stabiles System zu entwerfen. Experimente in Form der kamerageführten Ma-
nipulatorregelung validieren die vorgeschlagenen Ansätze. Die experimentellen Ergebnisse
zeigen eine signifikante Verbesserung der Performanz gegenüber klassischer Systeme. Diese
Arbeit liefert grundlegende Einblicke in hochfrequente bildbasierte Regelung und bildet
einen Wegweiser für die zukünftige Forschung.
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Notations

ẋ, ẍ equivalent to d
dt
x, d2

dt2
x

|| · || Euclidean norm
x̂ estimated values
x̄ mean of x

Subscripts and Superscripts

λmax(·) Maximal eigenvalue
λmin(·) Minimal eigenvalue
(·)−1 Inverse
(·)+ Pseudo-inverse
(·)T Transpose
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I image intensity
x, y image coordinates
▽2 the Laplacian operator
G(·) Gaussian kernel
σ standard deviation
I number of octaves
J number of scales
i index of octave
j index of scale
ri,j ratio between image resolution and scale parameter
Ri image resolution of n−th octave
∆ ratio difference
R image resolution
B(·) Binomial distribution
Pr(·) probability
ln number of scales in the n−th octave
Maxs maximum number of scales
Nf number of features detected in the reference image
bn number of features selected from n−th scale
dk sending interval
tk time instant
τ sp transmission delay from sensor to processing node
τ pc transmission delay from processing node to controller
τ ca transmission delay from controller to actuators
τ cp computation delay for data processing on processing node
τ cc computation delay for calculating control signals on controller
τx image transmission delay
τ c computation time delay
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Notations

τx, τ̄x lower and upper bounds of the transmission delay
τ c, τ̄ c lower and upper bounds of the computation delay
T c set of computation time delay
T x set of transmission time delay
T cp element of T c

T xq element of T x

D set of sending intervals
dm element of D
G maximum number of processing nodes
d lower bound of the sending interval
d̄ upper bound of the sending interval
τ̄ c the worst case processing time

Stochastic NVSC with Random Delay

tk time instant
I image sequence
Ik image captured at time instant tk
dk sending interval
τ c image processing time delay
τx data transmission time delay
τ c+x sum of processing time delay and the data transmission delay
X pose of the end-effector relative to the object
q joint displacement
x0 initial condition of the manipulator
A,B constant matrices of appropriate dimensions
u control signal
K feedback gain
h holding delay
hk holding interval
τ overall feedback time delay
a maximum number of consecutive packet dropouts
Si delay interval
si boundary of delay intervals
βi(·) delay-dependent indicator function
S set consisting of T c, T x, and D
pi occurrence probability
U number of categorized computation time delay intervals
V number of categorized transmission time delay intervals
W number of categorized sending intervals
scu, s

x
v , s

d
w boundary of categorized delay intervals

pcu, p
x
v , p

d
w occurrence probabilities

Q,P1 symmetric matrices
P1, P2 real matrices
L the infinitesimal generator
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Notations

V (·) Lyapunov-Krasovskii functional candidate
e control error
xd trajectory of the reference module
xc trajectory of the controlled module
J(·) cost function
Cw communication network cost
J̄per upper bound of performance cost
sw upper bound of categorized sending intervals
Dw set consisting of sw
rw boundary of tracking error interval
Dw subset of Dw
Dw1, Dw2 subset of Dw
Pri priority
Kp, Kd control gain matrices
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A1, A2 input signals of EMD
B1, B2 output signals of filters
R response of EMD
∆φ spatial separation between receptors
τL, τ

′
H , τ

′
L time constants of filters

I(·) sinusoid signal
v velocity
C,A(·) amplitude
θ0 phase
f spatial frequency
ft temporal frequency
G transfer function
K positive scalar
Rp theoretical prediction of EMD response
Ra actual EMD response
η constant for power spectrum
Ts spatial sampling interval
N length of sampling points
P (·) power spectra
Rall EMD response to original input signal
R1/5 EMD response to input with low spatial frequency
eR relative response error

θ̇d desired yaw rate

θ̇is measured yaw rate

∆θ̇ error of angular velocity
eθ̇ relative yaw rate error

θ̇emd estimated angular velocity
θemd estimated yaw angle
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u control signal
Kp, Kd, K control gains
M manipulator inertia matrix
Cq̇ centripetal and Coriolis torques
g gravitational torques
Γ joint torques
Xc pose of the camera in the base frame
Xo pose of the object in the based frame
Xr relative pose between the camera and the object
Jimg image Jacobian
ξ feature points
zc depth
α, λ intrinsic parameters of the camera
τ time delay
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1 Introduction

In the 1970s, visual sensor began to become a critical component of robot control sys-
tems. Driven by the applications in military, industries, and medical, such as exploration,
surveillance, search and rescue, the interests in the vision-based control are growing con-
stantly, which promotes the rapid development in both theoretical and practical aspects of
the discipline. The visual information was applied in ’look-and-move’ structure from the
beginning. Nowadays, it is common to implement ’visual servoing’ 1, which utilizes visual
information in a closed-loop fashion for its benefits of higher accuracy and flexibility.
Visual servoing is a fusion of many different research areas, including image processing,

robot modeling, control theory and real-time computing. A critical aspect of visual servo-
ing is the perception of visual information, which is essential for maintaining the control
performance. The visual feedback is expected to be fast, accurate and reliable in providing
informations about the operating environment, objects, obstacles and human activities.
With the advances in sensing technology and image processing theory, the performance of
vision-based control systems is gradually improved. However, the performance of vision-
based control systems, in particular of highly dynamic vision-based control systems, is still
limited by the low sampling rate of the visual feedback caused by image processing. The
problem of how to speed up visual feedback arises opens a special area in vision-based
control, namely high-speed visual servo control. Diverse ways are available in the litera-
ture for obtaining high-speed visual feedback, e.g. through intensive parallel processing on
specific hardwares such as on a light vision chip. An alternative is to utilize existing com-
putational resources over a communication network to establish a networked visual servo
control (NVSC) system with the introduction of networked computation into traditional
vision-based control system. The resulting system exhibits several advantages. It features
flexible reconfiguration capabilities, e.g. new components can easily be added. Besides,
it enables simple maintenance and diagnosis with low wiring effort and digital diagnosis
protocols. Standardized components and computational power can be shared among dif-
ferent applications, and there are no strong constraints on the components in terms of low
power and low weight as typical for mobile robotic applications. It also allows for shared
sensing concepts, e.g. multiple robots/applications can share sensing resources and results.
In known literature some aspects of NVSC are covered, e.g. the design of data transmis-
sion, distributed computation, and networked control. However, utilizing the networked
computational resources for real-time image processing which enables high-speed networked
visual servo control is less considered.
An example of a NVSC system is shown in Fig. 1.1, in which the components, including

image capturing, data processing, control algorithms and actuators, can be implemented
on spatially distributed processing nodes over a communication network. The distributed
sensor network provides massive sensor data, which needs to be interpreted locally and/or
remotely for robot control depending on the applications. In order to perform remote
data processing, the sensor data are sent to computational resources over the communi-

1Vision-based Control
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Figure 1.1: Scheme of networked visual servo control system with distributed sensors and
distributed computation (cloud computing).

cation network. With two or more processing nodes available, parallel data processing
can be carried out, which can speed up sensor feedback, and thus, improve the control
performance.

Compared with the common visual servo control system, NVSC system has the main
advantage of its improvements in processing capability, and differs in an essential way: the
image processing is carried out over a communication network. This characteristic results
in several fundamental issues on data transmission, controller design and cost-performance
trade-off, which are less considered in known literature. There are various data transport
protocols in the public domain. However, how to transmit massive image data along with
ensured real-time property has not been addressed yet. Some transport protocols can only
support the transmission of packages with small size, while some others may have unpre-
dictable transmission delay that is critical to visual servo control system. In addition, the
feedback delay, especially the stochastic delay due to image processing and transmission,
and the time-varying image sending interval have been largely ignored in controller design
in all other works. Moreover, the trade-off between the control performance and the cost
has not been explicitly exploited for visual servo control systems.

Apart from the network-based approach for high-speed vision, the research in the field
of neurobiology, especially the fly’s visual system, inspires the buildup of an insect-inspired
high-speed vision system for robot control. Fly possesses a tiny brain, which contains
neurons one hundred thousands times fewer than that of a human brain. The fly’s brain
performs delicate motion feats, such as tracking and chasing the conspecifics, navigating
through tunnels or flying between obstacles, and controlling their flying speed. These tasks
require a computation time of only a few milliseconds, which greatly preponderate over the
state-of-the-art robotic systems. Therefore, the inspiring manifestations of the fly’s visual
system make it one of the most interesting research domains for both neuroscientists and
engineers. A novel approach comes up based on a biological model–elementary motion

2



1.1 Challenges

detector (EMD). Motion perception based on the fly’s vision system is computationally
cheap and, thus, particularly suitable for real-time applications. The Reichardt-detector,
which is well known as the model describing the process of local motion detection in the
fly at algorithmic level, is implemented for different purposes in the literature. However,
the utilization of EMD for motion estimation in particular for accurate angular velocity
estimation is still in controversy due to its high sensitivity to the features of the input
signals, e.g. the contrast and the spatial frequency of the input images captured by the
camera.

The main objectives of the work presented in this thesis are the design of real-time
transport protocol for massive image data transmission, the investigation of controller
design, stability analysis and sending rate scheduling for cost-effective NVSC systems, and
the design of motion estimation algorithm based on EMD for high-speed insect-inspired
visual servoing system as well as the stability analysis.

The main challenges to the development and the design of NVSC systems are fast
and reliable visual perception, control law stabilizing the closed loop system, and cost-
performance trade-off. The challenges to the design of insect-inspired visual servo control
are reliable motion detection with elaborated EMD and accurate motion estimation. These
challenges are summarized in the following.

1.1 Challenges

The challenges of designing networked-based and insect-inspired high-speed servo control
systems rise from several aspects related with efficient data transmission, high-speed image
processing, sensor data fusion, cost-effective controller design, and stability issues. Some of
the key issues of the design and control of high-speed visual servo control systems targeted
in this thesis are summarized as follows:

Vision Issues

A common vision-based control system possesses typically a vision system of 30Hz be-
cause of the limitations of the hardware and image processing algorithms. Fortunately,
on the hardware front, cameras and frame grabbers with high performance characteristics,
e.g. high frame rate, large image resolution, and high bandwidth communication link, are
available nowadays. It is also feasible to put sophisticated image processing on relatively
low-cost chips, which are, however, fixed and have special purposes. On the algorithm
front, most work in the literature concentrates more on the robustness of image process-
ing, but less on the computation time. With increased complexity in the algorithm, the
computation time is considerably increased. It is well-known that even a small time delay
can result in control performance degradation, and may even lead to unstable closed loop
behavior. Therefore, in order to achieve improvements in stability and control performance,
it is desirable to increase the sampling rate of the visual information, which can be achieved
by parallel image processing on computational resources available over the communication
network. In order to further reduce the computation time on individual processing node
within the networked computation utility, advanced hardware implementation and simple
image processing algorithms can be applied.

3



1 Introduction

In this thesis the main challenge of networked vision system is an increase of the sampling
rate and the robustness of visual feedback. Another challenge is the design of insect-
inspired vision for high-speed motion perception. The aspects towards real-time transport
protocol for large volume image data transmission, features of the processing platform,
novel velocity estimation based on EMD are addressed.

Control Issues

For common visual servo control systems, several control schemes are identified, such as
position-based visual servoing, image-based visual servoing, and 2-1/2D visual servoing.
The advantages and the disadvantages of different control methods are intensively studied
in the literature. However, during the design of control law, not much attention is given to
the time delay in the feedback loop. Processing image data results in a long computation
time delay. In contrast to conventional feedback control loops, the transmission of sensor
data over a communication network within a NVSC system introduces uncertainties such
as (time-varying random) time delay. The influence of the feedback delay on the perfor-
mance and stability of the visual control system is omitted to a great degree in the design
of the conventional visual servo control systems. There are available techniques dealing
with the communication time delay in conventional networked control systems (NVCs).
However, those cannot be directly applied to NVSC, as the computation time delay is dif-
ferent from the transmission delay, due to the data-dependent conditional branches/loops
during image processing. Besides, the sensing of image data may be triggered in different
ways, e.g. periodic or aperiodic sensing, which also needs to be considered in the control
design.

The main challenge of control design is the investigation of a promising control approach,
which guarantees the control performance and maintains the stability of the closed loop
system regarding the time-varying feedback time delay.

Communication Related Issues

In contrast to most conventional NCSs, the data transmitted within a NVSC system are
large volume image data. It is considered to be beneficial to transmit a whole image fame
over the communication network as the most time consuming part of image processing is
feature extraction from the original images. The transport protocols in the public domain
have either limited package load or unbounded transmission delay. Therefore, they are
not suitable for real-time image data transmission in vision-based applications. Moreover,
high communication network load results in large communication time delays and high
packet drop rates. A communication network beyond the channel capacity results in a
complete communication blackout. The communication constrains are critical in particular
in wireless communication networks. Therefore, in the presence of limited communication
bandwidth, keeping the data transmission over the communication network at a minimum
under the constraint of sufficient control performance becomes a challenging task.

The main challenges are the design of an appropriate real-time transport protocol for
large volume image data transmission satisfying real-time characteristics, and the explo-
ration of scheduling strategies coping with the cost-performance trade-off for NVSC sys-
tems.

4



1.2 Main Contribution and Outline of the Thesis

High-Speed Visual Servoing

Network-based Approach

Chapter 4 

Stochastic Analysis

Chapter 3 

High-Speed Vision

Insect-Inspired Approach

Chapter 5

Insect-Inspired Visual 

Servoing

Figure 1.2: Outline of the dissertation.

1.2 Main Contribution and Outline of the Thesis

The primary goal of this thesis is to design the NVSC system, and the insect-inspired
vision system, which both outperform the conventional approach in terms of high-speed
visual feedback. A NVSC system utilizes the existing computational resources over a com-
munication network for parallel image processing, which enables high sampling rate visual
feedback. Instead of simple image processing, advanced image processing algorithms can be
implemented to obtain more reliable and accurate perception results for high performance
robot control.

In order to design a NVSC system, the fundamental issue is to realize real-time image
data transmission. Transmission of large volume image data at high frequency in real-time
is studied in this thesis. In order to exploit the benefits of NVSC, aspects towards stability
analysis and control design are investigated. Moreover, in order to transfer the biological
results to technical applications, the fundamental properties of the inspect-inspired motion
detector are analyzed and utilized to estimate the motion from the image sequence at high
speed. The structure of this thesis is highlighted in Figure 1.2. The main contributions of
this work are presented in the following.

Cloud Image Processing for NVSC

The available techniques accelerating image retrieval and image processing on spe-
cific/advanced hardware in the literature restrict usually to their applications. The ex-
isting networked computational power has not been considered for real-time parallel image
processing. Distributing the images captured by a high-speed camera to the processing
nodes over the communication network, and processing the image data in a parallel man-
ner lead to high-speed visual feedback. Different from the existing methods which mainly
use massive parallel processing and rather basic image processing, the combination of high
performance image processing and parallel processing mechanism over the communication
network is rather new. In Chapter 3 the details about the design of the real-time image
transmission protocol and the cloud computing platform are presented. Besides, a novel
robust image processing algorithm is proposed to achieve reliable image processing results.

5



1 Introduction

Stability Analysis and Control Design for NVSC

With the parallel image processing platform established in Chapter 2, it is focused in
Chapter 3 on the stability and control issues of the NVSC system. The transmission
of image data over the communication network results in unavoidable transmission time
delay. Additionally, the computation time delay caused by image processing exists in the
feedback loop. The time delay in the feedback loop degrades the control performance, and
potentially even renders the system unstable. The conventional control approach which
approximates the delay by its upper bound results in robust but conservative design. In
Chapter 4, a switching control approach is proposed, which switches depending on the size
of the feedback time delay. Considering the limited network bandwidth, optimization of
the trade-off between the control performance and the network cost is another focus in this
thesis. Novel sending rate scheduling strategies are designed to reduced the network load
caused by image data transmission, combined with guaranteed control performance.

Insect-Inspired Motion Vision System

After solving the design problems of networked high-speed visual servoing in Chapters 3
and 4, Chapter 5 focuses on an alternative approach of high-speed vision inspired by the
fly’s vision system. The insect-inspired motion detector, which mimics the mechanism of
motion interpretation in fly’s brain, is utilized in closed loop visual servo control. In order to
utilized the insect-inspired motion detector, its intrinsic characteristics are analyzed firstly.
Since the raw motion detector cannot be directly used due to its low accuracy in motion
estimation, upgrading the raw motion detector to a quantitative estimator becomes the
first task of the system design. Different from other works using artificial stimuli as input,
in this thesis it is focused on using real-time image sequence captured in an unconstructed
environment. A lookup table based approach together with an elaborated motion detector
are proposed to improve the performance of motion estimation. In addition, the stability
of the closed-loop system is analyzed by looking into the response-velocity relationship of
the motion detector.

The dissertation is concluded in Chapter 6 with a summary and a discussion about
future work.

The aspects addressed in this thesis contribute to the generic design of networked visual
servo control and a fundamental understanding of insect-inspired vision. The presented
frameworks integrate the networked computation resources into the conventional visual
servo control, and transfer neuroscience techniques to biologically inspired strategies for
robot motion control. In highlighting multi-disciplinary perspectives of perception and
control, this thesis makes several noteworthy contributions and serves as a based line for
future studies in this area. A variety of applications and examples are presented to highlight
the benefits of the integrated NVSC and the insect-inspired motion vision system.
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Vision-based robot control has been extensively studied in the past decades, where much
attention has been focused on the development of sensing technology, image processing
techniques and control scheme design [1]. Surveys of vision-based robot control can be
found in [2–4], which give an overview of different visual servoing techniques with perfor-
mance comparisons. Originating from the ’camera to hand’ and ’camera on hand’ configu-
rations, the sensing capability is enhanced nowadays with more complicated and intelligent
camera setup, e.g. networked cameras, camera arrays, and camera skins [5–7]. In order
to achieve high control performance of vision-based control system, fast and robust image
processing algorithms are of great importance. The development of image processing the-
ories, e.g. applying image moments, Laplacian of Gaussian, and wavelets [8–10] for feature
extraction, promotes the design of high-performance image processing algorithms. How-
ever, the long image processing delay, in particular the delay caused by running advanced
image processing, is a long standing problem, and it becomes a bottleneck of developing
high-performance visual servo control systems. With the recent advances in computation
and communication technologies, parallel computation based on networked computational
resources (cloud computing) has gained more and more interests for high-performance com-
puting [11–14]. In addition, the evidence from the research in neurobiology shows that the
vision system of insect possesses simple mechanism of motion detection, which motivates
the development of insect-inspired high-speed vision system [15–17].
In this chapter the development of different aspects of visual servo control is reviewed.

Firstly, the techniques available in the literature for accelerating visual feedback are dis-
cussed. Secondly, an overview about the data transmission for real-time vision system
is given. Thirdly, different methods of system modeling, control schemes and scheduling
strategies are surveyed. Finally, the state-of-the-art approaches related to the insect-
inspired motion detection are discussed.

2.1 High-Speed Vision System

For high-performance vision-based robot control, it is desirable to process the image data
in a fast and robust manner to provide necessary and reliable perception results for the
following control step. The vision systems in literature employ different type of devices
in image processing, such as microcontrollers, general processors, application specific cir-
cuit (ASIC), digital signal processors (DSPs), and reconfigurable hardware, e.g. field-
programmable gate arrays (FPGAs). The image data captured by the camera can be
processed either locally or remotely, depending on the computation capability of the sys-
tem in various applications. According to the manner of image processing, the structure
of image processing is basically divided into two types, see Fig. 2.1. The most general
architecture is to connect the camera to a normal personal computer (PC), which runs
image processing algorithm locally, as shown in Fig 2.1 (a). Since a normal PC usually
has limited computation power, it often results in low sampling rate visual feedback. In
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a) b)

camera

PC vision chip supercomputer PC array

image sequence

Communication
network

Figure 2.1: Image data processing locally or/and remotely. a): Local image processing on a
normal PC / specified hardware (e.g. vision chip) / supercomputer. b): Remote distributed
computation on PC array consisting two or more PCs.

order to accelerate image processing, specified hardware such as FPGA, graphics process-
ing units (GPU), and smart vision chip, are adopted for image data processing in some
applications. Another way to deal with image processing is to send the images to a su-
percomputer (see also Fig. 2.1 (a)), which outperforms in superior computation capability.
Considering the existing computational power over the network, it becomes more and more
popular to distribute images over the communication network for parallel processing. In
Fig. 2.1 (b), an array of PCs over the network is utilized for cloud computing. Compared
to the single-PC structure in Fig. 2.1 (a), the computation platform in Fig. 2.1 (b) has
more computation power. In the following the work about high-speed vision systems is
reviewed. According to the platform chosen for image processing, they are divided into two
parts: i) high-speed vision on advanced hardware, and ii) high-speed vision on networked
computation resources.

High-Speed Vision on Advanced Hardware

In literature many different vision systems are developed, and much research is done to-
wards high-speed visual feedback with massive parallel processing. Vision chips capable
of processing image data at 1000 fps have been developed. For these chips, the sens-
ing units and the processing units are integrated on single chips [18–21]. For example,
an artificial retina with processing facilities is built on a complementary metal-oxide-
semiconductor (CMOS) circuit in [18]. In [19] a simple target tracking algorithm is
implemented on a very-large-scale integration (VLSI) chip. A flexible vision chip with
single-instruction multiple-data (SIMD) image processor is designed in [21] to perform
more advanced processing. However, these vision chips can only run for images at low
spatial resolution. Currently for computer vision the images captured by a camera typi-
cally have an image size of 640× 480 pixels. The vision chips mentioned above cannot be
applied for general-purpose image processing.

More recently, in order to accelerate visual feedback, advanced hardware such as FPGA,
which is reconfigurable and flexible, is devoted to the design of vision system . Much effort
is done to build vision system on FPGA for robot control [19, 22, 23]. By using FPGA,
some requirements of processing image data for robot control are met: high-speed par-
allel processing, sufficient computational power and low cost. For example, the parallel
processing capability of FPGA is utilized to build a vision system for image feature ex-
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traction in 1ms [22]. A vision system of 955 fps is also implemented on FGPA for shape
measurement in [23]. An optical-flow processing algorithm working as virtual motion sen-
sor is implemented on FPGA [24]. Recently, an intelligent high-speed vision system is
built, which is able to process a image with a size of 1024 × 1024 pixels at 1000 fps [25].
For robot control, the speed of sensory feedback plays an important role. On the other
hand, the accuracy of the processing results obtained from the sensor data is also critical.
However, with FPGA-based vision systems mainly rather basic/low-level image processing
algorithms are implemented [26, 27]. Besides, compared to the CPU implementation with
a real time operation system (RTLinux), the complexity towards software implementation
on FPGA also limits its usage for general-purpose applications, as discussed in [28].
In order to reduce the computation-intensive workloads, the graphics processing

units (GPUs) is another powerful computational hardware for image processing. With
the development in graphics architectures, the graphics hardware gets faster, and the
computational capability is improved accordingly. Therefore, it becomes a cost-effective
computation platform. Highly parallel computation and increased memory bandwidth
make GPU a strong candidate for high-level image processing. Accelerating a wide range
of applications with GPU leads to work in general purpose GPU (GPGPU) processing.
A detailed overview about GPGPU implementations is given in [29]. It is focused here
on the work done in GPU vision and imaging. For example, early work in [30] mapped
wavelet decomposition and reconstruction onto GPU, which reduces the lag in visualiza-
tion cycle. A real-time system for 3D depth estimation running on a NVIDIA GeForce
4 graphic card creates depths maps quickly [31]. In [32], it achieves a 2.8 speedup factor
against the P4 system by mapping both the motion estimation and visualization algorithm
onto graphic cards. In recent years, the compute unified device architecture (CUDA) [33]
is developed for allowing programming on GPU hardware with no knowledge requirement
on the graphic pipeline, and thus, increases the flexibility in mapping operation onto GPU
hardware. For instance, the optical flow computation proposed by Horn and Schunk [34]
is implemented on CUDA [35]. A multi-GPU implementation of saliency map approach-
ing a frame rate of 313 fps for images of size 640× 480 pixels, is realized on four NVIDIA
GeForce 8800 graphic cards [36].
Nowadays, benefiting from the advances of the multi-core computing technology, e.g.

the Intel Cell [37], Niagara [38], and Larrabee [39] for highly parallel algorithms, the real-
time performance of the image processing algorithms is greatly improved [40]. In [41]
it is shown that with the optimized workload on a 32-core system the body tracking
algorithm achieves a speed-up factor of 26. An efficient hand gesture tracking system is
realized on a processor with eight cores, whose operating speed is almost 13 times faster
than the single-core processor approach [42]. Because of the introduction of multi-core
processors, the performance of the image processing algorithm is significantly improved,
e.g. the implementation of Hough Transform on a 8-core machine achieves 25% better
performance compared to that on single-core processor [43].
The performance of the implementations on FPGA, the general-purpose CPU, multi-

core CPU and GPU are compared and evaluated in [44–46]. In [44], 3D tomography is
computed with FPGA virtex 4, or a general purpose processor including a Xeon dual core
and a Pentium 4, or with graphic cards NVIDIA 8800 GTS. The computation time is largely
reduced benefiting from the parallel computation capability of these processing units. The
GPU outperforms the other platforms, e.g. it is 50 times faster than a Pentium 4. In [46] a
set of throughout computing kernels, e.g. convolution and FFT (fast Fourier transform), is
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implemented on Intel Core i7-960 and NVIDIA GTX280. The CPUs and GPUs show closer
performance than that reported in other studies. It is due to several factors contributed
to the performance such as the type of CPU/GPU and the optimization algorithm for the
code.
The two major computation platforms CPU and GPU are suitable for different appli-

cations. With the emergence of fusing the functionality of the CPU and GPU, hybrid
CPU-GPU platforms are used to accelerate the computation, e.g. the CPU-GPU platform
for the computation of the matrix inverse in [47], and the fused CPU+GPU processor for
reduction/FFT calculation in [48]. In addition, powerful computer system (supercomput-
ers), e.g. K computer in Kobe, Japan and Tianhe-1A in Tianjin, China [49], are installed
for high-performance computation. However, the cost and the maintenance difficulty as-
sociated with these systems limit their wide-spread adoption.

High-Speed Vision on Networked Computational Resources

With the development of computation and communication technologies, parallel compu-
tation based on networked computation resources (cloud computing) has gained more and
more interests for high-performance computation [12–14, 50, 51]. Different from concen-
trating on developing either advanced hardware (e.g. FPGA, GPU and supercomputer),
or parallel version of algorithm, the utilization of the computing resources interconnected
by one or more communication network for parallel and distributed processing becomes
a promising solution to the increased computing requirements in future. For the typical
computing environments, data processing is carried out locally, while with the networked
computing resources it is conducted remotely. A significant advantage of the network com-
puting system is that it utilizes existing general purpose processing nodes, and thereby it
requires little or no additional investment [52]. The development of data communication
and network technology, e.g. communication protocols and communication media, enables
data processing over the communication network in a straightforward and efficient manner.
The data processing of robot control can be represented by different levels such as such

as multi-robot level, robot level, functions level and so on, which can be implemented in
parallel computation manner [12]. In this thesis, it is focused on algorithm level, in par-
ticular the image processing algorithm. An example of utilizing a network of workstations
for parallel image computation is given in [52]. The computation environment is evalu-
ated with some low-level image processing algorithms such as edge detection and template
matching [53], and it presents efficient speedup in computation time. Another example of
image processing on a network of workstations is presented in [14]. A testbed consisting
of high-speed workstations is designed for image processing (edge detection with Sobel
operator and the time performance is studied [54]). It is concluded that the divisible load
theory outperforms the equal-partitioning strategy in tasks scheduling among available
processing nodes.
In [55] distributed computing approach is proposed for geographic systems requiring

high-performance computing. Cooperative use of the networked data storage and data
processing capabilities provides an economic and efficient computing platform for applica-
tions with large-scale source data.
By exploiting the computational power of individual workstation massive parallel and

distributed computing over the communication network becomes a primary choice for solv-
ing the computation-intensive problem in future. However, coming to the practical imple-
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mentation it confronts challenges of meeting the criteria of connectability (e.g. ensuring
network security, efficient data transmission), performance (e.g. balancing the load among
workstations, control design considering communication time delay), and cost (reducing
communication cost regarding limited communication bandwidth) [56]. As pointed out
in [57] the central design problems of distributed computation systems are ’what to com-
pute’ and ’what to communicate’. To answer these two questions, different computational
power of each processing node and the communication bandwidth should be considered.
In order to balance the load of processing nodes and to utilize the networked computing
resources efficiently, suitable balancing strategies which optimize the utility of the comput-
ing capability of each node and minimize the inter-processor communication are desired.
The old-fashioned strategy of distributing loads evenly results in poor performance for het-
erogeneous networked systems. Therefore, fast, robust, and efficient scheduling strategy
considering the loads of the processor and the network is necessary. Much research effort is
devoted to the design of promising scheduling mechanisms in this research domain [58–61].

2.2 Real-Time Image Data Transmission

Benefiting from distributed computation the image processing is accelerated, and thereby
a better control performance is achieved. However, the communication bandwidth con-
straint of the networks, in particular of the wireless networks, challenges the design of
the distributed computation platform. A key issue of distributed image processing is the
transmission of image data in a fast, robust and efficient manner. In order to solve this
problem, research effort is devoted to the development of appropriate image transmission
strategies [62–67].

In visual sensor networks, e.g. for environment monitoring and target tracking, data
aggregation algorithm, which fuses data from multiple sensors, is employed to reduce the
size of transmitted image data [62, 68, 69]. Aggregating image data requires the design
of a proper mechanism for aggregation. For example, in [63, 64] image data compression
and transmitting in energy constrained wireless network is studied. The total energy
consumption is concerned with the required image quality during the image compression
process. In order to save the communication bandwidth, the image data from different
cameras in a camera sensor system is compressed (distributed compression) in [70]. The
geometrical information about the locations of the camera and the targets of interests is
applied to correlate the image information captured from different view angles. Moreover,
the useful temporal correlation among the images is applied in data transmission in [71].
It runs image processing locally before sending it to a monitoring center. Only the regions
containing targets of interests are transmitted, and thus, the overall energy consumption
is reduced.

Along with the consideration of energy consumption, for applications of real-time vision-
based control a key factor during the design of image transmission is the transmission
delay. The time delay in the feedback loop degrades the overall control performance, and
even renders the system unstable. Therefore, the design of a real-time image transmission
protocol with low latency is an important yet a challenging task. For Internet-based data
transmission images are usually transmitted by lossless protocols such as TCP/IP, which
triggers retransmission of data caused by packet loss. In order to overcome the lengthy
image transmission delay due to retransmission mechanism, a fast lossy Internet image
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transmission scheme is proposed in [72]. It concentrates on image bits devoted to error
correction during image compression, and the retransmission delays are thus eliminated.
With the designed scheme, the image transmission is five times faster than that with
TCP/IP. In [73] a low-delay wireless network is built for video transmission. A video
proxy server is added on the transmission path to manage the real-time delay constraint.
In order to transmit video over the Internet a TCP-friendly transport protocol is adopted
in [74]. The transmission latency in TCP is reduced by filtering a scalable video bit-stream.
The other technical issues about transmitting image over network such as congestion

control and error control from the compression perspective are not the focus of this disser-
tation. Readers interested in these issues are referred to [75] for an overview.
For high-speed transmission of image data from sensors to the processing nodes, a proper

physical layer has to be built. Nowadays, the wired Internet (1000BASE-T Ethernet) is
widely used in various applications, as in the examples introduced above. Other data
link/physical layer devices such as EtherCAT (Ethernet for control automation technol-
ogy) [76], CAN (controller area network) [77], SERCOS [78] or WLAN (wireless local area
network) [79], either need dedicated hardware or have limited transmission rates, which
thus limits the extension for its wide-spread use in robot control. For example, Ether-
CAT and RTNET based on Ethernet have deterministic delays. However, the overhead
for synchronization (EtherCAT: token ring, RTNET: TDMA) introduces high bandwidth
penalty, meaning that the average transmission delay is very significant. By WLAN, the
theoretical speed of 802.11n is 300Mbps. However, the maximum real-world speed is only
about 100Mbps, which limits the transmission of images (640×480 pixels) with rate higher
than 60Hz.

2.3 Vision-based Control

Before introducing the state-of-art of NVSC, vision-based control is firstly briefly surveyed
in this section. At the very beginning vision-based control performs in a ’look-and-move’
manner which indicates a open loop control fashion. It is nowadays more common to im-
plement closed loop vision-based control with the benefits of improved control performance
compared to the open loop approach [1]. In the following sections selected basic concepts
of visual servoing are briefly introduced. A survey of the state-of-the-art approaches on
several important aspects relevant to this thesis is presented.

Image-, Position-based, and Advanced Approaches

There are typically two visual servoing schemes classified according to the task space, the
image-based visual servoing (IBVS) in image space and the position-based visual servo-
ing (PBVS) in Cartesian space [3, 80, 81].
By the image-based approach, the camera is usually mounted on the end-effector of a

manipulator, commonly referred to as eye-in-hand configuration. The control objective is
to drive the manipulator to a desired position and rotation angle such that the features
in the image coincide with that in the image captured a priory. Since image features
are described in image space, and the manipulator control is performed in joint space,
the image Jacobian [82] is thus introduced to map the relationship between the features
motion in image space and the camera motion in Cartesian space. The major advantage of
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image-based approach is that it is robust to calibration error. However, it also has several
drawbacks in practical implementation. For example, the depth information, which is
difficult to estimate from the monocular camera system, is needed for calculating the
Jacobian matrix. Besides, the image-based control approach could not guarantee the
selected features always staying within the field view of the camera. Losing the features
in the image plane may result in control failure.

By the position-based approach, camera can be either mounted on the manipulator
or fixed in the workspace (’eye-to-hand’ configuration). The objective is to drive the
manipulator to a pre-defined pose with respect to the background of the workspace or to
a stationary/moving target. Therefore, the control error is defined in the Cartesian space.
An advantage of this approach is that it is possible to do trajectory planning in Cartesian
space rather than in image space. The relative pose is recovered from the image data based
on the camera calibration results. In contrast to the image-based approach this method
can be susceptible to calibration errors.

In order to compensate for the potential shortcomings of these two approaches it comes
to hybrid control scheme which combines the merits of the image-based approach and the
position-based approach in visual servo control [83–86]. For example, Mails et al. proposed
a 2-1/2-D control law which decouples the six degrees of freedom (DOF) of the camera.
With this method the 3-D model of the target is not needed, and it is more robust to cam-
era calibration error compared to the position-based approach, with, however, the cost of
being more sensitive to image noise compared to the image-based approach. With the par-
titioned approach the control performance is optimized by assigning distinct controllers to
individual degrees of freedom. Another way to optimize the control performance is to use
a switching control law which switches based on the criteria of the Lyapunov function [87].
The switching controller switches between the IBVS controller and the PBVS controller
considering the thresholds of the Lyapunov functions. With appropriately selected switch-
ing thresholds, a better control performance is achieved compared to the IBVS or PBVS
approach.

Perception Issues

Sensor techniques and perception capability play important roles in the design of robust
visual servo control systems. Since visual sensors provide the real-time information of
dynamical surroundings for system control, they are expected to be low-cost, low power
consumption, fast and accurate. With the development of sensing technology there are var-
ious types of sensors available for different applications. For example, an ultra light camera
’Firefly MV’ from Point Grey [88] is mounted on a quadrotor in an air-ground multi-robot
system [89]. A high-speed camera MC1311 from Microtron [90] is connected to a FPGA
board for optical flow detection [236]. A low-cost depth sensor Microsoft Kinect [92] is ap-
plied to establish an inexpensive robot platform for teleoperation [93]. In addition, frame
grabbers with high performance characteristics and high bandwidth communication link
are available nowadays which enables the transmission of high resolution images with high
frame rate from sensors to the receivers for image processing. Apart from the monocular
and binocular camera system, more advanced sensing platforms such as networked cam-
eras [5,94], camera arrays [6,95,96], and dense skins of camera (multi-camera eye-in-hand
systems) [7] are developed to meet the requirements of different applications.
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In order to obtain useful information from the captured images, e.g. the locations of
the targets and the obstacles, the human activities, and the information of the operating
environments, the first step is to run low-level image processing algorithms performed on
pixel-level, such as feature (e.g. corners and edges) extraction from the images. With
the results of low-level image processing high-level image processing is then followed to
extract the information such as 3D location of the target for robot control. Model-based
approach is another class of tracking objects. It uses models of the tracked objects such as
CAD model or a 2D template of the objects [97–99]. The development of image processing
techniques for target tracking helps to improve the accuracy of image processing results,
which is critical to overall system control performance and stability. In this thesis, the
feature-based approach is also adopted for target tracking.

The feature detection algorithm, namely scale invariant features transform (SIFT) [9],
is known for its robustness to wide illumination variance and view angles changes. SIFT
is widely used for feature extraction in the domain of robot control [100–102]. Later
on, Bay et al. proposed another novel feature extraction algorithm, namely speeded up
robust features (SURF) [103], which outperforms the existing methods in terms of its
distinctiveness, robustness and speed. SURF-based application examples can be found
in [104–106]. In order to achieve real-time performance, GPU implementation is commonly
adopted to speed up the algorithms [107,108]. A comprehensive overview of local invariant
feature detectors can be found in [109, 110].

Stability Issues

In the literature of visual servoing the main focus of control design is the kinematics of
the manipulator. The dynamic issues due to the nonlinear robot dynamics and visual
sensor are essential to high-performance control. In [111] the nonlinear robot dynamics is
considered in controller design, and an asymptotically stable system is yielded with the
designed controller. The system is capable to cope with the uncertainty in the camera
parameters such as lens distortion. The problem of uncertainties in camera and robot
dynamic model parameters is also addressed for tracking of moving targets in [112]. An
adaptive visual servo control approach is proposed using a Lyapunov-based design.

For dynamic performance analysis another important factor is the feedback time delay.
However, less effort has been spent on the control design for visual servo system with
feedback time delay. Compared to conventional motion control systems, the additional
time delay caused by image processing leads to difficulty in the control design of visual
servoing. As the visual sensor delivers the feedback signal to the controller which drives the
manipulator with desired motions, the latency in the feedback loop consists mainly of four
components: image acquisition delay, image processing delay, delay caused by determining
the control signal, and delay for transmitting signal to the manipulator. The latency is
governed by image processing in most vision-based control system. For example, with the
development of high-speed cameras, the delay for capturing images is largely reduced, e.g.
a camera running at a frame rate of 1000Hz can capture images with a sampling interval
of only 1ms. The long image processing delay slows down the sampling rate of the visual
feedback, degrades the control performance, and may cause the system to be unstable.
Therefore, the feedback time delay challenges the control design for vision-based control
systems [113].
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One approach to ensure the stability of the visual servoing systems is to derive the upper
limit of acceptable delay. For example, in [114] the delay boundary is determined by using
the Nyquist Stability Criterion. A delay beyond the limitation leads to a unstable system.
Another approach is to compensate the feedback delay introduced in the feedback loop,
e.g. using an extended Kalman filter [115] for pose estimation in [116], and a generalized
predictive controller (GPC) [117] considering model dynamics in [118]. For objects with
constant motion, e.g. objects on a convert belt or on a moving train, the prediction
algorithm gives reliable estimation for manipulator control. However, if the target motion
is unmodeled, e.g. objects move randomly in the operating space, the performance of the
prediction becomes poor.
Moreover, adopting the shared networks in the control loops presents additional de-

sign problems such as bandwidth constraints, delays and packet dropouts. Utilizing the
computation power over the communication network increases the computational capa-
bility. However, communicating data over the network, such as transmitting image data
to remote processing nodes, suffers from additional transmission time delay. In Ethernet,
transmission time delays are generally random. During image processing the computation
delay is also random due to data-dependent conditional ranches/loops [119]. For systems
with random delays various control approaches have been proposed in the literature. In
the past, networked control system (NCS) research, the networked-induced delays have
been considered, see [120, 121]. In this thesis, the focus is on NVSC system with random
computation and communication delays as well as non-equidistant sampling intervals.
Approximating a random delay by its upper bound, e.g. the worst case, results in

a robust but conservative control design [122]. Potentially available stochastic models
in terms of probability distributions of the delay are discarded. Less conservative con-
trol design approaches are based on stochastic analysis [123–132], see [133] for a general
overview. In [123], the random delay is considered as an independent and identically dis-
tributed (i.i.d.) binary random process. The associated stability conditions and controller
design algorithms are derived using the statistical properties of the delays. A Markov
process is used to model the random delays as a stochastic process in [124–126]. The
resulting closed loop system is Markovian jump system (MJS) with stability conditions
and controller design algorithms being determined either by the infinitesimal generator
of the delays in continuous-time modeling or by the transition matrix of the delays in
discrete-time modeling. However, a constant sampling interval is assumed in most of the
existing results, which cannot be applied to the NVSC system with time-varying sampling
intervals.

Performance and Cost Issues

It is desirable to improve the control performance with high-speed visual feedback by means
of distributed computation over the network. However, the transmission of large volume
image data results in a high communication network load, which leads to large commu-
nication delays and high packet drop rates. A communication network load beyond the
channel capacity may even result in a complete communication blackout. The communica-
tion constraints are critical in particular in wireless communication networks. Therefore,
in the presence of limited communication bandwidth keeping the data transmission over
the communication network at a minimum under the constraint of sufficient control perfor-
mance is necessary. A scheduler is demanded to cope with the communication constraints
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in particular in the case of large volume image data. A general overview about the re-
lated works on the co-design of control systems and communication networks can be found
in [121, 134–136]. Some of the important results are summarized in the following.

In order to study the problem of optimal control and network scheduling over lim-
ited bandwidth deterministic networks, a set of linear time-discrete systems are modeled
in [137]. The optimal control and scheduling problem is formulated into mixed integer
quadratic programming formulation, and the results are applied in the simulation of a
car suspension scenario. An adaptive controller, which adjusts its output according to
network delays, is proposed considering the quality-of-control in NCSs in [138]. Dynamic
management of the network traffic is realized through the control adaptive techniques.
In [139] a predictive control and scheduling co-design approach is proposed for a set of
networked control systems. The system stability is guaranteed by ensuring the time delay
within an analytical upper bound. A predictive controller is designed by compensating
the delay with the delayed sensing data and the previous control information. However,
this approach, which requires an exact knowledge of systems and the delays, is susceptible
to the modeling uncertainties and the non-deterministic network characteristics. In order
to reduce the communication network traffic, the deadband control approach is proposed
in [140, 141], which only sends packets when the current value exceeds a given threshold.
The benefits of such an event-triggered sampling scheme over a periodic sampling scheme
are analytically shown for the first time in [142]. The optimal combination of control and
event-triggered sensor transmission is investigated in [143–145].

Different from the framework of deterministic design approaches introduced above, the
probability distribution of network attributes is also considered in system design in the
literature. Modeling the network time delay and packet dropouts with stochastic pro-
cesses such as Markov processes results in control systems and communication co-design
with stochastic analysis methodologies [146–150]. The network induced problems such as
time delays, packet dropouts, and disorder of data-packet transmission are considered in
control and communication co-design in [146]. In order to design an optimal controller,
the optimal sampling frequency is determined based on the system dynamics and the
network characteristics. However, the transmission delay is assumed to be less than one
sampling interval. The proposed approach is not suitable for systems with longer time
delays. System analysis for nonlinear NCS employing Ethernet and Ethernet-like wireless
and wireline is carried out in [148]. Stochastic scheduling protocols are developed by means
of input-output stability analysis. The problem of allocating the communication resources
for optimal performance of linear NCSs is studied in [150]. Networks with limited commu-
nication rates are modeled by uniform quantization with white-noise quantization errors.
The optimal control performance is stabilized by jointly allocating the communication
resources and tuning the controller parameters.

2.4 Insect-Inspired Vision for Robotics

A fly’s panoramic vision system comprises at its front end several thousands photoreceptor
feeding into a 2D array of motion detecting neurons which the animal uses for dynamic
visuomotor pose and gaze stabilization, and navigation in six degrees of freedom. The
Reichardt model [151] is a well-known model which describes, at an algorithm level, the
process of local motion processing in the fly, leading from a non-direction input to a direc-
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Table 2.1: Comparison of different devices for EMD implementation

FPAA µC VLSI FPGA
EMD Array size – + ++ ++

Energy consumption – + ++ +
Design time + + – +

Cost + ++ – +

tion selective output. In a structure of the fly brain called ’lobula plate’ large neurons are
found which integrates these local motion signals and additionally form extensive connec-
tions amongst themselves [15, 16]. These neurons have large receptive fields and respond
best to particular low-fields such as occurring during certain maneuvers of the fly in free
flight [152, 153].

In order to upgrade the Reichardt model to be an reliable biological elementary detec-
tion model, additional components, such as spatial and temporal high pass and low pass
filters, thresholding, dynamic saturation and integration are added [154–156]. With the
advances in the research of Reichardt model, a number of EMD-based implementations
are carried out in the literature [157–162]. Franceschini designed an EMD circuit for a
micro-air vehicles (MAV) by using Field Programmable Analog Array (FPAA) and µC
(the Cygnal 8051 F300) [157]. However, the FPAA based EMD circuit turns out to be
very energy-consuming. It is therefore replaced by a tiny 3× 3mm µC which computed
optic flow with relatively small device weighing (only 0.1 g) [158]. In [159–161], EMD based
visual processing were carried out on Very-Large-Scale-Integrated (VLSI) circuits which
also provide sufficient computation resources. In [162], Harrison has designed and tested
a single-chip analog VLSI sensor that could detect imminent collisions by measuring the
radially expanding optic flow. An EMD circuit was developed to measure the optic flow of
a CMOS sensor, while a 16 × 16 array of two-dimensional motion detectors was designed
for collision detection 100-400ms ahead of the impact in real-world scene.

In addition, FPGA devices with programmable logic components are also selected for
EMD implementation [163–166]. For example, in [163] a motion estimation algorithm
with configurable parameters for EMD was implemented on a FPGA board. The proposed
algorithm, implemented using the VHDL (VHSIC hardware description language) language
in the FPGA device, searches the optimal EMD parameters and computes the global
motion vectors in real time. Besides, a FPGA implementation of a insect-inspired visual
sensor is introduced in [164], which is designed to estimate the optic flow onboard for
Micro-Air Vehicles (MAV). With the advantage of parallel processing capability of FPGA,
the signals from up to 245 EMDs could be implemented at a 100Mhz clock frequency
on a < 1 gram piece of integrated digital electronics that requires only a few external
components. The specific EMD architecture is integrated into a Virtex2 Xilinx FPGA
(XC@V250) 12× 12mm in a size of 250,000 system gates.

The implementations of EMD on various devices introduced above have their own ad-
vantages and disadvantages as illustrated in Table 2.1. For example, using the FPAA and
µC can realize a limited number of EMDs easily and quickly, but has the restriction of
large energy consumption and weights. FPGA is a compromise of time for design process,
system mass, and flexibility. FPGA has in particular an advantage of having parallel and
pipelining ability in each unit. With these remarkable characteristics of FPGAs, it is flex-
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ible to design a multi-EMDs system. More specific instructions of the fly’s vision system
and the EMD variants are given and discussed in Chapter 5.

2.5 Summary

To sum up, high-speed vision based on the networked computational resources or the insect-
inspired motion detector improves the sampling rate of the visual feedback, which is critical
to system performance and system stability. Until now, there are few works in the literature
dealing with either networked high-speed visual servo control or high-performance insect-
inspired visual servo control. For NVSC, most works only deal with a subset of the different
aspects of visual servoing or networked control. To the best knowledge of the author, almost
no work has been done towards networked high-speed vision for visual servo control that
concerns the real-time distributed computation, stability analysis, network resource and
control performance at the same time. In the field of EMD-based robotics, most state-
of-the-art works have used EMD for qualitative motion estimation, yet, only few of those
have coped with the quantitative motion estimation shown in simulated behaviours, which,
however, limits its expansion of applications to real-world experiments.
For the first time, high-speed NVSC and insect-inspired visual servo control are com-

prehensively investigated and studied in this thesis. The objective of this thesis is to deal
with the aspects of high-speed vision for robot control realized through these two ap-
proaches, including real-time image data transmission, stability analysis, data scheduling
for optimal cost-performance trade-off, elaborated EMD design and EMD-based motion
estimation. The presented work contributes to the state-of-the-art in the domains of data
transmission, networked control, vision-based control, and insect-inspired robotics.
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Servoing

One important task of vision-based control systems is objects localization. The general
image processing algorithm for object localization has mainly three steps, namely image
acquisition, object recognition, and pose estimation. The algorithm for object recognition
consists of image feature extraction and image feature matching. Since extracting robust
and discriminative features from image sequences is the most critical step and yet, the
most difficult step, different approaches and methodologies have been developed in the past
decades. The selection of an appropriate operator for feature extraction is dependent on
different applications. Some algorithms are developed to extract low-level image features
such as edge, corner, and optical flow, which contains no shape information [167]. As
these basic operators are sensitive to the changes in image scale and orientation, they
are not suitable for the applications, where feature matching is needed after the step of
feature extraction. Therefore, more advanced feature extraction algorithms such as the
scale invariant feature transform (SIFT) [9, 109] are developed in order to improve the
performance of feature detection and feature matching in object recognition. The features
detected in the manner of SIFT are less sensitive to image scale, image rotation and the
varying illumination compared to the features obtained by using basic operators. However,
the computation delay by applying the advanced algorithms also increases. Apparently,
there is a compromise between computational cost and efficiency in selecting image feature
operators. For a visual servo control system, the choice of advanced feature extraction
algorithms benefits the image processing results, and introduces, however, challenges to
system analysis and controller design regarding the long computational time.
In order to reduce the computation time caused by image processing, advanced hardware

and simplified algorithms are adopted in some applications. On one side, specific hardware
such as FPGA and GPU are utilized to increase the computation capability of parallel
processing. On the other side, advanced algorithms with guaranteed performance, e.g.
using SURF (Speed Up Robust Features) [168] to replace SIFT, are favored by some
works. However, the resulting sampling interval of the visual data is usually still longer
than 30ms, which largely exceeds the cycle time of a robot joint position loop. For example,
it takes about 20ms to extract SURF (Speed Up Robust Features) [168] from an image of
a size 640×480 pixels on a graphic card NVIDIA-GeForce 8800, while the sampling interval
of the joint position control loop is typically in the scale of 1ms. For highly dynamic vision-
based motion control, e.g. tracking of fast-moving objects, the long image processing delay
increases the risk of losing the objects in the field of view, and thus, may cause control
failures.
In order to overcome the low sampling rate problem of the visual feedback, utilizing

computation resources over the network to speed up visual feedback becomes an alternative
as to the methods discussed previously, see an example in Fig. 3.1. Instead of centralized
computation, distributed image processing is carried on several processing nodes. Each
processing node receives a subset of the original image sequence over a communication
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Figure 3.1: Distributed computation platform with ncRTP for parallel image processing in
networked visual servo control systems, consisting of image streaming server, controller,
and processing nodes. Img seq: original image sequence captured by camera; Img sub:
subset of the original image sequence; Img res: image processing results.

network from a streaming server. The obtained image processing results are then sent to
the controller to calculate the control signal for the manipulators.

The goal of this chapter is to increase the sampling rate of the visual feedback and the
robustness of the perception results for closed loop control. Contributions of the presented
work are a promising cloud image processing platform and a robust image processing
algorithm for vision-based control. Issues towards the investigation and the design of real-
time transport protocol for large volume image data transmission over the communication
network are addressed. For the design of robust image processing algorithm, it requires a
systematic analysis of the scale space in feature detection and feature matching.

The remainder of this chapter is organized as follows: A high-speed vision system with
real-time image transmission protocol is developed in Section 3.1. In Section 3.2 the analyt-
ical design of binomial distributed sampling in scale space and the self-scaling mechanism
is introduced to improve the performance of image processing. The characteristics of the
cloud computing platform, in particular the property of the feedback delay, are discussed
in Section 3.3.

3.1 High-Speed Vision over Network

In order to accelerate visual feedback, it is desirable to perform image processing in a
parallel way. For example, distributing images to different processing threads/nodes can
increase the frequency of image processing. Instead of using a super-power computer, the
computation resources connected over a common network are considered for parallel image
processing. Since the most time consuming part of the image processing is the algorithm for
feature extraction from the original images, it is considered to transmit the raw image data
over the communication network in this work. A whole gray-level image, rather than sub-
blocks of the image, is transmitted to a single processing node for feature extraction. The
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reason is that a sub-block of the original image loses the information of the adjacent pixels
on the margin. Accordingly, the feature operator running on the sub-blocks gives different
results from that on the original image. Moreover, distributing sub-blocks to different
processing nodes requires additional inter-frame synchronization mechanism, resulting in
a growth in the complexity of transport protocol design. Therefore, it is beneficial to
transmitting whole image frames over the communication network.

The structure of the proposed high-speed vision system is shown in Fig. 3.1. In this
structure, a single-sensor system is formulated with an emphasis on image data trans-
mission and parallel computation. Expanding the single sensor system in Fig. 3.1 to a
multi-sensor system will lead to other technical issues, such as synchronization and data
fusion, which are outside the scope of this thesis.

3.1.1 Real-Time Image Transmission

A single channel image with a resolution of 640 × 480 pixels possesses a size of about
300KB. For a camera running at a frame rate of 60Hz, it requires a bandwidth of about
144Mbps. Transmitting these massive image data over the communication network be-
comes a challenging task in NVSC systems.

In order to accomplish this task, an appropriate device has to be chosen to build the
physical layer. As discussed in Section 2.2, the 1000BASE-T Ethernet is implemented
to transmit image data, as other data link/physical layer devices such as EtherCAT,
CAN, SERCOS or WLAN either need dedicated hardware or have limited transmission
rates. Besides, an image transmission protocol networked control real-time transport pro-
tocol (ncRTP) based on real-time transport protocol (RTP) is developed for NVSC sys-
tems. Although there are various transport protocols in the public domain, they are not
suitable for real-time image transmission1. The RTP supports the delivery of data with
real-time characteristics and provides the services, including payload type identification,
sequence numbering, timestamping, and delivery monitoring. The developed transport
protocol ncRTP with the 1000BASE-T Ethernet as the physical layer is briefly introduced
in this section.

Network Stack

In order to design the transport protocol for image transmission over the network, the
network stack is briefly introduced here. The computer network is a packet-switched
telecommunication network. Data are encapsulated in different units depending on the
physical devices, such as Ethernet, ATM, PPP and so on [169]. Higher level layers are
developed to support communications independent on the devices. Each layer provides
different services by adding new functions. Meanwhile, the new layer depends on the
services of the underlying layer. The structure of layers 2-5 in the OSI (open system
interconnection) model [169] is illustrated in Fig. 3.2. From this model, a suitable layer is
selected for image transmission. The features of each layer are described below:

• Layer 2 (Data Link): Physical addressing. This layer is device dependent and the
data unit in this layer is called frame existing only in LANs.

1See discussion in Section 2.2
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Figure 3.2: Layers 2-5 in the OSI model [169].

• Layer 3 (Network): Path determination and logical addressing. This layer only pro-
vides essential functions for data transmission crossing LANs.

• Layer 4 (Transport): End-to-end connections. It is an IP address multiplexer. UDP
provides basic functions, while TCP implements extra features, e.g. reliable trans-
mission, error detection, flow control and congestion control.

• Layer 5 (Application): All functions not mentioned in the underlying layer could be
implemented here.

According to layer 4, UDP and TCP are commonly used protocols on the Internet. How-
ever, they are not suitable for real-time transmission tasks, which require large volume
data exchanges. UDP, commonly used for streaming audio and video, has no form of flow
control or error correction. Thus, it cannot be used to send important data. Besides, it
is not able to transmit data package larger than 64KB [169]. Different from UDP, TCP
offers error correction and provides guaranteed delivery. However, TCP has a larger ab-
solute value and also larger variance of the transmission delay due to windowing behavior
and retransmission mechanism. A solution based on both UDP and TCP is proposed in
this thesis as a compromise between the speed and the performance.
A new protocol is designed which combines the features of UDP and TCP. The new

protocol is not necessarily designed from the draft. It is based on the RTP [170], which
is an application layer protocol for transmitting latency-sensitive data, such as video and
audio on the Internet. It is the foundation of many Voice over IP and media streaming
systems. The RTP uses a separate channel for monitoring and adjusting the data delivery.
In this thesis, ncRTP is designed and implemented based on GNU ccRTP [171], which
supports both UDP and TCP as transport layer protocol. Since TCP is unsuitable for
real-time applications, UDP is used as the underlying protocol for ncRTP to build a low-
latency protocol stack providing multicast support. As a support layer protocol, UDP
inherits features of IP protocol, which is characterized as connectionless and unreliable. In
comparison with TCP, UDP has no transport level mechanisms to ensure the data integrity
such as flow control and retransmissions. These mechanisms can improve the transmission
reliability with, however, the payout of extra unpredictable latency. In order to obtain a
balance between the robustness and the performance, some TCP features are implemented
on the application layer in ncRTP. The features of ncRTP are described in the following.

RTP Header

The RTP has a header layout shown in Fig. 3.3 (refer to [170] for details of the meaning
of different fields). It has to be mentioned that PT denotes the payload type, e.g. the
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Figure 3.3: RTP fixed and extended header fields (modified from [170]). Upper part: fixed
header; lower part: extended header. V: version=2; P: padding; X: extension; CC: CSRC
count; M: marker; PT: payload type.

different image types. The sequence number is assigned to each RTP data packet which
can be used by the receiver for both packet restoring and packet loss detection. Besides,
the 32-bits timestamp that reflects the sampling instant of the first octet is utilized as the
index for the detection of packet disorder at the receiver side. The header extension here
allows to carry additional information required for individual implementations, e.g. the
image frame number and the timestamp when the image is captured.

Fragmentation Mechanism

For transmission of data larger than 64KB on top of UDP protocol, such as single-channel
image (640× 480 pixels) with a typical size of 300KB, the data have to be fragmented
by the sending module and assembled by the receiving counterpart. However, the frag-
mentation mechanism is not defined uniformly for different payload types in ccRTP. Here,
a transparent data fragmentation/reassembling layer is built in ncRTP in order to sup-
port diverse data formats from different cameras in NVSC applications. Large frame is
truncated as a series of data blocks patched with an extended identification number. For
example, an image with a size of about 300 KB is segmented into five data blocks with
each block smaller than 64KB, see Fig. 3.4 for visualization. Then, the receiving stack can
detect and reassemble the frame according to the identification number and the extended
payload types defined in the header of ncRTP.

Congestion Control

Most packet loss in Internet is caused by congestion [172], which could lead to congestion
collapse. The system time delay increases continuously if the data are lost successively.
The sliding window mechanism [173] of TCP, by which the transmission stream is expended
to consume all available bandwidth, is not selected as the congestion control strategy for
ncRTP. In contrast, the data are transmitted with a certain rate by RTP. Several methods
have been proposed for RTP congestion control in [174]. In ncRTP the congestion control
is implemented as image resolution/rate adaptation based on control protocol (RTCP)
feedback. If there is packet loss, the whole application data unit (ADU), e.g. a frame,
is dropped. Instead of retransmitting this frame, the next frame which is available and
contains more important information for networked control will be sent in this case. When
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Figure 3.4: Image data fragmentation. The image with a size of 640×480 pixels is segmented
into five data blocks. The size of each block is smaller than 64KB.

successive data losses are detected by the receiver, the sender could be notified through
RTCP to decrease the sending rate or to reduce the image resolution.

Synchronization and Timing

The distributed computation system is designed as an event-driven system. The data
processing thread is triggered when a new frame has been assembled in the receiving buffer.
Therefore, the system works with the same frequency of the grabbing rate of cameras. The
real-time clock (RTC) of the hosts in NVSC systems can be synchronized by network time
protocol (NTP) up to 0.1 ms. The RTP header is extended according to [170] and the RTC
timestamp is appended in the extension. The streaming server is designed on RTAI real-
time kernel and the sending process is scheduled periodically within a jitter of 10µs. Based
on this framework, the control performance could be evaluated with small granularity.

System Parameter Calibration

The implementation of the ncRTP stack requires a large throughput capacity to transmit
image streams with high frame rate. In order to avoid overflow on the receiver side, a
double-layer cascade buffer structure is adopted. The UDP packets are removed imme-
diately from the first buffer to the second one if an image frame has been reassembled
successfully. The parameters of the operating system such as Ubuntu Linux have to be
optimized for general-purpose applications. They should be calibrated for large volume
data transmission to avoid packet loss. In the experiments, the parameters such as buffer
size of IP stack and UDP packet size need to be tuned for stable transmission.

With the transport protocol introduced above, efficient transmission of large volume
image data over the communication network is realized. The transport protocol ncRTP
can be installed on PCs where image streaming or image processing is carried out.

Remark 1 In this work, ncRTP is applied only in one-sensor systems. Expending it to
multi-sensor systems, or even more complex multi-sensor multi-streaming-server systems,
requires the design of additional mechanisms. For example, an additional pre-processing
module for the coordination of the source data from different sensors belongs to part of
future work.
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Figure 3.5: Thread scheduling on streaming server, processing nodes and controller in NVSC
systems. Ik is the image captured at time instant tk.

3.1.2 Cloud Image Processing

Based on the ncRTP introduced above, a cloud image processing platform shown in Fig. 3.1
is established to achieve high-speed visual feedback. The cloud image processing platform,
which utilizes existing computing resources, is more flexible and economical compared
to the conventional approaches. This platform consists of a streaming server, several
processing nodes, and a controller. In order to further reduce the computation time for
image processing on each single processing node, an GPGPU implementation is applied
by exploiting its massive parallel computation capacity developed in recent years.
The features of the streaming server, the processing nodes and the controller in the cloud

image processing platform shown in Fig. 3.1 are introduced below.

Streaming server

The streaming server is equipped with a high-speed camera capturing images at high frame
rate. The captured images are sent through the sending process scheduled by the real-time
RTAI kernel. In order to reduce the latency, two real-time tasks run in parallel as shown
in Fig. 3.5. One task polls periodically the image from the camera frame buffer, which is
necessary especially for cameras not supporting external trigger mode. The other one is
triggered when the first task has received a whole frame from the camera. Then, the image
data is sent immediately together with a frame index through ncRTP. Multi-streaming is
also supported by ncRTP. In order to reduce the network load, sending rate scheduling
algorithm considering control error and/or network status could also be implemented on
the streaming server.

Processing nodes

The ncRTP protocol is installed on the nodes and is optimized for receiving large volume
image data. Moreover, fast, accurate and robust image processing is required with respect
to a good control performance, in particular for highly dynamic vision-based motion con-
trol. The GPGPU implementation of image processing algorithm is adopted in this work.
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Figure 3.6: System diagram of a system for position control in the simulation. xd: desired
position; x, ẋ: current position and velocity of the manipulator; tk: sampling instant. The
feedback time delay is bounded by 15ms ≤ τ ≤ 35ms.

Each processing node within this platform is equipped with a graphic card. For position-
based visual servoing (PBVS) considered in this work, image processing algorithm consists
of feature extraction, feature matching, outliers rejection, and pose estimation. The out-
put of image processing gives the relative pose (including the translation and the rotation)
between the object and the camera. The image processing algorithm is scheduled as soon
as an image has been reassembled in the receiving buffer.

Controller

The controller could be implemented on another node or on the same one used as streaming
server or image processing node. It receives image processing results (< 64 KB) as well
as the frame index from the processing nodes through UDP. At the controller side, the
received data are pre-filtered by sorting it along the frame index. The data with smaller
frame index as that of the latest received data will be dropped. Thus, the packet disorder
problem is prevented. Finally, the image processing results are used to determine the
configuration signal for the manipulator to realize the control task.

With the platform introduced above, a parallel image processing architecture is estab-
lished, and thus high-speed visual feedback is achievable for NVSC systems. Here, in
order to validate the advantage of visual feedback with high sampling rate, a simulation
of position control on a 1-DoF manipulator is conducted. A PD controller is applied.
The system diagram is shown in Fig. 3.6. A double integrator plant is considered. A
stochastic time-varying feedback delay bounded by [15ms, 35ms] is simulated. Sampling
rates of {40Hz, 80Hz, 120Hz, 200Hz} are applied for tracking control. The PD param-
eters are chosen heuristically. The number of available processing nodes is denoted as g.
If one node deals with image processing at a frequency of 40Hz, with g processing nodes
running parallel as shown in Fig. 3.1, it results in an image processing rate of g × 40Hz.
The simulation results are shown in Fig. 3.7. It is observed that, with a higher sampling
rate the control error becomes smaller, e.g. the mean control error of 80Hz is about 28%
smaller than that of 40Hz, see Fig. 3.7 (b). Based on the results, it is concluded that it is
beneficial to utilize the cloud image processing platform for high-performance visual servo
control.

Another important issue of NVSC systems is to obtain reliable image processing results.
The design of robust image feature extraction and feature matching is introduced in the
following section.
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3.2 Robust Image Processing

With the cloud computing platform developed in the proceeding section, parallel image
processing is achievable. Accelerating image processing on individual processing node
could reduce the sampling interval of the visual data, and thus the feedback delay. In this
section, it is concerned with improving the accuracy of image processing results with a focus
on the performance of image processing on each processing nodes. For high-performance
vision-based control the image processing step is essential since it provides the necessary
perception results for the following control step. Error in image processing results gives
wrong information about the surroundings, and may degrade the control performance.

In this work, a 3D object tracking problem is considered. The objective of image process-
ing is the estimation of the position and the orientation of the object based on the images
captured by a monocular camera. Feature extraction, feature matching, and calculation
of the camera extrinsic parameters are the three main steps in the estimation algorithm.
This section aims at improving the performance of 3D pose estimation by focusing on the
analysis of feature extraction and feature matching algorithms. In the rest of this section,
a two-step method is proposed to extract features considering the scale of the object in
the image. A binomial sampling in scale space is applied for feature detection. Then,
a self-scaling mechanism is proposed to improve the feature matching rate as well as its
accuracy. The performance of the proposed approach is evaluated in the experiments with
comparison to the standard approach.
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3.2.1 Sampling Optimization in Scale Space

The goal of 3D pose estimation for position-based visual servoing is to identify the transla-
tion and the rotation of an object. For high-performance tracking, the estimation algorithm
is required to be robust to certain translation, rotation, scaling, and small distortion of the
images. To this end, some algorithms based on scale space theory have been developed in
recent years such as SIFT [9] and SURF [168]. Considering the high performance achieved
by image processing based on scale space theory, feature detection and feature matching in
scale space are analyzed and extended for robust image processing. The image structural
analysis in scale space is introduced below.

Scale Space Theory

The Laplacian operator measures the second spatial derivative of an image, and is often
used for edge detection and blob detection. The Laplacian ▽2I of an image with image
intensity I(x, y) at the pixel (x, y) is given by

▽2I =
∂2I

∂x2
+

∂2I

∂y2
,

which can be achieved by using a convolution filter. However, this operator is very sensitive
to noise. Therefore, the image has to be smoothed with e.g. Gaussian smoothing filter
before applying the Laplacian operator. The Gaussian kernel with standard deviation σ is
given by

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

.

Due to the associativity of the convolution operation, the Gaussian smoothing filter is
convolved firstly with the Laplacian filter, which yields the Laplacian of Gaussian (LoG)
kernel

▽2G(x, y, σ) = −
1

2πσ4
(2−

x2 + y2

σ2
)e−

x2+y2

2σ2 .

Selecting the value of the standard deviation σ depends on the scale of the object. Since
the objects in real-world have different scales, and depending on the scale of observation
they may appear in different ways, it is motivated to generate a scale space representation.
The Gaussian kernel is a canonical choice for generating a scale space representation [175–
177]. The variance of the Gaussian kernel σ is referred to as the scale parameter. In other
words, the scale space family is the LoG filter responses of different scales. Since using the
LoG kernel for feature extraction results in high computation cost, different methods are
designed to approximate LoG with reduced computational complexity. For example, the
Difference of Gaussian (DoG) is used in SIFT [9], while the Determinant of Hessian (DoH)
is applied in SURF [103].

Binomial Distributed Sampling in Scale Space

With features extracted by the approximation of LoG in different scales, the next step is
to perform feature matching. The features detected in the current image are compared
with that detected in the reference image through the feature matching algorithm such as
the nearest neighbor technique [178]. An example of the matching results based on SURF
is shown in Fig. 3.8. The performance of feature matching is evaluated with different
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0.5m 36%

0.8m 17%

1.4m 3.9%

Figure 3.8: Feature matching results based on SURF. The center of the circle denotes the
location of feature point in the image plane, while the radius denotes the scale of the
feature. The distance of the object to the camera is: 0.5m (top-left), 0.8m (middle-left),
and 1.4m (bottom-left). The number of features is: 718, 864, and 980 respectively. Right
column: reference image. The matching rate is: 36%, 17%, and 3.9% respectively. The
dashed lines in the bottom frame denote incorrect matching pairs.

object distance: 0.5m, 0.8m, and 1.4m. The image processing results are summarized
in Tab. 3.1. It is shown that the matching performance degrades rapidly with increasing
distance. With the object distance of 1.4m the matching rate is only 3.9%. Besides, an
increase of the object distance also causes error of feature matching (see dashed lines in the
bottom panel of Fig. 3.8), which is intolerable for the following pose estimation algorithm.

The main reason for the low matching rate and the high matching error is that the
sampling in the scale space is not well distributed. The optimization for feature detection
and feature matching on the scale space level is less considered in known literature. In
this part the sampling problem in scale space is analyzed and a matching approach with
improved performance is proposed.
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Table 3.1: Feature matching results based on SURF.

Distance [m] Feature number Matching rate
0.5 980 36%
0.8 814 17%
1.4 718 3.9%

Figure 3.9: Object in images with different scales. The details of the object disappear
rapidly when the object is further away. The size of the object in the right/left image
is 320× 240 /16× 12 pixels.

Simulation of the Image Information Diffusion The scale space describes the image
information diffusion. Assume an object moving away along the direction of the camera’s
optical axis. The projection of the object on CCD diffuses, see Fig 3.9 for example. On
the right hand side of Fig. 3.9 the size of the object in the image is about 320× 240 pixels,
while on the left hand side the size of the object is only 16× 12 pixels. The detailed
information of the object disappears gradually when moving the object away from the
camera. In other words, if there is a scale space simulating the diffusion process precisely,
the matching of the object in the current image to that in the reference can be performed
with high accuracy.

In order to simulate the diffusion process, a multi-resolution scale space is suggested,
see Fig. 3.10 for an example. This scale space has five octaves, and each octave contains
three scales with increasing scale parameter σ. In each octave the images have the same
resolution. The image resolution of the next octave is smaller than that of the previous
octave. With digital image processing, only the sub-sampling with a factor 2 can be
calculated directly with low computation cost. Therefore, the established scale space is
discrete and coarse, which is thus difficult to simulate the continuous information diffusion
of the object. For high-performance feature matching, it is desirable to design a well-
distributed scale space which simulates the information diffusion appropriately.

Two-Step Feature Detection In order to overcome the problem of the ill-distributed
sampling due to the sub-sampling with a factor of 2, a novel two-step feature detection
approach is proposed in this work. The algorithm starts with rough feature detection,
which is followed by a precise feature detection step. The block diagram of the algorithm
is shown in Fig. 3.11.
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3.2 Robust Image Processing

Figure 3.10: Construction of scale space, and binomial distributed sampling in scale space for
optimal matching. The scale space has 5 octaves, and each octave has three scales.

The objective of the first step is to determine the scale of the object approximately in the
scale space. In order to save the computation time, a scale space with a coarse sampling
over the whole scale space is applied. Besides, this sampling is chosen to be evenly-spaced
for simulating the object with different scales. Assume the course scale space has I octaves,
and each octave has J scales. In order to determine the scale parameter σ, the ratio of the
image resolution to the scale parameter σ is considered

ri,j =
Ri

σi,j
, i = 1, . . . , I, j = 1, . . . , J, (3.1)

where Ri denotes the resolution of the image in the i-th octave, and σi,j denotes the scale
parameter for the j-th scale in the i-th octave. As the resolution of each octave (with sub-
sampling factor of 2) is known, the value of the scale parameter σ for each scale in the same
octave is chosen such that the sampling gap between the i-th octave with the resolution
of Ri =

R
2i−1 , and the i + 1-th octave with the resolution of Ri+1 = R

2i
is evenly fulfilled,

where R denotes the resolution of the original image. In general, the scale parameter of the
first scale in each octave can be heuristically selected. For example, the scale parameter
for the first scale in the octave i/i+ 1 is σi,1/σi+1,1, known a priori. Then, the difference
of the ratios defined in (3.1) between these two scales is

∆ri,i+1 = ri,1 − ri+1,1 =
Ri

σi,1
−

Ri

σi+1,1
=

R

2i−1σi,1
−

R

2iσi+1,1
.

In order to cover the scale space uniformly, the scale parameter σi,j for the scale j in the
octave i is selected as

σi,j = Ri(ri,1 −
j − 1

J
∆ri,i+1)

−1, j = 1, . . . , J,
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Figure 3.11: Two-step feature detection and feature match-
ing for robust image processing. Ref Img: reference im-
age; Cur Img: current image.
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Figure 3.12: Binomial dis-
tribution for scale sam-
pling (a) and feature se-
lection (b).

which determines the scale parameter for a scale space with evenly-spaced sampling. Fi-
nally, based on the selected scale parameters a coarse scale space of the object from large
scale to small scale is generated for feature detection. The coarse scale space is applied to
the current image, from which the features are extracted for the feature matching step.
Before performing feature matching, it is necessary to extract features from the reference

image. In oder to simulate the information diffusion of the object in different distances,
a dense evenly-spaced sampling in the whole space is applied to the reference image. The
features of the current image detected in the course scale space are compared with that
in the reference image. After matching the features in the current image with that in the
reference image, the features on the object in the current image are determined. Then, the
average scale of the features on the object is calculated, see Fig. 3.11.
In order to detect more features around the mean scale of the object and to save compu-

tation cost by omitting detection in other scales, a second step of precise feature detection is
followed for the current image. A binomial distributed sampling is proposed around the av-
erage scale, see Fig. 3.10 for an example. Denote the binomial distribution by K ∼ B(n, p),
where K is a random variable following the binomial distribution with parameters n and p.
The probability of being success for k times in n trials is given by

Pr(K = k) =

(

n
k

)

pk(1− p)n−k,

(

n
k

)

=
n!

k!(n− k)!
.

An example of binomial distribution is shown in Fig. 3.12 with n = 8, p = 0.5. In order
to detect the features around the average scale of the object, the binomial distribution is
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applied with the x-axis denoting the octave, and the y-axis denoting the number of scale
in the corresponding n−th octave calculated by

ln = Pr(K = n) ·Maxs,

where Maxs denotes the maximum number of scales in one octave. For example, in
Fig. 3.12 (a) the average scale of the object falls in octave 4, and it has the number of
scale layers l4 = 27.34% ·Maxs.
With the number of scale layers in each octave determined above, a binomial sampling

in the scale space is established. Then, the feature detection algorithm runs again with the
emphasis on the average scale and its adjacent scales. In this case, the object with even
long distance to the camera can still be detected with the binomial distribution centered
at the small scales.

3.2.2 Self-Scaling Mechanism

With the two-step algorithm introduce above, features in both current and reference images
are detected. For the following feature matching step, the matching strategy in most works
carries out the matching with the features of the reference image detected in the whole scale
space. It is necessary for applications with no scale known a priori. With the optimized
sampling in the scale space introduced in the previous section, the scale of the object in the
current image can be roughly estimated online with only a small overhead. Based on the
scale information, the matching can be carried out only on the best-fit scales, which thus
saves computation time, and more importantly reduces the matching error. See Fig. 3.10
for an example, the most stable matching is in the octaves 4 and 5. Therefore, it is
necessary to do feature matching centered at the these two octaves.
Here, the binomial distribution around the average scale of the object is applied again

to select features from the whole scale space for the reference image, see Fig. 3.11 and
Fig. 3.12 (b). The x−axis in Fig. 3.12 (b) denotes the scale in the scale space, while y−axis
denotes the number of features selected from the corresponding scale. Assume there are
in total Nf features detected in the reference image. Then, the number of features from
the n−th scale for feature matching is

bn = Pr(K = n) ·Nf .

For example, in Fig. 3.12 (b) for the scale 6 the number of features selected for matching
is b6 = 10.94% ·Nf . Through this method, the matching error can be dramatically reduced
compared to the matching approach in the whole space.
After selecting the features from the reference image, the nearest neighbor ratio technique

is applied for feature matching. Then the correspondences between the feature candidates
on two images are obtained. However, the matching results may contain some outliers,
which could lead to error in pose estimation. To ensure the accuracy of the pose estimation,
the random sample consensus (RANSAC) algorithm [179], which was developed within the
computer vision community, is selected for outlier rejection. RANSAC is a general method
to estimate the parameters of a mathematical model iteratively from the input dataset.
The last step is to calculate the rotation matrix and the translation vector between the
two images based on the matching results through pose estimation algorithms, e.g. the
linear pose estimation approach [180] and the virtual servo control approach [181].
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Object distance
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object

(a) (b)

Figure 3.13: Bumblebee R©2 camera (a) and the experimental setup (b) for feature detection
and feature matching in object recognition.

3.2.3 Performance Evaluation

The performance of the proposed two-step feature detection algorithm and the feature
matching with self-scaling mechanism is demonstrated in experiments in this section. The
camera BumblebeeR©2 shown in Fig. 3.13(a) is applied. The experimental setup is shown
in Fig. 3.13(b). The camera running at a frame rate of 15 fps@640 × 480 pixels is fixed
during the experiment, while the object with different locations is tested. For perfor-
mance comparison, the standard SURF-based feature detection and feature matching are
implemented in the experiment.
The snapshots of the experimental results are shown in Fig. 3.14. The distance of the

object to the camera varies from 1.0m, 3.0m to 4.5m, respectively. The matching results
are summarized in Tab. 3.2 and in Fig. 3.15. Compared with the results based on SURF,
the proposed approach shows a increased matching rate even in long distance. For example,
with the conventional SURF-based approach, the matching rate at the distance of 4.5m
is only 1.5% as shown in the bottom left frame in Fig. 3.14, while with the proposed ap-
proach the matching rate is significantly increased to 23.8%, see the bottom right frame in
Fig. 3.14. More importantly, the error of the feature matching is successfully avoided with
the proposed approach. As shown in the bottom left image in Fig. 3.14, incorrect matching
pairs appear (denoted by dashed blue-lines) with the standard approach. However, with
the proposed approach the matching error is eliminated, see the bottom right image in
Fig. 3.14.
Based on the experimental results it is concluded that the proposed image processing

algorithm can increase the matching rate and reduce the matching error, and thus im-
prove the robustness of the feature matching results. Compared with the conventional
approach, it enables additionally object detection when the object is far away from the
camera (e.g. ≥ 4m). Thus, the proposed algorithm opens the possibility of object tracking
at a wide spatial range.

3.3 The Latency of the System

Since the latency in the feedback is critical to the performance and the stability of the
system, the system latency of NVSC system is analyzed and modeled in this section.
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1.0m 20.1% 1.0m 38.1%

3.0m 2.8% 3.0m 28.6%

4.5m 1.5% 4.5m 23..8%

Figure 3.14: Performance comparison of feature matching based on SURF (left column)
and proposed approach with binomial distributed sampling in scale space and self-scaling
mechanism (right column). For each image, left side is the current image frame, and right
side is the reference image fame. Object distance: 1.0m, 3.0m, and 4.5m. The matching
rate for the left column is (top down): 20.1%, 28%, and 1.5%, while for the right column
is: 38.1%, 28.6%, and 23.8%. The dashed blue-lines in the bottom left image denote the
incorrect matching pairs.

Distance [m]
Matching rate

proposed standard
approach approach

1.0 38.1% 20.1%
3.0 28.6% 2.8%
4.5 23.8% 1.5%

Table 3.2: Matching results of the
proposed approach (with self-scaling
mechanism) and the standard ap-
proach.
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Figure 3.15: Comparison of the matching
rate.

In this thesis, a NVSC system with tracking objective is studied. The block diagram
of the system is shown in Fig 3.16. The sensor data, e.g. images, are captured and
sent over network with sending interval dk to the processing node, where dk denotes the
sending interval at time instant tk. After receiving the raw sensor data, data processing
is carried out to extract useful information. The processing results are sent to controller,
which determines the control signal for actuators. The image processing results are also
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Figure 3.16: System diagram of NVSC system with varying feedback delays. dk: sending
interval at time instant tk; τ

sp
k : transmission delay from sensor to processing node; τ cpk :

computation delay on processing node; τ pck : transmission delay from processing node to
controller; τ ck : computation delay on controller; τ cak : transmission delay from controller to
actuator.

utilized by a scheduler which adjusts the sending interval dk online for saving the network
bandwidth. The details about the design of the scheduler will be presented in Chapter 4.

The overall feedback delay of systems shown in Fig. 3.16 consists of several parts:

• τ spk : transmission delay from sensor to processing node,

• τ pck : transmission delay from processing node to controller,

• τ cak : transmission delay from controller to actuators,

• τ cpk : computation delay for data processing on processing node,

• τ cck : computation delay for calculating control signals on controller.

For NVSC systems considered in this work, the transmission delay τ spk is mainly caused
by transmitting image data from the sensor node to the processing nodes. Since there
are large volume image data needed to be transmitted, in general the image transmission
delay τ spk is significantly larger than the time delays τ pck and τ cak caused by transmitting
image processing results and control signals, which are only several bytes. Besides, the
computational cost for image processing largely exceeds the computation time for comput-
ing control signals. Therefore, during system design it is focused on the image transmission
time delay and the computation time delay caused by image processing. The other three
types of delays are omitted in the following. For simplicity of notation, τxk and τ ck are
adopted to replace τ spk and τ cpk . The resulted system is shown in Fig. 3.17.

For system modeling and control design, the properties of the image processing delay τ ck ,
the data transmission time delay τxk , and the sending interval dk are discussed below.
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Figure 3.17: System diagram of NVSC system with varying sending interval dk, transmission
delay τxk and computation delay τ ck .

3.3.1 Computation and Transmission Time delays

The image processing time delay is primarily caused by feature extraction, feature match-
ing, and pose estimation. As each image contains a different scene and thereby different
features, the feature number varies from frame to frame due to different view angle, illumi-
nation conditions, and random noise. In this thesis, the varying feature number over time
is modeled as a random independent and identically distributed (i.i.d.) sequence resulting
in a random i.i.d. image processing time delay τ ck . Since the i.i.d. process is a popular
model in the communication community [182], an i.i.d. transmission time delay τxk is con-
sidered in this thesis. Furthermore, the communication network / computational load is
assumed such that the transmission/computation time delay is lower and upper bounded:

τxk ∈ [τx, τ̄x], τ ck ∈ [τ c, τ̄ c]. (3.2)

For further analysis, it is assumed that the computation delays and the transmission delays
take values in finite sets:

τ ck ∈ Tc = {Tc1,Tc2, . . . ,Tcp}, p ∈ N,

τxk ∈ Tx = {Tx1,Tx2, . . . ,Txq}, q ∈ N.
(3.3)

3.3.2 Sending Interval

The sending interval between the tk-th and the tk+1-th sampling is denoted by dk. For
the tracking problem studied in this work, the tracking error is utilized for sending rate
scheduling, which will be introduced in Chapter 4. Assume the tracking error is ran-
dom i.i.d.. Accordingly, the sending interval dk is modeled as i.i.d. variable. In oder to
simplify the analysis it is assumed the sending interval takes values in a finite set

dk ∈ D = {d1, d2, . . . , dM}, M ∈ N, (3.4)

where dm > dm+1, m = 1, . . . ,M − 1. In order to determine the values of d1, . . . , dM ,
it has to consider about the available computational resources and the computational
complexity of the image processing. For example, with only one processing node, in order
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to guarantee that the image processing is finished before receiving the next image, the worst
case processing time τ̄ c is selected as the smallest sending interval. With more processing
nodes available, a smaller sending interval can be assigned, e.g. with two processing nodes
a sending interval τ̄c

2
can be assigned. Assume there are a maximum of G processing nodes

available for image processing. The lower bound of the sending interval becomes

d = dM =
τ̄ c

G
.

The upper bound of the sending interval relies on a heuristic choice. It is chosen as the
upper bound of the computation time delay in this work

d̄ = d1 = τ̄ c.

Therefore, the sending interval dk is bounded by dk ∈ [d, d̄], where

d =
τ̄ c

G
, d̄ = τ̄ c. (3.5)

The values of d2, . . . , dM−1 can be arbitrarily selected. In this work, we associate them
with the number of processing nodes in the following way

{d2 =
τ̄ c

2
, d3 =

τ̄ c

3
, . . . , dm =

τ̄ c

g
, . . . , dM−1 =

τ̄ c

G− 1
}, (3.6)

where g denotes the number of necessary processing nodes for the sending interval dm.
The policy of selecting the appropriate sending interval dk from (3.4) and the associated
number of processing nodes g will be discussed in Section 4.3.

In this section, the property of the feedback delays within the cloud computing platform
has been discussed. The efficacy of this platform equipped with ncRTP, i.e. how well the
control performance is improved based on the parallel image processing, will be presented in
the following chapter after the introduction of the control design and the stability analysis.

3.4 Discussion

For highly dynamic vision-based motion control high sampling rate visual feedback is
demanded. With the advances in communication and information technology, utilizing
networked computational resources for data processing in particular for image processing
becomes an attractive solution as an alternative to traditional data processing on spe-
cific hardware or supercomputer. By distributing images to processing nodes connected
over the communication network, parallel image processing (cloud computing) is realized,
which thus accelerates visual feedback for vision-based control system. Apart from the
sampling rate of visual feedback, the accuracy of visual perception is also essential for
high-performance visual servo control. The visual perception provides information about
the surroundings and the objects, and thus needs to be reliable and robust to different
pose and illumination variance.
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3.4 Discussion

In this chapter networked high-speed vision system and robust image processing algo-
rithm, including feature detection and feature matching, are systematically investigated.
In order to establish the networked vision system, a real-time transport protocol ncRTP
for large volume image data transmission is developed. The main issues of transport pro-
tocol design, e.g. fragmentation, congestion control and synchronization, are addressed.
Based on ncRTP a cloud computing platform, consisting of a streaming server, several
processing nodes, and a controller over the communication network, is established. With
this platform high-sampling-rate visual feedback is achievable.
Robust image processing algorithm critical to system performance is concerned. A po-

tential problem of standard feature matching is that the matching rate declines rapidly
with increasing object distance, and matching error may appear. Methods are proposed to
optimize the feature matching algorithm in the scale space level. A coarse evenly-spaced
sampling in the whole scale space and a binomial sampling around the average object
scale are cooperatively utilized for feature detection. The self-scaling mechanism, which
suggests matching only around the scale of the object determined online, is adopted in the
process of feature matching. Thus, the problem of low matching rate and matching error
with large object distance is solved.
The important characteristic of the NVSC system, namely the system latency, is ana-

lyzed for the stability analysis and the control design to be introduced in Chapter 4. The
i.i.d. process is applied to model the random transmission delay, image processing delay,
and the sending interval.
The benefits of the proposed approaches introduced in this chapter are summarized

below:

• The sampling rate of the visual feedback is increased through parallel image process-
ing with computation resources connected over a communication network.

• The performance of feature matching is improved benefiting from optimized sampling
distribution in scale space.

As the proposed networked vision system is capable of integrating the computation power of
distributed processing nodes, and providing high-speed visual feedback, it acts as an ideal
based for the development of high-speed visual servo control concerning the computation
and the visual perception capabilities. Yet, the processing platform with multi-sensor sys-
tems and image processing methods with more advanced filter operator are not addressed
and will be subject to feature research.
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In the preceding chapter a distributed computation platform has been established for
parallel image processing. A real-time transport protocol ncRTP has been developed to
realize the transmission of large volume image data within NVSC systems. Methods have
been proposed to improve the performance of image processing considering the sampling
distribution in scale space. This chapter is concerned with stability analysis, control design,
cost-performance trade-off for NVSC systems.

As discussed in Chapter 3, a NVSC system has long time delay caused by image process-
ing in the feedback loop. The system suffers from additional transmission delay resulting
from distributed image processing over a communication network. The feedback delays de-
grade the control performance, and may even render the system unstable. The closed loop
behavior is further impacted by random dropouts of packages during data transmission.
Besides, a NVSC system, which requires a non-equidistant sampling for saving the com-
munication bandwidth, has aperiodic sampling intervals. Control approaches have been
proposed to deal with NCSs considering the network-induced delays. In this thesis, the
focus is on networked visual control system with random computation and communication
time delays as well as aperiodic sampling intervals.

High-sampling-rate visual feedback, which guarantees good control performance, is ob-
tained with many processing nodes run in parallel. Yet, the resources of a communication
network such as bandwidth are limited. Therefore, in the presence of limited resources,
keeping the data transmission over the communication at a minimum under the constraint
of sufficient control, e.g. a cost-performance trade-off, is required. In order to utilize the
network resources more efficiently, it is necessary to design a smart sending rate schedul-
ing which adjusts the image sending interval online; meanwhile, the control performance is
ensured. In this work, a network and system co-design approach is proposed to cope with
the cost-performance trade-off.

The primary goal of this chapter is the stochastic analysis of NVSC system concerning
the stability, the performance, and the cost. Contributions are a novel control law switching
upon the overall feedback delay, stability analysis with the consideration of stochastic
feedback delays and apeirodic sampling, and sending rate scheduling mechanisms for saving
network resources. Key challenges are system modeling and formulation regarding the
time-varying feedback time delays, the stability analysis, and the formulation of the cost
function concerning the performance and the cost.

The reminder of this chapter is organized as follows: Firstly, the system modeling of
NVSC systems with varying delays and the reformulation of the systems intro continuous-
time system are introduced in Section 4.1. The stability analysis and switching controller
design algorithms are presented for NVSC systems in Section 4.2. The trade-off between
control performance and network load due to image data transmission is addressed in
Section 4.3. Finally, the chapter is closed with summary and discussion in Section 4.4.

41



4 Stochastic NVSC with Random Delay

Camera

¿x

k

¿ c

k

Image 

processing

Plant Object

Network

Actuator

Controller

Sending

intervaldk

Ik

ZOH

IK
X(tk ¡ ¿ c+x

k
)q

S
c
h
e
d
u
le

r

u

Figure 4.1: System diagram of networked position-based visual servo control for object track-
ing. Ik: image frame captured by the camera at time instant tk; X ∈ R

6: pose of the
end-effector relative to the reference object in Cartesian space; τ c+x

k : feedback time delay
consisting of image processing time delay τ ck and data transmission time delay τxk ; q: joint
displacement; u: control signal; IK: inverse kinematics; dk: sending interval; tk: sampling
instant; ZOH: zero-order hold.

4.1 Problem Definition

A 3D tracking problem with NVSC based on the cloud computing platform developed in
Chapter 3 is studied in this work. Position-based visual servoing (PBVS) is applied and
a camera-in-hand structure is selected for object detection and localization. The design
issues about system modeling and system reformulation for NVSC systems are discussed
in this section.

4.1.1 System Modeling

The system diagram of NVSC with position-based approach is shown in Fig. 4.1. In order to
approximate an event-triggered vision system, a camera running at a high image frame rate,
e.g. ≥ 400Hz, is selected in this work. Compared to the time delays of data transmission
and image processing typically of ≥ 30ms, the image sampling interval, here ≤ 2.5ms, is
negligible. Besides, the image transmission over the communication network is triggered
by a sending rate scheduler. Thus, the vision system is approximately considered as an
event-triggered sampling system.
The image sequence captured by the eye-in-hand camera is denoted by I, and the image

captured at sampling time tk is denoted as Ik. The captured images are sent to the process-
ing nodes over the communication network with the sending interval dk. The NVSC system
becomes a sampled-data system with zero-order hold (ZOH). After running the image pro-
cessing on the cloud computing platform, the pose of the end-effector X(tk − τ c+x

k ) ∈ R
6

relative to the object is available to the controller with the time delay

τ c+x
k = τ ck + τxk ,

where τ c+x
k denotes the feedback time delay for the tk-th image consisting of the image

processing time delay τ ck and the data transmission time delay τxk . Through the robot
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inverse kinematic model, the Cartesian relative pose X is mapped on a joint displace-
ment q(tk − τ c+x

k ) in the joint space. Then, the control signal u is calculated in the joint
space, and applied to the individual motors in the joints driving the robot motion. The
feedback X(tk − τ c+x

k ) is also utilized to adjust the sending interval dk with the scheduler,
as shown in Fig. 4.1. The policy of sending interval scheduling is presented in Section 4.3.
For the preliminary study of NVSC systems with time delays, a locally linearized

version of the robot dynamics is considered by the computed torque feed-forward ap-
proach [183] (see also Appendix A.2) resulting in the linear time-invariant continuous-time
plant

ẋ(t) = Ax(t) +Bu(t),

with initial condition x0, where x(t) = [q q̇]T ∈ R
n is the state vector and u(t) ∈ R

n is
the control signal; q denotes the joint angles; A,B are constant matrices of appropriate
dimensions. Assuming sampling of the states at the instant tk the state feedback controller
is given by

u(t) = Kx(tk), t ∈ [tk, tk+1), ∀k ∈ N,

and the closed loop system is derived as

ẋ(t) = Ax(t) +BKx(tk), t ∈ [tk, tk+1). (4.1)

For feedback systems with periodic sampling and ideal data transmission channels, the
closed loop system (4.1) is equidistantly updated by

h = tk+1 − tk.

In this case, the lifting technique [122] is applied to derive stability conditions and appro-
priate control algorithms. However, for NVSC systems the feedback time delays depend
on data transmission time delay, the image processing time delay, and the sending interval,
which are random and time-varying.
As introduced in Section 3.3, the value of the state vector x(tk) arrives at the controller

side with a feedback time delay τ c+x
k consisting of the image processing and data transmis-

sion time delays, as shown in Fig. 4.2. At the controller side the holding interval between
two consecutive updates at time instants tk + τ c+x

k and tk+1 + τ c+x
k+1 is denoted by hk

hk = tk+1 + τ c+x
k+1 − tk − τ c+x

k = dk + τ c+x
k+1 − τ c+x

k . (4.2)

Throughout this work, it is assumed that packets do not overtake each other, meaning
that packets arrive at the controller according to their sending order.
As a result, the closed loop system (4.1) becomes a sampled-data system with the feed-

back delay τ c+x
k

ẋ(t) = Ax(t) +BKx(tk), t ∈ [tk + τ c+x
k , tk+1 + τ c+x

k+1 ). (4.3)

The control problem to be addressed in this work is formulated as follows:
Control problem: Given a system with random feedback time delays, develop a con-

trol algorithm such that the closed loop system in (4.3) is exponentially mean-square
stable (EMSS), i.e. satisfying

E{||x(t)||2|x0} ≤ b||x0||
2e−ρ(t−t0),

where b > 0, ρ > 0 are real numbers and x0 is the initial condition.
For stability analysis and control design, the discrete-time system in (4.3) is further

reformulated into a continuous-time system.
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Figure 4.2: Time delay diagram of NVSC systems. τ ck : computation time delay for image Ik
sampled at time instant tk; τxk : transmission time delay for image Ik from sensor to
processing node; τ c+x

k = τ ck + τxk ; dk: sending interval between the tk−th and tk+1−th
samplings; hk: holding interval between two consecutive updates at the controller side.

4.1.2 System Reformulation for Control Design

In this section, the NVSC system with random sending interval, random computation and
transmission time delays is reformulated into a time-varying delay system by means of the
input-delay approach [184]. In order to achieve stability and high control performance,
a switching control mechanism is proposed which switches depending on the value of the
overall time delay.
Reconsider the sending instant tk as

tk = t− (t− tk) = t− τ(t), t ∈ [tk + τ c+x
k , tk+1 + τ c+x

k+1),

where τ(t) is the overall time delay for the processed sensory feedback x(tk) during the
period [tk+ τ c+x

k , tk+1+ τ c+x
k+1 ) at the controller side, see Fig. 4.3. The overall feedback time

delay τ(t) consists of three parts: the computation time delay τ ck , the transmission time
delay τxk , and the holding time delay h(t)

τ(t) = τ ck + τxk + h(t) = τ c+x
k + h(t), t ∈ [tk + τ c+x

k , tk+1 + τ c+x
k+1 ), (4.4)

where
h(t) ∈ [0, hk), t ∈ [tk + τ c+x

k , tk+1 + τ c+x
k+1 ),

with hk given by (4.2). Between two consecutive updates at the controller side the holding
delay h(t) has the slope

ḣ(t) = 1,

as shown in Fig. 4.3. Combining (3.2), (3.5), (4.2) and (4.4), the overall time-varying delay
is bounded by τ ≤ τ < τ̄ with

τ = τ c + τx, τ̄ = d̄+ τ̄ c + τ̄x = 2τ̄ c + τ̄x.
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Figure 4.3: The evolution of time-varying time delay τ(t).

Substituting x(tk) = x(t− τ(t)) into the closed loop system in (4.3) yields

ẋ(t) = Ax(t) +BKx(t− τ(t)), t ∈ [tk + τ c+x
k , tk+1 + τ c+x

k+1 ),

x0 = x(θ), θ ∈ [−τ̄ , 0],
(4.5)

where x(θ) is the initial condition. Hence, the sampled-data system with time-varying sam-
pling intervals is reformulated into a continuous-time system with time-varying feedback
time delay τ(t).

Remark 2 If packet dropout appears during data transmission, the previous received
data is hold and utilized by the system (4.3) until a new packet is received. In this case,
the impact of packet dropout can be viewed as accumulated transmission delay between
two updates at the controller side. Assume the maximum number of consecutive packet
dropouts is a, the the transmission delay τx is bounded by

τxk ∈ [τx, (a+ 1)τ̄x],

see also Fig. 4.4

4.2 Switching Control Approach for NVSC

In order to stabilize the closed loop system and at the same time provide high control
performance, a time delay-dependent switching control approach is proposed, in which
the state feedback control gain switches according to the current time delay value. The
time-varying time delay is categorized by boundary values si into n finite intervals

S1 = {τ |s0 ≤ τ < s1},

S2 = {τ |s1 ≤ τ < s2},

...

Sn = {τ |sn−1 ≤ τ < sn},

(4.6)

where 0 < si < si+1, for i = 1, . . . , n−1, and s0 = τ and sn = τ̄ , see also Fig. 4.3. The delay
distribution is discretized to reduce the computational complexity for the control design,
as for each discrete value of time delay a different control gain needs to be computed.
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Figure 4.4: Delay diagram of NVSC systems with packets dropout during data transmission.
The maximum number of consecutive packet dropout is denoted by a.

The switching control law is defined by

u(t) = Ki(τ(t))x(t− τ(t)), i = 1, . . . , n, (4.7)

where Ki(τ(t)) denotes the state feedback controllers switching depending on the value of
the time delay τ(t). Accordingly, the system in (4.5) can be rewritten as

ẋ(t) = Ax(t) +
n

∑

i=1

βiBKix(t− τ(t)), (4.8)

where βi is a delay-dependent indicator function defined by

βi =

{

1, si−1 ≤ τ < si, i = 1, . . . , n

0, otherwise,
. (4.9)

and the dependence of the index i of (τ(t)) is omitted for simplicity of notation. The
resulting system (4.8) is a continuous-time system with a controller switching the feedback
gains depending on the time-varying feedback time delay.

Compared with the conventional non-switching control approach which applies a con-
stant gain designed for the highest appearing time delay τ̄ , the proposed switching control
is less conservative with respect to control performance [185]. The delay categorization,
the stability analysis, and the control design are given in the following.

4.2.1 Delay Categorization

The statistical properties of category bounds si are important for stability analysis. Before
carrying out the stability analysis, the selection of appropriate category bounds is discussed
in this section.
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Remember that random sending interval dk, transmission delay τxk and computation
delay τ ck are modeled by i.i.d. process in Section 3.3. For the stability analysis and control
design the discrete time delay values then act as upper bounds for their corresponding
discretization. According to the convolution law of independent random variables [186],
select si in (4.6) as any subset of S

si = τ c+x
k + hk = τ c+x

k+1 + dk, si ∈ S ⊂ {Tc + Tx +D},

with Tc, Tx and D defined in (3.3) and (3.4). Then si is also i.i.d., see also Fig. 4.3. It
implies that the indicator function βi in (4.9) is a binary i.i.d. process, i.e. has a Bernoulli
distribution. As a result,

Pr{βi = 1} = pi,

n
∑

i=1

pi = 1. (4.10)

Its expected value and variation are given by

E{βi} = pi, E{(βi − pi)
2} = pi(1− pi).

In order to derive the occurrence probability of pi from the occurrence probabilities of the
delay components, the time-varying time delays τx, τ c and dk are categorized into U ≥ 1,
V ≥ 1 and W ≥ 1 intervals with scu, s

x
v and sdw satisfying

scu−1 ≤ τ ck < scu, scu > 0, u = 1, . . . , U,

sxv−1 ≤ τxk < sxv , sxv > 0, v = 1, . . . , V,

sdw−1 ≤ dk < sdw, sdw > 0, w = 1, . . . ,W,

(4.11)

with scu, s
x
v and shw taking values in the sets Tc, Tx and D respectively. Further assume

that the occurrence probabilities of the delay intervals are

Pr{scu−1 ≤ τ ck < scu} = pu,

U
∑

u=1

pcu = 1,

Pr{sxv−1 ≤ τxk < sxv} = pv,
V
∑

v=1

pxv = 1,

Pr{sdw−1 ≤ dk < sdw} = pw,

W
∑

w=1

pdw = 1.

(4.12)

The delay intervals in (4.6) and the associated occurrence probabilities of indicator function
in (4.10) becomes

si =

U
∑

u=1

V
∑

v=1

W
∑

w=1

scu + sxv + sdw, pi =

U
∑

u=1

V
∑

v=1

W
∑

w=1

pcu p
x
v p

d
w. (4.13)

Remark 3 Note that a higher resolution of the discretization results in lower conservatism
of the control design regarding the performance. The performance improves as the number
of delay intervals si and also the number of state feedback controllers Ki is increased.
However, a large number of delay intervals will result in higher computational complexity.
In particular, the dimension of LMIs increases proportionally with the number of delay
intervals as shown later.
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4 Stochastic NVSC with Random Delay

The switching control mechanism discussed above aims at improving the control per-
formance of NVSC systems with varying feedback delays. Based on the analysis of delay
intervals si and the associated occurrence probability pi in this section, the stability anal-
ysis and a controller design approach are introduced below.

4.2.2 Stability Analysis

The objective of this section is to derive a mean exponential stability condition for the
system in (4.8). A Lyapunov-Krasovskii approach is selected to analyze the stability of
system (4.8) as it is stochastic and constrains time delays. In order to derive a delay-
dependent condition, the following Newton-Leibnitz formula is considered.

∫ t

t−si

ẋ(s)ds = x(t)− x(t− si). (4.14)

Substituting the Newton-Leibnitz formula into (4.8) and defining zT (t) = [xT (t) ẋT (t)]
results in the closed-loop system

Eż(t) = Āz(t)−
n

∑

i=1

Āi

∫ t

t−si

z(s)ds, (4.15)

where

E =

[

I 0
0 0

]

, Ā =

[

0 I
A+

∑n
i=1 βiBKi −I

]

, Āi =

[

0 0
0 βiBKi

]

. (4.16)

The system (4.15) is used for analysis and controller synthesis. The stability condition
is represented by an easy computable LMI conditions as given in detail in the following
theorem.

Theorem 1 The closed-loop system (4.8) is mean exponentially stable, if there exist sym-
metric matrices, Qi > 0, i = 1, . . . , n, P1 > 0 and real matrices P2 and P3 with

P =

[

P1 0
P2 P3

]

, (4.17)

such that the following LMI is satisfied











Ψ s1P
T . . . snP

T

∗ −s1Q1 0
...

... 0
. . . ∗

∗ . . . ∗ −snQn











< 0, (4.18)
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where

Ψ =

[

Ξ1 Ξ2

P1 − P2 −P3

]

+

[

Ξ1 Ξ2

P1 − P2 −P3

]T

+
n

∑

i1

si

[

0 0
0 piBKi

]T

Qi

[

0 0
0 piBKi

]

,

Ξ1 = ATP2 +
n

∑

i=1

pi(BKi)
TP2,

Ξ2 = ATP3 +

n
∑

i=1

pi(BKi)
TP3.

(4.19)

The LMI stability condition in Theorem 1 can be efficiently solved by computational
toolbox for Matlab, e.g. Yalmip [187].

Proof : Before the proof is shown, the following definition and lemma have to be given.

Definition 1 [188] Let L be the infinitesimal generator of a function V (z(t)). Then, the
operator L acting on V (z(t)) is defined as

LV (z(t)) = lim
∆→0

1

∆

{

E{V (z(t +∆))|z(t)} − V (z(t)

}

.

Lemma 1 [189] Let X and Y be real constraint matrices with appropriate dimensions.
Then

XTY + Y TX ≤ εXTX +
1

ε
Y TY

holds for any ε > 0.

Lemma 2 [190] Suppose M11, M12, M21, M22 are p× p, p× q, q × p and q × q matrices
respectively, M22 is invertible. Let

M =

[

M11 M12

M21 M22

]

,

such that M is a (p+ q)× (p+ q) matrix. Then the Schur Complement of the block M22

of the matrix M is the p× p matrix

S = M11 −M12M
−1
22 M21.

Lemma 3 [191] If β is nonnegative and u satisfies the integral inequality

u(t) ≤ α(t) +

∫ t

0

γ(s)u(s)ds,

and if function α is constant, then

u(t) ≤ αe
∫ t
0
γ(s)ds,
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resulting in Gruonwall-Bellman lemma.

Consider a Lyapunov-Krasovskii functional candidate

V (z(t)) = V0(z(t)) +

n
∑

i=1

Vi(z(t)),

where

V0(z(t)) = zT (t)EPz(t),

Vi(z(t)) =

∫ 0

−si

∫ t

t+Θ

zT (s)ĀT
i QiĀiz(s)dsdΘ.

According to Definition 1, it has

LV0(z(t)) =żT (t)EPz(t) + zT (t)P TEż(t)

=z(t)ĀPz(t)−
n

∑

i=1

∫ t

t−si

zT (s)dsĀT
i Pz(t)

+ zT (t)P T Āz(t)−

n
∑

i=1

zT (t)P T Āi

∫ t

t−si

z(s)ds

=zT (t)[ĀTP + P T Ā]z(t)

−

n
∑

i=1

∫ t

t−si

[zT (t)P T Āiz(s) + zT (s)ĀT
i Pz(t)]ds.

According to Lemma 1, LV0(z(t)) becomes

LV0(z(t)) ≤zT (t)[ĀTP + P T Ā]z(t)

+
n

∑

i=1

∫ t

t−si

[zT (t)P TQ−1
i Pz(t) + zT (s)ĀT

i QiĀi]ds

≤zT (t)[ĀTP + P T Ā]z(t) +

n
∑

i=1

siz
T (t)P TQ−1

i Pz(t)

+

n
∑

i=1

∫ t

t−si

zT (s)ĀT
i QiĀiz(s)ds.

(4.20)

Likewise, it has

n
∑

i=1

LVi(z(t)) =

n
∑

i=1

siz
T (t)ĀT

i QiĀiz(t)−

n
∑

i=1

∫ t

t−si

zT (s)ĀT
i QiĀiz(s)ds. (4.21)

Combine (4.20) and (4.21), it yields

LV (z(t)) ≤zT (t)[ĀTP + P T Ā+

n
∑

i=1

siĀ
T
i QiĀi

+
n

∑

i=1

siP
TQ−1

i P ]z(t)

=zT (t)Θz(t).

(4.22)
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Apply Schur complement given in Lemma 2 to (4.22), it results in (4.18).
Note that maxθ∈[−τ, 0]{||z(t + θ)||} ≤ φ||z(t)|| for some ϕ > 0, the following inequality

can be established

V (z(t)) ≤

[

λmax(EP ) + φ

n
∑

i=1

s2i
2
λmax(Ā

T
i QiĀi)

]

||z(t)||2

≤Λmax||z(t)||
2.

(4.23)

Combining (4.22) and (4.23) yields

LV (z(t))

V (z(t))
≤ −

λmin(−Θ)

Λmax
, −ρ0, (4.24)

and

E{LV (z(t))} ≤ −ρ0E{V (z(t))}. (4.25)

By applying Dynkin’s formula into (4.25) it becomes

E{V (z(t))} − E{V (z(0))} =E

{
∫ t

0

LV (z(s))ds

}

≤− ρ0

∫ t

0

E{V (z(s))}ds.

(4.26)

Using the Gronwall-Bellman lemma defined in Lamma 3, (4.26) results in

E{V (z(t))} ≤ e−ρ0tE{V (z(0))}. (4.27)

Since

V (z(t)) ≥

[

λmin(EP ) +

n
∑

i=1

s2i
2
λmin(Qi)

]

||z(t)||2

=Λmin||z(t)||
2,

(4.28)

it is established that

E{||z(t)||2} ≤ e−ρ0t
E{V (z(0))}

Λmin
. (4.29)

Eq. (4.29) provides the proof for mean exponential stability.
Hence, the system in (4.8) is demonstrated to be mean exponential stable.

4.2.3 Controller Design

Solving feedback gains Ki, i = 1, ..., n in Theorem 1 involves nonlinear terms, e.g. P T
2 BK1,

P T
3 BK1, P T

2 BK2 and P T
3 BK2 in (4.19). These nonlinear terms render the inequality

in (4.18) into a bilinear matrix inequality (BMI) problem, whose solutions are difficult to
find as it is non-convex and NP-hard. However, the nonlinear terms can be eliminated by
choosing a special matrix X = P−1 and so an LMI formulation is recovered. The controller
design algorithm is given in the following theorem.
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Theorem 2 Given positive scalars r1 and r2, if there exist symmetric matrices Ri > 0,
i = 1, ..., n and X1 > 0 satisfying

X =

[

X1 0
−r1X1 r2X1

]

,

such that










Ψ̂ Ψ̂T
1 · · · Ψ̂T

n

∗ −s1R1 0
...

... 0
. . . ∗

∗ · · · ∗ −snRn











< 0, (4.30)

where

Ψ̂ =

[

−r1X1 r2X1

Ξ3 −r2X1

]

+

[

−r1X1 r2X1

Ξ3 −r2X1

]T

+

n
∑

i=1

siRi,

Ξ3 = AX1 +
n

∑

i=1

piBYi + r1X1,

Ψ̂1 = s1Ā1X = s1

[

0 0
−p1r1BY1 p1r2BY1

]

,

...

Ψ̂n = snĀnX = sn

[

0 0
−pnr1BYn pnr2BYn

]

,

holds, then the NVSC system is MES with the feedback gain

Ki = YiX
−1
1 , i = 1, . . . , n. (4.31)

Proof : Define

X = P−1 =

[

X1 0
−r1X1 r2X1

]

.

Pre- and post-multiply Θ in (4.22) by XT and X , it becomes

ĀX +XT ĀT +

n
∑

i=1

siQ
−1
i +

n
∑

i=1

siX
T ĀT

i QiĀiX < 0. (4.32)

Let Ri = Q−1
i and Yi = KiX1, i = 1, . . . , n. Applying Schur complement to (4.32) results

in (4.30).

Remark 4 The structure of matrixX is chosen based on the requirement P−1 = X , where
EP = P TE. Therefore, X is determined as follows

X =

[

X1 0
X2 X3

]

, X1 = XT
1 > 0. (4.33)
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Figure 4.5: Experimental setup of a NVSC system with distributed computation. L1, L2: linear
motor modules; PC1: PC for control of the linear motor module carrying the object; PC2:
PC for image capturing, image streaming, and control of the linear module carrying the
camera; PC3 and PC4: PCs for image processing, connected to PC2 over a communication
network.

However, by expanding Ψ̂i, i = 1, ..., n in (4.30) it results in terms, e.g.
BKiXj , i = 1, ..., n and j = 1, 2, 3, which make deriving an LMI formulation impossible.
In order to obtain an LMI formulation, X2 and X3 in (4.33) are restricted to −r1X1 and
r2X1, where r1 and r2 are positive real numbers. Although LMI can be efficiently solved by
LMI toolbox, the restriction on matrix X introduces certain conservatism in the controller
design and leads to unfeasibility in some cases. When the unfeasibility occurs, the general
form of X in (4.33) is used and an BMI (bilinear matrix inequality) solver is applied to
solve the problem in (4.30). Some numerical examples are given in Appendix B.1.

Performance Evaluation

In order to validate the efficacy of the distributed computation platform developed in
Chapter 3 and the proposed switching control law introduce above, experiments are carried
out on two commercial 1-DOF linear motor modules from Copley Controls, as shown in
Fig. 4.5. The control objective is to drive the linear motor module which carries a camera
to track the moving object on the reference linear motor module.

Experimental Setup Both linear motor modules are controlled through MAT-
LAB/SIMULINK blocksets on two standalone PCs ( PC1 for controlled module and PC2

for reference module) with a sampling rate of 1KHz. The reference module controlled by
PC1 (i686, AMD, Athlon(tm), Processor 3000+) is assigned with the following signal:

xd(t) = 0.15 sin(1.57 t).

The camera, Mikrotron EoSens MC1363 (see parameters of the camera in Appendix A.1),
is connected to PC2 (X86-64, AMD, Phenom IIx4 810 Processor) with the controller im-
plemented on the same PC. The camera runs at a frame rate of 60 fps with a resolution of
640× 480 pixels. Other two PCs, PC3 (i686, AMD, Phenom(tm), 9850, Quard-Core Pro-
cessor) and PC4 (i686, AMD, Phenom(tm) IIx4 945 Processor) equipped with NVIDIA
GeForce 8800 GTX graphic cards, are selected for image processing. The image data
transmission from PC2 to PC3/PC4 is realized based on ncRTP developed in Chapter 3.
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Figure 4.6: Image processing time (a), number of extracted image features (b) and histogram
of delays in the feedback loop (c) in the experiment.

An image captured by the camera at time instant tk is packetized with a timestamp
when the image is buffered and sent from PC2 to either PC3 or PC4. The image processing
results together with the timestamp are sent from both PCs to the controller on PC2

through the communication network. The timestamp is then extracted from the received
data. By comparing it with the current time the overall feedback delay including data
transmission, image processing and holding delays is obtained.

Feedback Delay The time required for real-time image processing depends on image
features and has random values between 33ms to 45ms. The relationship between image
features and image processing delay is shown in Fig. 4.6 (a) (b). The cross correlation
coefficient between these two signals is 0.93, which indicates that image processing delay
is closely related with image feature number. More image features require more time
for image processing, e.g. 18 image features take about 33ms while 55 image features
take about 43.5ms. As soon as the image processing is finished, a new image is acquired
and processed. This results in a random sampling interval up to 45ms. In addition,
random delay of data transmission is simulated by a network emulator (Netem, see also
Appendix B.2) having i.i.d. delay ranging from 5ms to 10ms. The overall delay (i.e. the
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Figure 4.7: Mean control error evolution of delay-dependent controller (solid line) and standard
design controller (dash line).

sum of computation delay, transmission delay and sampling interval) has the range from
38ms to 100ms as shown in the Fig. 4.6 (c).

Control Design Applying the controller design approach in Section 4.2.3 and considering
two delay intervals n = 2 with s1 = 65ms, p = 0.53 selected heuristically, the feedback
gains K are

K1 = 800, K2 = 160.

The experiment runs 20 times with the same initial conditions of both modules. For the
comparison of control performance, the standard non-switching controller is implemented,
i.e. a robust controller that stabilizes for all occurring time delays up to τ̄ = 100ms. The
corresponding controller design gain is

K = 160.

Experimental Results The control error is defined by

e(t) = xd(t)− xc(t), (4.34)

where xd(t) and xc(t) denote the position measurements of the reference module and the
controlled module respectively. The resulting control errors are shown in Fig. 4.7, and also
summarized in Tab. 4.4.

Table 4.1: Performance comparison.

delay interval ||e||max [cm] ||e||var [cm
2]

switch 2 3.63 (-62.4%) 7.22

non-switch 1 9.66 42.95

The delay dependent switching controller approach has maximal absolute tracking er-
ror ||e||max = 3.63 cm and the variance of the absolute tracking error ||e||var = 7.22 cm2,
while the maximal tracking error of standard design controller approach is
||e||max = 9.66 cm and the variance of the tracking error ||e||var = 42.95 cm2. The exper-
imental results demonstrate that the switching controller approach results in a better
control performance compared to the conventional non-switching control design.
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In this section, the continuous-time system in (4.8) is demonstrated to be stable with the
desired delay-dependent switching controller. The proposed approach is validated in ex-
periments. The results demonstrate performance benefits of the proposed design approach
over the conventional counterpart. Another issue of NVSC systems, namely the network
load due to the data transmission, has so far not been addressed yet. In the following
section, the optimization problem of the trade-off between the control performance and
network load will be discussed.

4.3 Cost-Performance Trade-Off for NVSC

In this section, the communication network load problem resulting from large volume
image data transmission in NVSC systems is discussed. The goal of this section is to
find the trade-off between the control performance and the communication network load
of the NVSC system. Scheduling mechanisms are proposed to reduce the communication
network load, and meanwhile to guarantee the control performance. Within the context of
this work, sending rate scheduling means to i) determine an appropriate sending interval dk
at time instant tk, and ii) to achieve desired optimal occurrence probabilities of different
sending intervals. The details of the designed sending rate scheduling algorithm meeting
these two requirements are introduced in this section.

4.3.1 Cost Function

Remember in (4.12) the sending interval is categorized into W intervals, and each interval
has an occurrence probability pdw, w = 1, . . . ,W , which is closely related with the network
usage. In order to determine the optimal occurrence probabilities of pdw, w = 1, . . . ,W , we
consider here a cost function which jointly optimizes the communication network load and
the control performance

J = lim
T→∞

E

{
∫ T

0

xT (t)Rx(t)dt +
1

T

∫ T

0

C(dk(t))dt

}

, (4.35)

where R ∈ R
n×n, R > 0, T is the run period, and C(dk(t)) denotes the communication

network cost associated with the sending interval

C(dk(t)) = Cw, if sdw−1 ≤ dk < sdw, w = 1, . . . ,W,

where Cw ∈ R is the communication network cost factor associated with the sending
interval dk falling in the category sdw−1 ≤ dk < sdw. In order to optimize the trade-
off between the control performance and the network cost, the cost function in (4.35) is
analyzed in the following.

Control Cost

The first term on the right-hand side in (4.35) represents the control performance. Given
the boundary values si of the delay intervals, and assume the probability distributions of
transmission and computation delays are constant and known, the expected value of the
control performance is shown to be bounded by J̄per(p

d
1, . . . , p

d
W ).
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Proof : Consider the same Lyapunov-Krasovskii candidate in Section 4.2.2. Due to the
fact x(t) = [I 0]z(t), consider Dynkin’s formula and eq. (4.22), define the performance cost
function as

Jper = E

{
∫ T

0

xT (t)Rx(t)dt

}

,

it becomes

Jper =E

{
∫ T

0

zT (t)

[

I
0

]

R
[

I 0
]

z(t)dt

}

=E

{
∫ T

0

[

zT (t)

[

I
0

]

R
[

I 0
]

z(t) + LV (z(t))
]

dt

}

− E

{
∫ T

0

LV (z(t))dt

}

≤E

{
∫ T

0

zT (t)Θ̄z(t)dt + V (z(0))

}

,

where Θ̄ = Θ +
[

I 0
]T

R
[

I 0
]

. By the requirement Θ̄ < 0, it is clear that

Jper = E

{
∫ T

0

xT (t)Rx(t)dt

}

≤ V (z(0)) = J̄per(p1, . . . , pn),

and

lim
T→∞

E

{
∫ T

0

xT (t)Rx(t)dt

}

≤ J̄per(p1, . . . , pn)

= V0(z(0)) +
n

∑

i=1

piVi(z(0)).

(4.36)

Note that the guaranteed cost in (4.36) is a function of p1, . . . , pn. Assume the probability
distributions of transmission and computation delays, pc1, . . . , p

c
U and px1 , . . . , p

x
V defined

in (4.12), are constant and known. According to (4.13), the guaranteed cost (4.36) is
determined by the probability distributions of sending intervals. The formula in (4.36) can
be rewritten as

lim
T→∞

E

{

T

inf
0
xT (t)Rx(t)dt

}

≤ J̄per(p
d
1, . . . , p

d
W ). (4.37)

Thus, the control cost is demonstrated to be upper bounded by J̄per conditioned on the
occurrence probability distribution of sending intervals.

Network Cost

The second term denotes the communication network cost over the run time T . Assume
that the communication network cost is a monotonically decreasing function of the sending
interval. With a smaller sending interval dk ∈ [sdw−1, s

d
w), a higher communication network

cost factor Cw is assigned. With the occurrence probability of each sending interval defined
in (4.12), the expected value of the normalized communication network usage becomes

lim
T→∞

E

{

1

T

∫ T

0

C(dk(t))dt

}

=

W
∑

w=1

pdwCw. (4.38)
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By combining equations (4.37) and (4.38), the stochastic cost function in (4.35) is
bounded from above by a deterministic function

J(pd1, . . . , p
d
W ) ≤ J̄per(p

d
1, . . . , p

d
W ) +

W
∑

w=1

pdwCw, (4.39)

depending on the probability distribution of the sampling intervals. Minimizing (4.39)
results in an optimal trade-off between the control performance and the communication
network cost.
Observe that any change in pdw results in variations of pi, see (4.13). And the stability

condition in Theorem 1 for the system in (4.8) depends also on the probability distribu-
tions of the sending interval pi, i = 1, . . . , n. Therefore, stability constraints have to be
considered in the optimization problem. It becomes a static optimization problem with
linear matrix inequality constraints. The details of determining the optimal occurrence
probabilities of sending intervals are formulated as follows.

Proposition 1 An optimal probabilistic sending is given by

min
pd
1
,...,pdW

J(pd1, . . . , p
d
W ),

s.t.(LMI in Theorem 1)
(4.40)

where pd1, . . . , p
d
W satisfying

∑W
w=1 p

d
w = 1 is the set of admissible probability distribution

of sending intervals.

Hence, by solving (4.40) the probability distributions of different sending intervals are
determined. A local minimum can be found by the function fmincon from the optimization
toolbox in Matlab. The sending-rate scheduling methodologies with known pd1, . . . , p

d
W will

be introduced in the following section.

4.3.2 Optimal Random Sending Rate Scheduling

The objective of sending rate scheduling is to determine the processing node for the image It
captured by the camera at time instant tk. As the optimal occurrence probabilities of
different sending intervals can be determined by optimizing the cost function (4.40) in
Proposition 1, a random sending rate scheduling policy is designed in this section which
meets the optimization results.

Policy of Sending Rate Scheduling

Remember there are M sending intervals in the set D in (3.4) ready for sending rate
scheduling. The algorithm of sending rate scheduling realized at the streaming server side
is described in Algorithm 1 and in Fig. 4.8:

• Firstly, at time instant tk a sampling interval dk is randomly selected from the set D,
satisfying the determined occurrence probabilities pdw, for sw−1 ≤ dk < sw, w =
1, . . . ,W .

• Then, the number g of necessary processing nodes is determined according
to (3.5)(3.6).
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4.3 Cost-Performance Trade-Off for NVSC

Algorithm 1 Image distribution with optimal random sending rate scheduling

Require: dk
Task: send image It (image sampled at time instant t, t ∈ [tk, tk + dkg)) to processing
node with determined dk

select dk randomly s.t. optimal occurrence probabilities of different sending rate→ de-
termine g according to (3.5)(3.6).

for t = [tk, tk + dkg) do
tk = t;
send Itk to PC, (PC ∈ {PC1, . . . ,PCg} represents the processing node available at tk);
t = tk + dk;

end for

: : :: : : : : :

: : : : : :

t 2 [tk; tk + dkg)

tk : determined dk; g
Image sequence

Image processing

dk

PC1 PC2 PCg PCG

Step II

dk

dk =?

©

d1; d2; : : : ; dM
ª

randomly

s.t. pd
w obtained

by solving

Proposition 1

Step I

Figure 4.8: Sending rate scheduling at the streaming server side with optimal occurrence
probabilities of the sending intervals. Left part: random selection of dk considering optimal
occurrence probability pdw, w = 1, . . . ,W . Right part: image distribution with determined
sending interval dk, and the number of processing node is denoted by g.

• For the time period t ∈ [tk, tk+dkg], the image sequence with sampling interval dk is
sent to the processing nodes available over the communication network, also Fig. 4.8.

• After sending the images, the three steps above are repeated from the instant tk+dkg
and so on.

With the algorithm introduced above, an optimal sending rate scheduling is realized
for NVSC systems with guaranteed control performance. Instead of transmitting every
captured image, only selective images (sub-sampling of the original image sequence) are
sent over the network with different sending intervals. Thus, the network load is reduced.

Performance Evaluation

In this section, the proposed NVSC with optimal sending rate scheduling is validated in
experiments on two linear motor modules.

Experimental Setup The considered NVSC system consists of two linear motors, a cam-
era and three PCs connected over network. The experimental setup is similar to that
in Fig. 4.5. A target is mounted on a reference linear motor module assigned with a tra-
jectory signal which has an amplitude of 20 cm and a frequency of π/3 rad/s. The two
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Figure 4.9: Experimental setup of a NVSC system comprising of a pair of 1-DoF linear motor
modules (similar to experimental setup in Fig. 4.5). PC1, PC2: image processing with
GPU implementation (40Hz). PC3: image capturing (80Hz) and controller;

linear motor modules are connected to the host PC3 running RTAI Linux via a Sensoray
S626 I/O card, as shown in Fig. 4.9. In order to achieve high-speed visual feedback, the
images captured by the camera with a resolution of 640× 480 pixels are processed by dis-
tributed processing nodes PC1, PC2 (X86-64 AMD Phenom II ×4 810 processor) over a
communication network. The image data is transmitted over the network based on ncRTP
introduced in Chapter 3.

Control Design The system parameters are obtained through standard least square iden-
tification of the response to square pulse input

d

dt

[

x(t)
ẋ(t)

]

=

[

0 1
−0.959 −1169.9

] [

x(t)
ẋ(t)

]

+

[

0
1

]

u(t). (4.41)

For simplicity, consider a single interval for the combination of the transmission and the
computation delays τ ck + τxk with the occurrence probability

P{τ ck + τxk ≤ sc1 + sx1} = pc1p
x
1 = 100%,

sc1 + sx1 =τ̄ c+x = 35 ms,

where τ̄ c+x is determined in the experiments. Select sd1 =
1
80
ms, sd2 =

1
40
ms, and according

to (4.13), the delay intervals and the probability distributions become

s1 = sc1 + sx1 + sd1 = 47.5ms, p1 = pc1p
x
1p

d
1 = pd1,

s2 = sc1 + sx1 + sd2 = 60ms, p2 = pc1p
x
1p

d
2 = pd2.

The probability distributions, pd1 and pd2, are designed such that the optimal network uti-
lization is achievable. The control module is equipped with a set of delay-dependent PD
controllers. Combining the switching PD controller with (4.41) yields

d

dt

[

x(t)
ẋ(t)

]

=

[

0 1
−0.959 −1169.9

] [

x(t)
ẋ(t)

]

+
2

∑

i=1

βiKi

[

x(t− si)
ẋ(t− si)

]

, (4.42)
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where Ki =

[

0 0
−KPi −KDi

]

.

Set the parameters C1 = 2, C2 = 1 and R =

[

1 0
0 1

]

. The optimization problem in

Proposition 1 is numerically solved by the optimization fmincon as well as Yalmip toolbox

in Matlab. With the initial condition [x(0) ẋ(0)]T = [0 0], θ ∈ [−s2, 0], the cost function
in (4.35) is optimized [pd1 pd2] = [50% 50%] for J = 1.67. The associated stabilizing state-
feedback gains are

K1 =

[

0 0
−900 −15

]

, K2 =

[

0 0
−600 −5

]

.

For comparing the control performance, a standard NVSC system without data schedul-
ing (high network load), e.g. [pd1 pd2] = [100% 0%], is implemented

d

dt

[

x(t)
ẋ(t)

]

=

[

0 1
−0.959 −1169.9

] [

x(t)
ẋ(t)

]

+

[

0 0
−900 −15

] [

x(t− s2)
ẋ(t− s2)

]

.

Sending Rate Scheduling In the experiments, the camera works at a frame rate of 80Hz.
As mentioned before, each image frame with a resolution of 640× 480 pixels has a data size
of 300KB. A sampling rate of 80 Hz means 192Mb/s data flow over the network. In order
to reduce the network load, Algorithm 1 for data scheduling introduced in the previous
section is applied. Since only two processing nodes are available in the experiments, the
data scheduling algorithm is simplified as following:

• PC1: Images with frame number {1,3,...} are sent to PC1 periodically, which leads
to a sampling rate 40Hz.

• PC2: The subset of images with frame number {2,4,6,...} is sent to PC2 randomly,
which leads to a sampling rate ≤40Hz. In the experiment, the images sent to PC2

are randomly selected with desired probability distribution.

• PC3: The controller works at bounded sampling rate [40Hz,80Hz].

Experimental Results The control error defined in (4.34) is utilized for performance eval-
uation. A comparable control performance is achieved by the proposed approach, as shown
in Fig. 4.10. The proposed approach with data scheduling has a maximum tracking error
||e||max = 2.29 cm and a mean tracking error ||e||mean = 1.22 cm, similar to the maximal
and mean tracking error of high sampling rate design approach (+2.5%), see Tab. 4.2.
However, the network usage (data flow) is 25% less than the one with high sampling
rate design approach. It is noticed that the resulted tracking error is relative large under
stability constraint. Besides, the PD controller without considering the signal dynamics
leads also to large tracking error. And the control performance is further deteriorated by
non-ideal friction compensation and the lack of delay compensation strategy.
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Figure 4.10: The mean control error evolution of the proposed approach with data scheduling
[pd1 pd2] = [50% 50%] (solid line) and the standard approach without data scheduling
[pd1 pd2] = [100% 0%] (dash line).

Table 4.2: Control performance and network usage.

sampling rate ||e||max [cm] ||e||mean [cm] Network usage [unit]

optimal 2.29 1.22 (+2.5%) 1.5 (-25%)

high 2.19 1.19 2

In this section, a data scheduling algorithm has been designed for image streaming
in NVSC systems. The proposed approach is validated by experiments on two linear
motor modules. The results demonstrate comparable control performance of the proposed
approach with less network cost compared with the conventional counterpart. So far
only the optimal occurrence probabilities of sending intervals have been considered in the
design of sending rate scheduling. The motion dynamics of the object that also restricts
the tracking performance will be additionally integrated in sending rate scheduling in the
following section.

4.3.3 Tracking Error based Sending Rate Scheduling

Instead of selecting the sending interval dk randomly during the procedure, the tracking
error is considered for sending rate scheduling. Generally speaking, a smaller sending
interval should be assigned when the tracking error becomes larger. This is a reasonable
heuristics for a visual servo control system with a camera-in-hand structure, because a
large tracking error may result in losing the object in the image plane. However, by
minimizing the cost function (4.35), the occurrence probability of each sending interval
is predetermined, which places additional constraint on the scheduling. Therefore, for
sending rate scheduling both the tracking error and the optimal sending rate probability
are taken into consideration.

The proposed sending rate scheduling algorithm is shown in Fig. 4.11. Similar to the
policy introduced in Section 4.3.2, there are two steps in sending rate scheduling: the first
step is to determine the sending interval dk at time instant tk, while the second step is to
distribute images to processing nodes with determined sending interval.
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Policy of Sending Rate Scheduling

In order to reduce the communication network load due to the image data transmission,
the tracking error X in Cartesian space is considered in selecting an appropriate sending
interval at the steaming server side. Remember in Section 4.2.1 the sending interval dk
is categorized into W intervals, see eq. (4.11). In order to select the sending interval dk
according to the tracking error, the tracking error X is categorized also into W intervals

rw−1 ≤ |X| < rw, w = 1, . . . ,W, (4.43)

where rw > rw−1 > 0 are the bounds of the intervals, r0 = 0 and rW → ∞.

As pointed out previously, both the tracking error X and the optimal occurrence proba-
bilities pdw, w = 1, . . . ,W , are utilized for selecting the sending interval dk at time instant tk.
Assume the tracking error falls into the interval rw−1 ≤ |X| < rw. If till the time instant tk
the measured occurrence probability of the sending interval sw−1 ≤ dk < sw, denoted
by pdw(tk), is smaller than the pre-determined optimal occurrence probability pdw, the send-
ing interval dk is selected. Here, dk = dm, dm ∈ D is randomly selected from the set of
the sending intervals falling in the interval sw−1 ≤ dm < sw. Otherwise, another sending
interval should be chosen from the sending intervals, whose optimal occurrence probabil-
ities are not reached till the time instant tk. Denote the set consisting of these sending
intervals with D, and it becomes a subset of D: D ⊂ D. In order to select an appropriate
sending interval, the set D is further divided into two groups

D1 = {dm|dm ∈ D, dm < sw−1},

D2 = {dm|dm ∈ D, dm > sw},

where dm represents the element in D. Then, the sending intervals in D1 and D2 are
assigned with different priorities:

Pri(D1) > Pri(D2),

Pri(dm) < Pri(dm+1), dm ∈ D1,

Pri(dm) > Pri(dm+1), dm ∈ D2,

where Pri(·) denotes the priority of the set or the element during the selection of the
sending interval, see also Fig. 4.11(a) for visualization. The rule of assigning the priority
above is reasonable, since for a tracking problem studied in this work, the first task is to
keep the object stay in the field of view.

Finally, the selection algorithm is summarized as

dk =

{

dm, sw−1 < dm < sw, if pdw(tk) < pdw,

dm, dm ∈ D, otherwise,
(4.44)

where the sending interval dm has the maximum priority of being selected among the
elements in the set D. After dk is determined, the number of necessary processing nodes g
can be found according to (3.5)(3.6).
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Figure 4.11: Sending rate scheduling based on the tracking error at the streaming server
side. Step I: determination of the sending interval dk considering the tracking error X and
occurrence probability pdm at time instant tk. The tracking error X is categorized into W
intervals with rw denoting the bounds of the intervals. Step II: given in Fig. 4.8.

Algorithm 2 Image distribution with tracking error based sending rate scheduling

Require: dk
Task: send image It (image sampled at time instant t, t ∈ [tk, tk + dkg)) to processing
node with determined dk

sorting |X| with (4.43) → determine dk according to (4.44) → determine g according
to (3.5)(3.6).

for t = [tk, tk + dkg) do
tk = t;
send Itk to PC, (PC ∈ {PC1, . . . ,PCg} represents the processing node available at tk);
t = tk + dk;

end for

With determined sending interval dk from Step I, the streaming server starts to send
images to processing nodes. The details of image distribution are illustrated in Fig. 4.8
as well as in Algorithm 2, which is different from Algorithm 1 in terms of the method for
selecting the sending interval dk.

With the algorithm introduced above, the communication network load caused by im-
age transmission is effectively reduced. Meanwhile, an acceptable control performance is
maintained.

Remark 5 Note that in the current work, only the tracking error and the optimal occur-
rence probabilities of the sending interval are considered in the sending interval determi-
nation. In the future, network congestion and the packet loss rate should be integrated in
design of sending rate scheduling as well.

Performance Evaluation

In order to validate the efficacy of the proposed sending rate scheduling algorithm, the
proposed approach is compared with the standard non-scheduling approach. Experiments
for a 3D tracking problem with a 14-DoF dual-arm [192] are conducted. The details of the
robot arm are given in Appendix A.
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Figure 4.12: Experimental setup with 7-DoF robot arm, high-speed camera (mounted on the
end-effector of the left arm) and moving object (mounted on the end-effector of the right
arm).

Experimental Setup The end-effector of the right arm (7-DoF) is equipped with a high-
speed camera (Mikrotron MC1363), while the object is mounted on the end-effector of the
left arm (7-DoF), as shown in Fig.4.12. In the experiments, the camera runs at a high
sampling rate of 400Hz@640× 480 pixels approximating an event-based sampling system.
Two sending rates {40Hz, 80Hz} are selected for sending rate scheduling. The dual-arm
is connected to a PC running real-time RTAI/Linux. The control loop is implemented in
MATLAB/SIMULINK blocksets. Standalone real-time code is generated directly from the
SIMULINK models. Two other PCs, PC1 and PC2 run image processing in parallel.

Image Processing On the processing nodes, image processing algorithms for 3D pose
estimation are implemented. First, the image features are extracted from the image.
To increase the accuracy of the pose estimation and speed up visual feedback, a GPU
implementation of SURF [168] is applied by exploiting its massive parallel processing
capability. After feature matching [193], RANSAC (RANdom Sample Consensus) [194]
is selected for outliers rejection. Fig. 4.13 shows an example of a matching result during
the experiment. Finally, the relative pose between the camera and the object is obtained
by calculating the extrinsic parameters (relative translation and rotation) of the camera
based on the matched feature pairs.

Control Design After linearization of the manipulator equations through computed
torque control the system can be represented by seven decoupled subsystems. For each
joint, the overall time delay τ is categorized into two intervals with s1 = 45 ms. By optimiz-
ing the cost function (4.39) with the stability constraints derived in [185], the occurrence
probabilities of the two sending intervals are obtained

pd40Hz = 48%, pd80Hz = 52%.

65



4 Stochastic NVSC with Random Delay

Figure 4.13: Image processing results (feature matching). Left side: reference image; right
side: current image. Green point: SURF feature; white line: matched feature pair; number
of matched feature pair: 20; image processing time: 18.3ms.

The associated stabilizing state feedback gains for each joint with τ ≤ s1 are

Kp1 = [120, 120, 60, 60, 30, 30, 30], Kd1 = [2, 2, 2, 2, 1, 1, 1].

The gains for τ > s1 are

Kp2 = [96, 96, 48, 48, 24, 24, 24], Kd2 = [2, 2, 2, 2, 1, 1, 1].

The tracking error threshold r1 = 0.01m is heuristically selected.
In order to compare the control performance and the network load, a standard NVSC

system without sending rate scheduling is implemented. Both PC1 and PC2 run at 40 Hz,
resulting in high communication network load. The occurrence probabilities of the sending
intervals become

pd40Hz = 0%, pd80Hz = 100%.

The overall time delay is categorized only into one interval. The controller with gains

Kp1 = [120, 120, 60, 60, 30, 30, 30], Kd1 = [2, 2, 2, 2, 1, 1, 1],

is applied.

Sending Rate Scheduling According to the scheduling policy described in this section,
if at time instant tk the tracking error |X| > r1 and pd80Hz(tk) < pd80Hz, the ncRTP steaming
server sends the images at 80Hz to PC1 and PC2. Otherwise, it sends the images at 40Hz
to only one PC. With this approach, the sampling rate of the feedback is bounded by
[40Hz, 80Hz]. The operating frequency of different component in NVSC systems is listed
in Tab. 4.3.

Experimental Results A sinusoidal function, which has an amplitude of 0.15 m and a
frequency of 1 rad/s, serves as the desired trajectory Xd for the object moving in the x−y
plane in the Cartesian space. The tracking error X between the object motion and camera
motion is discussed for performance evaluation.
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Table 4.3: Frequencies of components in NVSC system.

Camera PC1 PC2 Visual feedback Controller

400 Hz [0, 40Hz] [0, 40Hz] [40Hz, 80Hz] 1000Hz
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Figure 4.14: Tracking results. a): the control error evolution of the proposed approach with
data scheduling (solid line) and the standard approach without data scheduling (dash
line). b): Sending rate switching between 80Hz and 40Hz for the proposed approach in
the experiment. 80Hz: 52%, 40Hz: 48%.

The results are shown in Fig. 4.14, and the distribution of delays behaved as desired.
As shown in Fig. 4.14(a), a comparable control performance is achieved with and without
sending rate scheduling. The proposed approach with sending rate scheduling has a mean
tracking error |X|mean = 1.73 cm, which is similar to the mean tracking error of the high
sampling rate design approach (|X|mean = 1.67 cm), see Tab. 4.4. However, the commu-
nication network load is decreased by 24% compared to the high sampling rate design
approach.
The experimental results demonstrate a comparable control performance of the pro-

posed approach with lower communication network load than that of the non-scheduling
approach.

4.4 Discussion

The conventional visual servo control suffers from the shorting coming of low-sampling-rate
visual feedback due to long image processing delay. By utilizing the networked computa-
tion resources parallel image processing is realized, which increases the sampling rate of
the visual feedback. However, the resulting stochastic NVSC system with time-varying
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Table 4.4: Control performance and communication network load.

|X|mean |X|var Communication network

[cm] [cm2] load [Mbps]

with scheduling
1.73

0.09
146

(+4%) (-24%)

high sampling rate 1.67 0.018 192

feedback time delay challenges the stability analysis and controller design. Distributing
images over the communication network results in high network load, which leads to the
consideration of the cost-performance trade-off.
This chapter has presented a novel analysis and design approach for NVSC systems

with cloud computing and sending rate scheduling. In order to improve the control perfor-
mance, a novel switching control scheme is proposed accounting time-varying time delay.
The closed-loop system is modeled as a continuous system with time-varying time delay
considering random computation and transmission time delays as well as sampling inter-
vals. The overall time delay is categorized into small delay intervals, and the properties of
the time delays are analyzed for selecting the boundaries of the intervals. Mean exponential
stability is proven based on occurrence probabilities of delays.
In order to jointly consider the network load due to image transmission and the con-

trol performance, a cost function incorporating the control cost and the network usage
has been formulated for sending rate scheduling design. Two approaches of sending rate
scheduling at the streaming server in NVSC systems have been investigated. Within the
first approach, the sending rate scheduling is associated with the probability distributions
of different sending interval, which are obtained by optimizing the cost function and mean-
while satisfying the stability constraints. The sending rate at each time instant is randomly
selected with the management of the traffic entry in percentage. Within the second ap-
proach, the tracking error has been additionally considered in sending rate scheduling in
particular for 3D tracking system based on NVSC. The sending rate is adaptively switched
according to the current tracking error. Larger tracking error results in higher sending rate,
and vice versa. Benefiting from the scheduling mechanism, the network load is effectively
reduced; meanwhile, the control performance is guaranteed.
The benefits of the proposed approaches introduced in this chapter are summarized

below:

• Better control performance is achieved by the delay-dependent switching control law.

• Control performance and usage of network resources is balanced through sending
rate scheduling. The control performance is guaranteed, while the network resources
are efficiently utilized.

In this chapter, innovative ideas for control design and cost-performance trade-off have
been proposed with promising results. Networked parallel computation aiming at a high-
speed visual feedback is effectively utilized to achieve a better control performance. This
networked visual servo control concept opens up an important new horizon of research and
further studies in vision-based control, in particular in high-speed visual servo control. In
this thesis, the tracking error has been considered in the design of sending rate scheduling.
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4.4 Discussion

However, the high sending rate even within a short period increases the risks of network
congestion and packet loss, which are omitted to some extent in this thesis. Another
aspect not yet considered is the non-linear control problem for standard visual servo control
system, which has been linearized in this thesis for the ease of system analysis and control
design. These aspects are subject to future research directions.
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5 Insect-Inspired Vision for Robotics

In the proceeding chapter, high-speed vision systems have been realized through distributed
computation over a communication network. The stability problem due to the feedback
delay in closed loop vision-based control systems has been investigated. This chapter
focuses on high-speed visual servo control from both a control engineering perspective and
a neurobiological perceptive enlightened by the robust and high-performance solutions from
the neurobiology.

In conventional research visual perception consists primarily of two steps, namely feature
detection and feature matching. Generally, these two steps are time consuming when
robust image feature detection is required. The large latency caused by image processing
deteriorates the overall control performance, and may lead to instability of the system. In
order to overcome these limitations in conventional approach, biologically inspired model,
in particular the Reichardt-model which has simple architecture and is robust to noise,
motivates great interest in the biologically inspired vision system for robot control. The
Reichardt-model have been adopted in some works as a qualitative motion detector with
constraints on the input stimuli to the vision system, i.e. only allowing sinusoidal grating
as input in order to achieve a reliable motion detection. Works considering Reichardt-
model as a quantitative motion detector in an unconstructed environment are not known
to the best of the author’s knowledge.

The innovation of this chapter is applying a particular insect-inspired motion detector
to conventional visual servo control. One goal of this chapter is to improve the accuracy of
velocity estimation with the insect-inspired motion detector. The other goal is to investi-
gate the stability of high-speed visual servo control systems with large feedback gains and
delays. Contributions are an accurate velocity estimation algorithm based on the analysis
of image statistics, and an increase of stability margin for closed loop vision-based con-
trol. Key challenges are the analysis of the intrinsic characteristics of the insect-inspired
motion detector, the algorithm design for velocity estimation, and the formulation of the
insect-inspired visual servo control.

The remainder of this chapter is organized as follows: The insect-inspired motion detec-
tor Reichardt-model and its various are introduced and analyzed in Section 5.1. In Sec-
tion 5.2, the basic characteristics of the Reichardt-model are introduced. The responses of
Reichardt-model to sinusoidal signals and natural image sequences are analyzed. An real-
time LUT-based motion estimation algorithm is proposed. Simulations and experiments
on a 7-DOF robotarm are conducted to validate the proposed approach. In Section 5.3, the
stability problem of visual servoing system is investigated. The special response-velocity
relationship of the insect-inspired motion detector is utilized to stabilize the closed loop
system with high feedback gains and delays. The proposed approach is evaluated by sim-
ulation and experiments on 1-DOF linear motor module.
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retina
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lamina
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Figure 5.1: The visual system of the fly adapted from [15].

5.1 Background on Biological Motion Detection

In order to applying the insect inspired motion detector to robot control, the vision system
of flies is firstly introduced in this section. As found by the neuroscientists Reichardt
motion detector is involved in motion perception in a fly’s brain [151]. Since the raw
Reichardt-model has its limitations in reflecting insects’ visual information processing,
modified Reichardt-models are often proposed in other research works. In this section, the
raw Reichardt-model and its variants are discussed.

5.1.1 Signal Processing in Fly’s Brain

The processing of visual motion in fly’s brain starts in its compound eyes, each of which
consists of 3000-4000 ommatidia (”little eyes”) processing their own lens and sets of pho-
toreceptors. The compound eye has a resolution of about 1.5o, which is equivalent to an
image with the resolution of 60 × 60 pixels (depending on the species) [159]. The fly’s
visual system has three successive layers of neuropile called lamina, medulla and lobula
complex, as shown in Fig.5.1. The lobula complex is split into two parts, the lobula and
the lobula plate, and it receives input from medulla elements in parallel. Each column
of these layers is formed by a stereotyped set of neurons that are repeated throughout
the layer. The response properties of most columnar elements are largely unknown due
to their small size compared with the lamina neurons [15, 195–197]. In the lobula plate,
a group of visual interneurons with a large size (diameter up to 10 µm) is found, called
lobula plate tangential cells (LPTCs), see Fig. 5.2. There are about 60 LPTCs exiting on
each hemisphere and they are sensitive to visual motion in specific directions, e.g. they
are excited by the motion in one direction called preferred direction (PD), and inhibited
by the motion along the opposite direction called nulled direction (ND).
The visual motion information is processed in the fly’s brain in a local and hierarchical

manner [160]. With the pattern projected onto the retina, photoreceptors in the retina are
adapted to the ambient light level and the signal deviations from this level. The output of
the photoreceptors is then passed to the lamina layer to perform a temporal bandpass filter
of the receptor signals without retaining any information about the background intensity.
The local measurements of motion, e.g. between adjacent photoreceptors, are computed
in the next layer of medulla cells. However, due to the small size of medulla cells, direct
evidence about this processing stage is difficult to record. After local motion estimation,
these local, direction-selective motion estimates are then integrated by huge tangential
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5.1 Background on Biological Motion Detection

Figure 5.2: Lobula plate tangential cell [15].
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Figure 5.3: Basic Reichardt-model (a) and the typical response-velocity curve (b). ∆φ: dis-
tance between input arms; A1, A2: input stimuli; B1, B2: delay signal after low-pass
filtering; R: output.

cells in the lobular plate [198]. Output of these cells provides information about the
translational motion along and rotational motion about different axes in the visual field.
This information controls the fly’s motor reflexes during flight. Responses of these cells can
be modeled by spatial integration of the outputs of elementary motion detectors (EMDs).

5.1.2 Elementary Motion Detector and its Variants

Raw Reichardt-model

The well-known model of motion detector inspired by biological systems was proposed
by Reichardt and Hassentein in 1956 [199]. The model is called Reichardt-model and is
shown in Fig. 5.3(a). A1 and A2 are two photoreceptors and they are temporally delayed
by low-pass filters LP , respectively. With A1(t) and A2(t) representing the input signals
at the left and right input channels, and B1(t) and B2(t) representing the corresponding
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Figure 5.4: Response of the Reichardt detector to a moving peak and to a moving pulse [200].
a) a peak moving to right; b) a peak moving to left; c) a pulse moving to right; d) response
to input signal in a); e) response to input signal in b); f) response to input signal in c).

filtered signals, one obtains the response R(t) of the Reichardt-model

R(t) = A2(t)B1(t)− A1(t)B2(t). (5.1)

The detector generates a direction sensitive response because of the subtraction between
the two symmetric detector halves, see Fig. 5.4 for an example. For the input signal moving
right as in Fig. 5.4(a), the response of Reichardt-model is positive in Fig. 5.4(d), while for
the input signal moving left as in Fig. 5.4(b) the response becomes negative in Fig. 5.4(e).
The velocity dependence of the response of the Reichardt-model is illustrated in Fig.5.3(b).
The model response initially increases with increasing velocity, and then decreases after
reaching a maximum. It typically presents a bell-shaped response-velocity curve. This
specific velocity-response dependency leads to the conclusion, that the gain of the motion
detection system in the fly’s optomotor pathway is not constant, but becoming smaller at
higher velocities [201].
However, the sign of the Reichardt response is not always consistent with the direction of

the motion. For example, when the input is a pulse signal as in Fig. 5.4(c), the sign of the
response does not directly indicate the motion direction since both positive and negative
values appear in the response as shown in Fig. 5.4(f) [202]. The relationship between the
motion direction and the sign of the EMD response is summarized in Tab. 5.1. In order

Table 5.1: The relationship between the motion direction and the sign of the EMD response.

Input signal Motion direction EMD response

peak
move right positive
move left negative

pulse move right
positive + negative

(ambiguity)

to overcome the ambiguity in motion direction estimation with the raw Reichardt-model,
variants of EMD have been proposed in known works.
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Figure 5.5: Variants of Reichardt-model adapted from [17,155,205,207–209]: (a) EMD with
high-pass filter (HP ) in both input arms; (b) EMD with spatial low-pass filter (SLP )
and temporal bandpass filter (BF ); (c) EMD with HP in the cross arms; (d) EMD with
subtractions of mean luminance Ī in the input arms and saturation statistics in both
branches; (e): EMD with adapter; (f) Fully elaborated EMD, see details in [209].

Variants of EMD

Since Reichardt originally introduced the EMD model in the early 1960’s, quite a few
research work has been done in a wide range of research communities ranging from neurol-
ogy to psychophysics to show how much appropriately the model can reflect insects’ visual
information processing systems [203, 204] as well as to propose modified models based on
the raw model [156, 205, 206]. In Fig. 5.5 some elaborated models are presented.
In general, there are three methodologies that are used to revise the Reichardt-model:

• Add preprocessing blocks : Preprocessing units such as spatial and temporal filters are
added in both input signal channels in some research works, e.g. adding a temporal
high-pass filter in the input channel to eliminate background luminance, as shown in
Fig.5.5(a) [155]. This is necessary if the detector input channels contain saturation
nonlinearities. Another example of the elaborated Reichardt-model with preprocess-
ing units is shown in Fig. 5.5(b), which raises the peak response velocity by adding
spatial and temporal filtering in the input paths [17]. In [200], a logarithmic trans-
formation is applied to the input arm in order to reduce the sensitivity to lighting
conditions. It is recommended by Dror to model the contrast by using a hyperbolic
tangent function before the multiplication operation [210].

• Add components in the cross arm: In [207] high-pass filters are added on the cross
arms as shown in Fig. 5.5(c). The detector with the filter in the cross arms shows a
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Figure 5.6: Template model adapted from [17] for the detection of motion to the right (a)
and energy model adapted from [212] (b). The variance of the light intensity is indicated
by ↑ (increase), ↓ (decrease), − (no change). SF : spatial filter; TF : temporal filter;

better impulse response performance. The nonlinearity which is used to mimic the
saturation characteristics is added to the cross arm and inserted after the low-pass
filter, as shown in Fig.5.5(d) [208].

• Add an adapter : In order to reduce the motion estimation error, an adapter is added
to dynamically adjust the time constant of the filters in [205]. This model is much
more complicated than the previous versions and is proved to be a plausible struc-
ture underlying the adaptive response properties in the fly’s motion vision. In [165]
a parameter configuration algorithm is proposed by optimizing the EMD’s parame-
ter ∆φ (spatial separation between receptors) and τ (time constant of low-pass filter
LP ) in real time so as to obtain the maximum absolute values of the EMD responses.

A latest and more complex model is shown in Fig. 5.5(e), which is proposed
by Brinkworth in 2009. Multiple levels of non-linear dynamic adaptive components are in-
troduced into the model, allowing a more reliable motion detection across different images.
There are also some detectors different from the basic Reichardt-model and its alterna-
tives. One example is the template model [156] proposed by Horridge which simulates the
function of the small field motion detection neurons in the medulla, shown in Fig. 5.6(a).
Another example is the spatiotemporal energy model [211], see Fig. 5.6(b). In this model,
the first stage consists of linear filters that are oriented in space-time and tuned in spatial
frequency. The outputs of the quadrature pairs of such filters are squared and summed to
give a measure of motion energy. It is noteworthy that energy models are closely related
to the Reichardt-model and in some cases are formally identical.

It has to be mentioned that, most motion detector and its variants are proposed from the
perspective of neurobiology, meaning that the model is revised by comparing the simulation
results with the intracellular recording from the interneurons in fly’s brain. It is less
considered to improve the model from application perspective.
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5.2 High-speed Visual Servoing with EMD

In the previous section, the structures of the raw Reichardt-model and its variants have
been introduced. The vision system of fly with the involvement of EMD, especially elabo-
rated EMD, enlightens engineers with the design of insect-inspired motion-sensitive sensors,
which can overcome the potential problems of conventional machine vision algorithms,
e.g. high complexity and computation cost. In this section, innovative insect-inspired
approaches, especially a high-speed vision system based on EMD for robot control, are
investigated. The Reichardt-model is well-known as an insect-inspired motion detector.
However, it often works as a qualitative motion-sensitive sensor rather than a quantitative
velocity estimator. In order to enable it as a qualified velocity estimator, an elaborated
Reichardt-model is analyzed and applied in this work. A velocity estimation algorithm
based on the analysis of spatial power spectrum is proposed and validated in a closed loop
vision-based motion control system.

5.2.1 Problem Definition

The Rechardt-model possesses a simple structure and is robust to noise. However, the per-
formance of velocity estimation with the Reichardt-model is not well addressed in known
works. The challenge of applying Reichardt-model as a velocity sensor is that its re-
sponse relies not only on the image velocity, but also on the pattern statistics such as
image brightness/contrast and spatial power spectrum density [213–215]. Recent work
has shown that with the natural scene as input signal Reichardt-model with additional
pre/after-mechanisms, e.g. pre-filters and output integration, is more accurate in veloc-
ity estimation [209, 215]. A latest Reichardt-model with complicated structure has been
tested for optic flow coding with input stimuli of natural scenes [209]. However, most mod-
els applied in these studies have not been tested with real-time image sequences, and the
reliability has not been evaluated in closed loop robot control. The input images used in
these works are virtually obtained by shifting/rotating a pre-captured image, which leads
to similar image statistics among all of the inputs.

In this work, real-time images are taken as input signal, which has varying scenes cap-
tured by a rotating camera. Therefore, the varying image statistics have to be considered
in velocity estimation. The response of the Reichardt-model to normal scenes is analyzed,
and the utilization of the Reichardt-model in a robot control scenario in an unconstructed
environment is investigated in this work.

The remainder of Section 5.2 is divided into two parts: In the first part a reliable velocity
estimation method with Reichardt-model is proposed. Based on the power spectrum anal-
ysis, the response of Reichardt-model to natural image sequence and the design of real-time
velocity-response LUT are introduced in Section 5.2.2. In the second part, several steps
are proposed to optimize Reichardt-model as accurate velocity estimator are presented in
Section 5.2.3, such as tuning of camera view angle and adding pre-filters.

5.2.2 Characteristics of EMD

Though the Reichardt-model or the so called elementary motion detector (EMD) is ex-
ploited to be a motion sensitive detector in fly’s vision system, it is non-ideal and not
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applicable for high-performance robot control due to the low accuracy of velocity estima-
tion. As mentioned in [216], large standard deviation of the EMD response is observed
relative to its mean when it responds to input signals with constant image velocity. In
order to reduce the relative error, a reliable EMD model with additional mechanisms,
such as pre-filtering of the input signal, needs to be designed. Here, instead of enabling
EMD as an insect neuron (e.g. as HS: horizontal-sensitive motion detection neurons) by
extending it with a lot of additional components, the relationship between the current im-
age statistics and the EMD response is established from the mathematical point of view.
The power spectrum of the input signal is analyzed. An elaborated EMD is proposed in
this work, as shown in Fig 5.7. A temporal high-pass filter HP ′ and a temporal low-pass
filter LP ′ are added on each input path. The role of the two pre-filters will be discussed
in Section 5.2.3. Similar to other works, a spatial integration is followed to eliminate the
oscillatory components in the response.

Since the image captured by insects varies as a function of time and space, a series
of sinusoidal signals with different frequencies and phases is resulted after the Fourier
decomposition of the image. Before analyzing the response of EMD to the image sequence,
its responses to single sinusoid and to the sum of sinusoids are introduced in the following
part.

Remark 6 In this study, the Reichardt-model is utilized for 1-D motion control. An array
of EMDs operates horizontally on an image, see Fig. 5.7. The input signals of an EMD
are the illumination values of two pixels in the same row. In order to enable it for 3-D
motion estimation, more complex patterns (or the so called receptive field [236]) should be
designed, which detect different motions by placing EMDs in appropriate ways. However,
extracting 3-D motion from these EMD responses is still an open problem, and will be
subject to future work.
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EMD Response to Single Sinusoid

In this section, the response of basic EMD to single sinusoidal input is studied. Assume
the input signal of the EMD is a sinusoid signal I(t) moving with velocity v:

I(t) = C cos(2πfvt+ θ0), (5.2)

where C is the amplitude, θ0 is the phase, and f is the spatial frequency. Then, the
temporal frequency of the input signal is ft = fv. Consider that the first-order temporal
low-pass filter LP in Fig. 5.3 has a transfer function:

G(ft) = A(ft)e
−iθ(ft), (5.3)

where

A(ft) =
1

√

1 + (2πftτL)2
, θ(ft) = arctan(2πftτL),

and τL is the time constant. With the angular distance between the input arms equals
to ∆φ, the EMD response to the sinusoidal signal in (5.2) becomes [208]

R(t) = C2 2πτLfv

1 + (2πτLfv)2
sin(2πf∆φ). (5.4)

The sign of the EMD response R(t) indicates the direction of the image velocity v. Assume
positive v denotes clockwise rotation of the yaw angle. Then, a positive EMD response
indicates a clockwise moving direction. In addition, equation (5.4) indicates the response
of EMD is a constant and independent of the phase of the input sinusoid, see also Fig. 5.8.
With the input signal in Fig. 5.8 (a), the EMD response is given in Fig. 5.8 (c). After about
200ms, the response in Fig. 5.8 (c) converges to a constant value of 1.1× 10−3, indicating
a clockwise rotation.

Since the input of EMD is varying luminance, it could not be negative. Thus, a sinusoidal
signal with positive mean luminance

I(t) = C cos(2πfvt) +K,

where K > 0, I(t) >= 0, is applied as an input signal. The response of the EMD
becomes [208, 215]

R(t) =C2 2πτLfv

1 + (2πτLfv)2
sin(2πf∆φ) + 2CK sin(πf∆φ)[sin(2πfvt− πf∆φ)

− A(ft) sin(2πfvt− πf∆φ− θ(ft))].

(5.5)

The second term on the right hand side of (5.5) implies a periodic oscillation imposed on
the mean response, see also Fig. 5.8. With the input signal in Fig. 5.8 (b), the output of
EMD shown in Fig.5.8 (d) is not constant, which leads to ambiguity in velocity estimation.
Taking an average response by spatially integrating the responses of an EMD array could
solve this problem.
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Figure 5.8: Response of EMD to sinusoid. (a): input sinusoid with amplitude 0.5, spatial
frequency f = 0.1 cycle/deg; (b): input sinusoid with positive mean, K=0.5; (c) EMD
response to input signal in (a); (d) EMD response to input signal in (b). ∆φ = 1.1 ◦,
τL = 0.035 s, and v = 20 deg/s for a motion from left to right.

EMD Response to Sinusoids

Since the Fourier decomposition of the image is a series of sinusoidal signals, the response
of EMD to the sum of sinusoids is analyzed in this section. Assume there is an input signal
consisting of n sinusoids with their corresponding amplitude C(fi), where i = 0, 1, 2, . . . , n.
Due to the non-linear property of EMD, the EMD response differs from the sum of re-
sponses to separate sinusoids. The mean response of EMD to the sum of sinusoids is

R(t) =

n
∑

i=0

C2(fi)
2πτLfiv

1 + (2πτLfiv)2
sin(2πfi∆φ) +O(R), (5.6)

where O(R) denotes the error between the actual response and the sum of responses to
separate sinusoids. According to (5.6), when O(R) approaches zero, the EMD response is
equivalent to the sum of responses to separate sinusoids. Then, a reliable velocity-response
relationship can be established depending only on the spatial frequencies fi, i = 0, . . . , n of
the sinusoidal components in the input signal. Therefore, the objective here is to minimize
the difference O(R) between the theoretical prediction Rp and actual response of EMD Ra

when using the EMD for accurate velocity estimation. Here, the actual mean response of
EMD Ra represents the response after spatial averaging, Ra = R/N , where R denotes the
measured integrated response of an EMD array in Fig. 5.7, and N denotes the number of
EMDs in the array.
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5.2.3 Accurate Velocity Estimation with EMD

In this section nature images are used as input to EMD, and the mean EMD response is
analyzed for velocity estimation. In addition, the role of camera view angle, spatial resolu-
tion, and additional pre-processing modules in the elaborated EMD model are discussed.
Finally, velocity estimation algorithm based on real-time LUT is illustrated.

Power Spectrum Density of Natural Scenes

Natural scenes, which are different from place to place and from time to time, are more
arbitrary than artificial stimuli in constructed environment (e.g. sinusoidal grating). How-
ever, a number of studies [217–219] have shown that the power spectrum of the natural
scene possesses a similar distribution despite the diverse scenes in the images. In spite of
the arbitrariness of the images, the amplitude of the one-dimensional (1-D) power spectrum
falls off roughly by 1/f (1+η) in log-log coordinates, where f denotes the spatial frequency,
and η is a small constant, see Fig. 5.9 for an example.
Although the power spectra of nature images are similar, their actual values alter from

image to image. For accurate velocity estimation with EMD, it is necessary to analyze
the power spectrum of each input image. The power spectrum of an image is defined as
the square of the modulus of the Fourier transform [220]. This work concentrates on a
yaw-angle control problem. Therefore, the spacial power spectrum of 1-D row is calculated
by

P (fi) =
1

N2

N−1
∑

n=0

(x(nTs) exp(
−j2π

N
fin))

2, fi = 0, . . . , N − 1, (5.7)

where x (nTs) denotes the pixel value, Ts and N denote the spatial sampling interval and
the length of the sampling points in one row, respectively.
The 1-D power spectral densities (PSDs) of the images shown in Fig. 5.9 are analyzed.

The four images are captured with different surroundings, e.g. the scene in ’classroom’
is significantly different from that in ’outdoor’. As shown in Fig. 5.9, the PSDs of the
four images differ from each other, while, however, these PSDs all fall off approximately
by 1/f 1.25 in log-log coordinates.

EMD Response Prediction

Assume the power spectrum of the input image is known. According to (5.6), the predicted
mean response of the EMD becomes

Rp =

N−1
∑

i=0

P (fi)
2πτLfiv

1 + (2πτLfiv)2
sin(2πfi∆φ). (5.8)

The relationship between the predicted mean response Rp and the image velocity v is
depicted in Fig. 5.10. The input images, which possess PSDs of different slope{-0.9, -1.0,
-1.1} shown in Fig. 5.10(a), are shifted with different image velocity. The corresponding
mean EMD responses are predicted by (5.8), and the results are shown in Fig. 5.10(b). It is
observed that the three normalized response-velocity curves present a similar bell-shaped
relationship, except minor differences in the descending part. In order to eliminate the
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Figure 5.9: Images of different scenes from [209] (captured by a Nikon D-70 digital camera)
and their power spectrum densities. Top down: ’classroom’; ’outdoor’; ’lab’; ’library’;
horizontal mean power spectral density of images, the dashed line represents power spec-
tra P (f) with 1/f 1.25 in log-log coordinates. A rectangular window with the size of image
width is applied for calculating the mean power spectral densities.

ambiguity in velocity estimation, only the ascending part of the curve is utilized for robot
control.

In order to estimate the image velocity, the predicted response Rp is compared with the
actual response Ra. As pointed out in Section 5.2.2, accurate velocity estimation with
EMD relies on the assumption O(R) ≈ 0. In the following part, several steps are proposed
to minimize the difference between the predicted response Rp and the actual response Ra.

Role of Additional Mechanisms

An elaborate EMD model shown in Fig. 5.7 is proposed in this work for velocity estima-
tion. Prior to introducing the functional roles of additional mechanisms, components with
different spatial frequencies are discussed with respect to their contributions to the mean
response Rp.
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Figure 5.10: Power spectral density of slope {-0.9, -1.0, -1.1} (a) and corresponding normalized
response-velocity curves (b).
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Figure 5.11: The relationship among the predicted mean EMD response, image velocity, and
spatial frequency of the input signal. The power spectra of the input signal has a slope
of −1.0, with η = 0.

Contributions of Components with Different Spatial Frequencies Assume the input
image possesses a power spectrum of slope −1.0. The EMD response to each sinusoidal
component in this image is calculated. The results are shown in Fig. 5.11, which depicts
the overall relationship among the predicted response, the image velocity, and the spatial
frequency of the input signal. As observed in Fig. 5.11, the response of EMD is not always
positive. For example, according to (5.8) the responses to the components with spatial
frequency from 0.56 cycle/deg to 1.11 cycle/deg are negative when ∆φ equals to 0.9 ◦. If
these components are dominant in an input image, the mean EMD response may become
negative, which is different from the sign of the image velocity v. Accordingly, the velocity
estimation becomes incorrect. Therefore, the components, which lead to negative responses
when the input signal has positive velocity, are not preferred in velocity estimation.

Moreover, with higher spatial frequency, the response-velocity curve has a smaller
peak value at a smaller velocity. Generally speaking, the component of low spatial
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Figure 5.12: Response-velocity curves of input signals with two different spatial frequency
ranges. (a): the mean row PSD of image ’classroom’ in Fig. 5.9. Red line: the PSD
for spatial frequency ranges from 0 to 11.11 cycle/deg; dashed blue line: PSD for spatial
frequency from 0 to 2.22 cycle/deg (1/5 of the solid red-line). (b): the correspondent
response-velocity curves.

frequency contributes more to the EMD response than that of high spatial frequency.
In order to clarify this, the response-velocity curves of the input signal with differ-
ent range of special frequency are compared in Fig. 5.12. Two ranges of spatial fre-
quency, [0 11.11] cycle/deg (original) and [0 2.22] cycle/deg (fifth of the original) shown
in Fig. 5.12(a), are tested. The response-velocity curves are shown in Fig. 5.12(b). The
curves indicate that the components of low spatial frequencies play a dominant role in

the response-velocity curve. The maximum relative difference max(
|Rall−R1/5|

Rall
) (Rall: re-

sponse curve to original input signal, R1/5: response curve to input with only low spatial
frequency) between the two curves is only 3.53%, appearing at v = 2.0 deg/s. In con-
sideration of this characteristic, the computation time in application can be reduced by
calculating only the responses of the components with low spatial frequencies.

Role of Field of View In machine vision a camera with wide view angle provides large
field of view by the price of low spatial resolution. In order to find out the relationship
between the width of the field of view (FOV) and the mean EMD response, images (pos-
sessing 1000 pixels in one row) with different FOV ∈ {45◦, 180◦, 360◦} are tested in this
section. The correspondent responses are shown in Fig. 5.13. Besides, the relative response
error eR defined by

eR =
|Ra −Rp|

Ra
, (5.9)

is utilized to evaluate the difference between Ra and Rp. The mean relative error ēR and
the variance of the actual mean EMD responses Ra are listed in Tab. 5.2.

It is noticed that the relative mean error is in a small scale for all the three FOVs.
However, the image with larger FOV results in a smoother mean response. For example,
the variance of Ra by an input image with a FOV of 45◦ is 100.38, while that by an image
with a FOV of 360◦ is only 28.3 (−71.8%). Since for a constant velocity a response without
variation is expected, a camera with large FOV is suggested.
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Figure 5.13: The predicted response Rp (dashed line) and actual mean EMD response Ra (solid
line) to input images of different FOV: 45◦, 180◦, 360◦. The responses are obtained at the
image velocity 45 deg/s with input image ’classroom’ in Fig. 5.9.

Table 5.2: Evaluation of the responses. Left: results from the simulation with different FOV,
but the same number of pixels in the row (1000 pixels); Right: results from the simulation
with different spatial resolution, but the same FOV (180 ◦).

FOV
mean var
(eR) (Ra)

45◦ 0.033 100.38
180◦ 0.033 33.81
360◦ 0.022 28.33

Number of mean var
pixels in row (eR) (Ra)

500 0.032 33.82
1000 0.033 33.81
4000 0.022 29.96

Remark 7 In order to obtain input image sequence, a virtual camera is simulated which
rotates clockwise around yaw axis with an image velocity of 45 deg/s. The image captured
by the camera is panoramic (8000 pixels in one row) with different starting position. Since
only less than 8000 pixels, e.g. 1000 pixels, are used in the simulation, it requires a sub-
sampling on the panoramic image. After sub-sampling on the panoramic images with
different starting position, the resulting image differs from frame to frame, leading to
varying responses.

Role of Spatial Resolution In order to investigate the relationship between the spatial
resolution and the mean EMD response, input images with the same FOV but different
number of pixels in one row ∈ {500, 1000, 4000} are tested. The FOV of 180◦ is adopted
in the simulation. The simulation results are shown in Fig. 5.14 and Tab. 5.2. The results
indicate that the spatial resolution does not significantly influence the mean EMD response.
Combined with the results in the previous section, a wide FOV camera with low spatial
resolution is preferred in applications considering the trade-off between the computation
cost and the accuracy.

Role of Pre-filters Further investigations are necessary in order to reduce the oscillation
in the response and minimize the difference between Rp and Ra. As introduced in Sec-
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Figure 5.14: The predicted response Rp (dashed line) and actual mean EMD response Ra (solid
line) to input images of different spatial resolution: 500, 1000, 4000 pixels in one row. The
responses are obtained at the image velocity 45 deg/s with input image ’classroom’ in
Fig. 5.9.

tion 5.2.2, two pre-filters, temporal high-pass filter and temporal low-pass filter, are added
to the basic Reichardt-model, as shown in Fig.5.7.

Temporal High-pass Filter: As pointed out in [221], sufficient spatial integration elimi-
nates the oscillation in the response. Then the response of EMD can be predicted by (5.8).
However, it is difficult to meet the requirement of ’sufficient integration’ in application.
On one hand, spatial integration is dependent on the FOV of the camera. A camera with
limited FOV restricts the spatial integration to be insufficient. On the other hand, compo-
nents of lower spatial frequency contributes more to the response and the impact, however,
also more significantly on the fluctuation of the response. Therefore, a high-pass filter is
applied to filter out the components of very low spatial frequency. As a result, the variation
of the response is reduced and the difference between Rp and Ra becomes smaller.
For example, Fig. 5.15(a) shows the predicted mean response Rp and the actual mean

response Ra of the basic EMD model, while Fig. 5.15(b) shows that of the EMD model with
the high-pass filter. The relative response error eR defined by (5.9) is shown in Fig. 5.15(c)
and Fig. 5.15(d). The mean relative error ēR in Fig. 5.15(c) is about 23.9%, while the
one in Fig. 5.15(d) is only 4.15% (-82.6%). The relative error is considerably reduced by
adding the high-pass filter.

Temporal Low-pass Filter: It is noticed that for the basic EMD the response-velocity
curve might have a local minimum (negative) appearing at very low velocity. An example
is shown in Fig. 5.16(b), where the dashed red-line and solid blue-line denote the response-
velocity curves obtained with and without the low-pass filter, respectively. On the dashed
line a local minimum -0.1 is observed at the velocity v = 0.8 deg/s. As explained in Sec-
tion 5.2.2, with v = 0.8 deg/s a positive mean EMD response is expected. Therefore by
using the red line the result of velocity estimation becomes incorrect.
By adding a low-pass filter on the input path, the negative responses are eliminated,

see the solid line in Fig. 5.16(b). The reason is that by using the low-pass filtering the
PSD of the image is altered, see Fig. 5.16(a). The solid line denotes the PSD of the
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Figure 5.15: Responses of EMD with (right column) / without (left column) high-pass filter.
The input image is ’classroom’ in Fig. 5.9 with image size 8000 × 1600 pixels. At each
time, an image frame of size 800 × 27 pixels is captured as input signal. a): predicted
response (solid line) Rp and actual output (dashed line) Ra of basic EMD; b): Rp and Ra

of EMD with high-pass filter; c): the relative response error of responses in a); d): the
relative response error of responses in b). The parameters of EMD are τL = 0.035 s,
τH′ = 0.02 s, ∆φ = 0.9 ◦ and v = 90 deg/s.

image before using the low-pass filter, while the dashed line denotes that after using the
low-pass filter. According to (5.8), the negative responses at low velocities result from
the components of frequencies fi ∈ [0.56, 1.11] cycle/deg when ∆φ equals to 0.9◦. As ob-
served in Fig. 5.16(a), in the dashed line the PSDs of spatial frequencies within the range
of [0.56, 1.11] cycle/deg are much larger. Besides, as shown in Fig. 5.12 the components
of high frequencies contribute little to the EMD response. Therefore, when the compo-
nents of frequencies within [0.56, 1.11] cycle/deg become dominant in the image, negative
responses may be generated, see the dashed line in Fig. 5.16(b). By adding a low-pass
filter, the local minimum is successfully eliminated.

Remark 8 It should be pointed out that the negative local minimum appears at very low
velocity (< 1 deg/s). For applications without velocity in this scale, the low-pass filtering
can be omitted to reduce the computation time. Combining the low-pass filter and the
high-pass filter into one filter could also save the computation time.

Algorithm

The discussion above demonstrates the possibility of utilizing the mean EMD response for
velocity estimation. In this part, the algorithm for velocity estimation is introduced by
establishing a real-time LUT. Though the actual mean EMD response Ra can be predicted
by (5.8) based on the PSD analysis and the known velocity v, the velocity cannot be calcu-
lated in a closed form. Owning to the non-linearity of (5.8), the velocity v cannot be directly
deduced by mathematical means. An alternative is to establish a response-velocity LUT.
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Figure 5.16: Responses of EMD with/without low-pass filter. a): power spectrum of image
’classroom’; solid line: power spectrum of the image before low-pass filter; dashed line:
power spectrum of the image after low-pass filter. b): corresponding response-velocity
curves. τL′ = 0.015 s, other parameters: see Fig. 5.15.

By comparing the actual mean EMD response Ra with the predicted response-velocity
LUT, the velocity v is estimated. The algorithm for velocity estimation is illustrated in
Fig. 5.17:

• Firstly, the actual mean EMD response Ra is calculated by applying an array of
EMDs to the input image;

• Secondly, the PSD of the image after high-pass and low-pass filtering is calculated
by (5.7). According to (5.8), a real-time response-velocity LUT is established;

• Finally, by searching Ra in the LUT the estimated image velocity v̂ is determined.

Notice the LUT should be updated from frame to frame. Although most natural images
have similar PSD slopes, the small difference in the PSD leads to different mean EMD
responses. It accordingly results in diverse response-velocity curves. Fig. 5.18 shows some
examples of LUT with different input images. Four images, ’img1’, ’img2’, ’img3’ and
’img4’, are adopted as input signals, which are sub-segmented from the original image
’classroom’ in Fig. 5.9. It is observed in Fig. 5.18, that the PSDs of these images exhibit
similar slopes. However, the actual values of these PSDs are different, which thus lead
to different response-velocity curves. In order to achieve accurate velocity estimation, a
real-time LUT has to be established.

Compared with the existing methods, the advantage of the proposed approach is, that
it is applicable in almost all kinds of environments, while the other models/methods are
restricted to either simple monotonous artificial environments or natural environments
possessing very close PSDs (e.g. [209,215]). Besides, the accuracy of velocity estimation is
improved with the proposed approach, which, for the first time, allows applying the EMD
for closed loop motion control in normal environments.
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Figure 5.17: Algorithm of applying EMD for velocity estimation based on PSD analysis.

5.2.4 Performance Evaluation

Simulations

In order to verify the performance of the proposed algorithm for velocity estimation, a
closed loop system with velocity feedback provided by EMD is designed for velocity control,
in which the error is a function of optical flow [222, 223]. The simulation setup and the
control performance are introduced below.

Simulation Setup The closed loop system for yaw rate control is shown in Fig. 5.19(a).
The desired yaw rate is denoted as θ̇d. The current yaw rate θ̇is is estimated based on the
algorithm introduced in Section 5.2.3. The estimated yaw rate is denoted as θ̇emd. With
the feedback θ̇emd, the angular velocity error ∆θ̇ = θ̇d − θ̇emd is then calculated and linked
to a PD controller. The output of the controller u is sent to the manipulator for yaw rate
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Figure 5.18: Response-velocity curves for different input images, ’img1’, ’img2’, ’img3’ and
’img4’, which have similar slope of PSD. The four images are sub-segmented from ’class-
room’ in Fig. 5.9.

control. The manipulator is simulated by an integrator. The image sequence is captured
by a virtual camera rotating clockwise with a yaw rate θ̇is = 45 deg/s. It captures images
from the original panoramic image ’classroom’ (8000 × 1600 pixels) in Fig. 5.9, with the
size of 2000 × 8 pixels, see Fig. 5.19 (b) for visualization. The sampling rate of the whole
system is set to be 1000Hz.

In the simulation the resolution of velocity estimation needs to be considered, e.g. for a
panoramic image of 8000 × 1600 pixels the spatial resolution is 0.045 deg/pixel. Running
the camera with a frame rate of 1000 cycle/deg, the resolution of image velocity is 45 deg/s.
In order to achieve higher velocity resolution, sub-pixel interpolation should be applied. In
this simulation, a linear sub-pixel interpolation is exploited to achieve a velocity resolution
of 0.1 deg/s. It means between every two adjacent original pixels 449 sub-pixels are linearly
interpolated.

The parameters of EMD in the simulation are set as follows: τL = 0.035 s, τH′ = 0.02 s,
τL′ = 0.015 s and ∆φ = 0.9 ◦, where τH′ and τL′ are the time constants of the preprocessing
modules: the temporal high-pass filter and the temporal low-pass filter in the elaborated
EMD model. Similar to (5.9), the relative yaw rate error defined by

eθ̇ =
|θ̇is − θ̇d|

θ̇d
, (5.10)

is adopted for performance evaluation.

Simulation Results

90



5.2 High-speed Visual Servoing with EMD

PD

_ d
_ is

LUT

Image

Ra

_ emd

¢ _ 

¡ manipulator

R

EMD

PSD

Camera
u

controller

(a)

Imgi¡1
Imgi¡2 Imgi

_ is ¢ ¢t

(b)

Figure 5.19: Closed loop yaw-rate control system for simulation (a) and Images captured by
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Simulation I: In order to test the performance of the EMD as a velocity estimator for
closed loop yaw rate control, a step velocity θ̇d(t) defined by

θ̇d(t) =

{

5 deg/s, if t > 0,

0, if t = 0,

is selected as a reference signal. The results are shown in Fig. 5.20. After an initial
delay of about 1 s, the yaw rate of the manipulator converges to the desired value. The
relative yaw rate error is shown in Fig. 5.20(b). The mean relative yaw rate error ēθ̇ during
period t ∈ [1 12] s is only 1.25%. The results above demonstrate that reliable velocity
estimation is achievable with the insect-inspired EMD, which can be further extended in
machine vision for robot control.

Simulation II: The proposed approach is also evaluated in a simulation with a desired
motion, which has acceleration and deceleration during the running time. The following
reference signal is selected:

θ̇d(t) = 3 sin(2π0.1t−
π

2
) + sin(2π0.5t) + 10, t ≥ 0.
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Figure 5.20: Simulation results of using the mean EMD response as velocity estimator in a
closed loop yaw rate control. The desired yaw rate is constant, θ̇d(t) = 5 deg/s, t > 0.
a): yaw rate evolution. Solid red-line: desired yaw rate; dashed green-line: estimated yaw
rate based on EMD; dashed-dot blue-line: actual yaw rate of the manipulator; b): relative
error evolution according to (5.10).

The results are shown in Fig. 5.21. The velocity of the manipulator follows the desired
velocity closely, as seen in Fig. 5.21(a). The relative error defined by (5.10) is shown in
Fig. 5.21(b). Similar to the results in Simulation 1, only small relative error is observed
after the initial transient response, e.g. the mean relative velocity error is about 5.56%
during t ∈ [1 12] s. Therefore, it is concluded that the proposed method is feasible to be
employed as a velocity estimator in robot control system.

Experiments

In this section, the utilization of the EMD as an angular velocity estimator is exploited
in real-time robot control. Instead of implementing a yaw rate control system, a vision-
based yaw angle control is designed. The reason is that there is unexpected friction on
the manipulator, which is difficult to compensate and has large influence on the velocity
control. The closed loop yaw angle control system is shown in Fig. 5.22. The control
aim is to drive the robot end-effector to follow a designed rotational trajectory θd. After
obtaining a new image captured by the camera, EMD is applied to estimate the angular
velocity θ̇is. The estimated angular velocity θ̇emd is followed by an integrator. Thus, the
yaw angle θemd of the end-effector is obtained and fed back to the controller for computing
the control signal u. Benefiting from the simple structure of EMD and the choice of a
small size input image, the vision system based on EMD achieves a frequency of 1000Hz.

Experimental Setup The experimental setup is shown in Fig. 5.23. The end-effector of
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Figure 5.21: Simulation of using the mean EMD response as velocity estimator in a closed loop
yaw rate control. The desired yaw rate varies as a function of time: θ̇d(t) = 3 sin(2π0.1t−
π
2
) + sin(2π0.5t) + 10, t ≥ 0. a): yaw rate evolution. Solid red-line: desired yaw rate;

dashed green-line: estimated yaw rate based on EMD; dashed-dot blue-line: actual yaw
rate of the manipulator; b): relative error evolution according to (5.10).

a 7-DOF robot arm [224] is utilized as a manipulator for yaw angle control. A camera-
in-hand structure is adopted for image capture. A high-speed camera, Mikrotron MC1363
(1024× 4 pixels@ 1000 fps), is mounted on the end-effector. The images are sent to PC
through camera link. Running the image processing algorithm with EMD takes less
than 1ms. The estimated yaw rate is sent through the network to the controller. The
robot arm is controlled through the MATLAB/SIMULINK blocksets at 1000Hz. Stan-
dalone real-time code is generated directly from the SIMULINK modules with the Real-
time Workshop. The control signal for the joint is sent to the control box through a
Sensoray card (Sensoray S626 I/O). The parameters of the EMD model are

τL = 0.035 s, τH′ = 0.06 s, τL′ = 0.2 s, ∆φ = 0.42 ◦.

The parameters of the PD controller are heuristically selected

Kp = 0.16, Kd = 0.015.

The experiments are carried out with a normal laboratory surrounding. Similar to the
simulation, two types of desired trajectories are tested: one with a constant velocity and
the other one with varying velocity.

Experimental Results

Experiment I: The proposed approach for velocity estimation is evaluated firstly in a
closed loop yaw angle control with a desired triangular trajectory (piecewise constant ve-
locity), see the solid line in Fig. 5.24(a). The tracking results and the relative tracking
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Figure 5.22: Closed loop yaw angle control system. EMD-based angular velocity estimation
is denoted by the dashed rectangular. θd: desired yaw angle; θemd: estimated yaw angle;
θis: actual yaw angle of the end-effector; ∆θ: control error; u: control signal.
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Figure 5.23: Experimental setup consisting of two standalone PCs, a robot arm, a control box
and a high-speed camera mounted on the end-effector of the robot arm.

error are shown in Fig. 5.24(a) and Fig. 5.24(b), respectively. The mean relative angu-
lar error ēθ is only 1.85%, and the maximum relative error is max(eθ) = 7.1% at time
instant t = 35.6 s. The relative angular error becomes larger when the motion direction
of the desired yaw rate switches, e.g. from clockwise to anticlockwise. At these time in-
stances, the lag due to transient EMD response and the friction on the manipulator jointly
influence the yaw angle control. Nevertheless, the results above exhibit a promising start
of utilizing insect-inspired EMD for accurate velocity estimation in robot control.

Experiment II: The proposed approach is evaluated in a closed loop yaw angle control
with a more complex reference trajectory, which has varying acceleration and deceleration,
see the solid line in Fig. 5.25 (a). Compared with the results in Fig. 5.24, the tracking
error in Fig. 5.25 is slightly larger. The mean relative angular error is ēθ = 1.93%, and the
maximum relative angular error is max(eθ) = 11.7%. One reason for the increased relative
error could be that the non-linear friction on the manipulator has a larger impact on the
trajectory with varying velocity than on that with constant velocity. Moreover, the lag
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Figure 5.24: Experimental results of using the mean EMD response as velocity estimator in a
closed loop yaw angle trace (with piecewise constant yaw rate) control. a): angle evolution.
Solid line: desired yaw angle with piecewise constant rate; dashed line: estimated yaw angle
based on EMD; dashed-dot line: actual angle of the manipulator; b): relative angle error
evolution.

due to the transient EMD becomes more critical when the reference trajectory has varying
velocity.
The results from these two experiments indicate that it is practical to use the EMD

as a velocity estimator for robot control. The vision system based on EMD provides
accurate and high-speed (1000Hz) visual feedback. A convincing control performance is
demonstrated by applying EMD in a closed loop yaw angle control. For either stepping
velocity tracking or varying velocity tracking, the mean relative error is smaller than 2%.

5.3 Stable Visual Servoing with EMD

In the previous section, the raw EMD module has been enhanced for motion detection,
and a novel motion estimation algorithm based on real-time LUT has been proposed for
accurate motion estimation. This section is concerned with the stability problem of visual
servo control system having long image processing delay in the feedback. From the evidence
of the study on fly’s vision system, it is found that the optomotor system of the fly does
not become unstable when its overall gain gets increasingly large [225]. In this section,
inspired from the fly’s vision system a biologically inspired motion detector (Reichardt-
model) is introduced into visual servo control to ensure the stability of a system with high
feedback gains and time delays. As a consequence of the specific velocity dependence of
the Reichardt-model, the stability margin of the visual servo control is increased and high
overall gains, thus, better performance are achievable. In this section, visual servo control
based on Reichardt-model with different sampling rates and different time delays in its
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Figure 5.25: Experimental results of using the mean EMD response as velocity estimator in
a closed loop yaw angle (with varying yaw rate) control. a): angle evolution. Solid line:
desired yaw angle trace with varying velocity; dashed line: estimated yaw angle based on
EMD; dashed-dot line: yaw angle of the manipulator; b): relative angle error evolution.

visual feedback loop is investigated. The proposed approach is evaluated both through
simulations and experiments conducted on a 1-DOF linear axis with high-speed (up to
500Hz) visual feedback.

In the rest of this section the application of Reichardt-model in inner velocity control
loop of visual servo control for object tracking is firstly introduced in Section 5.3.1. Then
the proposed approach is evaluated by simulations and experiments conducted on a 1-DOF
linear-axis module in section 5.3.2.

5.3.1 EMD in Motion-based Visual Servoing

Since the Reichardt-model calculates the motion from image sequences, in this work the
stability problem of velocity control with visual servoing (or the so called motion-based
servo control) is considered.

Control Problem

Different from the control of the yaw angle in image plane in Section 5.2, a tracking
system with eye-in-hand camera through motion-based visual servo control is studied in
this section. Consider a serial n-link rigid robot manipulator, its dynamics can be written
based on Euler-Lagrangian formulation

M(q)q̈ + C(q, q̇)q̇ + g(q) = Γ,
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Figure 5.26: Block diagram of velocity control visual servoing for object tracking. Γ: Joint
torque; Ẋo: motion trajectory of the target; Ẋ: relative motion between the camera and the
target; Ẋd: desired relative motion between the camera and the target; I: image sequence
captured by the camera; ξ̇: feature motion in image plane (optical flow); Jimg: image
Jacobian; τ : feedback delay; K: feedback gain.

where q ∈ R
n is the displacement vector of joints, Γ ∈ R

n is the torque applied to the
join actuators, M(q) ∈ R

n×n is symmetric positive definite manipulator inertia matrix,
C(q, q̇)q̇ ∈ R

n is centripetal and Coriolis torques, and g(q) ∈ R
n is gravitational torques.

Through direct kinematics of the robot, the pose including position and orientation of the
camera frame Xc ∈ R

6 is expressed with respect to the joint positions. For simplicity, the
Cartesian space control is assumed.

The aim is to control the relative motion Ẋ(t) ∈ R
6 between the camera and a moving

object defined by

Ẋ(t) = Ẋc(t)− Ẋo(t), (5.11)

where Xc(t) ∈ R
6 and Xo(t) ∈ R

6 denote the positions and orientations of the camera and
the moving target in the robot frame, respectively. The stability of the closed loop system
with large feedback gain and an amount of feedback delay is considered in system design.

Control Law

The block diagram of standard motion-based visual servo control systems is shown in
Fig. 5.26. Assume a target moves in the working space with motion trajectory Ẋo(t).
Through camera perspective projection, image processing and velocity transformation,
the relative motion between the object and the camera Ẋ(t) is obtained with time delay τ .
As presented in [226], the mapping of optic flow in the image plane (motion of feature
points ξ in 2D image plane) to Ẋ can be described by

Ẋ(t− τ) = J−1
img(ξ, zc)ξ̇(t). (5.12)

where ξ ∈ R
2 denotes the object’s feature center in the image plane, zc < 0 is the depth

information of the object point in the camera frame, τ denotes the feedback delay, and
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Jimg is the so-called image Jacobian defined by

Jimg(ξ, zc) =
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]

. (5.13)

Here, α and λ are intrinsic parameters of the camera. The depth information zc can be
obtained either from multi cameras, knowledge of the geometric relationship or additional
external sensors. It should be mentioned, additional rotation matrix for the displacement
between camera frame and robot frame, and transformation matrix relating camera angular
velocity to the time derivative of the Euler angles (or other angles representations) are
omitted in (5.12) for simplicity.
After obtaining the current relative motion between the camera and the target, the

following control law is then applied

u(t) = −K(Ẋ(t− τ)− Ẋd(t)), (5.14)

where Ẋd(t) is the reference of the desired motion, K ∈ R
6 is a symmetric positive definite

proportional matrix chosen by the designer.
Notice a time delay τ due to data transmission and image processing exists in the

feedback loop. The system control performance and the system stability are related with
the feedback gain K and the feedback time delay τ .

Velocity Estimation based on Reichardt-model

There are different methods for calculating feature velocity (optical flow) from im-
age sequences, e.g. SSD algorithm [227], Lucas&Kanade method and Horn&Schunck
method [228] and so on. However, by introducing the optical flow calculation into the
loop, time delay (usually tens/hundreds of millisecond) due to camera exposure time, time
for image transferring and image processing, and time for data transmission (if a dis-
tributed system is selected) jointly limits the control gains and, thus, the performances.
When the control gain K increases in presence of latency in the feedback loop, the sys-
tem given by Fig. 5.26 will become unstable. In order to overcome this drawback, the
biologically inspired motion detector Reichardt-model is applied to stabilize the system.
An example of introducing the Reichardt-model into velocity control loop is shown in

Fig. 5.27. Different from conventional image processing algorithms, optical flow in the
system shown in Fig. 5.27 is estimated based on Reichardt-Model. The image sequence I
is captured by the camera. The Reichardt-model is then applied to each pixel to calculate
the response. Then a LUT is applied for velocity estimation. Since the focus here is on
the system stability, a static LUT is applied in the feedback loop to simplify the system
design. After obtaining the optical flow ξ̇ in the image plane, the relative motion of the
camera Ẋ is calculated by (5.12) with a latency of τ . Subsequently, the control signal for
the robot is determined according to (5.14).

5.3.2 Performance Evaluation

Simulation of velocity control

In this part, the standard velocity control approach in Fig. 5.26 and the Reichardt-based
velocity control approach in Fig. 5.27 are simulated. In the simulation, a 1-DOF linear-axis
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Figure 5.27: Block diagram of visual servoing with the Reichardt-model in the feedback loop.
Ra: response of elaborated EMD array; LUT: lookup table of velocity-response dependency.

determined from experiments

0.4 q̈ + 0.3 q̇ = τ,

is modeled as the manipulator. The target is set to have a moving velocity Ẋo = 0.1m/s.
Assume the desired relative motion Ẋd of the camera with respect to the object is zero,
Ẋd = 0.
The time delay module with τ = 20ms is added in the feedback loop, which simulates

the image processing and transmission delays. Two different feedback gain sets are tested,
namely, small feedback gains K = 1, 10, and large feedback gains K = 47.
The simulation results are shown in Fig. 5.28. Fig. 5.28(a)(b) show the velocity tra-

jectories of the end-effector when the feedback gains are small (K = 1, or 10) in both
approaches. The curves ’S 1’ and ’S 10’ are the velocity evolution trajectories of the stan-
dard approach when K = 1, 10, while ’R 1’ and ’R 10’ are the velocity trajectories of the
Reichardt-based approach. In this case, both systems settle down in steady state. How-
ever, when the feedback gain increases, e.g. K = 47, the system without Reichardt-model
becomes unstable, see curve ’S 47’ in Fig. 5.28(c), while the system with Reichardt-model
is still under control with certain oscillation remaining, see curve ’R 47’ in Fig. 5.28(c).
The simulation results show that when time delay is present and the overall feedback

gain increases, the velocity control loop with Reichardt-model remains stable due to the
intrinsic properties of the Reichardt-model, while the standard approach becomes unstable.
The reason is that, utilizing the Reichardt-model for the estimation of optical flow plays
an additional role: dynamical tuning of the feedback gain. In other words, the output of
Reichardt-model becomes small when the input signal has a large velocity. It has a similar
effect as decreasing the feedback gain which stabilizes the system.

Experiments

In this part, the velocity control models simulated above are tested by experiments con-
ducted on two 1-DOF linear-axis. The target is mounted on one linear-axis module, while
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Figure 5.28: Velocity trajectories of the camera in the robot frame with standard/Reichardt-
based approach. (a),(b): results of systems with small feedback gains K = 1, 10; (c):
results of systems with large feedback gain K = 47. Solid lines: results of standard
approach; dashed lines: results of the Reichardt-based approach.

.

the camera is mounted on the other one, see Fig. 5.29(a). Two sets of experiment are
designed, and the experimental setup and results are described in the following part.

Experimental Setup A linear motor module shown in Fig. 5.29(b) is selected as the
basic module. The system control is implemented using Simulink/Realtime workshop,
which runs on a PC (i686, AMD 64 Processor 3000+) with fixed sampling period of 1ms.
A high-speed CMOS imaging camera Mikrotron MC1319 is mounted on the forcer. It
provides high speed imaging with up to 500 full frames per second. The camera runs at a
frame rate of 30 fps and has a resolution of 640×480 pixels. The other intrinsic parameters
of the cameras are as follows: focal length λ = 17mm, scaling factor α = 88, 888 pixels/m,
see also Tab. 5.3. The captured image is transferred to a host PC (x86 64, AMD 64x2
dual core Processor 5200+) through Camera Link. The velocity of the target Ẋo is set to
be 0.1m/s and the desired relative motion is zero (Ẋd = 0).
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Figure 5.29: Experimental Setup on linear-axis modules. (a): structure of the motion-based
control system on two 1-DOF linear-axis modules; (b): experimental setup with high-speed
camera mounted on the linear-axis.

Table 5.3: Parameters of the camera and PCs.

Camera MC1319

frame rate 30 fps
resolution 640×480 pixels
focal length λ 17mm
scaling factor α 88,888 pixels/m

PC for imaging x86 64, AMD 64x2 dual core Processor 5200+
PC for control i686, AMD 64 Processor 3000+

Two sets of experiment are carried out. Firstly, the standard velocity control model and
the Reichardt-based model are tested with different feedback gains (with small constant
time delay in the feedback). Then, different length of time delay is added to the feedback
loop (with small constant feedback gain). The control performances of the two approaches
in these experiments are presented and compared.

Experiment Results I: Different Feedback Gains Similar to the simulation, the stan-
dard approach and the Reichardt-based approach are tested with different feedback gains.
In this experiment, the time delay in the feedback loop is set to be τ = 20ms. A small
feedback gain K = 2 and a relatively large feedback gain K = 7 are selected and tested in
the experiments.

The experimental results are presented in Fig. 5.30. The velocity evolutions of the
two approaches are shown in Fig. 5.30(a)(b), while the position evolutions are shown in
Fig. 5.30(c)(d). The red-line denotes the results of the standard approach, while the dashed
blue-line denotes the results of the Reichardt-based approach. When the feedback gain is
small (e.g. K= 2) both models are stable, see the curves ’S 2’ and ’R 2’ in Fig. 5.30(a)-(d).
However, the standard motion-based visual servoing system becomes unstable when the
feedback gain increases to K = 7, see the curves ’S 7’ in Fig. 5.30(a)(c). The velocity of
the end-effector becomes larger and larger instead of settling down. For the system with
the Reichardt-detector in its feedback, it is stable, as shown in Fig. 5.30(b)(d). Only small
oscillations are present.
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Figure 5.30: Velocity and position evolutions of the camera in standard/Reichardt-based ve-
locity control system with visual feedback, tested with different feedback gains K = 2, 7.
(a),(b): velocity evolutions; (c),(d): position evolutions. Solid lines: results of standard
approach; dashed lines: results of Reichardt-based approach. τ = 20ms.

It is concluded from the experimental results that, the Reichardt-model prevents the
system from getting unstable when the overall feedback gain increases and small time
delay is present in the feedback loop.

Experiment results II: Different Time Delays In this experiment, the feedback gain is
set to be constant (K = 2) and different length of artificial time delays is added into the
feedback loop: τ = 50ms, 160ms. The experimental results are shown in Fig. 5.31. Similar
results are observed. When time delay is small, e.g. τ = 50ms, both models are stable,
see curves ’S 50’ and ’R 50’ in Fig. 5.31(a)-(d). When the time delay in the feedback is
increased to 160ms, the velocity of the camera in the standard approach increases rapidly
and the system tends to become unstable, see curve ’S 160’ in Fig. 5.31(a)(c). In contrast,
the system is still stable when the Reichardt-model is applied in the closed loop, see curve
’R 160’ in Fig. 5.31(b)(d).

It is observed that remaining oscillations are present with the Reichardt-based closed
loop control in both experiments which e.g. could be limit cycles of the quantized and/or
nonlinear system. This effect is subject to further investigations.

In this section, the biologically inspired motion detector Reichardt-model is introduced
into visual servo control. As a consequence of the specific response-velocity dependence of
the Reichardt-model, the control system with the Reichardt-model in the feedback loop
is demonstrated to have increased stability margin and allow higher overall gains. A
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Figure 5.31: Velocity and position evolutions of the camera in standard/Reichardt-based
velocity control system with visual feedback, tested with different feedback delays
τ = 50ms, 160ms. (a)(b): velocity evolutions; (c)(d): position evolutions. Solid lines:
results of standard approach; dashed lines: results of Reichardt-based approach. K = 2.

Reichardt-based control scheme is compared with the conventional motion-based visual
servo approach. Both approaches are simulated and tested in real-time experiments on
1-DOF linear motor modules. The simulation and experimental results demonstrated that
the Reichardt-based approach can prevent the system from getting unstable when feedback
gain increases and large time delay is present.

5.4 Discussion

In order to overcome the low sampling rate problem of visual feedback, the insect’s vision
system, which is simple and yet, presents promising perception capability, innovates the
design of biologically inspired approaches for high-speed vision in robot control. The
well-known Reichardt-model has been widely accepted as the motion sensitive detector
in fly’s vision system. However, this model has been primarily utilized as a qualitative
motion detector rather than a quantitative motion detector due to its low accuracy in
motion estimation. Besides, fly’s vision system with Reichardt-model does not get unstable
even with high feedback gains because of its bell-shaped response-velocity relationship. It
inspires the design of stable visual servo control system by introducing the Reichardt-model
into the closed loop system.

In this chapter, a novel motion estimation approach has been proposed based on the
insect-inspired EMD. It focuses on the response of EMD to real-time image sequence in
an unconstructed environment. An elaborated model and several steps has been proposed
to optimize the EMD as a quantitative motion detector. A real-time response-velocity
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LUT is established based on the analysis of the power spectrum of the input image. The
proposed approach is evaluated both in simulation and experiments of closed loop control.
The results demonstrated that the velocity estimated by the proposed approach is accurate
and thus can be applied in real-time robot control. The proposed approach for velocity
estimation has the advantage of low computation cost, and shows a significant improvement
of the robustness in velocity estimation.
In order to stabilize a visual servo control system with high feedback gains and delays, a

novel Reichardt-model based approach has been proposed in this work. As a consequence
of the specific velocity dependence of the Reichardt-model, the control system with the
Reichardt-model in the feedback loop has been demonstrated to have increased stability
margin and allow higher overall gains, resulting in better performance. The proposed
approach and the conventional approach have been simulated and evaluated in real-time
experiments on 1-DOF linear motor modules. It is demonstrated that the proposed ap-
proach prevents the system from getting unstable when the feedback gain increases.
The benefits of the proposed approaches introduced in this chapter are summarized

below:

• The performance of motion estimation based on Reichardt-model is improved. It
facilitates the implementations of insect-inspired robotics.

• Increased stability margin is achieved with the involvement of the Reichardt-model
in the closed loop.

In this chapter, the biologically inspired motion detector has been combined with the
conventional visual servo control and applied for robot control for the first time. Key is-
sues of insect-inspired motion perception and closed loop control are covered. The results
provide a fundamental understanding of high-speed insect-inspired vision and contribute
to the further development of high-speed vision-based control in the robotics domain. In
system design, only the ascending part of the response-velocity curve is used in order to
eliminate the ambiguity in velocity estimation. How to enlarge the usage scope by dynam-
ically tuning the parameters of the filters online is still an open problem. Furthermore,
EMD-based velocity estimation for more than one dimension combined with receptive fields
is not addressed in this thesis, which is subject to future work.
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6.1 Concluding Remarks

Visual feedback provides the necessary perception information for robot control. There-
fore, it is expected to be reliable, fast and robust. In most vision-based control systems,
the control performance is often affected by the low-sampling-rate visual feedback due to
limited computation capacity and real-time constrains.

This thesis focuses on the methodical investigation of high-speed vision for vision-based
robot control. In order to increase the sampling rate of the visual feedback, two novel
approaches, the networked-based approach and the insect-inspired approach, are proposed
in this thesis. In the first approach, the existing networked computation resources are
considered in building a could computing platform for parallel image processing. In the
second approach, high-speed vision system is established based on an insect-inspired mo-
tion detector with a simple structure. The main contribution of this article are i) a could
computing platform based on a real-time image transmission protocol, ii) a robust image
processing algorithm, iii) a control law stabilizing the networked visual servo control sys-
tem with time-varying feedback delays, iv) a sending rate scheduling strategy aiming at
reducing the communication network load, and v) an insect-inspired visual servo control
system with the capability of accurate velocity estimation and increased stability margin.
The main approaches along with the major results are highlighted in the following.

For highly dynamic vision-based motion control, high-speed visual feedback is essen-
tial to the performance of the system. For accelerating visual feedback, the computation
resources connected over a communication network is less considered in known works. Dis-
tributing images to processing nodes over a communication network results in networked
visual servo control. Transmitting data over the network and distributed image process-
ing are known in literature. However, high-speed vision over the communication network
results in a large volume image data transmission. Distributed image processing for real-
time closed loop control is not covered in the literature. Moreover, the robustness of the
image processing algorithm is another important issue for high-performance control. The
feature matching algorithm, which is a critical step of image processing, is yet not optimal
in particular for the tracking problem with long distance object. In Chapter 3, a real-time
transport protocol ncRTP is developed for large volume image data transmission over a
communication network. Based on this protocol a cloud computing platform is established,
which consists of a streaming server, several processing nodes, and a controller. In this
context, images are distributed by the streaming server to the processing nodes available
over a communication network, and the processing results are sent to the controller gener-
ating configuration signals for manipulators. The newly developed platform facilities the
implementation of a networked vision system that is capable of providing high-sampling-
rate visual feedback for. Additionally, a novel feature matching algorithm is proposed
to improve the robustness of image processing. In order to increase the matching rate
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and to reduce the matching error, the sampling distribution in the scale space for feature
extraction is analyzed. The features are firstly extracted in the scale space with coarse
evenly-spaced sampling, and after that the average scale of the object is roughly deter-
mined online. Then, a binomial distributed sampling around the average scale is proposed
for the second step of feature detection. The determined average scale is also utilized in
feature matching. The results show an improved matching performance in particular for
the tracking of objects with long distance.
In spite of significant improvements in image processing capability, networked visual

servo control challenges system design. In contrast to conventional visual servoing, in the
networked visual servo control system the image transmission over the communication net-
work induces time-varying time delay in addition to computation time delay. The feedback
time delay leads typically to a control performance degradation, and may even cause un-
stable closed loop behavior. In addition, transmitting image data over the communication
network, which has constrained network resources, increases the probability of network
congestion and packet loss fatal to the control system. In Chapter 4, the networked visual
servo control system with aperiodic sampling intervals and time-varying transmission and
image processing time delays is reformulated into a continuous-time system with random
time-varying time delay by an input-delay approach. The occurrence probabilities of the
time-varying time delays are described by a set of indicator functions having independent
and identical distribution (i.i.d). The resulting system is a continuous-time system with a
controller switching the feedback gains depending on the time-varying feedback time delay.
Associated stability constrains and controller design are derived based on the probabilis-
tic distributions of the sampling intervals and delays. Since image transmission over the
communication network results in a high network load, and may even lead to a complete
communication blackout, the trade-off between the control performance and the network
usage is concerned. The focus here is to design a sending rate scheduling strategy which
preserves a guaranteed control performance and meanwhile efficiently utilizes the network
resources. Therefore, a stochastic cost function with respect to the probability distribu-
tions of sending intervals, which considers jointly the control performance and the network
cost, is proposed. By optimizing the cost function the probability distributions of differ-
ent sending intervals are determined, and then utilized in sending rate scheduling. For the
tracking problem studied in this thesis, the tracking error is additionally considered for the
adjustment of the sending rate. Benefits in terms of guaranteed control performance and
reduced network load are demonstrated in the experiments conducted on 7-DOF robotarm.
While Chapter 3 and 4 focus on the network-based approach, further investigation of

high-speed vision with the inspiration from neurobiology is also of great interest. In Chap-
ter 5, the well-known Reichardt-model, which is widely accepted as motion sensitive de-
tector in fly’s vision system, has been introduced into the feedback loop of visual servo
control system. Since the raw Reichardt model has a poor performance in quantitative
velocity estimation, an elaborated Reichardt model is proposed in this chapter by inves-
tigating its responses to single sinusoid, multi-sinusoids, and real-time image sequence.
The power spectrum of the input signal is extracted, and its influence on the response of
Reichardt model is analyzed. Based on this information, a novel LUT-based approach is
proposed for velocity estimation. In order to improve the performance, the fundamental
effects of the system parameters such as the field of view of the camera, the image res-
olution, and the filter constants, are analytically investigated through simulations. The
proposed approach has the benefits of simple structure and thus enables high-speed visual
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feedback. Furthermore, the intrinsic property of the Reichardt model, namely the bell-
shaped velocity-response relationship, is utilized to stabilize the closed loop system. The
experimental results shown that the proposed system has an increased stability margin
and allows higher feedback gains, thus, resulting in a better control performance.

In summary, the benefits of the networked visual servo control proposed in this thesis
are the enhancement of the computation capability, the efficiency and the flexibility of
system reconstruction, the improvement of image processing in terms of the robustness to
distance, the guaranteed control performance, and the efficient usage of network resources.
The insect-inspired visual servo approach has combined the biologically inspired method
with the conventional approach for the first time. It will facilitate the implementations of
insect-inspired robot control with simple structure and promising control performance. The
contributions of this thesis advance the state of the art in the development of vision-based
robot control and provide valuable insights for future research.

6.2 Outlook

High-speed vision becomes increasingly important for applications in robotics domain, in
particular for highly dynamic vision-based motion control. Benefiting from the advances in
communication and information technology, it is feasible to use the existing computational
resources connected over a communication network for cloud data processing. Due to its
reconfigurability and versatility, the networked high-speed vision system is considered as
an alternative to the traditional vision system. Furthermore, the advances in neurobiology
boost the development of insect-inspired vision systems, which outperform the conventional
vision systems in terms of simplicity and low computation cost. Although the fundamental
research on system design, control and cost has been investigated in this thesis, networked
visual servo control and insect-inspired closed loop control are still relatively young research
fields. There are a number of open questions and future directions emerging from this
thesis, some of which are:

• High-speed vision for multi visual sensor system – Compared with the one-sensor
system, multi-sensor system enables visual perception with a larger field of view and
better understanding of the dynamical surroundings. The investigation of multi-
sensor system has been focused in some works, which concern mainly data fusion
and processing algorithms. Running the multi-sensor system in an efficient and
high-speed manner has not yet been considered. In order to optimize the perception
performance, coordination and cooperative computation of the resources from the
multi-sensor over the network are important issues in networked high-speed vision
system.

• Nonlinear control design for networked visual servoing – The nonlinear property of
visual servo control system due to camera projection and manipulator dynamics has
been ignored to a large extent in most existing works. The nonlinear system is
often linearized at the equilibrium states, which leads to a limited working space.
An unified approach combining more general nonlinear control and communication
strategies is an important feature work in networked visual servo control.
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• Full degrees of freedom motion estimation for insect-inspired robotics – The insect-
inspired vision system presents novel merits in its simple structure and accordingly
low computation cost. In order to expand the application of insect-inspired vision,
high-speed full degrees of freedom motion estimation with high accuracy is a dispens-
able requirement for promoting deep understanding in both traditional engineering
and neurobiology approaches.

The future research on high-speed vision requires multi-discipline exploration incorporat-
ing communication, information, control and neurobiology. Integrating the various aspects
of these research fields cooperatively will lead to superior visual servo control with the ad-
vantages of flexibility, maneuverability, efficiency and capacity, and it will highly advance
the state-of-the-art with high impact on future robotic technologies and applications.
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A Dual Arm Manipulator

In this thesis a dual arm manipulator was applied in the experiments to demonstrated the
proposed networked visual servo control system and insect-inspired closed-loop system.
The forward kinematics and the hardware of the manipulator are introduced here.
The manipulator has two identical 7-DOF human-scaled arms, as shown in Fig. 4.12.

Each arm has two spherical joints with three DOFs at the shoulder and the wrist. At the
elbow, there is one rotational joint. The Devavit-Hartenberg parameters for the arm are
listed in Tab. A.1, and the assignment of frames is shown in Fig. A.1.
The position and orientation of the end-effector in the base frame is describe by a

homogeneous transformation matrix

7T0 =

[

R p
0 1

]

,

where p = [px py pz]
T represents the position vector and the matrix R ∈ R

3×3 denotes the
orientation matrix. The velocity of the end-effector is described by

[

ṗ
ω

]

= J(q)q̇,

where ṗ and ω denote the linear velocity and the angular velocity, respectively, and q is
the vector of joint displacement. The matrix J is called the geometrical matrix, which is
computed by

J = [J1 J2 . . . Jn],

Ji =

[

zi−1 × (on − on−1)
zi−1

]

,

where zi = [0 0 1]T denotes the rotation axis of the i-th link, and oi is the vector from the
origin of the based frame to the origin of the i-th frame.
The damped least squares (DLS) method known as the Levenberg-Marquardt [229] is

utilized to determine the inverse Jacobian. In oder to overcome the problems of singulari-
ties, discontinuity, and the excessive velocities, the cost function

g(q̇, ẋ) = ||ẋ− Jq̇||+ λ2||q̇2||

is defined, where λ is a constant and ẋ = [ṗ ω]T . In this cost function, the tracking error
in the Cartesian space is weighted against the norm of joint velocity though the damping
factor λ. The damped least squares solution is equal to

q̇ = JT (JJT + λ2I)−1ẋ = J∗ẋ,

The singular value decomposition (SVD) of the solution is

J∗ =
R
∑

i=1

σi

σ2
i + λ2

viui
T ,
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Figure A.1: Coordinate system of the 7-DOF robotarm (left) and photography of the physical
arm construction (right).

where ui and vi denote the i-th columns of the orthogonal U , and the diagonal V matri-
ces, respectively, and σ = di,i denotes the diagonal entries in the matrix D. The constant
velocity weighting factor λ guarantees bounded velocities and smooth transitions through
singular configurations, however, with the cost of end-effector errors even when the ma-
nipulator is far away from singular configurations.

A.1 Hardware Components

The arm reach is 0.86m, weight in total approximately 13.5 kg. The motors are Maxon
motor type RE40, gears Harmonic Drive, see Tab. A.1. The motor are controlled through
the I/O board Sensoray 626. The position of the joint is measured by an optic pulse
incremental encoder on the motor shaft, and then processed by a quadrature encoder on
the I/O board. The control loops are built with MATLAB/SIMULINK blocksets. The
standard alone real-time code for RT Linux is automatically generated from the SIMULINK
model.
For tracking system a high-speed camera was mounted on the end-effector, see also

Fig. A.1. It runs at high frame rate (≥ 400Hz) simulating event-triggered image captur-
ing. The camera EoSens MC1363 from Mikrotron shown in Fig. A.2 was adopted in the
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Table A.1: Hardware details of the 7-DOF robotarm [192]

Joint Link length Link twist Joint limits Gear Type Gear Reduction

i li [m] αi [rad] [rad]

1 0.266 −π/2 - HFUC-25-160 160

2 0 π/2 [0.886, 5.397] HFUC-25-160 160

3 0.312 −π/2 - HFUC-25-160 160

4 0 π/2 [-2.377, 2.377] HFUC-25-160 160

5 0.312 −π/2 - HFUC-17-100 100

6 0 π/2 [-0.174, 0.174] HFUC-17-100 100

7 0.244 0 - HFUC-17-100 100

Figure A.2: The MC1363 high-
speed camera.

Specification Description

Data width 8/10

Col-or/Mono Color

Max. frame rate @ 1280×1024 500 fps

Image pre-processing +

Interfaces Camera Link

Camera size 63×63×47mm

Table A.2: Key parameters of the camera.

experiments. The key parameters of the camera are listed in the Tab. A.2. More infor-
mation can be found in [230]. In order to determine the intrinsic parameters (e.g. focal
length, principal point, and distortion coefficients) of the camera, it is calibrated off-line
before carrying out the experiments.

A.2 Computed Torque Feedforward Control

In this thesis, the 7-DOF robotarm is linearized based on the computed torqued feedback
approach, which is widely used to compensate the nonlinear dynamics of the manipula-
tor. Thus, motion of each joint can be controlled individually using other linear control
strategies.

Consider a serial n−link robot dynamics modeled as a rigid body dynamics system

M(q)q̈ + C(q, q̇)q̇ + g(q) = Γ, (A.1)

where q, q̇, q̈ are joint displacements, velocities and accelerations of the robot, M(q) is
the inertial matrix of the robot, C(q, q̇) the centripetal and Coriolis matrix, and Γ the
inputs such as joint toques to the robot system. The input signal Γ is usually generated
from a controller which is designed to drive the robot to follow desired trajectories.
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Figure A.3: Computed torque feedforward approach. qd, q̇d, q̈d: desired joint angle, velocity
and acceleration.q, q̇, q̈: measured data. Kp, Kd: control parameters. u: control signal.

The intension of feedforward approach is eliminating the nonlinearity in the dynamics of
the robot as shown in Fig. A.3. In order to execute the tracking task a simple independent
joint PD controller is applied to the linearized system

u∗ = Kpe +Kdė, (A.2)

where e = qd − q, qd and q̇d are desired joint positions and velocities, u∗ is the vector of
control input, Kp and Kd denote n × n diagonal matrices of velocity and position gains.
Combining (A.1) and (A.2) yields the command for the robot

u = M(qd)q̈d + C(qd, q̇d)q̇d + g(qd) +Kpe+Kdė

= f(qd, q̇d, q̈d) +Kpe +Kdė,

where f(·) denotes the feedforward term, referred as a set of nominal torques allowing
linearized dynamics around the operating positions qd, q̇d and q̈d. For saving the com-
putation time, the feedforward term with only parameters of desired trajectories involved
can be calculated offline. If the dynamics of the robot is available and exact, each link
of the robot is decoupled and can be controlled individually. By chosen appropriate gain
matrices Kp, Kd the tracking error is converges to zero.
It has to be mentioned that the computed torque control approach requires exact dynam-

ical knowledges of robot manipulators, which is difficult to obtain in practical situations,
and may result in performance devaluation.
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As introduced in Chapter 4, the derived controller design algorithms are represented
in terms of LMIs. In order to solve the LMI problems, a numerical toolbox Yalmip

Toolbox [187] in Matlab is introduced in this section. In addition, a network emulator
is described which is involved in the experiments of networked high-speed visual servo
control. Some useful links related to LMI optimization and the network emulator NetEm
are given below:

• Yalmip Toolbox, http://users.isy.liu.se/johanl/yalmip,

• PENBMI, http://www.penopt.com.

• Netem, http://linux-net.osdl.org/index.php/Netem

B.1 Optimization Tool

Yalmip a toolbox for modeling and optimization in MATLAB. It was initially indented
for probably semidefinite programming (SDP) and linear matrix inequalities (LMI), and
now also supports linear programming (LP), quadratic programming, quadratic program-
ming (QP), semidefinite programs with bilinear matrix inequalities (BMI) and so on. In
the following, two numerical examples of using Yalmip and PENBMI for controller design
and cost function optimization are given.

Example 1 Consider a NVSC system with the dynamics described by

ẋ =

[

0 1
−1 −15

]

x(t) +

[

1.5
1

]

u(t). (B.1)

The i.i.d. transmission delay, computation delay and sampling intervals are bounded
by τxk ∈ [5, 10]ms, τ ck ∈ [10, 45]ms, and dk ∈ [5, 20]ms, respectively. The values of the
parameters used in the simulations are listed in Tab. B.1. The overall feedback delay

Table B.1: The parameters for simulation of NVSC system with switching control.

Boundaries of the delay intervals Occurrence probabilities Feedback gains

si pi Ki

s1 = 35ms p1 = 65% K1 = [−23.36,−16.31]

s2 = 50ms p2 = 25% K2 = [−12.28,−8.71]

s3 = 75ms p3 = 10% K3 = [−5.36,−3.82]
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is categorized by si, i = 1, 2, 3, into three intervals. The stabilizing feedback gains are
obtained by solving Theorem 1, with

X1 =

[

42.30 −9.09
−9.09 7.68

]

,

U1 = 103 ×









1.78 0.02 −0.92 −1.23
0.02 1.72 −1.04 −1.12
−0.92 −1.04 3.97 4.11
−1.23 −1.12 4.11 5.77









,

U2 = 103 ×









1.38 −0.26 −0.06 −0.41
−0.26 1.34 −0.23 −0.29
−0.06 −0.23 1.18 0.31
−0.41 −0.29 0.31 2.18









,

U3 = 103 ×









1.18 −0.36 0.13 −0.29
−0.36 1.08 −0.05 −0.07
0.13 −0.05 0.65 −0.48
−0.29 −0.07 −0.48 1.28









.

The obtained feedback gains for switching control are also listed in Tab. B.1. This switch-
ing control approach is compared with the worst-case design approach in the simulations
with the initial condition x(θ) = [−2 1.5]T , θ ∈ [−s3, 0]. The probability distributions
for different delay intervals are set to p1 = 0%, p2 = 0%, and p3 = 100%. The controller
chosen for the worst-case approach is

K = [−5.36,−3.82].

The simulation is performed 50 times with different sampling paths of delays. The sim-
ulation results are shown in Fig. B.1. It is observed that the switching control approach
converges to ||x(t)|| = 0.05 after t||x(t)||=0.05 = 0.77 s, 31.3% faster than the worst-case
design t||x(t)||=0.05 = 1.12 s.

Example 2 In Chapter 4, the cost-performance trade-off of NVSC system is investigated.
In the this example, the optimal network utilization in terms of occurrence probabilities
of sending intervals is given.
The NVSC system in (B.1) is also considered in this example. The boundaries of the

transmission delay, computation delay, and sending interval are the same as in Example 1.
Assume the sum of the transmission time and computation time delays is categorized into
two intervals by sc+x

i , i = 1, 2:

sc+x
1 = 25ms, pc+x

1 = 70%,

sc+x
2 = 45ms, pc+x

2 = 30%,

where pc+x
i , i = 1, 2, denotes the occurrence probability of the associated sampling interval.

Consider the image data is sampled and sent over the network with sampling interval dk,
which is further categorized into two intervals by sd1 = 10ms, and sd2 = 30ms. According
to (4.13), the overall time delay is categorized into three intervals

s1 = sc+x
1 + sd1 = 35ms, p1 = 0.7pd1,

s2 = sc+x
1 + sd2 = sc+x

2 + sd1 = 55ms, p2 = 0.7pd2 + 0.3pd1,

s3 = sc+x
2 + sd2 = 75ms, p3 = 0.3pd2.
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Figure B.1: The state trajectories ||x(t)|| of NVSC with switching controller (solid line) and
NVSC with worst-case design approach (dashed line).

According to Proposition 1, the design objective is to determine the optimal occurrence
probability distribution of different sending intervals pd1, p

d
2 such that he optimal network

utilization is achieved; meanwhile, the guaranteed control performance is ensured. The
network factors associated to different sending interval are C1 = 4×104, and C2 = 1×104,

chosen heuristically. Set the parameter R =

[

10 0
0 10

]

. Then, the optimization func-

tion fmincon and the Yalmip is applied to solve the optimization problem in Proposi-
tion 1. With the initial condition x(θ) = [−2 1.5]T , θ ∈ [−s3, 0], the optimal occurrence
probabilities are obtained

pd1 = 37.45%, pd2 = 62.55%,

for J = 1.63× 103. And the associated stabilizing control feedback gains are

K1 = [−17.29 − 24.94], K2 = [−4.95 − 7.12], K3 = [−2.10 − 3.01],

where

X1 =

[

0.60 0.01
0.01 0.18

]

,

U1 = 103 ×









0.92 −0.63 −0.97 0.54
−0.63 0.70 0.71 −0.58
−0.97 0.71 1.05 −0.59
0.54 −0.58 −0.59 0.50









,

U2 =









335.39 −158.72 −337.63 153.56
−158.74 207.36 178.41 −174.22
−337.63 178.41 352.30 −159.84
153.56 −174.22 −159.84 166.05









,

U3 =









429.30 −293.83 −432.07 287.07
−293.83 251.72 311.37 −222.51
−432.07 311.37 444.07 −294.64
287.07 −222.51 −294.64 211.86









,

115



B Design Tools

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

||
x̄
(t

)|
|

 

 

optimal sampling rate
low sampling rate
high sampling rate

Figure B.2: The trajectories of th NVSC with optimal sending rate (solid line), high sending
rate (dashed-dot line), and low sending rate (dashed line).

The NVSC system with the obtained controller and the sending rate scheduling strategy
with optimal occurrence probabilities are demonstrated in the simulations. For comparison,
two non-scheduling NVSC systems with high or low sending rate are simulated

high sampling rate: pd1 = 100%, pd2 = 0%;

low sampling rate: pd1 = 0%, pd2 = 100%.

The simulation results are shown in Fig. B.2. On one side, the trajectory of the NVSC
with optimal sending rate converges to ||x|| = 0.05 after t||x||=0.05 = 0.716 s, 23.7% faster
than the low sending rate approach, see Tab. B.2. On the other side, the networked usage
is effectively reduced, 31.2% less than the approach with high sending rate. The results
demonstrate the superior performance at less network load is achieved by the NVSC system
with optimal sending rate.

Table B.2: Control performance and network load.

t||x||=0.05 [s] Network load

optimal sampling rate 0.761 1.376× 103

high sampling rate 0.652 2× 103

low sampling rate 0.938 1× 103

B.2 Network Emulator

Network emulator is an important tool for the research disclosed to networks. Since the
network behavior is hard to be reproduced, it is desirable to use the network emulator
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Figure B.3: Linux QoS scheduler encapsulated in Simulink block (a) and netlink interface in
Simulink (b).

which emulates the network performance in a controlled environment. In the experiment
of performance evaluation with the switching controller in Chapter 4, the random trans-
mission delay caused by image data transmission over the network is simulated by a Linux
kernel based network emulator NetEm [231] in this thesis.
NetEm is one of the post popular network emulators, and is built using existing Quality

of Service (QoS) and differentiated Services facilities in the Linux kernel. It provides
emulation of the network features such as variable delay, jitter, loss and so on. NetEm
comprises of two parts namely the kernel module and the command line. The former is
in charges of queuing discipline (qdisc), while the latter is for parameter configuration.
The queuing discipline used by NetEm is First-In-First-out (FIFO) queuing between the
protocol output and the network device. The communication between the command line
and the Linux kernel is realized through the Netlink socket interface [232].
A SIMULINK wrapper shown in Fig. B.3 is implemented to access qdisc in Linux kernel

through Netlink based on s-function of SIMULINK. The parameters could be changed un-
der the real-time constraints. With the NetEm introduced above, the varying transmission
delay in a LAN can be emulated for the experiments.
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