
Andreas Kammel

Analysis of zonal �ow

bifurcations in 3D drift wave

turbulence simulations





TECHNISCHE UNIVERSITÄT MÜNCHEN

Max-Planck-Institut für Plasmaphysik

Analysis of zonal �ow

bifurcations in 3D drift wave

turbulence simulations

Andreas Kammel

Vollständiger Abdruck der von der Fakultät für Physik
der Technischen Universität München

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Rudolf Gross
Prüfer der Dissertation:

1. Priv.-Doz. Dr. Klaus Hallatschek
2. Univ.-Prof. Dr. Harald Friedrich

Die Dissertation wurde am 13.06.2012 bei der Technischen Universität München
eingereicht und durch die Fakultät für Physik am 12.09.2012 angenommen.





Abstract

The main issue of experimental magnetic fusion devices lies with their inherently high
turbulent transport, preventing long-term plasma con�nement. A deeper understanding
of the underlying transport processes is therefore desirable, especially in the high-gradient
tokamak edge which marks the location of the drift wave regime as well as the outer
boundary of the still badly understood high con�nement mode. One of the most promising
plasma features possibly connected to a complete bifurcation theory for the transition
to this H-mode is found in large-scale phenomena capable of regulating radial transport
through vortex shearing - i.e. zonal �ows, linearly stable large-scale poloidal ~E× ~B-modes
based on radial �ux surface averages of the potential gradient generated through turbulent
self-organization.
Despite their relevance, few detailed turbulence studies of drift wave-based zonal �ows
have been undertaken, and none of them have explicitly targeted bifurcations - or, within
a resistive sheared-slab environment, observed zonal �ows at all. In this work, both ana-
lytical means and the two-�uid code NLET are used to analyze a reduced set of Hasegawa-
Wakatani equations, describing a sheared collisional drift wave system without curvature.
The characteristics of the drift waves themselves, as well as those of the drift wave-based
zonal �ows and their retroaction on the drift wave turbulence are examined. The single di-
mensionless parameter ρ̂s proposed in previous analytical models is examined numerically
and shown to divide the drift wave scale into two transport regimes, the behavioral charac-
teristics of which agree perfectly with theoretical expectations. This transport transition
correlates with a transition from pure drift wave turbulence at low ρ̂s into the high-ρ̂s
zonal �ow regime. The associated threshold has been more clearly identi�ed by tracing it
back to a tipping of the ratio between a newly proposed frequency gradient length at the
resonances and the shear �ow gradient length, leading to Reynolds stress asymmetries.
In the zonal �ow regime, shear �ow-dependency of the radial group velocity results in a
quantitative expression of the repulsion of drift wave turbulence by zonal �ows moving
opposite to the electron diamagnetic drift direction (dubbed negative �ows) and attrac-
tion around the positive �ows. The transport bifurcation anticipated to ensue - expressed
through density corrugations and asymmetric �ows - is con�rmed numerically and sub-
sequently analyzed in great detail, marking the �rst �nding of such a bifurcation within
a self-consistent drift wave turbulence simulation. If these bifurcations were to be repro-
duced in an actual fusion device, improvements of con�nement due to increased negative
�ow repulsion as well as shear �ow stalling e�ects might be feasible.
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Chapter 1

Introduction

A main issue diminishing energy retention of tokamak and stellarator fusion devices is a
reduction of plasma con�nement due to strong levels of transport, exceeding both classical
and neoclassical estimates. This kind of transport is caused by microscopic turbulence,
redirecting the main focus of fusion research towards �nding ways of controlling the re-
sponsible instabilities. A major candidate for a suppression mechanism has been found
in zonal �ows, linearly stable poloidal ~E × ~B-modes which are capable of shearing the
turbulent eddies apart, thereby reducing radial transport.

The high-gradient edge of modern fusion devices serves as a source of energy for a number
of such unstable modes, including drift waves, poloidally propagating magnetized plasma
modes. In this region, the H-mode [1], a high-con�nement transport regime crucial to
the economical operation of any fusion reactor, has been discovered, leading to renewed
interest in drift wave-based zonal �ows.

1.1 Overview

For the �rst two decades after World War Two, fusion research had been conducted with
much optimism. The development of the tokamak - a torus-shaped device with a toroidal
magnetic �eld maintained by (superconducting) coils and a stabilizing, current-induced
poloidal �eld - in the 1950s led to a severe improvement in con�nement when compared to
earlier pinch models or simple magnetic mirrors [2]. By the 1960s, however, the naïve hope
of achieving e�cient, extremely small fusion devices had to be discarded after collision-
induced classical transport (and later, neoclassical transport, which includes the geometry
e�ects of banana-shaped particle orbits and drift-based P�rsch-Schlüter currents due to
the magnetic �eld curvature) was found to be insu�cient to account for the massive heat
losses that were experienced [3]. As has been thoroughly described in many review papers
[4, 5, 6, 7], turbulent transport caused by a number of instabilities - notably (collisional)
drift waves [8] and ion temperature gradient modes [9] -, and their complex interactions
had to be taken into account, rendering the previously applied bifurcation-free scaling laws
and global di�usion coe�cients inaccurate [10]. The discovery of large-scale phenomena
further complicated this picture [11]. A great step forward was achieved only in 1982 when
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2 Chapter 1: Introduction

a transport bifurcation leading to a high-con�nement regime with steep density gradients
at the edge, the so-called H-mode, was discovered unexpectedly [1]. Albeit still being
insu�ciently understood, the H-mode has by now become indispensable to the success of
modern fusion devices.

Due to the high complexity of the experienced plasma features, it was soon obvious that
the microscopic behavior of the plasma had to be understood [12, 13] in order to make
predictions for its large-scale behavior [14], including the H-mode. Thus, the interaction
of the turbulence with itself as well as the large-scale �ow phenomena within the plasma
had to be analyzed, especially in the high-gradient plasma edge [15, 16]. By constructing
an analytical three-wave model it was discovered that the anisotropy of turbulent mode
propagation velocities leads to an inverse energy cascade - as opposed to the more com-
mon Richardson cascade towards smaller scales [17] - growing towards increasingly larger
scales, forming zonal1 �ows [19, 20]. These are characterized by zero poloidal and toroidal
wavenumber [21] and uniform radial layers of oppositely directed bands, and are able to
shear the eddies apart [22, 23, 24], thus reducing turbulent transport [25]. The zonal �ow
picture is complicated by the in�uence of geodesic curvature, in which case a parallel return
�ow is required to cancel out any of the divergences occurring in the poloidal �ow [26].
These divergences develop due to the constant magnetic �ux enforcing �uid compression
when moving towards the high �eld side2. If the available �uctuation energy proves insuf-
�cient to overcome this resistance - and generally, this is the case [25] -, the absence of a
parallel return �ow results in an oscillatory motion: A geodesic acoustic mode is formed
[27].

The underlying collisional drift wave turbulence [28, 29, 30] from which zonal �ows may
develop in the cool plasma edge [31, 32] - ubiquitously so in actual fusion devices [33, 34]
- can be described by the Braginskii [35]-based two-�uid Hasegawa-Wakatani equations,
which were �rst analyzed numerically in the 1980s [36, 37]. This Braginskii system is
derived from a Boltzmann-based two-�uid analog to the magnetohydrodynamic moment
equations, leading to a set of six equations. Discarding magnetic geometry, Hasegawa and
Wakatani were able to show that the resulting drift waves interact nonlinearly with each
other, exciting zonal �ows through the divergence of Reynolds stresses [38]. A wave-kinetic
scattering process - also applicable to atmospheric Rossby waves [39] - was proposed as the
cause for zonal �ow growth excitation, at least when a separation of �ow and turbulence
scales in both space and time is assumed [40]. Since the 1990s, numerical simulations
utilizing both 3D �uid and 5D gyroorbit-averaged gyrokinetic [41, 42] approaches have been
able to con�rm these results [11], observing transport reduction under certain conditions of
structure formation [43] with �ow shearing or trapping e�ects [44]. Most recently, a re�ned
wave-kinetic approach was used to derive the zonal �ow steady state for collisional drift
waves [45, 46], with a con�rmation of the resulting energy �ux modulations provided by
two-�uid Braginskii studies [47, 48]. While the applicability of these results is hampered
by an absence of a strict separation of scales under realistic circumstances (zonal �ows, for
example, exhibit eddy-sized radial wavelengths while similarly spanning the entire torus)

1The word zonal in zonal �ows stems from their latitudinal counterparts in Earth's atmosphere [18].
2Under the (realistic) assumption that the magnetic pressure exceeds the thermal pressure.
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and the fact that the turbulence cannot always be considered weak [49], they allude to the
existence of a �nite [50, 51] zonal �ow onset corresponding to a certain minimum level of
drift wave turbulence growth [25].

Despite all this progress, the exact drift wave zonal �ow interaction mechanisms are a
subject of ongoing controversy. The predator-prey model [52], which features prominently
in the modern literature [11, 34], suggests a zonal �ow feedback on drift waves based on
the rationale that zonal �ows shear apart the turbulent eddies, with the drift waves being
modulationally unstable to perturbations in the shear �ow [53]. However, zonal �ows
have been shown (in [54] and again, in this work) to retain their strength in a drift wave-
poor environment as well, with drift waves actually being ampli�ed - not weakened - by
re�ections at resonant surfaces and radial zonal �ow maxima.

With as well as without the assumptions of extended predator-prey models, bifurcations
in the turbulence intensity between strongly and weakly collisionally damped zonal �ows
were discovered [55, 56, 57]. These were not the only ones: Transport bifurcations of
the temperature and �ow gradients following heat input [58] or large-scale condensates
[59] were found, while even zonal �ow excitation itself may be caused by drift wave mode
bifurcations [60]. Another bifurcation was provided by a radial heat �ux analysis [25],
yielding an increased heat �ux concentration at the zonal �ows in the electron diamagnetic
drift direction, rendering it plausible to expect a similar e�ect for the density �ux. Most
importantly, the transition between H-mode and L-mode still remains a largely unsolved
puzzle, even with �ow- [61, 62] and bifurcation-based ansätze [52], turning such symmetry
breakings and their necessary preliminaries into a focal point for this work - resulting
in the aim to conduct an analysis of possible bifurcations within a drift wave zonal �ow
framework.

1.2 Outline

As has been discussed in Section 1.1, �ow and transport bifurcations are a topic of
paramount interest to the fusion research community. Thus, the intent of this work
is to �nd �ow-induced bifurcations within a turbulent resistive drift wave zonal �ow
framework utilizing self-consistent �rst principles numerical computations and theoretical
considerations, to examine their characteristics and to analyze their possible rami�cations
for con�nement fusion as well as �elds beyond plasma physics.

The necessary theoretical basics are dealt with in Chapter 2. After a concise introduction
to plasma physics, the concept of gyration-based drift motions under the in�uence of a
magnetic �eld is discussed, with the main focus being put on the ~E× ~B-drift caused by an
electrostatic potential. These drifts mark the relevant perpendicular motions within the
two-�uid moment equations (which are analogs to the basic magnetohydrodynamic moment
equations), leading to the Braginskii equations, which are subsequently re�ned to describe
a drift wave system proper. Finally, the chapter is rounded o� by a short introduction into
the concept of turbulence - from Rayleigh-Taylor-style primary instabilities to a derivation
of the Richardson cascade occurring in full-blown 3D turbulence.
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In Chapter 3, the numerical methods employed in this work are examined, and the de-
cision in favor of the self-consistent nonlinear two-�uid code NLET [16] - as opposed to
gyro�uid or gyrokinetic codes - is elucidated. NLET is based on the dimensionless Bra-
ginskii equations, a subset of which - the Hasegawa-Wakatani equations - are utilized in
this work. Based on these equations, a set of customized time and length scales is de�ned,
and a threshold value of a single dimensionless parameter ρ̂s (de�ned in [63]) dividing the
system into two di�erent regimes is described. With these de�nitions, a detailed analysis of
the three equations governing the described drift wave system, the generalized Ohm's law,
the vorticity equation and the electron continuity equation is given, including a physical
interpretation for all sub-terms. Finally, the fundamental drift wave equation system is
derived, dependent only on the density n, the electrostatic potential φ and the parameter
ρ̂s.

A detailed introduction into the appearance and linear characteristics of drift waves,
poloidally drifting, �shbone-shaped modes occurring in the high density gradient edge
of magnetized con�nement plasmas, is provided in Chapter 4. The basic physical concept
- a small density perturbation leading to a delay in ion reaction (when compared to the
electron response) and thus to radial ~E × ~B-�ows, which propel the drift waves poloidally
for any given radial density gradient - is examined. After a derivation of the dispersion
relations, including the phase and group velocities of both adiabatic and nonadiabatic drift
waves as well as the drift wave growth rate γ, the e�ects of magnetic shear and resonant
surfaces are introduced, culminating in a discussion of drift wave stability under the speci�c
conditions of this work. A major task thereafter lies with the identi�cation and elimina-
tion of potential numerical instabilities and arti�cial pollutions. With these considerations,
the claim of ρ̂s being the single parameter determining the development of the drift wave
equation system can �nally be examined. Two associated regimes are analyzed, as well
as a potential third scale based on Alfvén waves. A mixing length estimate is utilized to
derive an analytical relation between these distinctly di�erent scales for low and high ρ̂s,
yielding convergence of the transport levels in both regimes in their respective units. The
in-between threshold value of ρ̂s is then compared to the onset of large-scale phenomena.
Several convergence issues are identi�ed and dealt with before these theoretical predictions
are confronted with the numerical results, reaching excellent agreement.

Chapter 5 deals with the poloidal zonal �ows emerging from the aforementioned drift wave
turbulence. After an introduction to the fundamental concepts of zonal �ows as well as their
transport-reducing capabilities conveyed through eddy-shearing, the interaction between
drift waves and shear �ows is discussed in detail. Turbulent self-interaction of drift waves
leads to Reynolds stresses, allowing the drift waves to impact the zonal �ow structure. A
drift wave action invariant is used to quantify the associated change in zonal �ow amplitude
in relation to the drift wave intensity, yielding a set of conditions necessary for drift wave-
induced zonal �ow growth. Conversely, drift-wave propagation patterns under the in�uence
of a speci�c shear �ow are derived, shedding light on an important asymmetry: While drift
waves close to �ows in the electron diamagnetic drift direction - dubbed positive �ows -
exhibit attraction towards (and, for low-energy modes, even trapping around) these �ow
maxima, negative �ows are found to repulse the turbulence, reducing turbulent transport
in their vicinity. With this improved understanding of the drift wave zonal �ow interaction,
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parameter studies focusing on ρ̂s are undertaken, and the zonal �ow regime transition -
found to correlate with the transport transition - is �nally realized as well as explained
theoretically via a balance between a resonance gradient and the �ow shear gradient.
Building on the previously established results, the main focus of Chapter 6 is put on the
analysis of bifurcations within the zonal �ow regime. The asymmetrical force exerted by
the �ows on the drift waves - and thus also their in�uence on the turbulent transport levels
- provide the pivotal clue, leading to a prediction of corrugations on top of the background
density gradient as the only way of maintaining the transport balance. Extensive numer-
ical computations are performed to verify the robustness and the characteristics of these
analytical considerations under a number of exterior in�uences, revealing another major
transport bifurcation byproduct, an asymmetry in the zonal �ow pattern. A comprehensive
parameter analysis ensues, concerned with the respective energy distributions, turbulence
spectra, self-similarities, bifurcation strengths, time scales necessary for achieving a steady
state and the correlations with drift wave intensity as well as other drift wave parameters.
This is supplemented by a subsequent comparison with the low-ρ̂s �ow-free regime and
an analysis of the �ner sub-structure of the corrugations. The observed zonal �ow depen-
dencies are then thoroughly discussed, and a detailed qualitative bifurcation mechanism as
well as a quantitative ansatz are proposed and tested against the observed feature set. One
apparent contradiction remains: Radial streaks, shown to consist of drift wave vortices,
are observed to propagate opposite to any given �ow gradient, thus apparently contradict-
ing the paradigm of turbulence repulsion by negative �ows. An extensive study of these
downhill streaks, starting with a combined analytical-numerical approach concerned with
the behavior of drift wave modes in k-space leads to a proposition of four ansätze capable
of explaining the apparent contradiction based on ampli�cation, acceleration, scattering
and transport e�ects, and a viability analysis for each one of them.
Chapter 7 deals with the implications of this work for magnetic con�nement devices, be-
ing especially concerned with the stalling e�ects and repulsion around the bifurcation-
steepened negative �ows. While experimental results are still scarce as of this date, one
of the most worthwhile mid-term endeavors is identi�ed: An attempt to �ne-tune the ex-
periment to reach the transitional value of ρ̂s in order to achieve maximal amplitudes of
�ow asymmetry. However, the rami�cations of such a bifurcation transcend interest in
the behavior of drift-wave based zonal �ows. Consequently, the ubiquitous zonal �ows
which in�uence the macroscopic behavior of many di�erent systems besides magnetic con-
�nement, ranging from fusion plasmas to atmospheric, submarine or even solar modes,
are discussed. Some systems are more easily observable than others, the most prominent
example being the characteristic brownish-white bands in Jupiter's atmosphere, fostered
by strong, rotation-induced Taylor-Proudman columns [64]. The similarities between the
interaction of geostrophic modes, Coriolis and pressure forces in an atmosphere and the
drift waves, magnetic �elds and density gradients in a plasma are highlighted, permitting
speculations about the transferability of the results of this work to gas giants. The po-
tential implications for the Jovian planets - as well as many other astrophysical systems
- are examined, up to long-term predictions for two vastly di�erent planet-wide climate
scenarios. Finally, the possibility of such a climate bifurcation on Earth itself is discussed.





Chapter 2

Theoretical background

This chapter serves as a short reminder of the main concepts in plasma physics, as well as
being an introduction to drift motions and, �nally, the Braginskii equations on which the
Hasegawa-Wakatani equations which are utilized in this work are based.

Essential plasma concepts such as the quasi-neutrality condition and its implications, the
de�nition of an ideal plasma and the fundamental properties of major fusion devices are
introduced in Section 2.1.

Drift motions caused by charged particles gyrating under the in�uence of a magnetic �eld
while experiencing a force ~F are discussed in Section 2.2. Special focus is hereby put on
the ~E × ~B-drift, which plays a crucial role in understanding the density-gradient-driven
drift waves that will be discussed in Chapter 4.

Section 2.3 concerns itself with the Braginskii equations, a set of two-�uid equations govern-
ing the motions of the ions and electrons. Their derivation from the Boltzmann equations
via the continuity and force equations for both particle species is presented.

Finally, an overview over nonlinear instabilities and turbulence is provided in Section 2.4.
Starting with primary and secondary instabilities, basic insight into the development of
turbulence is gained, followed by a discussion of the cascades occurring in fully developed
turbulence, including Kolmogorov's 5/3-law.

2.1 A beginner's guide to plasma physics

A plasma is composed of nothing but ionized gas, thus representing the most common
aggregate state in nature, accounting for other 99% of the total visible matter. Its char-
acteristics are de�ned by strong Coulomb interactions between the positive and negative
charges - dwar�ng the r−7-dependent Van-der-Waals forces between neutral atoms in com-
parison. Also, since both positively and negatively charged species move freely parallel
to ~B, plasmas exhibit high electrical conductivity, making them strongly in�uenceable by
electromagnetic �elds.

Unsurprisingly, the most basic equations of plasma physics are the same as in electrody-
namics, the Maxwell equations [65]:

7



8 Chapter 2: Theoretical background

∇ · ~D = 0 (2.1)

∇× ~E = − ~̇B (2.2)

∇ · ~B = 0 (2.3)

∇× ~H = ~j (2.4)

where the displacement current has been omitted for non-relativistic plasmas where ~̇D � ~j.
ρ can be discarded as well, rendering the electric �eld retrievable via Ohm's Law

~j = σel

(
~E + ~v × ~B

)
(2.5)

This omission of ρ is valid due to the macroscopic quasi-neutrality [66] of a plasma,

ne − Zini
ne

� 1 (2.6)

Even slight deviations from this state already yield strong electric �elds and thus currents
aimed at repositioning the charged particles. Due to this quasi-neutrality, electric �elds
within the plasma are e�ectively cut o�, decaying exponentially: Solving the Poisson
equation for a test charge in a plasma, ∆Φ = − ρ

ε0
= − qδ(r)

ε0
+ ene−niε0

, and assuming a

Boltzmann distribution ne − ni = ne,0

(
e
eΦ
kT − e−

eΦ
kT

)
≈ 2ne,0

eΦ
kT yields the potential

Φ(r) = − e

4πε0r
e
−
√

2r
λD (2.7)

where λD marks the Debye length

λD =

√
ε0kT

ne,0e2
(2.8)

Fusion plasmas tend to have particle densities of close to ne ∼ 1020 m−3 and temperatures
of approx. T ∼ 20 keV, thus yielding λD ∼ 100 µm, guaranteeing a good approximation
to quasi-neutrality for larger length scales.
Quasi-neutrality can be understood more thoroughly by comparing magnetic and electric
�eld energies in an ideal conductor (σ →∞),

ε0E
2

B2/µ0
= ε0µ0v

2 =
v2

c2
(2.9)

with |~v| from (2.5).
In this case, magnetic �eld energy dominates, electrical components in the Maxwell stress
tensor are removed and electric �elds are quickly neutralized via the movement of electric
charges, ensuring quasi-neutrality - magnetic �elds, on the other hand, can be easily
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maintained through currents in the plasma.

Quasi-neutrality fails above the electron plasma frequency, the so-called cut-o� frequency
up to which the faster electrons are quick enough to almost instantaneously shield dynamic
deviations from quasi-neutrality, e�ectively preventing all electromagnetic waves from pen-
etrating the plasma. The plasma frequency is the eigenfrequency of a harmonic oscillator
with med

2x/dt2 = −e2nex/ε0, Langmuir waves which are caused by a displacement of
the electrons against a stationary positive background, yielding close to 1012 Hz in typical
fusion plasmas:

ωpe =

√
nee2

meε0
(2.10)

The ion plasma frequency frequency ωpi is smaller by a factor of
√
mi/me and therefore

irrelevant for plasma shielding.

In fusion plasmas, the number of particles ND within a Debye sphere ful�lls ND � 1,
rendering them quasi-neutral. However, fusion plasmas are not only quasi-neutral (and
predominately unrelativistic since me = 511 keV is one or two orders of magnitude larger
than typical fusion temperatures), but also ideal, meaning that the Coulomb interactions
are weak in comparison to the particles' thermal velocities (with n−1/3 marking the mean
particle distance):

3kT

2
>

e2

4πε0
n1/3 (2.11)

This condition is ful�lled in all modern fusion devices.

In a tokamak, the most common fusion device, toroidally shaped with major radius R and
minor radius r, such an ideal plasma is - more or less e�ectively - trapped within a magnetic
cage. From a macroscopic perspective, the electrons and ions in such a magnetically
con�ned plasma follow the magnetic �eld lines as long as they are left undisturbed by
collisions.

As will be seen in the next section, a simple toroidal magnetic �eld (winding around
the major radius) caused by magnetic �eld coils (winding around the minor radius) is
insu�cient. In order to ensure stability, a toroidal current has to be induced to build
up an additional poloidal �eld - creating the need for pulsed operation, since a central
solenoid with limited maximal induction current jmax is utilized.

There is an alternative concept, the stellarator, superior in that it creates an intrinsic
poloidal �eld by intricately woven coils without the need for externally induced currents.
However, it is more complex both in construction and operation and allows for less usable
volume with respect to the same major radius as a tokamak device.
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2.2 Drift mechanisms

Before any further explanations can be reached, the way particles move in a plasma needs
to be examined. The parallel (with respect to the magnetic �eld lines) component of the
electrons' and ions' movement is unrestricted except for magnetic mirror forces, but in
the perpendicular plane, the particles are forced to gyrate in a circular motion around the
magnetic �eld lines, leading to screw-like orbits [66].

Equating centrifugal force and Lorentz force provides the gyroradius, in scalar notation

|q|vB =
mv2

r
⇒ rg =

mv

|q|B
(2.12)

which turns out to be approximately 10 − 50 µm for electrons and a few mm for ions in
a typical fusion device. Later in this work, a speci�c gyroradius for electron temperature
and ion mass will be dubbed ρs.

On this orbit, the particles gyrate (with the direction of rotation depending on the sign
of their charge) with the gyrofrequency, which is also known as the cyclotron or Larmor
frequency

ωg =
|q|B
m

(2.13)

due to (2.12) yielding v = |q|Br
m .

The concept of gyration is crucial for understanding drift motion from the particles' per-
spective.

2.2.1 General drift velocity

The force law

~F = q
(
~E + ~v × ~B

)
(2.14)

is valid for arbitrary particles with charge q and velocity ~v, featuring prominently in Ohm's

law ~j = σ ~Ecomoving = σ
(
~E + ~v × ~B

)
, being Lorentz-transformed for ~v � c.

For materials with very high conductivity, even the smallest electric �elds are shorted out
almost immediately, leading to

~E + ~v × ~B = 0 (2.15)

in this limit. From a comoving perspective, electric �elds with σ →∞ may thus only exist
in the context of a drift motion, where the plasma evades a force ~F ⊥ ~B by drifting away,
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yielding ~Ftotal = 0. The simplest drift is found by expanding (2.15) with × ~B, using the
identity (~v× ~B)× ~B = (~v · ~B) ~B−B2~v = −B2~v⊥. This yields the ion and electron velocity
orthogonal to the magnetic �eld, called the ~E × ~B drift velocity

~vExB =
~E × ~B

B2
(2.16)

The ~E × ~B drift velocity marks the most important of the particles' velocities apart from
the inherent screw-like orbits - which are replaced in many treatments with gyro-orbit-
averaged guiding centers - as well as marking the most basic and most important drift
velocity. Basically, ~E × ~B-induced motion plays an important role whenever electric �elds
are present in a plasma. Other than most drift motions, the ~E× ~B drift does not distinguish
between electrons and ions - neither mass nor charge enter the equation.

No acceleration occurs, explaining the drift expression in accordance with e.g. the electron
drift in a conductor.

The electrostatic force ~F = q ~E may be the most basic example of a force causing drift
motion, but of course it is not the only one: Any force term ~F which stands perpendicular
to the magnetic �eld in the Lorentz force term can drive drifts. Accordingly, the drift
velocity for an arbitrary force ~F with ~F ⊥ ~B is

~vdrift =
~F × ~B

qB2
(2.17)

2.2.2 Drift motions

The most important drifts [67, 66], especially with respect to this work, are:

~E × ~B drift: Caused by electric �elds with ~F = q ~E, thus yielding

~vExB =
~E × ~B

B2
(2.18)

The ~E× ~B drift can be understood in the particle picture by observing what happens when
an electron or ion moves on the gyroradius' half-circle which corresponds to an accelerating
electric �eld. Here, the velocity v and thus the gyroradius (2.12) increases while it decreases
on the half-circle opposing ~E, leading to a net movement orthogonal to ~E as well as ~B.

As mentioned, the ~E × ~B drift is indi�erent to the mass and charge of a particle, leading
to the same global motion for all particles.

Diamagnetic drift: Caused by pressure gradients of the form ~F = −∇p/n, thus, accord-
ing to (2.17), leading to
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~vdia = −∇p×
~B

qnB2
(2.19)

Despite a current developing, the diamagnetic drift is merely a virtual drift, as no actual
particle movement takes place. In the direction of the pressure gradient, the number of
gyrating particles increases. Therefore, at any point in space, more half-circles of the

prevailing up-gradient particles ⊥
(
∇p, ~B

)
are present than half-circles of down-gradient

particles ⊥
(
−∇p, ~B

)
, leading to an apparent drift motion perpendicular to ∇p as well as

~B.
The magnetic �eld the current produces weakens the original magnetic �eld, making the
plasma behave diamagnetic (as do the particles within, due to the circular gyrocurrent
acting to weaken ~B). From (2.19) follows ~j× ~B = ∇p⊥, the time-independent equilibrium
condition for �ux surfaces - thus diamagnetic currents are able to compensate a pressure
gradient perpendicular to the magnetic �eld.

∇B and curvature drifts: Caused by a gradient in the magnetic �eld with ~F = −µ∇B
where B = | ~B| and the magnetic moment µ = IA = q

ωg
2ππr

2
g = q qB2m

(
mv⊥
qB

)2
=

mv2
⊥

2B , thus

the ∇B drift comes out as

~v∇B = −
Ekin,⊥

(
∇B × ~B

)
qB3

(2.20)

Due to the curvature of the magnetic �eld lines, a second magnetic �eld gradient term
exists for the parallel velocity, resulting in the so-called curvature drift

~vcurv = −
2Ekin,‖

(
∇B × ~B

)
qB3

(2.21)

valid for ~j = 0. Otherwise, ∇B needs to be replaced by a κ-based curvature term.
In an actual toroidal tokamak fusion device, these drifts pose a problem. Due to the
q-dependency and the resulting charge separation (ions moving upwards in a counter-
clockwise system) as well as the associated drift velocities exceeding 1 km/s, strong ~E× ~B
currents are actuated, moving the plasma radially outwards in a pure toroidal magnetic
�eld created by poloidal coils. An additional toroidal current is required to add a poloidal
component to ~B: Subsequently, the magnetic �eld lines wind around the toroidal axis
- thereby spanning the �ux surfaces - so that the upwards movement of the ions causes
inward1 movement in one half of the torus and outward movement in the other. These
parts cancel each other, averaging out the drift e�ects.

1Inward and outward are always to be understood with respect to the minor radius.
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Polarization drift: Caused by an electric �eld inhomogeneous in time, with

~vpol =
m~̇E

qB2
(2.22)

The polarization drift is perpendicular to a force which stems from a ~̇E-caused acceleration
of the ~E × ~B-drift - thus an acceleration parallel to this drift. Imagining a constantly
increasing electric �eld, the gyroradii cease to be closed, leading to an additional drift
component in the direction of the electric �eld gradient. This is di�erent from the ~E × ~B
drift where the only possible net drift is intrinsically orthogonal to ~E.

The polarization drift, since it is charge-speci�c, such as the diamagnetic drift and the
∇B and curvature drifts, leads to charge separation, causing ~E × ~B drift. The current
it brings about depends only on the (e�ective) mass. Its designation is derived from two
facts: Firstly, the analogy to the polarization current in the Maxwell equations, another

current density proportional to ~̇E. Secondly, the di�erence between ~vpol,i and ~vpol,e due to
the di�erent particle masses causes actual polarization.

2.3 The Braginskii equations

At this point, it is essential to introduce the equations describing the plasma dynamics
within the drift wave system which is to be examined. A more complete alternative to the
classic equations of magnetohydrodynamics, also stemming from the Boltzmann equation,
is employed: The two-�uid equations. These render a good approximation of physical
reality if the change of the magnetic and electric �elds over one gyroperiod is small, re-
quiring ωgB � ∂tB and B � rg|∇B|. Then, averaging over the gyrating motion becomes
possible, yielding the motion of the gyrocenter. Under these circumstances, the Braginskii
equations

dtn+ n∇ · ~v = 0 (2.23)

mndt~v = −∇p−∇ · P + qn
(
~E + ~v × ~B

)
+ ~R (2.24)

hold true when a quasi-Maxwellian distribution is presumed to achieve hierarchy closure of
the moments. These �rst two [68] Braginskii equations [35] resemble closely the ordinary
magnetohydrodynamic equations derived from fundamental moments of the Boltzmann
transport equation (where a marks the particle species, and fa(t, ~x,~v) marks the particle
density in the 6D phase space volume element d~xd~v)

∂fa
∂t

+
∂

∂~x
(~vfa) +

∂

∂~v

(
~Fa
ma

fa

)
=
∂f

∂t

∣∣∣∣
collisions

(2.25)
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but are valid for both particle species separately, ions and electrons alike. The temperature
equations have been omitted since the equation system analyzed in this work deals with
cold ions (the limit where Ti � Te, but not necessarily Ti = 0) and isothermal conditions
(thus, no electron temperature �uctuations are present). Apart from the �eld parameters
~E and ~B, all variables are species-dependent. q, p, P and ~R mark the charges, pressures,
stresses and friction forces the ions and electrons experience, while dt = ∂t + ~v · ∇ is the
convective time derivative.
Both equations are easily understood. (2.23) is the well-known continuity equation, while
(2.24) lists the various forces which are capable of accelerating the ions and electrons:
Pressure gradients, stress tensors, Lorentz forces and resistivities.
However, both equations include extremely disparate time scales. In order to be able to
simulate several hundred eddy turnover times and reach a turbulent steady state (after
approximately t = 10−4 − 10−3 s), the fast cyclotron time scales have to be discarded,
requiring a drift-reduced version of the Braginskii equations [16].

2.3.1 Derivation

The entire two-�uid plasma dynamics can be attained by processing the Braginskii equa-
tions. While a full derivation is given in [68], a synopsis with focus on the three equations
necessary for this work - Ohm's Law, the vorticity equation and the continuity equation -
shall be presented here.

For an ideal gas, p = nT , the only term remaining in ∇ · P is a correction due to a �nite
gyroradius e�ect, yielding

∇ · P = mn~vdia · ∇~v (2.26)

where ~vdia marks the diamagnetic drift [69] ~vdia = ∇p× ~B
qnB2 derived above. Introducing a

subscript s with s = i for ions and s = e for electrons, the friction forces are determined
by the parallel current as

~Rs =
−qsnej‖ ~̂B

σ
(2.27)

Taking (2.24) × ~B turns the force equation into one containing the di�erent drift velocities

~v =
~E × ~B

B2
+
∇p× ~B

qnB2
+
mdt~v

qB2
+ . . . (2.28)

= ~vExB + ~vdia + ~vpol + . . . (2.29)

where the . . . denote further higher-order terms.
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Solving (2.28) for ~vpol,i iteratively (again using × ~B) in lowest order yields

~vpol,i = (∂t + ~vE · ∇)
mi

qiB3

(
~E⊥ −

∇⊥pi
qini

)
(2.30)

Due to the di�erence in mass, the polarization drift of the electrons is negligible in com-
parison with the ions'. Thus, inclusion of the parallel velocity components which are
accelerated or decelerated by the parallel resistivity yields

~vi = ~vExB,i + ~vdia,i + ~vpol,i + ~v‖ ~B,i (2.31)

~ve = ~vExB,e + ~vdia,e + ~v‖ ~B,e (2.32)

In a quasi-neutral plasma, the di�erence between the two continuity equations for electrons
and ions, (2.23), turns out to be

∇ · n~vpol,i +∇ · qin
~v‖ ~B,i − ~v‖ ~B,e

σ‖qe
+∇ · n (~vdia,i − ~vdia,e) = 0 (2.33)

In the term for the diamagnetic drift velocity, only a sign change occurs. The polariza-

tion drift for the electrons is negligible. Finally, qin
(
~v‖ ~B,i − ~v‖ ~B,e

)
can be replaced with ~j‖.

The component of (2.24) parallel to the magnetic �eld provides an equation for ~j‖ (ne-
glecting a small initial term in the electron part), the core of Ohm's law [68]

j‖

σ‖
= −∇‖

(
φ− pe

qin

)
(2.34)

Due to the parallel nature of the equation, it is no longer necessary to write it out in
vectorial form.
For small magnetic �eld �uctuations, ~E⊥ = −∇⊥φ holds true and (2.33) becomes the
vorticity equation

∇ · n (∂t + ~vE · ∇) qiB
3

(
∇⊥φ+

∇⊥pi
qini

)
−∇ · qin

~j‖

σ‖qe
−∇ ~B × ∇ (pi + pe)

qiB2
= 0 (2.35)

Here, ~vpol,i has been replaced via (2.30) and the proper diamagnetic drift velocity has been
inserted.
Now, the electron continuity equation is found by simply inserting the di�erent velocity
components into (2.24)

∂tn+ ~vExB · ∇n+ n∇ ·
(
~vExB + ~vdia,e + ~v‖ ~B

)
−
∇ ·~j‖
σ‖

= 0 (2.36)
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2.4 A short theory of turbulence

As fusion plasmas are usually highly nonlinear, some basics in turbulence theory are re-
quired to understand the following parts of this work.
Turbulence always starts with an initial distortion within a given distribution, e.g. that of
the density. It is thus imperative to determine whether this distortion leads to a growing
instability or to a (damped) oscillation around the homogeneous initial state.

2.4.1 Primary and secondary instabilities

The Rayleigh-Taylor instability is one of the most common examples of a primary density
instability, infamous for its often-associated formation of a vortex ring in the atmosphere:
A mushroom cloud. Rayleigh-Taylor instability occurs at the boundary layer between a
denser �uid (or gas) above and a lighter �uid below [70]. In a system which - in the simplest
case - is governed by

∂tρ = −~v · ∇ρ (2.37)

ρdt~v = −∇p+ ρ~g (2.38)

In a plasma, density could be replaced by the pressure, while the curvature has an e�ect
similar to gravity.
Linearization around the steady state followed by Fourier transformation yields

λρ1 + ~v1 · ∇ρ0 = 0 (2.39)

λρ0~v1 = −i~kp1 + ρ1~g (2.40)

where a subset 1 marks �uctuations on top of the background values which are labeled
with the subset 0.
For horizontal ~k ⊥ ~g with |k| = const., the nontrivial pressure term vanishes. Solving the
equation system yields for the eigenvalue λ:

λ =

√
−~g · ∇ρ0

ρ0
(2.41)

If the density gradient and the external force - e.g. gravity or curvature - are aligned
antiparallelly with respect to each other, λ is non-imaginary and (instable) growth ensues.
In a tokamak, where curvature and density gradient show this behavior on the outer low
�eld side of the device, an ideal ballooning mode results, growing according to

λ ≈

√
2κ · ∇p

ρ
=

√
2 |∇p|
ρR

(2.42)
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Once the amplitude of the perturbation becomes su�ciently large, secondary instabilities
follow. The resulting structures are far too intricate to be analyzed analytically and usually
have to be tackled numerically.

The most famous example is the Kelvin-Helmholtz instability describing the formation of
turbulent vortices from sinusoidal distortions (basically a secondary distortion orthogonal
to the primary one) occurring at boundary layers with high relative di�erences in velocity -
such as with the counter-rotating cloud bands in Jupiter's atmosphere, wind blowing over
the surface of an ocean, or, more generally, the boundary layer of any (Rayleigh-Taylor)
instability between two �uids. Including surface tension, a certain threshold velocity dif-
ference has to be surpassed for the onset of turbulence to be reached.

At the same time, these secondary instabilities - ultimately synonymous to the homoge-
neous chaos of full-blown turbulence as seen in Figure 2.1 - serve to restrict further growth
of the primary instability.

2.4.2 Turbulence cascades

For high enough velocities, laminar �ows turn turbulent. This regime is marked by high
Reynolds numbers, where Re is de�ned as the ratio between the inertial and viscous forces
(for the largest vortices), or

Re =
ρvL

µ
(2.43)

with ρ, v, L and µ marking the density, mean velocity, characteristic length and viscosity
respectively2. The denser, faster and less viscous a �uid is, the more turbulent it becomes.

The simplest case to analyze is that of homogeneous isotropic turbulence. Observation
leads to the insight that turbulent vortices tend to successively tear each other apart
into eddies of roughly half their original size, until viscosity dissipates their energy at the
smallest scales. Or, as L. Richardson [17] put it:

Big whorls have little whorls that feed on their velocity.

And little whorls have lesser whorls and so on to viscosity.

This is known as the concept of turbulence cascades. Within the entire initial range,
following the stirring of large vortices, e.g. by instabilities, at low wavenumbers k, and
right up to the non-ideality-caused dissipation range at high k where Re ≈ 1, the energy
spectrum of the three-dimensional turbulent eddies ful�lls an astonishingly simple relation,
Kolmogorov's 5/3-law [71]

E(k) ∝ k−5/3 (2.44)

2Generally, the only viable parameters to be determined are mean values.
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Figure 2.1: A typical density corrugation pattern of full-blown (ballooning) turbulence,
drawing its energy from a density gradient (directed to the left), is plotted in the radial-
poloidal x-y-plane for numerical parameters nx,y = 1024 and Lx,y = 25 (de�ned in Chapter
3). Bright colors mark downhill-moving eddies of increased density, while uphill-moving
negative density blobs appear darkened. As will be the case with many more graphs,
the results are plotted with respect to the numerical grid span width Lc as it is de�ned
in Subsection 3.1.1. Unless stated otherwise, only qualitative di�erences in the plotted
variables - e.g., heightened or lowered density - will be relevant.
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so that

Re(k) ∝ v(k)

k
∝
√
kE(k)

k
∝ k−4/3 (2.45)

where the dissipation range coincides well with Re(kdissipation) ≈ 1.

The basic idea behind Kolmogorov's 5/3-law is that the energy �ux remains constant over
all k up to dissipation, since the energy does not accumulate on any level [72]. Thus,

const. = P (k) (2.46)

As a rough estimate, it is assumed that vortices of L ≈ 1/k need approximately one
revolution to hand on their energy to those with L/2, thus

τ(k) ≈ L

v(k)
∝ 1

kv(k)
(2.47)

where the energy in these vortices between L and L/2 correlates to a spherical shell spanned
between k and 2k in k-space:

E(k...2k) ≈
2k∫
k

E(k)dk ∝ kE(k) (2.48)

With

v(k) ≈

√
2
E(k...2k)

ρ
∝
√
kE(k) (2.49)

the energy �ux can �nally be determined to be

const. = P (k) ∝ E(k...2k)

τ(k)
∝ kE(k)

1
kv(k)

∝ k5/2E(k)3/2 (2.50)

yielding Kolmogorov's famous 5/3-law.

This holds true even for two-dimensional turbulence, however only for small k, and with the
caveat that the energy cascade is now an inverse cascade, leading to ever larger vortices
[70]. For smaller scales, a direct cascade of the equally conserved enstrophy S = ω2/2
ensues, where ω marks the vorticity. Only through separation of the energy and enstrophy
cascades can both a constant energy �ux and a constant enstrophy �ux be upheld.





Chapter 3

Numerical analysis

Numerical computations have become an indispensable tool in theoretical fusion plasma
research, due to the nonlinearities and the multitude of disparate scales involved. In this
work, more than 1,000 runs have been performed, using 8-256 processors for approximately
1-100 hours each. In total, around �ve million CPU hours have been spent1.

Despite these impressive numbers, common sense dictates that today's supercomputers are
not yet powerful enough to describe the entire plasma for any signi�cant time span, thus
the equation system is solved only in a small section of the system. Periodic boundary
conditions are implemented, allowing the results to be somewhat generalized to the entire
device - albeit with some limitations, including the arti�cial omission of waves with
wavelengths larger than the size of the boundary box and the inability to qualitatively
describe di�erent regions of the plasma in the same simulation.

Four numerical approaches are commonly employed: Magnetohydrodynamic, two-�uid,
gyro�uid and gyrokinetic ansätze [73]. These systems depict increasingly more behavioral
characteristics of the plasma down the line, but they also require more computational
resources, as the latter two have to include the information stored in the helical particle
trajectories. Two-�uid codes yield more particle-species-dependent e�ects than pure MHD
�uid codes, while at the same time enabling large-scale long-time calculations exceeding
the capabilities of gyro�uid or gyrokinetic codes. Under the conditions of this work, the
loss of features - when the two-�uid approach is compared to gyrokinetic codes - is not
substantial, as much of the additional physics does not apply in a sheared-slab drift wave-
only system (see [48]), and since the few notable exceptions of collisionless e�ects such as
Landau damping2 and particle trapping are negligible in a collisional3 approach such as
the one applied here [16].

Thus, in this work, a two-�uid code named NLET [74] is being utilized. NLET is used

1Due to the slow asymptotic approach towards a steady state solution for certain parameter require-
ments, the most massive runs have peaked at more than 25,000 CPU hours each, accumulating 20 TB of
raw data in the process.

2Generally, Landau damping plays no role in a zonal �ow dominated plasma, as its e�ects are minimal
on n = 0-modes with k‖ = 0.

3Fluid codes are by de�nition collisional.
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on a modi�ed, numerical set of the Braginskii equations introduced in Section 2.3, the
Hasegawa-Wakatani equations: These form a sheared-slab collisional drift wave subset,
discarding temperature �uctuations, magnetic geometry e�ects and curvature drifts.

Accordingly, this basic equation system is discussed in Section 3.1. A reformatting of
the basic variables in (2.34), (2.35) and (2.36) into computational variables is performed.
Three parameters are de�ned, αd - signifying the drift wave velocity αd, as will be seen
in (4.4) -, εn - the ratio between the underlying density gradient and the system size -
and s, describing the shearing of the magnetic �eldlines. Two di�erent length scales (as
well as time and transport scales) can be derived from these, combining to form a single
dimensionless parameter (see [63]) which will be instrumental in the studies presented
in Chapters 4, 5 and 6, allowing a dimensionless one-parameter form of the Braginskii
equations to be derived.

A more detailed analysis and physical interpretation of all three reduced Braginskii equa-
tions is given in Section 3.2, motivating Ohm's law, the vorticity equation and the electron
continuity equation in both their full and reduced form. Subsequently, the equations are
combined to form the Hasegawa-Wakatani equations describing a sheared-slab collisional
drift wave system.

3.1 The Hasegawa-Wakatani equations

The drift wave system examined in this work is a turbulent, non-linear one, simpli�ed
by presuming a slab (albeit sheared) resistive drift wave system based on the Hasegawa-
Wakatani equations with a background density gradient, cold ions (Ti � Te) and no parallel
velocity. Three of the six main Braginskii two-�uid equations, from which the Hasegawa-
Wakatani equations are derived - the heat transport equations for ions and electrons as well
as the parallel velocity equation do not apply since temperature �uctuations are dismissed
and since v‖ = 0 is presumed4 - are of importance for this system: Ohm's law (2.34), the
vorticity equation (2.35) and �nally the electron continuity equation (2.36).

The system is examined in 3D, since even in the slab regime, and with a basically 2D
turbulence inverse cascade picture as examined in this work, the magnetic �eld-induced
asymmetry e�ectuates crucial characteristics (such as the anomalous transport) to require
a full 3D approach [63].

Generally, in the context of this work, the radial direction denotes the direction opposite
to the background gradient and the parallel direction is aligned with the magnetic �eld
while the remaining poloidal direction stands perpendicular to both.

3.1.1 Time and length scales

In order to be able to perform numerical computations with (2.34), (2.35) and (2.36), it
is necessary to replace all quantities with their dimensionless counterparts. A subscript p

4Without curvature, there is no compression on a poloidal revolution of the �ow, and balancing by a
parallel return �ow becomes unnecessary, leading to v‖ = 0.
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denotes physical units while from now on dimensionless units are presented subscript-free.
It is important to note that all dimensionless units refer to the �uctuations on top of the
�ux-surface-average (denoted with a subscript 0), not the background values themselves.
Bearing in mind the speci�c requirements of this work, all de�nitions are chosen as close
as possible to [63, 68, 74]:

n ≡ npλ/ne,0 (3.1)

φ ≡ φpct0/BL2
0 (3.2)

J‖ ≡ j‖,pLzη‖ct0/BL2
0 (3.3)

vdia,e ≡ Te,0/eBLn (3.4)

pe = pi = p = n (3.5)

with the time and length scales given as

t0 ≡
√
RLn

2

1

cs
(3.6)

L0 ≡ 2πq

√
ne,0e2η‖ρsR

mωg,i

4

√
2R

Ln
(3.7)

Lz ≡ 2πqR (3.8)

Ls ≡
1

2πs
(3.9)

ρs ≡
√
Te,0
mi

1

ωg,i
=

√
Te,0
mi

m

eB
(3.10)

where L0 is denoted in code units as Lx and Ly respectively, and Ls is simply the shear
length scale.
A radial-poloidal length scale often used in Figures such as Figure 2.1 is the numerical
grid span width Lc, one unit of which simply denotes the smallest still computationally
resolved distance between two points in space:

Lc =
Lx,y
nx,y

L0 ≈ 1/16− 1/8L0 (3.11)

for typical resolutions nx,y ≈ 128− 512 and domain sizes Lx,y ≈ 8− 64.

Now, the physical parameters are chosen as follows:

αd ≡
vdia,et0
L0

(3.12)

εn ≡
2Ln
R

(3.13)

(3.14)
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thus allowing for a simpler relation for the electron-temperature ion gyroradius

ρs = αd
√
εn (3.15)

which is presented here in units of L0, relying only on the two parameters αd and εn. This
marks the �rst orthogonal length scale.
Here, αd marks the drift wave velocity (this will be seen in (4.4)5), εn is a measure of the
ratio between the gradient and system sizes (leading to larger drift wave vortices for larger
values of εn).
Adding magnetic shear to the drift wave velocity and the relative gradient strength, a new
shear-based orthogonal length scale can be de�ned - in units of L0 - as6

L⊥ =
α

1/3
d

s2/3
(3.16)

This is the second orthogonal length scale.

Combining (3.15) and (3.16), a new dimensionless parameter ρ̂s can be de�ned as the ratio
of ρs and L⊥ [63]

ρ̂s =
ρs
L⊥

(3.17)

ρ̂s will subsequently prove to be crucial for this work, as ρ̂s is discovered in Chapter 4 to
be the single parameter determining the turbulent transport (as well as all other physical
characteristics) of a sheared collisional drift wave system7, reducing the dimension of the
parameter space to one.
(3.17) expressed through αd, εn and s, is simply

ρ̂s = ε1/2n (αds)
2/3 (3.18)

It is important to point out that all these relations have been checked through numerical
tests as well - thus theory and numerics are in agreement.

Two length scales imply two time scales as well. Thus, time in units of t0 is normalized to

5(4.4) in the units used here equals ω = αdky, thus leading to ~vph = ω/k = αdŷ.

6Using the Braginskii [35] de�nition L⊥ =
(
πqR
s

)2/3 ( n0η‖Te

2e
√
miLn

)1/3
me
miB

, this form of L⊥ can be ex-

panded to yield L⊥ =
√

R
Ln

2me
√
Te

Bmi

(
RLn

2Te,0mi

)1/6 (n0η‖
2e

)1/3

=
√
RLnρ

2/3
s

(
2πq
s

)2/3(√2cst0n0e
2η‖

miωci

)1/3

and

thus the desired L⊥ =
(
ρscst0
L∇

)1/3 (
L0
s

)2/3
= (αL0)1/3 (L0

s

)2/3
.

7The only exceptions stemming from minor domain size-determined quantization e�ects and the radial
positioning of resonant surfaces [16].
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tL⊥ =
L⊥
vdia,e

=
1

s2/3α
2/3
d

(3.19)

tρs =
ρs
vdia,e

= ε1/2n (3.20)

causing the transport units to become

DL⊥ =
L2
⊥

tL⊥
=

(
α

2/3
d

s4/3

)
L0

tL⊥
(3.21)

Dρs =
ρ2
s

tρs
=
(
α2
dεn
) L0

tρs
(3.22)

yielding the respective translations from L0, t0 and D0
8.

3.1.2 The two-�uid equations

Now, (2.34), (2.35) and (2.36) can be transformed into dimensionless equations, while
discarding all curvature-dependent ∇ · ~v terms (this applies to the diamagnetic drift
velocity terms in the vorticity equation and n∇· (~vExB +~vdia,e) in the continuity equation)
as well as the parallel velocity term n∇ · v‖ ~B in the continuity equation:

Ohm's Law without curvature, parallel velocity or hot ion terms becomes

−∇‖ (φ− αdn) = J‖ (3.23)

instead of
j‖
σ‖

= −∇‖
(
φ− pe

en

)
.

The vorticity equation turns into

∇⊥ · dt∇⊥φ = ∇‖J‖ (3.24)

replacing ∇ · n (∂t + ~vE · ∇) qiB
3
(
∇⊥φ+ ∇⊥pi

qini

)
−∇ ~B × ∇(pi+pe)

qiB2 = ∇ · qin
~j‖
σ‖qe

.

And the continuity equation now reads as

dtn+ ∂yφ− αdεn∇‖J‖ = 0 (3.25)

standing in for ∂tn+ ~vExB · ∇n+ n∇ ·
(
~vExB + ~vdia,e + ~v‖ ~B

)
− ∇·

~j‖
σ‖

= 0.

It is important to note that these equations are invariant under all sign inversion transfor-
mations of x and z as well as n and φ - with the notable exception of y.

8E.g., tρs = εnt0 can be used to �nd t in units of ρs, or ρs = αd
√
εn(Lx,y/nx,y)n0 for the direct

transformation between the new length scales and the code units.
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3.2 The reduced equations

Although the three main equations have now almost been simpli�ed to the form utilized
in this work, it may be helpful to compare with the full equations [35] in a curved system
with hot ions and parallel velocity terms. Thus, a more detailed analysis as well as physical
interpretation of (3.23), (3.24) and (3.25) will be performed to reach additional insights
into their implications.

3.2.1 Ohm's Law

Within the computational Braginskii equations, Ohm's Law, or the law of electromotive
force, has the following form:

(2π)2αm

 ∂Ψ

∂t︸︷︷︸
(1)

+αd
∂Ψ

∂y

(
L∇
Lpe

+ 0.71
L∇
LTe

)
︸ ︷︷ ︸

(2)

− µ∂dJ∂dt︸ ︷︷ ︸
(3)

−∇‖h︸︷︷︸
(4)

= J‖︸︷︷︸
(5)

(3.26)

where αm marks the Alfvén alpha parameter of waves caused by ion inertia and magnetic
�eld tension. As before, all variables denote �uctuations, not mean values.
A current (5) can be in�uenced by a number of drives where (1) marks magnetic �eld
�uctuations caused by �uctuations in the magnetic �ux Ψ and (2) takes into consideration
spatial de�ections of magnetic �eld lines leading to a change in either electron pressure or
temperature - or both.
Either Ψ-term depends on weak magnetic pressure, meaning the beta parameter

β = p/pmag = nkT/(B2/2µ0) (3.27)

the ratio between thermal and magnetic pressure within the plasma, must ful�ll β � 0.
Since αm ∝ βq2 (where q marks the safety factor), strong magnetic pressure implies rigid
�eld lines and thus that the terms (1) and (2) can be omitted (preventing the emergence
of Alfvén waves, which cannot exist without �eld line �uctuations). For most drift waves
regimes - including the system analyzed in this thesis - rigid �eld lines (pmag � p) can be
presumed, so that only the terms (3), (4) and (5) remain.
Furthermore, the electrons are de�ned to possess no inertia (me → 0), a good approxima-
tion for the relevant drift wave time scales. Thus, with µ ∝ me/mi → 0 term (3) vanishes
and only −∇‖h = J‖ remains. There, h = φ−αdpe = φ−αdne (the latter being valid only
in the absence of temperature �uctuations) describes the nonadiabaticity of the electrons
- which is nothing but the deviation from a Boltzmann distribution e−(v2

th+qφ)/T .

In total this yields the same result as in (3.24):

−∇‖ (φ− αdne) = J‖ (3.28)
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Since J‖ = ∇⊥Ψ marks the resistivity responsible for di�usion of the current density J‖,
−∇‖h = J‖ implies that the magnetic �ux di�uses orthogonally, and proportionally to
the parallel derivative of the nonadiabaticity. In the adiabatic approximation, however,
the ions react instantaneously - now behaving exactly like the electrons -, preventing any
�uctuation currents from developing between the two di�erently charged particles.
It should be noted here that it is generally considered to be more favorable to argue via
currents (where only divergent currents are of relevance) since these are easier to calculate
while force balances cannot be applied in many cases since their only function is to hold the
plasma in place. Also, it is not the forces but the velocities which are of primary interest -
and these can much more easily be gained through the time development of the potential,
and thus the currents.

3.2.2 The vorticity equation

The full vorticity equation governs charge neutrality, describing the di�erence between the
continuity equations of ions and electrons. It takes the following form:

∇⊥ ·
d

dt
∇⊥ (φ+ ταdpi)︸ ︷︷ ︸

(1)

+ Ĉ (p+G)︸ ︷︷ ︸
(2)

−∇‖J‖︸ ︷︷ ︸
(3)

= 0 (3.29)

The curvature term in (2) can be discarded in a slab system. Term (1), which contains
the divergences of the polarization and diamagnetic drift currents, can be motivated by a
glance at the divergence of the respective current. In case of the polarization drift (the
motivation for the diamagnetic drift follows accordingly, but it can be discarded here since
cold ions imply τ = Ti/Te = 0):

∇ ·~j = ∇ (nqvpol,drift) = −∇

(
nq
m

q
(
d

dt
~vExB)× b̂

B

)
=
nm

B2

(
∇× d

dt
~vExB

)
· b̂

= −nm
B

(
∇× d

dt

(
b̂

B
×∇φ

))
· b̂ = −nm

B2
∇⊥ ·

d

dt
∇⊥φ (3.30)

Since this work concerns itself with slab drift wave systems instead of a toroidal or oth-
erwisely curved geometry, the curvature term (2) containing Ĉ ≡ B(~∇×~b/B) · ~∇ can be
removed. Due to

∇⊥ · d/dt∇⊥φ = ∇⊥ · (∂t + ~vE · ∇)∇⊥φ = ∇⊥ · (∂t∇⊥φ+ {φ,∇⊥φ})
= ∇⊥ · (∂t∇⊥φ+ ∂xφ · ∂y∇⊥φ− ∂yφ · ∂x∇⊥φ) = d/dt∇2

⊥φ (3.31)

the resulting equation agrees with (3.24):

dt∆⊥φ = ∇‖J‖ (3.32)
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Physically, the time derivative of the orthogonal potential di�usion compensates for a
parallel change in current.

Combining the results from Ohm's law (3.28) and the vorticity equation (3.32) yields

dt∆⊥φ = −∂2
‖ (φ− αdn) (3.33)

This is the �rst of two very basic relations between plasma density and potential. Here,
the right hand side term can be identi�ed as the parallel di�usion of the nonadiabaticity
(de�ned by the di�erence in behavior between n and φ - only in ideal adiabaticity can
the potential immediately follow the density) leading to a direct link between the parallel
di�usion of the nonadiabaticity and the time derivative of the perpendicular di�usion of
the potential.
Accordingly, no change in the perpendicular movement can occur in a completely adiabatic
system.

3.2.3 The electron continuity equation

Of special importance to the collision-dominated tokamak edge, the full electron continuity
equation contains several additional terms next to the simple ∂ρ/∂t+∇ ·~j = 0 relation:

dn

dt︸︷︷︸
(1)

+
L∇
Ln

∂φ

∂y︸ ︷︷ ︸
(2)

−

εnĈ (φ− αdpe)︸ ︷︷ ︸
(3)

− εv∇‖v‖︸ ︷︷ ︸
(4)

+αdεn (1 + τ)∇‖J‖︸ ︷︷ ︸
(5)

 = 0 (3.34)

where the characteristic gradient length scales Lsystem = L∇ and Ln, denoting the scale on
which a 1/e-decrease in the density gradient occurs, are introduced. Usually, L∇/Ln ≡ 1
is chosen.
Term (1) marks the convective derivative of the particle density ∂n/∂t+(~v ·∇)n. While the
curvature term (3) is easily removed, term (2) cannot be discarded so easily. It contains the
crucial toroidal derivative of the potential (which actually consists mostly of the poloidal
derivative, due to the usage of a parallelly compressed coordinate system to account for the
di�erences in propagation velocities). However, replacing the �uctuation density n with
the total density ntot = n+ n0(1− x) deletes term (2) entirely, as can be seen by

(~v · ∇)ntot = φ, ntot = ∂xφ∂yntot − ∂xntot∂yφ
= (~v · ∇)n− (−n0∂yφ) = (~v · ∇)n+ n0∂yφ (3.35)

In the absence of a parallel electron velocity, term (4) vanishes as well.
For cold ions (τ = 0), all that is left is dtn−αdεn∇‖J‖ = 0, or, in combination with (3.28)

dtn+ αdεn∂
2
‖ (φ− αdn) = 0 (3.36)
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obtaining (3.25). Physically, the convective time derivative of the total density can thus
be associated with the parallel di�usion of the nonadiabaticity.

3.3 The resulting drift wave system

In total, (3.28), (3.32) and (3.36) can be combined to yield the simple linearized Hasegawa-
Wakatani equation system, expressed through the single dimensionless parameter ρ̂s:

∂t∆⊥φ+ ∂2
‖(φ− n) = 0 (3.37)

∂tn+ ∂yφ = ρ̂2
s∂t∆⊥φ (3.38)

where ∂‖ = ∂z − 2πx∂y and ∆⊥ = ∂2

∂x2 + ∂2

∂y2 , describing a 3D sheared-slab collisional drift
wave system.

This equation system is simple enough to be analyzed analytically as well as numerically,
while retaining su�ciently complexity to exhibit the nonlinear drift wave instability crucial
to zonal �ow formation.





Chapter 4

Drift waves

Drift waves are poloidally propagating wave phenomena in magnetized plasmas, feeding
on density gradients through density convection by ~E × ~B-drifts.

As a small initial perturbation of the particle density results in charge separation - presum-
ing nonadiabaticity, which causes the electrons to adapt much faster to the changes in the
electric potential than the ions - an electrostatic potential develops, leading to ~E× ~B-�ows
in the radial direction (directed inwards on one side of the perturbation and outwards on
the other, as visualized in Figure 4.1). For a background density which decreases radially
outwards, this distortion manifests itself as an apparent increase of density at the location
of outward movement and a decrease where the ~E × ~B-�ows are directed inwards, result-
ing in a propagation of the density pattern in the poloidal direction: A drift wave develops.

Due to its analytical and numerical accessibility, the drift wave is the paradigmatic mi-
croturbulent mode in a magnetized plasma: While there are numerous curvature driven
instabilities which dominate the majority of the volume in devices with realistic geometries,
for a sheared-slab system without a temperature gradient no ITG1 modes and curvature
driven modes can develop - making this the unchallenged domain of the drift wave.

Of all naturally occurring regimes, the high-gradient plasma edge in a tokamak or stel-
larator is the most common domain of the drift wave. Generally, a non-turbulent drift
wave can always be recognized due to its distinctive2 �shbone-like shape which stems from
a group velocity aligned parallelly to the phase velocity in the poloidal direction, and
antiparallelly in the radial direction.

In Section 4.1, the development of drift waves is examined in detail, with an explanation
of both the parallel and the perpendicular dynamics.

Section 4.2 starts with the simpler subset of adiabatic drift waves, where there is no di�er-

1ITG modes are driven by an additional ion temperature gradient (which behaves roughly the same
as the density gradient) and caused by parallel sound waves which in turn are created by drift waves
[75] - however, both the ion temperature equation and the v‖-equation are turned o� in this work, thus
preventing ITG modes from developing.

2Confusion with ballooning modes [76] can be avoided by noting that there are no wandering droplets
in a turbulent, drift-wave dominated plasma.

31
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ence in adaptation speed between ions and electrons, leading to a concurrent development
of both the potential and the density. The group and phase velocities of adiabatic drift
waves are derived, leading to a quantitative derivation of the trademark �shbone shape.
The full equation system of nonadiabatic collisional drift waves is then discussed, including
a calculation of the more complicated ρ̂s-based nonadiabatic drift wave dispersion relation
and the resulting group and phase velocities, now also exhibiting a term in the toroidal
direction. Finally, the drift wave growth rate is determined, culminating in a detailed
analysis of drift wave instability in units of ρ̂s.

Shear has a signi�cant in�uence on the development of drift waves, since it determines the
locations of resonant surfaces which re�ect drift waves, amplifying them in the process.
This e�ect is examined in Section 4.3 for di�erent wavenumbers, including its consequences
for drift wave scattering. Subsequently, the requirements for drift waves to turn nonlinear
are outlined. Particular emphasis is put on several numerical issues which have occurred in
the course of this work: Hyperviscosities, border and domain e�ects and distortions caused
by the Nyquist and Alfvén frequencies, among others.

Finally, Section 4.4 deals with ρ̂s, the single dimensionless parameter determining the
complete behavior of the drift wave system. ρ̂s is found to depict the ratio between two
length scales (which will prove essential in Chapter 6) - one of them dominant for small
values of ρ̂s, the other for larger ones. The theoretical predictions for their relationship
based on a mixing length estimate are veri�ed to an excellent degree by numerical studies,
including very good agreement with density �ux scans, leading to one transport plateau
for each length scale and a transitional threshold in between, which is found to correspond
very well with the zonal �ow transition examined in Section 5.4.

Further drift-wave related analyses - including a discussion of the associated spectra - have
been transferred to Chapter 6 due to their immediate implications for a number of crucial
zonal �ow characteristics.

4.1 Basic concept

Drift wave development3 in a magnetized plasma requires some degree of non-adiabaticity
to achieve charge separation, a density gradient (synonymous to a pressure gradient for
isothermal plasmas) as an e�ective energy source and the existence of an ~E × ~B-drift. As
with all waves or instabilities, an initial distortion of a background �eld is required as a
starting point. In the case of drift waves, this �eld is the scalar background density n0.
Now, a small distortion n of the density is presumed - a local change in density around the
radial-poloidal-toroidal point of origin (x0, y0, z0), f.e. in the shape of a steep Gauss curve.

Certain anisotropic ansätze would not be viable for drift wave generation, for example solely
radial potential. In that case, no radial ~E × ~B drift and thus no movement orthogonal
to the density gradient is possible, preventing the extraction of free energy. Thus, this
derivation assumes at least some electric potential perpendicular to the radial direction is
present.

3A more detailed discussion than in Section 4.1 is given in many literature reviews, e.g. in [30].
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For the sake of simplicity, the magnetic �eld is assumed to be homogeneous, while both
ion temperature and parallel velocity are negligible in this system.

Figure 4.1: Drift wave development requires an initial density distortion. Under non-
adiabatic conditions, the electrons (marked by grey minuses) outpace the ions (marked
by grey pluses), especially in the direction of the magnetic �eld ~B, leading to charge
separation and a spherical electric �eld ~E, which yields circular ~E× ~B-drift vortices around
~B. On the axis perpendicular to the density gradient (where red marks high density, and
green marks low density) as well as the magnetic �eld, the ~E × ~B-drift moves the density
distortion into areas with higher density (at the top) and lower density (at the bottom)
respectively, feeding on the gradient and subsequently leading to a relative increase and
reduction of density - an e�ect which is visualized by the green bulge at the top and the
reddish neck below. The distortion thus appears slightly shifted perpendicular to ∇n and
~B, as indicated by the dark blue rings: A drift wave propagating with the diamagnetic
drift velocity - hence the name - in the poloidal direction ensues. Here, the lower set of
blue arrows mark the drift wave phase velocity ~vph, while the upper arrows indicate the
drift wave group velocity ~vgr. During the entire process, quasi-neutrality is guaranteed
by the perpendicular ion polarization drift while the parallel electron dynamics couple the
�uctuating n and φ together to ensure the structural integrity of the drift wave.
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4.1.1 Parallel and perpendicular dynamics

The simpler part of the analysis concerns itself with the dynamics parallel to the magnetic
�eld, where the magnetic �eld implies no restrictions on particle movement.

In the case of a positive distortion, the smaller inertia of the electrons (me/mi < 1800
for all ions) allows them to react more quickly to the change in density than the ions are
capable of, making them accelerate away from the initial �uctuation much faster - until
the initial force on the electrons is canceled by the rising electrostatic potential between
the two separately charged particles. The ensuing electron oscillation occurs at the plasma
frequency of the electrons, reaching the GHz range in a typical tokamak's edge.

However, a number of complications arise through the coupling of the dynamics parallel
to the magnetic �eld to the perpendicular dynamics [77].

An electrostatic potential is not only created by a parallel charge separation, but also
by an inertia-induced charge separation orthogonal to the magnetic �eld. This potential
grows until it balances the density �uctuation, nullifying the e�ective force exerted on the
electrons. The electric �eld yields a ~E × ~B-drift in a direction orthogonal to both the
magnetic �eld (assumed to be aligned in the toroidal direction) and ~E(x, y, z), and thus -
in a right-handed coordinate system - a clockwise drift around the center of the �uctuation.
According to the derivation of the ~E × ~B-drift in Section 2.2, this holds true for particles
of any mass, charge or velocity.

Quasi-neutrality is upheld: Considering slow changes to the electric �eld - slow in compar-
ison with the ion and electron gyro frequencies -, there is a small correction to this picture
due to the polarization drift. Since the ions move in circles around the distortion maxi-
mum while the electric �eld changes at the same time, they start to spiral outwards for
increasing �eld amplitudes and inwards for decreasing �eld amplitudes. Due to higher ion
inertia, the e�ect on electrons is much smaller in comparison. Therefore, this polarization
drift e�ect is able to compensate for all changes in the electric �eld caused by the parallel
dynamics, shorting them out and keeping the system quasi-neutral: The divergence of
the perpendicular current (to which the polarization drift amounts) matches that of the
parallel current.

The last ingredient in this picture - crucial for drift wave growth and propagation - is
a density gradient orthogonal to the magnetic �eld lines, aligned in the negative radial
direction. This ensures self-sustainability of the drift wave turbulence [78]. Since the
aforementioned balance between the parallel and perpendicular dynamics implies plasma
transport in the radial direction, with the sign depending on the local sign of φ′, this
plasma transport correlates to movement into outer regions of decreased density for y > y0

and, vice versa, into more inward-lying regions of increased density for y < y0. This
movement correlates with a perceived increase (or decrease) of density relative to the new
surroundings, and thus an actual increase (or decrease) of the initial positive distortion
for y > y0 (or y < y0): The distortion appears to shift slightly in the positive poloidal
direction. Since the process repeats itself over and over again, the entire structure thus
propagates in the positive poloidal direction.
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Figure 4.2: The �shbone shape of a simple linear shearless adiabatic drift wave system
at an early time t is shown here in the radial-poloidal density picture. As is required for
adiabaticity, the potential behaves in exactly the same way as the density.

Another way to understand this perceived increase and decrease of density is to look at the
e�ect a density gradient has on a localized ~E× ~B vortex which necessarily surrounds every
local maximum or minimum in potential. More �uid is pulled down the density gradient
than up, leading to a positive density �uctuation on the down-gradient half-circle of the
~E × ~B vortex where ~vE and ∇n are antiparallel and vice versa a decreased density on the
other half - the density �uctuation is thus phase-shifted (by π/2 for sinusoidal oscillations,
as will be seen in (4.25)) in comparison with the electrostatic potential. The exact phase
relation between the density and potential perturbations is essential in determining growth
or damping of a drift wave, with a shift of π/2 between the two being the most unstable
case if n leads φ, while becoming the most stable for φ leading n.

For adiabatic drift waves, density and potential coincide and no phase shift occurs, leading
to zero growth or damping (in the case of in�nite conductivity). For nonadiabatic drift
waves, the electron response to any density perturbation is not immediate any more. The
resulting phase shift between n and φ causes the density perturbation to be further ahead,
phase shifted so that its maximum comes close to the point where the main part of the
~E × ~B-vortex crosses the line of propagation orthogonal to ~B and ∇n: The maximum of
the ~E × ~B particle �ux divergence. Maximal drift wave growth ensues.

It is not unlimited, however. As will be shown in Chapter 5, the zonal �ows fed by the
drift waves themselves shear them apart into ever smaller eddies [30]. Over time, this
forced turbulence cascade leads the drift wave turbulence to such small wavenumbers that
growth is inhibited by damping e�ects, or the eddies are dissolved by dissipation. But even
without zonal �ows, a certain stationary level of nonlinear saturation cannot be exceeded.
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4.2 Drift wave dispersion

In order to understand drift waves in more detail, it can be helpful to look at a simpli�ed
system of shearless (∂‖ = ∂z) and adiabatic (ωk2

⊥ � k2
‖) drift waves

4. After a Fourier

transformation of (3.37) and (3.38), only

φ = n (4.1)

−iωn+ ikyφ = iρ̂2
sωk

2
⊥φ (4.2)

remains, where k⊥ =
√
k2
x + k2

y. Thus, the drift wave frequency is derived as

ω =
ky

1 + ρ̂2
sk

2
⊥

(4.3)

with the dominant term for small k⊥ being

ω = ky (4.4)

leading to a drift in the electron diamagnetic drift direction (perpendicular to both the
magnetic �eld and the density gradient) with ~vdia,physical = αd,numerical.

4.2.1 Adiabatic group and phase velocities

Now it is a straightforward exercise to calculate the adiabatic group and phase velocities
in these units (including dispersion in the radial direction due to the Laplacian in (4.2)):

vgr,x =
∂ω

∂kx
=

−2kxkyρ̂
2
s[

1 + ρ̂2
s(k

2
x + k2

y)
]2 (+hot) (4.5)

vgr,y =
∂ω

∂ky
=

1

1 + ρ̂2
s(k

2
x + k2

y)
−

2k2
y ρ̂

2
s[

1 + ρ̂2
s(k

2
x + k2

y)
]2 (+hot) (4.6)

vph,x =
ωkx
k2

=
kxky[

1 + ρ̂2
s(k

2
x + k2

y)
]

(k2
x + k2

y)
(4.7)

vph,y =
ωky
k2

=
k2
y[

1 + ρ̂2
s(k

2
x + k2

y)
]

(k2
x + k2

y)
(4.8)

Generally, vgr,x > 0 corresponds with kx < 0 and vice versa. No z-dependency remains.

4Shearlessness follows directly from perfect adiabaticity ωk2
⊥ = 0 since the remaining ∂‖-term is thereby

rendered irrelevant.
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In the linear regime, drift waves are marked by their recognizable �shbone shape (see
Figure 4.2), developing since thermal expansion of the initial blob which is moving in the
negative poloidal direction leads to a separation of modes depending on their Im(ω).
For a real density distortion, the complex conjugate is required to eliminate the imaginary
part - accordingly, both positive and negative wavenumbers k must exist. Thus, kx > 0
must be true on one side (the one in the positive radial direction), corresponding with
vgr,x < 0, and kx < 0 on the other, corresponding with vgr,x > 0, as con�rmed by the
group and phase velocities in (4.5)-(4.8). It is also clari�ed that ~vgr,x �� ~vph,x as well as
~vgr,y �� ~vph,y. Recalling that the group velocity points in the direction of movement of the
wave packet while the phase velocity stands orthogonal on the wavefronts, the �shbone
shape can be pieced together5.

4.2.2 Non-adiabatic drift waves

Now, the full equation system from (3.37) and (3.38) shall be analyzed:

∂t∆⊥φ+ ∂2
‖(φ− n) = 0 (4.9)

∂tn+ ∂yφ = ρ̂2
s∂t∆⊥φ (4.10)

A Fourier transformation yields

iωk2
⊥φ− k2

‖(φ− n) = 0 (4.11)

− iωn+ ikyφ = iωk2
⊥ρ̂

2
sφ (4.12)

With φ = ωn/
(
ky − ρ̂2

sk
2
⊥
)
this translates into

ω1,2 =

(
ρ̂2
sk

2
‖k

2
⊥ + k2

‖ ±
√
k4
‖
(
1 + ρ̂2

sk
2
⊥
)2 − 4ikyk2

‖k
2
⊥

)
/
(
2ik2
⊥
)

(4.13)

or, after simpli�cation and omission of the wrong, shrinking solution

ω =
2ky(

1 + ρ̂2
sk

2
⊥
)
1 +

√√√√1−
4ik2
⊥ky(

1 + ρ̂2
sk

2
⊥
)2
k2
‖

−1

(4.14)

For k‖ →∞ this falls back to the well-known adiabatic relation.

ω =
ky

1 + ρ̂2
sk

2
⊥

(4.15)

5The only alternative solution with kx > 0 on the one side and kx < 0 yields a singularity - or time
reversal.
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Figure 4.3: In this �gure, four stages in the development of a nonlinear nonadiabatic drift
wave system on top of a radial density gradient are depicted. Density in the radial-
poloidal plane is plotted, with the length scales being normalized to L⊥. Initially, a
density distortion with a Gaussian seed has been placed in the center. According to the
nonadiabatic versions of (4.5) and (4.6), the trademark �shbone wave pattern emerges - as
seen in the �rst �gure - and the drift wave amplitude begins to grow. Continuous boundary
conditions lead to the drift wave ultimately interacting with itself (in reality, this happens
with other embryonic drift waves) as shown in �gure two. At these intersections, the
amplitudes of the drift waves are the �rst to become su�ciently large to turn over into the
nonlinear regime, exhibiting Kevin-Helmholtz instabilities (third �gure). The turbulence
spreads and saturates, eventually �lling the entire domain (fourth �gure).

A detailed overview over the group velocity in the nonadiabatic case (with shear) can be
found in Figure 4.4. In a linear picture of the radial-poloidal plane (as depicted in the �rst
part of Figure 4.3), no major qualitative di�erences have to be taken into account when
comparing the nonadiabatic solutions with the adiabatic case shown in Figure 4.2, with
the nonadiabatic group velocities remaining close to the adiabatic solutions shown in (4.5)
and (4.6). However, contrary to pure adiabaticity - where propagation in the z-direction
exists only in the presence of numerical hyperviscosity terms - standing6 waves in the
z-direction with a non-zero group velocity vgr,z exist.

The phase and group velocities in the z-direction in this system can then be calculated as

6The standing waves are due to the periodic boundary conditions.
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Figure 4.4: The exact analytical solutions for the group velocity components in the radial,
poloidal and toroidal directions (x, y and z) are plotted in black against k⊥ and kz in
dimensionless numerical units. While the red lines stand for an approximation in the high-
ρ̂s- and high-kz-regimes, the opposite extreme is marked in blue. In most cases, at least one
of these regimes o�ers a decent approximation at either low or high values of k⊥ and kz,
however, it becomes clear that only the full solution su�ces when dealing with in-between
values.
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which, for large values of kz, implies

vgr,z ∝ k−3
z (4.18)

4.2.3 Calculation of growth rate and stability

Taylor expansion up to the �rst order in 4ik2
⊥ky/

((
1 + ρ̂2

sk
2
⊥
)2
k2
‖

)
to eliminate the square

root in (4.14) while only retaining the imaginary part leads to an approximate equation
for the nonadiabatic drift wave growth rate which holds true unless k⊥ or ky become very
large or k‖ becomes very small.
In most practical cases, these limits hold true and the drift wave growth rate for small
4k3
⊥ � k2

‖ will be very close to
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(4.19)

so that with k⊥ρ̂s . 1

γ ≈
k2
⊥k

2
y

k2
‖

(4.20)

This result also allows the point of maximal growth (where γ′ = 0 and γ′′ < 0) to be
determined. It is crucial to note that this maximum occurs at kx = 0 (which is easy to
understand, recalling the symmetry in the x-direction - as well as for z, n and p), but at
ky 6= 0 and kz 6= 0:

kx|γmax = 0 (4.21)

k⊥|γmax = ky|γmax = ρ̂−1
s (4.22)

k‖|γmax ≈ ky|γmax =
1√

2
√

2 +
√

5ρ̂
3/2
s

≈ 0.493ρ̂−3/2
s (4.23)
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Figure 4.5: Analytical results for the drift wave growth rate around its maximal value (for
ρ̂s = 1) are plotted in the kx-ky-, kx-kz- and ky-kz-planes. Increased brightness correlates
with higher values of (4.24). The maximum occurs at the dimensionless values kx = 0,
ky = 1 and kz ≈ 0.493.

Drift wave growth rates around this maximum are presented in Figure 4.5.

Here, a straightforward calculation yields the exact value of the maximal drift wave growth
rate:

γmax =

√
5
√

5− 11

8
ρ̂−1
s =

1

ρ̂s
√

22 + 10
√

5
≈ 0.150ρ̂−1

s (4.24)

Thus the drift wave growth rate decreases as ρ̂s increases. This is crucial for the high-ρ̂s-
zonal �ow-regime, where a reduced drift wave growth rate translates into a less strongly
nonlinear system (as seen in Chapter 5).

A detailed comparison of the approximate solution for the drift wave growth rate presented
in (4.19) with a straightforward, yet lengthy calculation of the exact results performed in
Mathematica shows that the approximate results in (4.20) hold true very well for all ρ̂s as
long as k‖ > k⊥. For ρ̂s = 1 and k‖ = 10 · k⊥, the error is merely 0.004%, for k‖ = 2 · k⊥
it is 1.5%. It grows to 20% for wavenumber parity, yielding increasingly imprecise results
beyond. Reducing ρ̂s to ρ̂s = 0.2 increases the error bars up to 0.05% for k‖ = 10 · k⊥ and
17% for k‖ = 2 · k⊥. For most practical case, however, k‖ > 2 · k⊥ holds true and (4.20)
remains a good approximation.

A simple way of visualizing drift wave growth can be reached by drawing an analogy
between a sinusoidal, growing density perturbation (the drift wave) and a one-dimensional
driven harmonic oscillator. With a phase shift φ for the driving term and an arti�cial
spring constant k, this becomes F (ξ) ∝ eiφξ̇ − kξ so that the time derivative of the total
energy yields
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Ė ∝ |ξ̇|2 cosφ (4.25)

reinforcing the result stated in Subsection 4.1.1. The energy input is maximal for a
phase shift of φ = 0 between ξ̇ and the driving term, or φ = π/2 between the elongation
ξ itself (analogous to the density) and the driving term (provided by the electric potential).

Beyond pure drift wave e�ects, �ow-shear-stabilization of resistive drift waves in toroidal
geometries, even enhanced by a �nite conductivity, leads to di�culties generating tur-
bulence from linear instability under these regimes. In the presence of the adiabatically
stabilizing e�ect of magnetic shear [79, 80], linear instability can only be achieved when the
drift waves are able to couple to another mode - requiring nonadiabaticity. Purely adia-
batic collisional drift waves in a sheared-slab con�guration always remain linearly damped
unless initialized nonlinearly [81].

4.3 Shear and instability

So-called resonant surfaces are capable of re�ecting drift waves in a plasma.

With magnetic shear, translational symmetry is upheld in the y- and z-directions (and
thus on each �ux surface), but no more in the x-direction, since the parallel derivative is
now

∂‖ = ∂z − s(x− x0)∂y (4.26)

instead of

∂‖ = ∂z (4.27)

as it was before.

Thus, for shear s 6= 0 (which also serves to limit the maximum eddy size by its ability to
tear them apart), ky = const., kz = const. and ω = ω(kx, ky, kz, x) = const. are constants
of motions as known from classical and quantum mechanics. kx = kx(x) 6= const., however,
is not. Fourier-transformed and applied to drift waves, (4.26) becomes

∂‖ = 2πim− 2πinx

Ls
(4.28)

For every combination of m and n there is a radial value for which ∂‖ = 0. This is the
basic de�nition of a resonant surface [20] (thus always causing one with m = 1 to occur in
the center of the numerical domain for default parameters) - and accordingly, the distance
between the two most basic resonant surfaces scales with Ly.
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Drift waves heading towards a resonant surface are re�ected upon impact7, with some
tunneling being possible as well. Such resonant surfaces develop in every sheared slab [82]
system unless the z-direction is expanded into in�nity, which enables the deskewing of �eld
lines and thus sharp kx within a twisted coordinate system.

The mode numbers can only be changed by the nonlinear interaction of two or more
(nonadiabatic) drift waves, yielding m3 = m1 + m2 as well as more complicated interac-
tion. Otherwise, a drift wave's mode numbers remain constant.

The general spacing of resonant surfaces is in�uenced by the ratio Ls/Lp between the shear
length Ls and the periodicity length, which marks the overall largest length �tting into
the system. Increasing Lz prevents the drift waves from retaining their memory until they
have traveled a full periodicity length, thus decreasing the in�uence of resonant surfaces
by a factor proportional to Ls/Lp.

Due to the memory retention exhibited by the drift waves, global resonant surfaces bring
along a self-mapping problem: In their vicinity, a drift wave will be able to interact with
itself after merely one cycle in the z-direction has passed, well below its correlation length
along the �eldline. This tends to lead to an overestimation of the �ows to the disadvantage
of the turbulent transport levels [83]. Unfortunately, increasing Lz to arbitrarily high values
is not a viable option as this has been found to reduce zonal �ow generation through
arti�cial admission of nonphysical parallel wavelengths [84].

Lz = 2πLs is commonly chosen as an approximate in-between value8 (and, again, in this
work), in compliance with realistic tokamak parameters [83].

4.3.1 Resonant re�ections

Recalling (4.14) and

k̇ = −∇ω (4.29)

(since ∂tk = ∂xk∂tx = vgr,x∂xk = −∂kω∂xk = −∇ω is a general relation which holds true
for every wave as seen in [11]), it is possible to construct a relation between ω, k‖ and k⊥,
explaining why drift waves are re�ected at resonant surfaces.

As seen in (4.26), k‖ = 0 holds true at the resonant surface by de�nition. Thus, k‖ has
to decrease while closing in on a resonant surface. The square root term in (4.14) can be

Taylor-approximated by
√

1− x = 1 + x/2 − x2/8 (with x = 4iαdk
2
⊥ky/

(
(1 + αdk

2
⊥)k2

‖

)
being used), of which only 1 − x2/8 contributes to the real part of ω. It increases for k‖,
appearing to lead to decreasing values of ω. Since ω remains constant though, the radial
wavenumber kx within k⊥ has to decrease to compensate for the decrease in k‖. But since

7Due to this interaction with the drift waves and the thus changed behavior of the turbulent modes,
resonant surfaces may be marked by small spikes in the Reynolds stress picture.

8The self-mapping issue can be abated further by prescribing non-quadratic radial-poloidal domains
with e.g. Ly = 4Lx or Ly = 8Lx [84] together with phaseshifting the main resonant surface away from the
radial center.
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vgr,x → 0 for kx → 0, the radial drift wave group velocity not only decreases, but actually
reaches zero and - instead of turning imaginary - reverses its sign9, thus con�rming that
drift waves exhibit re�ections at resonant surfaces.

Resonant surfaces are also crucial for drift wave growth. Far away from their sphere of
in�uence, k‖ becomes very large, leading to γDW ≈ 0 - instead of the strong values of γDW
experienced in their vicinity10.

Still, little linear drift wave growth is possible as long as shear is present - even after
re�ection or penetration, the drift wave growth dies down again to its initial strength
(not including any additional damping e�ects). The only actual growth that can then
be achieved is through spatial comigration of drift wave eigenmodes, even if the single
eigenmodes decrease in amplitude. This no-growth statement does not hold true in the
shearless case, where kx stays constant and the amplitude grows.

When damping e�ects are considered, high k modes are especially vulnerable. And since
the drift waves exhibit a quasi-Kolmogorov development as described in Section 2.4,
di�usion to the highest wavenumber takes place and damping becomes relevant. This is
also a necessary reaction to the drive at small k, since large-scale modes pro�t strongly
from the resonant backscattering e�ect. On a �rst glance, it is not quite clear which
process claims responsible for this scattering to small wavelengths. The direct drift wave
- drift wave interaction is very weak, especially so for low k and adiabaticity, as it then
only stems from the Laplacian in (4.10). However, another possibility for the scattering
to small wavelengths will be discussed in Chapter 5.

Adiabaticity thus cannot lead directly to drift wave turbulence. As seen in (4.1), or more
precisely, n = φ − 〈φ〉 (with 〈φ〉 being the �ux surface averaged mean of the potential,
implying that adiabaticity only applies to a �ux surface), both the left hand side and
the right hand side must remain constant over time due to (3.36) turning into ∂tn = 0.
This deprives the density of any chance of accessing the free energy stored in the density
gradient. No adiabatic drift wave turbulence can thus develop.

4.3.2 Onset of turbulence

As shown in Subsection 4.3.1, the resistive drift waves are linearly stabilized by the
magnetic shear [79], even more so with increasing collisionality [82]. This picture breaks
down, however, in the nonlinear drift wave regime, when the nonlinear drift instability
is reached. Although the resonant surfaces cannot provoke an enduring growth of the
re�ecting drift waves, it endows them with a short window of opportunity (around their
closest approach and thus highest amplitude, determined by integrating over the entire
approach towards the resonant surfaces) where the likelihood of nonlinear interactions is
drastically increased. Collisions between di�erent wave packets lead to merely a small per-
centage of the amplitude being re�ected, but due to extremely high rates of ampli�cation,

9Also, a glance at the group velocity shows that there can be no place with kx 6= 0 for vgr,x = 0.
10For the drift waves, the resonant surfaces are thus akin to what the Nile river has been since the dawn

of man: Daunting, crocodile-infested waters - lined with the only fertile stretches of land far and wide.
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only around 0.01% of the amplitude is required to undergo this turbulent backscattering
process to achieve overall ampli�cation, and even less so in case of weak shear. The
ampli�cation factor is highest for small k‖ and thus especially so near resonant surfaces.

Therefore, due to the high growth rates exhibited near resonant surfaces, drift waves are
likely turning turbulent there �rst, once they interact nonlinearly with each other on a
sustainable level. After a certain amplitude threshold is overcome11, enough backscattering
occurs to keep up the chain reaction, ultimately �lling the entire domain with strong
turbulence. An initial overshoot is subsequently reduced by saturating nonlinear terms,
preventing in�nite ampli�cation.

4.3.3 Numerical considerations

In the nonlinear case, it suddenly becomes a pressing issue to prevent certain values from
growing arti�cially.

Since in this work most phenomena are examined for their long-term stability, hypervis-
cosities turn into an particularly big problem, especially so in the z-direction. A dispro-
portionate reduction of the gyroradius in comparison to the system size, εn is harmful,
since all gyroradii e�ects as well as all nonlinear drift wave - drift wave interactions cease
for εn → 0, as seen in (3.37). The addition of a special hyperviscosity / hyperdi�usiv-
ity parameter of 4th order (dubbed ν4) to the density equation guarantees the long-term
consistency of the numerical run for reasonable values of εn. It functions as an arti�cial
di�usion term designed to disproportionally a�ect high-frequency modes, dissipating their
free energy before they cross the resolution limit, preventing structure aliasing. This hy-
perviscosity parameter a�ects a variable a via ȧ = −∂x2 (|vx|∂x2a), being proportional to
|vx| since higher |vx| are more likely (and more quickly) to be involved in the creation of
small structures.

ν4 needs to be �ne-tuned rather accurately in order to smooth out the density structures
while not tampering with the correct results (such an occasion can often be identi�ed
easily when structures move ∝ t1/4). Once this is achieved, the hyperviscosity term proves
to be very e�ective in preventing parallel unsmoothness, which could otherwise happen
even at very high resolutions, canceling the v∇-terms occurring at the smallest scales.

Also, a parameter µgrid has been utilized to prevent small-scale high-k⊥ modes from exiting
the system at the maximum frequency and re-entering it with extremely large wavelengths
on the other side by damping them prematurely. The associated Nyquist frequency [85] is
generally de�ned to be 50% of the sampling frequency

fny = 0.5 · fsampling (4.30)

which in this case is given by the system resolution. The maximal occurring frequency
should thus lie below fny in order to ful�ll the Nyquist criterion and prevent high-k-reentry.

11The proportion of quadratic terms versus linear terms scales up proportional to the amplitude.
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While essential during nonlinearity, both µgrid and ν4 are unnecessary in the initial linear
phase (or even harmful, if too low or too high values are chosen), making it imperative for
them to be balanced carefully and to be reevaluated for changes in other parameters.

Due to their similarities, decreasing µgrid is a practical alternative to increasing the
hyperviscosity term.

Another big issue in almost any numerical work are border e�ects, which can become very
prominent by yielding vortices of the same size as the simulation box. Reducing the relative
eddy size by keeping εn constant while increasing Lx as well as Ly solves that issue, while
of course requiring higher nx and ny - at least if the same relative resolution is desired -
thus proving costly to computational resources. Alternatively, if not all physical e�ects are
required for a certain analysis (necessitating control runs, though), nx and ny may remain
the same. The advantage of this reduction in resolution is a better chance to meet the
Courant-Friedrichs-Lewy criterion [86] which requires the time step to be

∆t ≤ ∆x

u
(4.31)

with u being the maximal velocity occurring within the equation system as well as ∆x
representing the mesh width.

Even (radially constant) zonal �ows can occur as purely domain e�ects, when arti�cial
drift waves enter the domain at its borders, slowly increasing the total momentum of
the �ow. However, this can be prevented by holding the outermost areas constant - and
even it this e�ect occurs, it is merely a constant addition of �ow and thus, due to Galilei
invariance, of no danger to the relative results.

A more serious problem can arise due to Alfvén waves [87], magnetohydrodynamic waves
which exist in the interplay between the tension of the magnetic �eld lines and the inertia
of the ions (and electrons), their simplest incarnation being a magnetosonic wave propa-
gating perpendicular to the magnetic �eld. In numerically analyzed Hasegawa-Wakatani
equations as examined in this work, theses waves only appear within arti�cial numerical
parameters. If their velocity comes close to the drift wave phase velocity, however, the
ensuing interaction between Alfvén and drift waves changes many of the system's param-
eters drastically, rendering it more di�cult to achieve zonal �ows. Thus Alfvén transit
time needs to remain lower than the highest occurring turbulence frequency. According
to the Alfvénic dispersion relation, which - without curvature and parallel velocity, and
discarding a hot ion term ∝ k2

⊥ρ
2
s - comes down to

ω2 =
1

(2π2)αm
k2
‖ (4.32)

the Alfvén velocity is de�ned as
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vAlfven =

√
1

(2π)2αm
(4.33)

where the full Alfvén parameter is de�ned as a ratio between the particle pressure and the
magnetic �eld,

αm = q2R
8π (pe,0 + pi,0)

B2

1

Ln
(4.34)

Setting the Alfvén frequency equal to the highest possible frequency yields a relation
between α−0.5

m and the inverse product of number of calculation boxes and the time step:
Thus smaller time steps require smaller values of αm. Equally, lower Lx,y or higher nx,y
lead to increased resolution and maximum frequency, and αm (or the surrogate parameter
αmadd) must be reduced to increase the Alfvén velocity accordingly.

It is important to note that no Alfvén waves exist in a perfectly adiabatic drift wave system:
The electrons adapt instantaneously to the electric potential, thus no magnetic �eld line
curvature distortions form and no Alfvén waves develop.

4.4 A single dimensionless parameter

One of the most important properties of a fusion plasma is the strength of the turbulent
transport, as it is crucial to con�nement. In order to derive a useful transport expression,
the free parameters governing the basic equations (4.9) and (4.10) have to be analyzed. As
introduced in (3.18)

ρ̂s =
ρs
L⊥

= ε1/2n (αds)
2/3 (4.35)

is the only parameter that can in�uence which development this sheared-slab drift wave
system may take - apart from quantization e�ects for insu�cient domain sizes and the
secondary in�uence of the radial positioning of resonant surfaces, as mentioned before.

As de�ned in Section 3.1, ρ̂s is a dimensionless parameter, being the ratio of two length
scales orthogonal to the magnetic �eld, the ion sound Larmor radius ρs and the resistivity
length scale L⊥ - the scale of maximal drift wave growth where the drift wave relaxation
(equilibrium return) frequency equals the diamagnetic frequency (in which (4.9) and (4.10)
have been written originally). ρ̂s < 1 thus marks the regime where the gyroradius is smaller
than the scale where the drift time equals the relaxation time, rendering trelax > tdrift. In
physical units, these two length scales are de�ned as
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ρs =
mi

eB

√
Te
mi

(4.36)

L⊥ =
me

miB

(
πqR

s

)2/3( n0η‖Te

2q
√
miLn

)1/3

(4.37)

where, as usual, me and mi mark the electron and ion mass, Te the electron temperature,
e and q the electron and ion charge, B the magnetic �eld and s the shear. n0 is the back-
ground density, Ln = −n dxdn stands for the density gradient and η‖ is the parallel resistivity.

Now it is obvious that there must be a parameter range for which the ion gyroradius ρs is
dominant (ρ̂s > 1) and one where the resistivity length scale is more important (ρ̂s < 1),
with a dividing line drawn somewhere between two distinct orthogonal length scales12 -
later to be associated with a transition between two di�erent transport regimes.

As discussed in Section 4.3, parallel drift wave trapping by the shear s becomes signi�cant
for high values of ρ̂s, reducing drift wave amplitudes considerably, with larger k‖ implying
a decreased growth rate. Similarly, higher values of ρ̂s correspond to reduced collisionality
and thus increased suppression of the nonlinear instability.

4.4.1 Alfvénic in�uence

Since Alfvénic-like �uctuations have been shown to be in�uential in experimental drift wave
zonal �ow systems [88], it is conceivable that a third, Alfvén-based scale exerts in�uence on
both the drift wave structure and the resulting �ows by interaction with the turbulent drift
wave eddies [87] when Alfvén waves are introduced in addition to the simple ρ̂s-dominated
system as described in (3.37) and (3.38). Implementing a �nite value of αm for instable
drift waves (thus entering the �nite-beta-regime) yields a third time scale, constructed
from the Alfvén velocity and the shear length to give

tAlfven = 2π
√
αmLs (4.38)

yielding a third length scale when compared with the drift wave velocity:

LAlfven = 2π
√
αmαdLs (4.39)

It can be shown, however, that this third scale is without actual implications for the drift
waves discussed in this work. The most important scale-determined system parameter,
the turbulent transport, remains unin�uenced by a change in αm, in this work ususally
chosen to lie between αm = 4e-5 and αm = 6.4e-4, the highest levels of αm which are

12These two length scales correlate with two di�usion processes - one for high ρ̂s that can (among others)
be associated with a gyroring di�usion and an anomal transport process for low ρ̂s.
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compatible with the other numerical parameters if Alfvén waves are not desired (further
lowering of the value increases the risk of numerical irregularities, as discussed in Subsection
4.3.3). Increasing αm does indeed in�uence Alfvén wave generation as expected, but it
neither in�uences the development of zonal �ows - including their asymmetry discussed in
Chapter 6 - nor the turbulent transport (or any other major drift wave parameters). In
fact, steady state turbulent transport remains virtually untouched, with mean values of
the radial density �ux

〈nvx〉 = −〈n∂φ/∂y〉 (4.40)

deviating by less than 1% over several orders of magnitudes of αm, as presented in units of
L⊥ in Table 4.1 where *) denotes an arti�cial αmadd-parameter being present for numerical
stability.

Table 4.1: αm-dependency

αm 0.00000* 0.00004 0.001 0.0004 0.001 0.004

< nvx >L⊥ 0.0688 0.0696 0.00691 0.0692 0.0691 0.0695

Thus, a potential third scale is of no signi�cance for the drift wave development, especially
so in the most relevant ρ̂s = 0.1− 1.0-regime.

4.4.2 Mixing length estimate

In order to compare the transport levels in both scales, a mixing length estimate is uti-
lized, based on a theory originally conceived by Ludwig Prandtl and developed within
the geophysical community [89], which has only recently been applied to cases of plasma
turbulence [90]. The mixing length is the approximate distance that a turbulent eddy is
capable of moving while retaining its original properties (e.g. its density). Once it absorbs
the properties of its new surroundings, the mixing length is exceeded - it is thus analogous
to the thermodynamic mean free path. Consequently, the turbulent particle �ux ~Γ = 〈n1~v〉
(the mean value of the density �uctuations times their total velocity) can be written as

~Γ = −D∇n (4.41)

where the experimental results for the di�usion coe�cient D vastly exceed classical
and even neoclassical estimates including gyro e�ects. Neoclassical transport is mostly
caused by particles trapped on banana orbits which are an e�ect of magnetic mirror-
ing. Since the banana orbit width in a tokamak turns out to be q

√
R/r larger than

the gyroradius, Dneoclassical ≈ 100Dclassical. But still, a major discrepancy remains:
Dturbulent ≈ 10Dneoclassical.
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The mixing length argument-based di�usion coe�cient D has a unit of [distance2/time]
and is usually written as the ratio between the growth rate γ and the square of the (or-
thogonal) wavenumber k2

⊥,

D =
γ

k2
⊥

(4.42)

There is one caveat, however. Although the sheared system is to be analyzed, its eigensys-
tem cannot easily reproduce the development of the zonal �ow states examined in Chapter
5 or be used directly in a mixing length estimate due to its non-orthogonality, which is
caused by the shear-induced time evolution asymmetry. There is no feasible decomposition
for this non-orthogonal, nearly collinear eigensystem, so developing single eigenvectors on
their own is rendered impossible. Strictly speaking, there are no growing eigenmodes for
s 6= 0. Thus the linear properties of these states are still best characterized by the eigen-
value of the unsheared system. Consequently, the general growth rate of modes in the
shearless, nonadiabatic case - a simpli�ed version of (4.19) derived from (4.9) and (4.10),
but without the x∂y-term, marking a linearized wave packet for �xed ~k - applies, being
approximated by a growth rate13

γ ≈
k4
⊥
k2
‖

(4.43)

4.4.3 Two distinct transport regimes

Recalling that (4.9) and (4.10) describe the equation system in units of L⊥ (and thus also
(4.43)), it is possible to determine the mixing length estimate-based di�usive transport for
both scales, in units of L⊥ as well as in units of ρs. The according di�usion coe�cients
are de�ned as

DL⊥ =
γL⊥
k2
L⊥

(4.44)

Dρs =
γρs
k2
ρs

(4.45)

Now, (4.43) is inserted with the additional condition k‖ = 1 (since k‖ is of no concern

for the perpendicular behavior). Focussing at the modes determined by k⊥ = L−1
⊥ in the

L⊥-dominated low-ρ̂s regime yields in units of L⊥ and ρs respectively

DL⊥ |k⊥=̂L−1
⊥

=
γL⊥
k2
L⊥

|k⊥=̂1 ∝ ρ̂0
s (4.46)

Dρs |k⊥=̂L−1
⊥

=
γρs
k2
ρs

|k⊥=̂L−1
⊥
∝ ρ̂2

s (4.47)

13This ansatz is only valid when the wave packet is restricted along the magnetic �eldlines, restricting
lower values of k‖ according to λ/(2π) ≈ 1/k‖ < kx/(sky).
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since k⊥ =̂ L−1
⊥ is simply 1 in units of L⊥ while being ρ̂s in units of ρs.

Similarly, the condition k⊥ = ρ−1
s dominating in the ρs-dominated high-ρ̂s zonal �ow

regime yields in units of L⊥ and ρs respectively

DL⊥ |k⊥=̂ρ−1
s

=
γL⊥
k2
L⊥

|k⊥=̂ρ−1
s
∝ ρ̂−2

s (4.48)

Dρs |k⊥=̂ρ−1
s

=
γρs
k2
ρs

|k⊥=̂1 ∝ ρ̂0
s (4.49)

Here, the drift wave growth rate (4.19) for a �xed k⊥ decreases with increasing values of ρ̂s,
reducing the steady state turbulence levels with it. Additionally, as can be deduced from
(2.23) and (2.24), ρ̂s interferes with unconstrained ~E× ~B-convection, hampering the nonlin-
ear drift wave mechanism, with only weak nonlinearities remaining on top a linear stability.

Now, with (4.46)-(4.49), a simple equation relating between the two unit scales results:

DL⊥

Dρs

= ρ̂−2
s (4.50)

or, checking this result by an analysis of the units occurring the density �ux (which di�ers
only by a constant since the density gradient in Γ = 〈nvx〉 = −D∇n is seen as constant)

〈nL⊥L⊥
−3vxL⊥L⊥/t〉 = 〈nρsρs−3vxρsρs/t〉

⇒ 〈nvx〉L⊥
1

L2
⊥t

= 〈nvx〉ρs
1

ρ2
st

⇒ 〈nvx〉L⊥
〈nvx〉ρs

= ρ̂−2
s (4.51)

where the same unrescaled time scale was employed in both density �uxes and the same
�ux-surface average was taken since this correlates with the approach used in determining
the numerical density �uxes.

This result presented in (4.50) has been veri�ed thoroughly by numerous numerical
parameter scans over ρ̂s for a broad variety of support parameters, with resolutions of up
to 512x512x128 points in the x, y and z directions, up to Lx = Ly = 64 (roughly equal to
50 units of L⊥, which would be equivalent to approximately 8 zonal �ow oscillations) and
Lz = 4 and run times reached far beyond the stationary steady state limit.

As visualized in Figure 4.6 and reproduced in Tables A.1 and A.2, the computational values
of the �ux surface-averaged density �uxes 〈nvx〉 are in agreement with the above calculated
units of the di�usion coe�cients - the numerical values of both being connected as seen in
(4.41). This can be seen by comparing the analytical expectation of the DL⊥-units,
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DL⊥ |ρ̂s→0 → const. (4.52)

for the low-ρ̂s-regime with the numerical evidence for the density �ux

〈nvx〉L⊥ |ρ̂s→0 ∝ ρ̂−0.004±0.02
s (4.53)

o�ering extremely satisfactory accordance with the theoretical result, while in the high-ρ̂s-
regime

Dρs |ρ̂s→∞ → const. (4.54)

is con�rmed - albeit with slightly less precision - to be correct as well:

〈nvx〉ρs |ρ̂s→∞ ∝ ρ̂0.06±0.20
s (4.55)

The higher imprecision of the high-ρ̂s-results is caused by convergence issues in that
regime: As can also be seen in Figure 4.6, where the numerical measurements are pre-
sented, the otherwise fully converged parameters of nx,y = 64 and Lx,y = 8 (all values for
ρ̂s < 0.4, and then the lightest colors for ρ̂s ≥ 0.4) have to be doubled and quadrupled
(plotted as the medium-colored data points for nx,y = 256 and Lx,y = 16 or Lx,y = 32 at
ρ̂s ≥ 0.4) or even octuplicated each (marked by the strongest colors for nx,y = 512 and
Lx,y = 64 at ρ̂s ≥ 0.4) in order to achieve near-convergement. Doubling the radial-poloidal
domain size Lx,y - necessary for approximately every 1.4-fold increase in ρ̂s - without also
increasing the numerical resolution nx,y leads to arti�cial artifacts rather easily, yielding
the approximate requirement nx,y/Lx,y ≥ 8 in order to attain a su�cient resolution.
Doubling nx,y however quadruples the necessary computational power. In addition to the
already slowly evolving steady state for high values of ρ̂s exhibiting a ρ̂4

s-proportionality
(compare (6.4)), doubling ρ̂s within the high-ρ̂s-regime thus provokes an extreme surge of
the computational costs.

Ultimately, while for medium values of ρ̂s, nx,y ≥ 64 with nx,y/Lx,y ≥ 8 necessary14 and
nz ≥ 32 with Lz ≥ 1 are found to be su�ciently converged, nx,y = 128 with Lx,y = 8 are
chosen for ρ̂s < 0.4 and nx,y = 256 with Lx,y = 16 or Lx,y = 32 as well as nx,y = 512 with
Lx,y = 64 beyond (allowing four full zonal �ow wavelengths to �t within the domain). A
smooth transition at the point of parameter change is veri�ed.

Under these conditions, excellent convergence within the numerical system is achieved for
both low and medium values of ρ̂s while the corresponding picture beyond ρ̂s ≈ 0.4 depends
strongly on the chosen domain size. For Lx,y = 8, marked in yellow and cyan, convergence

14Otherwise, reducing the resolution in order to bump the time step (as the Courant criterion is easier
to uphold) together with an increased αmadd would be the easiest option to facilitate such high-ρ̂s-runs.
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Figure 4.6: In this graph, density �ux is plotted versus the dimensionless parameter ρ̂s,
according to the values presented in Tables A.1 and A.2. The averaged computational
data for the density �ux 〈nvx〉 in units of the radial length scale L⊥ (marked in blue)
converges for low levels of ρ̂s and decreases ∝ ρ̂−2

s for higher values of ρ̂s, while the density
�ux in units of the second orthogonal length scale ρs (marked in red) exhibits the opposite
behavior, with a plateau for high ρ̂s following an increase ∝ ρ̂2

s for low values of ρ̂s. Thus,
the transport values in units of ρs converge to a constant for high ρ̂s while those in units
of L⊥ converge for low ρ̂s. The transitional region with respect to the two convergence
regimes positions itself around ρ̂s,transition ≈ 0.15− 0.20 (determined more precisely to be
ρ̂s,transition = 0.185). The reddish density �ux values in units of L⊥ are therefore plotted
increased by a factor of 1/(ρ̂s,transition)2 ≈ 29 in order to be shown in the same graph (and
in order to visualize the transition between the two transport regimes), since by de�nition
they reach a similar level as those in units of ρs only for ρ̂s = 1. For ρ̂s > 0.4, lighter colors
denote less converged data points for Lx,y = 8, Lx,y = 16 and Lx,y = 32, respectively,
while red and blue mark the converged results for Lx,y = 64, illustrating the convergence
issues occurring solely in the high-ρ̂s-regime.

fails. For Lx,y = 16 and especially Lx,y = 32, depicted in di�erent shades of orange and
turquois, near-convergence is reached, however, as veri�ed in even more demanding test
runs, only Lx,y = 64 is truly converged.

Empirically, the following approximate convergence relation concerning the density �ux
in units of ρs for di�erent values Lx,y and ρ̂s (in dimensionless numerical units) has been
established



54 Chapter 4: Drift waves

〈nvx〉ρs,measured = 〈nvx〉ρs,converged −
0.0086 · exp

(
− (Lx,y/8)0.75

)
1 + 0.1 · exp (− (8 + 160/Lx,y) (ρ̂s − 0.5))

(4.56)

The respective numerically converged results approximate the theoretical expectations
very well, yielding the results shown in (4.53) and (4.55).

All results have been thoroughly checked by parameter screenings for the background
velocity V 0, the resolution and scale parameters nx,y,z and Lx,y,z and the hyperviscosity-
related parameters ν4 and µgrid as well as the Alfvénic αmadd - leading to the reference
parameters V 0 = 0.01, ν4 = 5.e-6, µgrid = 0.09 and αmadd = 4.e-5, while nx,y,z and Lx,y,z
were forced to adapt to growing ρ̂s.

Typical error bars for all these runs are around 1% for lower values of ρ̂s, due to certain
persistent �uctuations.

In the zonal �ow regime, they soon become higher (up to 5% for ρ̂s ≈ 0.5) as these runs
have spent less time around the �nal steady state exhibiting fully developed zonal �ows
(transport is increased when �ow rearrangement takes place, distorting the measurements),
and have experienced a more pronounced initial transport overshoot during zonal �ow
formation as well as being less suited for the construction of long-term averages due to
low-frequency �uctuations.

Still, 5% is a decent result, achieved through long-running simulations as well as numerous
veri�cations. Error bars have been reduced so far that they are not even visible within
Figure 4.6 since they are smaller than the squares marking the respective data values.

Despite those initial problems, these numerical parameter scans constitute a considerable
success. Two distinctly di�erent behaviors within two distinctly di�erent transport scales
have been discovered and presented in [91], being consistent with the theoretically expected
dominance and leveling-out of ρs for high values of ρ̂s and of L⊥ for small ρ̂s.

These �ndings di�er from previous expectations [92], where the nonlinear instability was
thought to cut o� for higher values of ρ̂s - as appears plausible when only looking at the
decrease in drift wave-units DL⊥ with rising ρ̂s. But due to a switching of the turbulence
scale length from a drift wave-based unit L⊥ to ρs for su�ciently large values of ρ̂s, Dρs

has actually been found to converge to a constant instead of decreasing to zero.

Interestingly, the transition between these two regimes occurs empirically at ρ̂s ≈
0.15− 0.20, which, as will be seen in Chapter 5, coincides very well with the onset of zonal
�ow formation at the beginning of the ρs-regime, requiring ρ̂s & 0.15− 0.20.

Now, the mean values over several simulation batches each are presented. The density
�uxes (in dimensionless numerical units) in the late-time stable state, depending on ρ̂s,
and in the units of L⊥, are measured to be as seen in Table A.1.
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This o�ers very good qualitative agreement not only with the theoretically expected decline
and experimental transport coe�cients as discussed in [63]15, but also with some of the
�rst sheared drift wave turbulence examinations performed in 3D [63] (albeit those being
limited to ρ̂s ≈ 0.05− 0.16), while the previously unexplored density �ux in units of ρs is
found to be as shown in Table A.2.
So although −n∂φ/∂y|L⊥ exceeds −n∂φ/∂y|ρs only beyond ρ̂s = 1, the transition between
both transport plateaus occurs considerably earlier, at ρ̂s ≈ 0.15− 0.20.

All of these results have been derived by varying εn. Comparing them with those based on
varying αd or s yields very good agreement, as can be seen exemplarily in Table 4.2, (with
all values being measured in units of L⊥), reinforcing that ρ̂s is indeed the only necessary
parameter to describe the system.

Table 4.2: Comparison of εn, αd and s

ρ̂s 0.201 0.402

〈nvx〉εn 0.0898 0.0235

〈nvx〉αd 0.0893 0.0246

〈nvx〉s 0.0921 0.0249

As expected theoretically by recalling the de�nition of ρs in (3.15), higher values of ρs (cor-
relating with higher values of εn) imply increasingly larger drift wave eddies in comparison
with Lx. In numerical simulations, this can already be seen with the naked eye, but it
has also been con�rmed by an analysis of the peaks and cuto�s of the Fourier-transformed
drift wave density (see Figures 6.4 and 6.7) - and indeed, for a full set of parameters in
zonal �ow-exhibiting drift wave turbulence, drift wave eddies scale almost perfectly with
ρs while not at all with L⊥.
The same holds true for the drift wave scale itself, as measurements of the maximal fre-
quency in the spectrum show.

15There is a quantitative, systematical di�erence in the precise transport values, however. This originates
most likely in a di�erent hyperviscosity term utilized in [63], together with a smaller resolution and smaller
domain size, which may not have been su�cient to yield fully converged results.





Chapter 5

Zonal �ows

This chapter deals with the plasma �ow phenomena collectively known as zonal �ows.
There are also atmospheric zonal �ows, large east-west storm bands both on Earth (jet
streams being a prominent example) and on gas giants (such as Jupiter's band structure),
which are important for their respective body's climate and will be discussed in more detail
in Chapter 7, but for now it is all about ~E × ~B plasma �ows, currently being a topic of
major research, both theoretically and experimentally.

Zonal �ows, which occur ubiquitously in drift wave turbulence, are thought to be an
important component in the search for an explanation of the so-called H-mode, a special
plasma state leading to higher energy con�nement. Explanations usually stress the �ows'
eddy-shearing properties with high �ow shear leading to a tearing apart of radially moving
turbulent structures, ultimately reducing turbulent transport (and thus radial heat �ux),
thereby increasing energy con�nement time. This is of major importance for economical
operation scenarios of future commercial fusion reactors, whether they might be tokamak
or stellarator-based.

In Section 5.1, the fundamental ideas behind zonal �ows are introduced.

Since this work seeks to analyze drift wave based zonal �ows, Section 5.2 deals with the self-
interaction properties of turbulent drift wave vortices, introducing the concept of Reynolds
stresses. These stresses are capable of feeding (or destroying) the zonal �ows, providing
the all-important link between drift waves and �ows. Furthermore, turbulent transport
[25] and drift wave propagation under the in�uence of a shear �ow are derived, explaining
a vital asymmetry in drift wave-related �ow behavior between the negative and positive
�ow regimes.

Consequently, Section 5.3 concerns itself with the change in zonal �ow strength due to
drift wave self-focusing, introducing a drift wave action invariant. The main goal of this
section is to determine the conditions under which growth of zonal �ows occurs. Finally,
the subsequent retroaction of the �ow on the drift waves is discussed.

With the complex zonal �ow drift wave interactions examined, Section 5.4 explains the
parameter studies undertaken within this drift wave zonal �ow regime, motivating the
signi�cance of the single dimensionless parameter ρ̂s, including two regimes separated by

57
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a ρ̂s-threshold: The zonal �ow regime for high values of ρ̂s - where the �rst examples of
Hasegawa-Wakatani-based zonal �ows are realized for ρ̂s & 0.15−0.20 - as well as a purely
turbulent regime for values below. An analytical model for the zonal �ow regime transition
is reached through a balance of a ρ̂s-dependent resonance gradient derived via a mixing
length argument and the shear �ow gradient, leading to either one of the two possible
Reynolds stress asymmetries, with the high-ρ̂s Reynolds stress being in favor of zonal �ow
generation.

These �ndings, together with Chapter 4 - especially so the two transport scales described
in Section 4.4 - will form the basis for the bifurcation-related zonal �ow parameter studies
undertaken in Chapter 6.

5.1 Basic concept

Zonal �ows are linearly stable poloidal ~E × ~B-�ows, denoting poloidal and toroidal mode
numbers equaling zero. They are introduced comprehensively in [11]. Zonal �ows require
radial potential gradient �ux surface averages (as in Figure 5.1), meaning that between
any given �ux-surface (any poloidal-toroidal plane spanned by ~j and ~B), there needs to
be a mean electric �eld oriented in the x-direction. Usually, zonal �ows appear radially
nested, with alternating positive - those in the electron diamagnetic drift direction - and
negative �ows.

Zonal �ows ultimately gain their energy from gradients [93], mediated via turbulence - or
more speci�cally, in the case of the system analyzed in this work, via drift wave turbulence.
Turbulence and �ows balance each other, although their relationship seems to be more
complex than the often-cited predator-prey-model implies [54].

It is important to note that while zonal �ows only occur naturally within nonadiabatic
surroundings (since adiabatic drift waves cannot grow to achieve nonlinearity on their
own), it is possible to create purely adiabatic zonal �ows by prescribing extremely high
initial perturbations. The resulting zonal �ows exhibit very high frequencies and symmet-
ric patterns [11].

There is a second, more common set of zonal �ows, non-stationary modes which periodically
change their direction. These geodesic acoustic modes couple to sound waves and follow the
curvature of the magnetic �eld lines until their compression in the inner high-�eld region
of e.g. a tokamak forces them to revert their direction, leading to oscillatory behavior.
In toroidal geometry, and omitting the essential parallel balance �ows, zonal �ows only
become possible when geodesic acoustic modes go full circle.

Since this work focuses itself on slab geometries, geodesic acoustic modes [27] will not be
examined in any more detail. More information about the state of research on geodesic
acoustic modes can instead be found in [94].

Zonal �ows can most easily be identi�ed by performing a radial (x-direction) Fourier trans-
formation of vy, localizing the highest-amplitude wavenumber.
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Figure 5.1: Density corrugations and electrostatic potential are plotted in extremely high
resolution in the radial-poloidal x-y-plane for weak emerging zonal �ows. While the
poloidal �ows are easily recognizable in the potential on the right hand side, their e�ects
on the density on the left hand side are rather subtle - shearing has just begun.

5.2 Drift wave self-interaction

Drift waves appear as localized wave packets, superpositions of waves within an usually
Gaussian range of wavenumbers k. For nonzero gyroradii, di�erent drift wave wavenumbers
interact with each other nonlinearly, leading to a number of crucial phenomena.

5.2.1 Reynolds stresses

Reynolds stresses are what feeds the zonal �ows [38]. The Reynolds stress tensor is mathe-
matically derived by averaging over the Navier-Stokes equations in a turbulent �uid, taking
account of the �uctuations in the �uid momentum. It is de�ned as

∂t 〈vy(x)〉 = −∂x 〈ṽxṽy〉y,z (5.1)

where 〈〉y,z denotes averaging over y and z, a magnetic surface [70].
Now, 〈ṽxṽy〉y,z marks the y-z-averaged �ux of turbulent y-momentum in x-direction and
vice versa (it has to be symmetric due to its nonexistent rotation) - and thus the x-y-
component Πxy of the Reynolds stress Π, since
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Figure 5.2: Development of a typical zonal �ow for ρ̂s over time (in units of t0), pictured
versus radius in units of L⊥: In the beginning, while the initial drift wave amplitude start
to grow from low levels, no poloidal shear �ow activity can be seen. Later, the drift waves
turn nonlinear and develop into full-blown turbulence, yielding chaotic �ows through local
Reynolds stresses. These �ows �nally align into the heavily structured large-scale �ows
commonly referred to as zonal �ows. In the case of ITG modes[75], these satisfy a constant
intrinsically determined wavelength condition.

Πxy = 〈(−∂yφ) (∂xφ)〉 (5.2)

where −∂yφ and ∂xφ can be identi�ed with the x- and y-components of the ~E× ~B-velocities,
with the �nite �ux surface average of

(
~E × ~B

)
poloidal

signifying the zonal �ow velocity

vZF = vy(x) ≡ 〈∂xφ〉y,z (5.3)

Of course, Galilean invariance is upheld. For large-scale �ows (large when compared to
the turbulence length scale), this implies that the Reynolds stress may only depend on the
shearing rate leading to a derivative of the poloidal �ow as in

∂tvy(x) = −∂xΠxy(v
′
y) = −Π′xy(v

′
y)v
′′
y (5.4)

being in�uenced by its own second radial derivative as well as the radial derivative of the
Reynolds stress.
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In order to interpret Reynolds stresses graphically, it is useful to consider a number of
simple cases. Imagine f.e. y-momentum moving in the x-direction, weakening on its way
radially outward. According to (5.1), the right hand side is positive, and 〈vy〉 must thus
increase over time - implying that wave components which start to drift later are stronger.
Equivalently, a reduction of vx in x-direction implies compensation by an increase in
〈vy〉 (via ∂t 〈vy〉 > 0), because density continuity could otherwise not be upheld. In
the eddy-picture, shear �ow is enhanced by vortex peeling [78], yielding nonlinear in-
stability by breaking up the eddies and feeding their v-components into the respective �ows.

Consequently, the momentum conveyed by the turbulent Reynolds stress plummets into
the zonal �ows, fueling them (since the Reynolds stresses are aligned parallelly to the �ow
shear) with accumulated drift wave energy, allowing the �ow amplitudes to ultimately
exceed the drift wave amplitudes by far. As will be seen in Subsection 5.2.2, the �ows act
much like the resonant surfaces discussed in Section 4.3, re�ecting the drift wave velocity
component orthogonal to the zonal �ow direction and absorbing the parallel component
(only yielding nonzero mean values for anisotropies within the turbulence), equivalent to a
large-scale ocean wave driven by the wind. This conveying of momentum and energy from
drift waves into the zonal �ows leads to their increasing self-focusing - without it, only
mean ~E × ~B-, but no zonal �ows could exist - a growth which only stops once it becomes
balanced by nonlinear and collisional �ow damping.

5.2.2 Drift wave propagation and self-focusing

Drift waves propagate radially according to (4.5), or more precisely

vgr,x,cold =
∂ω

∂kx
=

−2kxkyρ
2
s[

1 + ρ2
s(k

2
x + k2

y)
]2 (+hot) (5.5)

But because of the introduction of zonal �ows into the picture, the radial wavenumber kr =
kx now becomes shear-�ow-dependent (it is important to note that ky remains unchanged
due to translational invariance in the poloidal direction) as seen in [47]

kx = kx0 −
∂vy
∂x

t|ky| (5.6)

where vy marks the poloidal shear �ow1.

In the limit where
(
k2
x + k2

y

)
ρ̂2
s � 1 this yields a radial group velocity of

vgr,x ≈ −2kx0kyρ̂
2
s + 2v′ytk

2
y ρ̂

2
s (5.7)

1Additional e�ects arise if this assumption breaks down. However, such a scenario would be dominated
by physically irrelevant short wavelength �ows.
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By changing the radial drift wave wavenumber kx (with ky remaining constant), zonal �ows
act like force �elds. Since v̇gr,x ∝ +v′y there is a sign change at the positive �ows (those in
the electron diamagnetic drift direction) from plus to minus not only of the �ow shear v′y,
but also of the time derivative of the radial group velocity.
As seen in Figure 5.3, this has grave implications, as it implies drift wave propagation in the
positive radial direction for positive �ow shear and vice versa propagation in the negative
radial direction for negative �ow shear. Thus, zonal �ow maxima attract drift waves while
zonal �ow minima repulse them. Since this work is concerned with turbulent systems,
this result is equivalent to claiming that negative �ows (those in the ion diamagnetic drift
direction) repulse the turbulence, comparable to the resonant surfaces covered in Chapter
4.
Modes with insu�cient kx0 cannot even penetrate these �ow minima, but remain trapped
in an oscillating motion around the �ow maxima. Drift waves thus can get stuck in the
zonal �ows if only their vgr,x is small enough.

There is an obvious caveat in the basic picture. Drift waves originating at the negative
�ows are driven through an area of high �ow shear around the zero crossing of vy. There,
according to (5.6), |kx| increases strongly. But now, the extra term in the denominator in
(5.7) becomes non-negligible and the limit

(
k2
x + k2

y

)
ρ̂2
s � 1 breaks down, yielding instead

the following orthogonal relation for high enough |kx|:

vgr,x ≈ −
2kx0ky

ρ̂2
s

(
k2
x + k2

y

)2 +
2v′ytk

2
y

ρ̂2
s

(
k2
x + k2

y

)2 (5.8)

so that |vgr,x| → 0, resulting in the drift waves becoming stuck in steep zonal �ow gradients.

This results in two essential insights: Firstly, negative zonal �ows (those opposite to the
electron diamagnetic drift direction) repulse the drift wave turbulence, while positive zonal
�ows serve as attractors, leading to a self-focusing behavior of drift waves. Secondly,
very high �ow shear is able to slow down the drift waves to the point of immobilization,
preventing them from reaching the zonal �ow maxima.

5.3 Drift wave impact on zonal �ows

The implications of these concepts for zonal �ows are profound. As discussed in the pre-
vious section, drift wave propagation is intrinsically linked to Reynolds stresses 〈ṽxṽy〉y,z,
exercising a signi�cant in�uence on the zonal �ows themselves.
A measure for the increase of zonal �ow strength due to drift wave self-focusing is the
intensity of the drift wave action invariant N(~x,~k) [95, 11], a conserved quantity of the
drift wave - drift wave interaction which, for drift waves, equals

Nk =
(
1 + k2

)2 |φk|2 (5.9)
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Figure 5.3: At the top, a sinusoidal shear �ow vy (with v
′
y = ∂tvy) is plotted versus radius.

Taking the derivative of (5.7) yields v̇gr,x ≈ 2v′yk
2
y ρ̂

2
s ∝ k2

yv
′
y, marked by arrows. Thus,

the drift wave group velocity is found to be repulsed by the negative �ows (vy < 0) and
attracted by the positive ones. The second part contains the drift wave phase space plot,
with radial position aligned along the x-axis and group velocity along the y-axis.
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the time derivative of which can generally be de�ned as

∂tN~k = −∇~x
(
N~k · ~vgr,~k

)
−∇~k

(
N~k(x) · ~̇k(~x,~k)

)
(5.10)

yielding the amplitude of drift wave attraction or repulsion, with the only assumption
going into (5.10) that it can be described as a wave packet. The �rst term on the right
marks the convergence of a wave packet due to ~vgr while the second term needs to be
introduced due to the k-changing e�ect of shear �ows, shearing apart wave packets. It
describes the divergence of a �ux in the direction of the ~k-wavenumber, which enables it
to in�uence radial wavenumbers of wave packets - while Reynolds stresses merely in�uence
the �ow.

It can be shown [20] that

~̇k = −~∇x~v · ~k0 = −~∇xω
(
~k, ~x

)
(5.11)

a result which can be compared to the Fourier-transformed force equation in quantum me-
chanics, where the negative gradient of the energy (speci�ed by the frequency) corresponds
to the underlying force, a change in momentum. For drift waves as well as in quantum
mechanics, a force �eld changes the frequency of a wave, with the only condition necessary
for E(~k)/ω(~k) = Nk/2 = const. being semi-adiabatic behavior so that the shearing occurs
slowly in comparison with the drift wave oscillation. (5.11) thus leads to

∂tN~k = −∇~x
(
N~k · ~vgr,~k

)
+∇~k

(
N~k(x) · ~∇x(~v(~x) · ~k)

)
(5.12)

= −∇~x
(
N~k · ~vgr,~k

)
+ ky (∂xvy) (∂kxN) (5.13)

where the second equivalence is only valid for drift waves with strictly poloidal zonal �ows
for which

−~∇xω
(
~k, ~x

)
= −~̂x∂x~vy · ~ky (5.14)

with ~̂x marking the unit vector in x-direction.

Now it is imperative to check which initial density distribution is capable of leading to a
self-focusing solution. Since the drift wave frequency needs to decrease during the self-
focusing process for it to put energy into the development of zonal �ows, and since this
frequency depends on the wavenumber k via the dispersion relation ω = ω(~k), the initial
wave packet determines the properties of any drift wave self-focusing.

In the adiabatic case, (4.3) holds true, leading to vgr,x = −2kxky/(1 + k2)2 [11] and thus



5.3 Drift wave impact on zonal flows 65

〈vxvy〉 = −
∫
Nk(1 + k2)−2kxkyd

3k =
1

2

∫
Nkvgr,xd

3k (5.15)

Utilizing the Reynolds stress relation as well as the �rst term of the drift wave action
invariant (5.10) (the second gets eliminated due to the divergence in k-space),

∂tvy = −∂x 〈vxvy〉 = −1

2

∫
∂xNkvgr,xd

3k =
1

2

∫ ∫
∂tNkd

3kdy (5.16)

leads to a simple relation between the change in zonal �ows and the change of the integrated
wavenumber density

∫ ∫
(Nk −Nk0) d3kdy (where k0 = k, t = 0)

vy = vy0 + 2

∫ ∫
(Nk −Nk0) d3kdy (5.17)

So the zonal �ow velocity changes exactly alike the integrated wavenumber density.

5.3.1 Conditions for growth

The implications of these �ndings are not to be underestimated. With a common starting
point being no zonal �ows whatsoever (vy = 0) and an initial localized distortion in N ,
this distortion tends to spread out while at the same time decreasing in peak strength.
Subtracting the initial state from the �nal one yields a vy-dip in the center and an increase
in vy further out. For periodic distortions in N , small periodic vy-distortions with the
same wavelength develop: Zonal �ows.

Perturbation theory is applied to (5.13) in order to determine vy in more detail:

∂tNk = −vgr,x∂xNk + kyv
′
y∂kxNk0 (5.18)

A Fourier transformation yields

(−iω(k) + iqvgr,x)Nk = iqkyvy∂kxNk0 (5.19)

and thus

Nk =
qky

qvgr,x − ω
∂kxNk0vy (5.20)

where q 6= k since q is the wavenumber in x-direction of the Nk-distortions and k marks
the wavenumber in y-direction the drift waves
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Figure 5.4: The density picture in the radial-poloidal plane is depicted in the upper row
(in units of L⊥), with the corresponding shear �ows vy plotted below. Initial small-scale
seed �uctuations at t0 turn into full-blown drift wave turbulence (t0 = 13), with a zonal
�ow pattern emerging (t0 = 35) and �nally saturating (t0 = 120).

With vy = 2
∫ ∫

Nkd
3kdy from (5.17), this leads to

vy = 2

∫ ∫
qky

vgr,xq − ω
∂kxNk0d

3kdyvy (5.21)

Around vgr,x = ω/q, a resonance occurs, meaning that drift waves drifting at approxi-
mately this velocity have the largest in�uence on zonal �ow growth.

Taylor expansion to �rst order, followed by partial integration replacing the drift wave
ω(k) with the k-independent zonal �ow Ω2, retains only the second term and thus

vy = − 2q

Ω2

∫ ∫
kyvgr,x∂kxNk0d

3kdyvy = −χ 2q

Ω2
vy (5.22)

2For this, qky/(vgr,xq − ω) ≈ −qky/Ω(1 + vgr,xq/Ω).
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For χ < 0, ω becomes real, leading to oscillatory behavior of vy. For χ > 0, however, ω
becomes imaginary and zonal �ow growth becomes possible.

But is χ > 0? With

vgr,x = −2kxky/
(
1 + k2

)2
(5.23)

the integrand in χ becomes

−2kxk
2
y/(1 + k2)2∂kxNk0 (5.24)

Assuming symmetric initial Nk0, a positive peak in Nk0 yields positive ∂kxNkx-values for
kx < 0 and negative ones for kx > 0. Multiplying this with −kx provides an entirely
positive function with two peaks, thus yielding χ > 0 - while an initial dip in Nk0 leads to
χ < 0.
Accordingly, initial positive distortions in Nk0 are capable of leading to zonal �ow growth.

Inserting vgr,x into (5.22) yields the zonal �ow wavenumbers [20], while a rough long-term
estimate based on the ansatz Dt

∫ ∫
Nk = 0 for a drift wave 'quantum' with cs = vgr,x

(drift waves at T = 0 are monochromatic) produces a theoretical zonal �ow wavelength
expectation of

λ ≈ 2qky

√∫ ∫
Nk0d3kdy = 2qky

√
Eky/Ω (5.25)

In reality, for drift waves the exact zonal �ow wavelength has been found to depend on
the past history of the system3, down to the gyroradius scale (since �ows with smaller
wavelengths grow faster) if high-frequency high-amplitude random noise is prescribed. Any
large-scale arti�cial initial �ow pattern will stay at the same λ and grow into a saw-tooth
pattern with a rectangular shearing rate function, as seen in Figure 5.5. However, if no
dominant history is present, the zonal �ows will behave similarly to the ITG case, with
the same zonal �ow λ emerging despite di�erent initial n-distributions.
These resulting �ow patterns (albeit not the only stable ones) will be of the order of the
turbulent scale length ρs whenever zonal �ows are formed from initial random noise, since
larger �ows are excited less strongly due to the radial derivative operator seen in (5.4)
(smaller �ows are prevented due to Larmor radius e�ects).

Zonal �ow amplitude, on the other hand, is determined by the nonlinear saturation process
in combination with the amount of �ow generated through Reynolds stresses in a given time
frame. Since the drift wave system's nonlinear interaction is concentrated in the vorticity

3For ITG modes on the other hand, the zonal �ow wavelength is prescribed naturally [75]: The same
zonal �ow pattern will always emerge no matter the initial n- or N -distribution.
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Figure 5.5: An arti�cially prescribed poloidal �ow is plotted versus radius. The initial �ow
pattern is marked by the dotted line, while the continuous line signi�es the �nal steady
state. As can easily be seen, the arti�cial �ow wavelength remains stable. Flow shear grows
until a maximum value is reached, with an asymmetry in behavior when the positive and
negative �ow peaks are compared. The latter features will be explained in more detail in
Chapter 6.

equation, which increases proportionally to the level of nonadiabaticity (a variable that
is capped at moderate values in this work), only moderate zonal �ow amplitudes can be
reached. In addition, due to the inherently medium-to-high wavenumbers of the associated
nonadiabatic sheared drift wave modes, some of the interaction is concentrated in drift wave
- drift wave events, tearing apart the eddies rather than fueling the �ows.

More speci�cally, the zonal �ow shearing rate can be equated with the turbulent drift wave
growth rate since the radial derivative of any velocity is nothing but a frequency. According
to the Waltz criterion (described in [11], among others), for every drift wave mode with
its growth rate γ there exists a shearing rate against which the drift wave growth rate
cannot prevail, resulting in a dampening of the drift waves. This basically comes down to
a condition for the �ow shear level necessary for suppression of all drift wave turbulence,
which of course concurs with the maximal �ow shear possible since the existence of drift
wave turbulence is required for shear �ow growth mediated by Reynolds stresses4.

4Of course, this is merely an order-of-magnitude-argument. Shear �ows may even exceed this apparent
boundary through secondary e�ects when the drift wave mode characteristics are changed signi�cantly,
e.g. for extremely small drift wave ky and high k‖. On the other hand, if the drift wave kx becomes
too high in comparison with ky and the gyroradius, only negative Reynolds stresses can be caused by the
turbulence, transferring energy from the �ows into the drift waves, exceeding both shear �ow and resonant
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Here, the �nal positive and negative �ow shearing rate plateaus following from the saw-
tooth-shaped large-scale �ows presented in Figure 5.5 correspond to zero Reynolds stress.
The �ow pattern is stable for Π′xy > 0 at the location of the maxima and −Π′xy > 0
around the minima - as discussed in Subsection 5.4.3 - while it can be excited from an
initial noise distribution for Π′xy(vy = 0) < 0.

5.3.2 Zonal �ow feedback

It has been shown in Chapter 4 that the direct drift wave - drift wave interaction is too weak
(even more so for adiabatic drift waves) to actuate scattering to high wavenumbers. As
another source for this process, zonal �ows have been proposed. Accepting the paradigm
of a predator-prey model, the zonal �ows are fueled by drift waves via Reynolds stresses
(which in turn are required to lose energy), while at the same time shearing the drift wave
eddies apart [23], serving as predators to their prey [52].

However, recalling that re�ection at resonant surfaces serves as the main source of drift
wave growth, and since zonal �ows provide a similar ampli�cation through re�ection, some
doubt is cast concerning this picture. Furthermore, the drift wave modes trapped - �ber
optics-like - within the positive �ows have been veri�ed numerically to exhibit overpro-
portionally high amplitudes, as shall be seen in Chapter 6, especially so in Figure 6.1,
resembling trapped prey thriving in close proximity to its predator as well as reproducing
strongly in the high-shear regions in between.

Further evidence gained via NLET also suggests that the predator-prey model falls short
of its expectations in reality, with the observed behavior being more complex. Neither
does drift wave turbulence under all circumstances fuel the zonal �ows, nor does a rise of
zonal �ows necessitate a drop in drift wave turbulence intensity: More often than not, the
�uctuations in the level of the prey are not caused by the predator.

If anything, a predator bifurcation arises, with one type (the negative �ows) expelling the
prey, and the other (the positive �ows) harboring it.

5.4 Zonal �ow regime

5.4.1 Numerical parameters

The zonal �ow studies presented in this work have been carried out only after external
distortion factors could be excluded. Most importantly, the issues discussed at the end of
Chapter 4 - (arti�cial) hyperviscosities, the Courant e�ect and Alfvén waves - as well as
parallel velocity e�ects had to be prevented.

Arti�cial background �ows posed an additional problem. These could not be eliminated
completely, as they were instrumental in preventing small-scale arti�cial �uctuations, but
they needed to be reduced to such an extent that they did not in�uence the actual �ows.
A viable balance has been reached where these �ows are not only constant in the radial

surface potential e�ects discussed in Subsection 5.4.3. This can already occur far below the actual shear
�ow maximum threshold.
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Figure 5.6: For three di�erent values of ρ̂s, poloidal �ow is plotted versus radius (in units of
ρs) and time (normalized to t0), together with the concurrent density �ux averaged over the
entire domain. Exponential growth occurs after the onset of drift wave turbulence at around
t0,onset ≈ (ρ̂s/0.14)3.5. Nonlinear saturation kicks in after t0 ≈ 2t0,onset, accompanied by
an initial overshoot in the density �ux during the chaotic �ow phase. Density levels �nally
settle down into a stable, barely irregular state after full zonal �ows emerge at around
t0 ≈ 3t0,onset (with mere transitional �ows achievable for ρ̂s ≈ 0.14). Flow development
advances according to the ρ̂3.5

s -proportionality (see (6.3)), with a ρ̂−2.0
s -proportionality for

the density �ux amplitude in the zonal �ow regime as shown in (4.49).
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direction (and thus without direct in�uence on the drift wave turbulence) but also smaller
than the physical �ows by around two orders of magnitude, yielding excellent convergence.

Border e�ects proved devastating at �rst, but they were �nally suppressed by implementing
two small stripes at the rims where density was held constant for the entire duration of the
run, preventing the accumulation of arti�cial drift waves enhancing the �ows. Optimizing
this procedure, only the outer 2-5% on each side had to be discarded from the �nal results.

While all of these issues had to be handled, retaining tightly tweaked parameters proved
crucial in order to prevent disproportionate resource consumption levels. Typical com-
putation times for high-ρ̂s-runs with resolutions of nx,y ≥ 256 and nz ≥ 645 leveled
out to around 24 hours on 128 to 256 processors. All of the consistency and conver-
gence scans performed - where parallel velocities, arti�cial (hyper)viscosities, system
sizes, resolutions and the likes were tested thoroughly - had in between the parameters
(all in the dimensionless units derived in Chapter 3) shown in Table 5.1, close to their
respective computational sweet spot, being physically sound6, yet not too time-consuming.

Table 5.1: Numerical run parameters

radial-poloidal resolution nx = ny = 64− 512
toroidal resolution nz = 16− 128
radial-poloidal system size Lx = Ly = 3− 64
toroidal system size Lz = 0.5− 8
grid step 1.9 · 10−3 − 3.1 · 10−2

time step 2.1 · 10−5 − 3.4 · 10−2

run time 8.8 · 101 − 1.2 · 103

After assuring that physical accuracy could be provided, and su�ciently large domains
could be described, the e�ect of the three main parameters in (3.37) and (3.38), the drift
wave velocity αd, the length scale parameter εn and the shear s, was examined. One of the
most important �ndings during these runs was that that the dimensionless parameter ρ̂s
from (3.18) in (4.9) and (4.10), replacing αd, εn and s in (3.37) and (3.38), could indeed be
veri�ed empirically to be the only parameter determining the evolution of the zonal �ows
- as it had been shown for the transport levels as well.

5.4.2 Regime transition

Zonal �ows do not occur for all values of ρ̂s. While in theory there is no reason why zonal
�ows should not exist for very high ρ̂s, in reality this is hardly achievable due to their
slow development in this regime, and, even more pressing, the need for higher resolutions
(as discussed in Chapter 4). Thus, the already long-scale simulations quickly become

5The characteristics in the z-direction have been found to have little impact on the zonal �ow structure,
yielding a potential for economization which is utilized in Chapter 6.

6E.g., λZF has been invariant under these resolutions with a maximum mean value departure of 3%.
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uneconomical to carry out beyond ρ̂s > 0.5− 0.8 (as will also been in (6.3)).

For small ρ̂s however, the picture is di�erent: As can be seen in Figure 5.6, no zonal �ows
occur until a relatively sharp boundary at around ρ̂s ≈ 0.15 − 0.20 is reached. This limit
coincides very well with transition between the two transport regimes dominated by the ρs
and L⊥ length scales respectively (see Section 4.4). The regime where ρ̂s & 0.15 − 0.20 -
the only regime where stationary, regular zonal �ows develop deterministically - correlates
with ρs being the dominant length scale.

This behavior can be motivated by noting that higher ρ̂s causes more adiabatic7 behavior
with next to no shift between n and φ in (4.9) and (4.10) remaining, and thus with the
e�ective k‖ of the relevant drift wave modes increasing (while increasing k⊥ yields more
nonadiabatic behavior instead). But increasingly adiabatic circumstances correlate with
decreased nonlinearity, implying a rather weakly nonlinear system - such as it occurs
within the well-structured zonal �ow regime. Of course, a certain level of nonadiabaticity
is still required for zonal �ows to develop in the �rst place, implying that zonal �ows
progressively abate for high ρ̂s - albeit for values far beyond ρ̂s ≈ 0.5− 0.8. However, this
is insu�cient to explain the rather sharp transition occurring around ρ̂s ≈ 0.15− 0.20.

Zonal �ow ampli�cation (as discussed in Subsection 5.3.1) of high-ρ̂s-�ows appears to follow
straightforwardly from the forces on drift waves discussed in (5.7) in combination with
the �ow response in (5.17) mediated by Reynolds stresses (5.1). It is the fundamentally
di�erent behavior of the low-ρ̂s-case with no �ows which seems to have to be explained.

5.4.3 A balance of gradients

A more precise explanation of this transition is indeed possible (and is presented in [91]).
After some deliberation, the most important puzzle piece has been found in the resonant
surfaces, or, more generally, in resonances. As discussed in Section 4.3, resonances are
de�ned as the radial position where k‖ = 0 - around which drift wave growth is maximized.
Now, even �nite-sized drift wave eddies feel a localized resonance, become re�ected and
experience growth for a certain amount of time. Every resonant surface can be associated
with an approximate resonant surface potential based on a mixing length argument such as
the one used in Subsection 4.4.2, with the typical drift wave eddy mixing length signifying
the distance over which the resonant surface potential exerts a measureable e�ect on the
drift waves, resulting in a frequency gradient length of the resonances. But the distance
between two resonant surfaces depends on the gyroradius, increasing linearly with ρs (and
thus with ρ̂s). A similar increase due to higher ρs occurs for the mixing length distance -
thus reducing the resonant surface gradient as ρ̂s grows.

Seeding drift waves at the location of the resonant surfaces causes symmetrical propagation
away from the point of initialization, bringing about Reynolds stresses8 (with di�erent
signs on both sides). However, this picture becomes asymmetric once a shear �ow is added

7Adiabatic behavior also correlates with a decreased likelihood of Kelvin-Helmholtz instabilities which
are far more common for low-ρ̂s-drift waves or ballooning modes.

8These stresses are directly linked with the radial group velocity. The existence of vgr,x implies the
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on top, e�ectuating an additional potential superposed on the resonant surface potential.

Two cases are possible. In the �rst one, the shear �ow gradient remains smaller than
the resonant surface gradient ∂xrml based on the radial resonance mixing length distance
potential rml. The normal �shbone shape is distorted due to deceleration down the �ow
gradient (as they are drawn in the direction of the gradient) on the one side and acceleration
on the other, but it remains qualitatively the same. The downhill modes experiencing
deceleration while drifting away from the resonant surface spend more time in the vicinity
of the resonance than the others, growing stronger in return (as seen on the left hand
side of the top left graph in Figure 5.79, where the �ow gradient is positive). Since the
stronger-growing modes thus correlate with the ones moving downhill, and since they cause
Reynolds stresses which weaken the shear �ow translating the propagation asymmetry into
a Reynolds stress asymmetry, no zonal �ows can grow in this system. This case correlates
with low values of ρ̂s, since low ρ̂s implies high resonant surface gradients.

Increasing the shear �ow or reducing the resonant surface gradient (so that the former
triumphs over the latter) yields the second case, which behaves di�erently. Little �shbone
propagation pattern similarity remains. Instead, the entire dynamics are dominated by
the �ow shear. Deceleration of the downhill modes leads to a standstill and subsequent
reverse so that all modes (no matter how strongly they grow) end up moving in the
direction of the gradient, causing Reynolds stresses which strengthen the �ows, leading to
dominant zonal �ows. This cause correlates with low resonant surface gradients, and thus
with high values of ρ̂s.

Empirically, the transition between these two regimes where both gradients are set equally
strong on the downhill side (and thus oppositely directed)

∂xrml (ρ̂s) = −∂xvy (5.26)

has been found to be consistent with a value of ρ̂s ≈ 0.15− 0.20. Locally, the transitional
value may vary since a smaller density gradient increases ρ̂s,local, enabling zonal �ows to
form within an otherwise hostile environment.

However, a third case is also conceivable. For low enough values of ρ̂s, even high arti�cially
prescribed �ow shears (up to the maximum as determined in Section 5.3) are insu�cient to
uphold these �ows. For high enough ρ̂s, even small initial drift wave turbulence �uctuations
will be su�cient to act as local �ows for other drift waves, causing zonal �ows to grow from
nonlinear interaction between drift waves. But there might also be a transitional regime -

existence of some kx (as well as ky) which necessitates the presence of Reynolds stresses. These modes
always drift in the direction into which the Reynolds stresses act.

9A more detailed analysis may arise from di�erent choices of wavenumbers - a mixture of all modes
has been examined, while the positive k‖-modes are located on the one side and the negative ones on the
other - and a consideration of the decreased lifetime of low-ρ̂s-modes. However, these drift wave mode
characteristics are only statistically relevant for the comparison of the shearing rates and thus should not
in�uence any of the large-scale results.
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Figure 5.7: The same-time evolution of the radial-poloidal potential and the Reynolds
stress (relative to the maximum particle �ux) of linear drift wave modes initiated at the
resonant surface x(L⊥) = 0 in the presence of a positive �ow shear v′y > 0 is analyzed for
ρ̂s ≈ 0.08 and ρ̂s ≈ 0.40 respectively. For low ρ̂s, the uphill acceleration only serves to
decelerate the modes at negative radial positions, enabling them to grow stronger due to
their vicinity to the resonant surface, causing pronounced negative Reynolds stress while
moving downhill. For high ρ̂s, the resonant surface potential is much weaker in comparison
to the shear �ow potential, leading to uphill acceleration of all modes and thus positive
Reynolds stresses, fueling the �ows instead of dampening them - thus de�ning the zonal
�ow regime.
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presumably somewhere below ρ̂s ≈ 0.15−0.20 - where no zonal �ows are able to emerge on
their own (as the local shear �ow potentials are insu�cient to overcome the resonant surface
potentials), but where an arti�cially prescribed zonal �ow close to the maximum �ow shear
values will be able hold its ground against the resonances. This appears to indeed be the
case, albeit with caveats: A sinusoidal �ow arti�cially implanted into a low-ρ̂s-system (e.g.
ρ̂s ≈ 0.115) will degrade into a rectangular �ow pattern, with the low-shear areas �attening
while only the high-shear areas dominate over the resonant surface potential. This leads
to increasingly edged domain walls in between, and thus second radial derivative e�ects
causing the domain wall to move and consume the high-shear areas.





Chapter 6

Bifurcations

Building on the de�nitions and derivations of all previous Chapters, one of the core
�ndings of this work is �nally presented: A robust transport bifurcation, associated with
density corrugations as well as asymmetric zonal �ows. Bifurcations concerning the shear
�ow structure and the density gradient are of serious concern to fusion research, being
capable of in�uencing radially outwards directed turbulent transport: Notably, the most
important breakthrough in the last thirty years of fusion research has been the �nding of
the H-mode, caused by a bifurcation from the standard low-con�nement edge gradient.

Due to the revelations within Sections 5.2 and 5.3, chie�y the di�erence in drift wave
behavior between the vicinities of the negative and positive �ows, the main focus of the
numerical studies is put on the search for asymmetrical behavior within the zonal �ow
regime. And indeed, for the �rst time in self-su�cient numerical simulations of drift
wave turbulence, a transport bifurcation associated with asymmetrical zonal �ows and
corrugated density gradients has been observed - developing self-consistently.

In Section 6.1, an extensive study of the bifurcations is realized. The robustness of these
�ndings is thoroughly checked by both analytical and numerical means, followed by a
parameter analysis comparing zonal �ows at di�erent values of ρ̂s. This examination is
implemented for a wide array of parameters, including the �ows' energy distribution, their
spectra (with special focus on self-similar behavior), the strength of their bifurcations,
their time scales of emergence and their correlation with drift wave intensity (as well as
other drift wave parameters), while also highlighting the di�erences between the zonal �ow
regime and the low-ρ̂s-regime. In the end, the zonal �ow dependencies on the parameter
ρ̂s are discussed.

Finally, in Section 6.2, a basic bifurcation mechanism is proposed, reproducing both the
density corrugations and the �ow asymmetry. A more detailed discussion delves into the
�ner sub-structure of both phenomena, before analyzing a promising-looking quantitative
ansatz based on a chemical potential argument.

Section 6.3 deals with the only apparent contradiction within an otherwise sound set of
explanations: Radial streaks in the density �ux pattern, which - counterintuitively - prop-
agate opposite to the �ow gradient instead of exhibiting an uphill movement (as according

77
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to Section 5.2). Following an extensive analysis of these streaks, dealing with their origin
and their spectral propagation patterns under various parameters, four alternatives for
their generation are proposed, leading to a viable explanation.

6.1 Transport bifurcation

Due to the observed asymmetry in the interaction between zonal �ows and drift waves
described in Section 5.2 - where the negative �ows repulse the turbulence while the
positive ones attract it - the focus of this work was put on a joint study of the devel-
opment of the drift wave turbulence, the density gradient and the zonal �ow structure.
This decision has most certainly been worthwhile, with a major observation being achieved:

During the long saturation and stabilization phase of the zonal �ows, an asymmetry was
found to emerge within the �ow pattern1. The negative �ows - those opposite to the
electron diamagnetic drift direction - were discovered to appear distinctively deeper than
their counterparts, while the positive �ows appeared �attened as well as broadened (the
latter a necessary requirement of the former due to conservation of the �ow mean: 〈vy〉 = 0)
on top of the basic triangle wave pattern exhibiting the maximum �ow shear as described
in Subsection 5.3.1. Accordingly, the derivative of vy was observed to become steepest for
all radii r where vy(r) < 0, surrounding the deepened negative �ow peaks.

These unusual �ow patterns were found to be linked to a severe change in the local density
gradient. At the location of the negative �ow peaks - the negative �ow shear domain wall
- the density gradient is increased strongly, while it is �attened in the entire rest of the
domain, being centered around the positive �ows. These density pro�le corrugations can
be associated with two stable, distinctly di�erent transport states, one - correlating with
the positive �ows - with high di�usivity and low gradients while the opposite occurs around
the negative �ows. Thus, a genuine transport bifurcation has been found at the �ow shear
domain walls, joining the ranks of a number of other bifurcations which were discovered
under di�erent conditions in the wake of L-H-transition research [55, 57, 59, 58, 60, 25].

A visual overview of these main features can be found in Figure 6.1.

6.1.1 Robustness of the stationary states

The combined phenomenon of �ow asymmetry and density corrugations occurs consistently
throughout an overwhelmingly large set of parameters, being extremely robust when dis-
turbed under many di�erent conditions. The fully converged runs have been performed
with nx,y = 512 and Lx,y = 64 (compare Table 5.1), varying εn between 0 and 0.48 (with ρ̂s
of up to 0.804, using αd = 1.25 and s = 1) and using the numerical parameters (as de�ned
in Subsection 4.3.3) ν4 = 1.e-7−5.e-6, µgrid = 0.09− 0.12 and αmadd = 4.e-5−6.4e-4.

Basically, whenever drift wave zonal �ows are formed, they are accompanied by a noticeable
asymmetry, most commonly with e�ect strengths around

1In earlier studies [25], asymmetries in the radial heat �ux patterns had been observed.
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Figure 6.1: For ρ̂s ≈ 0.28 (with εn = 0.06, αd = 1.25 and s = 1), poloidal �ow vy, density
corrugations n, the total density gradient n0 + n and the density �ux nvx are presented
in a 2D plot yielding radius vs time (left hand side) next to the associated time-averages
for all radii (right hand side). All major bifurcation-related �ndings are visible in this
high-resolution run (nx,y = 512, Lx,y = 64): Flow asymmetry - with �attened positive
�ows and steepened negative �ows -, a corrugation on top of the density gradient - with
steepened areas around the negative �ow domain wall -, and the radial streaks which
are observed to contradict the intuitive expectation by moving downhill (with a detailed
discussion following in Section 6.3).
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|vy,min| ≈ 2 · |vy,max| (6.1)

n′|vy,min ≈ 2 · n′|vy,max (6.2)

while remaining overall momentum-conserved: 〈vy〉 = 0 holds true due to sharpened neg-
ative �ows and broadened positive �ows.
Even constraining the zonal �ows into a strictly sinusoidal shape does not succeed in
keeping the �ows from returning to this asymmetric shape2 the moment the external forces
cease to be applied. Any distortion of either the �ow pattern or the density corrugations -
or of both - , changing amplitude, number or shape in either direction, will not derail the
observed pattern for long. Additionally, arti�cially changing the frequency instead of the
amplitude of the �ows does not cause any signi�cant change for the mean values of the
density �ux and the drift wave intensity.
Flow asymmetry has been con�rmed through other means as well, by analyzing the
Reynolds stress pattern. In all cases, the �ow asymmetry - while approaching the steady
state - is mirrored by the associated asymmetry in a sawtooth-shaped Reynolds stress, with
a sharp increase at the negative �ows and a slow decline in between. The positive-turning
zero-crossing occurs at the location of the negative �ow peak and vice versa, self-evidently
associating the positive Reynolds stress area with the developing v′y > 0-regime.
Replacing the natural �ow or density corrugation pattern with a constant, arti�cially
described pattern of similar shape is of no consequence to the remaining parameters,
indicating that these bifurcated patterns do indeed describe the �nal steady state. Long-
term stability of the resulting zonal �ow state has also been con�rmed by means of three
extremely long-running simulations, utilizing more than 25,000 CPU hours each.

Generally, these results mark a �rst for an observation of robust transport bifurcations
containing two di�erent stable gradients in self-consistent drift wave turbulence simula-
tions.

It has also been established that the two main features - the �ow asymmetry and the
density corrugations - exhibit a major dependence asymmetry, as seen in Figure 6.2. Ar-
ti�cially leveling the density corrugations and subsequently forcing them to remain so has
considerable impact on the strength of the asymmetry since drift wave carry-o� is impeded
by the restrained density gradient. On the other hand, arti�cially symmetric �ows do not
cause the density corrugations to weaken signi�cantly, with the argumentation presented
in Section 6.2 still being valid. Thus, while the �ow asymmetry depends on the density
corrugations to a major degree, the inverse is not the case.
This result implies that the �ow asymmetry is merely following from the more fundamental
picture of density corrugations caused by drift wave repulsion asymmetries, having only
an indirect retroaction e�ect on the transport by increasing drift wave generation at its
steepened �ow gradients as well as further fanning (and possibly even ceasing, as shown

2It is important to note that the asymmetry e�ect is never constrained to the radial-poloidal plane, but
occurs similarly in the toroidal direction as well.
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Figure 6.2: For ρ̂s ≈ 0.28, poloidal �ow vy and density corrugations n are plotted against
radius. In the top row, natural �ow development is permitted (expect around the walls of
the computational domain), yielding both �ow asymmetry and density corrugations. In
the center graph, the density is kept arti�cially constant at its initial smooth gradient -
with the resulting zonal �ow pattern being almost perfectly symmetrical. Below, such a
symmetrical �ow pattern is prescribed, however, this does not prevent density corrugations
from developing. While the drop-o� around the negative �ows is not quite as sharp as in
the natural case, it does exhibit a similar absolute change in amplitude.



82 Chapter 6: Bifurcations

Figure 6.3: For a computation with ρ̂s ≈ 0.28, steady-state poloidal �ow vy is plotted
against radius, with a sinusoidal base pattern being prescribed arti�cially for vy. Pre-
viously, the �ow shear levels have asymptotically reached their maximum values almost
everywhere within the domain. Noticeable exceptions occur next to the �ow peaks, where
the locally increased density gradient around the negative �ow peak allows for an increased
�ow shear and thus also steeper �ow minima in comparison to the �ow maxima.

in (5.8)) drift wave repulsion around the location of the negative �ows.

6.1.2 Parameter analysis

A more detailed parameter scan for ρ̂s based on runs performed with up to nx,y = 512 and
Lx,y = 32 (close to the upper limits shown in Table 5.1) is presented in Table 6.1, including
the ratio between the turbulent energy density Etur = n2/(2εn) and the ordered kinetic
energy density Ekin = v2/2 as well as their respective values, the onset ky,fall of the drop-
o� in the ky-spectra (in units of ρs) towards higher values of ky, the parameter ky,fall ·ρs as
well as the stage of zonal �ow development and their subsequent mean amplitude 〈|vy|〉 as
well as their asymmetry as measured by vy,asy = 〈max(vy)/|min(vy)|〉. The same results
hold true for negative shear as well since shear is a symmetry operation.

The results from these examinations as presented in Table 6.1 and in Figure 6.4 are consis-
tent with all previous considerations. While the turbulent energy decreases for increasing
ρ̂s, the kinetic energy peaks in the range were zonal �ows form (especially so if they form on
short time scales). The most signi�cant parameter here is Etur/Ekin, which drops below 1
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Table 6.1: ρ̂s-parameter scan

ρ̂s Etur/Ekin Etur Ekin ky,fall ky,fall · ρs < |vy| > vy,asy
0.100 30.881 15.830 0.512 2.1 0.210 0.1 (chaotic) n.a.
0.142 21.956 8.377 0.381 1.9 0.270 0.5 (chaotic) n.a.
0.169 6.713 7.619 1.134 1.8 0.304 0.7 (chaotic) n.a.
0.176 8.574 6.263 0.730 1.9 0.334 0.7 (chaotic) n.a.
0.184 3.662 5.499 1.501 1.8 0.331 1.1 (transitional) n.a.
0.192 3.338 5.771 1.728 1.8 0.346 1.2 (transitional) n.a.
0.201 2.695 4.970 1.843 1.8 0.362 1.7 (zonal �ows) 2.2
0.239 1.499 3.866 2.578 1.7 0.406 2.0 (zonal �ows) 2.0
0.284 0.218 2.379 10.884 1.5 0.426 2.1 (zonal �ows) 1.8
0.402 0.176 0.626 3.557 1.1 0.442 1.9 (zonal �ows) 1.5

in the main zonal �ow regime, strongly indicating the dominance of ordered kinetic energy
over unordered kinetic energy for stable large-scale phenomena.

The spectra �t into this picture, with their drop-o� wavenumber (in units of ρs multiplied
with ρ̂s) remaining constant3 in the zonal �ow regime where ρs dominates, once again
indicating that ρ̂s is indeed the single dimensionless parameter determining the long-scale
behavior of the system.

It is interesting to note that while ky,fall stays approximately constant in the turbulence
regime (in units of ρs, as presented here) as well as constant in the zonal �ow regime (in
units of L⊥), ky,fall · ρs < 1 remains true, always - reinforcing the result from Chapter 4
that drift waves modes beyond ky,fall · ρ̂s ≈ 1 (in units of ρ̂s) exhibit next to zero growth.

Flow development behaves as expected, with higher �ows occurring for higher values
of ρ̂s. Flow asymmetry, however, is declining with higher ρ̂s as seen in Figure 6.5, as
the nonlinearity decreases - a circumstance that will become clearer after Section 6.2.
Accordingly, the density corrugations have been shown to decrease somewhat for higher
ρ̂s as well. Maximum asymmetry of both parameters is reached close to the transitional
value of ρ̂s ≈ 0.15− 0.20, where both estimates of (6.1) and (6.2) are surpassed.

Several reruns have been performed for all simulations, yielding the averages plotted in
Table 6.1 and Figure 6.44 (for nx,y = 256 and Lx,y = 16). Due to turbulent variations, the
error bars for all measured parameters - primarily gained through di�erences in multiple
runs based on the almost exact same initial distribution - are between 5 and 10% (and
up to 20% for the more erratic energies). As always, these error bars could be minimized

3It is important to bear in mind that the non-linear distribution of the values of ρ̂s is centered around
ρ̂s ≈ 0.15− 0.20.

4In order to yield the average maxima and minima of the �ow by a simple approximation - not con-
sidering the �ow asymmetry, assuming a sinusoidal base shape instead - the values for 〈|vy|〉 need to be
multiplied by π/2. It should further be noted that a factor 2π/nx,y is required to extract ky,fall · ρs (for
L⊥ = 1) from the raw code data.
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Figure 6.4: Four numerically calculated variables are plotted against ρ̂s, their respective
values being adjusted to arbitrary units in order to depict them within one �gure: Marked
with blue dashes, the ratio between turbulent and kinetic energy is seen to drop to almost
parity at the onset of the zonal �ow regime, falling below 1 down the line. The red dots
are associated with the ky,fall-value (in dimensionless units of ρ̂s) right before the onset of
the ky-spectrum drop-o�. The green line marks the mean associated zonal �ow strength,
whereby the weak values below ρ̂s ≈ 0.2 are caused by chaotic and transitional zonal
�ows. Finally, in purple, the zonal �ow asymmetry - only meaningful to be determined
within fully developed �ows - can be seen to decline for higher ρ̂s. Generally, the highest
density of runs has been performed around the onset of zonal �ow formation at around
ρ̂s ≈ 0.15− 0.20, where they transition from semi-chaotic to large-scale stable behavior.

considerably by performing even more batches of runs - ultimately sinking well beyond
5% until other systematic errors not caused by turbulent �uctuations become dominant.
And again, these results hold true even for values undershooting the zonal �ow regime by
far, no matter which combination of ρs, αd or s is used to achieve a certain ρ̂s.

It is important to note that while simulations with ρ̂s & 0.5 do still develop �ow patterns,
they take disproportionally long to reach a near-steady state behavior. The �nal �ow states
have been found to emerge on time scales ∼ (k2D)−1 ∼ O(100) (with D being the particle
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di�usion coe�cient, marking turbulent transport as in Chapter 4) for ρ̂s ≈ 0.14, of O(101)
for ρ̂s ≈ 0.28 and of O(102) for ρ̂s ≈ 0.56, or, stemming from a more precise analysis,

τZFnumerical ∝ ρ̂
3.5±0.8
s (6.3)

for the time scale of zonal �ow emergence (compare Figure 5.6).
This result is in agreement with the theoretical expectations for drift wave growth and �ow
emergence stemming from time scale proportionality to k−2D−1 ∝ ρ̂2

sρ̂
2
s (by utilizing the

results from Subsection 4.4.3 within the high-ρ̂s zonal �ow regime and in units of L⊥):

τZFtheoretical ∝ ρ̂
4.0
s (6.4)

This revelation also leads to one of the reasons - next to looking in the wrong place
or using a too cost-intensive gyro code - why prior [63, 96] investigations5, with 3D
turbulence studies just beginning to emerge [97], have never yielded asymmetrical drift
wave zonal �ows - or zonal �ows at all, even though they have always been expected in an
electrostatic resistive sheared-slab drift wave turbulence model following the Hasegawa-
Wakatani equations [63]. Since the pure �ow regime requires ρ̂s & 0.2, it also requires
long-running numerical computations in order for these �ows to reach their asymmetric
steady state6. A well-developed zonal �ow with ρ̂s ≈ 0.2 − 0.5 calls for something
of the order of a few thousand CPU hours (or more, in�ation-adjusted) to reach a
steady state for a satisfactory resolution - a feat which was hardly achievable until a few
years ago, preventing most computational endeavors from crossing the zonal �ow threshold.

More detailed studies of the in�uence of the two scales, ρs and L⊥, have yielded a number
of additional insights:
Not only does the drift wave transport - as shown in Chapter 4 -, but also do the Fourier
spectra peaks of the drift waves - as seen in Table 6.1 - scale perfectly with ρs as long as
being in the zonal �ow regime (ρ̂s & 0.15 − 0.20). Of course, the same holds true for the
L⊥ scale in the case of ρ̂s . 0.15− 0.20.
As these two insights imply, the transitional regime between these two scales seems to
di�er in length scale dependency between the drift wave and zonal �ow pictures. In order
to clarify this occurrence and to examine the behavior in the regime where ρs > L⊥, zonal
�ow runs with ρ̂s > 1 would have to be performed. Unfortunately though, the respective
run time increases too strongly with higher ρ̂s so that the resources required for such a
test could not yet be acquired.

As determined in Section 5.2, the observed �ows are generated by negative turbulence
viscosity, conveyed by Reynolds stresses. Scanning across all performed runs, this viscosity

5In 1996, matching numerical experiments by Zeiler, Biskamp and Drake could neither reach su�cient
resolutions or domain sizes nor values beyond ρ̂s ≈ 0.16, noting the high computational expense.

6Steadiness is always guaranteed by the �ows themselves. In a purely turbulent case on the other hand,
circumstances which permit a return to zero turbulence can theoretically exist [98].
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Figure 6.5: Poloidal �ow and density corrugations are plotted versus radius for three
di�erent values of ρ̂s, with ρ̂s ≈ 0.20 at the top, ρ̂s ≈ 0.28 in the middle and ρ̂s ≈ 0.40
at the bottom. Flow asymmetry can already be seen with the naked eye to diminish
considerably, while the associated density corrugations tend to become equally less focused
around the negative �ow domain wall.
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has been determined to depend only on four local parameters: The local �ow shear v′y, the
density gradient ∂xn, the ion sound Larmor radius ρs and the shear length Ls.

Without �ow shear (its direct result) or a density gradient (its energy source), there can
by de�nition be no Reynolds stress. ρs is dominant within the zonal �ow regime while the
shear length Ls has been shown ((3.18)) to in�uence the drift wave zonal �ow relationship
by changing ρ̂s.

More surprising to these revelations is the fact that no non-local parameters exert in�uence
over the turbulent viscosity, con�rming that the Reynolds stress remains una�ected by any
e�ects arising far from it.

As could be expected, turbulence intensity depends on the same four local parameters as
well. However, it also depends on the second derivative of the �ow.

6.1.3 Correlation with drift wave intensity

It can easily be seen in Figure 6.6 that the drift wave intensity does indeed correlate with
�ow strength, con�rming that the negative �ows repulse the turbulence while the positive
�ows attract the drift wave eddies.

Figure 6.6: Against a radially sinusoidal �ow pattern (the blueish curve), the numerically
calculated drift wave intensity N is drawn in red. It increases with higher �ow but begins
to saturate soon after the zero-crossing, asymptotically approaching a limit marked by
the reddish area around the dotted value of the approximate limit. Naturally occurring
�uctuations within the turbulence are almost independent of the respective �ow strength,
causing constant, medium-amplitude error bars.

Yet, another few batches of run series have been performed in order to determine the rela-
tion between �ow strength and drift wave intensity in further detail. The most important
was a series where a certain sinusoidal �ow pattern was prescribed while monitoring the
development of the drift wave intensity by measuring the density square. Figure 6.6 shows
a comparison between the peak �ow strength vy and the associated density square N at
the �ow maxima - not only supporting the picture of drift wave repulsion by negative
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�ows, but also showing that, while the positive �ow peaks correlate nicely with the drift
wave intensity in general, an upper limit Nmax for the drift wave intensity is reached soon,
already so for medium-strength positive �ows with around vy ≈ 2.

6.1.4 Spectral dependencies

In addition, a more detailed look at the drift wave spectra is required. Orthogonal spectra
always consist of a white noise plateau above the scale of �uctuations, followed by a bend
at ky,fall as introduced in Table 6.1, kick-starting the self-similar polynomial decay which
has been observed. Parallel spectra feature just the self-similar polynomial decay.
Generally, the structure of the spectra does not only scale with ρs and L⊥ in the zonal �ow
regime as well as below, but also declines polynomially for high wavenumbers k over the
entire ρ̂s parameter range, thus exhibiting the same self-similar behavior for all relevant
ρ̂s.
Apart from noise e�ects and once a su�ciently high resolution is reached, this cascade has
to be linear down to the smallest resolvable scales7 in both a log (RMS(n))-log(k⊥)-plot
and a log (RMS(n))-log(k‖)-plot. Convergence can always be checked by verifying that
k⊥,fall remains constant with respect to a further increase in resolution or domain size.
A detailed analysis reveals that in the zonal �ow regime, the exponent eky for this decline
increases with ρ̂s - albeit less than linearly. Speci�cally, it behaves as

∆eky |ρ̂s&0.15−0.20 ∝ (∆ρ̂s)
0.6 (6.5)

while remaining constant in the L⊥ regime

∆eky |ρ̂s.0.15−0.20 ∝ (∆ρ̂s)
0.0 (6.6)

with a smooth transition in between.

A typical center snapshot of the mean square density amplitude for a single point in time
for ky and k‖ is provided in Figure 6.7. Even there, this massive increase of the exponent
within the zonal �ow regime is strongly visible.

6.2 Basic bifurcation mechanism

The di�erent pieces in the puzzle necessary for a qualitative explanation of the basic
bifurcation mechanism have been assembled.
The general shape of the �ow pattern has been observed, most importantly an evolution
towards a sawtooth-shaped state (ever more pronounced as higher resolutions are chosen),
with the saturation levels of the symmetric �ow shear - which approximates a perfect
square wave - prescribing the same �ow steepness at every radial location. More so, this

7These scales are still way above the dissipation scale, requiring 4 − 5 orders of magnitude instead of
just 2 between k‖,min = 2π and k‖,max = πnz ≈ 100.
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Figure 6.7: Spectra of the mean square density amplitude are plotted in the radial center
(innermost 10% of the simulation domain) for three di�erent values of ρ̂s, with ky on the
left and k‖ on the right. Even on this single-time snapshot of the center, high-k self-similar
polynomial behavior is recognizable. Comparison of the steepness of the decline then yields
a stark increase for higher values of ρ̂s, pointed out by the two-way arrows depicting a delta
of �ve orders of magnitude each.
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maximum shear �ow value also remains approximately constant (within all uncertainties)
for a large variety of values of ρ̂s.

On top of this basic shape, the local, secondary in�uence of the density gradient8 causes
an increased generation of drift waves at the location of the negative �ows, enabling a
steepening of the �ow gradient in close proximity around these while causing the opposite
behavior for the rest of the domain.

Now, �ow generation, saturation and asymmetry all follow from the aforementioned local
dependencies, enabling a qualitative understanding of both the density corrugations and
the �ow asymmetry, founded on the repulsion of turbulence by the negative �ows as
derived in Section 5.2.

Density corrugations can be explained via the transport balance:

Negative �ows repulse the turbulence according to vgr,x ≈ −2kx0kyρ̂
2
s+2v′ytk

2
y ρ̂

2
s (as shown

in (5.7)).

⇒ Since almost all transport (including di�usivity) is turbulence-related, transport is sup-
pressed within an eddy length scale of the borders of the negative �ow regime.

⇒ However, the overall transport balance9 ∂xΓ(x) = 0 has to be upheld (this is the same
argument that was used for the turbulent cascades in Section 2.4).

⇒ Thus, higher density gradients are required to counter-balance the transport-diminishing
e�ects of the turbulence suppression at the negative �ows, developing on transport time
scales.

⇒ Together with the associated density gradient �attening at the positive �ows, this yields
a breaking of the initial symmetry between positive and negative �ows through ripples in
the density gradient: The density corrugations.

Similarly, the �ow shear can be drawn upon to understand the �ow asymmetry:

Negative �ows repulse the turbulence.

⇒ This leads to a carry-o� of drift waves towards the positive �ows.

⇒ This drift wave movement is associated with Reynolds stresses, especially so close to
the negative �ow peaks within the heightened density gradient regime.

⇒ This leads to increased drift wave generation rates, with those new drift waves constantly
propagating towards the positive �ow peaks.

⇒ These Reynolds stresses associated with drift wave propagation in turn change the zonal
�ow structure.

⇒ While radially drifting away from the negative �ows towards higher values of vy(x),
the |ṽx| of the drift waves begins to decrease, leading to a radial reduction in −〈ṽxṽy〉 and
thus, according to (5.1), an increase in −〈yy〉 over time.

8Any increase in density gradient correlates to a decrease in εn on the ρ̂s-scale.
9In contrast to the drift waves themselves, transport is stationary.
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⇒ The same drift wave movement leads to a slow decrease in +〈vy〉 around the positive
�ows.
⇒ In order to uphold total �ow balance

∫
vy(x)dx = 0 over the entire domain, the deepened

negative �ows are required to narrow down10 while the �attened positive �ows need to
broaden, ensuring that the observed asymmetrical zonal �ow pattern emerges.
⇒ The process of steepening �ows �nally stops and settles into a steady state free of net
Reynolds stress e�ect once - as shown in (5.8) - the �ow gradients become impenetrable
to the drift wave �ow.

6.2.1 Sub-structure

A more detailed examination yields �ow ramp overshoots prior to the long-term steady
state. Within an eddy length scale of both the sheared region in an arti�cial zonal �ow
pattern11 as well as the mid-term, emerging natural �ows, �ow overshoot occurs, accom-
panied by an undershoot further away from the sheared region. The overshoot at the
positive �ows coincides with a positive change in turbulence levels while the overshoot at
the negative �ows is associated with a reduction in turbulence, both of which has been
veri�ed.
This serves to match the force �eld exerted by the �ows (by changing the kr of drift wave
modes) at the locations of transition from �ow shear to a �ow plateau.

The shear �ow pattern is still associated with a transport of turbulence - both from the main
shear �ow and from the positive �ow undershoot - towards the positive �ow plateau, or,
more precisely, the positive overshoot region. With the opposite behavior at the negative
�ows (albeit with invisible undershoots due to the narrowing of the negative �ow peaks),
the turbulent transport can now be associated with the changes in the density gradient in
greater detail, explaining the �ne structure in n′: The turbulent transport pattern not only
causes a strong increase in density gradient strength around the negative �ows, yielding an
even deeper, steeper negative �ow peak but also - due to the undisbanded overshoots - two
smaller bumps of a decrease in density gradient located around the edges of the positive
�ows.
These patterns have been observed both in n′ and vy. They are most pronounced in the
initial zonal �ow regime, for su�ciently, yet not exceedingly high values of ρ̂s (with the
sweet spot being around ρ̂s ≈ 0.2), and show behavior proportional to the overall �ow
asymmetry thereafter.

6.2.2 In�uence of a chemical potential?

A more quantitative approach to explain the speci�c phenomena associated with this bi-
furcation mechanism examines the introduction of a chemical potential. The basic idea is
described in Figure 6.8.

10This can only happen until a certain maximum steepness is reached and drift wave stalling occurs.
Alternatively, numerical hyperviscosities do the trick once their resolution limit is reached.

11This pattern was prescribed in the shape of a logistic function, with smooth transitions to a positive
and a negative plateau.
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Figure 6.8: A mockup model mechanism for zonal �ow asymmetry based on a chemical
potential ansatz is presented. On the left hand side, vy[N ] is plotted against the drift
wave intensity N . Since chemical potentials behave as µ[N ] → −∞ for N → 0 and since
nonlinearity is crucial to positive �ow saturation and stability, the ansatz µ[N ] ∝ N +N2

is chosen. At the same, the velocity v[N ] depends linearly on the drift wave intensity
due to their direct correlation with the �ows, vy[N ] = N + const. is utilized. The three
stationary points of intersection between these two equations encompass an unstable one
at vy = v0 = 0 (denoted by the diverging arrows at point B) and two stable ones at points
A and C (denoted by the converging arrows), con�ning the values of vy and N within
the zonal �ows to the greyish rectangular box in the center. This corresponds with the
zonal �ow pattern vy, plotted versus radius, on the right hand side. The asymmetry in
∆(vy,C − vy,B) and ∆(vy,B − vy,A) leads to an asymmetric shape of the resulting zonal
�ows due to the requirement that 〈vy〉 must remain zero.

Based on this concept, a nonlinear equation system based on three balances has been
created.

The �rst equation describes the correlation between the amplitude of the zonal �ows and
the respective drift wave intensity. Due to the repulsion of drift waves by the negative
�ows, N grows for increasing vy:

µ[N ] = vy + const. (6.7)

Next is the transport balance required in any equilibrium state, as expected for the long-
term behavior:

Γ[N ] = const. (6.8)



6.3 Radial downhill streaks 93

Finally, the drift wave intensity changes through growth as detailed in Section 4.2. Drift
wave growth depends on the �ows as well as on the density gradient, its energy source:

Ṅ = γ[vy, n
′] (6.9)

These equations are as plausible as they are vague. Attempts at constructing a quantitative
set, modeled numerically with hyperviscosity terms12, have led to inconclusive results, with
the simulations tending to yield �ow asymmetry and density corrugations, but at the same
time depending too strongly on the choice of input parameters. The in�uence of a chemical
potential could thus not be veri�ed13.

6.3 Radial downhill streaks

Contrary to all other tests aimed at verifying the results presented in Chapter 6, an analysis
of the apparent radial �ow of drift eddies - by imposing a modulation upon the drift wave
pattern in order to make the underlying movement stand out - has yielded an apparent
contradiction: Visible drift wave streaks (where streaks denote propagating �uctuations in
transport) are not uncommon in zonal �ow simulations [99], however, the streaks examined
in this work with kx,y ≈ 5 − 7 in dimensionless code units seem to �ow opposite to the
�ow gradient and thus downhill, towards the negative �ow peaks14. While doing so, they
bundle together, forming radial avalanches such as the ones shown in Figure 6.9.

This outward density movement for negative �ow shear is highly counterintuitive, since
uphill movement is expected in accordance with (5.7), or

∂vgr,x
∂t

= 2v′yk
2
y ρ̂

2
s (6.10)

which is always negative for v′y < 0.

The apparent contradiction occurs uniformly over the entire spectrum and can therefore not
be discarded as a simple Galilei shift e�ect or fake downhill motion, with waves propagating
without actually increasing the �ux surface average15. Numerical e�ects, especially due
to grid sizes, arti�cially high frequencies (reaching the Nyquist cut-o�) or hyperviscosities

12Precisely speaking, these prerequisites lead to both a drift wave equation ∂tN = −γ (N −N0) −
∂x (−N∂x (µ[N ]− vy))−β∂x

(
N
(
∂3
xN
))

and a zonal �ow term ∂tvy = −∂x (−N∂x (µ[N ]− vy))−β
(
∂4
xvy
)
,

where µ[N ] = ηN (α− 1 +N) /α includes the �rst nonlinear term providing stabilization for saturation.
13Indeed, it seems very likely that no chemical potential exists at all since the drift wave propagation

is insu�cient to promptly relay enough information about the relative �ow pattern on scales of the zonal
�ow wavelength.

14Accordingly, a n2-vy-plot yields drift wave intensity peaks at the negative �ows which increase for
stronger �ows (approximately according to an ampli�cation factor of a+ 0.5 · |vy| with vy in dimensionless
numerical units).

15It is crucial to consider the correct parameter for describing these streaks, this being a local mean for
the streaks, denoted 〈vrn〉, instead of the �ux-surface averaged density transport (which even comes down
to zero in the adiabatic case, when 〈vrn〉 = φ · ∂yφ = 0 since φ ⊥ ∂yφ).
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Figure 6.9: Radial streaks moving outwards over time. The y-axis marks the minor ra-
dius (or, in a slab system, the x-coordinate), brighter colors mark higher densities. A
few selected streak events within the radial density transport picture and their consistent
movement over larger time scales are highlighted by drawing white lines next to them.

can be discarded as well according to several test batches. Also, the damping rate is found
to be negligible.

A more detailed analysis (with the results shown in Figure 6.10) of the apparent drift
wave movement shows that the migration velocity decreases for steeper �ows, with the
system becoming more asymmetrical: Fewer eddies move against the �ow gradient, while
yielding a perfectly symmetrical net of diagonal streaks for v′y = 0. The �ux-surface
averaged density transport will always be directed radially outwards, since the drift wave
turbulence necessarily draws its energy from the density gradient, reducing it in the
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process, transporting density down the density gradient - which, by de�nition, is always
directed radially outwards.

Figure 6.10: The numerical mean of the inwards directed radial density transport within
streaks, 〈vrn〉− is plotted in blue (in arbitrary units) against a wide variety of constant
positive arti�cial �ow gradients v′y. As always, a nonlinear nonadiabatic sheared drift wave
system is prescribed. Also pictured in red is the asymmetry between the inward and out-
ward movement, 〈vrn〉−/ (〈vrn〉− + 〈vrn〉+), with a value of 0.5 signifying a symmetrical
50-50 distribution between both types of streaks, while 1.0 means that only inward streaks
are left. It is important to note that the exact same picture can be retrieved if the �ow
gradient is chosen to be positive and 〈vrn〉+ is measured instead (in fact, the mean de-
picted in this �gure includes such batches of runs as well). The results are clear: With
increasing v′y, the system becomes more asymmetrical with fewer outwards-moving streaks
in comparison. At the same time, however, 〈vrn〉− decreases considerably (while 〈vrn〉+ -
not depicted here - increases). Generally, systematic irregularities lie below ±10%.

Generally, as examinations e.g. with arti�cially reduced natural �ow states show, drift
waves still put energy into the system during zonal �ow growth, with the Reynolds stress
being in phase. But if the natural �nal �ow state is arti�cially increased, enforcing massive
reduction of the �ow, this picture reverses, and Reynolds stresses become out of phase:
Drift waves subsequently move downhill, reducing the �ow, resembling the situation of
the apparent contradiction concerning the radial streaks. So why does this also happen
in a supposedly neutral �nal state, where neither zonal �ow increases nor decreases are
measured, but negative �ows still reject the drift wave vortices?

Another puzzle piece has been provided by a large number of linear runs where only a
single kx = −ky mode was prescribed, with a negative �ow gradient being present in the
background. The development of this mode can be seen in detail in Figures 6.11 and
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6.12: According to ∂k
∂t = −k0 · ∂vy∂x ∝ ky, the mode will topple over into positive kx values,

evolving proportionally to both time t and poloidal wavenumber ky (accordingly, doubling
the �ow shear increases the propagation speed of the e�ect twofold). Broadening e�ects
are especially prominent with the weak and weakly-growing high-wavenumber drift waves,
leading to a fraying out for high ky (an e�ect caused by the arti�cial hyperviscosities, which
lead to a narrowing in real space in order to keep the system stable). Also observed is some
lagging behind of the high ky modes in comparison with their low-ky-counterparts, with
this e�ect becoming more pronounced for later times.

These results hold true for the nonadiabatic s = 1 case as well. Generally, growth in drift
wave intensity can always be derived via (5.13) or (5.18).

Within the real space picture in Figure 6.12, on the other hand, the location displacement
can simply be determined by integrating the group velocity, which comes down to (4.5) in
the most simple case for adiabaticity and s = 0.

There, some initial movement directed radially outwards is followed by an oscillation
through the t = 0 position and further elongation radially inwards (without �ow shear,
constant movement radially outwards would follow when still initialized with kx = −ky.
For all times, a ky,elongmax where displacement is maximal exists, while δx approaches zero
for both ky → 0 and ky →∞. This behavior has been veri�ed in its entirety by means of
an analytical calculation. With non-negligible shear, however, analytical calculation of an
eigenmode becomes impossible - as discussed in Section 4.3 -, rendering any comparison
with the numerical experiment unviable. Numerically, though, only small changes occur
to this pattern when either shear or nonadiabaticity join the picture (with the oscillation
taking place faster and with a lower ky,elongmax), yielding the same qualitative behavior as
before.

This does not remain true anymore in the case of nonadiabaticity with shear. For some
s > 0, - while the development of kx = −ky still remains qualitatively the same as in
the adiabatic s = 0 case - the oscillation properties cease to play a role, yielding (slow)
radially outwards movement instead of allowing an inwards-directed propagation. Thus,
for nonadiabaticity and shear s 6= 0 a strong discrepancy is found (as seen Figure 6.13),
causing the linear approximation to break down in this limit.

The kx = −ky considerations for small times t within a quasi-linear framework therefore
do need to be contrasted with the late-time nonlinear picture.

A possible solution explaining this change in behavior is hidden within the drift wave action
invariant introduced in (5.9). Analyzing the development of its mean with respect to time
t and radial wavenumber kx in a constant negative �ow gradient environment yields a stark
asymmetry in the pattern of the invariant, with a negative peak for small values of kx > 0
and positive values for larger kx > 0. But as described before, the negative invariant
regime coincides with out-of-phase positive Reynolds stresses, leading to downhill drift
wave movement. So it appears these few large-wavelength modes are the ones observed to
move into the supposedly wrong direction while a majority of high kx modes - moving in
the previously expected direction - cannot be spotted due to their tiny wavelengths.

However, there are some caveats to this ansatz, mainly that Reynolds stresses are only
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Figure 6.11: Logarithmic drift wave intensity under the in�uence of a constant negative
�ow gradient v′y < 0 is compared to the analytical expectations (marked by thin black
lines). Both are shown with respect to kx and ky (in dimensionless numerical units). For
eight di�erent times t, increasing from left to right, a sharp initial distribution kx = −ky
is observed to broaden while moving according to ∂k

∂t = −k0 · ∂vy∂x ∝ ky, with the kx-values
turning increasingly positive proportional to time t and poloidal wavenumber ky.
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Figure 6.12: The adiabatic case for s = 0: The theoretically expected radial location of the
maximal density (shown in black) for constant v′y < 0 everywhere is determined for every
value of ky and di�erent times t0 (in dimensionless numerical units) by integrating vgr,x over
time, beginning with kx = −ky. The results are subsequently compared to the numerical
values of the density maximum (shown in orange), for which a tracking algorithm was
devised. Excellent agreement between the linear expectations and the nonlinear numerical
experiment is reached - in contrast to the nonadiabatic case for s = 1 described in Figure
6.13.
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Figure 6.13: The nonadiabatic case for s = 1: The theoretically expected radial location
of the maximal density (shown in black) for constant v′y < 0 everywhere is determined for
every value of ky and di�erent times t0 (in dimensionless numerical units) by integrating
vgr,x over time, beginning with kx = −ky. The results are subsequently compared to
the numerical values of the density maximum (shown in orange), for which a tracking
algorithm was devised. A stark qualitative di�erence between the linear expectations and
the nonlinear numerical experiment is reached - in contrast to the adiabatic case for s = 0
described in Figure 6.12.
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important in the transient stages, becoming increasingly irrelevant over time as the
zonal �ow pattern nears its �nal state. As seen in (5.1), the gradients in 〈ṽxṽy〉y,z are
proportional to the change in the �ow pattern. In the end the only feature the Reynolds
stresses still balance are weak hyperviscosities - which can be shown empirically to always
hold true for high enough t.

Energy considerations provide another ansatz. The shear �ow increases the wavenumber
kx of the drift waves during the swiveling of ~kx experienced in Figure 6.11, yielding �rst
an increasingly negative and �nally a saturated group velocity vgr,x directed radially in-
wards (based on the above-used conventions). Since it is observed that (positive density)
streaks propagate outwards, a possible solution to the apparent contradiction could be
gained by introducing a solid state analog, with radially outwards moving positive density
streaks providing a positive outwards transport corrugation on top of the constant density
gradient-mining transport, with inwards moving negative density streaks satisfying the
group velocity expectations.
The essential �aw here is that nothing equivalent to the opposite charges of electrons and
holes exists: The sign of a density perturbation is irrelevant to the group velocity.

6.3.1 Streak generation

So there are only four di�erent options left to explain the apparent contradiction associated
with these streaks: Ampli�cation, acceleration or scattering of the drift wave modes, with
all of these possibly being wavenumber-dependent, as well as transport e�ects.
After all, the movement of the general energy directed radially outwards (for negative
�ow shear) or radially inwards (for positive �ow shear) does not necessarily imply that
the energy of an associated mode is transported inwards (or outwards, respectively) as well.

• Ampli�cation via shear �ow interaction is only expected to occur for high wavenum-
bers where the ∆φ term in the vorticity equation becomes dominant. Generally, the
growth rate is too small for direct ampli�cation since kx = kx0 − ∂xvyt|ky| leads to
−kx � 0 very soon, while notable drift wave growth only occurs around kx ≈ 0
according to (4.19). Aside from actual growth, there is only the possibility of modes
joining forces at a certain location, causing slow rearrangement of drift waves and the
density pro�le within a quasi-steady state context. However, the apparent streaks
have been observed over considerable amounts of time without much growth, thus
dismissing the ampli�cation theory.

• Acceleration up the hill, even applicable to only a few growing modes, is also no
real option: Although ∂tvgr,x ∝ v′y for small |kx|, a �nite max(vgr,x) is necessarily
reached soon for higher |kx| due to the growing denominator in the group velocity as
described in (4.5).

• Scattering ~k1 + ~k2 → ~k3, is a possibility, if drift wave turbulence levels reach an
adequately high mean value: Once the Laplacian vorticity term in the Hasegawa-
Wakatani equations becomes signi�cant (which occurs roughly at kρs ≈ 1), drift
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Figure 6.14: A tracking routine has been designed to lock onto a large number individual
eddies - more speci�cally, their density maximum - emerging on a strong negative �ow
gradient background. Radial and poloidal position of the tracking results are plotted versus
time. In this �gure, a small exemplary section of a much larger domain with hundreds of
individually tracked eddies is highlighted. An eddy A is tracked until it disperses. After
a short interlude, during which this speci�c section remains streak-free, a second eddy
B emerges, streaming radially (and somewhat poloidally, although these results are more
coarse due to the low poloidal velocity and �nite resolution) outwards with exactly the
same speed as Eddy A. This picture repeats itself over and over, yielding precise statistics
over time. All these eddies move radially outwards (thus downhill) with exactly the same
velocity as has been measured for the streaks, strongly indicating that both are in fact
the same - a theory further corroborated by a subsequent analysis of the spectra. These
eddies are strongly associated with the density corrugations (holding the density gradient
constant removes all counter-propagation).

wave modes with short wavelengths can experience su�cient scattering - something
resembling shear �ow optics - from high negative values −kx to high positive values
kx in order to never die out, keeping the circle going.



102 Chapter 6: Bifurcations

But do these speci�c high-frequency streak modes extract energy from the �ow shear,
keeping the �ows in check? Or do they cause energy input (a process for which the
exact timing of the backscattering proves essential, and an analytical calculation is
impossible to implement)? Fueling the �ows would be consistent with the classical
drift wave picture valid for most modes, moving uphill, while energy extraction would
be consistent with the observed, downhill-moving kx,y ≈ 5-streaks - a behavior which
would help to keep the shear �ows in check but which would also serve to explain
their visual prominence in the radial density transport picture. When individual
streaks are being followed by a sophisticated tracking routine (shown in Figure 6.14)
- showing that the streaks are indeed the drift wave eddies16 - while simultaneously
monitoring the associated spectra, energy extraction seems to take place.

However, this does not appear to su�ce to explain the complete picture: When the
�ux surface average of the density pro�le is held constant - still allowing for local
distortions, and thus also streaks - the streak direction reverses.

• Corrugation-based transport could provide the solution. Assuming e.g. a negative
�ow shear pro�le v′y < 0 and a negative density gradient ∂xn < 0 with a corruga-
tion on top, then the resulting transport peak around the location of the increased
density gradient - attempting to di�use the very corrugation itself - will be displaced
to the left by the �ow, moving to higher vy. If this displacement is of the right
magnitude (around π/2 of the density corrugation wavelength at the negative �ow
peak), the e�ect reverses: Instead of destroying the density corrugations through up-
hill streaks, the transport actually stabilizes the density corrugation steps. Thus, the
observed downhill streak movement is a pure transport e�ect due to the transport
peak displacement caused by the density corrugations - if only the e�ect strength is
of a certain amplitude. And, as has been veri�ed by a number of numerical com-
putations, this happens to be just the case for non-arti�cial zonal �ows within the
observed range of ρ̂s ≈ 0.2− 0.6.

This thought can be substantiated by a short calculation. Imagining a sinusoidal
density distortion

δn = eikx (6.11)

with the transport Γ proportional to the density gradient

δΓ ∝ −∇δn = −ikδn (6.12)

a displacement δx leads to

δΓ′ = e−ikδxδΓ (6.13)

16This is further bolstered by a striking resemblance between the density �ux and density patterns.
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and therefore

δṅ = −∂xδΓ′ = −ike−ikδx∂xδn (6.14)

≈ k2 (1− ikδx) δn = k2δn− k2δx∂xδn (6.15)

Now, if kδx = π/2 (where δx depends on the turbulence correlation time), pure
displacement without any damping takes place.

Thus, the most important puzzle pieces have been assembled: These streaks do indeed
consist of turbulent eddies - both streaks and eddies occupy the same space and move
with the same velocity. In contrast to these streaks with increased density, their weaker
- both amplitudes are equal only if a symmetric v′y = 0 is prescribed - oppositely moving
counterparts are marked by decreased density. Both kinds of streaks do not cause any
signi�cant amount of actual density transport, rendering them compatible with all previous
energy considerations where only minor �ow shear energy losses have been observed.
Arti�cially reducing the self-consistent zonal �ows below a certain threshold percentage
of their natural amplitude reverses the picture, yielding uphill streaks which reinforce the
�ows. Arti�cially keeping the density pro�le constant also leads to uphill streaks. Thus,
without density corrugations, the drift waves would indeed �ow in the correct direction. It
is merely the corrugations in the density pro�le which cause the apparent contradiction by
displacing the transport peak to such a degree that it actually stabilizes the corrugations
instead of destroying them, reversing the direction in which the streaks naturally �ow.





Chapter 7

Implications

The implications of this work reach beyond purely academic interest in the behavior of
drift-wave based zonal �ows. Zonal �ows are ubiquitous both in experiment and nature
- and in all of these cases, the long-term behavior of these macroscopic systems depends
decisively on the interaction and properties of the small-scale �uctuations occurring within.
A transport bifurcation found in any one of these systems opens up the possibility of them
being commonplace.

Accordingly, Section 7.1 deals with the most obvious target: Actual fusion devices. Any
change in transport levels - and even more so actual transport bifurcations - contains impli-
cations for con�nement, which need to be discussed. Additionally, experimental examina-
tions of predominantly drift wave-based zonal �ows are still in their infancy, increasing the
importance of numerical simulations in providing lines of attack for the experimentalists.
One of the most interesting endeavors, especially with respect to the zonal �ow asymmetry
and density corrugations found in this work, is identi�ed to be the targeting of the onset
section of the high ρ̂s-regime as the easiest means of con�rming (or refuting) the existence
of transport bifurcations within actual fusion devices.

In Section 7.2, a completely di�erent potential application of this work is presented: Two-
dimensional atmospheric zonal �ows in gas giants (and beyond), fostered by strong Taylor-
Proudman columns due to fast rotation speeds. Here, geostrophic modes take the place of
the drift waves, with Coriolis and pressure forces instead of the magnetic �eld and the den-
sity gradient. Accordingly, a �nding of a transport bifurcation within Jupiter's atmosphere
(such as the one described in this work) could lead to a much improved understanding -
and possibly, long-term prediction - of its climate.

And since zonal �ows are in�uential in numerous systems, ranging from interstellar nebulae
and protoplanetary disks to the Venusian atmosphere, they occur on our home planet
as well, with the jet stream being the most well-known example. The aforementioned
bifurcations might thus even prove to be an important ingredient to future models of
climate change for Earth itself.

105
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7.1 Fusion devices

While drift waves in fusion devices have been measured for more than a decade [100],
and even long-living large-scale structures [101] as well as basic zonal �ows [102], mainly
in the form of geodesic acoustic modes [103, 104], have been found1, actual precision
measurements of drift wave zonal �ows in tokamaks have just recently begun [106], and,
apart from a con�rmation of an expected ρs transport scaling in the turbulence [107],
observation of their major characteristics seems still a few years o�. Any prediction of this
work thus still has to await its veri�cation - or its rebuttal.

An ideal way of testing the existence of bifurcations in actual fusion plasmas would be to try
and attain the lowest ρ̂s-values still within the zonal �ow regime, close to the transitional
value. Exactly how this can be achieved depends on the actual device, with variation of
the system size or the gradients usually not being a viable option, but the most promising
approach is to regulate the external magnetic �elds, thus controlling the ion mass electron
temperature gyroradius ρs and accordingly the drift wave velocity αd as well as changing
the shear level s, both contributing towards getting the single dimensionless parameter ρ̂s
from (3.18) close to

ρ̂s,target = ε1/2n (αds)
2/3
target ≈ 0.15− 0.20 (7.1)

where, according to Chapter 6, the strongest bifurcations are expected.

Experimental con�rmation of the numerical and analytical results presented in this work
could lead to important consequences for con�nement. The single most important aspect is
the �ow shear around the steep negative �ows, which is increased up to three-fold beyond
bifurcation-free expectations, exerting exceptionally strong tearing forces on the drift wave
vortices. Deepened �ow minima could cause more drift waves to be re�ected back inwards
according to (5.7) before even reaching the negative �ow peaks, becoming trapped and
subsequently sheared apart in the broad positive �ow pans.

After crossing a high-shear area, |kx| increases strongly, requiring the full expression of
(5.7), not limited to
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which leads to |vgr,x| → 0, a stalling of the drift waves.

For cleverly chosen parameters, the bifurcation-caused increase in gradient strength could
thus su�ce in severely hampering radially outwards directed turbulent transport, with
the drift waves getting slowed down to the point of immobilization in steep enough �ow
gradients - possibly even cutting o� a majority of the density �ux altogether.

1A recent review of experimental zonal �ow measurements can be read in [105].
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7.2 Two-dimensional atmospheric zonal �ows

As seen in Section 2.4, and in contrast to three-dimensional turbulence, the inverse energy
cascade of two-dimensional turbulence favors large structures. This is important in many
practical cases, such as in the rapidly rotating, convectively unstable (due to heating of
the core) and thus strongly turbulent2 atmospheres of gas giants [11] which are covered
by a thin, stably strati�ed layer where the visible weather phenomena take place. In these
systems, the Navier-Stokes equations apply, with both a Coriolis force term (the analog in
a plasma would be a gradient in the potential) and a pressure gradient term entering:

ρ (~v · ∇)~v = ~Fext −∇p (7.3)

Assuming the Rossby number - the ratio between inertial and Coriolis forces - to be small
(which is true for all gas giants in the solar system, as they rotate rapidly), the advection
term may be omitted. An incompressible �ow under the impact of a scalar potential
F = ∇φ will now behave as

2ρ~ω × ~v = ∇φ−∇p (7.4)

where ~ω marks the divergence-free angular velocity vector. Taking the curl of (7.4) now
results in the Taylor-Proudman theorem

(~ω · ∇)~v = 0 (7.5)

This eliminates the possibility of velocity components parallel to the direction of the ro-
tation axis of the planet and thus leads to quasi-two-dimensionality. Taylor-Proudman
columns develop, rolls caused by the turbulent thermal convection originating in the hot
interior of the gas giants. As shown in (7.5), these are parallel to the rotation axis. The
intersection between these columns and the outer atmosphere leads to marked bands en-
closing the entire planet with alternating directions at di�erent latitudes: Atmospheric
zonal �ows.
The wind velocity for these zonal �ows can be determined by simply equating both force
densities, ~Fc = 2ρ~ω × ~v and ~Fp = −∇p, yielding the balance velocity

~v =
∇p× ~ω
2ρ~ω2

(7.6)

Thus, the alternating east-west winds are caused by the interplay of strong Coriolis forces
and marked density gradients between high pressure and low pressure zones3.

2Jupiter's atmosphere is even more turbulent than a typical tokamak plasma, which, at Re ≈ 10− 100
is better described by wave turbulence.

3On Jupiter, white clouds mark high pressure, while the higher-lying low pressure clouds get their
brownish color from phosphorus and sulfur compounds.
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The similarities between fusion devices and the atmospheres of gas giants are extensive.
A planet's gravitation is equivalent to the curvature in a tokamak or stellarator. In fu-
sion, the frozen-in magnetic �eld forces the vortices to align, while the Taylor-Proudman
columns handle the same function in the upper layers of Jupiter (how deep into the planet's
atmosphere they actually reach is controversial, see [64] and [108]). Finally, ~E × ~B drift
velocity is the analog of the �ow velocity in the hydrodynamic case, with nonlinearities in
both cases being caused by vorticity advection [109].

This leads to the zonal �ows on Jupiter posing as very close analogs of drift wave-based
plasma zonal �ows.

But of even greater importance is the close physical analogy between the low Rossby
number geostrophic modes [18] (or Rossby waves) caused by instabilities in the atmospheres
of gas giants and the drift waves in a drift-wave centric plasma [39] like the one analyzed
here. Geostrophic modes are the small-to-medium-scale turbulent result of a local force
balance between Coriolis and pressure forces, which substitute for the magnetic �eld and
density gradient in the case of drift waves. Both act as turbulent fuel for their respective
large-scale zonal �ows.

7.2.1 Geostrophic modes: About climate change

The implications of the �ndings presented in this work for gas giants such as Jupiter
could be severe. Their highly turbulent planetary atmospheres are still poorly understood,
even more so due to their inaccessibility. Numerical models have thus far been unable to
reproduce any features beyond the basic Taylor-Proudman structure.

Now that a transport bifurcation has been found in a purely drift-wave based plasma, it
seems very likely that the existence of similar stable states in planetary atmospheres is no
far-fetched assumption. Their understanding could lead to a much improved model for the
changes of large atmospheric �ows, and thus their very structure.

Since zonal �ows heavily a�ect the level of turbulence and thus in�uence both con�ne-
ment and density distribution within fusion devices, it is straightforward to propose that
atmospheric zonal �ows exhibit similar control over the pressure and �ow distribution
in their proximity4. An improved understanding of these �ows could lead to an equally
improved understanding of their e�ects on the climate of a gas giant. Going beyond
that, the existence of a transport bifurcation in these atmospheric zonal �ows could very
well correlate with two di�erent climate states, corresponding to high-impact events with
severely dissimilar global climate conditions.

This realization could lead to a much re�ned model for Jupiter (via a yet-to-create �uid code
based on spherical harmonics), and be a big step toward a long-term goal: A comprehensive
and global climate forecast for Jupiter.

4Consequentially, a secondary bifurcation approach based on a tilting instability of the Taylor-Proudman
columns [64] is the second promising ansatz for the generation of zonal �ows on Jupiter and their e�ects
on its climate - the �rst being the turbulence-based inverse cascade scenario.
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7.2.2 Beyond Jupiter

But zonal �ows (and drift waves, or their analogs) are not limited to Jupiter. They are
ubiquitous in the universe [11], and so are the discussed rami�cations of any bifurcation
of theirs.

Small density inhomogeneities have been found to lead to ultra-low-frequency drift waves
in magnetized dusty space plasmas [110]. Diamagnetic currents of heavier plasma species
then drive these modes unstable, yielding a possibility of subsequent structure formation
in these ionized gas clouds, easily spanning several a.u. [111]. Another likely birthplace
for astrophysical zonal �ows has been located within inhomogeneous rotating astrophysical
�uids exciting geostrophic modes [112] - while even the wisps of the Crab nebula may be
caused by an electron-positron plasma drift instability [113].
Zonal �ows also appear to play an important role in protoplanetary disks [114], becoming
excited by radial stress �uctuations driven by higher-than-expected turbulent di�usion.
The resulting sub- and super-Keplerian �ows are in geostrophic balance with density
corrugations, determining future condensation clusters. The underlying Rossby waves in
such protoplanetary nebulae, caused by mean vorticity gradients [115], are found to grow
in the radial direction while propagating freely in the azimuthal direction [116].

Even in our own solar system, there are not only the Jovian �ows, but also superrotating,
self-organized bands on Venus [117], zonal �ows on the Sun (the activity of which is an
important contributor to the many solar e�ects crucial to Earth's climate) [118] and in the
depths of Earth's oceans [119] - but most importantly, also in Earth's atmosphere. The jet
stream with its iconic Rossby wave meanders [120] may be the most well-known example
of a high-altitude zonal band spanning Earth, though it is just one of many. Even parts
of the low-lying global atmospheric circulation can be considered blurred zonal �ows.

Therefore, any insight gained from transport bifurcations leading to two stable states in
planetary atmospheres does not only have consequences for gas giants, but also for our
home planet. It is possible that its global climate models can thusly be re�ned to include
potential climate bifurcations and therefore even have implications for climate change on
Earth itself.





Chapter 8

Conclusions

Zonal �ows are an essential asset in any high-con�nement fusion device, controlling radial
turbulent transport through high �ow shear. Consequently, they may be connected to the
generation of many transport bifurcations, including the fast-developing H-mode occurring
up to the high-gradient, drift wave-populated edge, making a better understanding of
their underlying principles indispensable. Due to the nonlinearities and disparate scales
involved, any examination requires costly numerical computations in addition to analytical
work. These were performed with the help of the nonlinear two-�uid Braginskii code
NLET, with the underlying theme of this work revolving around an analysis of bifurcations
in the drift wave-based zonal �ow regime. The main results concerning the discovery of
two transport scales, the origin of the zonal �ow transition and a subsequent transport
bifurcation associated with density corrugations and a zonal �ow asymmetry are derived
in Section 4.4, Section 5.4 and Sections 6.1-6.3, respectively.

First, the speci�c characteristics of the turbulence in this sheared-slab collisional drift
wave system had to be analyzed. The associated Hasegawa-Wakatani equation set was
transformed into a shape where a single dimensionless parameter ρ̂s - de�ned in [63] as ρ̂s =
ρs/L⊥, the ratio between the ion sound Larmor radius ρs and a second orthogonal length
scale L⊥ which increases with the drift wave velocity αd and decreases with magnetic shear
s - determines the entire behavior of the density and potential, apart from quantization
e�ects for insu�cient domain sizes and the secondary in�uence of the radial positioning of
resonant surfaces. Numerical cross-checks by varying either αd, εn (relating gradient and

system sizes) or s - all of which are contributors to ρ̂s = ε
1/2
n (αds)

2/3 - con�rmed that
ρ̂s is indeed the single factor of in�uence within the system. This allowed for a reliable
calculation of the exact group and phase velocities for both adiabatic and nonadiabatic
drift waves in the new units, as well as the nonadiabatic ρ̂s-based drift wave growth rate.
Subsequently, the in�uence of magnetic shear as well as of resonant surfaces and the general
conditions for drift wave stability and instability in this system were discussed. A number
of numerical issues - notably parallel hyperviscosities, boundary e�ects, arti�cial �ows and
choosing the correct value of the substitute Alfvén parameter αmadd - were identi�ed and
dealt with.
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Figure 8.1: In this graph, resembling the core information of Figure 4.6, density �ux is
plotted versus the dimensionless parameter ρ̂s, according to the values presented in Tables
A.1 and A.2. The averaged computational data for the density �ux 〈nvx〉 in units of the
radial length scale L⊥ (marked in blue) converges for low levels of ρ̂s and decreases ∝ ρ̂−2

s

for higher values of ρ̂s, while the density �ux in units of the second orthogonal length scale
ρs (marked in red) exhibits the opposite behavior, with a plateau for high ρ̂s following an
increase ∝ ρ̂2

s for low values of ρ̂s. Thus, the transport values in units of ρs converge to a
constant for high ρ̂s while those in units of L⊥ converge for low ρ̂s. The transitional region
with respect to the two convergence regimes positions itself around ρ̂s,transition ≈ 0.15−0.20
(determined more precisely to be ρ̂s,transition = 0.185). The reddish density �ux values in
units of L⊥ are therefore plotted increased by a factor of 1/(ρ̂s,transition)2 ≈ 29 in order
to be shown in the same graph (and in order to visualize the transition between the two
transport regimes), since by de�nition they reach a similar level as those in units of ρs only
for ρ̂s = 1.

Finally, the in�uence of the parameter ρ̂s was analyzed in detail. The existence of two
dominant scales, the ion gyroradius scale (which, as expected, has been found to scale
perfectly with the drift wave vortices) and the resistivity length scale, was derived analyt-
ically and subsequently con�rmed numerically. In order to determine the in�uence of the
remaining two scales ρs and L⊥ on the density �ux, the expected di�usion coe�cients were
derived analytically using a mixing length estimate, ultimately yielding a simple relation
(4.50) between the units of Dρs and the units of DL⊥ ,
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DL⊥

Dρs

= ρ̂−2
s (8.1)

where DL⊥ |ρ̂s→0 → const. and Dρs |ρ̂s→∞ → const.. After predominantly domain size-
based convergence issues in the high-ρ̂s-regime had been resolved and analyzed (approx-
imated in an empirical relation for di�erent Lx,y and ρ̂s shown in (4.56)), numerical ex-
periments were able to con�rm these expectations to an excellent degree when examining
the computational values of the density �ux, with both the ρ̂−2

s -relation as well as the two
transport plateaus in their respective units being veri�ed as shown in Figure 8.1 (originally
from Figure 4.6) and equations (4.53) and (4.55):

〈nvx〉L⊥ |ρ̂s→0 ∝ ρ̂−0.004±0.02
s 〈nvx〉ρs |ρ̂s→∞ ∝ ρ̂0.06±0.20

s (8.2)

Finally, the transitional value of ρ̂s between the scales was identi�ed with the onset of zonal
�ows, which emerge solely within the more adiabatic and thus only weakly nonlinear ρs-
regime for high ρ̂s & 0.15− 0.20, allowing large-scale structures to develop. An analytical
explanation for the zonal �ow regime transition based on a resonant surface gradient has
been proposed for the �rst time. The frequency gradient length of the resonances gained
through a mixing length argument - describing the approximate distance up to which
signi�cant repulsion by the resonant surfaces can be felt for the drift waves - decreases
with increasing ρ̂s since the gyroradius and the distance between two resonant surfaces
grow.
There is also the issue of the ρ̂s-independent �ow gradient. As is known [47], a wavekinetic
analysis of the nonlinear drift wave self-interaction mechanism causing Reynolds stresses
- which in turn fuel the zonal �ows - leads to a modi�ed radial group velocity equation
accounting for the now shear-�ow-gradient-dependent radial mode wavenumber kx = kx0−
v′yt|ky| (where v′y = ∂xvy). The consequences of this alteration are considerable, as it
implies repulsion of the drift waves by the �ows opposite to the electron diamagnetic drift
direction - dubbed negative �ows - and subsequent attraction (and possibly even trapping)
by the positive �ows, as seen in Figure 5.3. Thus not only resonant surfaces but also zonal
�ow minima act such that they repulse the drift wave turbulence. Using the

(
k2
x + k2

y

)
ρ̂2
s �

1 solution (5.7) to vgr,x for large kx, vgr,x ≈ 2ky
(
v′ytky − kx0

)
/ρ̂2

s

(
k2
x + k2

y

)2
, it can be seen

that the drift waves can - in addition to being trapped at the positive �ows - even become
stuck in steep enough �ow gradients, cutting o� radial density transport altogether.
Now, when the resonance gradient length is compared to the �ow shear gradient length,
two cases are possible. For low ρ̂s, the resonance gradient is stronger than the shear
�ow gradient. Thus, uphill (as de�ned with respect to the �ow pattern) acceleration by
the �ow as described in (5.7) merely serves to decelerate the downhill propagation due
to the resonance gradient on the downhill-side, presenting these modes with more time
next to the resonant surface, growing stronger than their uphill-side counterparts. The
resulting, predominantly negative Reynolds stress as seen in Figure 8.2 (originally from
Figure 5.7) prevents zonal �ows from forming. For high ρ̂s, on the other side, only uphill
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acceleration remains, leading to positive Reynolds stresses and thus zonal �ow growth. A
transitional third regime seems conceivable where the local �ows caused by drift waves
are insu�cient to overcome the resonance gradient, but arti�cially induced high-amplitude
shear �ows are not. This is possible shortly below the transition (5.26) between dominance
of the resonance gradient derived from its radial resonance mixing length distance rml and
dominance of an (oppositely directed) zonal �ow gradient ∂xvy. This threshold occurs at

∂xrml (ρ̂s) = −∂xvy (8.3)

Ordered �ows were shown to emerge - a �rst within a Hasegawa-Wakatani equation set due
to the high-ρs high-resolution computations required - on time scales τ that are increasing
rapidly with ρ̂s (as shown in Figure 5.6), tenfolding for each doubling of the parameter,
making high-ρ̂s-studies beyond ρ̂s ≈ 0.5 − 0.8 increasingly unfeasible. While a derivation
via the proportionality τ ∝ k−2D−1 ∝ ρ̂2

sρ̂
2
s gained from a mixing length discussion yields

good agreement between the theoretically expected (6.4) and the experimentally measured
values (6.3) of the inverse zonal �ow growth rate

τZFtheoretical ∝ ρ̂
4.0
s τZFnumerical ∝ ρ̂

3.5±0.8
s (8.4)

this result also explains why prior enterprises have failed to muster the computational
power required to pass over the previously motivated ρ̂s ≈ 0.15 − 0.20-threshold (which
coincides very well with the ρ̂s ≈ 0.15− 0.20-transition between the two transport scales)
from pure drift wave turbulence to large-scale structure formation.

Also, through an analysis of a relation between the zonal �ow amplitude and the drift
wave intensity, the retroaction of the drift waves on the zonal �ows could be examined,
and evidence challenging the predator-prey-model was found, with e.g. trapped prey at
the positive �ows thriving particularly well in close proximity to its predator.

Most importantly though, with the two transport regimes identi�ed and the associated
zonal �ow transition as well as the general drift wave zonal �ow interaction better un-
derstood, extensive parameter studies for ρ̂s were conducted, focusing on the expected
consequences of the behavioral asymmetry created due to the drift wave repulsion by the
negative �ows. Joint studies of the development of the drift wave turbulence pattern, the
density gradient and the zonal �ow structure resulted in a numerical con�rmation of the
theoretical considerations, yielding transport bifurcations within all �nal zonal �ow steady
states. The negative �ows were observed to be steepened and narrowed while the positive
�ows exhibit unusually broad, shallow plateaus, satisfying conservation of the zonal �ow
mean value: 〈vy = 0〉. As is shown in Figure 8.3 (originally from Figure 6.1) within a
comprehensive presentation of the major �ndings of Chapter 6, this zonal �ow asymmetry
is linked to density corrugations, with the gradient being increased around the shear �ow
domain wall at the negative �ow peaks and decreased in the rest of the domain centered
on the positive plateaus. Thus, the system was found to exhibit two di�erent transport
states, with low di�usivity and high density gradients around the negative �ows and vice
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Figure 8.2: As seen in 5.7, the same-time evolution of the radial-poloidal potential and the
Reynolds stress (relative to the maximum particle �ux) of linear drift wave modes initiated
at the resonant surface x(L⊥) = 0 in the presence of a positive �ow shear v′y > 0 is analyzed
for ρ̂s ≈ 0.08 and ρ̂s ≈ 0.40 respectively. For low ρ̂s, the uphill acceleration only serves to
decelerate the modes at negative radial positions, enabling them to grow stronger due to
their vicinity to the resonant surface, causing pronounced negative Reynolds stress while
moving downhill. For high ρ̂s, the resonant surface potential is much weaker in comparison
to the shear �ow potential, leading to uphill acceleration of all modes and thus positive
Reynolds stresses, fueling the �ows instead of dampening them - thus de�ning the zonal
�ow regime.
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Figure 8.3: Presenting the main results shown in 6.1, for ρ̂s ≈ 0.28 (with εn = 0.06,
αd = 1.25 and s = 1), poloidal �ow vy, density corrugations n and the total density
gradient n0 + n are shown in a 2D plot yielding radius vs time (left hand side) next to
the associated time-averages for all radii (right hand side). All major bifurcation-related
�ndings are visible in this high-resolution run (nx,y = 512, Lx,y = 64): Flow asymmetry
- with �attened positive �ows and steepened negative �ows - and, most importantly, a
corrugation on top of the density gradient, associated with steepened areas around the
negative �ow domain wall.

versa high di�usivity and low density gradients around the positive �ows: A transport bi-
furcation. As seen in (6.1) and (6.2), this e�ect is strongly noticeable, with typical values
for the �ow asymmetries and density gradients n′ = ∂xn of

|vy,min| ≈ 2 · |vy,max| n′|vy,min ≈ 2 · n′|vy,max (8.5)

while remaining overall momentum-invariant according to 〈vy〉 = 0 (due to sharpened neg-
ative �ows and broadened positive �ows on top of a triangular �ow pattern corresponding
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with the maximum �ow shear which does not eclipse the drift wave growth rate). These
bifurcations remain robust under a wide variety of distortions; any forced short-term al-
teration is followed by a swift return to the asymmetric steady state on the transport time
scale. While the density corrugations survive even under a continuous arti�cially symmet-
rical �ow pattern (only disappearing when no �ows are present at all), it was shown in
Figure 6.2 that the zonal �ow asymmetry vanishes when confronted with a density gradient
which is kept constant arti�cially, rendering the asymmetric �ows a subdominant feature
of the more basic density corrugations. Flow asymmetry is thus shown to bring about only
indirect implications for transport (which is determined by the density gradient) - a result
which holds true no matter which ρ̂s is chosen. Other characteristics are less constant, with
the expanded parameter studies including (among others) both the �uctuation and kinetic
energy, the orthogonal drift wave spectra with their respective drop-o� values as shown in
Figure 6.7 and both a measure for the mean zonal �ow amplitude and the mean �ow asym-
metry, where applicable (depicted in Figure 6.4). Turbulent energy declines self-similarly
within the entire ρ̂s-spectrum, while the simultaneous increases in the �ow energy turned
out to be less pronounced. Combined, �ow energy reaches the same order of magnitude as
the turbulent energy as soon as the transition from the chaotic �ow onset to ordered zonal
�ows is achieved. The drop-o� value ky,fall of the spectra - beyond which their shape bends
from a white noise plateau above the scale of the �uctuations to a polynomial cascade (the
smoothness of which was used as one of several tests for the su�ciency of the employed
numerical resolution, next to e.g. the convergence of the turbulent transport) - stays con-
stant in the turbulence regime (in units of ρs) as well as in the zonal �ow regime (in units
of L⊥). Accordingly, ky,fall · ρs < 1 holds true always, supporting the previous insight
that drift modes beyond ky,fall · ρ̂s ≈ 1 - in dimensionless ρ̂s-units for ky,fall - exhibit next
to zero growth (this could, however, also be caused by suppressed modes). The exponent
ek for the self-similar decay of the spectra increases sublinearly with ρ̂s in the zonal �ow
regime (6.5) while remaining constant for low values of ρ̂s (6.6), with a smooth transition
in between:

∆ek|ρ̂s&0.15−0.20 ∝ (∆ρ̂s)
0.6 ∆ek|ρ̂s.0.15−0.20 ∝ (∆ρ̂s)

0.0 (8.6)

While the �ow wavelength is not strongly prescribed intrinsically (in contrast to ITG-
based zonal �ows) and while the �ow amplitude was found to grow and �nally saturate
under an increasing ρ̂s, the �ow asymmetry actually decreases with higher values of ρ̂s,
as seen in Figure 6.5. The same holds true for the density corrugations, rendering the
transport bifurcations the more pronounced the closer they get to the transitional value
ρ̂s ≈ 0.15− 0.20. Within the zonal �ow regime, all parameters scale with ρs as expected.
Further connections with theory are derived by analyzing the correlation between drift
wave intensity and peak �ow amplitude, yielding the expected low turbulence intensity
around the negative �ows as well as a quickly-saturated plateau for arbitrarily strong
positive �ows (Figure 6.6). Finally, a qualitative bifurcation mechanism was developed,
based on the paradigm of turbulence repulsion by the negative �ows. Accordingly, overall
transport balance requires the heightening of density gradients to counteract the reduction
in di�usivity, yielding density corrugations, while at the same time radial carry-o� of drift
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waves fuels Reynolds stresses prior to steady state saturation, resulting in the observed
asymmetric �ow pattern.

However, one apparent contradiction remained. Radial drift wave streaks (where streaks
denote propagating �uctuations in transport measured as local regions of increased density
�ux, as seen in Figures 6.1 and, more clearly, in 6.9) were observed to propagate downhill,
opposite to the �ow gradient, apparently contradicting the negative �ows' repulsion
paradigm. They exhibit an asymmetry in behavior between inwards and outwards di-
rected streaks of their own: While streaks in both directions occur for zero �ow gradient
- spanning a diagonal net - any increase in the �ow gradient makes the uphill streaks
become weaker in amplitude and fewer in between, yet also faster in comparison to their
downhill counterparts (Figure 6.10). These e�ects, as well the streak generation itself,
are neither caused by a Galilei shift nor arti�cial numerical e�ects. Instead, it could be
veri�ed via a tracking routine shown in Figure 6.14 that these streaks are in fact identical
to the turbulent drift wave eddies associated with the density corrugations (holding the
density gradient constant removes all counter-propagation). Subsequently, only four
possible explanations remain: Ampli�cation via shear �ow interaction (which only occurs
for high wavenumbers, while generally leading to too small growth rates as kx → −∞),
acceleration in the gradient direction (which is impossible due to a ceiling max(vgr,x)
being reached soon), scattering (which occurs for high enough drift wave intensity, where
the drift waves begin to resemble shear �ow optics for kρs & 1) and transport e�ects.
The characteristics of the streaks' backscattering process were found to be consistent
with the observed downhill movement. However, this picture proves incomplete: For a
constant density pro�le, the streak direction reverses, matching the initial expectations.
It is only the corrugations in the density pro�le which cause the apparent contradiction
by displacing the transport peak to such a degree that it actually stabilizes the density
corrugations instead of destroying them, e�ectively reversing the direction in which the
streaks �ow - rendering the apparent contradiction a corrugation-caused transport e�ect.

The obtained bifurcation picture has far-reaching consequences, since zonal �ows appear
in a large number of real-world applications, ranging from fusion plasmas to atmospheric,
submarine or even solar modes. Several characteristics of the bifurcations in this work
are suspected to possibly play a role in con�nement, chie�y the increase in �ow shear
(strongly exceeding �ow shear levels under bifurcation-free symmetric �ow conditions)
occurring around the negative zonal �ows, as well as shear �ow stalling e�ects. Under the
right device parameters, coming in at just above the transitional value of ρ̂s, the resulting
shearing e�ect might even be su�cient to cut o� signi�cant portions of the radially prop-
agating drift wave turbulence. While experimental evidence for the characteristics of drift
wave-based zonal �ows is still scarce, a mid-term goal for experimentalists was derived,
proposing to attain the transitional value of ρ̂s in order to con�rm (or refute) the existence
of the numerically and analytically discovered bifurcations. Atmospheric zonal �ows, on
the other hand, are more accessible via empirical methods. Similarities between these two
systems were discussed, citing geostrophic modes, Coriolis forces and pressure forces as the
atmospheric counterparts to drift waves, magnetic �elds and density gradients in a plasma.
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The consequences of conveying such bifurcations to planetary atmospheres (as well as
numerous other astrophysical systems such as protoplanetary disks or interstellar nebulae)
were then examined. Due to the high rotation speeds on Jovian planets, their zonal �ows
exert a substantial amount of control over their respective body's climate. Consequently,
any transport bifurcation in these systems would have a strong impact, possibly correlating
with two severely di�erent climate states. Further research - including the creation of a
high-resolution �uid code for gas giants - might thus prove to be the �rst step towards a
comprehensive and global climate forecast for Jupiter. But zonal �ows are not limited to
gas giants or outer space. Albeit being weaker than their Jovian counterparts, the globe-
spanning jet streams on our home planet do still exert a considerable amount of in�uence
on its climate. Therefore, atmospheric �ow bifurcations could even have implications for
climate change on Earth itself.





Appendix A

Turbulent transport measurements

Table A.1: Turbulent transport in units of L⊥

ρ̂s 0 5.55e-4 2.22e-3 8.88e-3 1.78e-2 3.55e-2 5.02e-2

〈nvx〉L⊥ 0.1459 0.1439 0.1427 0.1432 0.1419 0.1407 0.1363

ρ̂s 0.071 0.100 0.142 0.169 0.201 0.239 0.284

〈nvx〉L⊥ 0.1303 0.1209 0.1070 0.0976 0.0868 0.0672 0.0527

ρ̂s 0.337 0.402 0.438 0.478 0.521

〈nvx〉L⊥ 0.0407 0.0299 0.0261 0.0222 0.0186

Table A.2: Turbulent transport in units of ρs

ρ̂s 0 5.55e-4 2.22e-3 8.88e-3 1.78e-2 3.55e-2 5.02e-2

〈nvx〉ρs - 9.45e-8 1.51e-6 2.42e-5 8.87e-5 1.82e-4 3.41e-4

ρ̂s 0.071 0.100 0.142 0.169 0.201 0.239 0.284

〈nvx〉ρs 6.52e-4 1.21e-3 2.16e-3 2.79e-3 3.51e-3 3.84e-3 4.25e-3

ρ̂s 0.337 0.402 0.438 0.478 0.521

〈nvx〉ρs 4.62e-3 4.83e-3 5.01e-3 5.07e-3 5.05e-3
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