
Technische Universität München

Lehrstuhl für Informatik mit Schwerpunkt
Wissenschaftliches Rechnen

Immersed Boundary Methods within a
PDE Toolbox on Distributed Memory

Systems

Janos Benk

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des Akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Georg Carle

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Hans-Joachim Bungartz

2. Prof. George Biros, Ph.D.
University of Texas Austin/USA
(nur schriftliche Beurteilung)

3. Univ.-Prof. Dr. Christoph Zenger, i.R.

Die Dissertation wurde am 12.04.2012 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Informatik am 03.08.2012 angenommen.

Abstract

Advanced simulation of complex physical systems governed by partial differential equa-
tions (PDE) poses significant computational challenges that require a collection of sophis-
ticated numerical methods. One of the main challenges is the representation of complex
boundaries and domains together with the respective boundary conditions (BC). In the
classical way, this challenge is tackled by a costly mesh generation process, that be-
comes a significant computational bottleneck especially on distributed memory systems.
The time to solution is a crucial factor for modern PDE software development. Hence,
combining new numerical methods into a user-friendly PDE toolbox that also facilitates
parallel simulations is a significant algorithmic and software design challenge.

This thesis describes contributions to the development of various complex boundary
representations in the form the Immersed Boundary (IB) methods within the frame of
the PDE toolbox Sundance, a package within the Trilinos project. The IB methods use
a memory- and cache-efficient structured mesh in combination with special methods to
impose the BCs on complex boundaries. We extended Sundance with parallel structured
mesh implementation, while general cut-cell and boundary integral methods were devel-
oped in the frame of Sundance, allowing the implementation and parallel computation
of various IB methods in this toolbox environment. The one particular IB method in
our focus is Nitsche’s method for flow simulation that facilitates moving boundaries even
for a fixed mesh approach, and significantly simplifies the obstacle representation in the
flow field.

To demonstrate the capabilities of our IB approach and Sundance implementation we
computed various benchmark scenarios in 2D and 3D settings. The presented results
of the strong scaling study show the scalability on distributed memory systems. This
work, thus, is an important step towards IB methods in a PDE toolbox context, capable
of distributed memory simulation.

3

Zusammenfassung

Simulationen von komplexen physikalischen Systemen, die mit partiellen Differential-
gleichungen (PDE) beschrieben werden, stellen große Herausforderungen an heutige
Rechner und erfordern daher effiziente numerische Methoden. Eine der wichtigsten Her-
ausforderungen ist die Darstellung komplexer Ränder und Gebiete zusammen mit den
jeweiligen Randbedingungen. Im klassischen Ansatz wird diese Aufgabe durch einen
rechenintensiven Gittergenerierungsprozess bewältigt, welcher vor allem bei parallelen
Simulation und insbesondere auf Distributed-Memory-Systemen einen erheblichen En-
gpass darstellt. Die Time-to-Solution ist ein entscheidender Faktor für die moderne
PDE-Software-Entwicklung. Die dafür notwendige Kombination neuer und effizienter
numerischer Methoden mit einer benutzerfreundlichen PDE-Toolbox, die auch paral-
lele Simulationen ermöglicht, stellt bedeutende Anforderungen an die zugrundeliegende
Algorithmik und das Software-Design.

Diese Arbeit beschreibt wichtige Beiträge zur Entwicklung verschiedener komplexer
Randdarstellungen mit Hilfe der Immersed-Boundary (IB) Methoden, die in der PDE-
Toolbox Sundance, einem Paket im Trilinos Projekt, implementiert wurden. IB-Methoden
verwenden ein speicher- und cacheeffizientes strukturiertes Gitter in Kombination mit
speziellen Methoden, die die Randbedingungen auf komplexen Geometrien ermöglichen.
Wir haben die PDE-Toolbox um parallele strukturierte Gitter erweitert und gleichzeitig
allgemeine Cut-Cell- und Randintegral-Methoden entwickelt. Diese allgemeinen Meth-
oden ermöglichen die Implementierung und anschließend die parallele Simulation von
schwach formulierten IB-Methoden in der Sundance-Toolbox-Umgebung. In dieser Ar-
beit wird eine bestimmte IB-Methode, die Nitsche-Methode, für Strömungssimulationen
implementiert, die bewegte Ränder für ein fixiertes Gitter ermöglicht. Damit vereinfacht
sich die genaue Hindernis-Darstellung in einem Strömungsfeld deutlich.

Um das Potenzial unseres IB-Ansatzes in der Sundance-Implementierung zu demon-
strieren, berechnen wir verschiedene Benchmark-Szenarien in 2D und 3D, die unseren
Ansatz verifizieren. Die erzielte starke Skalierbarkeit zeigt die parallele Effizienz des ver-
wendeten Ansatzes auf Distributed-Memory-Systemen. Diese Arbeit stellt einen wichti-
gen Schritt in Richtung allgemein anwendbarer IB-Methoden in einer PDE-Toolbox für
Distributed-Memory-Systeme dar.

1

Contents

1. Introduction 7

2. Finite Element Basics 11
2.1. Fundamentals from Functional Analysis 11
2.2. Finite Element Discretization . 17

3. Governing Equations in the Applications 31
3.1. Fluid Model . 31
3.2. Structure Model . 35
3.3. Fluid-Structure Interaction . 38

4. Cartesian Meshes and Immersed Boundary Methods 41
4.1. Cartesian Meshes . 41

4.1.1. Tree-Structured Cartesian Meshes 42
4.1.2. Cartesian Mesh Traversal and Domain Decomposition 45
4.1.3. Geometry and Boundary Representation 46

4.2. Immersed Boundary Methods . 48
4.2.1. Overview . 48
4.2.2. Penalty Method . 51
4.2.3. Finite Cell Method . 54
4.2.4. Lagrange Multiplier Method . 55
4.2.5. Nitsche’s Method . 57

5. Sundance PDE Toolbox Introduction 65
5.1. Structure of the Sundance PDE Toolbox 65

5.1.1. Problem Formulation . 66
5.1.2. Matrix Assembly . 75
5.1.3. Solvers . 82
5.1.4. Visualization . 83

5.2. Overview of Open-source FEM-based PDE Toolboxes 84

6. Parallel Adaptive Cartesian Meshes in Sundance 87
6.1. Quad and Brick Elements in Sundance 87
6.2. The Pre-fill Element Transformation for Hanging Degrees of Freedom . . 88
6.3. Sundance Mesh Interface Extensions . 95
6.4. Degree of Freedom Map Extensions for Hanging DoFs 96

3

Contents

6.5. Parallel Adaptive Cartesian Mesh Implementations in Sundance 98

6.5.1. Mesh Storage and Runtime Comparison 101

7. Fluid Flow with Nitsche’s Method 105
7.1. Boundary Geometry Representation . 105

7.1.1. Geometry Interface and Analytical Geometry Representations . . 106

7.1.2. Polygons as Two-dimensional Geometry 110

7.1.3. Triangle Surfaces as Three-dimensional Geometry 113

7.2. Cut-Cell Quadrature . 118

7.2.1. 2D Cut-Cell Integration Method 120

7.2.2. 3D Cut-Cell Integration Method 123

7.2.3. Cut-Cell Integration Methods in Sundance 126

7.3. Curve and Surface Integrals . 127

7.3.1. 2D Curve Integration . 128

7.3.2. 3D Surface Integration . 129

7.3.3. Curve and Surface Integral Implementations in Sundance 130

7.4. Fluid Flow Benchmark Results . 132

7.4.1. 2D Benchmark Results . 133

7.4.2. 3D Benchmark Results . 137

8. Fluid-Structure Interaction with Nitsche’s Method 139
8.1. Moving Geometries with Nitsche’s Method in 2D and 3D 139

8.2. Partitioned Fluid-Structure Interaction 142

8.2.1. Stationary FSI . 142

8.2.2. Partitioned and Transient FSI with Explicit and Implicit Time
Coupling . 143

8.2.3. Implementational Requirements in Sundance 145

8.3. 2D Results . 147

8.3.1. 2D Stationary Results . 148

8.3.2. 2D Transient Results . 152

8.4. 3D Results . 155

8.4.1. 3D Stationary Coupling Results 156

8.4.2. 3D Explicit Coupling Results . 158

9. Porous Media Simulation with the Stokes-Brinkman Model 161
9.1. The Governing Equation and the Geometry Model 161

9.2. Computational Results in 2D and 3D . 163

9.2.1. 2D Results . 164

9.2.2. 3D Results . 165

9.3. Strong Scaling Results of the 3D Parallel Computations 166

9.3.1. Results with Q1Q1 Elements . 167

9.3.2. Results with Q2Q1 Elements . 169

4

Contents

10.Summary and Outlook 171
10.1. Summary . 171
10.2. Outlook . 172

A. Appendix 173
A.1. Notations for Structural Mechanics . 173
A.2. Nitsche’s Method Derivation for the Poisson Equation 175
A.3. Nitsche’s Method Derivation for the Navier-Stokes Equations 177
A.4. Sundance Code for the Navier-Stokes Equations with Nitsche’s Method . 180
A.5. Sundance Code for Static Partitioned FSI Computations 183

5

1. Introduction

Classical scientific research consisted of only two pillars. The first one is the theoretical
model that the scientist assumes for a given physical phenomenon, and the second pillar is
the experiment or observation, where the validity of the proposed theoretical model could
be proved or disproved. The theoretical mathematical models are often complex and
analytical solutions are rarely available in particular for realistic scenarios. This limits
the capability to model and to verify a given model for a complex physical phenomenon.
Furthermore, experiments and observations might be impossible, too expensive, or too
dangerous to make in a real-world setting.

For these reasons, numerical methods are employed in a combination with hardware-
efficient algorithms, in order to efficiently compute the solutions of complex models on
modern computing architectures. The resulting solutions are then further analyzed or
compared to measured data in order to gain knowledge from the process. The discipline
that incorporates these types of approaches is called scientific computing, representing
the third pillar of scientific research. Scientific computing already helped scientists to
make advances in many different areas (nuclear fusion, astronomy, quantum chemistry,
e.g.). Furthermore, computational science is gaining more and more importance not
only in science but also in engineering, where the goal is not just insight, but a further
improvement of a product or a speed up of development phases.

A significant portion of complex physical systems are governed by partial differential
equations (PDE), for which analytical solutions are only known in very simple cases.
The first step towards a numerical solution is to use a spatial discretization. One of
the most common and general ways to discretize a PDE is the finite element method
(FEM). This discretization method fits well to a general software structure that enables
the modular construction of a PDE toolbox, where each component is replaceable. Such
a modular structure of a PDE toolbox allows for the reusability of developed code, such
that a given PDE problem can be computed with a chosen discretization, quadrature
method, and solver. Our goal in this thesis is to develop a combination of a memory-
saving structured adaptive mesh implementation with a sophisticated accurate treatment
of boundary condition. This approach is then integrated into the frame of a PDE
toolbox, which improves the usability and the user friendliness of our implementation.
We choose the FEM-based PDE toolbox Sundance [60, 61] that has a high-end problem
description language and also allows for the efficient implementation of various PDE
models. Sundance also has the built-in capability to run in parallel on distributed
memory systems that is nowadays a ’must-have’ requirement for simulation softwares.

7

1. Introduction

One of the main challenges in solving PDEs numerically is to represent the boundary of
the computational domain accurately and to impose a given boundary condition (BC)
on it. The classical way is to create a mesh that approximates well the boundary with
its facets. This typically leads to unstructured meshes, for which both the generation
overhead and the memory requirements are high. This hold in particular for complex
and moving geometries. An alternative approach that we follow in this thesis, is to
use immersed boundary (IB) methods, where the boundary is represented by a different
entity. Therefore, IB methods allow for the usage of a structured and computationally
cheaper mesh. The task here is to impose a given BC on the immersed boundaries,
which do not coincide with the mesh’s facets. For this purpose, we investigate several
IB approaches stated in a weak form and apply them to various applications. One of
these methods is Nitsche’s method [69], which we employ for the first time for Navier-
Stokes equations in an IB setting. This method proves to be not only consistent on the
boundary but also efficient for complex domains.

Concluding and completing the above mentioned challenges, we enlist the following
aspects of the FEM-based PDE simulation that we address in this thesis and represent
the major contributions of this work:

• PDE Toolbox with Immersed Boundary Capabilities: We only consider IB
methods that can be formulated in a weak form, allowing for the implementation
in a FEM-based PDE toolbox. For this purpose, we develop IB capabilities within
the PDE toolbox that consist of various efficient cut-cell and boundary integration
methods. IB methods further require an explicit geometry representation, since
the boundary is not represented by the mesh’s facets. Such a boundary geometry
representation is also a challenge that needs to be tackled in this context.

• Immersed Boundary Methods: With the developed IB capabilities, we pro-
pose to investigate and develop various IB methods. We are mainly interested
in approaches that are capable to weakly impose Dirichlet BCs for incompressible
fluid simulation, not only on fixed boundaries but also on moving geometries, while
the underlying mesh remains fixed.

• Adaptive Cartesian Mesh: In the IB context, it is reasonable to use a struc-
tured mesh that can be created and refined in a simple way and further require
considerably less storage than a comparable unstructured mesh. Such a structured
mesh is the adaptive Cartesian mesh that allows for space-filling curve based do-
main decomposition for parallel simulation on distributed memory systems. The
implementation of such a parallel mesh within the frame of a PDE toolbox is one
of the challenges that we tackle in this thesis.

• PDE Toolbox Integration: The reusability of modern computational software,
typically containing various numerical methods, usually represents a significant
problem. In some cases, classical SE design approaches are avoided in order to
maximize the performance of the computations. Such approaches are justified

8

only for a few performance-critical sections of a simulation code. A similar idea
is also suggested by Knuth: ”We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of all evil”.1 Therefore, our
goal is to implement all the proposed methods in Sundance, such that any user
can freely access them, while the overall performance of the implemented methods
is not compromised.

• Parallel Implementation: Sundance allows by design a distributed memory
execution. While we extend this toolbox with IB capabilities, we also have to
make sure that all algorithms and data structures scale well on parallel systems.
Our goal is to develop IB capabilities that are not only usable for the toolbox users,
but also deployable in parallel simulations with good scaling properties.

• Multi-physics: The simulation of multi-physics problems often poses implemen-
tational and computational challenges for a given scientific software. Sundance
allows for the straightforward declaration of various PDEs, which model different
physical phenomena. The volume coupling of two models can be realized in the
weak form of the coupled problem, whereas an interface coupling implies more
implementational and numerical issues. As a multi-physics problem, we consider
several FSI scenarios. Our goal is here to develop general interface coupling capa-
bilities that allow for the simulation of interface coupled multi-physics problems
within Sundance.

This thesis is structured in 10 chapters and one appendix. The main research contri-
butions from the Phd project documented in this thesis are presented in Chapter 6,
Chapter 7, Chapter 8, and Chapter 9. We start with the general introduction of FEM
by briefly presenting the mathematical background of the method in Chapter 2. In
Chapter 3, we present the governing equations in the applications that we compute
in this thesis. We show the fluid’s model, the structure’s PDE, and the mathemati-
cal formulation of an FSI problem. Chapter 4 starts with an overview of the adaptive
Cartesian mesh that can be used efficiently in combination with IB methods for parallel
simulations. Furthermore, we give an overview of IB methods where the focus is on
the methods that impose the BCs weakly. We chose Sundance as a baseline for our
implementation. The main architecture and features of this PDE toolbox are presented
in Chapter 5. This chapter closes with an overview of existing open-source, FEM-based
PDE toolboxes that are currently available. In the following chapters of the thesis, we
introduce the developed features and methods for IB computations. Chapter 6 presents
the extensions of Sundance with rectangular elements, that in case of adaptive Carte-
sian meshes require the handling of irregularities caused by so-called hanging nodes.
We show, how we extended Sundance with such meshes and how the irregularities are
resolved in a general and user-transparent approach. In Chapter 7, we introduce the de-
veloped general IB capabilities within Sundance, which consist of cut-cell and boundary

1Knuth, Donald. Structured Programming with go to Statements, ACM Journal Computing Surveys,
Vol 6, No. 4, Dec. 1974. p.268.

9

1. Introduction

integral methods and require an explicit geometry representation in 2D and 3D. The
boundary geometry representation with the developed IB features is deployed here for
Nitsche’s method to compute 2D and 3D flow benchmarks. Once Nitsche’s method is
verified for stationary obstacles, we extend this method for moving boundaries within
fluids in Chapter 8. With this extension, we compute 2D and 3D FSI problems, where
the 2D benchmark values verify the correctness of our approach. Last, in Chapter 9, we
employ a different type of IB method to compute the permeability of a porous medium,
namely the volume penalty method. We close this thesis with a summary of the obtained
results and with an outlook on future research directions.

Acknowledgments

This research work has been accomplished with the strong support of the Munich Centre
of Advanced Computing (MAC2) and of the Chair of Scientific Computing in Computer
Science Faculty3 at the Technische Universität München. The author also acknowledges
the support of IGSSE4 for his two month stay at the Texas Tech University (TTU).

I want to thank my supervisor Prof. Dr. Hans-Joachim Bungartz for offering me the
opportunity to do my doctoral thesis on such an fascinating research topic. He always
offered unconditional support for my research work and gave me new impulses and ideas
when I got stuck. I also want to thank for the opportunity to participate in other research
projects that helped me to broaden my knowledge. Further, I want to thank Prof. Dr.
Michael Ulbrich for his support within the frame of the MAC-B7 project, especially for
the few but very crucial Sundance code debugging and mathematical advices. Further,
I want to say many many thanks to Prof. Robert Kirby, Phd and to Prof. Kevin Long,
Phd. They supported me to become a Sundance developer. During my stay at TTU,
they helped me with many ideas and advices to integrate new features into Sundance.
Special thanks go also to Dr. Miriam Mehl for her support and help during my research
work and for her feedback on this manuscript. Further, I also want to say many thanks
to the colleagues who helped and supported me in my research and in the writing of this
thesis.

Last but not least, I want to thank my family for their unconditional support that made
me able to do my Phd studies.

2www.mac.tum.de
3http://www5.in.tum.de
4http://www.igsse.tum.de/

10

2. Finite Element Basics

The Finite Element Method is one of the most widespread and general method to dis-
cretize a PDE. The generality of the FEM allows for the implementation of PDE tool-
boxes such as Sundance, which is in the focus of this thesis. At the same time, FEM is
the mathematically most founded discretization method. In this chapter, we enlist the
necessary functional analysis fundamentals for the finite element method, while the main
focus here is to introduce the FEM. Besides the theoretical information, the introduced
terms and theory play an important role in Chapter 5 and Chapter 6, where the different
components of the Sundance toolbox and its weak form based syntax are described. The
FEM represents the first step in a toolbox approach to the discretization of the PDE and
restricting the solution function to a discrete finite dimensional space. Before we make
the step to a finite space, we have to consider several aspects of the functional spaces in
their initial infinite dimensions.

In the first part, we enlist the necessary functional analysis basics of the finite element
method. In the second part of the chapter, we introduce the FEM with the Ritz-Galerkin
approach, which is the most common form of FEM discretization, especially in a toolbox
context.

2.1. Fundamentals from Functional Analysis

In general, a PDE problem can be seen as the strong form of Lu = f , where u is the
solution function, L a differential operator, and f a given function. The solution function
is contained in a function space with different characteristics. In the following, we enlist
the theory related to functional spaces. The notations for functional spaces defined here
are used in the following chapters, when we define a concrete PDE problem. We start
with the different types of functional spaces and their properties, which are crucial for
the finite element theory. For more detailed insights and for the proofs of the theorems,
we refer to [23, 21, 50].

In the following, we denote function spaces by a capital letter V and assign to such a
space a norm. The norm ‖·‖ is a mapping (function) ‖·‖ : V −→ R+ from the elements
of the space V to positive real numbers [0,∞[with the following four properties: (1)
‖v‖ ≥ 0, ∀v ∈ V , (2) ‖v‖ = 0 ⇔ v = 0, (3) ‖c · v‖ = |c| ‖v‖, ∀c ∈ R, v ∈ V ,
(4) ‖w + v‖ ≤ ‖w‖ + ‖v‖, for v, w ∈ V . The norm is important in order to have a

11

2. Finite Element Basics

given distance metric between the elements of the function space. Such a metric is
called complete if every Cauchy sequence {vi} in V has a limit v ∈ V . This means,
‖v − vj‖ −→ 0 while j −→ ∞. Using this complete metric in a linear space V (where
additivity and multiplicativity holds) defines the first type of space.

Definition 2.1.1 A normed linear space, denoted by (V, ‖·‖), is called a Banach space,
if the metric defined by the norm ‖·‖ is complete.

We further introduce the dual space B
′

to a given Banach space B. The dual space B
′

includes all the linear functionals F : B −→ R, F (v + aw) = F (v) + aF (w) , ∀v, w ∈
B, a ∈ R, with the associated norm

‖F‖B′ := sup
v∈B,v 6=0

F (v)

‖v‖B
.

The functionals in the dual space play an important role in the right-hand side of the
PDEs in the weak form, where the test space is the input for a given right-hand side
functional F , which is element of the dual space.

In the following, we define a common metric that results in Lebesgue spaces. We consider
a real valued function f on a subset Ω of Rn. Then, the Lebesgue integral of f is defined
as
∫

Ω
f(x)dx, where dx denotes the Lebesgue measure. With this integral, the following

metric can be defined

‖f‖Lp(Ω) :=

(∫
Ω

|f (x)|p dx
) 1

p

,

where 1 ≤ p <∞, and for the case p =∞

‖f‖L∞(Ω) := ess sup{|f (x)| : x ∈ Ω}.

In short notation, this norm is denoted by ‖·‖p := ‖·‖Lp(Ω), 1 ≤ p ≤ ∞. Using this
metric, the Lebesgue space Lp (Ω) is defined as

Lp (Ω) := {f : ‖f‖Lp(Ω) <∞}. (2.1)

It is straight forward to derive that the Lebesgue space Lp (Ω) with 1 ≤ p ≤ ∞ is also
a Banach space. Using the Lebesgue measure and integral in the definitions above has
important aspects. Two functions f and g are equal in the Lebesgue norm, if they have
the same values almost everywhere. If they differ only in subsets (e.g., pointwise in 1D)
with Lebesgue measure zero, they are still equal in the sense that ‖f − g‖Lp

(Ω)
= 0. This

property allows this integral to be defined also for improper integrals, crucial for the
completeness of the induced norm.

Next, we turn our attention to the definition of the weak derivative, which is defined
through partial integration. In contrast to the classical calculus’s pointwise view of the

12

2.1. Fundamentals from Functional Analysis

derivative, the weak derivative is determined by the global behavior of the function. In
the first step, we define the multi-index vector α, with n non-negative integers αi. The
length (Manhattan norm) of this vector is given as

|α| :=
n∑
i=0

αi.

Using this multi-index vector, we denote the partial derivative of a given function f as

Dαf ,

(
∂

∂x

)α
or simply fα. In a detailed notation, this partial derivative has the form(

∂

∂x1

)α1

. . .

(
∂

∂xn

)αn

f.

With the presented notation, we arrive to the definition of the weak derivatives, where
we use the notion of locally integrable function, which we denote with L2 (Ω).

Definition 2.1.2 We define g ∈ L2 (Ω) as the weak derivative Dα
w of f ∈ L2 (Ω), if

the following condition holds:∫
Ω

g(x)ϕ(x)dx = (−1)|α|
∫

Ω

f(x)Dαϕ(x)dx ∀ϕ ∈ Z0 (Ω) .

Z (Ω)0 defines all the functions in Ω, which have a compact support.1

All ϕ ∈ Z0 (Ω) vanish at the boundary ∂Ω. Thus, the integration by parts in the
weak derivative definition Def. 2.1.2 results in vanishing boundary integrals. If the
function f is C |α|-continuous, its weak derivative also exists and further we can write
that Dα

wf = Dαf = g. The existence of the weak derivatives of a function f is the
prerequisite for the definition of the Sobolev spaces:

Definition 2.1.3 Let k be a positive nonzero integer and f ∈ L2 (Ω). Assuming that
the weak derivatives exist in the sense of Def. 2.1.2, the Sobolev norm is defined as

‖f‖Wk
p (Ω) :=

∑
|α|≤k

‖Dα
wf‖

p
Lp(Ω)

 1
p

,

if 1 ≤ p <∞, and in case p =∞

‖f‖Wk
∞(Ω) := max

|α|≤k
‖Dα

wf‖L∞(Ω)

In both cases, the Sobolev spaces are defined as

W k
p (Ω) := {f ∈ L2 (Ω) : ‖f‖Wk

p (Ω) <∞}

1The support is the domain X ⊂ Ω where the function is nonzero.

13

2. Finite Element Basics

From Def. 2.1.3 follows that all elements of the Sobolev space must have a bounded weak
derivative up to an order k. This requirement is important later for the finite element
discretization. In the following, we also denote W 2

p (Ω) with Hp (Ω).2

Functional spaces with associated bilinear forms are the next step towards the weak
formulation of the finite element method. A bilinear form takes two elements as input
from two functional spaces and maps them to real values b (·, ·) : V × V −→ R, such
that it is a linear map.3 If this bilinear form is symmetric, then b (v, w) = b (w, v)
for ∀v, w ∈ V . One example of such a bilinear form is b (w, v) =

∫
Ω
v (x)w (x) dx,

which is also symmetric. Further, we define an additional category of such operators. A
symmetric bilinear operator is an inner product on space V , if the following conditions
are satisfied: b (v, v) ≥ 0 ∀v ∈ V and b (v, v) = 0 ⇔ v = 0. An inner product b (·, ·)
together with a space V is defined as inner-product space, and is denoted as (V, b (·, ·)).
Such an inner-product space is

(
L2 (Ω) , b (v, w) =

∫
Ω
w (x) v (x) dx

)
, for which the above

defined conditions hold. It is important to note that this inner product also induces a
norm on V , where we can write ‖v‖ =

√
b (v, v). If this metric is complete, then this

triple defines the next space.

Definition 2.1.4 Given the inner product space (V, b (·, ·)), and the associated normed
space (V, ‖·‖). If this normed space is complete then (V, b (·, ·)) is called a Hilbert space

Further, we define a closed linear subspace S in V , which means that ∀v, w ∈ S, α ∈
R =⇒ v + αw ∈ S. If such a subspace S exist then (S, b (·, ·)) is also a Hilbert space.
Following the logic in [23], we further define two characteristics of a bilinear form.

Definition 2.1.5 A bilinear form b (·, ·) on a normed linear space H is bounded (or
continuous) if there is a positive constant C <∞ such that

|b (v, w)| ≤ C ‖v‖H ‖w‖H , ∀v, w ∈ H

and is coercive on S ⊂ H, if there exist an α > 0 such that

b (v, v) ≥ α ‖v‖2
H , v ∈ V.

In the following, we denote the inner-product by simply (·, ·), and the inner product space
with the linear space V as (V, (·, ·)). At this stage, we have the necessary background to
state the PDE problem given a bilinear form a (u, v) , u, v ∈ V . Given a linear functional
F ∈ V ′

find u ∈ V such that

a (u, v) = F (v) , ∀v ∈ V. (2.2)

2In other publications Hp (Ω) denotes the Hilbert space (introduced in the next section) with the
inner-product (u, v) :=

∫
Ω
uv dx

3One has to mention here, that in general cases the bilinear form could use different functional spaces,
e.g., b (·, ·) : V ×W −→ R

14

2.1. Fundamentals from Functional Analysis

Here, we can make the connection to the differential operator L, which represents the
PDE in the strong form.4 The weak form can have the following initial form∫

Ω

Lu vdx = F (v) , ∀v ∈ V,

with a (u, v) =
∫

Ω
Lu v dx, where the second order derivatives are later transformed by

partial integrations. We consider the concrete example with Lu = −∆u and F (v) =
(f, v) as a simple linear functional∫

Ω

−∆uvdx =

∫
Ω

∇u∇vdx−
∮
∂Ω

(∇u n) vdc =

∫
Ω

fvdx, ∀v ∈ V,

where n is the normal vector pointing outwards of the domain Ω. At this point, we
introduce a notation that is commonly used in literature: We rewrite the equation above
as

(∇u,∇v)Ω − ((∇u n) , v)∂Ω = 〈f, v〉Ω,

where (·, ·) and 〈f, ·〉 represent the corresponding integrals. Since v is zero at the bound-
ary ∂Ω, the variational form of our example simplifies to∫

Ω

∇u∇vdx =

∫
Ω

fvdx, ∀v ∈ V. (2.3)

Several questions arise at this point. Does this problem have any solutions? If yes, then
is this solution unique? We answer these question in a more general case, where the
bilinear operator a (u, v) is not necessarily symmetric.

Theorem 2.1.1 (Lax-Milgram) Given a Hilbert space (V, (·, ·)), a continuous, coer-
cive bilinear form a (·, ·), and a linear continuous functional F ∈ V ′

. There is a unique
u ∈ V such that

a (u, v) = F (v) , ∀v ∈ V.

This function u is also the unique solution of the minimization problem

J (u) :=
1

2
a (u, u)− F (u) −→ min!

Theorem. 2.1.1 assures the existence and uniqueness of the solution of the weak form
such as (2.2). This weak form is usually transformed by one ore more partial integrations,
as we showed for the Poisson equation in (2.3), and this form is also called the weak
formulation of the PDE problem. The adjective weak suggest that the requirements for
the solution functions has been weakened. In the case of the Poisson equation −∆u = f ,

4This connection is also shown through the Riesz Representation Theorem [23], where Lu (v) is the
inner-product on the Hilbert space and is an element of the dual space.

15

2. Finite Element Basics

the requirement is that u ∈ C2 (Ω), but in the weak form (2.3), we can state that
u ∈ H1 (Ω). This means that u in the weak form is required to have only up to the
first order bounded weak derivatives, compared to the twice differentiable assumption in
the strong form. This weaker restriction also means that in lower dimensional elements
(e.g., pointwise in 1D), which is not measurable in the Lebesgue measure, u might have
even undefined first derivative. These properties allow the finite element method to
compute the Poisson problem in the one-dimensional case with only piecewise linear
basis functions, since they are in the Sobolev space H1 (Ω).

At this stage, we also introduce the notations related the weak form. The function v ∈ V
in Theorem. 2.1.1 is called test function, whereas the function u ∈ V represents the
unknown or ansatz function. Ω ⊂ Rd represents the computational domain of the
problem. Such a weak form is the main requisite for the finite element discretization,
and it can be used straight forward to create a linear system of equations by discrete
ansatz and test spaces (see Section 2.2).

In order to have a well-posed problem, in the PDE context, often boundary conditions
are required. At this point, the question arises how the boundary conditions play a role
in the weak formulation of the problem and how are they imposed at the boundary. The
answer to this question is the topic of the remaining part of this section.

To impose boundary conditions the boundary ∂Ω of Ω has to be a Lipschitz boundary
(−→ Ω is a Lipschitz domain). This practically means that the boundary is sufficiently
regular and continuous. If this condition is met, then the Trace theorem5 gives us
an upper limit of the function norm measured in ‖·‖Lp(∂Ω) at the boundary. Once the
function value is bounded on the boundary ∂Ω, the error between the imposed and actual
values can be measured. This is assured, if the boundary is regular and continuous, which
is the case in most practical applications.

In the next step, we investigate the case of Dirichlet boundary conditions, u|∂Ω = gD.
This condition binds the value of the unknown function u to a given function value
g. This way, the unknown function values are known on ∂Ω and is not an unknown
value at ∂Ω in the weak formulation. For this simple reason, test functions v ∈ H1

0 (Ω)
with compact support6 are employed. With such v, the integration by parts of the
Poisson equation

∫
Ω
−∆uvdx results only in a volume integral term

∫
Ω
∇u∇vdx and the

boundary integral
∮
∂Ω
− (∇un) vdc vanishes. This rule is valid also for the a general

PDE’s weak form derivation. The main question still remains how to enforce u|∂Ω = gD.
This enforcement is usually done at the discrete level as will be described in the next
section. However, on the continuous level one can also state the boundary condition in
the weak form is ∫

∂Ω

(u− gD)wdx = 0, ∀w ∈ L2 (∂Ω) , (2.4)

where w is a test function existing only on the boundary.

5For more details we refer to [21].
6v has zero values on the boundary

16

2.2. Finite Element Discretization

The next type of boundary condition is the Neumann condition, which states ∂u
∂n
|∂Ω = gN .

In this case, the values of the unknown (or ansatz) function are not fixed on the boundary,
but only their gradient in the normal direction. Thus, u remains unknown on ∂Ω. Hence,
the test function v should not vanish on ∂Ω:∫

Ω

−∆uvdx =

∫
Ω

∇u∇vdx−
∮
∂Ω

(∇un) vdc =

∫
Ω

fvdx.

The boundary integral term contains the normal derivative of u, which we can replace
by gN . By this step, we already arrive at the final weak form of the Poisson problem∫

Ω

∇u∇vdx−
∮
∂Ω

gNvdc =

∫
Ω

fvdx, (2.5)

which includes the Neumann boundary condition. This method of imposing Neumann
boundary condition is also valid for a general PDE problem (that contains diffusion).
Neglecting the boundary integral implicitly imposes zero Neumann boundary condition
in the weak form.

In case of mixed boundary conditions on Γ = ∂Ω, where Γ = ΓN∪ΓD and ΓN∩ΓD = {0},
we impose Dirichlet boundary condition on ΓD and Neumann boundary condition on ΓN .
The presented formulations allow to have such mixed boundary conditions, by including
the Neumann condition into the weak form as a boundary integral, and imposing the
Dirichlet condition later, at the discrete level, with the help of (2.4).

In this section, we introduced the necessary mathematical fundamentals to derive the
weak form of a PDE problem and to show that under the enlisted conditions the weak
formulation has a unique solution. We also presented for the continuous case the embed-
ding of the boundary conditions into the weak form. However, the discrete imposition
of the Dirichlet condition, which can have various forms, will be discusset at the end of
the following section. In the next section, we discuss the finite element discretization to
derive a discrete algebraic system from the bilinear formulation of a PDE problem.

2.2. Finite Element Discretization

Stepping from the continuous to the discrete form of a problem is always crucial in a sim-
ulation approach. A continuous solution space, without knowing the analytical solution,
implies an infinite dimensional representation. Therefore, for numerical computations, a
finite dimensional space is required, to make the problem computable on a computer. In
the previous section, we presented the continuous model and the weak formulation of the
PDE problem, where the unknown u and test function v are in the infinite dimensional
space V :

a (u, v) = F (v) , u ∈ V, ∀v ∈ V, F ∈ V ′
. (2.6)

17

2. Finite Element Basics

According to Theorem. 2.1.1, the above presented formulation is equivalent to the min-
imization problem

J (u) :=
1

2
a (u, u)− F (u) −→ min! . (2.7)

The next step is to choose a discretized space for the unknown function uh ∈ Uh ⊂ V
and in (2.6) for the test function vh ∈ Vh ⊂ V . Such a discrete space Sh can be defined
by a basis {ψ1, ψ2, . . . , ψN}, where N is a finite number. Using the spanned discrete
space Sh for the unknown (ansatz) and for the test basis, the following relation holds

uh =
N∑
i=1

yiψi, vh ∈ {ψ1, ψ2, . . . , ψN}. (2.8)

The vector y = [y1, y2, . . . , yN] represents the scaling factor for the basis function and
the unknown vector of our discrete problem.

Besides the choice of the discrete space Vh, there is also the choice between equation
(2.6) and (2.7). Based on these possibilities we have the following cases:

• Rayleigh-Ritz-Approach solves the problem (2.7) where the derivative of J (uh)
in (2.7) with respect to the vector y is set to zero. The problem formulation for
this approach is then to find uh ∈ Vh such that

(∂/∂yi) J

(∑
i

yiψi

)
= 0, i = 1, . . . , N.

In the case of linear form a (·, ·), this approach leads to the linear system of equa-
tions

a (uh, ψi) = F (ψi) , ∀ψi ∈ {ψ1, ψ2, . . . , ψN}.

• Galerkin-Approach is the general name, whereas for symmetric bilinear form
this is referred to as Ritz-Galerkin-Approach. This implies the same discrete
space for the unknown (ansatz) and test space Uh = Vh, uh ∈ Vh. The discrete
problem formulation for this approach is to find uh ∈ Vh such that

a (uh, ψi) = F (ψi) , ∀ψi ∈ {ψ1, ψ2, . . . , ψN}.

• Petrov-Galerkin-Approach solves also (2.6), but uses different discrete spaces
for the test and unknown space. This approach is not wide spread and is used e.g.,
for singular problems [21].

In this thesis, only the Galerkin-Approach (for symmetric bilinear forms Ritz-Galerkin-
Approach) is used, since this is the common way to set up the discrete system of a
PDE problem with the finite element method.7 One obvious technical advantage of this
approach is that the same discrete space Vh can be used for test and ansatz functions.

7The Rayleigh-Ritz-Approach should give the same discrete system.

18

2.2. Finite Element Discretization

At this point, it is important to mention the orthogonality property of the finite
elements. For the simple case, we consider a symmetric bilinear operator a (·, ·) and the
linear continuous functional F (v). It holds for the continuous solution of u ∈ V and the
discrete solution uh ∈ Vh

a (u, v) = F (v) , ∀v ∈ V,

a (uh, vh) = F (vh) , ∀vh ∈ Vh,

where Vh is the discretized V space such that Vh ⊂ V . Subtracting the two relations
results in

a (u− uh, vh) = 0, ∀vh ∈ Vh,

which says that the error is orthogonal to the current solution space Vh. This also implies
that the discrete solution minimizes the error in the discrete space Vh. This property is
called in the literature as Galerkin-orthogonality and is used in the proof of the following
lemma.

Lemma 2.2.1 Céa’s Lemma: Given a bounded and coercive bilinear form a (·, ·) with
the Hilbert space (Vh, (·, ·)), then the following relation holds for the discrete solution of
the problem a (uh, vh) = L (vh) , ∀v ∈ Vh and the continuous solution u:

‖u− uh‖ ≤
C

α
inf
vh∈Vh

(‖u− vh‖) ,

where C and α are the coefficients defined in Def. 2.2.

Lemma 2.2.1 shows that the accuracy of the of the solution uh mainly depends on the
chosen discrete space Vh, since the error in the solution is less than a constant number
multiplied with the error of the best possible solution in the function space Vh. This
lemma is essential for the error estimation with the FEM discretization.

Discretized Spaces

We consider the computational domain Ω ⊂ Rd, where for most problems d = 2, 3. The
question now is how to choose the discrete functional space Vh, such that it is finite-
dimensional (and the vector of unknowns is {y1, . . . , yN} from (2.8)). In this section, we
highlight the different aspects of the discrete space Vh. The first step is to divide the
domain Ω into elementary objects, which we call elements.8 Each element Ei ⊂ Rd, i =
1, . . . ,M covers a small portion of the computational domain, such that the sum of the
elements results in Ω:

⋃M
i=1Ei = Ω. At the same time, the intersection of these elements

Ei∩Ej = E
′

is not allowed to be measurable in Rd, hence, E
′ ⊂ Rj, j < d. The name of

the method finite element also comes from this idea, to have a finite number of elements

8A more detailed description of the mesh’s cell and element will follow in Chapter 4, where we name
the elements with the highest dimension also as cells.

19

2. Finite Element Basics

Figure 2.1.: One-dimensional example with the solution function u. The domain Ω is
divided in three non-equal elements E1, E2 and E3, and there are four linear
basis functions at the points {a, b, c, d}, marked with different colors.

representing Ω. The elements Ej, j = 1, . . .M form a computational mesh, which is
presented in Chapter 5 in a detailed way. There is also the approach to use a mesh-free
method, where the elements in this form are not defined, but only points, where the
corresponding basis function takes its maximum absolute value.

The elements play an important role in the finite element method. In the following, we
consider a one-dimensional example (Fig. 2.1). The one-dimensional Ω is an interval
in R and is divided in 3 elements, which overlap only at the intersection points. The
boundary is given by two points a and d. In this case, an element is a line segment,
similar to Ω. It is the basic building block to represent a function, e.g., the solution
function u (X). On such elements, the FEM uses mostly the basic representation of a
function by polynomials.

One of the simplest ways to define a polynomial in 1D is to use a given vector of values
{(x1, y1) , (x2, y2) , . . .}. To define a polynomial of order p, one needs p+ 1 points, which
the polynomial intersects. This way is a rather intuitive and easy function representation
on elements, where we just specify the points xi and the its function values at these points
yi. The defined polynomial can be formulated as the interpolation polynomial in the
Lagrange form, which for the one dimensional case has the form

P (x) =

p+1∑
i=1

yiLi (x) , Li (x) =

p+1∏
j=1,j 6=i

x− xj
xi − xj

,

where {(x1, y1) , . . . , (xp+1, yp+1)} is given. It is known that this interpolation form is
unstable9 for higher orders. Therefore, this formulation is only used in practical appli-
cations up to the sixth order. It is important to note that Li (x) has a zero value at yj
for all j 6= i and has the value yi at position xi. The values yi are weight factors for the
basis function Li (x). This way, all given nodes {x1, . . . , xp+1} have an associated basis
function Li (x). If we consider the [0, 1] interval, the basis functions for the linear and
quadratic case have the forms given in Fig. 2.2. These nodes are also called local degrees
of freedoms (DoF), since they fix the values at the given coordinates.

9due to high oscillations between the nodes xi and xi+1

20

2.2. Finite Element Discretization

Figure 2.2.: Illustration of linear and quadratic basis functions in 1D. The linear basis
(left) with two degrees of freedom, the first located at x1 = 0.0 and the
second at x2 = 1.0. The three quadratic basis functions (right) for 1D,
where the nodes are located at positions x1 = 0.0, x2 = 0.5, and x3 = 1.0.

Using the linear polynomial as element basis function, similar to Fig. 2.2, results in
piecewise linear function in one dimension as shown in Fig. 2.1. On the interface between
elements, it is required to ensure C0-continuity. For this reason, we use continuous basis
function. For the one-dimensional example in Fig. 2.1, we can write the form of the
linear basis functions directly using the representation in (2.8), where for the concrete
example10 N = 4,

Li (x) =


x− xi−1

xi − xi−1

if i > 1 and x ∈ Ei−1 ,

xi+1 − x
xi+1 − xi

if i < 4 and x ∈ Ei ,

0 else (x /∈ Ei and x /∈ Ei+1) ,

Using this representation and the coefficient vector {y1, . . . , y4} the function u (x) can
be written as

u (x) =
N∑
i=1

yiLi (x) .

If we consider the element’s underlying basis function as a second order polynomial, the
equation above still holds. This change would increase the number of basis functions
from N = 4 to N = 7, and the form of Li (x) would be change to second order as shown
in Fig. 2.2. An increase in the order of the basis has the inevitable consequence of an
increased number of basis functions per element.

For now, we presented basis functions which are based on the Lagrange interpolation.
For this reason, the resulting basis is called Lagrange basis, which is widely used for

10N is the total number of basis function and is not equal to the number of elements M .

21

2. Finite Element Basics

Figure 2.3.: Positions of the nodes in the two-dimensional case for quad elements. The
illustration also shows the numbering of the nodes for the bilinear case (left)
and for the quadratic case (right).

FE discretization. However, there are other approaches to define a polynomial on these
elements in order to represent the solution function. One group of approaches uses the
first derivative information at the element interface besides the nodal values. Having the
same first derivative on all sides of the element’s interface assures C1-continuity globally
on Ω. Such an element is for example the Hermite element, which is based on Hermite
polynomials. In this case, some of the basis functions and the coefficients yk represent
the first derivative instead of function values on the boundary of the element.

Different from all basic examples described up to now, hierarchical approaches do not
use nodal values, which implies that a basis function is nonzero not only at one node.
However, this implies a rather less intuitive representation, which is capable of stable rep-
resentations even with higher orders. Such a basis is given by the Legendre polynomial,
which has been used, e.g., in 2D with up to order 20 [72].

We only use the Lagrange basis in this thesis. For this reason, we take a closer look at
the two- and three-dimensional setting. Since Cartesian meshes are in the main focus
of this thesis, we present the Lagrange elements only for rectangular cases in the next
subsection.

Lagrange Basis Functions in 2D and 3D for Rectangular Elements

For the two-dimensional case, the rectangular element is the quad element, whereas for
3D it is the brick element. These types of elements are the building blocks of the Carte-
sian mesh, and have rectangular shapes. This type of mesh is presented in Chapter 4,
where several advantages of the rectangular elements are shown.

In the following, we introduce the Lagrange basis functions for the two-dimensional case.
We start with the linear case and consider the one-dimensional element in Fig. 2.2. For
the quad elements we simply take the tensor product of this one-dimensional element,
that produces from the two nodes in 1D, four nodes in 2D as shown in Fig. 2.3. This also

22

2.2. Finite Element Discretization

Figure 2.4.: Illustration shows the basis function of the third node (degree of freedom)
of the bi-linear quad element.

result from a tensor product of two independent vectors {X1,1, X1,2} and {X2,1, X2,2}.
These vectors represent the coordinates of the nodes on the two axes. According to the
numbering in Fig. 2.3, these nodes with their associate function values yi are: P1 =
(X1,1, X2,1, y1), P2 = (X1,2, X2,1, y2), P3 = (X1,1, X2,2, y3) and P4 = (X1,2, X2,2, y4). The
four bilinear basis functions are defined as

L2D,1 (x) = L1D,1 (x1)L1D,1 (x2) ,

L2D,2 (x) = L1D,2 (x1)L1D,1 (x2) ,

L2D,3 (x) = L1D,1 (x1)L1D,2 (x2) ,

L2D,4 (x) = L1D,2 (x1)L1D,2 (x2) ,

and L1D,1, L1D,2 denote the 1D basis functions at the left and right node of the 1D
element, respectively. The local coordinates are denoted as x = (x1, x2) ∈ R2. Using
the above defined basis functions, the two-dimensional function u (x) can be written as

u (x) =
4∑
i=1

yiL2D,i (x) .

Thanks to the tensor product, the resulting Lagrange basis functions L2D,i (x), similar to
the one-dimensional case, have the value zero at all positions Pj, i 6= j, and the value 1.0
at Pi. This is illustrated in Fig. 2.4 for L2D,3 (x), where similar to the one-dimensional
case, the element is considered on the [0, 1]2 domain. This configuration is called the
Reference Element.

For the quadratic case, we proceed in a similar way. We get the resulting elements basis
functions by computing the tensor product of the one-dimensional functions (see Fig. 2.2).

23

2. Finite Element Basics

Figure 2.5.: Illustration shows the basis functions of the sixth (left) and the seventh
(right) local degree of freedom in the quadratic quad element.

If we consider the full tensor product as shown in Fig. 2.3, there are nine local nodes on
the quadratic Lagrange quad element. The general form of the basis functions is

L2D,k (x) = L1D,i (x1)L1D,j (x2) , i, j ∈ 1, 2, 3, k = 1, . . . , 9.

In Fig. 2.5, the quadratic basis functions L2D,6 (x) and L2D,7 (x) are illustrated. One
can notice that those basis functions, similar to the linear case, have zero values at all
neighboring nodes. Even though the element basis functions are quadratic in this case,
the function at the element boundary remains only C0-continuous.

In 3D, the rectangular element, called brick, is in our focus. In this case, we get the
basis functions by taking the tensor product between the two- and one-dimensional
basis functions.11 The result can also be seen as a tensor of third order. We get (p+ 1)3

degrees of freedom per element.12 These local DoFs for the linear and quadratic case
are represented in Fig. 2.6. For higher dimensions, one might observe that the number
of local DoFs is growing exponentially13, with the dimension d. To curve this effect even
in lower dimensions (e.g., d = 2, 3), only a limited part of the tensor product might
be used. For example in Fig. 2.3, the local DoF with index 5 might be neglected, still
preserving the quadratic representation of the solution. This type of elements is called
Serendipity-element [21]. In 3D, for quadratic order, one could only use the DoFs on the
vertices and the edges of the brick element shown in Fig. 2.6. This would lead to only
20 DoFs compared to the result of the tensor product with 27 nodes, while maintaining
the quadratic approximation order of the element. For higher order Legendre elements,
only the sparse tensor product is used, such that a drastic increase of element DoFs is
avoided by increasing the order in two- and three dimensions [72].

11Alternatively L1D,i (x1)× L1D,j (x2)× L1D,j (x3), where x = (x1, x2, x3) ∈ R3.
12p is the approximation order.
13This phenomenon is called curse of dimensionality.

24

2.2. Finite Element Discretization

Figure 2.6.: Positions of the nodes in the case of the brick element. The illustration
shows the numbering of the nodes in three dimensions for the tri-linear case
(left) and for the quadratic case (right).

Outline of the Linear System Assembling

We now defined a regular mesh to represent the computational domain Ω in a discretized
form. The building blocks for the discretization are the elements Ei, i = 1, . . . ,M . We
also defined the function representation on these elements and how C0-continuity is
achieved at the interfaces of the elements. To connect this discretization to the defined
weak form of the problem, the next step is to show the setup of the algebraic linear
system, which delivers the discrete solution of the problem.

The starting point of the approach is the weak form of the PDE problem in the discrete
solution space uh

a (uh, vh) = F (vh) , uh ∈ Vh, ∀v ∈ Vh.

Assuming symmetry for the bilinear form, we use the Ritz-Galerkin approach. To illus-
trate the method, we consider the Poisson equation, where the linear functional is simply
defined by F (vh) =

∫
Ω
fvh (x) dx, with a constant value f ∈ R. With this formulation,

the weak form is ∫
Ω

∇uh (x)∇vh (x) dx =

∫
Ω

fvh (x) dx. (2.9)

Written in a more compact notation, (2.9) can be stated as (∇u,∇v)Ω = 〈f, v〉Ω. In the
following, we use the basis representation defined previously with a finite number N of
basis functions

uh (x) =
N∑
i=1

yiψi (x) , (2.10)

where the basis functions ψi (x) in our applications are the previously defined Lagrange
polynomial Li (x). The unknowns, which define our discrete solution are the elements
of the vector y. Inserting (2.10) into (2.9) results in∫

Ω

(
N∑
j=1

yj∇Lj (x)

)
∇Li (x) dx =

∫
Ω

fLi (x) dx, i = 1, . . . , N (2.11)

25

2. Finite Element Basics

Equation (2.11) represents the relations between the elements of the unknown vector
y, where the factor relating the i-th and the j-th unknown is given by the integral∫

Ω
∇Li (x)∇Lj (x) dx. Assembling all relations results in a linear system of equations

Ay = b,

where the matrix is a square symmetric N × N matrix with elements Ai,j = Aj,i =∫
Ω
∇Li (x)∇Lj (x) dx, and the right-hand side b accordingly a column N × 1 vector

with elements bi =
∫

Ω
fLi (x) dx. However, at this stage, the problem is not solvable,

and the matrix A is singular, since the Dirichlet boundary conditions were not integrated
yet. Later in this section, we present two approaches to deal with this issue.

Before we bring the mesh into play, we take a closer look at Equation (2.11). This
equation does not assume any underlying mesh for the basis functions Li. This implies
that the basis function could be placed in an arbitrary way in Ω. We consider an
arbitrary basis function ψi (x) that has an associated node14, where the function has its
absolute maximum value. These nodes can be randomly distributed in Ω. This idea is
underlying the mesh-free methods, which the finite element method perfectly fits with.
One of the disadvantages of such approaches, is the computation of the coefficients Ai,j.
The numerical integration should be done on the intersection of the two basis functions’
supports. One other disadvantage is that the resulting matrix can potentially be dense,
which makes the solution process of the system more challenging.

Using a mesh and corresponding elements, in our case Lagrange elements, eliminates
both disadvantages. Firstly, the mesh structure defines the basis functions that have
overlapping support, and, hence, all nonzero entries Ai,j. Functions that do not have
overlapping support by definition have zero contributions Ai,j = 0. The mesh element
also defines the domain for the numerical integration. Instead of integrating on whole
Ω, the integration is restricted to a few elements Ei. In the case of the Lagrange basis15,
two basis functions with indices i and j have overlapping support if they share at least
one element Ek.

We recall the presented Lagrange elements, where all basis functions belonging to one
element, have a common support and the resulting Ai,j coefficients are nonzero. This
way, the mesh gives a structure for the matrix assembly, where the integration on Ω
is transformed into a sum over integrals over the elements with the already mentioned
condition

⋃M
i=1Ei = Ω, Ei ∩ Ej = 0, ∀i 6= j:

Ai,j =

∫
Ω

∇Li (x)T ∇Lj (x) dx =
∑

Ek∈Hi,j

∫
Ek

∇Li (x)T ∇Lj (x) dx, (2.12)

with Hi ,j representing the set where Li (x) and Lj (x) have a common support. In a

14Similar to the Lagrange basis Li (x)
15This can be generalized for other element types as well.

26

2.2. Finite Element Discretization

Figure 2.7.: Various affine transformations in two dimensions from the reference element
to the real element. This mapping is defined by the F (X) : X −→ x, with
the form F (X) = BX+d, where X is the reference coordinate and x is the
real coordinate. Top: regular quad element transformation; bottom: affine
triangle transformation.

similar way, the right-hand side integral is reformulated as

bi =

∫
Ω

fLi (x) dx =
∑
Ek∈Gi

∫
Ek

fLi (x) dx. (2.13)

Gi denotes the set of all elements Ek which form the support of the basis function Li (x).
The Poisson equation is a good example to illustrate the practical aspects of the matrix
assembly by computing the terms in (2.12) and (2.13). The current formulation implies
the computation of the integrals on each Ek. This can be done in a more computationally
efficient way, by computing the integral only on the reference element 16 and transforming
the result to the current Ek element. This transformation is the key for the efficient
integral computations in (2.12) and (2.13).

Mappings from the reference element to the mesh’s element can have in general various
forms. The most general transformation is the isoparametric case, where any continuous
mapping can be represented.

Using the notation from Fig. 2.7, we denote the coordinates on the reference element
with X, and the coordinates on the element Ei with x.17 The affine mapping from the
reference to this real coordinates x is represented by F (X), which has the general form
F (X) = BX+d. With this mapping, the integral is transformed from the element Ei to
the reference element RE. The reference element has the corresponding basis functions

16The element defined on [0, 1]d, introduced in the previous section.
17Also called real or physical coordinates.

27

2. Finite Element Basics

Li (x) and Lj (x). We denote these functions with φi (X) and φj (X), respectively. For
this affine transformation of the element integrals, the Jacobian of F−1 is needed, that
is DxF

−1 = B−1. With these notations, the integration based on the reference cell’s
integral has the form∫

Ei

∇Li (x)T ∇Lj (x) dx =∫
RE

(
B−T∇φi (X)

)T (
B−T∇φj (X)

) ∣∣det B−1
∣∣ dX. (2.14)

Equation (2.14) implies that the integration can be done on the reference element, and
only the transformation from the real element Ei to the RE element is needed, which
for the affine case is simply a 2 × 2 or a 3 × 3 matrix. The right-hand side integral is
transformed in a similar way:∫

Ei

fLi (x) dx =

∫
RE

fφi (X)
∣∣det B−1

∣∣ dX.
(2.15)

With the help of the (2.12), (2.13), (2.14), and (2.15), the linear system of equations of
the discretized Poisson problem

Ay = b (2.16)

can be assembled, based only on reference element integrals and on element-wise affine
transformations. At this stage, the particular discrete problem is singular due to the
missing imposed Dirichlet boundary condition.18

Imposing Dirichlet BCs

In the last part of this section, we enlist different approaches to impose Dirichlet bound-
ary conditions at the discrete system level. The condition is written as u|Γ = g, which
requires that all unknowns yi located on Γ must have the respective values of g. In the
following, we show two methods to impose such conditions discretely.

The first approach sets the coefficients yi as known values, eliminates the i-th row from
the system (2.16), and replaces the i-th value of the right-hand side with gD,i. To
illustrate this, we consider the i-th row’s replacements in the (2.16) system.

A1,1 · · · A1,i · · · A1,N
...

. . .
...

. . .
...

0 · · · 1.0 · · · 0.0
...

. . .
...

. . .
...

AN,1 · · · AN,i · · · AN,N




y1
...
yi
...
yN

 =


b1
...

gD,i
...
bN


18rank (A) = N − 1

28

2.2. Finite Element Discretization

With this replacement, one forces the unknown yi algebraically to the value gD,i. Fur-
ther, we denote gD the vector with the required Dirichlet values and ỹ as the resulting
coefficients. The unknowns, which are not impacted, are denoted by y

′
and the corre-

sponding right-hand side b
′
. By replacing all the rows belonging to the index set HΓ ,

the system is rewritten in a block structured form(
A1 A2

0 I

)(
y

′

ỹ

)
=

(
b

′

gD

)
.

Since the real unknowns are only in the y
′

vector, the system simplifies to

A1y
′
= b

′ − A2gD,

since ỹ = gD. The block matrix A1 is the decomposition of the matrix formed by
the unchanged rows of A. The resulting system is reduced in size, where only the real
unknowns y

′
need to be determined. Unknowns located on Γ are factored on the right-

hand side vector.

The second approach is more general and applies not just to nodal basis functions, where
a point-wise value can not be enforced. An example is the hierarchical Legendre basis.
In these cases, the Dirichlet condition implies∮

Γ

v(u− gD)dx = 0 ∀v ∈ Vh,Γ. (2.17)

The discrete function space Vh,Γ contains the functions which have nonzero values on Γ.
We consider only the ỹ unknowns, which have a measurable support on Γ. Integration
(2.17) results in the discrete system

Dỹ = g. (2.18)

The matrix D represents the mass matrix resulting from
∮

Γ
uvdx and the right-hand side

vector results from
∮

Γ
gDvdx. The system (2.18) has also full rank. Once this system is

set up, the next step is to integrate it into (2.16). Similar to the previous approach, we
make row replacements, which results in the following block structure(

A1 A2

0 D

)(
y

′

ỹ

)
=

(
b

′

g

)
. (2.19)

Since the solution of the vector ỹ is decoupled from the other unknowns, it can be solved
separately:

ỹ = D−1g,

A1y
′

= b
′ − A2ỹ. (2.20)

However, for technical reasons one might just choose to solve the coupled system (2.19),
since it does not imply the refactoring of the original matrix A. On the other hand,

29

2. Finite Element Basics

solving (2.20) involves the solution of two systems, each having smaller size than the
single system (2.19).

The actual solving of these systems is not in the focus of this thesis. The optimal solver
depends on the properties of the matrix, whereas these properties depend not just on
the underlying PDE, but also on the chosen element basis function.

Closing Remarks

In this chapter, we introduced the functional analysis basis for the weak form of the
PDE problem, and we showed the setup of mesh-based and element’s basis function-
based discretization. However, further topics remain uncovered in this chapter. One of
them is the error indicator based mesh refinement. The derivation of error indicators
based on the weak formulation of problems is crucial for optimal mesh refinement. For
further details on these topics, we refer to [21, 23, 50].

30

3. Governing Equations in the
Applications

This chapter introduces the governing equations of the various physical systems, which
we simulated with our toolbox-approach. We want to emphasize here, that our im-
plementation is limited neither to these equations nor to the scenarios that we set up.
The simulated systems demonstrate the capabilities of the created toolbox for immersed
boundary approaches. For single-physics applications, we already introduced the Pois-
son equation in the previous section, which models only the diffusion process. In the
following, we introduce the PDEs for viscous flows, namely the Stokes and Navier-Stokes
equations. Next, we continue with the elastic body model used in structural mechanics
applications. For both models, we discuss the stationary and the transient cases as well
as the aspects regarding their spatial discretization. In the last section, we consider
as a multi-physics application the fluid-structure interaction (FSI) problem in various
configurations. This type of problems requires coupling of the two systems at a given
interface. Therefore, it requires interface coupling. The mathematics of this interface
coupling is introduced in the last section of this chapter.

3.1. Fluid Model

This section introduces the governing equation of incompressible viscous flows. The flow
field is described by a velocity vector field, denoted with v. Besides this quantity, we
further characterize the flow with a scalar pressure field p and by a density ρf that is
assumed to be constant in the incompressible case. We start with the incompressible
aspects of the flow by considering the mass conservation equation of an infinite small
volume V . The change of the mass in this volume is equal to the in- and outflow through
the boundary ∂V :

∂

∂t

∫
V

ρfdV = −
∮
∂V

ρf n · vdc.

Next, the boundary integral is transformed with the Gauss theorem into a domain inte-
gral, ∫

V

(
∂ρf

∂t
+ div

(
ρfv
))

dV = 0.

31

3. Governing Equations in the Applications

Since ρf is constant for the incompressible flow, the equation is further simplified to the
continuity equation in the strong form:

div (v) = ∇ · v = 0 in V. (3.1)

The next governing equation in incompressible flows is the conservation of momentum,

ρf
dv

dt
= ∇ · σf (v) + f ,

where f represents the external forces and σf (·) is the Cauchy stress tensor of the flow.
This stress tensor has the definition

σf (v) = νf
(
∇v +∇vT

)
− pI,

where νf represents the kinematic viscosity of the fluid. The total difference of
dv

dt
is

further transformed to
dv

dt
=
∂v

∂t
+ (v · ∇) v.

With the listed transformations, we get the final form of the momentum equation:

ρf
∂v

∂t
+ ρf (v · ∇) v = νf∆v −∇p+ f . (3.2)

Equation (3.2) in combination with the continuity equation (3.1) form the Navier-Stokes
equations on a computational domain Ω

ρf
∂v

∂t
− νf∆v + ρf (v · ∇) v +∇p = f in Ω, (3.3)

∇ · v = 0 in Ω. (3.4)

The continuity equation (3.4) ensures, that the fluid stays incompressible, whereas the
momentum equation (3.3) has several terms. In the stationary case, the time derivative
of v vanishes in Equation (3.3). The next term is the diffusion operator that models
the diffusion of the velocity and is proportional to the viscosity νf . The third term is
the so-called transport or convective term and represents the transport of the velocity
field by itself. This is the only non-linear term in the Navier-Stokes equations that needs
to be treated in the linearization. The pressure gradient ∇p also contributes to the
momentum equation by forcing the flow from higher pressure to lower pressure domains.
In the last term, external forces are considered that are summed in f .

For viscous flows, the convective term might become irrelevant, so the Navier-Stokes
equations are reduced to the Stokes equations, which only have linear terms

ρf
∂v

∂t
− νf∆v +∇p = f in Ω, (3.5)

∇ · v = 0 in Ω. (3.6)

32

3.1. Fluid Model

In order to make the problem well defined, additional BCs are required. We consider
only Dirichlet boundary conditions for the velocity field on ∂Ω. This implies v|∂Ω = g.
This type of boundary condition includes the no-slip boundary condition that is imposed
in many practical applications. However, this BC only defines the pressure p up to an
additive constant in Ω. Therefore, a point-wise fixing of the pressure might be required.

There are different numerical techniques to solve equations (3.3) and (3.4). In this
thesis, we only discuss the coupled approach, where both fields v and p are computed
simultaneously, hence, these two fields form the unknown vector. In 3D, the resulting
system might become large. In order to save computational effort in the transient case,
the decoupled approach might be considered. In this case, the pressure is computed
with the Pressure Poisson equation in advance of the velocities. For more details on
this approach we refer to [38]. In the case of the coupled approach, the absence of the
convective term in Equation (3.3) poses a significant computational advantage, since
linear solvers can be applied instead of more expensive non-linear solvers.

FEM discretization

In the following, we introduce the finite element discretization of the Navier-Stokes
equations, which also holds for the Stokes equations. The first step is to derive the weak
form of (3.3) and (3.4). We choose a suited function space for the velocity components
and for the pressure. For the components of v, we use the same discrete space. Due to
the partial integrations, we require that v ∈ H1(Ω)d, with d = 2, 3 the dimensionality
of the problem. A given Sobolev space H1(Ω) implies the existence of weak derivatives.
The pressure function can be an element of the Lebesgue space L2

0 (Ω). According to
the unknown space, the test space for the velocity is chosen as ψ ∈ H1(Ω)d and for
the pressure ξ ∈ L2

0 (Ω). We denote the d + 1 dimensional test function of the problem
as φ = (ψ, ξ). Equation (3.3) is tested with the velocity’s test function, whereas ξ
tests Equation (3.4). After multiplying the momentum equation (3.3) with ψ and the
continuity equation (3.4) with ξ, the terms

∫
Ω
−∇p ψdx and

∫
Ω
νf∆v ψdx are further

integrated by parts. In the resulting equation, the boundary integrals vanish, such that
the weak form of the Navier-Stokes equations is written in the compact notation

ρf
(
∂v

∂t
, ψ

)
Ω

+ νf (∇v,∇ψ)Ω + ρf ((v · ∇) v, ψ)Ω

− (p,∇ · ψ)Ω + (∇ · v, ξ)Ω − (f , ψ)Ω = 0. (3.7)

Formulation (3.7) does not include the Dirichlet BCs, but those can be included in the
classical way, described in Chapter 21.

Next, we choose discrete spaces for the velocity vh ∈ Vh ⊂ H1(Ω)d and for the pressure
p ∈ Zh ⊂ L2

0 (Ω). There is, however, a certain criterion for the Vh and Zh spaces that is

1If they need to be imposed on the facet elements of the cells.

33

3. Governing Equations in the Applications

discussed after the time discretization. In this thesis, we employ only Lagrange elements
on rectangular Cartesian mesh cells for the Navier-Stokes equations. These elements
are denoted as Qp, where p is the order of the element. One common element for the
Navier-Stokes discretization is the Q2Q1 element. In 2D, this means, that the velocity
has quadratic basis functions, whereas the pressure is represented by a bilinear basis.

Time Discretization

In this thesis, we employ time discretization of order one and two, and as a first step we
introduce the operator a (vh, ph) as

ρf
∂v

∂t
= a (vh, ph) ,

using Equation (3.7). At time tn, we discretize the time derivative with time step ∆t as

ρfvn+1
h − ρfvnh

∆t
= θa

(
vn+1
h , pn+1

h

)
+ (1− θ) a (vnh, p

n
h) . (3.8)

The value of θ determines the order of the method. In our applications, we use θ = 1
(implicit Euler) and θ = 0.5 (Crank Nicolson). The continuity equation must be fulfilled
for all time steps. Therefore, the time discretization must contain an implicit term.
Similar to the notation in [35], we transform2 the equation further to

ρfvn+1
h −∆tθa

(
vn+1
h , pn+1

h

)
= ρfvnh + ∆t (1− θ) a (vnh, p

n
h) ,

ρf
vn+1
h

Θ
− a

(
vn+1
h , pn+1

h

)
= Rhsn, (3.9)

with Θ = θ∆t and the right-hand side Rhsn =
1

Θ

(
ρfvnh + ∆t (1− θ) a (vnh, p

n
h)
)
.

Stabilization Method

The resulting discrete system from Equation (3.9), including the Dirichlet BCs, is only
solvable, if the discrete spaces Vh and Zh satisfy the inf-sup (also called LBB) condition
that is described in [38, 21]. By using the same type of finite element, the rule of thumb
for these spaces, to satisfy the inf-sup condition, is to use a higher order basis for v
compared to the pressure field p. The Q2Q1 is such an inf-sup stable element.

However, there is a way to circumvent the inf-sup condition by adding a stabilization
term to Equation (3.7). Especially in 3D, the Q2Q1 element is becoming expensive to
use. Hence, there is a practical need to use Q1Q1 discretization instead. Since we are

2Since we do not use explicit methods (θ = 0) and the time step ∆t > 0 this transformation is valid.

34

3.2. Structure Model

interested only in the stabilization of Q1Q1, we choose the pressure stabilized Petrov-
Galerkin (PSPG) method that is a consistent stabilization method. For the theoretical
background of the stabilization and for other stabilization methods, see [87, 48, 35]. The
PSPG method for the Navier-Stokes implies one additional term in Equation (3.7)

τ (h)

(
ρf

vn+1
h

Θ
− νf∆vn+1

h + ρf
(
vn+1
h · ∇

)
vn+1
h +∇pn+1

h −Rn,∇ξh
)

Ω

, (3.10)

where Rn denotes the resulting right-hand side in the strong form

Rn = 1/Θ
(
ρfvn + ∆t (1− θ)

(
νf∆vn+1

h − ρf
(
vn+1
h · ∇

)
vn+1
h −∇pn+1

h

))
.

The consistent stabilization is realized by multiplying the gradient of the pressure test
function ∇ξ with the residuum of the momentum equation. For the stabilization pa-
rameter τ (h), in Equation (3.10), we use a simplified form of

τ (h) = min{∆t, h

2 ‖vh‖L2

},

with ∆t as the discretized time step and the mesh resolution h that varies in the mesh.
For the Q1Q1 element, the diffusion term from (3.10) disappears, since the second order
derivative of the linear basis is zero.

3.2. Structure Model

To introduce the elastic body model, we consider an infinitely small volume of material
V in the stationary case, which is under the influence of a constant traction t. Our goal
is to derive the relation between the acting forces and the resulting displacements u of
the body, while the displacement field is constrained by Dirichlet BC. This section of
the thesis is based on the first chapters of [93] and on [91].

We start with the resulting state of this volume V that can be described by the second-
order stress tensor σs, which has the matrix form in 3D

σs =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 .

The traction force t is acting on the surface of V denoted as ∂V . Each component of
the traction force ti, i = 1, 2, 3, with the three normal directions n = (n1, n2, n3)T of the
normal vector, results in the nine stress components, such that σsn = t. For instance
traction t2 produces one normal stress σ22 and two shear stresses σ21 and σ23. The
equilibrium state of this infinite small volume implies, that the total torque has to be
zero. Therefore, the equation σs = σTs must hold. Component wise, this means, that

35

3. Governing Equations in the Applications

σij = σji, j 6= i, thus, the stress tensor only has 6 independent components. We rewrite

the stress tensor in vector form σ for 3D σ = (σ11, σ22, σ33, σ12, σ13, σ23)T .

The momentum balance equation in direction x1 for the volume V with the size dx1 ×
dx2 × dx3 says(

σ11 +
∂σ11

∂x1

dx1 − σ11

)
dx2dx3 +

(
σ21 +

∂σ21

∂x2

dx2 − σ21

)
dx1dx3

+

(
σ31 +

∂σ31

∂x3

dx3 − σ31

)
dx1dx2 + t1dx1dx2dx3 = 0.

Each stress, which is acting in this normal direction, has a contribution if t1 is different
from zero. The derivatives of stresses σ11, σ21, and σ31 with respect to x1 are different
from zero, since the external force must be balanced by internal forces. The equation
further simplified has the following form:

∂σ11

∂x1

+
∂σ21

∂x2

+
∂σ31

∂x1

+ t1 = 0.

By proceeding in the same way for the other two directions, the following equation
results:

div(σs) + t = 0 or ∇ · σs + t = 0 in V (3.11)

or in matrix form LTσs + t = 0. The matrix form of LT is presented in Appendix A.1.
Equation (3.11) represents the stationary case, where there is zero acceleration. Hence,
no acceleration term is present.

Stresses are then transformed to strains. These strains are the body’s normalized defor-
mation representing compressing, stretching, or twisting distortions in the body of the
solid. In 3D, it consist of three axial strains and six shear strains, and it is represented
as

εs =

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 .

Similar to the stress tensor, the strain tensor is also symmetric and has six independent
components in 3D εs = (ε11, ε22, ε33, ε12, ε13, ε23)T . The stress-strain relation is defined
by a fourth-order tensor, which we denote as C. This tensor incorporates the material
properties. For our case, we consider only super-elastic materials3

σs = C · εs. (3.12)

The matrix form of C is presented in Appendix A.1 by equations (A.3) and (A.4), where
the material parameter νs and the Poisson ratio E play an important role.

3Plastic deformation is not in the focus of our applications.

36

3.2. Structure Model

Strains are now transformed into displacements. The kinematic or strain-displacement
equation defines the relation between strains and displacement. This part is by definition
non-linear

εs =
1

2

(
∇u +∇uT +∇u∇uT

)
. (3.13)

However, for small displacements it can be linearized, if
∥∥∇u∇uT

∥∥� 1.0,

εs ≈
1

2

(
∇u +∇uT

)
. (3.14)

For large displacements, the non-linear equation (3.13) must be used in order to get
correct results. We denote this non-linear operator, which maps the displacements to
strains as

Ln (u)u = ε. (3.15)

The matrix form of the non-linear operator Ln (u) is presented in Appendix A.1.

At this stage, we introduced all the necessary relations from the external traction force
vector to the resulting displacement field u. These relations are represented by equa-
tions (3.11), (3.12), and (3.13). Instead of considering the infinite small volume V , we
extend these equations to the computational domain Ω ⊂ Rd, d = 2, 3, and with the
boundary Γt ⊂ Rd−1, where the traction forces t are acting. By eliminating the stresses
and strains from these relations, the resulting equation becomes

L (C Ln (u) u) + t = 0. (3.16)

Next, we consider the test and unknown functions in H1 (Ω)d, and we state the weak
form of the geometric non-linear stationary elastic body equation∫

Ω

(duTL)C(Ln(u)u)dx+

∮
Γt

duT · tdc = 0, u,∀du ∈ H1 (Ω)d . (3.17)

Compared to the Navier-Stokes equations, Equation (3.17) allows compressibility. On
the other side, the discretized form does not imply any condition on the discrete solution
space (such as the inf-sup condition).

In the transient case, we define the velocity of the structure as v = ∂u
∂t

, which will be
an additional unknown in our equation. The acceleration ρs

∂v
∂t

is an additional term
to (3.11)

ρs
∂v

∂t
+∇ · σ + t = 0,

where ρs represents the structure’s density. With this term, Equation (3.17) is extended
to ∫

Ω

ρs
∂v

∂t
dudx+

∫
Ω

(duTL)C(Ln(u)u)dx+

∮
Γt

duT · tdc = 0 u,v,∀du ∈ H1 (Ω)d ,∫
Ω

dvT
(

v − ∂u

∂t

)
dx = 0 u,v,∀dv ∈ H1 (Ω)d . (3.18)

37

3. Governing Equations in the Applications

In the weak form Equation (3.18), the continuous test functions (du,dv) and the un-
known functions (u,v) are replaced with discrete ones, duh,dvh,uh,vh ∈ Vh ⊂ H1 (Ω)d.
Similar to the stationary case in (3.18), we test the first equation with the displacement’s
test function, but the second equation is tested with the velocity’s test function. The
discretization of the time derivative from (3.18) is the subject of the next section.

Time Discretization

The time discretization of Equation (3.17) can be done as follows: We consider the
discrete time step ∆t at time tn

ρs
∂vh
∂t

:= ρs
vn+1
h − vnh

∆t
= θa

(
un+1
h

)
+ (1− θ) a (unh) ,

∂uh
∂t

:=
un+1
h − unh

∆t
= θvn+1

h + (1− θ) vnh. (3.19)

In Equation (3.19), the operator a (uh) represents the spatial discretization of (3.16).
θ defines the order of the method in a similar way as for the fluid equation. For our
applications, we use θ = 1.0 that results in the implicit Euler method. This method is
known to have a damping effect on the solution.

3.3. Fluid-Structure Interaction

As a multi-physics application, we consider the physical system given by the interaction
of an elastic body and a viscous flow. In literature, this problem is called fluid-structure
interaction (FSI). The interaction between these separate single-physics systems, the
structure and the fluid, is happening through an interface. Therefore, this systems falls
into the category of interface coupled systems. On the other side, single-physics systems
can also be coupled in their domains that defines the domain or volume coupled systems.

Turning our attention back to the FSI system, we consider a simple example illustrated
in Fig. 3.1. The fluid domain is denoted by Ωf whereas the solid domain is Ωs. The
interface between these two domains, where the coupling takes place, is denoted by Γ.
In the fluid domain, we have the fluid velocity field vf and the pressure p, whereas in
Ωs the displacements us and velocity field vf describe the state of the solid.

The position of the wet wall Γ is defined by the displacement us, and in a transient
scenario, Γ changes its position. This is the first quantity that needs to be coupled, and
implies that the deformed structure is mapped into the flow field. Since the structure
equation is mostly computed in the Lagrangian framework and the fluid is in the Eulerian
framework, this coupling condition can potentially pose an overhead. This problem is
illustrated in Fig. 3.2, where the actual boundary in the Eulerian sense is defined by the

38

3.3. Fluid-Structure Interaction

ΩsΩf
Γ→

ns

nf
(us,vs)(uf , p)

Figure 3.1.: Simple illustration of the fluid-structure interaction with the solid domain
Ωs and the fluid domain Ωf . The flow is defined by the quantities (uf , p),
whereas the solid is described by (us,vs). The wet wall between these two
fields is represented by Γ. On Γ, there are two normal vectors defined ns for
structure and ns for fluid pointing in opposite directions.

Lagrange displacements us. We denote Γ = ΓE as the Eulerian boundary that is needed
for the fluid, whereas the Lagrangian boundary is not changing. Therefore, the following
relation holds:

ΓE := {x + us|x ∈ ΓL}. (3.20)

ΓL denotes the Lagrangian boundary that stays fixed during simulations. In the follow-
ing, we will only refer to the Eulerian boundary Γ = ΓE.

To bridge the gap between the two frameworks, several solutions can be used. The
most common one is the Arbitrary Lagrange Eulerian (ALE) approach [45] that com-
bines the two frameworks and makes a continuous transition between them in the fluid
domain. However, there are also solutions to transform both equations to the same
(Eulerian) framework [31]. For further details on these solutions we refer to previous
publications [30, 35, 31]. In this thesis, we use the approach, where the two systems are
set up in their original framework [25] and the mapping between the two frameworks is
done by the interface geometry (see Chapter 8).

The second quantity that is transported from the structure to the flow field is the velocity
of the structure at the boundary. Since the wall Γ is wet, in the immediate vicinity of
the wall, the fluid must have the velocity of the wall. Therefore, we can write for the
velocities of the fluid

vf = vs on Γ. (3.21)

The structure’s velocities vs serve as Dirichlet values on Γ for the flow equation.

As a reaction to these constraints, the flow is acting with forces on Γ. While the structure
sets the Dirichlet velocities on the boundary, the fluid forces are setting the Neumann
boundary condition for the structure (see Equation (3.18)). The fluid forces have to
be balanced by the reaction forces of the structure. Since forces can be expressed as
integrals of stress over the boundary, in the following, we consider the stress vector at
the boundary (traction vector t in Equation (3.18)), and we can write for each point on

39

3. Governing Equations in the Applications

Ωs
(us,vs)

← ΓL (x)

← ΓE (x + us)

Figure 3.2.: Mapping the Lagrangian boundary ΓL of the structure to the Eulerian co-
ordinates ΓE using the displacements us, which also define Ωs.

the interface Γ:
σfnf = σsns on Γ. (3.22)

In Equation (3.22), σf and σs are the previously defined stress tensors, and the normal
vectors on the opposite sides are nf and ns (see Fig. 3.1).

At this point, we defined all the necessary conditions of the transient fluid-structure
coupling, and they are formulated in equations (3.20), (3.21) and (3.22).

In the stationary case, the velocity of the structure vs is by default zero. Therefore,
the coupling equations are also simplified to (3.20) and (3.22). On Γ, the fluid’s no-
slip boundary condition is imposed for the velocity, such that it is consistent with the
stationary structure.

40

4. Cartesian Meshes and Immersed
Boundary Methods

Boundary conditions are a crucial part of PDE simulation problems. They usually pro-
vide the information that makes the solution unique, such that various numerical meth-
ods can be employed for the solutions computation. Incorporating boundary conditions
into numerical methods is not straightforward and depends on the overall numerical
approach. In Chapter 2, we already highlighted the simple case, when the element’s
boundary corresponds to the boundary. However, this is not always valid, which can
make the imposition of a Dirichlet BC more challenging than the solving itself. In this
chapter, we give an overview of various immersed boundary (IB) methods and of Carte-
sian meshes. The key feature of IB methods is, that they do not require a boundary
conforming mesh. Hence, boundary- or geometry-based computationally expensive un-
structured mesh generation is avoided. For this reason, the first section of this chapter
introduces the Cartesian mesh1, a memory efficient and adaptive alternative to unstruc-
tured meshes, and presents its main advantages in combination with IB methods. The
next sections present different approaches for imposing boundary conditions of various
PDEs with different discretization techniques on immersed boundaries. In particular,
we present Nitsche’s method for imposing a boundary condition in a weak sense, which
is mainly used in this thesis as IB method.

4.1. Cartesian Meshes

In Chapter 2, we defined the mesh-based discretization of our computational domain
Ω ⊂ Rd, where for our applications d = 2, 3. Such a mesh-based representation of Ω is
employed with the FEM in order to obtain a discrete system with a sparse structure in
this thesis. In the following, we introduce the Cartesian mesh, which is one focus of this
thesis. In this thesis, all the applications are computed on such type of meshes.

1also called regular mesh.

41

4. Cartesian Meshes and Immersed Boundary Methods

Figure 4.1.: Showing a regular Cartesian mesh (left) and an adaptive Cartesian mesh
(right).

4.1.1. Tree-Structured Cartesian Meshes

Structured meshes have the characteristic that their cells’ form2 has a specified global
structure. This structure is defined usually by a simple rule. Cartesian meshes are a
subgroup of structured meshes with a structure only defined through a Cartesian system
(i dx, j dy) in 2D and (i dx, j dy, k dz) in 3D. Using positive integer indices i and j in
2D with the corresponding upper limits i < Nx and j < Ny results in a mesh with
N = NxNy cells, similar to the one in Fig. 4.1. The mesh widths dx and dy in 2D can
be chosen arbitrarily. Usually, they are chosen such that extensively stretched cells are
avoided.3

With this simple structure, one can only define regular Cartesian meshes that do not
allow adaptivity. Through mesh refinement, local adaptivity can be achieved. This
implies usually the replacement of one (parent) cell with several smaller (child) cells. In
the case of Cartesian meshes, this refinement is described by the number of divisions per
dimension, while keeping the same division number for all dimensions. This way, the
refinement usually is either bi- or tri-section. Fig. 4.1 shows a bisection refinement of a
regular mesh in 2D.

In the following, we focus on the efficient representation of such adaptive Cartesian
meshes. A natural data structure, which fits this purpose, is a tree. The tree structure
is a special connected and directed acyclic graph, where the connections represent the
child-parent relations. Each node in the tree represents a cell. Such a tree must always
have a root node that does not have any parent cell. Each cell has an associated metric,
called the level. It represents the depth of the cell in the tree with respect to the root
cell. As illustrated in Fig. 4.2, such a tree represents in a natural way an adaptive
Cartesian mesh. Such trees are characterized by the fixed number of children a parent
cell has. Accordingly, in 2D with bisection, the result of the tree representation is called a
quadtree. In 3D, one obtains an octtree as tree representation with the same refinement
strategy. At this point, we want to analyze the storage requirement that a Cartesian
mesh induces. Assuming that the computational domain is represented by the root cell,

2In the following, we use the term cell instead of element, since the mesh does not have associated
basis functions.

3where dx� dy or dx� dy.

42

4.1. Cartesian Meshes

Figure 4.2.: An adaptive Cartesian mesh (left) in 2D represented by a quad-tree (right).
Refinement is done by bisection.

the only necessary information at the cell level is whether a cell is refined or not, which
can be stored in one bit. This cell-wise refinement information is enough to store the
complete structure of the tree. Therefore, it requires minimal storage requirement. It
is well known, that these bits can be grouped into a stream of bits, which describes the
data structure uniquely. In the case of unstructured meshes, the storage requirement is
considerably larger, as one needs to store not just the position of the nodes, but also the
connectivity information (e.g., which nodes form the actual cell).

We showed in Chapter 2, that the cells have to fulfill the condition Ei ∩Ej = 0, ∀i 6= j,
for the classical nodal approach.4 This condition implies, that the cells can not have
overlapping measurable domains. For this reason, only the leaf cells form the adaptive
computational mesh. To illustrate the leaf view of the mesh we consider the example
in Fig. 4.3. The domain Ω is assumed to be rectangular. The initial representation is
made by one single cell, and after refinement we end up with two refined cells (black) and
seven leaf cell (red). This tree representation of the mesh is employed among others in
the Peano mesh [92] with trisection refinement. The same concept is used with triangular
cells in [5]. The work of Biros et al [86] is also based on this type of tree structure, and
the presented algorithms show good scaling with O (105) processors. Using this tree
structure [86], the authors implemented an efficient geometrical multigrid solver [78],
that was able to solve a system with 8 billion unknowns on 32K processors.

A slightly modified concept is employed in the p4est mesh [27]. To illustrate this con-
cept, we consider a further example in Fig. 4.4. Initially, Ω is represented by a regular
Cartesian mesh instead of a single cell. After this, some are selected for refinement.
This way, a forest of trees is created after the refinement, which can be also interpreted
as a single tree with Nx × Ny (in 2D) child cells5 at the first level. One of the main
advantages of this approach is that it saves several refinement steps compared to the

4For hierarchical FEM approaches, this condition is usually violated.
5Nx and Ny being the initial resolution.

43

4. Cartesian Meshes and Immersed Boundary Methods

Figure 4.3.: Representation of the domain by a single tree (from Fig. 4.2). The root
cell is the only cell at the first level. The leaf cells marked with red are
slightly displaced to show the hierarchical structure. The leaf view of the
tree represents the adaptive Cartesian mesh.

Figure 4.4.: The initial domain represented by a 5× 4 regular mesh. Three of the coarse
cells were refined (top) resulting in a forest of trees (bottom).

single root cell approach, since most applications require a coarse regular mesh in order
to start the refinement process. In addition, this approach has to manage the forest of
trees, which proved to be efficient in the massively parallel case [27]. In Sundance, we
use this approach for the parallel adaptive Cartesian mesh implementations as show in
Chapter 6.

For Cartesian meshes, one can expect considerably shorter traversal and setup times
compared to the unstructured mesh approach, where the meshing algorithm poses a
significant overhead. Fast multilevel solvers can be applied at hierarchical mesh struc-
tures.6 In this thesis, we do not enable the usage of geometrical multigrid with Cartesian

6Algebraic multigrid solvers and preconditioners do not require hierarchical mesh structure, they build
one for themselves.

44

4.1. Cartesian Meshes

Figure 4.5.: Left depth-first (preorder) traversal, right a breadth-first traversal of the
same tree.

meshes, since we restrict ourselves to the FEM-toolbox, and this advantage of Cartesian
meshes, in our case, remains unexploited.

4.1.2. Cartesian Mesh Traversal and Domain Decomposition

In this part, we present a particular feature of Cartesian meshes, the traversal along
space-filling curves, and its application in decomposing the mesh for parallel computa-
tions.

Once a tree-structured Cartesian mesh is defined, the next step is to find a deterministic
manner to traverse the tree. The traversal of the mesh is required not just in the solving
process of the PDE problem, but also at a later visualization or solution evaluation stage.
Especially in a matrix-free solver context, the mesh traversal has a special role. In this
case, the total runtime is directly dependent on the efficiency of the traversal algorithm.

In parallel applications, the mesh traversal needs to be done in parallel in order to avoid
computational bottlenecks. The parallel traversal along the distribution of cells among
processors in a balanced manner is a major task that can be supported by a suitable
traversal algorithm, as we show in the following.

In the case of a Cartesian mesh, the sequential mesh traversal is equivalent to a traversal
of the underlying tree, which can have different forms. The two main groups of methods
are the depth-first and the breadth-first traversals. The breadth-first traversal visits
first all the cells on the current level before it traverses cells at higher levels, whereas the
depth-first search visits all children of a node before moving to the neighbor node with the
same level. Fig. 4.6 illustrates these two traversal algorithms on the same tree example.
Depending on the application one might choose different traversal algorithms, but for
our FEM applications, the most convenient one is the depth-first approach as it provides
a more or less space-continuous sequence of cells: The refined cells of a coarser cell are
traversed before neighbors, for this reason, the traversal has a high spatial locality.

45

4. Cartesian Meshes and Immersed Boundary Methods

Figure 4.6.: Peano space-filling curve (left) traversal of an adaptive mesh, and the Z-
curve (right) traversing a simple refined Cartesian mesh. The three colors
illustrate the decomposition of the mesh into subdomains. It also shows that
the globally discontinuous curves, such as the Z-curve (right), can potentially
produce disconnected subdomains.

Iterates of space-filling curves represent a line which connects all cells in the mesh,
and it also represents a mesh traversal technique. Fig. 4.6 shows two types of space-
filling curves, the Peano curve for trisection refinement, and the Z-curve for bisection,
both in 2D. In this concrete example, only the leaf cells were marked in the traversal,
which corresponds to the nodal element criterion that two cells are not allowed to have
overlapping domains. The resulting curve is basically a sequence that contains all the
cells of the Cartesian mesh.

In the parallel case, it is necessary to decompose the mesh into equal domains, such
that each processor has its own subdomain of the mesh. The resulting domains mainly
define the quality of parallelization of further computations. Therefore, it is required to
distribute the work in a load-balanced manner and at the same time, in order to minimize
communication among the processors, all sub domains should have minimal interfaces
with other domains. All the enlisted features can be accomplished with the space-
filling curve based partitioning. Given the sequence of cells, generated by a space-filling
curve, a partitioning of the mesh can be achieved by dividing this sequence into equal
pieces. In Fig. 4.6, this is illustrated for a simple partitioning into three subdomains.
The Peano curve always generates connected sub domains, whereas the Z-curve can
potentially produce disconnected subdomains.

An alternative to the Z-curve, in the case of bisection, is the Hilbert curve, which is
globally continuous and, similar to the Peano curve, it produces connected subdomains.
In Chapter 6, we discuss in more detail the implementational aspects and implications
of a space-filling curve based traversal.

4.1.3. Geometry and Boundary Representation

In this thesis, we only consider undeformed Cartesian meshes (up to different hx and hy).
Isoparametric mesh transformations [21] would enable a more accurate representation of

46

4.1. Cartesian Meshes

Figure 4.7.: Representation of complex geometries. On Cartesian mesh (left) the ge-
ometries cuts the green cells. The edges of these cells could be used as an
approximation of the boundary. In the case of unstructured mesh (right)
with triangles and even with smaller number of cells, the geometry can be
represented more accurately (the marked edges of triangles represent the
boundary). The white cells represent the computational domain whereas
the yellow ones the domain outside Ω.

the geometry by parameterizing the cell’s facets such that it fits the given boundary. This
way, higher order (e.g., 2, 3) representation of the boundary is possible. However, such
a representation is computationally costly and not feasible for arbitrary large geometry
changes in the moving geometry case, where remeshing is required. Therefore, we focus
on undeformed meshes in an Eulerian setting.

In the case of unstructured meshes, the nodes of the cells are usually chosen such,
that the cell’s facets coincide, at least in linear approximation, with the boundary (see
Fig. 4.7). This way, one cell can be either in or out of the computational domain.
In the case of Cartesian meshes, there is a third group of cells which are cut by the
geometry. The geometry could be represented by the facets of these cells, which obviously
would lead to an only O (h) geometry approximation, where h is the mesh width on the
boundary. This effect is shown in Fig. 4.7, where a complex boundary (marked with
red) is intersecting a refined Cartesian and a simplex unstructured mesh in 2D. The
unstructured mesh represents the boundary by line segments, which correspond to the
cells boundaries, leading to an O (h2) approximation of the boundary. The Cartesian
mesh only has rectangular cells, and correspondingly rectangular line segments. These
lines are unsuited for such complex geometries. For this reason, one of the topics of this
thesis is to improve this property of the Cartesian meshes. In the next section, we enlist
some of the methods for better geometry representation, where the boundary condition
can be enforced with more than first order accuracy.

During refinement, level differences between neighboring cells occur. The maximal dif-
ference is called the irregularity of the mesh. Fig. 4.7 (left) shows a 2-irregular mesh,
since the highest level difference is two. As the irregularity has severe impact on numer-

47

4. Cartesian Meshes and Immersed Boundary Methods

ical and implementational efficiency, we limit our meshes to 1-irregular meshes. Thus,
only the difference of one refinement level has to be bridged. Such 1-irregular meshes
with bisection refinement are also called meshes preserving the 2:1 mesh balance [6].
In Chapter 6, that deals with the hanging node issue, we come back to this criterion.

4.2. Immersed Boundary Methods

In the previous section, we presented the main advantages and the disadvantages of
adaptive Cartesian meshes. The main advantages are the low memory requirement,
simple data structure even for the adaptive case, and space-filling curve based traversal
and domain decomposition. The main disadvantage is the poor capability to represent
accurately complex geometry boundaries, on which we imposed Dirichlet boundary con-
ditions. As shown in Fig. 4.7, even with local refinement this disadvantage can not be
completely compensated. Since the representation is based only on rectangular cells, the
accuracy is only O (h).

To eliminate this drawback of the Cartesian meshes, we use the immersed boundary
methods (IB methods). The main idea is to embed the complex geometry into a larger
rectangular ΩO domain, such that Ω = ΩO−ΩF , with Ω∩ΩF = 0, where ΩF is called the
fictitious domain. In spite of using a Cartesian mesh to discretize ΩO, the computations
should be done on Ω. Cells of the Cartesian mesh that are entirely in or outside Ω are
simple to handle. The challenge at this point remains how to handle the cells that contain
boundaries, such that a given BC on ∂Ω is imposed, while solving an equation on the
entire ΩO domain. Fig. 4.8 illustrates an example with complex immersed boundaries.

4.2.1. Overview

With immersed boundaries, there is a need for geometry description, not just to deter-
mine the cells which are intersected by it, but also to handle these cells, depending on
the chosen IB method. This geometry description can also be used for mesh refinement
near the boundary. Such a description is not necessary for unstructured meshes, since
the geometry is implicitly described by the facets of the boundary cells (see Fig. 4.7).
The implementational aspects of the geometry representation for our concrete case are
discussed in Chapter 7. A further advantage of the immersed boundary is visible for
moving boundaries, where in the case of unstructured meshes mesh transformations and
for topology changes even a costly remeshing are required. All these additional over-
heads are not present with immersed boundaries, where the mesh is left unchanged, and
only the geometry is moved.7 However, this might have the implication that the cells
need to be regrouped, such that cells in ΩF might become part of Ω and vice versa.

7Assuming that we work in the Eulerian ansatz.

48

4.2. Immersed Boundary Methods

Ω

ΩF

ΩO =
∂Ω→

Figure 4.8.: Example for an immersed boundary scenario. Ω is the computational do-
main which is embedded into a rectangular domain ΩO that can be dis-
cretized with Cartesian meshes. The fictitious domain ΩF is defined as
ΩF = ΩO − Ω and ΩO = Ω ∪ ΩF .

There have been numerous publications on methods which can be categorized as IB
methods. Depending on which level they impose the BC, we divide them in two main
groups: (1) continuous or weakly imposed methods and (2) discrete methods. In the
following, we present a general overview of these IB methods before we turn our attention
to the specific continuous methods that are employed in our FEM-based PDE toolbox.

Historically, the first (continuous) IB method was introduced in [74] and was used for
cardiac mechanics and the coupled blood flow. The elastic wall is represented as a spring
which is acting with a given force on the fluid. The force is modeled by a source term
in the flow equation. However, this variant of the elastic wall model is not suited for
rigid body representation, since a stiff wall response generates usually a stiff system to
solve [56].

A more general continuous method, also applicable for rigid obstacles, is the penalty
method. It adds a term to the formulation that “forces” the solution to the values
of g. Methods that also fall into this category have been implemented for advection-
diffusion, incompressible flow, and turbulence models. In the turbulent case, additional
wall shear-stress boundary terms are included as Neumann boundary conditions in the
variational form of the equation [14], enabling the easy use of IB methods. A similar
approach is used in [44], where a Poisson equation for the wall-distance is solved with
immersed boundaries. This distance is later used in the wall function of the κ − ε
model. One of the methods developed for viscous flows is presented in [13], where
additional penalty and consistency terms enforce the prescribed boundary velocities. In
this category, we also have to mention the Stokes/Navier-Stokes Brinkman equation [24]
that models the porous medium by adding one addition permeability force term to the
impulse equation, and can model fluid obstacle geometries with the help of varying
permeability (see Chapter 9 for more details). Penalty-like methods are presented in

49

4. Cartesian Meshes and Immersed Boundary Methods

more details in Subsection 4.2.2.

The next continuous approach is the Lagrange multiplier method that considers the
boundary condition as constraint for the variational formulation of the problem. This
involves the usage of extra degrees of freedom which are the multipliers. These degrees
of freedom can be either defined on the interface [35] or in the whole ΩO domain [42].
The concrete mathematical formulation of this approach is stated in Subsection 4.2.4.
The Nitsche-type methods can be seen as a special case of the Lagrange multiplier
approach [84]. First introduced in [69], the idea is to define and minimize the en-
ergy functional of the variational problem formulation including boundary conditions
as constraints. This gives rise to a consistent method to impose the boundary con-
ditions continuously without any additional degrees of freedom. Nitsche’s method for
the Navier-Stokes equations is one of the major contributions of this thesis, and the
theoretical foundation of this method is shown in Subsection 4.2.5.

The extended finite element method (XFEM) can be categorized also as continuous
enforcement methods, although it uses additional enriched basis functions for the cells
that are intersected by the boundary. These enrichments are defined in such a way
that discontinuities at the boundary can be captured. A first version of the method was
used for crack tracking in elastic structures [17, 68], and was originally called generalized
finite element methods GFEM [85]. This technique facilitates in combination of Lagrange
multipliers an efficient implementation of IB in fluid mechanics [35] and fluid-structure
interaction with moving boundaries.

Level-set methods use an explicit description of the boundary by a function φ. Assuming
that this function is continuous, the boundary is defined by the points x for which φ (x) =
0. This function φ is subject to changes that are usually described by a convection

dominated PDE (e.g.,
∂φ

∂t
+ v · ∇φ = 0, with a velocity vector v). Since this function is

changing, the position of the interface ∂Ω = {x ∈ Rd | φ (x) = 0} is also changing. By
extending the interface problem in this extra dimension, the method gains real strength
to deal with general interface problems and even with topology changes. This idea
was introduced in [70] and a method similar to the level-set approach is also used for
fluid-structure interaction with IBs in [31].

The finite cell method (FCM) is a special method to compute the deformations of an
elastic structure with complex shapes [72]. Key idea of the approach is to use an elasticity
matrix C (x) that depends on the position x ∈ Rd. This approach is discussed in more
details in Subsection 4.2.3.

Besides continuous enforcement methods, there is also a discrete way to enforce IB
conditions. One way is to estimate a priori an algebraic forcing term that is added to
the right-hand side, such that the corresponding DoF has the required value [89]. A
more direct and general way is the ghost-cell approach, where the values in the fictitious
domain ΩF are set such that the interpolant on ∂Ω takes exactly the values of g. This is a

50

4.2. Immersed Boundary Methods

common way to enforce IB conditions in the context of finite differences and is employed
for flow simulation with complex geometries [52]. A similar discrete approach is also
presented in [20] for IBs. The next type of discrete approach is the cut-cell approach for
finite volume discretizations. The main idea of this method is to take into consideration
only the Ω part of the cell in the computations [66]. For more insights and comparison
of these methods, we refer to the review paper [67].

The scope of the rest of this chapter is a more detailed presentation of various immersed
boundary methods that can potentially be used in a FEM-based PDE toolbox and
Cartesian mesh context. For this reason, we only list the methods that enforce weakly
the boundary condition on such immersed boundaries. This implies that the methods
should be stated in a weak form, similar to the formulation in Chapter 2. In contrast to
the general and discrete methods to impose the Dirichlet boundary conditions, presented
in Chapter 2, some of the following methods are PDE specific or valid only for one type
of problems. In Chapter 7, Chapter 8, and Chapter 9, two methods are employed in
concrete applications, where we demonstrate the capabilities of these immersed boundary
methods in combination with Cartesian meshes.

4.2.2. Penalty Method

The first group of methods to be introduced is a simple and general one, which we
call simply as penalty methods. We consider the solution function u ∈ Rd on the
computational domain Ω ⊂ Rd and the boundary condition u|∂Ω = g, with ∂Ω ⊂ Rd−1.
The main idea of this method is to add a penalty term to the weak formulation of the
problem which penalizes values of u on ∂Ω that deviate from g.

In general, the following penalty term is added to the original weak form of the equation∫
V

α (u− g) v dx, ∀v, (4.1)

where α is the penalty coefficien, and V is either ΩF or ∂Ω. There are two main groups
of penalty methods, depending on the domain V of penalization term. The first one,
is the volume penalty method, where a penalty force is acting on ΩF . The Brinkman-
type [24] equations for flow simulation fall into this category, where a homogeneous
boundary condition of the velocity vector u∂Ω = g is imposed in a general way on a
complex geometry. For a concrete example, we consider a flow scenario and the setting
in Fig. 4.8, with Ω as the fluid domain and ΩF as the fictitious domain denoting the solid
domain. In this case, we assume that g is defined on all ΩO. [2, 51] and [76] use this
approach, where the momentum equations has one additional force term of the following
form ∫

ΩO

µ

k (x)
(u− g) v dx, (4.2)

51

4. Cartesian Meshes and Immersed Boundary Methods

where µ is the viscosity of the fluid, u ∈ H1 (ΩO)d is the velocity vector and v ∈ H1 (ΩO)d

is the test function. k (x) represents the coordinate dependent permeability that in the
case of the solid is close to zero (ki � 1). The permeability has high values (ki � 1) in
the fluid domain, hence, term (4.2) vanishes in Ω

ki (x) =

{
kF , kF � 1 x ∈ Ω
kS , kS � 1 x ∈ ΩF .

(4.3)

Depending on the domain, where term (4.1) is defined, [76] presents two variants. Ex-
terior penalization defines term (4.1) on ΩF , which is the case with the permeability
coefficient defined in (4.3) and is the presented volume penalty approach for fluids. The
spread interface penalization uses the penalty term (4.1) only on the approximation of
∂Ω.

The spread interface penalization represents the next group of penalty methods, namely
the interface penalty methods, where V = ∂Ω. This approximation is a simplified (e.g., a
piecewise linear) representation of the boundary, and (4.1) is transformed to a boundary
integral ∮

∂Ω

α (u− g) v dc. (4.4)

To illustrate this concept, we consider an example enforcing the boundary condition
with a penalty term. The concrete PDE is the Poisson equation −∆u = f in Ω, u = g
on ∂Ω. The weak formulation of the problem including the penalty term is∫

Ω

∇u∇v − fv dx+

∮
∂Ω

−v (∇u · n) +
γ

h
v (u− g) dc = 0. (4.5)

u ∈ Vh (ΩO) and v ∈ Vh (ΩO) are the unknown and test functions and n is the normal
vector pointing outwards of the domain Ω. h is the mesh width on ∂Ω. Penalty terms

are usually scaled with the inverse of the mesh width α =
γ

h
, such that the method is

convergent for h→ 0 while α→∞. The boundary integral term v (∇u · n) is the result
of the partial integration, which does not vanish in the IB case.8

Equation (4.5) is employed for the example geometry in Fig. 4.9. The fictitious domain is
inside the circle, which is marked with white color. On this circle, we impose a constant
BC g = 1.0. The error norm measured on the boundary is only ‖u− g‖L2(∂Ω) = 9.7e−3,
which shows the high accuracy of the weak enforcement of BC on even coarse Cartesian
meshes that are not conforming with the domain boundary.

A similar approach is described in [13] for flow problems. The authors apply this IB
approach for advection-diffusion and for incompressible flow scenarios. The key idea is to
extend the pure penalization concept, by adding additional penalization and consistency
terms to the weak formulation of the advection-diffusion equation, a∇u−κ∇ (∇u) = f ,

8u and v do not have compact support on Ω, and the BC is enforced weakly.

52

4.2. Immersed Boundary Methods

Ω

ΩF

∂Ω→

Figure 4.9.: Solution of the Poisson equation in the weak form (4.5), with γ = 6.0. The
BC is constant with g = 1.0 on ∂Ω, that is a circle, located in the middle of
Ω with a radius of 0.3. The source term is also constant with f = 1.0. The
fictitious domain ΩF is represented by the domain inside the circle. On the
boundary of the rectangle, we impose Neumann zero boundary conditions.
The resulting values are shown on the left, whereas the right plot shows
also the underlying mesh. Computations were made with the Sundance
toolbox [61] that is presented later in Chapter 5.

with the convective coefficient a and κ as the diffusion coefficient. The IB conditions
can be imposed weakly in the following way (in a simplified form): for u ∈ Vh (ΩO) and
∀v ∈ Vh (ΩO)∫

Ω

(−∇v (au− κ∇u)− fv) dx+

∮
∂Ω

v (−κ∇u · n + an · u) dc

+

∮
∂Ω

−γκ∇v · n (u− g) +
C |κ|
h

v (u− g) dc = 0. (4.6)

The domain integral represents the weak form of the advection-diffusion equation. The
third integral term is called the consistency term in [13], and it arises from the par-
tial integration of the strong from. These terms, in contrast to the case of boundary
conforming meshes, do not vanish, since v does not have compact support on Ω. The
last boundary integral enforces the Dirichlet boundary condition9 with γ = 1 or −1, C
being a penalty coefficient, and h the mesh width on the boundary. The authors of [13]
claim that with γ = 1 or −1, the resulting method is consistent and they apply the same
principle for the Navier-Stokes equations. We show here the improved method presented

9We stated it in a simplified form, where we consider only one type of boundary (no separate in- and
outflow).

53

4. Cartesian Meshes and Immersed Boundary Methods

in [14]. We denote the additional pressure scalar field with p, and the associated test
function with q. For u, p ∈ Vh and ∀v, q ∈ Vh,∫

Ω

∇vκ∇u + v (u · ∇) u− fv −∇v p+ q∇u dx

+

∮
∂Ω

v (−2κ∇u · n) dc+

∮
∂Ω

−γ2κ∇v · n (u− g) +
C |κ|
h

v (u− g) dc = 0. (4.7)

Equation (4.7) has the same structure as (4.6) with the additional consistency and
penalty terms. This formulation of the problem is used in [14] for turbulent flow scenario
simulation, where due to the IB method a lower wall refinement is required.

4.2.3. Finite Cell Method

The Finite Cell Method (FCM) is a general method to impose boundary conditions
for the elastic structure equation introduced in Chapter 3. This method was proposed
in [72] for higher-order Legendre basis functions and was extended later for B-spline basis
functions in [81, 82]. The main idea of the FCM is to define a coordinate dependent
elasticity matrix. This dependency is induced by a coordinate dependent coefficient α

α =

{
1.0 , x ∈ Ω
0.0 , x ∈ ΩF .

(4.8)

Using this coefficient in the linear elasticity equation, it results in the following weak
formulation of the problem. Similar to the definition in Chapter 3, u denotes the dis-
placements in d = 2 or 3, v is the corresponding test function, and the weak form of the
FCM has the form: ∫

Ω

(L v)T αC (L u) + αfv dx+

∮
∂Ω

tTvdc = 0. (4.9)

f represents the volume forces and t is the traction force on the surface of the elastic
body, and L is the differential operator from Chapter 3. The weak form (4.9) is solved
on an adaptive or even regular Cartesian mesh.

To illustrate this concept, we consider the perforated plate benchmark scenario that we
compute with the FCM method. The computational domain is illustrated in Fig. 4.10.
The lower part of the plate is fixed. At the top boundary, a force of 100N is acting
in upwards direction. In this case, the goal is to compute a correct displacement field.
The stress fields are also of interest, but they might be unstable with Legendre basis
functions in the nonlinear case. Therefore, an improved version of the FCM is proposed
in [81], which uses hierarchical enriched B-spline basis.10 Since we are in the linear case,
this improvement is not necessary for our example. We use the classical FCM with a
coarse 10× 12 resolution and with 4th order Legendre basis functions. The resulting x-
and y-displacements are shown in Fig. 4.10. This perforated plate scenario is a common
benchmark to test and verify elastic solid body solvers.

10similar to XFEM approach

54

4.2. Immersed Boundary Methods

Ω

ΩF

Figure 4.10.: One perforated plate benchmark with a 12× 10 resolution. It shows (left)
the vertical displacements v and (right) the horizontal displacements u.
These computations were made with the Sundance toolbox [61].

4.2.4. Lagrange Multiplier Method

The Lagrange Multiplier Method (LMM) is a general approach for optimization under
constraints and its formulation can be found in several textbooks (e.g., [21]). For the sake
of completeness, we restate this formulation, where the main objective is to minimize a
functional

J (u) =
1

2
a (u, u)Ω − 〈f, u〉Ω, (4.10)

where a (·, ·)Ω is a bilinear form and 〈f, ·〉Ω is a linear functional, both defined previously
in Chapter 2. In this case, the bilinear operator maps M ×M to R, with M as the
associated Hilbert space. In addition to Equation (4.10), we consider a constraint of the
minimization problem (4.10) in the form of a bounded bilinear form b : M ×N → R.

b (u, µ)Ω − 〈g, µ〉Ω = 0 ∀µ ∈ N. (4.11)

〈g, µ〉Ω and 〈f, u〉Ω are the dual operators, which are linear operators on the Hilbert
spaces M and N (defined in Chapter 2).

Condensing the constraint (4.11) and the objective function (4.10) into one function
results in the Lagrange function

L (u, λ) = J (u) + (b (u, λ)Ω − 〈g, λ〉Ω) . (4.12)

The minimization of the functional L (u, λ) results in an optimal u ∈ M and λ ∈ N ,
where in the literature λ is called Lagrange multiplier. Similar to Theorem. 2.1.1 (Lax-
Milgram), the minimization problem of (4.12) is equivalent with the following variational
problem, where one needs to find (u, λ) ∈M ×N such that

a (u, v)Ω + b (v, λ)Ω = 〈f, v〉Ω ,∀v ∈M
b (u, µ)Ω = 〈g, µ〉Ω ,∀µ ∈ N. (4.13)

55

4. Cartesian Meshes and Immersed Boundary Methods

After discretization, the variational problem of equations (4.13) results in a linear system
of equations. This linear system of equations is solvable, only if the so-called inf-sup con-
dition is satisfied, which usually implies that M and N need to be discretized differently
in space (e.g., different order basis or different types of basis functions). The inf-sup
condition can be circumvented by adding a stabilization term (e.g.,

∫
Ω
α2 (λ µ) dx) to

the second equation of (4.13). For more theoretical insights we refer to [21, 50].

The LMM formulation is general and widely used to impose boundary conditions weakly,
with these boundary conditions contained in the constraint operator b (·, ·) : M×N → R.
Due to the generality of the LMM for IB conditions, this has been a research topic in
numerous publications, and this method was already proposed in the early 70s [3] and is
still used nowadays [35, 95]. For imposing a Dirichlet BC, a classical LMM has a more
concrete form, where only the bilinear operator a remains general. In the following, the
Dirichlet boundary condition on ∂Ω is u|∂Ω = g and the resulting system is

a (u, v)Ω + (v, λ)∂Ω = 〈f, v〉Ω ,∀v ∈M
(u− g, µ)∂Ω = 0 ,∀µ ∈ N. (4.14)

In (4.14), the bilinear form b has been replaced by the boundary integral b (u, µ)∂Ω =∮
∂Ω
uµ dc and 〈g, µ〉∂Ω =

∮
∂Ω
gµ dc. It is important to note, that λ in (4.14) is only

needed to be defined on ∂Ω. However, if λ is defined on whole Ω, this approach is called
distributed Lagrange multipliers [42, 37]. An approach similar to the distributed LMM
is presented in [95]. The obvious disadvantage of the distributed LMM is that it induces
additional unknowns λ, which are usually discretized on the same mesh as the unknowns
u. This results in a significantly larger system than the one with the original variational
form. On the other hand, in the case of moving boundaries, this approach has some
practical implementational advantages compared to the approach with only local λ on
∂Ω.

Defining λ only on ∂Ω certainly has the advantage that the resulting discrete system is
not significantly larger then the one resulting directly from the variational problem.11

For this reason, this approach is more wide-spread than the distributed LMM. In order
to apply directly Equation (4.14) with λ defined only at the boundary, one needs an
d − 1 dimensional interface mesh that represents ∂Ω. The creation of such a mesh is
quite costly, especially in 3D. Therefore, it is desirable to use the same mesh, which the
unknown u is discretized on by defining λ on intersected cells only.

The LMM method is often combined with the XFEM that employs special enriched
functions to capture the discontinuity at the boundary. Enriched functions have usually
a jump to the zero value at the boundary, so they do not have support in the fictitious
domain ΩF . Due to these jumps, it is important that the solution function u is forced
to the Dirichlet values g on ∂Ω. For FSI problems, [64] and [35] present several XFEM
and LMM approaches, where λ is defined only on the boundary. The mortar FEM with
Lagrange multipliers is introduced by [10] that is also used in an FSI context.

11without LMM

56

4.2. Immersed Boundary Methods

4.2.5. Nitsche’s Method

The application of Nitsche’s method for various IB applications is the main contribution
of this thesis. This method was introduced in [69] for the elliptic Poisson equation as
a consistent method that does not require additional unknowns or a special interface
mesh. However, it requires the value of a penalty coefficient, for which the optimal value
is still topic of research.

The idea is to define and minimize a functional J , the so-called energy functional that
penalizes both deviations from the solution of the PDE inside the domain and from
the boundary conditions on the boundary. The main step is the determination of J
such that the resulting analytical minimization formula becomes not just consistent
but also as simple as possible.12 The resulting Nitsche’s formulation for a given PDE
is a weak formulation, where in addition to the existing integral terms new boundary
integrals appear. This methodology results in a consistent method to impose a boundary
condition in a general way and without additional degrees of freedom.

Due to its generality, Nitsche’s method is employed in mesh-free contexts [4, 47], and in
mesh-based discretizations for interface [40, 39] and IB problems [28, 49]. However, we
employ this method in this thesis only for IB problems. In the following, we introduce
first Nitsche’s method for the Poisson equation. Afterwards, we formulate Nitsche’s
method for the Stokes and Navier-Stokes equations.

Nitsche’s Method for the Poisson Equation

Nitsche’s method was introduced for the Poisson equation [69], and here, using this rather
simple PDE, we present the main idea of the method. A more detailed mathematical
derivation can be found in Appendix A.2.

We restate the Poisson equation in the strong form on a continuous domain Ω:

−∆u = f in Ω,

u = g on ∂Ω. (4.15)

Correspondingly, we have the weak form of the equation, with the non-vanishing bound-
ary terms and with the solution function u ∈ V in the Hilbert space V

−
∫

Ω

∆u vdx =

∫
Ω

∇u∇vdx−
∮
∂Ω

(∇ u · n) vdc =

∫
Ω

f vdx, ∀v ∈ V.

The next and crucial step is to define the energy functional J (u) as it is stated in [69]

J (u) =

∫
Ω

u2
x + u2

ydx− 2

∮
∂Ω

u un − ψ
∮
∂Ω

u2, (4.16)

12With a different J , the resulting formula could be several lines long and could pose a significant
implementational overhead.

57

4. Cartesian Meshes and Immersed Boundary Methods

with a shorter notation of the derivatives ux, uy, and un. The last term in (4.16) is a
stabilization term with ψ as a penalty coefficient. For this coefficient, it is required that
ψ → ∞ with the mesh width h → 0 becoming finer. J (x) is used as a measure for the
difference between the exact solution uA and our approximate solution u. The objective
is to minimize this norm, which gives rise to the minimization problem

J (uA − u) = min
w∈Vh

J (uA − w) . (4.17)

We transform J (uA − u) to the following form (see Appendix A.2)

J (uA − u) = J (uA) + J (u)− 2

∫
Ω

fudx+ 2

∮
∂Ω

(g un − ψu)dc.

Next, we derive this equation with respect to u and set it to zero to achieve the equation
form. Using the notation for the discrete basis functions u =

∑
E yEϕE, yE ∈ R, where

the unknowns are in the vector y. To find the correct discrete solution y, we have to set
up the derivative with respect to this vector

1

2

∂J (uA − u)

∂yE
=

∫
Ω

uxϕE,x + uyϕE,ydx−
∮
∂Ω

unϕEdc−
∮
∂Ω

uϕE,ndc

+ψ

∮
∂Ω

uϕEdc −
∫

Ω

fϕEdx+

∮
∂Ω

g(ϕE,n − ψϕE)dc = 0. (4.18)

Equation (4.18) is the resulting Nitsche’s formulation presented in [69, 49]. The first
two terms and the fourth term in (4.18) represent the original weak form of the Poisson
problem. In addition, Nitsche’s formulation contains two the penalty and two boundary
integral terms. For a detailed derivation of Nitsche’s method, we refer to Appendix A.2.

Ω

ΩF

Figure 4.11.: Domains Ω and ΩF on a Cartesian mesh. The cells intersected by the
boundary (gray-green) need to be treated specially.

Nitsche’s method for the Poisson equation contains two types of terms, volume integrals
and boundary integrals. The implementation of this method only requires the compu-

tation of these two types of terms. The penalty factor is set as ψ =
C

h
, where C ∈ R

and h is the mesh width at the boundary. This assures, that the required condition for
consistency holds as h→ 0 so ψ →∞.

58

4.2. Immersed Boundary Methods

In the context of Cartesian meshes as illustrated in Fig. 4.11, evaluating these volume and
boundary integrals implies a special numerical approach. The cells that are intersected
by the boundary need to be treated separately for the volume integrals, such that only
the part in Ω will be considered. The boundary integrals on ∂Ω with an underlying
Cartesian mesh also pose a similar challenge. Since the boundary geometries can have
an arbitrary shape, the first step is to use a given discretization of the boundary within
an intersected cell. For consistency reasons, it is important to use the same boundary
discretization for both boundary and volume integration. All the methods, corresponding
implementations, and the boundary discretization used for this thesis are described in
Chapter 7.

Ω

ΩF

Figure 4.12.: 2D example of the Poisson equation with the IB conditions imposed by
Nitsche’s method (4.18). The boundary is represented by a circle arc,
colored with white (left), ΩO is the unit square. By refining the mesh at
the boundary (right) up to level two, we achieve higher accuracy. The
computations were made with the Sundance toolbox [61].

We illustrate the generality and the strength of Nitsche’s method by considering two
examples of the Poisson equation. The first example is a 2D scenario with a constant
Dirichlet boundary condition g = 1 on the IB. In this concrete case, the immersed domain
ΩO is the unit square and the IB is represented by a circle as illustrated in Fig. 4.12.
On Ω, we solve the Poisson problem −∆u = 3 with the mentioned BC on the circle.
The BC is imposed with Nitsche’s method (4.18). Along the boundary, the Cartesian
mesh is refined up to level two, while keeping the 1-irregularity condition.13 The penalty
coefficient is set to C = 6.0. Fig. 4.12 shows the resulting solution u and the underlying
adaptive Cartesian mesh.

Previously, we defined the immersed domain as ΩO = Ω∪ΩF , where Ω∩ΩF = 0. In this

13See Chapter 6

59

4. Cartesian Meshes and Immersed Boundary Methods

Ω

ΩF

Figure 4.13.: 3D example of the Poisson equation with the IB conditions imposed by
Nitsche’s method (4.18). The boundary is represented by a sphere, colored
with red (left), ΩO is the unit cube. Similar to 2D, we refine the mesh at
the boundary (right) up to level two. The computations were made with
the Sundance toolbox [61].

example we have cells that are completely contained in ΩF . These cells can be either
ignored, or we can solve the same Poisson equation there weighted by a small factor,
e.g., 10−8. The first option certainly makes more sense for a stationary geometry. On
the other hand, for moving boundaries, the second option, from the implementational
perspective, has numerous advantages since allocation and deallocation of DoFs on these
cells is avoided, while the boundary is moving. These aspects of Nitsche’s method will
also be discussed in Chapter 8.

The next example is set up in 3D, but the equation is left unchanged −∆u = 3. In this
case, the sphere represents the two-dimensional boundary ∂Ω that intersects the cells
in 3D. The solution function u with the underlying mesh is shown in Fig. 4.13. The
penalty coefficient is set to C = 50.

The examples visualized in Fig. 4.12 and Fig. 4.13 demonstrate the generality and
strength of Nitsche’s method. In contrast to the Lagrange multiplier method, this
method does not require additional DoFs, and geometry based enrichment of the basis
functions is also not necessary. Since the boundary cells have the same basis functions
as the rest of the cells in Ω, Nitsche’s method enables us to use the same discretiza-
tion on the whole mesh. As most IB methods, Nitsche’s method requires a geometry
representation that is used to compute the necessary volume and boundary integrals.
The only parameter that needs to be set is the penalty coefficient C, which value can be
determined experimentally. These key properties allow for the usage of Nitsche’s method
in a toolbox environment, which is one of the main tasks of this thesis.

At last, we show a simple convergence analysis of the Nitsche Method for a simple

60

4.2. Immersed Boundary Methods

scenario in order to prove that even with Cartesian meshes one can achieve second order
accuracy14 on the boundary. Chapter 7 contains the algorithms and methods that allow
for the usage of the Nitsche Method within Sundance. For the convergence analysis, we
considered the simple scenario on Fig. 4.14, where on the unit square a circle with a
radius of 0.23 is placed at the position (0.51, 0.491).15 This Dirichlet boundary consists
of a polygon with considerable higher resolution than the mesh. We measure the L2

error on this polygon with respect to the homogeneous Dirichlet boundary condition.
The measured L2 errors are shown in Tab. 4.1, which are measured for different mesh
resolutions, for Q1, and Q2 basis functions.

Figure 4.14.: Scenario of the convergence analysis. We impose with Eq. (4.18) and α =
50 a homogeneous Dirichlet BC on the circle and we measure the L2 error
on Γ between this homogeneous value and the resulted solution. Chapter 7
describes the concrete implementation of Eq. (4.18).

regular Cartesian Mesh L2 error with Q1 L2 error with Q2

7× 7 2.683e-2 2.543e-3
14× 14 1.083e-2 6.941e-4
28× 28 8.207e-4 4.175e-4
56× 56 4.257e-4 1.650e-5

112× 112 1.258e-4 6.466e-6
224× 224 1.232e-5 4.023e-6

Measured order 2.22 1.86

Table 4.1.: The L2 error measured on Γ (the circle on Fig. 4.14) with increasing regular
mesh resolution. In the last line, we represent the measured average order of
the Nitsche Method. The measured order of the error in both cases is around
two.

The measured error reduction orders in Tab. 4.1 show that using a regular Cartesian mesh
and the Nitsche Method one can achieve second order accuracy at the boundary, which

14as with unstructured meshes
15In order to avoid symmetrical error cancellations.

61

4. Cartesian Meshes and Immersed Boundary Methods

is our main argument for this IB method. In the classical way, only an unstructured
mesh has such order16 on the boundary.

Nitsche’s Method for the Stokes and Navier-Stokes Equations

In this subsection, we introduce Nitsche’s method for the Stokes and Navier-Stokes
equations. The idea for the derivation was shown already for the Poisson equation,
therefore, we just state the method here. A detailed derivation of Nitsche’s formula for
the Stokes equations is described in Appendix A.3.

Next, we restate the stationary Navier-Stokes equations in the form that is used previ-
ously in [19] and in Eq. (3.5) and (3.6) of Section 3.1.

We consider the computational domain Ω ⊂ Rd with d = 2, 3 and the unknown functions
u = (v, p) ∈ H1(Ω)2×L2

0(Ω) with the velocities v and the pressure p. Further, we denote
the boundary of Ω as Γ = ∂Ω and g ∈ H1/2(Γ) is the Dirichlet boundary condition.
f ∈ L2(Ω)2 represents external forces acting on the fluid. In the following, for the sake
of simplicity, we consider ρf = 1. ν represents the kinematic viscosity of the fluid. With
these definitions, the Navier-Stokes equations read

−ν∆v + (v · ∇)v +∇p = f in Ω, (4.19)

∇ · v = 0 in Ω, (4.20)

v = g on Γ. (4.21)

The transformation to the weak form of equations (4.19)-(4.21) has already been pre-
sented in Section 3.1 (see Equation (3.7)). We use the same definition for the test
functions except they do not have compact support on Γ. In contrast to Section 3.1, the
resulting boundary integrals do not vanish:

(−ν∆v, ψ)Ω = ν

∫
Ω

∇v : ∇ψ dx− ν
∫

Γ

∂nvψ dS(x)

= ν (∇v,∇ψ)Ω − ν〈∂nv, ψ〉Γ,

(∇p, ψ)Ω = −
∫

Ω

p (∇ · ψ) dx+

∫
Γ

p n · ψ dS(x)

= − (p,∇ · ψ)Ω + 〈p n, ψ〉Γ.

Summing up all volume integrals yields the functional a

a(u, φ) := ν (∇v,∇ψ)Ω + ((v · ∇)v, ψ)Ω − (p,∇ · ψ)Ω + (∇ · v, ξ)Ω ,

whereas the boundary integrals are denoted by c

c(u, ψ) := −ν〈∂nv, ψ〉Γ + 〈pn, ψ〉Γ.
16only with linear transformation

62

4.2. Immersed Boundary Methods

These terms give the weak formulation of the stationary Navier-Stokes equations

a(u, φ) + c(u, ψ) = (f, ψ)Ω ∀ φ, (4.22)

where the Dirichlet boundary condition is not enforced yet.

In the following, we present Nitsche’s method incrementally in order to enforce the
Dirichlet conditions weakly. Using Nitsche’s method implies adding penalty-like terms
and terms that maintain the skew-symmetry of the Stokes operator [15, 41]. The skew
symmetric counter term ĉ of c is

ĉ(v, φ) := −ν〈∂nψ, v〉Γ − 〈ξn, v〉Γ.

In the next step, we consider the discretized velocity and pressure space. To fulfill
the inf-sup criterion we use different discretization spaces for velocity and pressure.
With this specific choice, no stabilization terms are required, which were presented in
Section 3.1. In the case of inf-sup unstable elements, the stabilization adds only the
stabilization-terms to Nitsche’s method as shown in [15, 41]. Further, the penalty terms
ν γ1

h
〈v, ψ〉Γ + γ2

h
〈v · n, ψ · n〉Γ are also added to the weak form.

In [15], additional inflow stabilization terms are considered, namely −〈(v · n)−v, ψ〉Γ,
where (t)− = min{t, 0}. Compensating this term, [15] adds −〈(g · n)−g, ψ〉Γ on the
right side. In our numerical examples (see Chapter 7), it turned out that this inflow
stabilization is negligible. Thus, in the following, we will not consider this additional
inflow stabilization.

Summing up all the listed terms gives rise to the Nitsche’s method of the stationary
Navier-Stokes equations (4.22), where we denote the discrete velocity space as Vh and
the bilinear finite element discrete pressure space is Zh:

a(uh, φh) + c(uh, ψh) + ĉ(vh, φh) + ν
γ1

h
〈vh, ψh〉Γ +

γ2

h
〈vh · n, ψh · n〉Γ

= (f, ψh)Ω + ĉ(g, φh) + ν
γ1

h
〈g, ψh〉Γ +

γ2

h
〈g · n, ψh · n〉Γ ∀ φh ∈ Vh × Zh. (4.23)

Here, h denotes the local mesh size on the boundary Γ. The formulation (4.23) is
consistent in the sense that the solution of the Navier-Stokes equations satisfies the
variational problem. Further, convergence in the case of the Stokes equations (without
the nonlinear convective terms) is also assured [19].

Similar to Equation (4.23), [28] defines also a Nitsche’s formula for the advection-
diffusion and Navier-Stokes equations in the context of IBs that does not have all the
terms presented in (4.23). Although formulation (4.23) of Nitsche’s equation is the same
as the formulations in [15, 41], our approach17 still appears to be unique for the Navier-
Stokes problem. In both previous works [15, 41], Nitsche’s method is applied to boundary
conforming meshes (in 2D on the edges of the cells), where the BC could be imposed

17published in [19]

63

4. Cartesian Meshes and Immersed Boundary Methods

in a classical way. We apply (4.23) to general non-conforming cases, where the cells’
boundaries do not represent Γ. In this thesis, we also show that this formulation can be
applied not just to IB scenarios, but can also be extended to transient scenarios with
moving geometries. For such transient cases, the formulation (4.23) is transformed to a
parabolic one by adding the time derivative of the velocity ∂u

∂t
. The proposed approach

is validated in Chapter 7 and Chapter 8 with 2D and 3D benchmark calculations, where
consistency on the boundary plays a special role in order to compute the correct forces
acting on the obstacle.

ΩΩF

Figure 4.15.: Nitsche’s method for the stationary Navier-Stokes equations applied to the
2D-1 scenario in [80]: The obstacle is represented by the white circle. The
figure shows the pressure and the velocity fields. The underlying mesh is
an adaptive Cartesian, that is refined on the boundary.

Analog to Nitsche’s method for the Poisson equation, formulation (4.23) requires only
the implementation of volume (·, ·)Ω and the corresponding boundary integrals 〈·.·〉Γ. In
contrast to LMM and XFEM, no interface mesh or additional DoFs are required on Γ.
The only parameters that need to be determined are γ1 and γ2 and in our case will be
chosen experimentally. In [15], these values were set to γ1 = 3, γ2 = 0.1, and [41] used
slightly higher values γ1 = 10, γ2 = 1, whereas both imposed the Dirichlet BC on the
edge of the cells in 2D. In our computations on IBs (see Chapter 7 and Chapter 8), we
set these parameters with values between 102 and 104.

To highlight in advance the usability of Nitsche’s method (4.23) for the Navier-Stokes
equations, we consider a two-dimensional example in Fig. 4.15. The underlying mesh for
the scenario is an adaptive Cartesian mesh. Fig. 4.15 also illustrates the boundary of Ω,
which is a white circle. The boundary cells, which are cut by the circle are also shown
in Fig. 4.15. In Chapter 7 and Chapter 8, we describe the methods in our toolbox, which
are used in order to use Nitsche’s method in a general and toolbox manner.

64

5. Sundance PDE Toolbox
Introduction

The focus of Chapter 2 is the mathematical foundation of the FEM. From this general
mathematical approach, results a general method to discretize and solve a given PDE.
The introduced mathematical notions in that chapter are the key concepts to understand
the software architecture of a FEM-based PDE toolbox. In this chapter, we mainly
present the software architecture of the FEM-based PDE toolbox Sundance [61, 60, 62]
that is also found in other similar PDE toolboxes, which we extend with various new
capabilities in the next chapters in order to compute problems with IBs. We want to
emphasize here that the described structure in this chapter does not include the devel-
opments that are the results of this thesis. Our goal, in this chapter, is to introduce the
base line architecture that we had to our disposal. In the following chapters, we intro-
duce our developments incrementally that we added modularly to the Sundance PDE
toolbox. In Chapter 2, we outlined the spatial discretization, linear system assembly
and the imposition of Dirichlet BCs that are modular parts of the simulation process
and are present in most of the FEM-based PDE toolboxes. By presenting the simulation
process in this section, we focus on the modular components and the interfaces between
them. These interfaces we also described in [18]. The underlying software engineering
aspects and solutions are not discussed here, but we demonstrate the capabilities and the
high-level descriptive language of Sundance. In the last section, we present an overview
of other existing open-source PDE toolboxes, which are currently available. We compare
the actual capabilities1 of Sundance to other similar toolboxes.

5.1. Structure of the Sundance PDE Toolbox

The last section of Chapter 2 introduces the necessary mathematical concepts for a
general FEM approach to setup a linear system of equations based on the element basis
function, mesh discretization, and the weak formulation of the PDE. There are several
steps between the continuous weak problem formulation and the final discrete solution.
The collection of these numerical methods we call as the simulation pipeline. In the
following, we present the simulation pipeline in the Sundance toolbox that is composed

1Not including the contribution of this thesis

65

5. Sundance PDE Toolbox Introduction

of several stages. This pipeline starts with the PDE problem formulation that is the
essential starting point for the pipeline as illustrated in Fig. 5.1.

∫
Ω (∇u∇v − fv) dx = 0

Figure 5.1.: Illustration of the Sundance PDE toolbox’s simulation pipeline, representing
the sequence of methods that result in the solution and visualization of the
PDE problem. The interaction with the user takes place in the first stage
that is called ’Problem formulation’. ’Solving mechanism’ is more decou-
pled from user interaction and forms the major part of the computational
load. At the final stage of the pipeline, visualization and evaluation of the
numerical results takes place.

At the problem formulation stage, the user specifies the problem in the given frame
of the PDE toolbox. In this phase, it is crucial that Sundance’s formulation language
offers an efficient way to describe a given PDE problem and also specifies the problem
uniquely. The following two stages we name as the solving mechanism that uses the FEM
discretization to set up the matrix and an external solver to solve the system. The final
stage of the pipeline represents the visualization and the evaluation of the numerical
results. These stages are present not just in Sundance but in most commercial and
non-commercial FEM-based PDE toolboxes. Sundance offers a high-level descriptive
language to define a PDE problem in weak form and this was the main reason why
this toolbox was chosen as the software basis for our developments. The following
sections describe the stages of the simulation pipeline that mathematically were already
introduced in Chapter 2. Therefore, we do not insist here on the theoretical aspects of
each step, but on the modularity of the simulation pipeline.

5.1.1. Problem Formulation

The first step in the simulation of a given PDE with a FEM-based toolbox is to input the
problem specifications into the software (see Fig. 5.1). In the case of mesh based FEM,
this implies several information. First is to define Ω ⊂ Rd that represents the compu-
tational domain. The partitioning of Ω in discrete cells is done by the mesh generation

66

5.1. Structure of the Sundance PDE Toolbox

that results in the computational mesh of the PDE problem. This process represents a
crucial part of the solving process. Especially for computations on distributed memory
systems, the partitioning of the mesh is important, as we discussed in Chapter 4. Prior
to our developments, Sundance had an interface only to parallel simplex unstructured
meshes in 2D and 3D and the interface to this type of mesh is described next.

Mesh Interface

The mesh implicitly defines not just the computational domain Ω, but also the spatial
resolution. In the literature, the mesh resolution is also called h-refinement. In Chap-
ter 4, we mentioned that unstructured meshes represent the most general structure that
a computational mesh can have. Therefore, they allow for the arbitrary positions of
nodes, such that the cells can have any affine shape2 and are able to represent complex
boundaries as well. For this reason, the mesh interface of Sundance is a general one and
fits the structured mesh case as well.

Some of the aspects of the structured and unstructured meshes were already discussed
in Chapter 4. Here, however, we define the mesh components and their mathematical
properties in order to have a well defined interface. Since Sundance is using the mesh
only for geometrical position and connectivity information, we define first the geometrical
entities that form an unstructured mesh. These definitions are aligned with the interface
notation that is used within Sundance. The term mesh entity, denoted with E, represents
all geometrical entities forming a mesh. Each mesh entity has an associated dimension:
a node (or point) by definition has dimension zero, a line dimension one, a triangle or
rectangle dimension two and a tetrahedron or a brick dimension three. We further denote
dim (E) as the function that returns the dimension of the entity E. The dimensionality
of the problem is given by N = maxE (dim(E)), where N ∈ {2, 3} for our problems. Id
is the set of mesh entities with dimension d. Entities with the maximal dimension N are
called, analog to Chapter 4, as cells.

Definition 5.1.1 A facet F is a d-dimensional mesh entity that is part of a D-dimensional
entity E with d ≥ 0, d < D ≤ N . We denote the facet F of mesh entity E as F ⊂ E.

The intersection of two mesh entities Ei and Ej might contain facets with different
dimensions. In such cases, we consider all the possible common facets as the intersection.
We write the intersection operation as F = Ei ∩ Ej, where i 6= j, Ei, Ej ∈ Id. This
inclusion of one low-dimensional mesh entity into high-dimensional mesh entities can be
also defined in the opposite direction in the next definition.

Definition 5.1.2 A co-facet F is a D-dimensional entity that contains the d-dimensional
facet E with D ≥ 0, d < D ≤ N . The entity F is a co-facet of E, so we write E ⊂ F .

2Isoparametric case is not considered here.

67

5. Sundance PDE Toolbox Introduction

The number of co-facets of the (N − 1)-dimensional facets is an important information
to determine boundary facets, which are needed to impose the boundary conditions.
Each N − 1 dimensional facet, which has only one co-facet, is a boundary facet. We
name the co-facets of highest dimension N as maximal co-facets.

With the definitions of facets and the intersections of cells we can establish the definition
of hanging facets that was already mentioned in the context of Cartesian meshes.

Definition 5.1.3 A given facet F = Ei ∩ Ej, Ei, Ej ∈ Id, 0 ≤ d < N is hanging if and
only if F 6⊂ Ei or F 6⊂ Ej. Then, we call this facet as hanging facet.

One well-known example for hanging facet is the hanging node, which is a zero dimen-
sional facet. Besides the hanging nodes, in three-dimensional adaptive Cartesian meshes
one can face hanging lines and hanging quads. Obviously, the intersection of two neigh-
boring cells with different refinement levels in a tree-structured mesh (see in Chapter 4
Fig. 4.2 and Fig. 4.2) is a facet only of the cell with the higher refinement level and this
facet is a hanging facet.

Definition 5.1.4 A mesh is called 0-irregular (conforming) if it does not contain
hanging facets.

Having a 0-irregular (conform) mesh simplifies the numerical approach to ensure C0-
continuity between the elements that is required in most problems. Therefore, the orig-
inal mesh interface in Sundance does not threat the 1-irregular case. Using the defined
components above, we define the 0-irregular unstructured mesh interface, which is com-
posed of several functions. The distributed parallel aspects of the interface are discussed
later in this section.

1.) Mesh entity’s identification number(ID): This function implements the most im-
portant requirement for a Sundance mesh that each E entity belonging to E ∈ Id
must have its own unique positive ID. These numbers start from zero till the num-
ber of entities in Id. From this follows, that a given facet or cell E is identified by
its dimensionality d and by its ID.

2.) Node’s position: The function provides two- or three-dimensional coordinates of a
given node (defined by the node’s ID). The location in Rd of a specified entity can
be determined by the positions of its nodes. These node’s coordinates are also used
to create the cell’s Jacobian matrix, a functionality that is needed in the system
matrix assembly process as shown in Chapter 2.

3.) Mesh entity’s facets : This function provides all the facets of a specified dimension
for a given entity (specified by the entity ID and the dimension d). The number
of facets for a given dimension dE of co-facet and facet dimension dF is constant.
The functionality returns the facets, specified by their IDs.

68

5.1. Structure of the Sundance PDE Toolbox

4.) Mesh entity’s maximal co-facet and the facet’s index inside the co-facet : Returns
the number of maximal co-facets for a d-dimensional facet (d < N) and the index
of the facet in the list of facets of these maximal co-facets. The facet’s index within
a maximal co-facet is crucial information to determine the DoFs within a cell that
are located on the facet.

The functionalities above represent the serial unstructured mesh interface that Sundance
uses. These four functions provide enough information in the serial case to setup the
problem’s system matrix. The mesh is only used for geometry and connectivity infor-
mation of the different dimensional mesh entities.

In the following, we focus on the parallel aspects of the mesh interface. Sundance also
facilitates simulation on distributed memory systems. Efficient parallelism on such ma-
chines prohibits the central storage of the mesh, since the individual processes commu-
nicate with each other by sending direct messages instead of sharing a common memory.
In Chapter 4, we discussed the necessity of domain decomposition in order to distribute
the computational load among processors. In most cases, the computational load is
direct proportional to the number of cells.

Being at the first stage of the simulation pipeline in Fig. 5.1, and similar to other toolbox
approaches (e.g., [6]), the mesh is the component that drives this parallelism. Thus, it
is a crucial factor for the parallel efficiency. Since no central data storage is allowed,
Sundance relies solely on the mesh to distribute the cells among the processes in a
load-balanced manner.

In such parallel cases, the system matrix is generated distributed on the system, where
each process only has the assigned lines of the matrix. In order to assembly this matrix
without additional communication, Sundance requires the mesh to have a ghost cell
layer at the inter-process boundary, such that the assigned system matrix lines can be
computed independently. Ghost cells are cells at the process boundary, which are parts
of the locally stored mesh in a process, but they belong logically to another process. For
0-irregular (conform) meshes, the ghost cells are direct neighbors of cells that belong
to the local processor, i.e., a ghost cell always has a common facet with a local cell as
illustrated in Fig. 5.2. Regarding the ownership of the mesh entities, it is important to
mention, that the policy is, that the entities located on the process boundary belong to
the process with the smaller rank.

In order to incorporate this parallel functionality into the mesh interface, first, there is a
need to identify each mesh entity uniquely both in a global sense regarding the complete
mesh and in a local sense regarding the mesh partition of each process. For this reason,
all facets and cells have both its own IDs in the global mesh and a local index in the
local mesh structure. In Fig. 5.2, the global and local meshes are also illustrated, where
the global mesh is not stored centrally. In the following, we denote the ID of an entity
in the local mesh as local identification number (LID) and the ID of an entity in the
global mesh as global identification number (GID). The GIDs and the LIDs are positive

69

5. Sundance PDE Toolbox Introduction

P0
P1 P1

← Process boundary

Ghost

Cells

Figure 5.2.: Illustration of the ghost cells at the inter-process boundary. The thick blue
line represents the boundary between the two processes P0 and P1 (left). It
illustrates (right) the necessary ghost cell layer needed by process P1 and also
the local mesh of process P1. The entities located on the process boundary
belong to the process with the smaller rank.

integer numbers, and in serial computations it holds for all entities that LID=GID. For
these reasons, the mesh interface contains additional functions for the parallel case.

1.) mesh entity owner : Function that returns the processor number which the specified
entity (logically) belongs to. It is important to note that inside a cell not all the
facets need to have the same owner.

2.) local ID map to global ID : Function that maps the LID of an entity to the GID,
where the following relation holds GID = OFF (p, d) + LID.

3.) global ID map to local ID : Function that maps the GID of an entity to the LID,
where the same relation holds GID = OFF (p, d) + LID.

In the relations aboveOFF (p, d) represents the offset that depends only on the dimension
d of the mesh entity and the local number (rank) p of the processor. These three interface
functions assume that other components of Sundance are calling these functions with a
GID that exists in the local mesh in parallel case.

The functions defined for the sequential case use the LID. The GIDs are used only in the
last two functions. The seven functions defined in this section form the mesh interface
within the Sundance toolbox and this interface is used by all the other components to
interact with the mesh.

In the following, we highlight the problem descriptive language that creates the mesh.
Sundance’s descriptive language is C++ and the toolbox is implemented also in the same

70

5.1. Structure of the Sundance PDE Toolbox

language. The user specifies the mesh by defining a C++ object as shown in Code 1.
Unstructured meshes are usually created by external mesher softwares and are saved into

Code 1 Creation of two meshes, one from external file and the second internally on the
unit square.

MeshType meshType = new BasicSimplicialMeshType();

MeshSource meshReader =

new TriangleMeshReader("meshInputFile.1", meshType);

MeshSource mesher =

new PartitionedRectangleMesher(0,1.0,20,1,0,1.0,30,1,meshType);

Mesh meshExternal = meshReader.getMesh();

Mesh meshInternal = mesher.getMesh();

files. In the parallel case, the mesher also partitions the mesh into a specified number
of processes. Sundance can also access such parallel meshes, which were generated
externally and saved partitioned into a standard format. The example of Code 1 shows
how a simplex mesh can be created inside Sundance, by using the high-level C++ objects.
In the second line, an unstructured simplex mesh (BasicSimplicialMesh) is created
from an external file. In the following line, a similar mesh is created but in a structured
way.3 In serial and parallel cases, the Sundance code is the same and parallelism does
not require any additional interaction from the user that shows the true high-end toolbox
potentials of Sundance. An unstructured mesh is usually created by an external mesher
tool (e.g., CUBIT [65], ShowMe [83]) and then stored in various serial and parallel file
format (e.g., exodusII [32], NetCDF [94]).

Weak Form and Problem Definition

The next part of the problem definition is the formulation of the weak form for a given
PDE. First component of these weak forms is the domain, where a specific weak form is
defined on. As an example, we consider the weak form of∫

Ω

(∇uh∇vh − fvh) dx = 0, ∀vh ∈ VT,h (5.1)

where VU,h, VT,h ⊂ H1 (Ω), uh ∈ VU,h, and f ∈ R being a constant. The domain Ω ⊂ Rd

is defined by the cells of the mesh. Therefore, the first step is to define the collection of
cells (or facets), where the integral is defined on. This first component, the collection of
mesh entities, is called cell-filter. Technically, this implies that all mesh entities for a
given dimension are selected in the first instance, then these entities are passed through
a filter and only the entities that fulfill the filter condition are finally selected for the

3In this case, the code creates a 20× 30 mesh on the unit square.

71

5. Sundance PDE Toolbox Introduction

iteration. We denote the set of these selected cells for our example as IΩ. Consequently
the integral is given by a sum of integrals over cells or facets Ei ∈ IΩ,∑

Ei∈IΩ

∫
Ei

(∇uh∇vh − fvh) dx = 0. (5.2)

The condition for the filtering may vary from case to case. In the classical case, Ω is
the whole computational domain and is covered by the cells of the created mesh. But
for the lower-dimensional entities only those facets are selected, which a specified BC is
imposed on. Code 2 shows the declaration of different cell-filters that are later used in
the weak form declarations.

Code 2 Declaration of two cell filters. The cell filter Omega includes all the cells,
whereas Gamma includes only the boundary facets that satisfy the condition specified
in GammaTest class.

CellFilter Omega = new MaximalCellFilter();

CellFilter Boundary = new BoundaryCellFilter();

CellFilter Gamma = Boundary.subset(new GammaTest());

The next step is to specify the discrete test VT,h and unknown VU,h spaces. In Chapter 2,
we introduced the Lagrange basis functions, which we mainly used in our applications.
In the same chapter, the Ritz-Galerkin approach is also introduced, which implies VT,h =
VU,h. For our concrete example (5.1), we use first order Lagrangian basis functions that
are defined in Code 3. The mesh specifies the h-resolution of our discrete space, which
combined with the chosen basis function form the discrete spaces VT,h and VU,h.

In Equation (5.1), we also find the partial spatial derivatives of the test and unknown
functions. This implies the declaration of spatial derivation operators that, during the
weak form declaration, applied to the basis functions result in the spatial derivatives
of the respective function. These type of spatial derivative operators are delivered by
the Derivative(i) class, where the index i specifies the dimension index in space. The
basis functions inside Sundance are defined as polynomials, but their spatial derivatives
are computed on the fly. This is enabled by an automated differentiation (AD) method
implemented in Sundance.

The component of the weak form that is not visible in the mathematical form is the
quadrature method. Even though the quadrature is needed for each cell integration
only when the coefficients in the front of the integrals are space-variant.4 For constant
coefficients, the terms need to be integrated only on the reference cell (see Chapter 2) and
for these cases, the required order can be computed dynamically. In most applications,
the basis functions have the form of a polynomial that can be integrated up to numerical
precision with a quadrature of order p, while the basis function has the same order. On
the other side for non-constant coefficients, the specified quadrature method is used.

4In our case it is just constant 1.0 and f = 3.0.

72

5.1. Structure of the Sundance PDE Toolbox

Code 3 Weak form declaration of Equation (5.1). The first four lines declare the un-
known and the test basis functions, which is followed by the gradient operator definition.
After declaring the quadrature method, the weak form is condensated in one line. In
the final line, we declare the Dirichlet BC

∮
Γ

(uh − 1.0) vhdc in a weak form.

Expr unknBase = new Lagrange(1);

Expr testBase = new Lagrange(1);

Expr u = new UnknownFunction(unknBase , "u");

Expr v = new TestFunction(testBase , "v");

Expr dx = new Derivative(0);

Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

QuadratureFamily quad = new GaussianQuadrature(2);

Expr weakForm = Integral(Omega , (grad*u)*(grad*v) - f*v, quad);

Expr bc = EssentialBC(Gamma , v*(u-1.0), quad);

The concrete use of the enumerated objects is illustrated in Code 3, where the Sundance’s
C++ objects are used for the weak form in Equation (5.1). Code 3 starts with the
declaration of basis functions, which are the same for both test and unknown spaces.
This is followed by the setup of the gradient operator that is a list of spatial derivation
operators. The second last line holds the actual weak form in C++. One can easily
recognize the similarity between Equation (5.1) and the corresponding C++ line. This
visible correspondence between the mathematical formulation and the C++ code clearly
demonstrates the high-level problem description capabilities of Sundance.

The last missing item from the well posed problem for our example is the Dirichlet BC,∫
Γ

(uh − 1.0) vh dx = 0, ∀vh ∈ VT,h, on Γ (5.3)

that is formulated in a weak form. The imposition of boundary conditions formulated
in such a way, was already discussed in Chapter 2, and their formulation is similar to
a general weak form. However, this weak formulation has to be treated in a special
way (row replacement with the results, see Chapter 2), therefore, in Sundance it is
defined with the EssentialBC class. The last line of Code 3 shows the declaration of
the Dirichlet BC on the selected boundary segment Γ.

At this point, we initiated the mesh and declared the weak form of the problem includ-
ing the Dirichlet BC. The next step is to collect all these definitions into one object
that will contain the problem description. Since the presented problem (5.1) is a linear
one, we use the LinearProblem class as shown in Code 4. The first line defines such
a LinearProblem object, where the input parameters are various objects defined pre-
viously. In second line, we illustrate how the solving mechanism is activated, with the
created solver object. The result of this call is an expression that represents the final

73

5. Sundance PDE Toolbox Introduction

solution.5

Code 4 Linear problem definition and solving.

LinearProblem prob(mesh, weakForm , bc, v , u , vecType);

Expr up = prob.solve(solver);

Sundance also has the capability to declare and to deal with nonlinear PDEs in the same
general manner. In contrast to the linear example (5.1), we consider a nonlinear PDE
(stationary Burgers equation)∫

Ω

(∇uh∇vh − (uh · ∇)uvvh) dx = 0, uh ∈ VU,h∀vh ∈ VT,h, (5.4)

where the unknown and test functions are scalar fields in 1D and the grad operator in
Sundance is also defined accordingly. Regardless of the nonlinear term in the equation,
the weak form (5.4) is directly transformed into Sundance code, as shown in the first
line of Code 5. The connection between the mathematical formulation and the Sundance

Code 5 Nonlinear problem definition and solving.

Expr weakForm=Integral(Omega ,(grad*u)*(grad*v)+(u*grad)*u*v,quad);

DiscreteSpace UnknownSpace(mesh, List(unknBase), vecType);

Expr u0 = new DiscreteFunction(UnknownSpace, 0.0, "up");

NonlinearProblem prob(mesh, weakForm , bc, v , u, u0, vecType);

StatusType status = prob.solve(solver);

code is clearly visible in this case as well. There are several differences compared to the
linear case. One is the declaration of this nonlinear problem with the NonlinearProblem
class. The solving of nonlinear problems requires the input of an initial (guess) value.
This value is created in the second and third lines of Code 5 with the u0 object, which
represents a discrete function with a global value of zero. The DiscreteSpace class
enables the declaration of a discrete space formed by a collection of arbitrary finite
elements. Sundance enables the use of such abstract but general objects that help
the user to define the problem in a general and efficient way. The implementation of
time stepping methods also require the use of the DiscreteSpace and DiscreteFunction
classes in order to store the solution from the earlier time steps.

In the last line of Code 5, the solution is computed, with the already created nonlinear
solver object solver. The computed solution is placed in the u0 object, which before
solving contained the initial solution. Aspects regarding the nonlinear solving mechanism
are discussed in the following section.

5In case of convergence.

74

5.1. Structure of the Sundance PDE Toolbox

5.1.2. Matrix Assembly

In the next stage of the simulation pipeline, according to Fig. 5.1 and to the general
approach presented in Chapter 2, the system matrix is set up. Although this approach
is general and creates a modular process, where the solvers are easily replaceable, but the
matrix entries’ computation and storage poses a memory overhead. A so-called matrix-
free approach would eliminate this overhead, but on the other side would significantly
restrict the solver’s modularity. This approach is not considered in this thesis and we
only focus on the modular elements of the assembly process.

As first, we only consider linear problems, where the solution is directly given by the
system matrix and the corresponding right-hand side vector. The nonlinear case implies
in addition the computation of the Jacobian matrix and several linear solver steps, which
are discussed at the end of this subsection.

Creating the matrix in the literature is named as the matrix assembly process, since the
system matrix is assembled out of the facets’ and cells’ matrices. In Chapter 2, this
assembly process was highlighted by the equations (2.12) and (2.13), where one entry
Ai,j of a matrix is computed by the sum over the cells that contain the i-th and j-th
DoFs. In order to highlight the practical aspects of this assembly process, we consider
the example in Fig. 5.3.

The simplex 2D mesh that is considered in Fig. 5.3, consists of 7 triangles and us-
ing a bilinear unknown and test basis functions, the discretized problem of our PDE-
example (5.1) results in Ax = b, with A as a square 7×7 matrix and the corresponding
right-hand side vector b. This linear system of equations is assembled out of the 7 cell
integrals in an incremental way. In Fig. 5.3, we illustrate how the result of the weak
form integral on cell with ID 7 (Cell 7) contributes to the system matrix A and vector
b.

In the first stage, the local stiffness matrix of Cell 7 is computed. In our case, this
does not involve the actual numerical quadrature on this cell. Since no space variant
coefficients are present, one can compute only once the integral and then for each cell
apply the necessary Jacobian matrix transformation6, as shown by Equation (2.14) in
Chapter 2. This simplification is used also within the assembly process of Sundance,
where Sundance calls the BLAS routines not just for one cell but for a group of cells.
Therefore, the assembly process in Sundance is using the processor architecture efficiently
by calling the efficient BLAS routines for matrix-vector and matrix-matrix operations.

We assume that the resulting stiffness matrix and vector for the 7-th cell are the ones
shown in Fig. 5.3. In the next step, we need to map the local DoFs of Cell 7 to the global
DoFs, such that the contribution of this cell can be added accordingly. The global DoFs
are given by the DoF map that will be presented in the next subsection.

6This case is a 2× 2 matrix.

75

5. Sundance PDE Toolbox Introduction

Once the global DoFs are available, as a last step for Cell 7, the fill-in process takes
place. This assumes that the system matrix A and vector b were initiated with zero
entries and during the assembly process, the contributions of the integrated cells and
elements will be added to A and b. This fill-in process is illustrated on the right side
of Fig. 5.3, where only the marked entries in the vector b and matrix A will be affected.
At the end of the assembly process, the resulting matrix is then A =

∑7
i=1 Ai and the

vector b =
∑7

i=1 bi.

Figure 5.3.: Illustrates the matrix assembly process of a simple mesh (top left) with
7 cells. We use nodal basis and with the 7 (blue marked) cells and the
problem results in 8 unknowns (global DoFs). The 7-th cell is picked out
and two different weak forms are computed: the stiffness matrix ai,j =∫
E7
∇ui,h∇vj,hdx and the right-hand side bi =

∫
E7
fvi,hdx, with f ∈ R.

For the case of simplicity, we assume the results of these integrals are the
numbers in the 3×3 matrix A7 and in the 3×1 vector b7. The red numbers
represent the local DoFs of the cell that do not correspond to the global
DoFs. Mapping the local DoFs to the global DoFs is done by the DoF map.
In the next stage, the fill-in process takes place, where with the use of the
DoF map A7 and b7 is added to the global system matrix and vector.

Sundance offers not just integrals on cells, but integrals on lower dimensional elements.
Code 3, from the previous section, contains such a declaration that is used for the Dirich-
let BCs. Besides this type of BCs, Neumann BCs also require boundary integral imple-
mentations. Therefore, we illustrate in the following the assembly of lower-dimensional
integrals. Fig. 5.4 represents the integration and assembly of one edge integral. We use
the same mesh (left top) as in Fig. 5.3, but the blue numbering this time represents the

76

5.1. Structure of the Sundance PDE Toolbox

IDs of the edges. As one of the boundary edges, we pick the edge with ID 4 (Edge 4).
The terms that are computed on Edge 4 represent the Dirichlet BC of the initial weak
form example (5.3), with u0 = 1.0. Further, it is assumed that Edge 4 is part of Γ, which
the BC is imposed on. Similar to the 2D case, these integrals need to be computed only
on the reference 1D cell and then transformed to a given edge.7 The resulting element
stiffness matrix and vector are showed in Fig. 5.4 and similar to the cell integration case,
the element’s results need to be mapped to the global system. This job is assigned to the
DoF map, to deliver the global DoFs of a specified lower-dimensional element. With the
global DoFs, the results can be further processed. In case of Neumann BC, the results
go through the fill-in process and are added to the global systems, whereas the results
of a Dirichlet BC have to be treated differently, as it will be shown in the second next
subsection.

Figure 5.4.: Illustration of a lower dimensional element integration. We use the same
mesh and nodal basis functions as in Fig. 5.3, but here the blue numbers
represent the IDs of the edges (see mesh interface). As an example, we pick
the 4-th edge and we compute a right-hand side

∫
E4
u0vhdx, with u0 ∈ R,

and the mass matrix
∫
E4
−uhvhdx. Similar to Fig. 5.3, the fill-in process is

governed by the DoF map that provides the global DoFs corresponding to
the local DoFs of edge with ID 4.

Degree of Freedom Map

Previous examples in Fig. 5.3 and Fig. 5.4 already highlighted in advance the necessity
of mapping the element’s local DoFs to the global DoFs. Similar to the mesh entities,

7The transformation in this case is simply a scalar multiplication.

77

5. Sundance PDE Toolbox Introduction

the global DoFs have to be identified uniquely by a positive number that represents the
index in the unknown vector. In contrast to the mesh’s geometric elements, the DoFs
do not have any dimension associated and are numbered from 1 to R.

The global numbering of the DoFs, as illustrated in Fig. 5.3, is the task of the DoF
map that is also an internal Sundance object. Besides the number of mesh elements,
there are key information, which determine the number of DoFs. The basis function
type and order determine the number of local DoFs on an element and the number of
unknown and test basis function can also vary in applications. Our previous example of
the Poisson equation (5.1) has only one scalar unknown and one associated test function.
However, in the case of Stokes and Navier-Stokes equations the number of unknown fields
is d+ 1, where d is the dimensionality of the problem.8 One other relevant factor is the
omnipresence9 of the unknowns. In some applications not all the unknowns are defined
on whole Ω, but just on a subset of it Π ⊂ Ω (e.g., Lagrange Multiplier approach in
Chapter 4).

For these reasons by the global DoF numbering, the DoF map needs main parts of the
problems formulation that consists of the mesh and of all the unknown and test basis
function types with their orders and their domains (CellFilters) where they are defined
on. With this information, the DoF map is able to assign to each DoFs a unique global
number. In contrast to the mesh interface, presented earlier, even on distributed systems
the DoFs are numbered globally, and there is no need to number the DoFs only on the
local mesh. The local DoFs, as they were introduced in Chapter 2, represent the DoF
numbers on one reference element.

Once the DoFs were numbered globally, the assembly process can be started, which
process was illustrated in Fig. 5.4 and in Fig. 5.3, where the DoF map is required
mainly at the fill-in step. The mapping from the local DoFs of one cell or facet to the
global DoFs is done by the DoF map object and this functionality of the DoF map is
illustrated in Fig. 5.5. During the assembly process, the mesh entities are identified by
their dimensionality and their local IDs and these information are the input for the DoF
map. The returned mapping contains the global DoFs associated to the requested mesh
facet or cell. In the case of multiple unknown and test functions, all the DoFs of the
specified mesh entity are returned. These DoFs specify the column and row index of the
fill-in, determining which entries will be affected.

The target of the fill-in might be either the right-hand side vector or the system matrix,
depending on the integration term. Terms of the form

∫
Ω
f (Dαvh) dx with f ∈ L (Ω) that

contain only test functions and no unknown functions are called one-form integrals.10

One-form terms are always assembled to the right-hand side vector. Terms with the
general form

∫
g (Dαuh)

(
Dβvh

)
dx, g ∈ L2 (Ω) are called two-form integrals, because

8For these equations, in order to fulfill the inf-sup condition (see Chapter 3) the velocities must be
discretized with different finite elements than the pressure field.

9omnipresent = defined everywhere
10Dα represents the differential operator from Chapter 2.

78

5.1. Structure of the Sundance PDE Toolbox

they contain both a form of the test and unknown functions. Results of these terms are
assembled in the system matrix.

Figure 5.5.: Illustration of the DoF Map functionality. The simplex mesh (right) illus-
trates the IDs of the triangles, edges and nodes. The DoF map maps the
local DoFs of a given mesh entity to the global DoFs (right). The mesh
entities need to be specified by their mesh IDs and dimensions. In case of
multiple unknown and test functions, all the associated global DoFs will be
returned. The global DoFs coincide in this case with the edges’ IDs.

The assembly of the one-terms requires only the DoFs of the test functions, whereas
the two-forms require the unknown and test function’s DoFs. However, in a given term
these functions might be different, such that the column index does not coincide with
the row index. Therefore, the convention is that the row indices are the unknown DoFs
and the column indices are the test function’s DoFs. Such terms are also called mixed
elements, which are often used in the flow simulation.

We consider the example presented in Fig. 5.6, where in 1D a mesh given by a single
element is shown. The integral over the element results in a rectangular 2 × 3 matrix,
where the rows represent the local DoFs of the unknown function and the columns are
the local DoFs of the test function. The DoF map then maps these local DoFs to the
corresponding global DoFs, such that the row and column indices of the fill-in result as
illustrated in Fig. 5.6.

By the fill-in process, the column indices differ from the row indices, not just when using
different type or order basis, but also when one uses multiple scalar fields (e.g., Q1Q1

Elements). These cases are treated also according to the illustration in Fig. 5.6.

These functionalities of the DoF map are used not just during the assembly process, but
also when the resulting unknown vector x needs to be mapped back to the mesh, for
visualization or evaluation purposes.

79

5. Sundance PDE Toolbox Introduction

Figure 5.6.: This illustration shows a simple example of mixed elements in 1D (left). We
consider only one mesh element in 1D with one linear (black) and quadratic
(blue) basis. The global DoFs are numbered from 1 to 5 as shown on the
left, DoFs 1 and 2 are assigned to the linear basis, whereas DoFs 3, 4, and
5 represent the quadratic basis. The assembly is illustrated for the mass
matrix of

∫
E
u2,hv1,hdx, where v1,h is the linear test function and u2,h is the

quadratic unknown function. The resulting matrix is assumed to be A. The
Fill-in into the 5× 5 system involves the DoF map.

Integral with Cell Filters and BC

In the problem formulation section, the cell filters were already mentioned, where they
define the computational domain Ω. They also define the domains, where the test and
unknown functions are defined and this information is further important to the DoF
map. Cell filters also provide the stream of elements for the assembly process of the
system matrix, where each element is assembled according to the presented approach.
The cell filters are a general mechanism not just to define the problem, but also to use
different quadrature methods for different categories of elements.

In the following, we enlist shortly how Dirichlet BC is imposed inside Sundance, using
the cell filters and the EssentialBC construct. Sundance uses the method described
by Equation (2.19) in Chapter 2. This approach consist of marking first all unknowns,
which are impacted by the cell filters of EssentialBC. For elements within the cell
filter of EssentialBC, the global DoFs are collected, and these DoFs have to be treated
separately. The corresponding rows of these DoFs in the matrix and in the right-hand
side vector are set to zero. In the last step of imposing the Dirichlet BC, the element
wise results of the weak form BC are filled-in into these rows of the system matrix and
right-hand side vector.

By using this approach, the DoFs that are specified by a Dirichlet BC are not factored
out to the right-hand side and are entries of the unknown vector. This approach involves
the solving of a larger system, compared to the right-hand side factored approach that,
especially in 3D, might decrease the size of the system significantly. On the other side,
this approach of dealing with the BC has some advantages for optimization problems,
in cases when the control variables are on these boundary and these DoFs remain part
of the unknown vector.

80

5.1. Structure of the Sundance PDE Toolbox

Parallel Matrix Assembly

In the distributed memory case, once the DoF map is set up and each local DoF has a
global DoF, the next step is to assemble the matrix. We want to point out here that
in parallel cases, where the mesh is also distributed among the processors, the matrix
assembly can be done in an unsynchronized parallel way. Thanks to the ghost cells,
which are parts of the local mesh, all the row entries of a global DoF, owned by the
local processor, can be computed locally without any additional communication with
neighbor processors. This feature is crucial in order to have a good parallel scaling of
the matrix assembly process on distributed memory systems.

Nonlinear case

In the problem formulation section, we presented the setup of a nonlinear problem and
Sundance enables the declarations and solving of such nonlinear problems in the same
abstract way such as linear problems. The only distinction in the problem declaration
(see Code 5) is the definition of an initial value and a nonlinear solver of the problem.

However, in the solving mechanism, a nonlinear system needs to be solved. This solving
mechanism for nonlinear problems within Sundance is described in a more detailed way
in [62]. In the following, we highlight the key ideas and methods to deal with such
problems.

Since fix-point methods are often not the method of choice, the first order derivatives of
the problem functional are needed. To illustrate this, we consider the functional F (u)
that represents the nonlinear problem F (u) = 0. The input is the unknown function u
defined on Ω, u =

∑N
i=1 xiψi. Using the gradient information at the actual solution uk

in a Newton type method speeds up the convergence significantly, and in many cases is
even required to achieve convergence at all. With the definitions above the derivative
can be stated as

∂F

∂xi
=

∫
∂F

∂u

∂u

∂xi
=

∫
∂F

∂u
ψi. (5.5)

The only term in (5.5) that has to be treated symbolically is ∂F
∂u

. In Sundance, such terms
are considered as the Fréchet derivative [62] of the functional F . This symbolic object
does not contain any information about the discretization of the problem. Therefore, it
can be computed by automated differentiation (AD), as it is described in [62].

During a nonlinear solving process the derivatives need to be evaluated, in each Newton
step. Hence, the numerical evaluation of the symbolic objects such as ∂F

∂u
need to be

done in an efficient way. Sundance uses a symbolic graph representation that is later
transformed to a simpler and efficient form. During computations, this graph remains
static allowing fast evaluation of these symbolic objects.

81

5. Sundance PDE Toolbox Introduction

This mechanism enables also the computation of spatial derivatives of the basis function
that is commonly used in stiffness matrix’s assembly. For more details on this symbolic
representation and AD we refer to [62].

5.1.3. Solvers

In the linear case, once the matrix is assembled, the resulting linear system needs to
be solved, whereas in the nonlinear case a nonlinear solver is required. Since Sundance
is part of the numerical library Trilinos [43], it can access to all the linear and nonlin-
ear Trilinos solvers, including various preconditioners. These solver packages are e.g.,
AztecOO, Belos and Amesos. In addition, Sundance can also access through interfaces
third party solvers such as the sparse system solver SupreLUDist [57]. Using precondi-
tioners with problem specific setup could further reduce the computation time. For this
reason, Sundance has also access to Trilinos preconditioners e.g., IFPACK [77] and the
algebraic multigrid preconditioner ML [34].

These solvers are selected via an XML configuration file that also contains the nec-
essary parameter configurations for the solver (e.g., maximum number of iterations,
tolerance). We illustrate this in Code 6, where a BiCGStab Belos solver is initiated from
the bicgstab.xml file.

Code 6 Declaration of a linear solver. The prob variable was declared previously as a
Linearproblem object in Code 4.

ParameterXMLFileReader reader("bicgstab.xml");

ParameterList solverParams = reader.getParameters();

LinearSolver<double> solver

= LinearSolverBuilder::createSolver(solverParams);

Expr up = prob.solve(solver);

In the nonlinear case, Sundance can access the NOX & LOCA nonlinear solver package
within Trilinos. The declaration of these solvers is similar to the linear ones and this
is shown in Code 7. Solving a nonlinear problem is not always successful and it might
depend on the fine tuning of the Newton solver. In case of failure, when |F (u)| < ε
could not be achieved, the status flag is set accordingly.

Simulations on distributed memory systems requires in Sundance solver libraries, which
are also capable of solving (non)linear systems. The iterative solvers within Trilinos are
capable of efficient distributed memory solving, whereas the direct solvers such as the
ones is Amesos, do not fit well to parallel computations. The nonlinear solver NOX is
also capable of efficient distributed memory simulations, if the chosen underlying linear
solver for the linear step is an efficient one.

82

5.1. Structure of the Sundance PDE Toolbox

Code 7 Declaration of a nonlinear solver. The prob object was declared as a
Nonlinearproblem object declared in Code 5.

ParameterXMLFileReader reader("nox-amesos.xml");

ParameterList noxParams = reader.getParameters();

NOXSolver solver(noxParams);

StatusType status = prob.solve(solver);

5.1.4. Visualization

Once the solution is computed in the last stage of the simulation pipeline the results
might be further evaluated (e.g., computing errors) or visualized. Sundance does not
include a visualization part, instead writes out the results in several standard formats,
which can be further visualized by an external tool. The available standard formats are
VTK, ExodusII, and Matlab.

Code 8 shows the exporting of a flow field into a VTK file. This example code exports
all scalar fields and the velocity vector field. The output files can then be visualized by
an external visualization software, such as Paraview [71].

Code 8 VTK visualization of a Stokes flow field. The solution is contained in the soln
expression.

Expr soln = prob.solve(solver);

FieldWriter w = new VTKWriter("Stokes2D");

w.addMesh(mesh);

Expr expr_vector(List(soln[0],soln[1]));

w.addField("ux", new ExprFieldWrapper(soln[0]));

w.addField("uy", new ExprFieldWrapper(soln[1]));

w.addField("vel", new ExprFieldWrapper(expr_vector));

w.addField("p", new ExprFieldWrapper(soln[2]));

w.write();

In case of simulation on distributed memory systems, the visualizations (e.g., exporting
to VTK files) needs also to be done in parallel. In this case, each process has access only
to the local mesh and the results on it, and only the local results are plotted. Among
others, the VTK format enables parallel plotting that is exploited within Sundance, such
that each process plots its local results in separate files. External visualization tools such
as Paraview [71] are capable of visualizing these local files as a global result on the global
mesh.

83

5. Sundance PDE Toolbox Introduction

5.2. Overview of Open-source FEM-based PDE
Toolboxes

Until this point, the high-level descriptive language with C++ Sundance objects were
introduced and we also highlighted the internal structure and assembly mechanism of
the toolbox. Since Sundance is not the only existing FEM-based PDE toolbox, in the
following, we give an overview of the existing FEM-based open-source PDE toolboxes and
we also compare their features to Sundance. Due to the generality of the FEM approach
and the natural need for code reuse, there are other research projects to establish a
framework or toolbox for general FEM-based PDE solving.

In the following, it will be shown that Sundance has unique features compared to most
PDE toolboxes. These features are, among others, the high-level problem description
language in C++ and the capability to simulate problems efficiently in parallel on dis-
tributed systems.

FEniCS

The FEniCS11 project was originally started as an implementation to evaluate weak
forms [53] for a FEM approach, based on code generation. Later became a collection of
several numerical packages [59] that enable the automated solution of PDEs by FEM.
These included packages are DOLFIN, FIAT, FErari, UFL, and Viper that mainly
enable the general problem formulation. The weak form is formulated in FEniCS with
UFL description that is similar to the Sundance descriptive language. It uses high-level
object based description in Python that can be used either in Python environment to
compute and visualize the solution directly, or is compiled into a C++ code that can be
used as simulation code. In the second case, the user has also to write a C++ code that
includes and uses the generated C++ module. FEniCS also has AD capabilities, which
enable the automated computation of derivatives that is necessary for nonlinear problem
solving. On the mesh side, it has internal meshes and also interfaces to external mesh
creation and partitioning libraries such as SCOTCH [73] and ParMETIS12. For the linear
solvers, similar to Sundance, it accesses the external libraries PETSc [79], Trilinos [43],
uBLAS, and MTL4. These features enable FEniCS the OpenMP and MPI simulation of
a given problem. It is more important that in the distributed memory case no processor
is required to hold the global mesh. Overall, we can summarize that FEniCS also has
a high-level descriptive language that also enables the direct definition and solution of
nonlinear problems. In contrast to Sundance, this descriptive language is based on code
generation. For more details on this toolbox we refer to [59, 33].

11http://fenicsproject.org/
12http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

84

5.2. Overview of Open-source FEM-based PDE Toolboxes

deal.II

deal.II (Differential Equations Analysis Library)13 was introduced more than twelve
years ago in [8]. In contrast to the previously presented toolbox, deal.II has a lower
level descriptive language, where this language is C++ and more user specification is
required to define a PDE problem in the weak form. To illustrate what this detailed
description implies, we consider the assembly loop of the system matrix in Code 9. In
Sundance and FEniCS, this assembly loop is hidden from the user, whereas in deal.II this
loop has to be written by the user. This rule also holds the weak form declaration that
in deal.II needs to be declared explicitly by directly using the basis function declaration.
On the other hand, this lower level description facilitates a direct access to the solving
mechanism. For instance, in deal.II, the direct manipulation of the matrix entries and
the sparsity pattern can be made rather easily. A similar operation in Sundance would
require the access of the lower level Sundance or even Trilinos objects. deal.II is famous
to support hp-refinement [9, 7] that requires sophisticated DoF handling. The feature to
facilitate both h- and p- refinement is not common among the PDE toolboxes. Besides
this, it also supports Discontinuous Galerkin (DG) approaches as well. From version
7.x, deal.II has capabilities for massively parallel simulations, as demonstrated in [6].
With the underlying p4est mesh [27] the authors of [6] compute problems with up to
thousands of cores and with hundred million unknowns. Due to the absence of AD
capabilities, deal.II is able to solve directly only linear problems. Therefore, nonlinear
problems have to be linearized by the user. Similar to other FEM-based PDE toolboxes,
it has interfaces to several solver libraries (e.g., PETSc, Trilinos), and relies on them for
efficient solving.

libMesh

The libMesh14 toolbox is largely developed by the CFDLab [54] at the University of
Texas.15 Regarding the level of the problem formulation language, which is in this case
also C++, libMesh has a similar structure than deal.II. It also requires from the user to
explicitly define the assembly loop as illustrated in Code 9. This lower level access to the
toolbox objects facilitates special intervention for special cases that might be required
for some applications. libMesh only allows for the direct solving of linear problems, and
nonlinear problems need to be linearized by the user. In cases of distributed memory
systems, libMesh is more restrictive than deal.II. It stores the global mesh on each
processor and further it decomposes with external packages (e.g., ParMETIS16). The
storage of the global mesh on each node poses a significant bottleneck. After this stage,
the assembly and solving is done in parallel with external solver package (e.g., Trilinos,

13http://www.dealii.org/
14http://libmesh.sourceforge.net/index.php
15http://cfdlab.ae.utexas.edu
16http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

85

5. Sundance PDE Toolbox Introduction

PETSc).

Code 9 libMesh example of the Poisson equation’s (
∫

Ω
(∇u∇v + fxy v) dx = 0) assembly

loop with the main loop over the elements. The first triple loop represents the quadrature
of the matrix entries, whereas the second double loop assembles the right-hand side. A
similar code structure is used in deal.II as well.
const std::vector<std::vector<Real> >& phi=fe->get_phi();

const std::vector<std::vector<RealGradient> >& dphi=fe->get_dphi();

for (; el != end_el; ++el) { ...

for (unsigned int qp=0; qp<qrule.n_points(); qp++)

for (unsigned int i=0; i<phi.size(); i++)

for (unsigned int j=0; j<phi.size(); j++)

Ke(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]);

for (unsigned int qp=0; qp<qrule.n_points(); qp++) { ...

for (unsigned int i=0; i<phi.size(); i++)

Fe(i) += JxW[qp]*fxy*phi[i][qp];

...

DUNE

DUNE (Distributed and Unified Numerics Environment)17, represents a general frame-
work for PDE problem solving that is not restricted to the FEM. It enables also the
discretization and solution with finite volumes (FV) or with finite differences (FD) tech-
nique. DUNE has a mesh interface that facilitates distributed memory computations
and also contains several mesh implementations (AlbertaGrid, ALUGrid, Geometry-
Grid, SGrid, and YaspGrid). The classical FEM approach enables usually only the leaf
view of the mesh, but DUNE offers also a tree view of a given hierarchical mesh [12, 11].
This enables the implementation of various multigrid methods, which exploit the hierar-
chical structure of the mesh. DUNE offers two additional modules (DUNE-FEM18 [29]
and DUNE-PDELab19), which contain features for a FEM, FV and FD based solving
approach. Since DUNE and DUNE-FEM offers a wide variety of features, the descrip-
tive C++ language is even lower level than it was the case for deal.II and libMesh. For
distributed memory systems DUNE offers not just parallel mesh implementations but
also parallel matrix assembly and solving methods.

17http://www.dune-project.org
18http://dune.mathematik.uni-freiburg.de/
19http://www.dune-project.org/pdelab/index.html

86

6. Parallel Adaptive Cartesian Meshes
in Sundance

In Chapter 5, we introduced the base line software architecture that was the status of
Sundance before the methods and features described in this thesis have been imple-
mented. Starting with this chapter, we introduce our developments to Sundance that
enable a general IB method implementation solely based on a weak formulation, and
also enable efficient simulation on distributed memory systems. This chapter presents
the extensions of the Sundance PDE toolbox by rectangular elements and by an adap-
tive parallel Cartesian mesh in 2D and 3D, which is the first step towards IB methods.
While adaptively refining a Cartesian mesh, hanging facets naturally arise, and these
facets and their DoFs require a special treatment in order to ensure C0-continuity at
the cells’ boundary. To tackle this issue in a user-transparent- and toolbox-manner,
we developed the pre-fill transformation method that we introduced in [18]. This
method required the extension of the mesh interface and implies an additional modu-
lar stage in the matrix assembly process [18]. We further present the current parallel
and adaptive Cartesian mesh implementation and compare it to other alternative mesh
implementations.

6.1. Quad and Brick Elements in Sundance

Sundance originally contained only simplex meshes, and the first step towards adaptive
Cartesian mesh integration is the extension of the basic element classes with regular
elements. The basis function of the elements is the classical Lagrangian polynomial, and
the mathematical description of these elements was already given in Chapter 2 for 2D
and 3D.

An element is basically a collection of DoFs, which are assigned to facets or cells on
the reference element, and each DoFs has also an assigned basis function. An imple-
mentation of a given finite element would only require the declaration of these types of
information. Sundance has a general interface to finite element implementations, there-
fore, the extension with these regular elements only implied the implementation of the
following methods:

1.) DoF location: On the reference element, each DoF is associated either to the cell

87

6. Parallel Adaptive Cartesian Meshes in Sundance

or to one of its facets. The support of a basis function that is associated to a
DoF might cover several elements, hence, it is important to recognize these DoFs
during the global DoF numbering. Therefore, such DoFs have to be placed on the
facet of a cell. This information is also crucial for facet integration, especially for
imposing Dirichlet BCs.

2.) DoF’s basis function evaluation: For a given point, specified in reference element
coordinates, the value of each DoF’s basis function is returned. Besides the value
of the basis function, the spatial derivatives in all direction are also computed and
returned. However, the computation of the derivative values is done automatically
by automated differentiation (AD). The values of the basis function are mostly
used for the various quadrature evaluations.

The methods above represent the modular interface to a general element interface in
Sundance, and only these functions are used by other components of Sundance to interact
with the finite elements. By implementing these two methods for rectangular elements,
it enables already the computations on regular Cartesian meshes. However, for adaptive
Cartesian meshes with hanging DoFs, this interface needs to be extended as well.

6.2. The Pre-fill Element Transformation for Hanging
Degrees of Freedom

In Chapter 4, we introduced the Cartesian mesh structure. We also showed that the
most suitable and efficient data structure for such a mesh is a tree. During refinement
of a Cartesian mesh, hanging facets arise naturally. A hanging node is a hanging facet
of dimension zero. The problem that arises is to ensure C0 continuity between two cells,
where the intersection of these two cells is a hanging facet (see Def. 5.1.3 in Chapter 5).
This implies applying restrictions to the DoFs that are associated to such hanging facets.
Our aim is to develop a general method to deal with hanging DoFs, such that no user
interaction is required, while we preserve the actual software structure of Sundance.
In this section, we present our approach to deal with hanging DoFs in a general and
user-transparent approach.

Next, we illustrate the problem of hanging facets and the associated DoFs in Fig. 6.1.
Generally, we restrict ourselves to the hanging facet issue on a 1-irregular mesh1, and
we consider only the leaf view of the mesh as it was described in Chapter 4. This leaf
view prohibits any spatial overlapping of the cells, and such a scenario is presented in our
concrete example. The mesh in Fig. 6.1 is given by three cells, marked with blue numbers
and the underlying basis function is assumed to be bilinear. Assuming that all local
DoFs of the cell are also global DoFs, then the mesh would have 8 global DoFs. With 8

1neighboring cells have at most a level difference of one, see Chapter 4

88

6.2. The Pre-fill Element Transformation for Hanging Degrees of Freedom

global DoFs, the interface between cell 1 and cells 2 and 3 would be C0-discontinuous.
The potential discontinuity is shown in Fig. 6.1, where the basis functions on the cell
boundary are illustrated. In order to eliminate this discontinuity, the red basis function
should be restricted to the two marked global DoFs. The contributions of these global
DoFs (2 and 6) are marked with the green line that is the sum of the basis functions
marked with black (DoF 2) and magenta (DoF 6) colors. This example has a bisection
refinement, and this means that the hanging DoF should be restricted to the value of
0.5x2 + 0.5x6, where x2 and x6 represent the two global DoFs. We denote our hanging
node’s DoF with xHN(red basis in Fig. 6.1), and the condition for C0-continuity must
hold as xHN = 0.5x2 + 0.5x6.

Figure 6.1.: Illustration of the potential discontinuity on the cells’ boundary. The red
DoF should be restricted to the global DoFs, such that it has the value of
0.5x2 + 0.5x6. This sum is represented by the green line.

Generally speaking, one can state that DoFs owned by a hanging facet have to be treated
in a particular manner to ensure C0-continuity of the discrete solution. More concretely,
DoFs at hanging facets are no real DoFs, but their values are determined by adjacent
DoFs at non-hanging facets. The general constraint form for a local DoF xi at a hanging
facet can be formulated as

xi =
∑
k∈Hi

ai,kxk + bi, (6.1)

where Hi is the set containing neighboring non-hanging DoFs. The coefficients ai,k are
the constraint coefficients and in most cases bi = 0.

At this point, the question arises, how to compute in general case the coefficients ai,k?
We restrict ourselves only to Lagrangian basis functions with homogeneous order. The
idea to compute the coefficient for a given order p is just simply evaluate the non-hanging
DoFs’ basis functions in Hi at the position of the hanging DoF. By evaluating the basis
functions in Fig. 6.1, the resulting coefficients are 0.5 and 0.5, as it was already shown.
This idea can be further extended to general nodal basis functions and to hierarchical

89

6. Parallel Adaptive Cartesian Meshes in Sundance

functions as well. From these considerations, it results that the determination of coef-
ficients ai,k is assigned to the element as a new functionality. Therefore, the presented
element interface is extended with one additional function.

1.) Constraints for a hanging DoF: For a specified hanging DoF i of a facet, it returns
the set Hi containing only local DoFs of the parent cell and the coefficients ai,k.
However, the determination of the global DoFs needs further processing, since in
this interface Hi is only given in local sense. Further, the refinement type (bisection
or trisection), the hanging facet dimensionality, and its index in the parent cell need
also be specified in this function.

This additional interface function plays an important role in the extension of the mesh
interface that is described later on. In the following sections, we will come back to this
functionality.

Imposing these constraints in a general toolbox-manner has been the subject of research
within PDE toolboxes. One approach is described in [7, 6], where the constraints are
stored and applied in their original form as in (6.1). This implies that during the fill-in
process, if the targeted local DoF is hanging, the contribution of this DoF is distributed
on columns and lines of the matrix according to the constraint (6.1). Treating each
hanging DoF individually has also its advantage. In the example of Fig. 6.1, treating
each hanging DoF individually implies the storage of the single hanging DoF, even
though there are at least two cells impacted. However, we have a different view of this
problem, instead of treating each hanging DoF individually, we look to the problem from
the cell point of view.

We consider the cell view of the example from Fig. 6.1 in Fig. 6.2, and we illustrate
the global and local DoFs of the three cells. In cell 1, there is no need for DoF con-
straints, but in cells 2 and 3, the local DoFs are constrained in the following way:
x̂3 = 0.5x2 + 0.5x6 in cell 2 and x̂1 = 0.5x2 + 0.5x6 in cell 3, where x̂ represents the
local DoFs. In Fig. 6.2, we illustrate the local and global DoFs of the three cells from

Figure 6.2.: Global and local DoF numbering of the bilinear quad element of Fig. 6.1
(similar to Fig. 2.3 in Chapter 2). The DoFs are only owned by the nodes
of the cell. The numbers outside the cells represent the global DoFs and the
green numbers inside the cells represent the local DoFs number.

our example. The local DoFs are denoted by green numbers according to the numbering
convention of the quad elements, whereas the global DoFs are denoted by black numbers.

90

6.2. The Pre-fill Element Transformation for Hanging Degrees of Freedom

The single hanging DoF is marked by HN . It is important to note that each cell must
have the same number of associated global DoFs. In the concrete example, cells 2 and 3
have also 4 associated global DoFs as cell 1. This relation also holds for different basis
orders and refinement strategies, and this is a key property for the following sections.

The first key point of the cell view (and also of the facet view) is that a cell, even though
it has hanging DoFs, always has a list of associated global DoFs. The next step is to find
these global DoFs in a unique way, and for this information, additional mesh queries are
required. The involved global DoFs in the constraints of (6.1) are not always adjacent to
the cell. In such cases, we need the hierarchical mesh geometry information to determine
the corresponding non-hanging DoF to each hanging local DoF.

By keeping the 1-irregularity, it is assured that, if a cell’s facet is hanging, the parent
cell’s facets with the same facet index can not be hanging. This observation is illustrated
in Fig. 6.3 with trisection refinement strategy, where the parent cell is refined. We assume
that the lower neighbor of the parent cell is not refined, creating hanging DoFs on that
lower edge. We consider the child cell illustrated in Fig. 6.3, where the 0 and 1 local
nodes are hanging nodes. By mapping this child cell back to its parent cell, we notice
that these hanging nodes can be mapped to the parents cell’s 0 and 1 local nodes (as
the two arrows show in Fig. 6.3). These nodes of the parent cell, while having the 1-
irregularity, can not be hanging. Even though the parent cell itself is not visible to the
toolbox components, its facet, which is accessed by one child cell with hanging facets,
is visible to the toolbox components as it is at the same time a facet of the neighboring
leaf cell. In Fig. 6.3, this observation holds for the lower edge of the parent and child
cell and not just for the nodes. It is also true for the general facet case and for bisection
refinement. This is an important point and we summarize it for the general case in the
following lemma.

Lemma 6.2.1 While keeping the 1-irregularity, if a cell’s facet is a hanging one, the
facet of its parent cell with the same facet index must be non-hanging. At the same time,
this facet is also a facet in a leaf cell, such that it is visible to the leaf view of the mesh.

Proof: Directly results from the hanging facet definition and from the definition of the
1-irregular mesh, such that the level difference of neighboring cells is at most one. �

With this lemma, one can specify a list of all involved global DoFs for a given cell. In
case of cells with no hanging facets, this list is assembled by considering all possible
facets of the given cell. By listing the global DoFs owned by the facets, and by adding
the DoFs owned by the cell itself, this list is created. We denote this list with TE, where
E is the cell index. For cell 1 in Fig. 6.2 and Fig. 6.1, this list is T1 = {1, 2, 7, 6}. For
each cell, which has a hanging facet, each non-hanging facet contributes its DoF (if any)
in the usual way. Since the hanging facets do not own global DoFs, the respective DoF
numbers are replaced by the facet’s DoF numbers of the parent cell. For the cell 2, this
list is T2 = {2, 3, 6, 4} and for the last cell, this list is T3 = {2, 4, 6, 5}. We already

91

6. Parallel Adaptive Cartesian Meshes in Sundance

Figure 6.3.: Illustration of the hanging nodes, resulting from a trisection refinement.
These hanging facets and the corresponding hanging DoFs can be mapped
to the parent cell’s facets and global DoFs, since with a 1-irregular mesh,
they can not be hanging. The two arrows show this mapping of the hanging
nodes to facets of the parent cell that are not hanging.

specified that for a given basis function, this list of global DoF numbers has the same
length, regardless of the number of hanging facets in the cell.

Once these lists for all cells are created, the next step is to store the constraints from
local DoF to global DoF defined by (6.1). Since the number of local DoFs must be
equal to the number of entries in each of the global DoF list, a square matrix is well
suited for this storage. One line of the square matrix represents one local DoF, whereas
a given column belongs to one global DoF. For each hanging DoF, the respective line of
the matrix contains the entries ai,k for all impacted k, and zero for other columns. For
non-hanging DoFs, the given matrix line is the identity line:

M(i, k) =


ai,k if i-th local DoF is hanging and k ∈ Hi

0 if i-th local DoF is hanging and k 6∈ Hi

1 if i-th local DoF is non-hanging and i = k
0 else

. (6.2)

We denote the resulting matrix with M and we call it transformation matrix. Hi is the
set of all global DoFs, which are required to compute the value of a hanging DoF i.
We illustrate the transformation concept by considering again the example in Fig. 6.1,
with B1 denoting the bilinear basis functions. The first cell with index 1 does not
need a transformation (the transformation matrix M1,B1 would be the identity), but the

92

6.2. The Pre-fill Element Transformation for Hanging Degrees of Freedom

transformation matrices for the other two cells have the form

M2,B1 =


1 0 0 0
0 1 0 0

0.5 0 0.5 0
0 0 0 1

 , M3,B1 =


0.5 0 0.5 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

It is obvious that the structure and the entries of the transformation matrix depend
only on two factors. The first one is the cell’s position, e.g., the configuration of hanging
facets and the second one is the basis function that we denote with B. For this reason,
we also denote the transformation matrix belonging to a cell E with the given basis
function B as ME,B.

In real applications, the number of different basis functions is limited (the order p is
fixed). For instance, in the case of Navier-Stokes equations, due to the inf-sup criterion,
there are two different types of basis functions. However, in most applications, using
one type of basis functions is usually sufficient for the FEM discretization. Once a basis
function B is given, we note that the number of possible matrices ME,B, E ∈ IN has a
low upper bound, which does not depend on the number of cells in the mesh. This upper
bound is given by the combination of the hanging and non-hanging status of the cell’s
facets. In 2D with bisection refinement, the number of possible cases, when one cell is
holding at least one hanging facet, is only 8 (4 cases with two hanging nodes plus 4 cases
with one hanging node). For this reason, it is more reasonable to not store a matrix for
each cell E, but we only store a positive number for cells that have hanging facets. This
number represents the respective index in the set of all possible transformation matrices
for the specified basis B. This way, the amount of data that needs to be stored cellwise
is limited to one integer. Since the number of basis functions is limited, the total storage
required of the transformation matrices is also limited to a constant factor, and cellwise
to only a couple of integers.2

For the example in Fig. 6.1, with a two-dimensional mesh, with bisection refinement, and
with eight possible forms of the transformation matrix M , it results in a total storage
requirement of only 128 (8× 16) doubles (1kB). With this amount of data, we stored all
the possible combination of constraints for hanging facets in a cell.

The Pre-fill Element Transformation

At this stage, we summarize the above stated observations and methods in our new
developed approach that is based on the cell view of the problem, and we call it ’Pre-Fill
Element Transformation’ [19]. The main input for the transformation, to enforce the
constraints specified in (6.1), are the following information:

2Representing the indices

93

6. Parallel Adaptive Cartesian Meshes in Sundance

1.) List of involved global DoFs: For a basis function3 and for a given cell E, this is
represented by the list TE.

2.) Storage of the constraints: These constraints are stored and represented by the
transformation matrix ME,B, for a given basis function type B and cell E.

The matrix ME,B with the additional list of the global DoFs TE provides enough in-
formation to perform the Pre-fill Element Transformation for a given cell E with at
least one hanging DoF. Through this transformation, the constraints are applied, and
this takes place during the assembly of the global system matrix. The Pre-fill Element
Transformation process transforms the unknowns, before the fill-in process of the local
stiffness or mass matrix into the global matrix takes place, such that the fill-in operation
will add the correct results to the global system matrix (see Fig. 6.4). Mathematically,
this transformation only implies additional matrix-matrix or matrix-vector multiplica-
tions. If we consider the matrix assembly then through this multiplication, each global
DoF should get the correct contribution from the local cell, according to (6.1). The
transformation matrix ME,B is introduced in such a form that a multiplication of the
local element matrix or vector achieves just that. This means that before the fill-in of the
local element’s result only one optional matrix-matrix or matrix-vector multiplication
takes place that is the Pre-fill Element Transformation.

In terms of software modularity, this approach proves to be also efficient. It allows the use
of the same reference element quadrature components4 for all elements. In the pipeline
of the matrix assembling, the transformation only adds an additional and optional stage
as shown in Fig. 6.4.

Figure 6.4.: The process of assembling the global system matrix. The Pre-fill Element
Transformation is an optional stage in this process, and is used only for cells
that have hanging DoFs. In the case of cells (or even facets) with hanging
DoFs, the constraints are enforced with this transformation.

3This is not the basis function type but specific for the concrete basic function.
4as software components

94

6.3. Sundance Mesh Interface Extensions

In the first stage of the simulation, we consider the matrix assembly process, and for a
cell E, we write the necessary transformations as

AnewE = MT
E,BT A

old
E ME,BU

bnewE = MT
E,BT b

old
E , (6.3)

where BU represents the basis for the unknown function, and BT is the basis of the
test function. AoldE and boldE are the local (element) matrix and the local right-hand side,
respectively, resulting from the classical element integration. We call the transformation
that is required for the system matrix assembling, and maps the local element’s DoFs
to global DoFs, as gather operation.

However, it is also required to have an inverse mapping, from the global DoFs to the
element’s local DoFs. This is needed for non-linear problems, where the non-linear
operator needs to be evaluated. It is also needed for visualization and different integral
evaluations (e.g., error norm calculations) with the computed solution function. To
compute the values of the local DoFs ulocalE from the values of the global DoFs uglobalE ,
the so-called scatter operation is applied:

ulocalE = ME,BU u
global
E , (6.4)

where the vector uglobalE has the values of the global DoFs specified by TE, the global
DoF list of cell E. Similar to the gather operation, the scatter operation is integrated
modularly into the component of the element evaluation that is used for visualization
and solution evaluation purposes.

Equations (6.3) and (6.4) represent the general case when the unknown and test basis
functions BU and BT might be different. Therefore, both the test and unknown basis
transformation matrices are required to make the correct transformation, according to
the corresponding basis functions.

Until this point, we presented the Pre-fill Element Transformation as a numerical method
to deal with hanging DoFs. However, on the software level, as it was already highlighted,
this implies several extensions in the existing Sundance structure (e.g., the optional
transformation stage). In the following sections, we highlight only the interface changes
that impacted the mesh and the DoF map, and later, we also present the current adaptive
parallel Cartesian mesh implementation.

6.3. Sundance Mesh Interface Extensions

Lemma 6.2.1 defines the key property that allows the determination of the global DoFs
in the TE list. This lemma requires access to the parent cell’s facet that by definition
is visible in the leaf view of the 1-irregular adaptive Cartesian mesh. To implement

95

6. Parallel Adaptive Cartesian Meshes in Sundance

this access to the mesh, additional functions need to be added to the Sundance mesh
interface. In addition, the hanging facets of the mesh need to be identified also by the
mesh interface. The extension to the existing Sundance mesh interface is represented by
the following functions:

1.) is facet hanging : Specifies for a given dimension d and an facet ID5 if this facet is
a hanging one or not (according to Def. 5.1.3 from Chapter 5).

2.) parent cell’s facet : If a facet is hanging, then the parent cell’s facet is required
to identify the global DoFs relevant for the value at the local hanging DoF. The
parent cell’s facet IDs are returned, which are visible in the leaf view and are used
for hanging DoF handling (see Fig. 6.3).

3.) cell’s index in parent : For a given refinement strategy, a parent cell will have a
constant number of children, once this cell is refined. To compute the constraints
coefficients, the index of the cell in the list of children of the parent cell is necessary.
This index provides additional information to the element class about the position
of the cell inside the parent cell and about the local IDs of hanging facets.

These functions need to be implemented only for the adaptive Cartesian meshes. For the
existing unstructured meshes, these functions can have a trivial implementation. The
DoF map is the entity that maps the global DoFs to the mesh entities. This component
is extended for the adaptive Cartesian mesh, and it will detect automatically if the
simulation is started on such an 1-irregular mesh. Therefore, during the simulation with
regular unstructured meshes, these functions will not be called, and the trivial or no
implementation in the unstructured case does not pose a problem.

6.4. Degree of Freedom Map Extensions for Hanging
DoFs

The presented Pre-fill Element Transformation implies additional functionalities not just
for the mesh interface but also for the DoF map. This transformation requires the list of
the global DoFs TE and the transformation matrix ME,B for one given element E. Both
types of information fit best to the DoF map, as a modular component of Sundance.
Therefore, the list TE and the transformation matrix ME,B will be stored here. As
described in the previous section, DoFs have global (mesh-wide) and local (valid in a
cell) numbers. Once a local DoF is on a hanging facet, it needs to be constraint. This
DoF is no longer a global DoF, hence, no global DoF number is assigned by the DoF
map. The local DoF number is the index of the DoF inside an element and exists for
all hanging or non-hanging DoFs. These local DoFs are then required to be mapped to
global DoFs.

5facet index

96

6.4. Degree of Freedom Map Extensions for Hanging DoFs

In case of hanging DoFs, this mapping is done by the list TE. Even though we defined this
list TE explicitly, this list can be computed on the fly, when the presented (see Chapter 5)
DoF map interface function is called. The list of global DoFs can be delivered not just
for a cell, but also for facets that hold or are themselves hanging mesh entities. The basis
function B also plays an important role in the determination of this global DoF list. In
cases of multiple unknown and test functions for one given cell, all the hanging DoFs
associated to one hanging facet have to be treated accordingly. This way, we extended
the existing DoF map within Sundance to store the local DoF to global DoF relations,
even for hanging DoFs (with the TE list).

The second component of the Pre-fill Transformation that is assigned to the DoF map
is the transformation matrix ME,B. These transformation matrices are generated and
stored within this DoF map. We already pointed out that the number of transformation
matrices for a given basis B is limited by a low upper bound. Since the number of
different basis function types is also limited, the total storage requirement for these
matrices is constant, and not depending on the number of mesh cells. The storage
requirement of one transformation matrix is directly proportional to the number of DoFs
per finite element. Assuming that there are D DoFs on one element and the matrix is
stored as a dense matrix, D2 double values need to be stored. In a three-dimensional
example with second order basis functions, the required size is D = 81 and D2 = 6561,
and already one such matrix needs 52kB memory, where most entries are zeros. The
chosen strategy to store the transformation matrix also defines the matrix multiplication
algorithm of the dense6 matrix AoldE and the vectors boldE and uglobalE . In order to store
and apply the transformations, we had mainly two different options:

• Dense Storage. This implies the full storage of the matrix, where most entries of
ME,B are likely to be zero. On the other hand, it allows the usage of efficient
BLAS2 and BLAS3 routines for the multiplication.

• Sparse Storage Alternatively, one can reduce the memory requirements by choosing
a matrix compression scheme (e.g., CRS). This would save storage and also unnec-
essary multiplication operations (multiplications by zero), but would also require
a special multiplication algorithm of a densely stored matrix with such a sparsely
stored matrix.

In our implementation of the transformation matrix storage in the DoF map, we choose
the first variant, and rely on the efficiency of the BLAS routines for matrix-matrix and
matrix-vector multiplications, to outweigh the unnecessary multiplication operations.
The number of cells that require Pre-fill Transformation is in general considerably lower
than the total number of cells within the mesh. We already showed that the concrete
number of transformation matrices that need to be stored is limited and is independent
from the number of cells in the mesh. Therefore, we can conclude at the end of this
section that the Pre-fill transformation does not pose any significant computational

6we used non-orthogonal basis function

97

6. Parallel Adaptive Cartesian Meshes in Sundance

overhead either in terms of additional operations or in terms of memory consumption.

6.5. Parallel Adaptive Cartesian Mesh Implementations
in Sundance

After we presented the extension of the mesh interface, the next step is to describe
the implementational ideas of the developed parallel adaptive Cartesian mesh within
Sundance. This might sound simple, but practically the implementation of such a mesh
alone could be subject of a research project, as it was the case in p4est [27], Peano [92]
and FEniCS [58]. Therefore, we restricted ourselves to a simpler implementation that
has its limitation in massive parallel simulations and in accurate load balancing. These
limitations will be presented in more detail later in this section. At the same time, we
want to underline here that the extended mesh interface and the Sundance components
(e.g., DoF map, external solvers) generally support such massive parallel simulations,
and do not pose any conceptual bottleneck for such simulations. To develop a more
efficient and sophisticated parallel adaptive Cartesian mesh within Sundance, and to
test massive parallel runs with Sundance could be subject of future research.

The actual Cartesian mesh implementation has the same underlying concept that p4est [27]
has, which is namely to generate first one underlying regular mesh that is subject to fur-
ther refinement and coarsening, while keeping the 1-irregularity. In contrast to the p4est
mesh, we employ trisection based refinement that is characteristic to the Peano curve.
The trisection implies more implementational overhead especially in the 3D case. In
terms of transformation matrices, needed for the Pre-fill Element Transformation, the
trisection also increases the number of possible cases. On the other hand, it allows a
more aggressive refinement in the locality of interested area.

Even though Cartesian meshes allow for efficient tree storage, Sundance’s mesh interface
considers the mesh as a ’database’, where one query is based on the mesh entities’ IDs.
Therefore, an implementation of the mesh based only on a tree storage that can efficiently
answer the queries, turns out to be challenging.

Although the mesh interface allows random access, the mesh entities are accessed iter-
atively by the other components of the toolbox. This feature can potentially facilitate
one iterator based mesh implementation as well. The concept of mesh iterators is widely
used within PDE toolboxes (e.g., deal.II [7], FEniCS [58] and DUNE [29]), and this is
also used within Sundance. However, during one iteration of a given dimensional mesh
entity, the facets and the co-facets of the actual mesh entity can also be subject of the
queries.7 For this reason, a tree and iteration based implementation poses a significant
challenge. In the following section, we present such a tree and iteration based mesh

7This would imply access to neighboring cells.

98

6.5. Parallel Adaptive Cartesian Mesh Implementations in Sundance

integration into Sundance, and we show also their benefits and drawbacks.

One obvious way to answer the queries efficiently, is to linearize the tree, and to store
all necessary facet and co-facet information regarding one mesh entity. This way, most
of the mesh accesses consist of only storage access without additional computations that
allows random access to the mesh. To illustrate this concept, we consider one quad
facet in 3D. For this all the node and edge facets need to be stored, and the maximal
co-facets of this quad is required as well. According to the mesh interface, this also
implies the storage of the nodes’ position, similar to unstructured meshes. In contrast
to the unstructured mesh, the Cartesian mesh has a well defined structure, therefore,
it allows a more efficient data structure even for the storage of the linearized adaptive
Cartesian mesh. This will be demonstrated in a later section where we compare the
memory requirements of different meshes.

Initially a regular Cartesian mesh is generated with the defined resolution in 2D or 3D.
The traversal and the numbering of the entities of our adaptive Cartesian mesh are based
on the Z-curve, where only the coarsest cells are traversed. Within a tree of a coarsest
cell, the children are traversed with a breath first algorithm. This traversal is illustrated
in Fig. 6.5.

Figure 6.5.: A simple example of a parallel adaptive Cartesian mesh that is partitioned
into two domains. On the left, it illustrates the partition of the domain
based on the Z-curve. On the right, it shows the mesh partition of processor
0, with the ghost cells (marked with pink). It is assumed that the facets on
the interprocess boundary also belong to processor 0. One can observe that
not just the interprocess boundary cells are added as ghost cells, but also
those that are required for the hanging local DoFs, and also for the Pre-Fill
Element Transformation.

In the parallel case, the required domain decomposition is based on this Z-curve traversal.
In the following, we highlight the decomposition of our Cartesian mesh. The desired
outcome of this process is a load-balanced decomposition of the mesh, and one of the
most efficient methods to partition a Cartesian mesh are based on various space-filling
curves. This was already demonstrated by the p4est mesh [27] that is based on the Z-
curve. In the case of the Peano mesh [92] with trisection refinement, the decomposition

99

6. Parallel Adaptive Cartesian Meshes in Sundance

is based on the Peano space-filling curve.

Before the partitioning starts, similar to p4est [27], a regular coarse mesh is created.
This regular mesh is then refined according to a call-back function that can be either
an error indicator or a predefined function, while during refinement the 1-irregularity is
kept. The outcome of the refinement is an adaptive Cartesian mesh that needs to be
partitioned into P equal partitions, where P is the number of processors in the parallel
computation. The current mesh implementation, as we mentioned earlier, is under
development and actually, it partitions only the initial regular mesh that is formed by
the coarsest cells. This Z-curve based partitioning is illustrated in Fig. 6.5, where the
coarsest cells, with their complete tree, are assigned to one processor. This way, the cells
on the finer refinement levels have the same owner processor as the coarsest parent cell.
Cells, which are created by the refinement, are partitioned with the coarsest parent cell.
Before partitioning, a load indicator has to be assigned to each coarse cell that in our
case is the total number of child cells within the cell. After the total load of the mesh is
estimated, the coarse cells are distributed along the Z-curve in a “greedy” manner.

In addition to the mesh partitioning, ghost cells are necessary for the correct computation
of matrix entries at the boundary of a process domain. In the case of adaptive Cartesian
meshes, these ghost cells are not only those cells with a facet on the processes subdomain
boundary. As depicted in Fig. 6.5 (left) not only direct neighbor cells of the mesh
partition need to be added, but also cells that contain DoFs and have a contribution to
the DoFs lying on the interprocess boundary. In the case of hanging facets, this might
also include parent cells, required for the Pre-fill Transformation. Such a decomposition
for a more complex scenario is shown in Fig. 6.6.

This implementation of the partitioning of the adaptive Cartesian mesh is rather simple
and the determination of the ghost cells (including the additional ghost cells if neces-
sary) is also done in a straight-forward manner. However, the current Cartesian mesh
implementation in 2D and 3D requires the global storage of the mesh, even though after
the partitioning only the local mesh is further used. This poses a significant storage and
computational overhead that could be addressed in the future. Besides, the partitioning
solely based on the coarsest cells also poses a significant bottleneck for deeply refined
meshes. Once a coarse cell contains a large number of child cells, it will become a bot-
tleneck, since the load can not be split between processors. This issue should be also
addressed in future developments.

In the following, we enlist a small example of code, how the developed adaptive Cartesian
mesh can be accessed within Sundance. Code 10 shows the declaration of the adaptive
Cartesian mesh within the Sundance’s descriptive language, where a 2D adaptive Carte-
sian mesh is created. In this case, the adaptivity is solely based on a callback function
that can decide whether a cell should be further refined or not, given the cell’s position
and refinement level. This actual mesh implementation has also the option to deacti-
vate a set of cells, defined by the class MeshDomain in Code 10. At the beginning,
the mesh is initiated on a regular domain, but with this deactivation only the specified

100

6.5. Parallel Adaptive Cartesian Mesh Implementations in Sundance

Figure 6.6.: Domain decomposition of an adaptively refined Cartesian mesh into eight
equal domains. The illustration shows the load-balanced partitions of the
second and fifth processors.

portion of this domain becomes visible for the simulation. One of the main advantages
of this Cartesian mesh is its usability in the parallel case, where for any given pro-
cessor numbers, the Sundance code remains the same. Since the mesh partitioning is
done internally in the background, the same compiled code can be started with different
numbers of processors on distributed memory systems.

6.5.1. Mesh Storage and Runtime Comparison

In the following, we compare various mesh implementations within the frame of Sun-
dance. The scope of this comparison is to test the performance of the previously pre-
sented adaptive Cartesian mesh implementation. We measure the performance of the
mesh indirectly, by comparing the total runtime and storage requirement of simple serial
PDE computations.

Before describing the scenario and enlisting the results, we shortly describe the two
other mesh types that we tested. The first mesh type is the unstructured mesh with
simplex elements (called simplex mesh) that was already mentioned in the previous
chapter. The second type of mesh that we tested is a regular mesh prototype and is a
Sundance integration of the Peano mesh [92]. The Peano mesh uses a tree based storage
and a stack-based traversal, and allows mesh access only by an adapter concept [92].
This further implies that only an iterator based traversal is enabled and even for the
regular case turned out to be technically challenging. Since the parallel and the adaptive

101

6. Parallel Adaptive Cartesian Meshes in Sundance

Code 10 Creation of a 2D Cartesian adaptive mesh. The adaptivity is defined by the
callback function of MeshRefEst. This callback function gets the actual position of
the cell, including the size of the cell, and the actual refinement level cellLevel. This
callback mechanism can also be used for other types of refinement. In addition, the
user has the option to use only a subpart of the mesh. The MeshDomain class defines
this particular domain. Cells, where the callback of MeshDomain returns true, will be
inactive cells, and will not be visible to the other component of the toolbox.

REFINE_MESH_ESTIMATE(MeshRefEst,{

if (((cellPos[0]>0.5)&&(cellPos[1]<1.0)&&(cellLevel<2)))

return 1; else return 0; } , {return 1;})

MESH_DOMAIN(MeshDomain , {return 1;})

...

RefinementClass refCl = new MeshRefEst();

MeshDomainDef meshDom = new MeshDomain();

MeshType meshType =MeshRefEst new HNMeshType2D();

MeshSource mesher=new HNMesher2D(0,0,1,1,81,81,meshType,refCl,meshDom);

Mesh mesh = mesher.getMesh();

case represented further technical challenges and workarounds, we abandoned the full
integration of the Peano mesh. The iterator based approach implies for a complete PDE
simulation several mesh traversals, in order to answer the queries that might be costly,
in comparison with direct memory access. On the other hand, this approach has the
prospect of being much more memory efficient, since most of the required information
(e.g., node positions) are computed on the fly.

To investigate these three different variants, we chose one of the simples PDE, the
Poisson equation in 2D and 3D. In these simple computations, the mesh is used in the
DoF map building and in the matrix assembly and visualization, hence, the underlying
mesh implementation plays an important role. In 2D, we tested two configurations
that fit to the regular Peano mesh on the unit square 8. In order to minimize the
solving effort for each run, we use linear elements (P1 for simplex and Q1 for rectangular
elements). The meshes in comparison are: Struc. Mesh (the adaptive Cartesian mesh
implementation presented in this chapter), Unstr. Mesh (the existing simplex mesh
implementation), and Peano Mesh (the integrated regular Peano mesh). We compare
for each simulation the memory storage of the actual mesh, and also the overall storage
requirement. Since we choose such a simple PDE, the mesh storage in some cases
becomes the dominant factor in the overall memory requirement. For more complex
PDEs, with several unknown fields and higher order basis, the mesh storage becomes
insignificant in comparison to the overall memory demand. Further, we also compare the
total computation, mesh creation, and solving times. The solving time is the only time

8In this case, all the created Peano cells will be used.

102

6.5. Parallel Adaptive Cartesian Mesh Implementations in Sundance

that is not impacted by the mesh performance directly9, but in all the other times, the
mesh performance plays an important role. The tests were made on a desktop machine
with 8GB RAM and with a 2.93GHz I7 Intel processor, and all runs were made in serial
mode.

mesh mesh storage total storage setup time solver time total time
Struc. Mesh 37 54 0.14 1.12 2.15
Unstr. Mesh 82 98 0.33 1.19 2.78
Peano Mesh 10 28 0.40 1.74 4.66

Table 6.1.: Storage required for the Poisson scenario measured in MB, and the runtimes
measured in seconds. In the scenario, the Poisson equation is solved with
linear elements in 2D. The spatial resolution is given by approx. 59000 quad
elements (243× 243)(twice as many triangles)

mesh mesh storage total storage setup time solver time total time
Struc. Mesh 360 633 2.05 32.86 42.92
Unstr. Mesh 698 852 3.63 35.18 49.68
Peano Mesh 43 344 3.13 48.54 74.79

Table 6.2.: Storage required for the Poisson scenario measured in MB, and the runtimes
measured in seconds. In the scenario, the Poisson equation is solved with
linear elements in 2D. The spatial resolution is given by approx. 531000
quad elements (729× 729)(twice as many triangles).

The results for the 243×243 resolution in 2D are presented in Tab. 6.1, and for a higher
resolution of 729 × 729 the results are shown in Tab. 6.2. In 2D, the mesh storage
requirement is the highest with simplex mesh, whereas the lowest is, as expected, with
the Peano mesh. It is important to note that our Cartesian mesh implementation needs
less than half of memory than the unstructured simplex mesh requires, even though it is
a fully linearized tree, and allows random access. On the other side we can affirm that
for both test cases, our Cartesian mesh implementation has the highest performance, by
having the lowest overall runtime, outperforming even the simplex mesh.

Due to the trisection refinement in 3D, we were able to perform only one test, the next
refinement level would have required parallel computing. The results for the 81× 81×
81 resolution are shown in Tab. 6.3. The memory demand further increases for the
simplex mesh (here with tetrahedron cells) and becomes the dominant factor, whereas
the memory requirement for our linearized adaptive Cartesian mesh is less than 50% from
the overall memory demand. In terms of runtime in 3D, our implementation outperforms
again the other two variants, and the difference is even more significant than in 2D.

9Only indirectly by the matrix’s sparsity pattern.

103

6. Parallel Adaptive Cartesian Meshes in Sundance

At the end of the comparison, we can summarize that the linearization of the Cartesian
mesh within the frame of the Sundance toolbox pays off, both in terms of memory
requirement, where the storage requirement does not become a dominant factor in the
overall memory demand, and also in terms of mesh performance, where we outperform
all the existing mesh types within Sundance.

mesh mesh storage total storage setup time solver time total time
Struc. Mesh 783 1600 4.74 19.32 34.5
Unstr. Mesh 2700 3200 14.34 12.35 54.87
Peano Mesh 131 935 30.95 23.95 106.26

Table 6.3.: Storage required for the Poisson scenario measured in MB, and the runtimes
measured in seconds. In the scenario, the Poisson equation is solved with
linear elements in 3D. The spatial resolution is given by approx. 551000
brick elements (81× 81× 81)(four times as many tetrahedrons).

104

7. Fluid Flow with Nitsche’s Method

This chapter introduces the required methods for the fluid flow simulation with Nitsche’s
method. It also shows computational benchmark results, which verify Nitsche’s method
in an IB context for the Navier-Stokes equations, even for near boundary values such as
the measured drag and lift forces. In the previous chapter, we presented the first step
towards IB method capabilities, the implementation of a parallel adaptive Cartesian
mesh in the PDE toolbox Sundance. The next step towards a IB method capable
PDE toolbox is the integration of special quadrature methods: cut-cell integral and
boundary integral methods. In Chapter 4, we presented a variety of existing IB
methods, and most of these methods, especially those who enforce the BC in a weak
sense, have in common the necessity of a volume integral over Ω and a boundary integral
over ∂Ω. These features are also needed for Nitsche’s method for the Navier-Stokes
equations. Nitsche’s method was already presented in detail in Chapter 4. Having an
underlying Cartesian mesh that is non-conforming with respect to the boundary ∂Ω,
the first missing capability is to represent the boundary geometry independently of the
underlying mesh. IB methods require an explicit boundary representation, since the
boundary in this case is not represented by the facets of the Cartesian mesh. Therefore,
we introduce first our geometry representation that we implemented and integrated
in Sundance, with a focus on the developed modular interface that facilitates general
geometry implementation in 2D and 3D. Then, we continue with the presentation of our
newly developed cut-cell and boundary integration methods. The last section of this
chapter presents a concrete application for the developed methods. We compute various
fluid flow benchmark scenarios modeled by the Navier-Stokes PDE, where we impose the
BC with Nitsche’s method. We further compute the benchmark lift and drag coefficients
for 2D and 3D scenarios in order to verify our approach and implementation. Parts of
the methods and results presented in this section were already presented for 2D in [19].
In the following, however, we describe them in more detail and also extend them to 3D.

7.1. Boundary Geometry Representation

In this chapter, the main application is the Navier-Stokes PDE simulation with one
particular IB method, Nitsche’s method. Even though, at the end of this chapter,
we apply the developed methods to one particular problem our goal is to introduce a
general geometry representation that can be applied also to other IB methods within

105

7. Fluid Flow with Nitsche’s Method

Sundance. IB methods require an explicit boundary representation, and the geometry
is non-conforming with respect to the mesh structure. This is illustrated in Fig. 7.1,
where the computational domain Ω is embedded into a rectangular domain ΩO. This
way, the geometry can intersect cells in arbitrary ways, dividing the intersected cells
into two parts. One part of these cells belongs to Ω, where the PDE shall be solved.
The other part belongs to the fictitious domain ΩF and should not be considered for the
computations. To consider only the Ω part of an intersected cell for the integration of
the weak form of a given PDE is one of the key features required for such IB methods.

ΩO = +

Figure 7.1.: Illustration of the IB method configuration including the underlying Carte-
sian mesh. The goal is to compute a PDE only on the computational do-
main Ω. This complex domain Ω is embedded into a rectangular domain
ΩO. This approach implicitly creates the fictitious domain ΩF that should
be neglected during computations.

7.1.1. Geometry Interface and Analytical Geometry Representations

Besides the cut-cell integral, Nitsche’s method (and other IB methods) also requires
boundary integral computations. This capability should be integrated in Sundance
in a general way. These required features are illustrated in Fig. 7.2 in a cell-wise view,
where the domain Ω and the respective boundary integrals need to be computed on such

106

7.1. Boundary Geometry Representation

Figure 7.2.: Illustration of two required features from the cell-based view. The compu-
tation of integral

∫
Ω
f (x) dx and

∮
∂Ω
f (c) dc for a given function f (x) and

for the illustrated cell should be facilitated within Sundance. These are the
two required features for Nitsche’s method and also for other IB methods.

an intersected cells.

Both of the enlisted capabilities need an efficient geometry representation, since this
geometry incorporates the definition of Ω and ΩF . In the general case, it is difficult to
integrate exactly on Ω and ∂Ω. Therefore, the geometry should include, among others,
functionalities that allow for the fast and efficient approximation of the boundary and
domain within a given cell. The geometry should also provide point-wise information
specifying if a given point is in Ω or in ΩF . For these reason, we defined the general
geometry interface for 2D and 3D by the following two functions:

1.) geometry evaluation: For a specified point in space, it returns the information
whether this point is in Ω or in ΩF . In the analytical description, this informa-
tion is simply computed by the evaluation of the geometry equation. Hence, this
functionality is called geometry evaluation.

2.) line segment intersection: In order to efficiently find an approximation of the Ω-
and ΩF -parts of an intersected cell, we require that the geometry returns all inter-
section point between a line segment and the geometry. The input line segments
are usually the edges of the cells in 2D and 3D. The returned intersection points
are the input for the cut-cell and boundary integral methods. A line segment in
2D and 3D might contain more than one intersection point. These cases have to be
treated accordingly. This functionality could also be implemented indirectly with
the first function (geometry evaluation) by using a bisection method. However, for
higher efficiency, this functionality is delegated to the geometry, where it can be
handled more efficiently.

These methods represent the general geometry interface that is consistent for 2D and
3D. However, there will be one exception for the later introduced polygon representa-
tion presented in the next section. In this case, the cut-cell and boundary integrals use
special information that only a polygon in 2D can provide. The simplest geometrical rep-
resentation is given by analytical expressions. By using such analytic formulas, one can

107

7. Fluid Flow with Nitsche’s Method

efficiently implement the presented two functions. This way, we implemented circle, rect-
angle, and ellipse objects in 2D, whereas we implemented sphere and brick objects in 3D.
To illustrate, how the interface methods for such analytic geometries are implemented, we
consider the circle in 2D. The analytic formula for this curve is (x− ox)2+(y − oy)2 = r2,
whereas the equation of a line segment is (x, y) = PA + t (PB − PA) , t ∈ R, with the line
segment defined by the points PA and PB. We further define for this example that the
inside of the circle is ΩF and outside the circle is the computational domain Ω. In this
case, the evaluation of the circle implies computing the formula (x− ox)2+(y − oy)2−r2.
If the resulting value is positive, then the point (x, y) is in Ω, otherwise in ΩF . For the
intersection point, the line segment equation is inserted in the circle’s equation resulting
in a quadratic equation. The two real solutions, if there are any, are then tested, if they
are on the line segment (between points PA and PB, e.g., 0 6 t 6 1). The creation of
such a geometry object is shown in Code 11, where the general geometry in 2D and 3D
of Sundance is represented by the newly developed ParametrizedCurve object.

Code 11 Creating a circle and a box geometry object. For the circle object, the first
two parameters represent the origin (ox, oy) = (0.5, 0.5), the third parameter is the
radius r = 0.2, and the last two parameters represent the weights (see Nitsche’s method
in Chapter 4) of the domains, in- and outside the circle. The second line shows the
creation of a 2D box, where the first four parameters define the box and the last two
parameters define the weight of the in- and outside domains.

ParametrizedCurve curveCircle = new Circle(0.5,0.5,0.2,1,1e-8);

ParametrizedCurve curve = new Box2D(0.3,0.3,0.4,0.4,1,1e-8);

Figure 7.3.: Illustration of the created analytical geometries in Code 11.

In the example of Code 11, it is also illustrated that each domain in- and outside the
geometry gets an assigned weight.1 These weights determine which domain is the real
computational domain (the one with coefficient α1 = 1.0) or becomes fictitious (weighted
with α2 = 10−8). In the results section, we show, that for numerical reasons ΩF should
not be weighted with zero, but only with a low α2 number. These weights are stored
accordingly in the geometry object, and are later used in the cut-cell methods.

1last two parameters, see Nitsche’s method in Chapter 4

108

7.1. Boundary Geometry Representation

In the example of Code 11, we considered only closed curves in 2D. In general, the curves
in 2D and surfaces in 3D do not have to be closed with respect to the computational
mesh as long the two separate domains can be determined uniquely. Therefore, a plain
or a line that are non-closed geometries could be potentially used as geometry objects
in the computations.

Geometry based Cell Filtering

Based on the geometry information, the cells of the mesh are grouped into three cell
filters. In Chapter 5, we presented the concept of cell filters that allows to treat a group
of cells in a special way. In Fig. 7.4, we illustrate the usage of cell filters for an example
geometry. The cells in Fig. 7.4 that are either completely inside (red) or outside (white)
the geometry can be integrated in a classical way. The intersected cells that are marked
with green in Fig. 7.4 have to be treated differently. Therefore, in the first step, the
intersected cells have to be identified based on the geometry object. The identifications
can either be based on the geometry evaluation or on the geometry intersection by a line
segment. However, in 3D, not all the intersection cases can be determined with these
two functions. We will come back to this problem in Section 7.2.2.

Figure 7.4.: A geometry divides the cells of the mesh into three groups. White color
marks the cells that are completely outside the geometry, green cells are the
cells that are intersected by the geometry, and the red cells are completely
inside the geometry.

We highlight the Sundance code that creates the three cell filters in Code 12. The last
line of Code 12 illustrates how such a cell filter is used for integration. The cell filter
that delivers the intersected cells plays an important role, since only intersected cells are
involved in the boundary and cut-cell integration within the IB context. This cell filter
OnCircle in Code 12 combined with a special quadrature method allows to treat the
intersected cells in a special way. Treating other cells (InCircle and OutsideCircle in

109

7. Fluid Flow with Nitsche’s Method

Code 12) in a classical way is important for efficiency, since those cells can be integrated
without taking in consideration the boundary geometry.

Code 12 CellFilter declaration that is based on the geometry. The cells that are inside
the geometry have negative evaluation values of the geometry, whereas cells that are on
the other side have all positive geometry evaluation values.

ParametrizedCurve curve = new Circle(0.5,0.5,0.2,1,1e-8);

...

CellPredicate curveIN = new CellCurvePredicate(curve , Inside_Curve);

CellPredicate curveOUT = new CellCurvePredicate(curve , Outside_Curve);

CellPredicate curveON = new CellCurvePredicate(curve , On_Curve);

CellFilter InCircle = interior.subset(curveIN);

CellFilter OutsideCircle = interior.subset(curveOUT);

CellFilter OnCircle = interior.subset(curveON);

...

Expr int = Integral(OnCircle , ... , quad_spec , curve);

Even though a variety of boundary shapes can be described by basic geometrical objects
such as circles and boxes in 2D and spheres and bars in 3D, there is a need for general
and complex geometry representations in 2D and 3D. In the following, we present the
polygon-based geometry representation in 2D and the triangular surface-based represen-
tation in 3D.

7.1.2. Polygons as Two-dimensional Geometry

A polygon is specified by a set of points and the line segments connecting them. A point
in the polygon is allowed to be part of at most two line segments, and at least one. This
way, a list of points defines a general polygon. The only information that remains to be
specified is, if the polygon is closed or non-closed. A closed polygon implies, that the
last point is connected to the first point forming a cyclic graph.

Both closed and non-closed polygons can represent a general boundary in 2D that is
required for IB methods. Therefore, the next step is to present the implementation of
the two geometry interface functions. For the geometry evaluation, it is required that
the line segments have a consistent orientation. The orientation of a line is given by
the start and end points of the line segment. In order to determine, whether a point is
inside or outside a polygon, this orientation is crucial. A consistent orientation of the
line segments is given, when the polygon is specified by a list of points.

We consider the illustration in Fig. 7.5, with three oriented line segments. The two
evaluation points are the green points. For these two green points, it can be uniquely
determined on which side of the polygon they are located. In order to compute this,

110

7.1. Boundary Geometry Representation

the first step is to locate the nearest line segment. Next, it needs to be determined on
which side of the line the evaluation point is located. This can be simply done by a
cross product of the line segment and the line segment, given by the start point and
the evaluation point (marked with red in Fig. 7.5). The sign of the resulting cross
product defines the sign of the evaluation of the polygon. Since the polygon can be

Figure 7.5.: Illustration of a simple polygon with three line segments and four points.
The line segments are oriented in a consistent way, such that each point
(e.g., the two green points) can be associated uniquely with one side of the
domain.

composed of several hundreds of line segments, to determine the nearest line segment
for an evaluation point becomes computationally costly in comparison with analytical
geometry descriptions. A common way to reduce the computational overhead is to
employ space-trees, which minimize the number of considered line segments [26]. In
our implementation of the polygon in Sundance, we only employ a ’one cell’ tree that
consists of a singe cell. This cell is a bounding box, that contains the entire polygon. If
a point evaluation is demanded outside the box, it can be computed in a simplified form
as the distance to this bounding box. In many of our applications, the geometry covers
only a small portion of the computational mesh. Therefore, significant computational
effort is saved with this approach. To further increase the efficiency of the polygon’s
implementation, one should include a full space-tree implementation.

The second interface function represents the computation of the possible intersection
points of a given line segment with the line segments of the polygon. The intersection
point has to be located not just one the specified line segment, but also on the polygon’s
line segment, as this is illustrated by the green point I in Fig. 7.6. Similar to the
previous function, the computation of possible intersection points turns out to be more
computationally demanding then for analytically defined geometries. We also employ
here the bounding box approach that limits the number of line segments for intersection
point testing. If a specified line segment is completely outside of this bounding box and
is also not intersecting the bounding box, then it has no intersection point with the
polygon. The computation of the intersection points needs to be done in a robust way,
such that all possible cases are treated. Therefore, we use a parametrized representation

111

7. Fluid Flow with Nitsche’s Method

of the line, where, according to Fig. 7.6, we write for the intersection point I

I = A+ t (B − A) , t ∈ R,

and this intersection I point must also satisfy the cross product rule

(I − P1)× (P2− P1) = 0.

The resulting t should also satisfy the line segment (A,B) test such that 0 6 t 6 1.
Similarly, the resulting point I should be on the line segment (P1, P2). The intersection
point should be returned if it is contained in both line segments as illustrated in Fig. 7.6
by the green point I.

Figure 7.6.: Demonstration of the challenges of the boundary and cell integrals (left) that
should take in consideration that the underlying geometry is a polygon.
Illustration (right) of a polygon’s line segment intersection (given by the
points (A,B)) with the input specified line segment (defined by the points
(P1, P2)). Only the intersection points that are contained in both line
segments (green) should be returned.

On the left side of Fig. 7.6, we further illustrate, that the cut-cell and boundary integral
methods could take into consideration that the underlying geometry is a polygon. In
the case of analytical or general geometry representations, these integral methods would
only approximate the real geometry. However, with polygons one could compute these
integrals up to machine precision, since the geometry inside the cell consists of lines of
segments.

One additional feature of the polygons, in contrast to analytical geometries, is the possi-
bility to define nodal values that represent a function on this geometry. These values and
functions can be used in Sundance expressions, but only as values on the right-hand side
and not as unknowns. To include these nodal values as unknowns in the system, would
require among others the extension of the matrix assembly method to multiple meshes
with various dimensions. In the current implementation, there are various workarounds
to consider these nodal values as unknowns in the systems.2 Since each point of the
polygon for a given function has one value assigned, we only allow linear basis functions

2partitioned methods, similar to the FSI formulations.

112

7.1. Boundary Geometry Representation

as illustrated in Fig. 7.7. The polygon in Fig. 7.7 is formed by four points (I1, I2, I3, I4),
and each of these nodes has an associated nodal value. In the case of the boundary in-
tegration, the values between the nodes are linearly interpolated. These nodal values of
the polygon can be either set manually3, or based on an Integral object4 presented in
Chapter 5.

Figure 7.7.: Illustration of the polygon’s nodal basis in 2D. The values between the
polygon’s points are interpolated linearly.

To illustrate the enlisted features of the developed polygon in Sundance, we consider
Code 13. In the first line of this code, the polygon is created from an external file.
This file consists of a list of points that form the polygon. The polygon is implicitly
considered as closed, if this is not specified in the arguments. Similar to the previous
geometry representations, the polygon contains the two weight factors of the in- and
outside domain. In the second and third line, we add two scalar fields to the polygon,
which together form a vector field. In the following four lines, we define the expression
objects that later can be used in the boundary integral methods. For boundary integrals,
we considered the example uxD*vx + uyD*vy, where vx and vy are test functions of a
given problem. Next, we demonstrate the generality of the value setting feature of the
polygon’s implementation. The expression ux Eval is used in this particular case to
set the first scalar field of the polygon. In the final line of Code 13, the plotting of the
polygon takes place. The scalar fields get plotted with the polygon structure. In 2D,
scalar fields are pairwise coupled into a vector field, such that a vector field can also be
potted within Sundance as illustrated in Fig. 7.8.

7.1.3. Triangle Surfaces as Three-dimensional Geometry

In 3D, as general surface representation we use triangular surfaces, where a continuous
surface is composed of several triangles. Similar to 2D, a surface can either be closed

3based on coordinates or constant value
4a Sundance object that contains an expression and can be evaluated at each point of the mesh.

113

7. Fluid Flow with Nitsche’s Method

Figure 7.8.: Visualization of a polygon with an associated vector field.

Code 13 The usage of the polygon within Sundance. The first line illustrates the
creation of the polygon. Then, linear functions are added to the polygon. Later, one
can construct expressions that are used in integrations. The last three lines show the
value setting of the polygon based on the expression object.

ParametrizedCurve polyg = new Polygon2D("polygon_file.txt",1.0,1e-8);

polyg.addNewScalarField("velocityX" , 0.0);

polyg.addNewScalarField("velocityY" , 0.0);

Expr x1 = new CoordExpr(0);

Expr x2 = new CoordExpr(1);

Expr uxD = new UserDefOp(List(x1,x2), rcp(new CurveExpr(polyg,0)));

Expr uyD = new UserDefOp(List(x1,x2), rcp(new CurveExpr(polyg,1)));

... Integral(OnCurve , ... uxD*vx + uyD*vy , ...);

Expr ux_Eval = Integral(OnCurve , expression , ...);

FunctionalEvaluator ux_Curve(mesh_Struct , ux_Eval);

polyg.setSpaceValues(ux_Curve , 0);

polyg.writeToVTK("polygon.vtk");

or non-closed. However, in our applications, we only employ closed surfaces. A closed
surface is presented in Fig. 7.9, where a sphere is represented by 500 triangles. Such a
surface is actually a 2D simplex mesh in a 3D context. In contrast to the mesh imple-
mentations in 2D, the triangular surface only needs to store the information regarding
the points and triangles, since the edges do not provide additional information. There-
fore, such a surface requires only the storage of positions of all points and the points
corresponding to all triangles.

Analogously to 2D, the surface geometry implementation has to contain the two interface
functions. The first function is the evaluation function that returns a value and represents
the distance to the 3D surface. The sign of the returned distance defines, if the evaluated
point E is inside or outside the geometry. In 2D and 3D, the definition of in- and outside
can be flipped by calling the flipDomains() method of the geometry. To determine,

114

7.1. Boundary Geometry Representation

Figure 7.9.: An example of triangular surface representation, where 500 triangles ap-
proximate a sphere.

on which side the evaluation point E is located, we proceed in the similar way as in
2D for the polygons. The first step is to determine the nearest triangle. For a given
triangle (A,B,C) in Fig. 7.10, this means taking the normal vector of the triangle.5

Along this vector V = (B − A) × (C − A), we project E to the triangle’s plain. If this
projected point E

′
is outside the triangle, we consider the nearest point of the triangle

to this projected point P , otherwise P = E
′
. Then, the returned distance is just the

distance between E and P . The crucial information, on which side of the triangle E
is located, is given by the vector V . Point E

′
is expressed as E

′
= E + t · V, t ∈ R.

The sign of t decides, on which side of the triangle (A,B,C) E is located. A possible
configuration is illustrated in Fig. 7.10, where the three points E, E

′
, and P do not

coincide. This method, to evaluate the surface for a given point E, was implemented
in a robust way, such that all possible configurations of triangles (A,B,C) and E are
handled in a consistent way as demonstrated in Section 7.4.1 and in Chapter 8.

Figure 7.10.: Measuring the distance from a triangle. The normal vector V is crucial
to determine on which side of triangle (A,B,C) the evaluation point E is
located.

5The vectors form a triangle and the cross product of them gives a perpendicular vector to the triangle’s
plain.

115

7. Fluid Flow with Nitsche’s Method

Figure 7.11.: Illustration of the intersection point of a triangle (A,B,C) surface and a
line segment (P1, P2).

At this point, we also mention, that it is important, that all triangles are oriented in
the same direction. For the example in Fig. 7.9, this implies that all normal vectors
point either inside or outside the sphere. If this is not respected, the geometry interface
functions will return inconsistent results.

In 3D, the computational overhead to determine the distance to a triangle is more
significant than in 2D for the polygons. Therefore, to reduce the number of triangles
that need to be considered becomes even more important. The employment of space-
trees in 3D would pay off even more significantly than in 2D. However, we employed
only a one cell tree implementation that, similar to 2D, creates a bounding box. If
the evaluation point E is outside this box, only the distance to this box is measured.
Since in many of our applications in 3D, the surface covers only a small part of the
computational mesh, and since we employ surfaces with less than a thousand triangles,
this approach already reduces the computational effort dramatically. A further increase
in performance of the geometry implementation could be expected if a full space-tree
would be implemented.

The second function in the geometry interface is the computation of intersection points
with a given line segment. This involves again the testing of several triangles for possible
intersection points. Similar to the previous function, we also employ the bounding box.
If both end points of a specified line segment are outside the bounding box and the line
segment is not intersecting this bounding box, there are surely no intersection points.
Otherwise, all triangles need to be tested for possible intersection points. To illustrate
the underlying methods, we consider the example in Fig. 7.11. The input line segment is
given by (P1, P2) and the triangle is defined by the points (A,B,C). Intersection point
I is computed by using the parametric description of the line (P1, P2)

I = P1 + t (P2− P1) , t ∈ R.

Point I must also satisfy the relation, which says that I lies within the plain of (A,B,C):

((B − A)× (C − A)) · (I − A) = 0.

116

7.1. Boundary Geometry Representation

In order to ensure, that I is on the line segment of (P1, P2), it must hold 0 6 t 6 1.
Further, I must be inside the triangle (A,B,C) as shown in Fig. 7.11. Only then, I is a
valid intersection point. This is simply tested by transforming the point I to barycentric
coordinates of the triangle. Then the test, if I is inside (A,B,C), is evaluated in a
straightforward manner.6

Similar to the polygon in 2D, triangular surfaces allow for the declarations and usage of
multiple nodal values and functions. Defining values on a boundary interface could have
multiple purposes. The most common purpose of this feature in our applications is to
specify non-homogeneous Dirichlet boundary conditions on immersed boundaries in 3D.

Code 14 Usage of the integrated triangular surface in Sundance. In the first line, the
surface is read from an external file. We further add scalar fields fx, fy, and fz that
can be used in a boundary integration context. Finally, we set the first scalar field of
the surface with a general expression expr and plot the surface.

//ParametrizedCurve triagSurf = new TriangleSurf3D("block.txt",1.0,1e-8);

ParametrizedCurve triagSurf

= TriangleSurf3D::importGTSSurface("sphere5.gts",1.0,1e-8);

triagSurf.addNewScalarField("fx" , 0.0);

triagSurf.addNewScalarField("fy" , 0.0);

triagSurf.addNewScalarField("fz" , 0.0);

Expr fx = new UserDefOp(List(x1,x2,x3), rcp(new CurveExpr(triagSurf,0)));

Expr fy = new UserDefOp(List(x1,x2,x3), rcp(new CurveExpr(triagSurf,1)));

Expr fz = new UserDefOp(List(x1,x2,x3), rcp(new CurveExpr(triagSurf,2)));

... Integral(OnCurve , -fx*vx - fy*vy - fz*vz , ...);

Expr ForceX = Integral(OnCurve , expr , ...);

FunctionalEvaluator ForceX_V(mesh , ForceX);

triagSurf.setSpaceValues(ForceX_V , 0);

triagSurf.writeToVTK("Surface_3D.vtk");

We illustrate the integration of the presented triangulated surface representation into
Sundance’s descriptive language by Code 14. This code starts with the initialization
of the surface that can be made from various formats. One can either use the internal
format or a standard format such as GTS7 and STL8. In the example of Code 14,
the file with the internal format is stored in a TXT file. In the next lines of code,
we define three scalar fields initialized with constant zero values. This is followed by
the declaration of the expressions fx, fy, and fz, which represent the nodal value’s
expressions. Analogously to the 2D polygon case, the expressions fx, fy, and fz can
be used in a boundary integral context, where in the corresponding lines, vx, vy, and
vz represent the test functions of the underlying problem. The nodal values of the

6By checking the ranges of the resulting barycentric coordinates.
7http://gts.sourceforge.net/samples.html
8http://www.ennex.com/ fabbers/StL.asp

117

7. Fluid Flow with Nitsche’s Method

triangular surface can either be set directly based on coordinates9 or based on a general
evaluable expression expr in Code 14. In the final line of the example, the surface is
plotted into a VTK file. During plotting, the scalar fields are bundled into vector fields.
The resulting plot is presented in Fig. 7.12

Figure 7.12.: Visualization of a closed triangular surface with a constant vector field.

7.2. Cut-Cell Quadrature

One of the necessities of IB methods, formulated in a weak form within Sundance is to
have the capabilities of cut-cell integrations. This consists of treating the intersected
cells in a special way by taking into account only the Ω part of each cell for the cell inte-
gration, whereas ΩF is ignored. Until now, we presented various features of the boundary
geometry implementations in 2D and 3D. In the following, we use these capabilities to
develop a cut-cell method in Sundance for 2D and 3D. We also show the integration of
the developed methods into the Sundance descriptive language. In all cases, the prob-
lem is restricted to the integration of an intersected cell. Therefore, in the following, we
consider only one cell (E) in 2D and in 3D to present the methods.

The basic idea of the cut-cell method is to decompose such an intersected cell E into
smaller subcells Ei, i = 1, . . . ,ME, (basic cells such as triangles or quadrilaterals in
2D and tetrahedrons, prisms, or bricks in 3D) until the computational domain inside E
denoted as E ∩Ω is represented exactly by these basic cells such that E ∩Ω = ∪i∈IEEi,
IE ⊂ {1, . . . ,ME}. On these basic cells, the quadrature of the basis functions (test and
unknown) can be done up to machine precision. The only detail to be defined is, how to
decompose E into basic cells. This will be discussed specifically for a given dimension
and geometry representation in Section 7.2.1 and Section 7.2.2.

9The geometry object offers access to the surface points and its nodal values as array.

118

7.2. Cut-Cell Quadrature

Next, we look at the quadrature of the basic cells inside E. For given quadrature points
xi,j and weights ωi,j on the subcells Ei ⊂ Ω and a given function f (e.g., basis function),
the quadrature is approximated as∫

E∩Ω

f(x)dx ≈
∑
i∈IE

∫
Ei

f(x)dx ≈
∑
i∈IE

Ni∑
j=1

ωi,jf(xi,j). (7.1)

Equation (7.1) provides a first quadrature rule on E ∩ Ω. In 3D, the number of basis
functions f and the quadrature points

∑
i∈IE Ni can become large. Therefore, we reduce

the number of quadrature points
∑

i∈IE Ni, such that Sundance can use a smaller con-
stant number of quadrature points for each intersected cell E. To reduce the number of
quadrature points has also a technical aspect: For one cell filter Sundance allows only
a constant number of quadrature points. This restriction is necessary to vectorize the
assembly process of the system matrix in Sundance and for the efficient usage of the
BLAS2 and BLAS3 routines.

To achieve this, we consider a set of geometry-independent quadrature points pk ∈ E,
1 ≤ k ≤ K, which are the quadrature points for cell E defined by a chosen quadrature
rule. With the rule, the integration of the Lagrange polynomials lk on E ∩ Ω results in
a quadrature rule

∫
E∩Ω

f(x)dx ≈
∑K

k=1 wkf(pk), where the new weights can be precom-
puted as

wk =
∑
i∈IE

Ni∑
j=1

ωi,jlk(xi,j). (7.2)

In (7.2), it is important that the quadrature rule on the Ei integrates all lk, k = 1, . . . , K,
exactly. Here, we note that the resulting weights wk, k = 1, . . . , K, are computed only
based on the geometry. We choose the Gauss-Lobatto [1] quadrature points pk ∈ E,
since this rule for a given order requires the same number of quadrature points and this
allows us to span the Lagrange polynomials lk, k = 1, . . . , K with the same order on
E. In the computation of the special quadrature weights wk, for a given basic cell Ei,
we use Gauss-Legendre [1] quadrature (for ωi,j) that, especially in 3D, uses considerably
less quadrature points than the corresponding Gauss-Lobatto rule.

This way, for each intersected cell E, we precompute the set of special weights wk, k =
1, .., K that is only used for E. Since one set of weights is specific to one cell and
only depends on the boundary geometry, these weights are stored in the mesh object.10

However, if the geometry is changed, all these weights need to be recomputed for all
intersected cells. The advantage of the proposed method is the separation of geometry
and function, such that quadrature weight precomputation is possible based only on the
geometry.

According to the method proposed above, the function f is integrated only over E∩Ω. If∫
E∩Ω

1dx�
∫
E

1dx, the method potentially could induce a numerical singularity in the

10The extension of the mesh interface for this purpose is marginal, therefore, it is not presented here.

119

7. Fluid Flow with Nitsche’s Method

system matrix since the area of E ∩ Ω is numerically zero. To avoid such singularities,
we use the weighting factors that we already introduced for the geometries (see also
Nitsche’s method in Chapter 4). These factors weigh the domains Ω and ΩF and we
denote them as α1 weighting Ω and α2 weighting ΩF . They are chosen by the user, since
they can be specific to applications. The integral with the weighting factors α1, α2 ≥ 0
is written as

α1

∫
E∩Ω

f(x) dx+ α2

∫
E\Ω

f(x) dx = (α1 − α2)

∫
E∩Ω

f(x) dx+ α2

∫
E

f(x) dx. (7.3)

From (7.3) results the computation of the modified weights wmk associated to the La-
grange polynomial lk

wmk = (α1 − α2)wk + α2

N∑
j=1

ωjlk(xj) = (α1 − α2)wk + α2

∫
E

lk(x) dx, (7.4)

where on the cell E, the polynomial lk is integrated up to machine precision with N
quadrature points. By using formula (7.4) on cell E, Ω has a weight of α1, and ΩF is
weighted by α2. In our applications, we set the weight factors usually to α1 = 1.0 and
α2 = 10−8.

Finally, we add a practical aspect to the developed method. In some cases, it is more
feasible to approximate the ΩF part of E. We denote the set of basic cells with E∩ΩF =
∪i∈I′EE

′
i , I

′
E ⊂ {1, . . . ,M

′
E}. Then, the weight wk is computed as

wk =

∫
E

lk (x) dx−
∑
i∈I′E

Ni∑
j=1

ωi,jlk(xi,j). (7.5)

In the following, we present the boundary discretization in 2D and 3D for the presented
curve and surface representations inside the cell E that consist of a decomposition of
E ∩ Ω or E ∩ ΩF into basic integrable cells. These basic cells are used in (7.2), (7.4),
and (7.5) to compute the modified weights wk, k = 1, . . . , K, which once computed can
be reused and stored in the mesh.

7.2.1. 2D Cut-Cell Integration Method

In the first step, we only consider the 2D general or analytical representation, where we
restrict ourselves to cases, where one cell is cut no more than twice and one edge is cut
no more than twice. These conditions define the regular case in 2D. These restrictions
are valid for all of the regular cases, or this case can be achieved by either additional
refinement of the mesh or simplifications. The general geometry representation includes
also the polygon in 2D and analytical curves.

120

7.2. Cut-Cell Quadrature

We start with the cell view of the problem illustrated for three cases in Fig. 7.13. The
represented cases are only meant to illustrate the main idea behind the cut-cell inte-
gration with general boundary representations. The intersection points on the edges of
the cell are given by the general geometry representation, and the geometry is approx-
imated by a line inside cell E. Inside a cell, the geometry is approximated by a line.
Therefore, we need at most one triangle and one quad cell to approximate the E ∩ Ω
part of E. On the left side of Fig. 7.13, even a single triangle T1 approximates ΩF . The
second case in Fig. 7.13 needs the triangle T1 and the quad cell Q1 to approximate Ω in
E. In Fig. 7.13 we show one irregular case that can occur even with relatively refined
meshes and with sharp boundary corners. Therefore, we treat this case accordingly, by
ignoring the edges that are intersected twice by the geometry. In such a way, the result-
ing approximation consists of a line, and E ∩ Ω is approximated by the triangle cell T1

and the quad cell Q1. Treating such irregular cases ensures the robust implementation
of the cut-cell method for complex geometries.

Figure 7.13.: Illustration of a cut-cell in a general geometry. The boundary of a general
or analytical geometry, marked with green color, is interpolated by a line
(black color) inside the intersected cell E. The first two cases (left middle)
represent regular cases, where there are only two intersection points in total.
The third case (right) is an irregular one with four intersection points that
is also approximated by a single line. Two intersection points on one edge
are simply ignored, transforming it into a regular case.

In general terms, the cut-cell method for general geometry representation simplifies the
irregular cases by ignoring the edges that are intersected twice. The resulting configura-
tion is a regular one that contains only two intersection points. Such a regular case can
always be decomposed in one triangle and one quad cell11 that are used for the special
weight computations.

11Or decomposed in one triangular cell.

121

7. Fluid Flow with Nitsche’s Method

2D Cut-Cell Integration Method for Polygons

The developed 2D cut-cell method for general and analytical geometry representation
also fits for polygons. However, for polygons, we developed a special cut-cell method
that takes into consideration the underlying geometry representation. Assuming, that a
polygon represents a realistic scenario by fulfilling the cone condition [21], the polygon
cuts a cell at most four times. Cases when a cell is intersected more than four times are
ignored here. For these cases, additional mesh refinements are required.

Knowing, that the underlying geometry is a polygon, we can acquire the polygon’s points
that are inside a given cell E. The polygon has been extended with this functionality
that does not cost additional computational overhead.12 With this information, the cut-
cell integration can be computed with up to machine precision as illustrated by the three
cases in Fig. 7.14. By using the polygon’s points inside cell E, one can decompose E∩Ω
or E∩ΩF into a set of triangles, quads, and trapezoid cells. In the first case of Fig. 7.14,
E ∩ Ω is represented by the triangle T1 and by the trapezoidal cells Tr1 and Tr2. The
second case approximates E∩ΩF with two trapezoidal cells, and by using formula (7.5),
one can also approximate E ∩ Ω. The third example in Fig. 7.14 represents a case with

Figure 7.14.: Illustration of cut-cell method for polygon. The first two cases (left and
middle) represent cases with two intersection points, where E ∩ Ω or E ∩
ΩF is approximated by a set of triangle and trapezoid cells. The third
case (right) shows a case with four intersection points that is also treated
accordingly.

four intersection points.13 By using the intersection points and the polygon’s internal
points, these cases can also be handled accordingly, by decomposing E∩Ω into quad cell
Q1 and trapezoidal cells Tr1 and Tr2. The triangle cell T1 suggests that the cell above
can also be integrated up to numerical precision, as the geometry is not approximated

12In the polygon setup phase, each point gets an assigned cell LID, and the points that are not on the
mesh domain will have -1 associated LID.

13was an irregular case previously.

122

7.2. Cut-Cell Quadrature

by only one line.

In general, the set of basic cells to represent E∩Ω or E∩ΩF can be found by projecting
the polygon’s points to one of cell’s edges in x- or y-direction. This edge has to be
chosen such that the projected polygon points represent a monotone increase in the
edge’s direction. This monotony condition for the x-direction is fulfilled in the left and
right case in Fig. 7.14, whereas the y-direction fulfills this condition in the middle case
of Fig. 7.14. Therefore, the projections are made according to this criterion. Once
such an edge is found, the projected points with the polygon’s and intersection points
form the basic cells that represent the decomposition. If none of the edges satisfies this
monotony condition, as a default an edge in the x-direction is chosen as projection edge.
This approach gives wrong integration results only with multiple sharp edges within a
cell that can be resolved by additional mesh refinement.

The robust implementation of the cut-cell method for polygons will be demonstrated for
various applications in Section 7.4.1 and Chapter 8.

7.2.2. 3D Cut-Cell Integration Method

Similar to the polygon specific cut-cell method in 2D, one can implement a triangular
surface based cut-cell method. This would imply the implicit usage of the triangles’
points and the treatment of all possible intersection cases. In 3D, the intersection con-
figuration can occur, where the geometry intersects only a surface and none of the edges
of the cell. In addition, all the possible intersections of the edges should be treated sim-
ilar to the Marching Cubes Method [63]. Due to the complexity of such a triangulation
specific integration, we treat in 3D all geometry representation in the same way and do
not use geometry specific information as we do in 2D for polygons. The main goal is
here to have a robust approximation method of the cut-cell integration in 3D, such that
all possible cases are treated and no breakdown of the simulation happens.

We only consider cases where a given cell’s edges are intersected by the geometry. The
intersection points are the main information to approximate the E ∩ Ω part of the
cell. Similar to the 2D case, if an edge is intersected twice, these two intersection
points are ignored. If a face (quad) of a cell is intersected more than twice, further
simplifications are necessary, such that an approximation of the intersection surface can
be determined. An intersected cell that fulfills the conditions above we call regular
case in 3D. Once having all the intersection points of the edges, the intersection surface
needs to be determined. This intersection surface is illustrated in Fig. 7.4 for one possible
configuration of intersection points.

We approximate the intersection surface with simplex cells. Therefore, a triangulation
of this surface is necessary. The triangulation inside a brick cell has its restrictions, since
the intersection points need to be connected along the side faces of the brick cell, such

123

7. Fluid Flow with Nitsche’s Method

Figure 7.15.: Illustration of one possible intersection point configuration in 3D (left).
The intersection surface is approximated by the blue surface (right). Such
an intersection surface needs to be triangulated in the first step.

that the intersection surface is represented accurately. Since we consider only the regular
cases, a cell can have at most six intersection points and at least three. Therefore, the
number of resulting triangles varies from one to four. Possible intersection configurations
and the resulting triangular surfaces are presented in Fig. 7.16. The first step towards
the triangulation is to form a closed polygon with the intersection points, where the lines
have to be contained in the cell’s edges. Once this polygon is formed, the next step is to
form a triangulation out of this polygon that can be done in a straightforward manner as
shown in Fig. 7.16. The resulting triangulation is further used in the boundary integral
that is discussed in Section 7.3.

For the cut-cell integration, we need to decompose E∩Ω into basic 3D cells. This method
is more complex than in 2D with polygons, where the intersection and polygon’s points
are projected to one of the cell’s faces. In 3D, the triangulation with the intersection
points needs to be projected to one of the cell’s faces in the directions (x, y), (x, z),
and (y, z). The criterion for the chosen face is that the projection should result in a
non-overlapping set of cells. Since we are not considering any internal points, there is
always a projection face that satisfies this criterion. This face can be chosen based on
the edges that are intersected. If we consider the top left example in Fig. 7.16, we notice,
that this surface can be projected to any of the faces, since edges which are orthogonal
to the given face have been intersected. Considering the top-right case in Fig. 7.16,
we can state similarly, that the resulting triangulated surface can be projected in both
(y, z) and (x, z), but it should not be projected on one of the (x, y) faces, because it
does not intersect any edge that is orthogonal to these faces. For the bottom-left and
bottom-right example, we can apply the same criterion. These surfaces can be projected
to any of the faces, since they intersect edges that are orthogonal to these faces. This
observed rule is applied to all intersected cells in order to determine the projection face,
where the intersection points and the intersection surface is projected to.

The next step is to build a decomposition of the cell to approximate E ∩ Ω or E ∩ ΩF ,
based on the projected intersection surface. Previously, we showed how the intersection

124

7.2. Cut-Cell Quadrature

Figure 7.16.: Illustration of possible intersection configuration of the brick cell. The
resulting triangulation is also shown, where the triangles are denoted by
T1, . . . , Tn. It is important that the triangulated surface represents the
intersection surface consistently. The number of triangles n varies from
one to four.

points and the resulting triangulation of the intersection surface of the cell get mapped
to one chosen face. Using the mapped points, the goal is to build basic cells in this
plain that cover the face. This process is illustrated on the left side of Fig. 7.17, where
the blue circles represent the intersection points from the top-right example of Fig. 7.16.
The intersection points are projected to the (x, y) face, and are marked by green colored
circles. In addition to the projected points, one corner point is required to complete the
E ∩ Ω part of the intersected cell. This additional point and its projection are marked
also with green circles. In such a way, the intersection points with their projections and
with the additional points form three basic cells: one tetrahedron and two prism cells,
which can be integrated up to machine precision.

This idea of constructing basic 3D cells from the plane projection and additional points
can be generalized. Once these basic 3D cells are constructed, the last step in the 3D cut-
cell method is the integration of these cells according to the presented equations (7.2),
(7.4) and (7.5).

125

7. Fluid Flow with Nitsche’s Method

Figure 7.17.: Illustration of the E ∩ Ω decomposition into basic cells. This figure il-
lustrates the decomposition of the example in Fig. 7.16 (top-right). The
triangular surface is projected to the (x, y) face resulting in three basic
cells: one tetrahedron T1 and two prism cells P1 and P2. The green points
represent the projected points and the points that are needed to make these
cells complete.

7.2.3. Cut-Cell Integration Methods in Sundance

In this section, we illustrate the integration of the developed cut-cell methods in 2D
and 3D into Sundance’s descriptive language. We do not focus on the software design
challenges that we faced by the integration of these cut-cell methods into the simulation
pipeline of Sundance (presented in Chapter 5), but only on the developed user interfaces
of the implemented methods in Sundance.

In Code 15, we illustrate the usage of the presented cut-cell methods for 2D. The first
geometry created is an analytical representation, whereas the second one is a polygon
created from an external file. First, we initialize a cell filter that selects only the in-
tersected cells, such that the non-intersected cells can be integrated in a more efficient
way. Then, we create the Gauss-Lobatto quadrature rule that allows for the usage of the
developed methods. In the last two lines of Code 15, we define the cut-cell integrals by
specifying this particular quadrature and the geometry. It is crucial, that the geometry
appears as last argument in the integral object, otherwise it means a ’regular’ integral
over the selected cells. The integral computed by this method is

∫
E∩Ω
∇u∇v dx, where

u is an unknown function and v is a test function. In 3D, the usage of the developed
cut-cell methods is done in a similar way as shown in Code 16. A triangular surface is
initialized from an external file. With the Gauss-Lobatto quadrature rule, it is input
argument for the Integral constructor, selecting the cut-cell method for the intersected
cells in 3D.

126

7.3. Curve and Surface Integrals

Code 15 Illustration of the cut-cell method integration into Sundance’s descriptive
language for 2D. After the two types of geometries are created, we initialize the cell
filters to select only the intersected cells. In the last two lines, we define the cut-cell
integration by specifying the quadrature method and the geometry as last arguments.

ParametrizedCurve circle = new Circle(0.5,0.5,0.2,1.0,1e-7);

ParametrizedCurve polygon = new Polygon2D("polygon.txt",1.0,1e-7);

CellFilter Omega = new MaximalCellFilter();

CellPredicate circleON = new CellCurvePredicate(circle , On_Curve);

CellFilter OnCircle = Omega.subset(circleON);

CellPredicate polygonON = new CellCurvePredicate(polygon , On_Curve);

CellFilter OnPolygon = Omega.subset(polygonON);

QuadratureFamily quad_hi = new GaussLobattoQuadrature(6);

Expr eqnC = Integral(OnCircle,(grad*u)*(grad*v),quad_hi,circle);

Expr eqnP = Integral(OnPolygon,(grad*u)*(grad*v),quad_hi,polygon);

Code 16 Illustration of the cut-cell method integration into Sundance’s descriptive
language for 3D. The cut-cell method is used for a triangular surface by specifying the
geometry and the quadrature method as last arguments in the Integral’s constructor.

ParametrizedCurve geometry = new TriangleSurf3D("cylinder.txt",1,1e-8);

CellFilter Omega = new MaximalCellFilter();

CellPredicate geometryON = new CellCurvePredicate(geometry,On_Curve);

CellFilter OnGeometry = Omega.subset(geometryON);

QuadratureFamily quad_hi = new GaussLobattoQuadrature(6);

Expr eqnG = Integral(OnGeometry,(grad*u)*(grad*v),quad_hi,geometry);

7.3. Curve and Surface Integrals

The next requirement for IB methods, which are formulated in a weak form, is the
capability to compute boundary integrals. In the IB case, the boundary is inside a given
intersected cell E. This approximation of the boundary must be the same as the one
used for the cut-cell method! This assures the implementational consistency of a given
IB method. For the Navier-Stokes equations, an inconsistent approach leads to distorted
boundary solutions.

Thus, we use the same boundary discretization that we presented for the cut-cell method
in 2D and 3D. The main idea is again, to decompose the boundary inside a given cell E
in such a way, that the boundary inside E, denoted by ΓE, is given by ΓE = ∩i∈KE

Bi,
where KE ⊂ {1, . . . , LE} is the set of basic cells containing LE elements. With this

127

7. Fluid Flow with Nitsche’s Method

approximation, the boundary integral can be written as∮
f (c) dc ≈

∑
i∈KE

∮
Bi

f (c) dc ≈
∑
i∈KE

N∑
j

ωi,jf (ci,j) . (7.6)

Formula (7.6) requires LE × N quadrature points, where, with N quadrature points,
f is integrated on Bi exactly. Similar to the cut-cell methods there is the possibil-
ity to reduce the number of quadrature points by geometry-dependent precomputation
of weights. However, for general boundary integrals, which can contain normal vector
expressions, this turns out to be complicated. In addition, there might be specific expres-
sions that need to be evaluated in the neighborhood of the boundary (e.g., nodal values
of a triangular surface). Therefore, for each intersected cell, we store LE×N quadrature
points. We also point out, that, in contrast to the cut-cell method’s decomposition, the
boundary integrals always decompose the boundary into simplex cells, where the maxi-
mal number of simplex cells within E is small. Therefore, we can use the same number
of quadrature points for the boundary integral on any intersected cell. We recall, that a
constant number of quadrature point is required by the Sundance assembly process. In
addition, normal vector components might be required for specific boundary integrals
and need to be computed. The quadrature points for the boundary integrals and the
corresponding normal vector components are stored in the mesh object. The only im-
portant detail that remains to be solved is to find the discretization of the boundary
ΓE = ∩i∈KE

Bi. This is specific to dimensions and to geometry representation. In the
following, we present discretizations of the boundary for 2D and 3D.

7.3.1. 2D Curve Integration

In 2D, we reuse the discretization that we already presented for the cut-cell method for
the boundary integration. For analytical or general boundary representation, the curve
is always approximated by a line within an intersected cell E as shown in Fig. 7.13.
This discretization is illustrated on the left side of Fig. 7.18, where a given function
f needs to be integrated only along the illustrated line segment. Therefore, for such
boundary integrals, any quadrature rule might be used that allows for the integration
on a line. The normal vector per definition is pointing outwards of Ω, and is constant
for the quadrature points on this line.

However, if the geometry is represented by a polygon, we use the consistent represen-
tation from the cut-cell method. This boundary discretization is shown on the right
side of Fig. 7.18, where the boundary is discretized with a set of line segments. Each
line segment can be integrated exactly. The only question left open is, how many line
segments can be inside a cell. The number of line segment varies among the intersected
cells and depends on the resolution difference between the mesh and the polygon. Since
the number of quadrature points has to be constant for each intersected cell, we limit the
maximal number of line segments. This number can be set by the user and is denoted

128

7.3. Curve and Surface Integrals

by LE. If a cell contains l < LE line segments, the quadrature weights ωi,j of the last
LE − l line segments are set to zero. In this way, only the first l line segments are taken
into consideration. In addition, for each line segment, the corresponding normal vector
is computed as illustrated in Fig. 7.18.

Figure 7.18.: Illustration of the boundary integration in 2D. For analytical or general ge-
ometry representations we discretize the boundary as a line segment (left),
whereas with polygons (right), we integrate each line segment within the
cell. The normal vectors n are pointing outwards of Ω.

7.3.2. 3D Surface Integration

For the 3D boundary integral, we recall the triangular surface discretization from the 3D
cut-cell method. We use the same boundary discretization in 3D for the surface integrals,
and the simplex cells are triangles. In the presented boundary discretization, the number
of triangles varies from one to four for the regular cases. Similar to the polygon curve

Figure 7.19.: Two examples of the boundary surface integration in 3D. The intersection
points form a triangulated surface T1, . . . , Tl, l < 5 that represents the
boundary surface. Each triangle has its own normal vector n.

quadrature, we use a constant number of quadrature points for intersected cells. LE = 4

129

7. Fluid Flow with Nitsche’s Method

is set to the maximum number of triangles. If a cell has less than four triangles l < 4
as intersection surface, the quadrature weights ωi,j of the last 4 − l triangles are set
to zero. For 3D surface integrals, the normal vectors also need to be computed and
stored for each quadrature point. Such a normal vector is constant for a given triangle
as illustrated for two cases in Fig. 7.19.

7.3.3. Curve and Surface Integral Implementations in Sundance

The developed boundary integral methods have been integrated into Sundance. In this
section, we focus solely on the integration of the developed methods into the problem de-
scription language of the toolbox. The software design challenges to integrate modularly
these capabilities into the assembly process of the matrix are not presented here. In all
cases, the key step to trigger boundary integrals is the usage of the ParamCurveIntegral
class that wraps a given geometry object as illustrated in Code 17. In the following, we
present code sections that use the presented boundary integrals to compute

∮
(n∇u) vdc,

where u is the unknown function, v the test function, and n is the normal vector. The
usage of the normal vector as an expression has also been accomplished. The user can
access the components of the normal vector by the CurveNormExpr() object specifying
the dimension index in the constructor.

Code 17 Sundance code of the 2D boundary integral with analytical geometry repre-
sentation.
ParametrizedCurve circle = new Circle(0.5,0.5,0.2,1.0,1e-7);

ParametrizedCurve circleBInt = new ParamCurveIntegral(circle);

CellFilter Omega = new MaximalCellFilter();

CellPredicate circleON = new CellCurvePredicate(circle , On_Curve);

CellFilter OnCircle = Omega.subset(circleON);

QuadratureFamily quad_c = new GaussianQuadrature(4);

Expr nx = new CurveNormExpr(0);

Expr ny = new CurveNormExpr(1);

Expr eqnC = Integral(OnCircle,nx*(dx*u)*v+ny*(dy*u)*v,quad_c,circleBInt);

For general or analytical geometry representations in 2D, one can use any given quadra-
ture class, since the boundary inside a cell is approximated by a single line. The cor-
responding user code is shown in Code 17. The structure of the user code is similar
for all three boundary integral methods. In the first two lines, the geometry and the
corresponding wrapper ParamCurveIntegral are created. Once the cell filter for the
intersected cell is created, we further declare a quadrature rule for the boundary integral
that, in this case, can be any accessible quadrature rule. Next, we create the expres-
sions that represent the normal vector’s components. In the last line of Code 17, we
create the boundary integral object. It is crucial, that, as last argument, we specify a

130

7.3. Curve and Surface Integrals

ParamCurveIntegral wrapper object of the given geometry. This determines, that this
is a boundary integral and not a cut-cell integral.

Code 18 Sundance code of the 2D boundary integral with a polygon. For this case, one
needs to use the special quadrature method PolygonQuadrature.

ParametrizedCurve polygon = new Polygon2D("polygon.txt",1.0,1e-7);

ParametrizedCurve polygonInt = new ParamCurveIntegral(polygon);

CellFilter Omega = new MaximalCellFilter();

CellPredicate polygonON = new CellCurvePredicate(polygon , On_Curve);

CellFilter OnPolygon = Omega.subset(polygonON);

QuadratureFamily quad_g = new GaussianQuadrature(4);

QuadratureFamily quad_c = new PolygonQuadrature(quad_g);

PolygonQuadrature::setNrMaxLinePerCell(10);

Expr nx = new CurveNormExpr(0);

Expr ny = new CurveNormExpr(1);

Expr eqnC = Integral(OnPolygon,nx*(dx*u)*v+ny*(dy*u)*v,quad_c,polygonInt);

Code 19 Sundance code of the 3D surface integral, where one needs to use the special
quadrature class SurfQuadrature.

ParametrizedCurve geometry = new TriangleSurf3D("cylinder.txt",1,1e-8);

ParametrizedCurve geometrySInt = new ParamCurveIntegral(geometry);

CellFilter Omega = new MaximalCellFilter();

CellPredicate geometryON = new CellCurvePredicate(geometry , On_Curve);

CellFilter OnGeometry = Omega.subset(geometryON);

QuadratureFamily quad_g = new GaussianQuadrature(4);

QuadratureFamily quad_s = new SurfQuadrature(quad_g);

Expr nx = new CurveNormExpr(0);

Expr ny = new CurveNormExpr(1);

Expr nz = new CurveNormExpr(2);

Expr eqnC = Integral(OnGeometry,

nx*(dx*u)*v+ny*(dy*u)*v+nz*(dz*u)*v,quad_s,geometrySInt);

For a polygon geometry representation, the user code is shown in Code 18. The main
difference to the previous code is the usage of the PolygonQuadrature quadrature class.
This is a wrapper class for a quadrature rule that provides the quadrature rule for a
line segment of the polygon, and implements the presented boundary integration for
polygons. The user has the option to specify the maximum number of line segments
within a cell by calling PolygonQuadrature :: setNrMaxLinePerCell(10). By default
this is set to six14 and it is important that the user sets it to the correct maximal value.
If, within a cell, there are more line segments than the specified one, it results in the

14Assuming that the mesh and the polygon have similar resolutions.

131

7. Fluid Flow with Nitsche’s Method

breakdown of the simulation. For 3D, the user code is presented in Code 19, where,
for the same boundary integration, one additional component nz of the normal vector
is needed. In addition, a special quadrature class SurfQuadrature needs to be used
that wraps a quadrature class and uses its quadrature points for each triangle in the
boundary surface.

7.4. Fluid Flow Benchmark Results

In the last section of this chapter, we demonstrate the capabilities of the presented cut-
cell and boundary integral methods by applying them within the Sundance PDE toolbox
to Nitsche’s method for the Navier-Stokes equations. (We used these capabilities in the
boundary error convergence analysis of the Poisson in Tab. 4.1, where we achieved second
order accuracy on the boundary.)

Nitsche’s method is a consistent method to impose a given Dirichlet boundary condition.
In the fluid simulation, this is the most common type of boundary conditions. One
way to verify the method and its presented implementation is to compute the 2D and
3D benchmark scenarios in [80]. These scenarios describe a channel flow, where the
upwind part of the channel contains an obstacle. The benchmark values are computed
on the boundary of this obstacle and are mainly represented by lift and drag coefficients.
Since these values are computed on the boundary, the consistent imposition of the BC
is crucial. Our tests showed, that an inconsistent method such as the penalty type
methods result in similar flow fields as the ones with Nitsche’s method, but the boundary
benchmark values, especially the lift and drag coefficients are distorted. With the outlook
to fluid-structure interaction, the lift and drag forces on the boundary are crucial for
a consistent coupling of the fluid and structure. For more details on the benchmark
scenario descriptions in 2D and 3D, transient and stationary, we refer to [80].

Nitsche’s method for the Navier-Stokes-equation has been introduced in this thesis by
Equation (4.23) in Chapter 4. Here, we restate this equation in the same form in order
to illustrate the integrated method’s usability. The velocity unknown and test functions
are denoted by v and ψ respectively, whereas p and ξ denote the pressure unknown and
test functions. Ω represents the computational domain and Γ is the boundary, where
the g Dirichlet BC for the velocity is imposed on. On the discrete spaces Vh × Zh, the
equation has the form

a(u, φ) := ν (∇v,∇ψ)Ω + ((v · ∇)v, ψ)Ω − (p,∇ · ψ)Ω + (∇ · v, ξ)Ω ,

c(u, ψ) := −ν〈∂nv, ψ〉Γ + 〈pn, ψ〉Γ , ĉ(v, φ) := −ν〈∂nψ, v〉Γ − 〈ξn, v〉Γ,

132

7.4. Fluid Flow Benchmark Results

with u = (u, p) and φ = (ψ, ξ).

a(uh, φh) + c(uh, ψh) + ĉ(vh, φh) + ν
γ1

h
〈vh, ψh〉Γ +

γ2

h
〈vh · n, ψh · n〉Γ

= (f, ψh)Ω + ĉ(g, φh) + ν
γ1

h
〈g, ψh〉Γ +

γ2

h
〈g · n, ψh · n〉Γ ∀ φh ∈ Vh × Zh. (4.23)

In Equation (4.23), the volume and boundary integrals are separated. Since the terms
in (4.23) are computed on a Cartesian mesh with immersed boundaries, the developed
cut-cell and boundary integral methods are deployed within Sundance. The implemen-
tation of complex formulas, such as Equation (4.23), is surprisingly easy within the
Sundance toolbox with the added capabilities. The user code for Nitsche’s method is
shown in Appendix A.4 for the benchmark scenarios.

7.4.1. 2D Benchmark Results

Stationary Case

In a first step, to demonstrate the capability of Nitsche’s method in fluid mechanics,
we set up a stationary scenario, called 2D-1 that is described in [80]. The results with
the presented methods have been published in our previous work [19]. This stationary
benchmark scenario consists of a channel flow with Re = 20 and a cylinder obstacle in
the middle as shown in Fig. 7.20. We discretized the cylinder by a polygon containing 63
line segments. For the spatial discretization, we use Q2Q1 elements that are quadratic
for the velocities and bilinear for the pressure. In the computations, as described in the
previous section, we use the cut-cell and boundary integrations for the polygon. The
stationary flow field is presented in Fig. 7.20 together with the adaptive Cartesian mesh.
We use the feature of the developed Cartesian mesh within Sundance to deactivate the
cells that are completely within ΩF . The pressure field is smooth also at the boundaries,
as it can be seen in Fig. 7.20. A penalty method would enforce the Dirichlet BC for
velocities on Γ, but it would trigger various artifacts in the pressure field in the vicinity
of Γ that would lead to incorrect lift and drag forces on this boundary.

We compute the benchmark lift and drag coefficients. The underlying lift and drag forces
can be computed in two different ways. The first approach is the classic one that uses
the curve integral over the boundary Γ of the cylinder [80],

Fφ =

∮
Γ

φ · σ(u) · n dS(x), (7.7)

where σ(u) = 2νε(v)− pI is the stress tensor, ε(v) = 1
2
(∇v +∇v T) is the strain tensor,

and φ is a unit vector pointing in force direction. This way, (7.7) with φ = (1, 0)T

becomes the drag force integral and with φ = (0, 1)T the lift force integral is computed,
since the inflow velocity of the channel is only in the x-direction. Further, n denotes the

133

7. Fluid Flow with Nitsche’s Method

Figure 7.20.: Illustration of the adaptive Cartesian mesh (top left) with 221 × 42 cells
and refined in a rectangular area around the cylinder. The Dirichlet zero
BC is imposed on the polygon (top right). The pressure field is smooth
also near the boundary (bottom).

outward unit normal vector of the cylinder. The second approach is described in [36]. It
transforms the integral (7.7) into a volume integral. This approach proves to be more
stable, since it is not influenced by local errors on the boundary:

Fφ = −
∫

Ω

[((v · ∇)v − f) · Φ− p∇ · Φ + 2νε(v) : ε(Φ)] dx,

where Φ is a smooth extension of the vector φ such that Φ|Γ = φ and Φ|∂Ω\Γ = 0. This
approach can only be used for the total force integrals that can be limitedly applied for
fluid-structure interaction. Therefore, our main focus is on the first approach.

One important aspect of Nitsche’s method is the choice of the penalty parameters γ1 and
γ2 that weigh the stabilization terms. We are not aware of any publication that estimates
these penalty coefficients for the Navier-Stokes equations. Therefore, we calculated this
scenario with several parameter values and resolutions. We made two different conver-
gence analysis for γ1 = γ2 = 103 and for γ1 = γ2 = 104. For each setup, we computed
the lift and drag coefficients with the two described approaches. The resulting values are
presented in Tab. 7.1. For the first case (γ1 = γ2 = 103), the volume integrals converge
to the reference interval, the lift value of the curve integral for the finest resolution still
has around three percent relative error. In the second case (with γ1 = γ2 = 104), both

134

7.4. Fluid Flow Benchmark Results

γ1 = γ2 = 103 DragV LiftV DragC LiftC
111× 21 5.57919 0.012239 5.56063 0.0152477
221× 42 5.57935 0.010597 5.57857 0.0098645
441× 81 5.57935 0.010622 5.58070 0.0102580

Reference values [16] 5.579535 0.0106189 5.579535 0.0106189
Reference intervals [80] 5.57− 5.59 0.0104− 0.0110 5.57− 5.59 0.0104− 0.0110

γ1 = γ2 = 104 DragV LiftV DragC LiftC
111× 21 5.57936 0.0120811 5.57367 0.0171845
221× 42 5.57936 0.0105961 5.57805 0.0105291
441× 81 5.57936 0.0106214 5.57801 0.0110584

Reference values [16] 5.579535 0.0106189 5.579535 0.0106189
Reference intervals [80] 5.57− 5.59 0.0104− 0.0110 5.57− 5.59 0.0104− 0.0110

Table 7.1.: Results of the 2D-1 benchmark computations. The values in the columns
“DragV” and “LiftV” are the drag and lift coefficients computed with the
volume integrals on Ω. The values in the columns“DragC”and“LiftC’ are the
drag and lift values computed by the direct curve integrals on the boundary
Γ of the cylinder.

approaches show a more stable convergence and result in benchmark values, which are
either inside or near the reference interval specified in [80]. We further observe that
for higher penalty coefficients the volume integral’s results are almost identical to the
previous case, which also show that the volume integrals are a more stable approach
to compute the global lift and drag forces. The presented results were computed on a
desktop quad-code Intel i7 2.9GHz machine. Even for the highest resolution, the runtime
was only a couple of minutes. The Sundance code for this stationary scenario can be
found in Appendix A.4.

Transient Case

In the following, we compute a 2D transient benchmark scenario, called 2D-2 in [80].
In comparison to the previous scenario, the inflow velocity is increased (Re = 100),
such that Karman vortices are created during this simulation. The governing equation
is the same (Equation (4.23)), except that the time derivative vn+1−vn

∆t
ψ is added. The

resulting equation’s time discretization is handled by the Crank-Nicolson scheme. In
this transient case, the velocity field is fluctuating as the different snapshots in Fig. 7.21
show. In the same manner, the resulting drift and lift coefficients are time dependent
and also show an oscillating behavior (Fig. 7.22). In this case, the benchmark values
are the maximum values of the drag and lift coefficients and the Strouhal number that
represents the oscillation frequency of the drag and lift forces. For the transient com-
putations, we choose a lower penalty number since the Dirichlet BC is enforced in each
time step continuously. In Tab. 7.2, we present the results and compare them to the
benchmark intervals from [80]. The discrete time step for all the simulations was set

135

7. Fluid Flow with Nitsche’s Method

Figure 7.21.: The velocity field of the transient scenario plotted at different time steps.

Figure 7.22.: Time-dependent drag coefficient of the 2D-2 transient benchmark scenario.
Time is given in seconds.

to 10−3. Since, for a complete simulation, at least 6000 time steps were necessary, we
used a lower resolution in comparison to the stationary case. Even with such lower
spatial resolution, the maximal lift and drag coefficients are either inside or near15 the
benchmark intervals [80]. The computed Strouhal number also matches the benchmark
value, and the time variant behavior of the simulated system proved to be accurate. The
Sundance code for this transient simulation can be found in Appendix A.4.

15less than 2% relative error

136

7.4. Fluid Flow Benchmark Results

γ1 = γ2 = 2 · 102 DragV LiftV DragC LiftC St
111× 21 3.2295 0.9841 3.2188 0.9861 0.3020
150× 26 3.2300 0.9855 3.2252 0.9880 0.3004

Reference intervals [80] 3.22-3.24 0.99-1.01 3.22-3.24 0.99-1.01 0.295-0.305

Table 7.2.: Results of the 2D transient simulation. DragV and LiftV represent the
maximum values of the drag and lift coefficients over the time computed by
the volume integrals, whereas DragC and LiftC are the drag and lift values
computed by the curve integrals on Γ.

7.4.2. 3D Benchmark Results

In 3D, we compute a stationary benchmark scenario from [80] called 3D-1Z. The scenario
is a 3D channel flow (with Re = 20), where, in the middle of the channel, a cylinder
obstacle is placed as illustrated in Fig. 7.23. Since the cylinder is slightly in the lower
part of the channel, similar to the stationary 2D scenario, a small positive lift value is
expected. For more details about the scenario, we refer to [80]. The cylinder obstacle
is modeled by a surface with 40 triangles. Nitsche’s method in 3D has the same form
as presented in (4.23). In 3D, we compute the lift and drag forces by the surface inte-
gral (7.7), where the vector φ has three components. φ = (1, 0, 0)T is used for the drag
integration, whereas φ = (0, 1, 0)T results in the lift force integration. In order to fulfill
the inf-sup condition (see Chapter 3), we choose the Q2 basis for the velocities and Q1

for the pressure. The resulting Q2Q1 element in 3D requires 89 local DoFs. Therefore,
we also employed a stabilized Q1Q1 element, described in Chapter 3. Such a Q1Q1 sta-
bilized element needs only 32 local DoFs, and thus, allows for more mesh refinement in
3D compared to the Q2Q1 element.

Figure 7.23.: Stationary 3D benchmark, computed with a Q1Q1 element. The obstacle
in the channel flow is represented by a triangulated surface.

137

7. Fluid Flow with Nitsche’s Method

We computed the 3D benchmark scenario with both types of elements. The results
are shown in Tab. 7.3. With the stabilized Q1Q1 elements, we were able to achieve
considerably higher spatial resolution, than with the Q2Q1 elements. The limiting factor
is not just the total number of DoFs, but also the assembly of the system matrix that
becomes more here compared to 2D. The convergence results in Tab. 7.3 show that with

Q1Q1, γ1 = γ2 = 102 DragC LiftC #Cells
40× 13× 13, l = 1 6.100 0.021 18916
20× 7× 7, l = 2 5.810 0.077 25764
22× 8× 8, l = 2 6.053 0.071 32783

Reference intervals [80] 6.05 - 6.25 0.008-0.01

Q2Q1, γ1 = γ2 = 5 · 102 DragC LiftC #Cells
25× 10× 10, l = 1 5.539 -0.107 2502
27× 11× 11, l = 1 6.000 0.078 7624
26× 12× 12, l = 1 6.021 0.432 9113

Reference intervals [80] 6.05 - 6.25 0.008-0.01

Table 7.3.: Results of the 3D stationary benchmark computations. DragC and LiftC
represent the coefficients computed by the surface integrals. The first table
contains the stabilized Q1Q1 elements’ results, whereas the lower table shows
the results with Q2Q1 elements. Besides the initial spatial resolution, l repre-
sents the number of additional refinement levels around the cylinder obstacle
as shown in Fig. 7.23.

the stabilized Q1Q1 elements the resulting drag coefficients correspond to the benchmark
interval, whereas the lift coefficients miss the reference interval slightly. For the Q2Q1

elements, even though only 9113 cells could be computed, the resulting drag coefficient
differs from the lower bound of the interval only at the third digit. The lift coefficient
has the same sign as the benchmark value, but the error is larger in comparison to the
previous results. This is due to the low mesh resolution. From the results in Tab. 7.3, we
can conclude that the developed cut-cell and boundary integral methods in 3D applied
to Nitsche’s method perform well and were capable to compute benchmark values for
the Navier-Stokes equations. The Sundance code for this 3D stationary scenario can be
found in Appendix A.4.

138

8. Fluid-Structure Interaction with
Nitsche’s Method

In this chapter, we extend the approach from the previous chapter to fluid-structure
interaction problems. Since Nitsche’s method with our IB implementation has been ver-
ified in the last chapter for stationary geometries, the first step is to extend our approach
also to moving boundaries. The required extensions of Nitsche’s method and Sundance
are discussed in the first section. The next step towards a FSI simulation is the cou-
pling of the Lagrangian and Eulerian frameworks. It has been shown in Chapter 3 that
the fluid flow is modeled in the Eulerian framework, whereas the structure is computed
efficiently in the Lagrangian framework.1 In order to bridge the gap between these two
settings, we develop the construct of twin polygons and twin triangular surfaces.
These constructs facilitate the mapping between the Eulerian and Lagrangian frame-
works. A similar approach has also been employed in the coupling research software
preCICE2 [25, 26] that can couple two solvers in their original Eulerian or Lagrangian
settings. We use these developed features in Sundance to simulate various FSI scenarios,
where both the structure and the fluid equation are set up in Sundance, but the coupling
is done with implicit or explicit partitioned approach. Our approach to use Nitsche’s
method in an IB context for FSI problems appears to be unique in the literature. There-
fore, we compute several 2D benchmark scenarios in order to verify our approach. The
presented simulation results in 2D and 3D demonstrate the true potentials of Nitsche’s
method for FSI applications, since they allow for the usage of a fixed Cartesian mesh
for the fluid, where the Dirichlet BCs are imposed on IBs.

8.1. Moving Geometries with Nitsche’s Method in 2D
and 3D

Transient FSI scenarios require the fluid solver to handle moving boundaries in the flow
field. In order to show the challenges with moving boundaries, we consider the 2D
illustration in Fig. 8.1. The boundary is represented by a circle that is moving in the
flow direction. We assume that we have a solution of the velocity field at time t1 and

1There are approaches to compute the structure in an Eulerian setting as well [31].
2http://www5.in.tum.de/wiki/index.php/PreCICE Webpage

139

8. Fluid-Structure Interaction with Nitsche’s Method

the question is how to compute the solution at t2. We denote accordingly the fictitious
domain of the two time steps as ΩF1 and ΩF2, and the computational domains as Ω1

and Ω2, which are denoted by Ω in Fig. 8.1. The problem arises at t2, when the domain
ΩF1 r ΩF2 becomes part of Ω2. In this domain the velocity values at t1 don’t fulfill the
Navier-Stokes equations, since in the previous time step they were part of the fictitious
domain ΩF1. We write the transient Navier-Stokes equations with Nitsche’s method
from (4.23) and (4.23) in the simplified form(

vt2 − vt1
∆t

)
ψ = (a L (vt2 , ψ) + (1− a) L (vt1 , ψ) + C (vt2 , p, ψ, ξ)) , (8.1)

where L represents the diffusion and the convection terms in their weak forms. C contains
the continuity and pressure gradient terms in the weak form and a the parameter that
defines the time integration. In the previous chapter, we set a = 0.5 and it resulted the
Crank-Nicolson scheme with (vt2 , p) as unknowns. Since in ΩF1 r ΩF2 the values of vt1
do not fulfill the Navier-Stokes equations, we want to limit the impact of these values.
Therefore, we choose a full implicit scheme a = 1, such that only the time derivative
term contains vt1 . In addition to the full implicit method, we solve on each fictitious

Figure 8.1.: Illustration of the moving geometry problematic. The two circles represent
the moving geometry’s position at two consecutive time steps t1 and t2. The
fictitious domains ΩF1 and ΩF2 are marked accordingly on the figure.

domain ΩFi a Poisson equation weighted by 10−6, to make sure that the velocities vt1
in the neighborhood of the moved boundary do not take extreme values. We also recall
that the velocities with Nitsche’s method near the boundary have reasonable values.
Therefore, if we consider only small movement of the boundary between t1 and t2, the
error introduced by v1 in ΩF1 r ΩF2 is limited. With respect to the FSI applications,
it is crucial that the moving boundaries are implemented consistently such that the
resulting coupling forces are not altered. This will be proved for transient scenarios in
later sections of this chapter.

140

8.1. Moving Geometries with Nitsche’s Method in 2D and 3D

Implementational Aspects in Sundance

A moving boundary also represents additional implementational requirements for the
Sundance toolbox, where we developed the presented cut-cell and boundary integral
methods. In order to be efficient, we store the precomputed quadrature weights and
points in the mesh object. In addition, Sundance caches the results from the cell filters
for efficient mesh assembly of transient problems. Once the boundary has been moved, all
these information need to be flushed and the recomputation of them should be triggered.
This has been implemented by the additional function problem.reAssembleProblem(),
where the problem can be a linear or non-linear problem object. After calling this
function, all the cached information are deleted, such that the cell filters are evaluated
for each cell, the special quadrature weights and points are recomputed, and the system
matrix is assembled newly.

In addition, we also had to facilitate the movement of the boundary. For these cases,
we only consider the polygon and triangular surface boundary representation and we
neglect the analytical boundary representation. Both representations offer the direct
access to the points that form them. This is illustrated in Code 20, where we consider a
polygon with two defined nodal functions on it, which represent the velocities. By using
the velocity of each point on the polygon, we update the position as x = x + ∆t v. The

Code 20 Sundance code to illustrate the update in the polygon’s position. We assume
that the two scalar fields, representing the point-wise velocities, have been set previously.
Once the position of the polygon has been changed, it is crucial that the .update()
function of the polygon and the .reAssembleProblem() function of the problem object
are called.
ParametrizedCurve polygon = new Polygon("polygon.txt",1,1e-8);

...

double dt = 1e-3;

Array<Point>& pnt_polygon = polygon.getControlPoints();

Array<double>& velX = polygon.getScalarFieldValues(0);

Array<double>& velY = polygon.getScalarFieldValues(1);

for (int p = 0 ; p < pnt_polygon.size() ; p++){

pnt_polygon[p][0] = pnt_polygon[p][0] + dt*velX[p];

pnt_polygon[p][1] = pnt_polygon[p][1] + dt*velY[p];

}

// let the polygon known that its positions have been changed.

polygon.update();

// trigger reassemble of the problem

problem.reAssembleProblem();

position x of the polygon is accessed by the .getControlPoints() function of the polygon.
Accordingly, the TriangleSurf3D class also implements this method, and Code 20 could

141

8. Fluid-Structure Interaction with Nitsche’s Method

be applied in a similar manner to a TriangleSurf3D object. The velocities v of the
polygon are accessed also directly by the getScalarF ieldV alues(i) function. Once the
polygon’s position has been updated, the .update() function is called, such that the
internal information3 of the polygon are recomputed. Finally, the .reAssembleProblem()
method of the problem object is called, such that all cached results are flushed and
a reassembly of the system matrix is triggered. For 3D and for a TriangleSurf3D
object, the Sundance code would have the same structure and the same functions of the
geometry would be called. Such 3D Sundance codes are listed in the Appendix A.5 for
FSI simulations and will be discussed later in this chapter.

8.2. Partitioned Fluid-Structure Interaction

The mathematical formulation of an FSI problem has been already discussed in Chapter 3
for both stationary and transient cases. Therefore, we consider in this section only
the problem to couple the two different equations according to the coupling equations
described in Chapter 3. Since the fluid is modeled in an Eulerian setting and the structure
is naturally simulated in a Lagrangian setting, one way to set up the FSI problem is to
solve these equations separately, and couple them only through the right-hand side of
the systems. This approach is called partitioned coupling, since two separate systems
are solved, which are coupled iteratively. In contrast to this, the monolithic coupling
assembles the two equations into one system, where the coupling is done implicitly
through matrix entries. This also involves the formulation of the fluid and the structure
in the same setting. One solution for monolithic coupling is the formulation of the
fluid by the Arbitrary Lagrangian Eulerian (ALE) approach [45] or by formulating the
structure in a pure Eulerian setting [31]. For more details on monolithic approaches, we
refer to [30, 35, 90].

In the following, we discuss the algorithmic aspects of the partitioned approach to couple
the fluid and the structure systems for stationary and transient cases in order to consis-
tently simulate the coupled system. We only highlight the coupling methods employed
later in the FSI simulations, that were already used previously in [25]. For more insights
on the partitioned approach, we refer to [30, 35, 22].

8.2.1. Stationary FSI

In the first step, we consider the stationary partitioned FSI coupling. In Chapter 3, this
case was already introduced. This implies that there are only two quantities that are
coupled, since the velocity of the structure is by definition zero. These two quantities

3e.g., assign to each polygon point one cell LID, where it is located. This information is needed by the
polygon’s cut-cell method.

142

8.2. Partitioned Fluid-Structure Interaction

are the forces (or stress vectors) and the displacements, and these quantities are passed
from one solver to the other as illustrated in Fig. 8.2. According to this illustration,

Figure 8.2.: Illustration of the stationary partitioned coupling. The quantities to couple
between the two solvers are the displacements and the forces.

one iteration of coupling starts with solving the fluid system for an initial position u0 of
the structure. The resulting forces are passed to the structure solver that also returns
the new position u1 of the structure. This results in an iterative method where from
a given ui a new displacement ui+1 results, and the process should be repeated until
‖ui+1 − ui‖ < ε. This process is presented in Alg. 1, where the update of the actual
boundary displacement is under-relaxed with the factor w.

Algorithm 1 Algorithm for partitioned static FSI coupling. w is an under-relaxation
factor for the coupling.

u0 = 0
i = 0
do

s o l v e Fluid with ui as boundary p o s i t i o n
e x t r a c t f o r c e s on Γ
s o l v e St ruc ture with the f o r c e s (or s t r e s s e s) as BC
e x t r a c t d i sp lacements di+1

ui+1 = ui + w(di+1 − ui)
i = i + 1

u n t i l ‖ui − ui−1‖ < ε

8.2.2. Partitioned and Transient FSI with Explicit and Implicit Time
Coupling

There are two main approaches for the simulation of transient FSI scenarios with a
partitioned coupling. The first approach is represented by explicit methods that solve

143

8. Fluid-Structure Interaction with Nitsche’s Method

the fluid and the structure in time and couple only once the forces, displacements and
velocities, at one discrete time. One such coupling scheme is the explicit serial staggered
scheme illustrated in Fig. 8.3, where σf · n represents the stress vector4 on the coupling
interface, uS and vS represent the displacements and the velocities respectively. This

Figure 8.3.: Explicit coupling method with the serial staggered scheme.

staggered coupling is also illustrated in Alg. 2. We employ this explicit coupling scheme
for some of the transient FSI scenarios, where this coupling scheme is stable. The
criterion for the stability lies on the one hand mainly in the density ratio of the fluid
and structure materials [30] and on the other hand in the stiffness of the structure.
Unfortunately, all the benchmark scenarios that we computed, lead to instability of the
explicit coupling scheme. In all these cases, the explicit scheme does not accurately
capture the so-called added mass of the structure induced by the fluid resistance [30].

Algorithm 2 Algorithm for the serial staggered scheme for explicit partitioned coupling.
uS and vS denotes the structure’s displacements and velocities, whereas σf represents
the stress tensor of the fluid.

u0 = 0
i = 0
f o r t=0 t i l l T with step ∆t do

s o l v e Fluid f o r ∆t with uS and vS as boundary c o n d i t i o n s
e x t r a c t the s t r e s s vec to r σf · n on Γ

s o l v e St ruc ture f o r ∆t with σf · n as boundary cond i t i on

e x t r a c t uS and vS
end f o r

For these reasons, implicit coupling schemes are required, which ensure that after each
time step the coupled system is converged. Similar to [30], we consider the coupled

4The force vector is computed as F =
∮

Γ
σf · ndc.

144

8.2. Partitioned Fluid-Structure Interaction

problem as a function in terms of displacements u such that uti+1 = Sr ◦ Fl (uti). Sr
represents the structure solver whereas Fl denotes the fluid solver. The goal is to find a
displacement ut for a given time step t where the equation ‖ut − Sr ◦ Fl (ut)‖ < ε holds.
In order to find this equilibrium for each time step t, several iterations are required
within each time step. This implicit coupling is illustrated in Fig. 8.4. This cycling
is illustrated in Fig. 8.4 in three time steps. There are several ways to determine the

Figure 8.4.: Implicit coupling method. At each time step, the solution of
‖ui − Sr ◦ Fl (ui)‖ < ε needs to be determined, and only then can be stepped
forward in time.

solution of the nonlinear equation ut−Sr ◦Fl (ut) ≈ 0. Since this equation is non-linear,
a quasi-Newton methods might be a good choice. [30] describes several quasi-Newton
methods such as IQN-ILS and IQBN-LS, and it also shows that such methods potentially
require a smaller number of iterations compared to other conventional methods, such as
Aitken or interface-GMRES. The coupling could be further accelerated using a multi-
level coupling approach [30].

In this thesis, we used the Aitken iteration method that avoids the usage of any gradient
dependent information. Instead, it uses a dynamic under-relaxation factor w that was
first used for FSI in [55]. This factor is used during the cycling within one time step to
determine the solution uk+1 in Alg. 3. This implicit coupling with the Aitken iterations
was implemented directly in the Sundance C++ user code and we did not integrate this
method into Sundance, as a toolbox feature.

8.2.3. Implementational Requirements in Sundance

The last missing feature for a transient FSI simulation is the mapping between the La-
grangian and Eulerian settings. Note that due to Nitsche’s method used in the flow
solver, this mapping corresponds to the identity in a numerical sense but technically

145

8. Fluid-Structure Interaction with Nitsche’s Method

Algorithm 3 Aitken iterations for the cycling of one time step for FSI implicit coupling.

k = 0
û1 = Sr ◦ Fl(u0)
r0 = û1 − u0

whi le
∥∥rk∥∥ < ε0 do

i f k=0 then
w0 = sign(wn)min(|wn|, wmax)

e l s e

wk = −wk−1 (rk−1)T (rk − rk−1)

(rk − rk−1)T (rk − rk−1)
end i f
uk+1 = uk + wkrk

k = k + 1
ûk+1 = Sr ◦ Fl(uk)
rk = ûk+1 − uk

end whi l e

requires connecting values at polygonal nodes in the Eulerian (fluid) setting with those
in the Lagrangian (structure) setting. This task has to be done by the boundary repre-
sentation. In coupling softwares such as preCICE5 [25, 26], this mapping is also done by
the boundary mesh. We use for this purpose only the polygon representation in 2D and
the triangular surface representation in 3D. To demonstrate the idea of the mapping,
we consider the twin polygons in Fig. 8.5. Our idea for data mapping between the Eu-
lerian and Lagrangian setting is to create two identical polygons, one for each setting.
Between the points of the polygons, there is a bijective mapping that is illustrated by
the dotted lines in Fig. 8.5. This means, if the values are set in the Eulerian framework,
then along these values, the nodal values can be copied to the Lagrangian framework
and vice versa. The same idea has been implemented for the triangular surface in 3D.
In terms of software features, this implies that a polygon can have a twin polygon
and has the same number of nodal functions defined. Once the values of a nodal func-
tion are set on the polygon, these nodal values should be copied to the twin polygon’s
corresponding function in an automatic manner. This feature facilitates the automatic
mapping between the two equations discretized in different settings.

In the parallel case, the mesh is decomposed among the processors, such that no single
processor can set all the nodal values of the polygon. In these cases, one processor sets
the nodal values, which are covered by its local mesh. After this with an allReduce MPI
command, the nodal values are centralized and redistributed among the processors, such
that each processor has the complete nodal values of the polygon. This is important
also for the twin polygons, since their nodal values will be also updated consequently.
The described approach has been implemented also for triangular surfaces in 3D. The

5http://www5.in.tum.de/wiki/index.php/PreCICE Webpage

146

8.3. 2D Results

Figure 8.5.: Illustration of twin polygons. The main idea is to clone one polygon, such
that there is a bijective mapping between the two polygons (marked with
blue and green). One of the polygons is in Eulerian setting (green) and the
twin polygon (blue) is in Lagrangian setting.

Sundance code to create a twin polygon is shown in Code 21. There, we also show, how
the nodal values of a polygon and the corresponding twin polygon’s values are set. This
code is usable in this form not just in the sequential case but also in parallel simulations.

Code 21 Sundance code for twin polygon creation. In the last two lines, we set a nodal
function of the polygon with the given expression, then the twin polygon’s values are set
accordingly.

Polygon2D* polygP = new Polygon("polygon.txt",1,1e-8);

ParametrizedCurve curve = polygP;

curve.addNewScalarField("V" , 0.0);

curve.addNewScalarField("U" , 0.0);

ParametrizedCurve curve_twin=polyg->createTwinPolygon(0,0,1,1);

...

curve.setSpaceValues(VInt , 0);

curve_twin.setSpaceValues(YInt , 1);

8.3. 2D Results

In order to verify our approach for FSI simulation using Nitsche’s method with the devel-
oped cut-cell and boundary integral methods, we consider the stationary and transient
2D benchmark scenarios with incompressible flow from [46]. These scenarios describe an

147

8. Fluid-Structure Interaction with Nitsche’s Method

elastic bar that is attached to a cylinder and is subject to fluid forces. All three bench-
mark scenarios that we compute in this section have the same setting. This setting is
presented in Fig. 8.6. On the top and bottom walls, we impose a no-slip BC. The inflow
is defined by a parabolic inflow Dirichlet BC in the x-direction, where the mean velocity
v̄f is specified. On this boundary the y-component of the velocity is set to zero and an
outflow BC is used on the right side of the channel. Besides the mean velocity v̄f , the
characteristic parameters for each scenario are the density ρs and the Young modulus
of the structure E. The density and the kinematic viscosity of the fluid and Poisson
ratio are constant for all scenarios ρf = 103 kg

m3 , νf = 10−3m2

s
, and νs = 0.4. For more

details on these scenarios’ description and parameters, we refer to [46]. In the first step,

Figure 8.6.: Illustration of the benchmark scenario setting. The obstacle is composed of
an elastic bar and a fixed cylinder.

we compute the stationary 2D benchmark, called FSI1 [46], where there is no moving
boundary, and only the stationary coupling scheme need to be deployed. Finally we
show the results of the two transient benchmark scenarios, called FSI2 and FSI3 in [46].

8.3.1. 2D Stationary Results

The FSI1 benchmark scenario contains the described flexible bar obstacle that is attached
to a fixed and rigid cylinder. Since this obstacle is placed slightly in the lower part of
the channel, a small lift of the bar is expected. The characteristic parameters for the
FSI1 are set as v̄f = 0.2m

s
, ρs = 103 kg

m3 , Re = 20, and E = 1.4 · 106 kg
ms2

. In this case, the
benchmark values consist of the x- and y-displacements of the middle tip point of the
bar (see Fig. 8.7), and the measured total lift and drag forces on the whole boundary.

As described in the previous chapter, we set up the Navier-Stokes equations in Sundance
by using Nitsche’s method to impose zero Dirichlet BC. The structure equation, as it was
described in Chapter 3, is set up in the Lagrangian form in Sundance. Both equations
use a 2D Cartesian mesh. For the structure, the Neumann BCs need to be imposed

148

8.3. 2D Results

Figure 8.7.: Illustration of the FSI1 scenario. The obstacle is represented by the white
polygon line (top). The green cross at the end of the bar shows the reference
point, where the displacements are measured.

only on the rectangular bar, since on the cylinder we need to impose zero Dirichlet BCs.
We note here, that the Neumann BC imposition is very critical, since it represents the
coupling between the two systems. In the Lagrangian setting the polygon representing
the boundary of the structure fits exactly the elastic bar boundary. Therefore, there is
no need for IB methods on the structure side and the Neumann BC can be imposed
exactly. On the cylinder part, the zero Dirichlet BCs are imposed by row replacements
in the matrix (see Chapter 5). For complex structure shapes, a given IB method could
be employed, such as the Finite Cell Method [72], by using the developed IB capabilities
within Sundance. For the incompressible Navier-Stokes, we usedQ2Q1 elements, whereas
the structure was discretized with Q1 elements.

We use the presented twin polygon construct to map the forces from the fluid to the
structure and to displace the fluid’s polygon according to the structure’s displacements.
We iterate in Alg. 1 until the update in the displacement is less than ε = 10−6. The
under-relaxation factor is set to w = 0.3. With such constant under-relaxation, 20
iterations lead to convergence in average. The number of iterations depends not just
on w and on the scenario but also on the desired accuracy ε. The benchmark results
for different structure and fluid resolution are shown in Tab. 8.1. This shows that the

149

8. Fluid-Structure Interaction with Nitsche’s Method

displacement results for the highest resolution match the benchmark values well, that
the total drag and lift forces computed by curve integrals on the polygon also match
the benchmark results. The results in Tab. 8.1 verify our approach for stationary FSI
scenarios. We further notice, that even for lower resolutions such as 2601×3380×136 the
resulting displacements and boundary forces have at most only 20% relative error, due
to the accuracy of Nitsche’s method and the developed cut-cell and boundary integrals.
The high accuracy on Cartesian meshes without any mesh adjustment or transformation
underlines the efficiency of our approach for static FSI scenarios. Parts of the Sundance
user code for this static coupling is highlighted in Appendix A.5.

#Fl × #Sr × #Poly Ax Ay Drag Lift
2601× 3380× 136 1.86e-5 0.00123 14.0779 0.820194

36666× 13370× 1093 2.21e-5 0.000703 14.1982 0.810081
54104× 13370× 1093 2.18e-5 0.000846 14.2236 0.793047
Benchmark values [46] 2.27e-5 0.000821 14.295 0.7638

Table 8.1.: Stationary FSI1 results. The resolution of the three components fluid, struc-
ture, and polygon (#Fl × #Sr × #Poly) is specified by the number of cells.
Ax and Ay represent the displacements at the reference point. Drag and Lift
represent the total drag and lift forces computed on the polygon.

In the following, we consider an additional static FSI scenario, where the resulting rel-
ative displacements are considerably higher than in FSI1. In the FSI1 scenario, the
displacements were small compared to the structure size, such that a linear model of
the structure would result in comparable results. In order to test the static coupling for
higher displacements, we set up a different scenario. For this, we use the same channel
flow and fluid parameters as in the FSI1 scenario [46]. The main difference is that we
increase the inflow velocity from v̄f = 0.2m

s
to v̄f = 0.5m

s
, and that the obstacle is

represented by a vertical bar that is attached to the lower wall of the channel as shown
in Fig. 8.8. Due to the vertical placement of the obstacle in the channel, we expect
higher displacements compared to the previous scenario. The deformed structure is
shown in Fig. 8.8. Besides the deformed structure, Fig. 8.8 also shows the stress vectors
of the equilibrium state. For the coupling method we used a constant under-relaxation
parameter w = 0.31. Convergence was achieved within 12 iterations with ε = 10−5.

Parallel simulations

As last for the stationary case, we highlight the parallel aspects of the simulation. We
consider the previously computed FSI1 scenario. Thanks to the parallel capabilities of
Sundance, this scenario can be computed with the same code also in the parallel case.
This is one of the true potentials of the developed features in Sundance that even such

150

8.3. 2D Results

Figure 8.8.: Illustration of the additional static FSI scenario (top) with relatively large
displacements. The resulting displacement with the neighboring fluid field is
illustrated (bottom) in the equilibrium state, where the white arrows on the
polygon represent the stress vectors σfn. The pressure field with velocity

vectors in the fluid are also illustrated.

complex multi-physics (FSI) scenarios can be computed sequentially or parallel with the
same Sundance user code. The underlying FSI scenario contains two meshes, one for
the fluid and the second for the structure. In the partitioned case, only one of the two
systems is solved at a given moment of time. Therefore, the parallelization of the FSI
computation is restricted to the parallelization of the fluid and the structure systems.
The two Cartesian meshes are decomposed based on the Z-curve (see Chapter 6 for details
of the implementation). The resulting load-balanced partitions are presented in Fig. 8.9,
where the partitions are marked with different colors. Since the cells are refined in a
rectangular area around the obstacles, the first two partitions cover a smaller area but the
number of cells is similar in all partitions for a load-balanced computation. Consequently,
the fluid and the structure systems are computed in parallel on four processors. The twin
polygons also have parallel capabilities. In this scenario, the values on the polygon are
set by two processors. In general, the processor that sets a nodal value and the one that
uses this value might be different. Therefore, the twin polygons synchronize their nodal
values after each operation, such that on each processor all the nodal values are available.
Even though Sundance has now the required capabilities for parallel FSI simulations,

151

8. Fluid-Structure Interaction with Nitsche’s Method

Figure 8.9.: Illustration of the FSI1 parallel simulations with 4 processors. The fluid
mesh (bottom) and the structure mesh (top) have been decomposed based
on the Z-curve. For the visualization, we used different scales, the white
obstacle (bottom) represents the proportional size of the obstacle.

such a computation requires also an efficient parallel solver. For most FSI simulations,
we used the direct solver Amesos-KLU6 that has limited parallel capabilities. For this
solver, as expected, the resulting parallel speedup was rather poor. Therefore, for parallel
FSI simulations, we used the SuperLU-DIST solver [57] in the linear step of the non-
linear NOX solver.7 For a strong scaling study, we consider the highest resolution in
Tab. 8.1 and four coupling iterations. After four coupling iterations, the error is already
reduced to ε ≈ 7 · 10−5. In the sequential case, the resulting runtime was 26 minutes.
With four processors, this time was reduced to 12 minutes8 resulting in a 54% parallel
efficiency. We also tested the iterative AztecOO-GMRES9 solver in combination with
the Ifpack-ILU [77] preconditioner. In the sequential case, they performed well, but in
the parallel case, due to the actual configurations10 of AztecOO, the efficiency was lower
as with SuperLU-DIST. Therefore, future work will include finding and developing of
an efficient preconditioner and iterative solver for Nitsche’s method, which scale well in
parallel and can tackle larger FSI problems on distributed memory systems.

8.3.2. 2D Transient Results

In the following, we consider two benchmark scenarios to verify our approach also for
transient cases. Our approach to handle moving boundaries for Nitsche’s method and the

6http://trilinos.sandia.gov/packages/amesos/
7http://trilinos.sandia.gov/packages/nox/
8On a quad-code Intel i7 2.9GHz machine
9http://trilinos.sandia.gov/packages/aztecoo/

10Improving these configurations is subject of future work.

152

8.3. 2D Results

implicit coupling methods has been presented above. These methods will be employed
in the following to compute the FSI2 and FSI3 transient benchmarks [46].

FSI3

We start with the FSI3 scenario that is computable only with implicit coupling. The
characteristic parameters for the FSI3 are set as v̄f = 2m

s
, ρs = 103 kg

m3 , Re = 200, and

E = 1.4 · 106 kg
ms2

. The main reason for the necessity of implicit coupling is that both,
the structure and the fluid, have the same density ρf = ρs = 103kg/m3. This scenario is
described in [46] and above. It is the most commonly used transient benchmark, since
only this transient scenario is considered in the review article [88] for various coupling
approaches. The discrete time step is set to ∆t = 10−3 and the end simulation time
is usually 6 − 7 seconds, which results in 6000 − 7000 time steps. Since we are using
Aitken under-relaxation, per time step in average 11 coupling iterations were required.11

Therefore, in total, the fluid and structure solvers were called 60000−70000 times. This
implies with a fluid and structure solving time of total 10 seconds a total simulation time
of more than a week. For this reason, such transient FSI scenarios are computationally
expensive. Therefore, we compute these scenarios with significantly less DoFs than
the stationary FSI1. We show two resulting snapshots at times 5.6 and 5.65 seconds

Figure 8.10.: Two different snapshots of the FSI3 simulation. The arrows on the white
polygon represent the coupled stress vectors.

in Fig. 8.10. The structure is mapped into the flow field in Fig. 8.10, where the coloring
of the structure represents its total displacement. The white line is the polygon with
136 points, and the white arrows on the polygon are the stress vectors σfn. In the first
couple of seconds, the bar is almost stationary in the flow field, and then it starts to
oscillate with increasing amplitude. The increasing amplitude saturates at around 3− 4
seconds. We measure the benchmark values for this case, which are the displacements
at the tip of the bar and the total lift and drag forces. Since the scenario is transient,
these values are time dependent. This is illustrated by the total drag and lift forces
in Fig. 8.11. The forces were calculated by curve integrals. Therefore, and because

11Quasi-Newton methods would require less iterations.

153

8. Fluid-Structure Interaction with Nitsche’s Method

Figure 8.11.: Plots of the time variant total drag (right) and lift (left) forces for FSI3.

of the moving boundaries, they show a small high frequent noise. For each benchmark
value, we measure the offset, the amplitude, and the frequency. The measured values are
shown in Tab. 8.2 for two different resolutions. The main benchmark value is the vertical
displacement Ay. For the higher resolution, this matches almost exactly the benchmark
displacement. Only the frequency differs in this case by 8%. The displacements in
x-direction also match the benchmark values well. In the case of the drag value, the
offset is higher compared to the benchmark offset, but the amplitude matches with the
benchmark lift amplitude. For the lift values, we notice that the resulting amplitude is
30% higher than the reference value. Overall, the results of FSI3 verify our approach for
the moving boundaries and for transient FSI scenarios.

#Fl×#Sr×#Poly Ax Ay Drag Lift

2507 × 864 × 136
-0.02866

±0.02857[11.1]
-0.00111

±0.03301[5.5]
524.5

±23.5[11.1]
56.50

±214.50[5.5]

5133 × 864 × 136
-0.00288

±0.00282[11.4]
0.00166

±0.03452[5.7]
532

±25[11.4]
-1.5

±229.50[5.7]

Benchmark [46]
-0.00269

±0.00253[10.9]
0.00148

±0.03438[5.3]
457.3

±22.66[10.9]
2.2

±149.78[5.3]

Table 8.2.: Results of the FSI3 scenario. The offset, the amplitude, and the frequency
are measured for each of the four quantities.

FSI2

Finally, we consider the FSI2 transient scenario. The characteristic parameters for the
FSI2 are set as v̄f = 1m

s
, ρs = 104 kg

m3 , Re = 100, and E = 5.6 · 106 kg
ms2

. Even though the
structure has ten times higher density than the fluid, the scenario requires implicit cou-
pling. In addition, this scenario requires considerably longer simulation times, since the

154

8.4. 3D Results

#Fl×#Sr×#Poly Ax Ay Drag Lift

1964 × 864 × 136
-0.022064

±0.022836[4.0]
0.001450

±0.090450[2.0]
243.50

±139.5[4.0]
9

±382[2.0]

2091 × 864 × 136
-0.02207
±0.0205[4.0]

0.00103
±0.08937[2.0]

234
±127[4.0]

7
±376[2.0]

Benchmark [46]
-0.01458

±0.01244[3.8]
0.00123

±0.0803[2.0]
208

±73.75[3.8]
0.88

±234.2[2.0]

Table 8.3.: FSI2 results. The offset, the amplitude, and the frequency are measured for
each of the four quantities.

bar starts oscillating only after more than 5 seconds. Therefore, we were able to compute
this scenario only with considerably lower resolution than FSI3 as shown in Tab. 8.3.
For this reason, the results in Tab. 8.3 differ more from the benchmark results, than in
the previous case. The oscillating bar has an oscillation with lower frequency than in
FSI3 but with higher amplitude. This is illustrated by the two snapshots in Fig. 8.12.
Even with this lower resolution the error in the amplitude of Ay is around 10%. The
frequency of the oscillation matches exactly the benchmark value.

Figure 8.12.: Two different snapshots of the FSI2 simulation, with larger displacements
as for FSI3. The illustrations show the two Cartesian meshes: the struc-
ture’s mesh is red, and the fluid’s mesh is colored by the magnitude of the
velocity vector.

8.4. 3D Results

In the final section of this chapter, we consider two 3D FSI scenarios. In 3D, there are no
standard benchmark scenarios available. Therefore, we set up a stationary and a tran-
sient 3D FSI scenario in order to verify the 3D cut-cell and boundary integral methods
for various configurations. The first scenario is a stationary coupling, where a vertical
bar is placed in a 3D flow channel. In the second scenario, a stationary sphere is placed

155

8. Fluid-Structure Interaction with Nitsche’s Method

in a similar channel flow. This sphere is considered rigid and is accelerated by the flow.
These two scenarios demonstrate the true potential of Nitsche’s method and our cut-cell
and boundary integral methods for 3D FSI scenarios, where a classical approach with
unstructured meshes becomes even more costly than in 2D. For parallel computations
in 3D, our approach implemented within Sundance has the same capability as in 2D, to
automatically decompose both the structure and fluid mesh in a load balanced way and
to solve both the structure and the fluid problem in parallel. This parallel capability
has already been illustrated for the static FSI1 scenario, and will not be discussed here
further (see Chapter 9 for 3D parallel simulations).

8.4.1. 3D Stationary Coupling Results

We consider the flow channel in Fig. 8.13 with a size of 2.5 × 0.41 × 0.41. The fluid in
this channel has a density of 103 kg

m3 , similar to the 2D scenarios, and its parabolic inflow
velocity is 0.45m

s
with Re = 20 as it is defined for 3D in [80] and as it was already used

in Chapter 7. All other fluid parameters correspond to the static FSI1 scenario [46].

Figure 8.13.: Configuration of the static 3D FSI scenario (top). The mesh resolution in
3D was chosen as 27× 7× 7 (bottom) with further refinement of the cells
around the obstacle.

In this channel, we place a vertical elastic bar characterized by the Young modulus of
E = 0.4 ·106 kg

ms2
and the Poisson ratio of νs = 0.4. This bar has a size of 0.05×0.25×0.1

and is placed at the position of (0.45, 0.0, 0.125) into the flow channel. We use an initial
3D mesh resolution for the fluid, and further refine the cells in the rectangle area around

156

8.4. 3D Results

the vertical bar as shown in Fig. 8.13. For a spatial discretization similar to that in
Chapter 7, we use stabilized Q1Q1 elements, which for the 3D-1Z scenario [80] worked
well.

We apply the same stationary coupling algorithm with an under-relaxation factor of
w = 0.31. The coupling surface is given by a triangulation with 620 triangles. Similar to
the 2D case, we create one additional twin triangle surface to map the values between the
Eulerian and Lagrangian frameworks. The stopping criterion for the coupling scheme
was the tolerance of ε = 10−6 in the displacements. The resulting displacements and
flow fields after 17 coupling iterations are shown in Fig. 8.14. At the Lagrangian position
of (0.475, 0.25, 0.175) that represents the midpoint of the top face of the bar, we mea-
sure a displacement vector of (1.1667e− 2,−4.2293e− 4, 6.619e− 3). As expected, the
displacement is in x-direction, whereas in z-direction, there is also a significant displace-
ment due to the non-central position of the elastic bar. The resulting displaced structure
and the coupling stress vectors with the triangular surfaces are shown in Fig. 8.14. Since
this scenario does not have benchmarked values, we can conclude only based on the pre-
sented result that Nitsche’s method with the developed 3D cut-cell and surface integral
methods is not just converging but is also delivering reasonable results for this static 3D
FSI scenario.

Figure 8.14.: Results of the static FSI scenario (left). The deformed structure including
the triangulated surface with the coupling stress vectors is shown on the
right.

157

8. Fluid-Structure Interaction with Nitsche’s Method

8.4.2. 3D Explicit Coupling Results

As a final example, we consider a simple 3D transient FSI scenario. The structure is
a sphere with dimensionless radius of one and is modeled as a point-wise mass of 1kg.
Therefore, no Sundance solver is required for the structure. The structure is placed in
a channel flow with a size of 8 × 4 × 4 and is fixed at the beginning. The fluid has a
lower density compared to the previous case of only 1kg/m3, and the parabolic inflow
velocity was set to 2.25m/s. In the first 0.2 seconds of the simulation, the sphere is fixed,
but after this it is freely accelerated by the forces in the x-, y-, and z-directions. These
forces are computed by surface integrals of the respective stress vector components on
the sphere’s surface. The fluid’s mesh is a regular Cartesian mesh with a 13 × 9 × 9
resolution as illustrated in Fig. 8.16. The boundary surface is shown in Fig. 8.15. It is
formed by 500 triangles and 252 nodes. This figure also shows the coupling stress vectors
for a given snapshot, which push the sphere in the x-direction along the flow field.

Due to the simple structure modeling, higher structure density, and the relatively small
sphere radius, this scenario allowed for an explicit coupling by the presented staggered
scheme.

Figure 8.15.: Illustration of the triangular surface with 500 cells representing the sphere.
The vectors on the nodes represent the corresponding stress vectors com-
puted from the flow field.

Two snapshots in Fig. 8.16 show the simulation results, where the sphere moves from
the left to the right. During this movement, the sphere passes several fluid cells and the
triangular surface might intersect some of the cells in an irregular way.12

The sphere, however, is moving along the flow direction smoothly, which shows that the

12One irregular case is when the surface intersects one edge of a brick cell more than once. See Chapter 7
for more detail.

158

8.4. 3D Results

Figure 8.16.: Two snapshots of the explicit coupling. The sphere is accelerated and
moved along the flow field.

Figure 8.17.: Total forces in x-direction (left) and total measured forces in y-direction
(right).

irregular intersections for the cut-cell and the surface integral in 3D are handled well.
The homogeneous velocity (vX , vY , vZ) of the sphere is changed by the measured total
forces (Fx, Fy, Fz) on the surface such that

vX = vX + ∆t
Fx
m

vY = vY + ∆t
Fy
m

vZ = vZ + ∆t
Fz
m
,

where m is the mass of the sphere that was set to 1kg. The time step was set to
∆t = 0.005. We plot the forces that vary in time in Fig. 8.17. The x-component of
the force vector has a higher initial value, since the sphere is fixed. As the obstacle

159

8. Fluid-Structure Interaction with Nitsche’s Method

is accelerated, Fx is reduced to zero whereas Fy is always approximately zero. Several
peaks in the forces are visible in Fig. 8.17, when the boundary crosses cells. However,
these peaks are limited in size and time and therefore, do not influence the results much.

160

9. Porous Media Simulation with the
Stokes-Brinkman Model

In order to demonstrate the generality and the usability of the implemented IB features
within Sundance, we investigate another type of IB method in this chapter. This method
was already introduced in Chapter 4, where it was called the volume penalty method. For
viscous flows, the method is called Stokes-Brinkman or Navier-Stokes-Brinkman method.
We employ it for the simulation of porous media, where our goal is to determine the
permeability of a given medium. For this type of flow simulation, we are not interested
in the boundary values of the flow, but only in the overall flow field. Therefore, an
inconsistent method such as the chosen volume penalty method proves to be suitable
and more efficient then the previously used Nitsche’s method. In 3D, we model the
porous medium with a package of spheres that touch each other at given points, where
each sphere represents a sand grain, whereas in 2D, we model the porous medium by a
package of circles, which do not touch each other. We verify the volume penalty approach
by imposing the BC in the classical way. Then, we compare the resulting flow rates to
the Stokes-Brinkman approach.

In the final section of this chapter, we test the parallel scalability of the 3D adaptive
Cartesian mesh, DoF map, the pre-fill transformation, and other components, which we
developed in this thesis for the Sundance toolbox. We show strong scaling results for
the Stokes-Brinkman simulation in 3D with up to 192 processors. The Stokes-Brinkman
approach and the strong scaling results are presented also in our recent publication [18].

9.1. The Governing Equation and the Geometry Model

For all the computations we consider only the Stokes-Brinkman equation to simulate the
porous medium on the micro scale1, where the goal is to determine the permeability of
the medium. The model has already been presented in Chapter 4 and was used in [75, 2]
in a similar context. We model the porous medium on this micro scale as a channel
filled with sand grains that have a diameter of less than a millimeter. On these scales,
the resulting Reynolds number is of order 10−3 − 10−5 for water. Hence, the convection
term in the case of Navier-Stokes equations could be neglected. In order to model the

1The micro scale in our case is the size of several millimeters.

161

9. Porous Media Simulation with the Stokes-Brinkman Model

boundaries, we use the Stokes-Brinkman equation

−µ∆u +∇p− k(x)−1µu = 0, in Ωf (9.1)

∇ · u = 0, in Ωf , (9.2)

where µ is the fluid’s viscosity and is indirectly proportional to the Reynolds number

µ ≈ 1

Re
. For all the computations, we choose Re = 10−3. As defined in Chapter 4,

k(x) represents the local permeability of the medium that varies locally in order to
approximately impose the zero Dirichlet BC on the surface of the sand grains by assigning
these grains with a very low permeability:

k(x) =

{
(kF , kF) x ∈ Ωf

(kS, kS) else (x ∈ Ωs).
(9.3)

The last term in the impulse equation (9.1) with the defined permeability coefficient acts
as a penalty or slowdown term that forces the velocity at a position x with low k(x) to
nearly zero. In the structure domain Ωs, represented by the sand grains, the permeability
is set to kS = 10−5, such that the flow is almost completely stopped, whereas in Ωf

kF −→∞ that transforms (9.1) to the Stokes equations for the fluid region. In order to
ensure convergence of this method in the implementation, we multiply the penalty term
1
k

with the factor 1
h
, where h is the diameter of the cell. This way, when h → 0, then

1
hk
→∞ ensuring convergence for higher resolutions.

The sand grains are modeled by analytically described standard geometries, since our
goal is not to model individual shapes of the sand grains. In addition, the analytically
described geometries are more efficient than the polygon in 2D or the triangular surface
in 3D. Therefore, we model in 2D the sand grains by circles that can not touch each
other, in order to form a free channel between them, where the fluid can flow. In 3D,
we model the sand grains by spheres with a given radius, but here the spheres form a
compact package. We created a class in Sundance that can contain several geometries
called CurveCollection. This is illustrated in Code 22. The scenarios that we compute
will be illustrated in the next section for 2D and 3D.

Trapezoidal integral

In Chapter 7, we developed the cut-cell and boundary integral methods that work well
when the cell is intersected in a regular way. In 3D, if we consider the compact sphere
package, where the spheres touch each other, these methods can not be employed with
coarser mesh resolution. Moreover, these methods are computational costly. Since we are
interested only in the overall flow field of this scenario, a cheaper integral method could
be employed here. Further, we notice that the penalty term in (9.1) does not have to be
computed up to machine precision, as this was the case for Nitsche’s method. Therefore,
we use the trapezoidal quadrature rule for the penalty term’s integration, where per

162

9.2. Computational Results in 2D and 3D

dimension p points are evaluated. In 2D, this implies p2 and in 3D p3 quadrature points.
The weight of each quadrature point depends on its coordinates:

ω(x) =

{
α1ωT x ∈ Ωf

α2ωT else (x ∈ Ωs),
(9.4)

where ωT is the standard trapezoidal weight, α1 is the weight factor of the fluid that
is set to α1 = 10−8, and α2 is the weight factor of the structure domain that we set
to α2 = 1. In Ωf , the factor α1 = 10−8 ensures that the volume penalty term almost
vanishes from (9.1), by setting the permeability to a high value. On the other side
the weight α2 = 1 in Ωs enables the penalization of the flow field. Similar to the cut-
cell method this results in a set of special weights for each cell that is intersected, and
these weights are handled similarly to the ones generated by the cut-cell method. The
Sundance code for this type of quadrature is simple and is shown in Code 22.

Code 22 Sundance code to show the usage of CurveCollection and
TrapezoidQuadrature classes.

Array<ParametrizedCurve> curves(0);

CurveBase *tmp;

CurveCollection *curveCollect = new CurveCollection(1e-8 , 1e-0 , 1);

ParametrizedCurve curve = curveCollect;

curveCollect->addCurve(new Circle(0.2,0.167,0.13,outV,inV));

curveCollect->addCurve(new Circle(0.2,0.5 ,0.13,outV,inV));

...

QuadratureFamily tquad = new TrapezoidQuadrature(8);

Expr h=new CellDiameterExpr();

Expr ka=Integral(OnCircle, k*(1/Re)*(1/h)*(ux*vx + uy*vy),tquad,curve);

9.2. Computational Results in 2D and 3D

In this section, we show the computational results for a 2D and a 3D example, where
the main goal is to verify the approach to model the fluid with the Stokes-Brinkman
equation. The quantity of interest is the total flow rate through the channel that can
be further used to compute the average permeability of the channel. In order to have
reference values, we compute each scenario with two standard approaches imposing the
zero Dirichlet BC on the facets of the Cartesian mesh. The first approach considers
the intersected cells as pure fluid cells, and only those cells are structure, which are
completely inside the structure domain. This approach, we denote by Stokes H, since
this approach gives an upper limit of the flow rate. The opposite of this approach is to
consider all intersected cells as only structure cells. Accordingly, this approach is denoted
by Stokes L and gives a lower limit of the flow rate. We expect that the resulting flow

163

9. Porous Media Simulation with the Stokes-Brinkman Model

rate of the Stokes-Brinkman model is between these two limits and even for lower mesh
resolution the flow rate is accurately computed. It is important to underline here that
for near boundary phenomenons such as drag and lift forces computations, the Stokes-
Brinkman model would give inconsistent results. For such cases, a consistent method
should be employed. Here, however, the overall flow field is of interest, therefore, we use
the presented approach. In comparison, this approach is computationally much cheaper
than Nitsche’s method that, e.g., for the sphere package needs a considerably higher
mesh resolution to ensure that most of the intersected cells fall into the regular category
(see Chapter 7).

9.2.1. 2D Results

In 2D, we use a simple representation of the geometry that is formed by 10 circles as
illustrated in Fig. 9.1. The flow channel is the unit square [0, 1]2, where the 10 circles
represent the obstacles. The flow is driven by a pressure Neumann BC2 having the
value 2 that is imposed on the left side of the channel. At the top and bottom walls,
we impose zero Dirichlet BCs in the classical way, and the outflow is measured on the
right side of the channel. We used Q2Q1 elements that do not require stabilization.

Figure 9.1.: Illustration of the scenario in 2D (left) and the resulting flow field (right)
with a refined mesh. The circles (right) are colored with black within the
flow channel of [0, 1]2.

Here, the main purpose is not to model the porous medium accurately, but to verify the
Stokes-Brinkman approach. The resulting flow rates for various resolutions are shown
in Tab. 9.1. We notice that the lower bound of the flow rate, computed by the Stokes L
approach, is constantly increasing with increasing resolution, whereas the upper bound
Stokes H is continuously decreasing with higher mesh resolution. These limits specify

2The derivative of the pressure in the normal direction has the given value.

164

9.2. Computational Results in 2D and 3D

#Cells, Resolution Stokes L Stokes-Brinkman Stokes H
1840, 20× 20, l = 1 1.96e-07 3.48e-07 6.84e-07
6244, 50× 50, l = 1 2.46e-07 3.75e-07 4.55e-07
6640, 20× 20, l = 2 2.59e-07 3.76e-07 4.38e-07

17336, 100× 100, l = 1 2.85e-07 3.72e-07 4.15e-07
19012, 50× 50, l = 2 3.32e-07 3.79e-07 4.03e-07

43632, 100× 100, l = 2 3.42e-07 3.73e-07 3.85e-07
107096, 200× 200, l = 2 3.53e-07 3.68e-07 3.73e-07

Table 9.1.: The flow rates measured for the 2D scenario. l represents the refinement level
of the mesh at the boundary.

the interval where the Stokes-Brinkman flow rate should be included, and this is satisfied
for all resolutions. Further, we notice that Stokes-Brinkman approximates the flow rate
well even for lower mesh resolutions, where the difference between the lower and upper
bound of the flow rate is relative high. These results verify our approach to handle IBs
that we apply in the following for 3D.

9.2.2. 3D Results

In 3D, we consider a flow channel of size 0.96×0.94×0.83. On the left side of the channel,
a pressure Neumann BC with the value 2 drives the flow, where on the right side of the
cube the outflow rate is measured. All other four walls have zero Dirichlet BCs. Here, we
model the porous medium by 40 spheres3 of radius 0.12. These spheres form a compact
package, where the spheres touch each other such that no further compression is possible.
This configuration of the spheres and the resulting flow field are illustrated in Fig. 9.2.

The Stokes-Brinkman equations are solved in the similar way in 3D as in 2D, but in
contrast to the 2D case, we use Q1Q1 elements that require stabilization. We use the
PSPG stabilization that was presented in Chapter 3. This stabilization results in a simple
pressure stabilization term for the stationary Stokes equations with Q1Q1 elements. We
computed the flow field and the resulting flow rate for different mesh resolutions. Analog
to 2D, we determined the lower and upper bound of the flow rate with the Stokes L and
the Stokes H approach, respectively. The results are presented in Tab. 9.2 for three
different mesh resolutions.

For the highest resolution, the difference between the lower and upper bound of the flow
rate is significant, but the measured Stokes-Brinkman flow rate is always between these
bounds. The change of the Stokes-Brinkman flow rate in the last refinement step is also
minor in comparison to the other two approaches, therefore, we can conclude that this

3Special thanks to Lieb Michael M.Sc. for the configuration.

165

9. Porous Media Simulation with the Stokes-Brinkman Model

Figure 9.2.: The flow channel 0.96× 0.94× 0.83 with the resulting flow field (left). The
mesh with an initial resolution of 18 × 18 × 13 in the illustration (right) is
refined at the boundary using one further level.

#Cells, Resolution Stokes L Stokes-Brinkman Stokes H
4212, 18× 18× 13, l = 0 9.93e-09 2.59e-07 8.62e-07
79144, 18× 18× 13, l = 1 3.50e-08 2.09e-07 2.93e-07
433126, 36× 36× 28, l = 1 7.55e-08 2.07e-07 2.26e-07

Table 9.2.: The flow rates measured for the 3D scenario. l represents the refinement level
of the mesh at the boundary.

approach approximates the overall flow field in 3D more efficiently than the classical BC
methods on Cartesian meshes, without using consistent IB methods.

9.3. Strong Scaling Results of the 3D Parallel
Computations

In the last section of this chapter, we use the presented 3D scenario to test the adaptive
Cartesian mesh, the associated DoF map, and the pre-fill transformation for parallel
simulations. Due to the actual implementational limitations of our Cartesian meshes we
are limited to the a given maximal problem size, since the mesh is globally present on each
processor (see Chapter 6 for more details). However, we underline here that the interfaces
and the developed concept allow massively parallel simulations. The implementation or
the integration of Cartesian meshes that do not have global storage, such as p4est[27] or
Peano[92], would enable Sundance to compute larger problems than the ones we compute
here.

166

9.3. Strong Scaling Results of the 3D Parallel Computations

All the computations were performed on the MPP cluster of the Leibniz Supercomputing
Center (LRZ) in Garching4 on Optoron 2.6GHz AMD processors. The architecture of
this cluster is a fat-tree that causes a communication bottleneck beyond 64 processors.5

However, in this section, we still achieved good speedup and efficiency beyond 64 proces-
sors. In the following, we compute two 3D problems. The first one with Q1Q1 stabilized
elements from the previous section, and the second example is the same scenario but
with Q2Q1 elements and with fewer cells.

9.3.1. Results with Q1Q1 Elements

We use the presented example from the previous section in Fig. 9.2 with the highest
resolution. With an initial resolution of 36× 36× 28 and a one level refinement on the
boundary surface, the resulting mesh has 433,126 cells, which with the Q1Q1 element re-
sults in approximately 2.5·106 unknowns. This system is solved with the TSF-BiCGStab
solver and the standard ILU preconditioner from the Trilinos library [43] that Sundance
is also part of. These packages are rather simple solvers but they have good parallel
scalability. Other, more efficient, parallel solvers are available for Sundance within the
Trilinos library, such as the Aztec-GMRES with ML-AMG preconditioner [34] or even
external solvers such as the SuperLU-Dist [57]. Since we are mainly testing here the
mesh, DoF map, and other Sundance components’ parallel capabilities, we do not focus
on the parallel solver. The strong scaling results for the chosen solver and for Q1Q1

elements are presented in Tab. 9.3.

Nr. Proc. 1 2 4 8 16 32 64 128
assembly time (sec.) 682 356.4 183.3 98.1 51.6 27.84 17.66 10.3
solver time (sec.) 875 497.3 238.4 135.5 91 49.11 36.2 20.97
total time (sec.) 1620 893 448 254 161 94 70 48

Table 9.3.: Parallel execution time of the Stokes-Brinkman problem with Q1Q1 elements

Besides the total runtime of the simulation, we show the average assembly and solver time
in Tab. 9.3. The average assembly time is the main indicator how well the implemented
DoF map and the pre-fill transformation work for parallel matrix assembly, whereas the
total runtime mainly reflects the load-balanced partitioning of the problem among the
processors. A concrete mesh partition is shown in Fig. 9.3 for a parallel run with 32
processors. Due to the coarse cell partitioning of the mesh and the various numbers of
ghost cells on processors that do not count as load, the individual assembly and solver
times vary among the processors. The total time that we measure includes besides the
matrix assembly and solving additional operations (e.g., mesh set-up and refinement).

4http://www.lrz.de/services/compute/linux-cluster/overview/
5The interconnection between the sub trees of 64 processors has a low bandwidth.

167

9. Porous Media Simulation with the Stokes-Brinkman Model

Figure 9.3.: Mesh decomposition with 32 processors. The figure shows the mesh belong-
ing to the 10th processor.

Figure 9.4.: Efficiency of the parallel Stokes-Brinkman simulation with Q1Q1 elements.

168

9.3. Strong Scaling Results of the 3D Parallel Computations

Once the sum of the average assembly and solver time is considerably less than the
measured total runtime, this is an indication for bad load-balancing or for a bottleneck
in the computation. The resulting efficiency for up to 128 processors is shown in Fig. 9.4.
By default, the sequential run is used as a reference with 100% efficiency. With up to 8
processors, we observe only a slight decrease in the efficiency, where the total efficiency
with 8 processors is still 80%. With 128 processors the overall efficiency decreases to
28% that is mostly due to the solver and the cluster’s architecture. Even in this case,
as Tab. 9.3 shows, we can further reduce the total runtime in comparison to 64 processors.
In Fig. 9.4, we also notice that the assembly efficiency is always higher than the solver’s
efficiency. Even even with 128 processors, it is still above 50%, where in average one
processor owns 10, 000 cells. The high efficiency of the matrix assembly shows the parallel
scalability of our Cartesian mesh, DoF map, and pre-fill transformation implementation.

9.3.2. Results with Q2Q1 Elements

We further test our Sundance implementation for the higher order element Q2Q1, where
the three velocity components are represented by a quadratic basis in 3D. Therefore,
the number of local DoFs in an element increases significantly, from 32 with Q1Q1 to
89 with Q2Q1. This results also in a larger element matrix and, accordingly, in a global
matrix with considerably larger bandwidth. For these reasons, we consider the previous
scenario with the same solvers and setting but with only 250, 047 elements that results
in a system with approximately 1 ·107 global DoFs. Even though we have approximately
only four times more unknowns than in the Q1Q1 case, due to the denser system matrix,
the memory required increases by more than ten times.

Nr. Proc. 1 2 4 8 16 32 64 128 192
assembly time (sec.) 1542 586 330 178 101 58.7 35.2 26 21.6
solver time (sec.) 1930 1077 701 318 201 104.4 60.4 36.5 31.2
total time (sec.) 3539 1667 1036 498 304 168 100 68 59

Table 9.4.: Parallel execution time of the Stokes-Brinkman problem with 250, 047 Q2Q1

elements.

The resulting runtimes for the Stokes-Brinkman problem with Q2Q1 elements in 3D are
shown in Tab. 9.4. Analog to the previous case, we show the average assembly and
solving times, whereas the total time represents the measured computation time. The
resulting parallel efficiency for these tests is shown in Fig. 9.5. In the first steps of the
strong scaling study, we notice a superlinear speedup. In Chapter 6, we compared the
three available mesh types in Sundance, and showed that the serial implementation of the
Cartesian mesh gives the shortest runtimes for 2D and 3D Poisson problems. Therefore,
the superlinear speedup in Fig. 9.5 is not caused by a poor sequential implementation,
but this is mostly due to cache effects caused by the larger bandwidth of the global

169

9. Porous Media Simulation with the Stokes-Brinkman Model

Figure 9.5.: Efficiency of the parallel Stokes-Brinkman computations with 250, 047 Q2Q1

elements.

matrix. This effect is only present in the assembly time, where the measured assembly
efficiency with 8 processors is above 100%. With increasing processor numbers the total
efficiency is decreasing, but even with 192 processors the assembly efficiency is still
around 40%. We also notice that in the step from 64 to 128 processors the decrease in
the efficiency is significant and it is mainly due to the MPP cluster’s architecture. The
decrease in the efficiency for higher processor numbers is also due to the higher number
of ghost cells, which induce additional computations compared to the sequential case.
Similar to the previous tests, the efficiency of the assembly processes is higher than the
solver efficiency, especially for lower processor numbers.

These results show that the matrix assembly process even with the hanging facet han-
dling is scaling well. In particular, the matrix assembly including the pre-fill element
transformation shows good scaling. The efficiency of the parallel solver does not depend
on Sundance, since they are separate packages. In order to increase the overall efficiency
of such computations in Sundance, a problem tuned linear solver should be employed
that has a better parallel scaling than the one used in these computations.

170

10. Summary and Outlook

Finally, we summarize the achieved results and the developed methods of this thesis,
and give an outlook on future research and development directions.

10.1. Summary

In this thesis, we mainly focused on structured adaptive Cartesian meshes in combination
with various IB methods and their implementations within a FEM-based PDE toolbox.
For our implementation, we chose as baseline the Sundance PDE toolbox software that
is part of the Trilinos library [43]. First, we extended this toolbox with rectangular
elements and with parallel adaptive Cartesian meshes in 2D and 3D. For the parallel
case, the Cartesian mesh is decomposed based on the Z-curve in a load-balanced way.
To ensure continuity between elements of different refinement levels, we developed and
implemented the so-called pre-fill transformation. It makes the necessary restriction on
such elements, while at the same time preserves the architecture of a classical FEM tool-
box. Furthermore, it does not create a bottleneck for parallel simulations on distributed
memory systems. Second, we developed and integrated capabilities for IB methods that
are formulated in a weak form and impose BCs weakly. The first component of these
capabilities is an explicit representation of the boundary geometry, since the mesh’s
facets are not representing the boundary in this context. For this purpose, we deployed
an analytical description of the geometry in 2D and 3D. Besides this, we implemented
polygons in 2D and triangular surfaces in 3D for complex geometry representation. The
requirements for weakly imposed BC on IB methods are the ability to compute volume
and boundary integrals. We developed various cut-cell integrations for accurate volume
integrations on mesh cells intersected by the boundary. Consistently to the cut-cell
integrations, we developed boundary integration methods within Sundance.

With these developments, we were able to test and compute various IB methods within
the frame of Sundance. Such a method is Nitsche’s method for the Navier-Stokes equa-
tions that we applied here for the first time in an IB context. We further developed a
simple approach to apply this method for transient scenarios and for moving boundaries
in the flow field, and applied this approach to perform FSI simulations. We verified
our approach by computing benchmark drag and lift values of stationary and tran-
sient Navier-Stokes simulations for the ’flow around the cylinder’ [80]. Furthermore,
benchmark FSI simulations validated our approach to handle moving boundaries and to

171

10. Summary and Outlook

accurately compute forces on the boundary. Hence, we proved in this thesis the appli-
cability of Nitsche’s method in an IB context for FSI applications in 2D and in 3D as
well. In addition, we computed the flow rate in a porous medium modeled by the Stokes-
Brinkman equation. Here, we showed the applicability of volume penalty methods to
impose no-slip BCs of viscous flows, where the detailed near boundary phenomena are
not of interest. For this application, we also demonstrated the parallel capability of the
developed methods and meshes by a good strong scaling.

10.2. Outlook

Sundance, as a FEM-based toolbox, offers not only fast prototyping and testing of new
methods formulated in a weak form, but is also capable of efficient parallel computa-
tions by using an efficient preconditioner and linear solver from the Trilinos package.
Therefore, Sundance is suited for the simulation of different applications that could be
computed in future work within the frame of this toolbox. For efficient and parallel
computation within Sundance, one needs to choose a suitable iterative solver that needs
to be specially tuned for a given problem. This task is left for future work for Nitsche’s
method for the Navier-Stokes equations, since most flow scenarios that we computed
did not require parallel computation. On the other hand, the developed Nitsche ap-
proach could also be integrated in other HPC research software such as the Peano CFD
solver [26] developed at our Chair. The capabilities of Sundance could be extended in
future developments with features such as Discontinuous Galerkin discretization, multi-
ple meshes within a problem, and unknown fields that are defined only on a subdomain
of the mesh. We mentioned in this thesis that the actual implementation of Cartesian
meshes represents a storage bottleneck in parallel computations. However, in future
developments, we plan to eliminate this bottleneck, while we also plan to improve the
load-balancing algorithm of the mesh by partitioning the mesh’s cells at each level (simi-
lar to p4est[27]). With such improved meshes, one could compute in Sundance problems
with more than a hundred million unknowns. For FSI simulations, Sundance allows for
the implementation of various approaches, different from the one used in this thesis.
Future research could be done on monolithic approaches, where the structure is trans-
formed to the Eulerian framework, and both problems are solved on the same mesh,
similar to the IP approach in [31]. Alternatively, in future research, one could linearize
both equations in Sundance and, in a partitioned approach, couple the structure and
the fluid in each linear step, such that the nonlinear solver acts as an outer iteration
comprising the whole coupled system.

172

A. Appendix

A.1. Notations for Structural Mechanics

The relation between the traction vector t and the stress tensor σs in 2D is denoted as

(∂
∂x1

0 ∂
∂x2

0 ∂
∂x2

∂
∂x1

) σ11

σ22

σ12

+

[
t1
t2

]
=

[
0
0

]
, (A.1)

and in 3D case

 ∂
∂x1

0 0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x2

0 ∂
∂x1

∂
∂x3

0

0 0 ∂
∂x3

0 ∂
∂x2

∂
∂x1



σ11

σ22

σ33

σ12

σ23

σ13

+

 t1
t2
t3

 =

 0
0
0

 . (A.2)

The matrix form of C, representing the relation between stresses and strains (as a fourth
order tensor), in 2D is

C =
E

(1 + νs) (1− 2νs)


1− νs νs 0 0
νs 1− νs 0 0
0 0 1− 2νs 0
0 0 0 1− 2νs

 , (A.3)

and in 3D:

C =
E

(1 + νs) (1− 2νs)


1− νs νs νs 0 0 0
νs 1− νs νs 0 0 0
νs νs 1− νs 0 0 0
0 0 0 1− 2νs 0 0
0 0 0 0 1− 2νs 0
0 0 0 0 0 1− 2νs

 , (A.4)

where E is the Young modolus and νs is the Poisson ratio.

173

A. Appendix

The strain-displacement relation that is also denoted with non-linear operator Ln (u),
in 2D has the form of

εs =
1

2

(
u1,1 u2,1

u1,2 u2,2

)
+

1

2

(
u1,1 u1,2

u2,1 u2,2

)
+

1

2

(
u1,1 · u1,1 + u2,1u2,1 u1,1u2,1 + u1,2u2,2

u1,1 · u2,1 + u1,2u2,2 u2,2u2,2 + u1,2u1,2

)

εs =
1

2

(
2u1,1 + u2

1,1 + u2
2,1 u1,2 + u2,1 + u1,1u1,2 + u2,1u2,2

u1,2 + u2,1 + u1,1u1,2 + u2,1u2,2 2u2,2 + u2
2,2 + u2

1,2

)
.

Component wise, this result in the following relations

ε11 = u1,1 +
1

2

(
u2

1,1 + u2
2,1

)
ε22 = u2,2 +

1

2

(
u2

2,2 + u2
1,2

)
ε12 = ε21 =

1

2
(u1,2 + u2,1 + u1,1u1,2 + u2,1u2,2) .

In 3D, the same relation in matrix form is

1

2
εs =

 u1,1 u2,1 u3,1

u1,2 u2,2 u3,2

u1,3 u2,3 u3,3

+

 u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

+

 u1,1 u2,1 u3,1

u1,2 u2,2 u3,2

u1,3 u2,3 u3,3

 u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3



1

2
εs =

 2u1,1 u2,1 + u1,2 u3,1 + u1,3

u1,2 + u2,1 2u2,2 u3,2 + u2,3

u1,3 + u3,1 u2,3 + u3,2 2u3,3

+

 u2
1,1 + u2

2,1 + u2
3,1 u1,1u1,2 + u2,1u2,2 + u3,1u3,2 u1,1u1,3 + u2,1u2,3 + u3,1u3,3

u1,1u1,2 + u2,1u2,2 + u3,1u3,2 u2
2,1 + u2

2,2 + u2
2,3 u1,2u1,3 + u2,2u2,3 + u3,2u3,3

u1,1u1,3 + u2,1u2,3 + u3,1u3,3 u1,2u1,3 + u2,2u2,3 + u3,2u3,3 u2
3,1 + u2

3,2 + u2
3,3

 .

Component wise, this result in the following relations:

ε11 = u1,1 +
1

2

(
u2

1,1 + u2
2,1 + u2

3,1

)
ε12 = ε21 =

1

2
(u2,1 + u1,2 + u1,1u1,2 + u2,1u2,2 + u3,1u3,2)

ε13 = ε31 =
1

2
(u3,1 + u1,3 + u1,1u1,3 + u2,1u2,3 + u3,1u3,3)

ε22 = u2,2 +
1

2

(
u2

2,1 + u2
2,2 + u2

2,3

)
ε23 = ε32 =

1

2
(u3,2 + u2,3 + u1,2u1,3 + u2,2u2,3 + u3,2u3,3)

ε33 = u3,3 +
1

2

(
u2

3,1 + u2
3,2 + u2

3,3

)
.

174

A.2. Nitsche’s Method Derivation for the Poisson Equation

A.2. Nitsche’s Method Derivation for the Poisson
Equation

In the following, we provide a more detailed derivation of Nitsche’s method for the
Poisson equation.1 We start with the strong formulation of the problem

−∆ u = f in Ω

u = g on ∂Ω.

The weak from of the equation (partial integration) is

−
∫
∆u vdx =

∫
∇u∇vdx−

∮
∇ un vdc,

with u ∈ Vh and ∀v ∈ Vh, where Vh is a Hilbert space. For case of simplicity, we denote
the Ω domain integrals as

∫
and the ∂Ω boundary integral as

∮
. We use the functional

J(u) from [69]

J(u) =

∫
u2
x + u2

y − 2

∮
u (∇u n)− ψ

∮
u2,

J(u) =

∫
u2
x + u2

y − 2

∮
u∇un − ψ

∮
u2.

Solving the problem is nothing else than minimizing the following problem:

J(u− uh) = inf
v∈Vh

J(u− v)

J(u− v) =

∫
(ux − vx)2 + (uy − vy)2 − 2

∮
(u− v) (un − vn)− ψ

∮
(u− v)2

J(u− v) =

∫
u2
x + u2

y + v2
x + v2

y − 2(uxvx + uyvy)

−2

∮
unn− vnv − unv + vnv − ψ

∮
u2 + v2 + 2uv

J(u− v) = J(u) + J(v)− 2

∫
uxvx + uyvy + 2

∮
vnu+ unv − 2ψ

∮
uv

J(u− v) = J(u) + J(v)− 2

∫
uxvx + uyvy + 2

∮
vnu+ unv − 2ψ

∮
uv

J(u− v) = J(u) + J(v)− 2

∫
−uxxv − uyyv − 2

∮
unv

+2

∮
vnu+ unv − 2ψ

∮
uv

1Special thanks to Dr. rer. nat. habil. Miriam Mehl for her help.

175

A. Appendix

J(u− v) = J(u) + J(v)− 2

∫
fv + 2

∮
vng − 2ψ

∮
gv

J(u− v) = J(u) + J(v)− 2

∫
fv + 2

∮
g(vn − ψv)

J(u− v) = J(u) + J(v)− 2

∫
fv + 2

∮
g((∇vn)− ψv).

The next step is to minimize

J(u− v) = J(u) + J(v)− 2

∫
fv + 2

∮
g(vn − ψv)

J(u− v) = J(u) + J(v) + F (u, v).

Writing out this equation becomes:

∂J(u− v)

∂v
= 0

∂J(u− v)

∂v
=
∂J(v)

∂v
+
∂F (v, u)

∂v
= 0

∂J(v)

∂v
=

∫
2vxv

′

x +

∫
2vyv

′

y

−2

∮
(∇v′

n)v − 2

∮
(∇vn)v

′
+ 2ψ

∮
vv

′

∂F (u, v)

∂v
= −2

∫
fv

′
+ 2

∮
g(∇′

n)− ψv′
.

The final equation is∫
vxv

′

x +

∫
vyv

′

y −
∮

(∇v′
n)v −

∮
(∇vn)v

′
+ ψ

∮
vv

′

−
∫
fv

′
+

∮
g((∇v′

n)− ψv′
) = 0

A =

∫
vxv

′

x +

∫
vyv

′

y −
∮

(∇v′
n)v −

∮
(∇vn)v

′
+ ψ

∮
vv

′

b =

∫
fv

′ −
∮

(g(∇v′
n)− ψv′

) = 0.

This gives rise to the linear problem to solve

A v = b,

with unknown function u and test function v∫
∇u∇v −

∮
(∇un)v −

∮
u(∇vn) + ψ

∮
uv

=

∫
fv −

∮
g∇vn− ψ

∮
gv.

176

A.3. Nitsche’s Method Derivation for the Navier-Stokes Equations

A.3. Nitsche’s Method Derivation for the Navier-Stokes
Equations

The starting point is the strong formulation of the Stokes problem.2 We consider only
the two-dimensional case and we denote the velocity vector with (u, v) and the pressure
with the scalar p:

−ν∆ (u, v) +∇p = (f1, f2) in Ω

ux + vy = 0 in Ω

(u, v) = (g1, g2) on ∂Ω.

In the following, we derive Nitsche’s method of this Stokes problem to impose the Dirich-
let boundary condition (g1, g2) on ∂Ω. Similar to the Poisson equation, we start with
the definition of the energy functional J (u, v, p). Next, the integrals

∫
and

∮
are the

domain integral
∫

Ω
dx and the boundary integral

∮
∂Ω
dc respectively:

J

 u
v
p

 =
ν

2

∫
(ux + uy)

2 − ν
∮
unu+

ν

2

∫
(vx + vy)

2 − ν
∮
vnv

−
∫
p (ux + vx) +

∮
p (n1u+ n2v) ,

where the normal vector pointing outwards of the domain is defined as n = (n1, n2).
The next step is to build the difference between the exact solution (u, v, p) and the
approximated solution (û, v̂, p̂)

J

 u
v
p

−
 û

v̂
p̂

 = J

 u
v
p

+ ν

∫
(uxûx + uyûy) + ν

∮
unû+ ν

∮
ûnu

+ν

∫
(vxv̂x + vyv̂y) + ν

∮
vnv̂ + ν

∮
v̂nv

+

∫
p (ûx + v̂x) +

∫
p̂ (ux + vy)−

∮
pn · (u, v)T + J

 û
v̂
p̂

 .

Using the BC, the continuum equation on ∂Ω, and integration by parts we get the
following expression

J

 u
v
p

−
 û

v̂
p̂

 = J

 u
v
p

+

∫
(ν∆u− px) û+

∫
(ν∆v − py) v̂

2Special thanks to Dr. rer. nat. habil. Miriam Mehl for her help

177

A. Appendix

+ν

∮
(ûng1 + v̂ng2)−

∮
p̂n · (g1, g2)T + J

 û
v̂
p̂

 .

We notice, that the second and the third terms form the momentum equation that we
use again to further simplify the expression

J

 u
v
p

−
 û

v̂
p̂

 = J

 u
v
p

+

∫
(f1, f2) · (û, v̂)T

+

∮
(ν (ûn, v̂n)− p̂n) · (g1, g2)T + J

 û
v̂
p̂

 .

This gives rise to the minimization problem that results in Nitsche’s formula for the
Stokes equations, with the discrete space Vh for the velocity and Ph for the pressure

J

 u
v
p

−
 û

v̂
p̂

 = min
(ũ,ṽ,p̃)∈Vh×Vh×Ph

J

 u
v
p

−
 ũ

ṽ
p̃

 (A.5)

In the next step, we introduce the basis functions for û, v̂ and p̂ such that the minimiza-
tion problem (A.5) can be solved for the discrete space.

û =
E∑
i=1

αiφ
1
1, v̂ =

E∑
i=1

βiφ
2
1, p̂ =

F∑
i=1

δiσ1.

This results for û

∂

∂αi
J

 u
v
p

−
 û

v̂
p̂

 = µ
E∑
i=j

αi

∫ (
φ1
i,xφ

1
j,x + φ1

i,yφ
1
j,y

)
−

F∑
j=1

δj

∫
σjφ

1
i,x

−
E∑
j=1

αj

∫
φ1
i,nφ

1
j −

E∑
j=1

αj

∫
φ1
iφ

1
j,n +

F∑
j=1

δj

∮
σjn1φ

1
i + ν

∮
φ1
i,ng1 −

∫
f1φ

1
i .

Similar for v̂

∂

∂βi
J

 u
v
p

−
 û

v̂
p̂

 = µ
E∑
i=j

βi

∫ (
φ2
i,xφ

2
j,x + φ2

i,yφ
2
j,y

)
−

F∑
j=1

δj

∫
σjφ

2
i,x

−
E∑
j=1

βj

∫
φ2
i,nφ

2
j −

E∑
j=1

βj

∫
φ2
iφ

2
j,n +

F∑
j=1

δj

∮
σjn2φ

2
i + ν

∮
φ2
i,ng2 −

∫
f2φ

2
i .

178

A.3. Nitsche’s Method Derivation for the Navier-Stokes Equations

Finally, for p̂

∂

∂δi
J

 u
v
p

−
 û

v̂
p̂

 = −
N∑
j=1

∫
σi
(
αjφ

1
j,x + βjφ

2
j,y

)

+
N∑
j=1

∮
σi
(
αjn1φ

1
j + βjn2φ

2
j

)
−
∮
σi (n1g1 + n2g2) .

Summing up the equations above results in the following operators

a (û, v̂, p̂)
(
φ1, φ2, σ

)
:= µ

∫ (
uxφ

1
x + uyφ

2
y

)
+ µ

∫ (
vxφ

2
x + vyφ

2
y

)
−
∫
p̂
(
φ1
x + φ2

y

)
−
∫
σ (ux + vy) ,

b (û, v̂)
(
φ1, φ2, σ

)
:= µ

∮ (
φ1
nû+ φ2

nv̂
)
−
∮
σ (n1û+ n2v̂) ,

c (û, v̂, p̂)
(
φ1, φ2, σ

)
:= µ

∮ (
φ1ûn + φ2v̂n

)
−
∮
p̂
(
n1φ

1 + n1φ
2
)
,

f
(
φ1, φ2, σ

)
:=

∫ (
f1φ

1 + f2φ
2
)
.

In order to make the resulting problem a positive definite, we extend the operator
b (û, v̂) (φ1, φ2, σ) with additional stabilization terms

b̂ (û, v̂)
(
φ1, φ2, σ

)
:= b (û, v̂)

(
φ1, φ2, σ

)
+ µ

γ1

h

∮
(û, v̂)

(
φ1, φ2

)T
+
γ2

h

∮
(n1û, n2v̂)

(
n1φ

1, n2φ
2
)T
,

where γ1 and γ2 are the penalty coefficients, and h represents the mesh width on ∂Ω.
With this modified operator, the final form of Nitsche’s method result that imposes the
Dirichlet boundary condition (g1, g2) for the presented two-dimensional Stokes problem,

a (û, v̂, p̂)
(
φ1, φ2, σ

)
− b̂ (û, v̂)

(
φ1, φ2, σ

)
− c (û, v̂, p̂)

(
φ1, φ2, σ

)
=

−b̂ (g1, g2)
(
φ1, φ2, σ

)
+ f

(
φ1, φ2, σ

)
. (A.6)

(A.6) is the resulting Nitsche’s method for the Stokes equations in 2D that also can be
extended for 3D, and in the same form can be used for the Navier-Stokes equations.
This formula is also listed in [15, 41] for the Navier-Stokes equations.

179

A. Appendix

A.4. Sundance Code for the Navier-Stokes Equations
with Nitsche’s Method

Sundance code of the 2D stationary Navier-Stokes equations with Nitsche’s method.
(ux, uy) and (vx, vy) are the velocity unknown and test funcitons. p and q are the
pressure field’s unknown and test function. The expression eqn represents Nitsche’s
method.

ParametrizedCurve curve = new Polygon2D("polygon.txt",1.0,1e-7);

ParametrizedCurve curveIntegral = new ParamCurveIntegral(curve);

Expr nu = new Sundance::Parameter(1.0/1000.0);

Expr h = new CellDiameterExpr();

Expr nx = new CurveNormExpr(0);

Expr ny = new CurveNormExpr(1);

Expr dx = new Derivative(0);

Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

QuadratureFamily quad_hi = new GaussLobattoQuadrature(6);

QuadratureFamily quad_c12 = new GaussianQuadrature(12);

QuadratureFamily quad_c = new PolygonQuadrature(quad_c12);

Expr eqn = Integral(OutsideCurve, nu*(grad*vx)*(grad*ux)

+ nu*(grad*vy)*(grad*uy)

+ vx*(ux*(dx*ux)+uy*(dy*ux))+ vy*(ux*(dx*uy)+uy*(dy*uy))

- p*(dx*vx+dy*vy) + q*(dx*ux+dy*uy), quad4)

+ Integral(OnCurve, nu*(grad*vx)*(grad*ux)

+ nu*(grad*vy)*(grad*uy)

+ vx*(ux*(dx*ux)+uy*(dy*ux)) + vy*(ux*(dx*uy)+uy*(dy*uy))

- p*(dx*vx+dy*vy) + q*(dx*ux+dy*uy), quad_hi , curve)

+ Integral(OnCurve, -nu*(dx*ux*nx+dy*ux*ny)*vx

- nu*(dx*uy*nx+dy*uy*ny)*vy + p*(nx*vx+ny*vy)

- nu*(dx*vx*nx+dy*vx*ny)*(ux-ux_Dirichlet)

- nu*(dx*vy*nx+dy*vy*ny)*(uy-uy_Dirichlet)

- q*(nx*(ux-ux_Dirichlet)+ny*(uy-uy_Dirichlet))

+ nu*ga1/h*((ux-ux_Dirichlet)*vx+(uy-uy_Dirichlet)*vy)

+ ga2/h*((ux-ux_Dirichlet)*nx+(uy-uy_Dirichlet)*ny)*(vx*nx+vy*ny)

quad_c , curveIntegral);

//...the solution is computed and is in the up[0],up[1],up[2] spaces

Expr dragExpr = Integral(OnCurve ,

-rho*nu*ny*(nx*dx*(ny*up[0]-nx*up[1])+ny*dy*(ny*up[0]-nx*up[1]))

+ nx*up[2], quad_c , curveIntegral);

FunctionalEvaluator dragInt(mesh , dragExpr);

double dragIntVal = dragInt.evaluate();

180

A.4. Sundance Code for the Navier-Stokes Equations with Nitsche’s Method

Expr liftExpr = Integral(OnCurve ,

rho*nu*nx*(nx*dx*(ny*up[0]-nx*up[1])+ny*dy*(ny*up[0]-nx*up[1]))

+ ny*up[2], quad_c , curveIntegral);

FunctionalEvaluator liftInt(mesh , liftExpr);

double liftIntVal = liftInt.evaluate();

Sundance code of the 2D transient Navier-Stokes equations with Nitsche’s method.
(ux, uy) and (vx, vy) are the velocity unknown and test funcitons. p and q are the
pressure field’s unknown and test function.

Expr upo = new DiscreteFunction(VelPreSpace, 0.0, "upo");

Expr up = new DiscreteFunction(VelPreSpace, 0.0, "up");

Expr umx=0.5*(ux+upo[0]);

Expr umy=0.5*(uy+upo[1]);

Expr dxumx=0.5*(dx*ux+dx*upo[0]);

Expr dxumy=0.5*(dx*uy+dx*upo[1]);

Expr dyumx=0.5*(dy*ux+dy*upo[0]);

Expr dyumy=0.5*(dy*uy+dy*upo[1]);

Expr pm=0.5*(p+upo[2]);

double dt=1e-4;

Expr bc = EssentialBC(walls + left,(1.0/h)*v*u,quad4);

Expr eqn = Integral(OutsideCurve,

(1.0/dt)*(ux*vx+uy*vy-upo[0]*vx-upo[1]*vy)

+ nu*((dx*vx)*dxumx+(dy*vx)*dyumx)

+ nu*((dx*vy)*dxumy+(dy*vy)*dyumy)

+ vx*(umx*dxumx+umy*dyumx) + vy*(umx*dxumy+umy*dyumy)

- p*(dx*vx+dy*vy) + q*(dx*ux+dy*uy), quad4)

+ Integral(OnCurve,

(1.0/dt)*(ux*vx+uy*vy-upo[0]*vx-upo[1]*vy)

+ nu*((dx*vx)*dxumx+(dy*vx)*dyumx)

+ nu*((dx*vy)*dxumy+(dy*vy)*dyumy)

+ vx*(umx*dxumx+umy*dyumx) + vy*(umx*dxumy+umy*dyumy)

- p*(dx*vx+dy*vy) + q*(dx*ux+dy*uy),quad_hi , curve)

+ Integral(OnCurve, -nu*(dxumx*nx+dyumx*ny)*vx

-nu*(dxumy*nx+dyumy*ny)*vy + p*(nx*vx+ny*vy)

-nu*(dx*vx*nx+dy*vx*ny)*(umx-ux_Dirichlet)

-nu*(dx*vy*nx+dy*vy*ny)*(umy-uy_Dirichlet)

-q*(nx*(ux-ux_Dirichlet)+ny*(uy-uy_Dirichlet))

+nu*ga1/h*((ux-ux_Dirichlet)*vx+(uy-uy_Dirichlet)*vy)

+ga2/h*((ux-ux_Dirichlet)*nx+(uy-uy_Dirichlet)*ny)*(vx*nx+vy*ny),

quad_c , curveIntegral);

NonlinearProblem prob(mesh, eqn , bc, List(vx,vy,q),

List(ux,uy,p), up, vecType);

181

A. Appendix

// time stepping until 8.0 seconds by dt

for (double t=dt ; t<=8.0; t = t + dt) {

NOX::StatusTest::StatusType status = prob.solve(solver);

// compute the lift and drag coeffcients

double c_D = 2.0*dragInt.evaluate()/(Umean*Umean*D);

double c_L = 2.0*liftInt.evaluate()/(Umean*Umean*D);

CopyDiscreteFunction(upo,up);

}

Sundance code of the 3D stationary Navier-Stokes equations with Nitsche’s method.
(ux, uy, uz) and (vx, vy, vz) are the velocity unknown and test funcitons. p and q are
the pressure field’s unknown and test function.

QuadratureFamily quad_curve = new SurfQuadrature(quad_gauss);

QuadratureFamily quad_hi = new GaussLobattoQuadrature(6);

Expr nx = new CurveNormExpr(0);

Expr ny = new CurveNormExpr(1);

Expr nz = new CurveNormExpr(2);

Expr eqn = Integral(OutsideCircle, nu*(grad*vx)*(grad*ux)

+ nu*(grad*vy)*(grad*uy) + nu*(grad*vz)*(grad*uz)

+ vx*(u*grad)*ux + vy*(u*grad)*uy + vz*(u*grad)*uz

- (1/rho_fluid)*p*(dx1*vx+dx2*vy+dx3*vz)

+ (dx1*ux+dx2*uy+dx3*uz)*q , quad4)

+ Integral(OnCircle, nu*(grad*vx)*(grad*ux)

+ nu*(grad*vy)*(grad*uy) + nu*(grad*vz)*(grad*uz)

+ vx*(u*grad)*ux + vy*(u*grad)*uy + vz*(u*grad)*uz

- (1/rho_fluid)*p*(dx1*vx+dx2*vy+dx3*vz)

+ (dx1*ux+dx2*uy+dx3*uz)*q , quad_hi , curve)

+ Integral(OnCircle , -nu*(dx1*ux*nx+dx2*ux*ny+dx3*ux*nz)*vx

- nu*(dx1*uy*nx+dx2*uy*ny+dx3*uy*nz)*vy

- nu*(dx1*uz*nx+dx2*uz*ny+dx3*uz*nz)*vz

- nu*(dx1*vx*nx+dx2*vx*ny+dx3*vx*nz)*(ux-ux_Dirichlet)

- nu*(dx1*vy*nx+dx2*vy*ny+dx3*vy*nz)*(uy-uy_Dirichlet)

- nu*(dx1*vz*nx+dx2*vz*ny+dx3*vz*nz)*(uz-uz_Dirichlet)

+ (1/rho_fluid)*p*(nx*vx+ny*vy+nz*vz)

- q*(nx*(ux-ux_Dirichlet)+ny*(uy-uy_Dirichlet)+nz*(uz-uz_Dirichlet))

+ nu*ga1/h*((ux-ux_Dirichlet)*vx+(uy-uy_Dirichlet)*vy

+(uz-uz_Dirichlet)*vz)

+ ga2/h*((ux-ux_Dirichlet)*nx+(uy-uy_Dirichlet)*ny+

(uz-uz_Dirichlet)*nz)*(vx*nx+vy*ny+vz*nz),quad_curve,curveIntegral)

// the solution is in up_f[0...3] spaces, compute the X,Y and Z forces

Expr ForceX = Integral(OnCircle,up_f[3]*nx

- rho_fluid*nu*(2.0*nx*(dx1*up_f[0]) + ny*(dx1*up_f[1]+dx2*up_f[0])

182

A.5. Sundance Code for Static Partitioned FSI Computations

+ nz*(dx1*up_f[2]+dx3*up_f[0])),quad_curve,curveIntegral);

FunctionalEvaluator ForceX_V(mesh,ForceX);

Expr ForceY = Integral(OnCircle,up_f[3]*ny

- rho_fluid*nu*(2.0*ny*(dx2*up_f[1]) + nx*(dx2*up_f[0]+dx1*up_f[1])

+ nz*(dx2*up_f[2]+dx3*up_f[1])),quad_curve,curveIntegral);

FunctionalEvaluator ForceY_V(mesh , ForceY);

Expr ForceZ = Integral(OnCircle,up_f[3]*nz

- rho_fluid*nu*(2.0*nz*(dx3*up_f[2]) + nx*(dx1*up_f[2]+dx3*up_f[0])

+ ny*(dx2*up_f[2]+dx3*up_f[1])), quad_curve,curveIntegral);

FunctionalEvaluator ForceZ_V(mesh , ForceZ);

A.5. Sundance Code for Static Partitioned FSI
Computations

In the following, we consider one Sundance code for the partitioned computation of a
sationary FSI problem in 2D. prob s represents the structure problem, whereas prob fl
represents the fluid problem. fx and fy represent the coupling stress vectors and are
used accordingly in eqn s to couple them to the structure’s problem.

ParametrizedCurve curve_fl=new Polygon2D("FSI_polygon.txt",1.0,1e-7);

curve_fl.addNewScalarField("dispX" , 0.0);

curve_fl.addNewScalarField("dispY" , 0.0);

curve_fl.addNewScalarField("fx" , 0.0);

curve_fl.addNewScalarField("fy" , 0.0);

ParametrizedCurve curve_str = polyg->createTwinPolygon(0,0,1,1);

...

Expr fx = new UserDefOp(List(x1,x2), rcp(new CurveExpr(curve_str,2)));

Expr fy = new UserDefOp(List(x1,x2), rcp(new CurveExpr(curve_str,3)));

Expr eqn_s = Integral(Omega , LduT*C*(Lnl * us) , quad4) +

Integral(OnCurve_S,-fx*du[0]-fy*du[1],quad_c,curveIntegral_str);

...

Array<double>& dispX = curve_str.getScalarFieldValues(0);

Array<double>& dispY = curve_str.getScalarFieldValues(1);

Array<Point>& pnt_f = curve_fl.getControlPoints();

Array<Point>& pnt_s = curve_str.getControlPoints();

for(iter = 0 ; error > 1e-6 ; iter++)

{

double dist = 0.0 , w = 0.31;

for (int p = 0 ; p < pnt_f.size() ; p++){

Point p_tmp = pnt_f[p];

pnt_f[p][0]=pnt_f[p][0]-w*(pnt_f[p][0] - pnt_s[p][0] - dispX[p]);

183

A. Appendix

pnt_f[p][1]=pnt_f[p][1]-w*(pnt_f[p][1] - pnt_s[p][1] - dispY[p]);

dist = dist + (pnt_f[p]-p_tmp)*(pnt_f[p]-p_tmp);

}

error = sqrt(dist/(double)pnt_f.size());

curve_fl.update();

// trigger the reassamle of both problem

prob_s.reAssembleProblem();

prob_fl.reAssembleProblem();

// Solve the fluid system

status_fl = prob_fl.solve(solver_fl);

// set the drag and lift forces

curve_fl.setSpaceValues(dragInt_Curve , 2);

curve_fl.setSpaceValues(liftInt_Curve , 3);

// Solve the structure system

status_s = prob_s.solve(solver_s);

// set the X and Y displacements

curve_str.setSpaceValues(dispXInt_Curve , 0);

curve_str.setSpaceValues(dispYInt_Curve , 1);

}

184

Bibliography

[1] M. Abramowitz and I.A. Stegun. Handbook of mathematical functions with formu-
las, graphs, and mathematical tables. Number Bd. 55,Nr. 1972 in Applied mathe-
matics series. 1964.

[2] P. Angot, C.-H. Bruneau, and P. Fabrie. A penalization method to take into account
obstacles in incompressible viscous flows. Numerische Mathematik, 81(4):497–520,
1999.

[3] I. Babuška. The finite element method with lagrangian multipliers. Numerische
Mathematik, 20:179–192, 1973.

[4] I. Babuška, U. Banerjee, and J.E. Osborn. Meshless and Generalized Finite Ele-
ment Methods: A Survey of Some Major Results, in Meshfree Methods for Partial
Differential Equations. Lect. Notes Comput. Sci. Eng. 26 pp. 1-20. Springer, New
York, 2002.

[5] M. Bader, S. Schraufstetter, C. A. Vigh, and Jörn Behrens. Memory efficient adap-
tive mesh generation and implementation of multigrid algorithms using sierpinski
curves. 4(1):12–21, November 2008.

[6] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data
structures for massively parallel generic finite element codes. to appear in ACM
Trans. Math. Software.

[7] W. Bangerth, R. Hartmann, and Kanschat G. deal.ii – a general purpose object
oriented finite element library. ACM Trans. Math. Softw., 33(4):1–27, 2007.

[8] W. Bangerth and G. Kanschat. Concepts for object-oriented finite element software
– the deal.II library. Preprint 99-43 (SFB 359), IWR Heidelberg, October 1999.

[9] W. Bangerth and O. Kayser-Herold. Data structures and requirements for hp finite
element software. ACM Trans. Math. Softw., 36:4:1–4:31, March 2009.

[10] I. W. Barbara. A mortar finite element method using dual spaces for the lagrange
multiplier. SIAM J. Numer. Anal, 38:989–1012, 1998.

[11] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber,
M. Ohlberger, and O. Sander. A generic grid interface for parallel and adaptive

185

Bibliography

scientific computing. part ii: implementation and tests in dune. Computing, 82:121–
138, 2008.

[12] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and
O. Sander. A generic grid interface for parallel and adaptive scientific computing.
part i: abstract framework. Computing, 82:103–119, 2008.

[13] Y. Bazilevs and T.J.R. Hughes. Weak imposition of dirichlet boundary conditions
in fluid mechanics. Computers and Fluids, 36(1):12 – 26, 2007.

[14] Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes. Weak dirichlet bound-
ary conditions for wall-bounded turbulent flows. Computer Methods in Applied
Mechanics and Engineering, 196(49-52):4853 – 4862, 2007.

[15] R. Becker. Mesh adaptation for Dirichlet flow control via Nitsche’s method. Com-
munications in Numerical Methods in Engineering, 18(9):669–680, 2002.

[16] R. Becker, M. Braack, R. Rannacher, and C. Waguet. Fast and reliable solutions
of the navier-stokes equations including chemistry. Computer and Visualization in
Science, 2(3), 1999.

[17] T. Belytschko and T. Black. Elastic crack growth in finte elements with minimal
remeshing. International Journal for Numerical Methods in Engineering, 45:601–
620, 1999.

[18] J. Benk, R. Kirby, K. Long, and M. Mehl. Adaptive parallel cartesian mesh in a
fem pde-toolbox environment. ACM Trans. Math. Softw., (submitted):0, January
2012.

[19] J. Benk, M. Mehl, and M. Ulbrich. Sundance pde solvers on cartesian fixed grids
in complex and variable geometries. In Proceedinggs of the ECCOMAS Thematic
Conference CFD & Optimization, Antlya, Turkey, May 23-25, 2011, 2011.

[20] L. Biros, G. Ying and Zorin D. The embedded boundary integral method (ebi) for
the incompressible navier-stokes equations, 2002.

[21] D. Braess. Finite elements: theory, fast solvers, and applications in elasticity theory.
Cambridge University Press, 2007.

[22] M. Brenk. Algorithmic Aspects of Fluid-Structure Interactions on Cartesian Grids
(German: Algorithmische Aspekte der Fluid-Struktur-Wechselwirkung auf kartesis-
chen Gittern). PhD thesis, Technische Universität München, 2007.

[23] S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods.
Texts in applied mathematics. Springer-Verlag, 2002.

[24] H. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a

186

Bibliography

dense swarm of particles. Applied Scientific Research, 1:27–34, 1949.

[25] H.-J. Bungartz, J. Benk, B. Gatzhammer, M. Mehl, and T. Neckel. Fluid-Structure
Interaction – Modelling, Simulation, Optimisation, Part II, volume 73 of LNCSE,
chapter Partitioned Simulation of Fluid-Structure Interaction on Cartesian Grids,
pages 255–284. Springer, Berlin, Heidelberg, October 2010.

[26] H.-J. Bungartz, B. Gatzhammer, M. Lieb, M. Mehl, and T. Neckel. Towards multi-
phase flow simulations in the pde framework peano. Computational Mechanics,
48(3):365–376, 2011.

[27] C. Burstedde, L.C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for par-
allel adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific
Computing, 33(3):1103–1133, 2011.

[28] R. Codina and J. Baiges. Approximate imposition of boundary conditions in im-
mersed boundary methods. International Journal for Numerical Methods in Engi-
neering, 80(11):1379–1405, 2009.

[29] A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger. A Generic Interface for
Parallel and Adaptive Scientific Computing: Abstraction Principles and the DUNE-
FEM Module. Computing, 90(3–4):165–196, 2010.

[30] J. Degroote. Development of algorithms for the partitioned simulation of strongly
coupled fluid-structure interaction problems. Dissertation, Ghent University. Faculty
of Engineering, 2010.

[31] Th. Dunne, R. Rannacher, and Th. Richter. Numerical simulation of fluid-structure
interaction based on monolithic variational formulations. Comtemporary Challenges
in Mathematical Fluid Mechanics (G.P. Galdi, R. Rannacher, eds.), World Scien-
tific, Singapore, 2010.

[32] ExodusII. http://sourceforge.net/projects/exodusii/, 2007.

[33] FEniCS. http://fenicsproject.org, 2012.

[34] M.W. Gee, C.M. Siefert, J.J. Hu, R.S. Tuminaro, and M.G. Sala. ML 5.0 smoothed
aggregation user’s guide. Technical Report SAND2006-2649, Sandia National Lab-
oratories, 2006.

[35] A. Gerstenberger. An XFEM based fixed-grid approach to fluid-structure interaction.
Dissertation, Technische Universität München, 2010.

[36] M. Giles, M. G. Larson, J. M. Levenstam, and E. Süli. Adaptive error control
for finite element approximations of the lift and drag coefficients in viscous flow.
Technical Report NA-97/06, Oxford University Computing Laboratory, 1997.

187

Bibliography

[37] R. Glowinski, T. W. Pan, T. I. Helsa, D. D. Joseph, and J. Périaux. A ficti-
tious domain approach to the direct numerical simulation of incompressible viscous
flow past moving rigid bodies: application to particulate flow. J. Comput. Phys.,
169(2):363–426, 2001.

[38] P. M. Gresho, R. L. Sani, and M. S. Engelman. Incompressible Flow and the Finite
Element Method. John Wiley & Sons, 1998.

[39] A. Hansbo and P. Hansbo. A finite element method for the simulation of strong and
weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics
and Engineering, 193(33-35):3523 – 3540, 2004.

[40] P. Hansbo. Nitsche’s method for interface problems in computational mechanics.
Chimera, 1(2):1–27, 2005.

[41] P. Hansbo and M. Juntunen. Weakly imposed dirichlet boundary conditions for the
brinkman model of porous media flow. Applied Numerical Mathematics, 59(9):1274–
1289, 2009.

[42] J. Haslinger, J.-F. Maitre, and L. Tomas. Fictitious domain methods with dis-
tributed lagrange multipliers part i: Application to the solution of elliptic state
problems. Mathematical Models and Methods in Applied Sciences, 11(3):521–547,
2001.

[43] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq,
K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Wil-
lenbring, and Williams A. An overview of trilinos. Technical report, Sandia National
Laboratories, 2003.

[44] C. Hinterberger and M. Olesen. Automatic geometry optimization of exhaust sys-
tems based on sensitivities computed by a continuous adjoint cfd method in open-
foam. SAE Library, 2010.

[45] C. W. Hirt, A.-A. Amsden, and J. L. Cook. An arbitrary lagrangian-eulerian com-
puting method for all flow speeds. J. Comp. Phys., 14:227–253, 1974.

[46] J. Hron and S. Turek. Proposal for numerical benchmarking of fluid-structure in-
teraction between elastic object and laminar incompressible flow. In H.-J. Bungartz
and M. Schäfer, editors, Fluid-Structure Interaction, number 53 in Lecture Notes
in Computational Science and Engineering, pages 371–385. Springer-Verlag, 2006.

[47] A. Huerta, T. Belytschko, T. Fernandez-Mendez, and T. Rabczuk. Meshfree Meth-
ods. vol. 1 of Encyclopedia of Computational Mechanics ch. 10, pp. 279-309. Wiley,
2004.

[48] T.J.R. Hughes, G. Scovazzi, and L.P. Franca. Multiscale and Stabilized Methods.
in Encyclopedia of Computational Mechanics , eds. E. Stein, R. De Borst, T. J. R.

188

Bibliography

Hughes. Wiley, 2004.

[49] M. Juntunen and R. Stenberg. Nitsche’s method for general boundary conditions.
Math. Comp, 78(267):1353–1374, 2009.

[50] H. Kardestuncer, D. H. Norrie, and Brezzi F. Finite element handbook. McGraw-Hill
reference books of interest: Handbooks. McGraw-Hill, 1987.

[51] K. Khadra, P. Angot, S. Parneix, and J.-P. Caltagirone. Fictitious domain ap-
proach for numerical modelling of navier-stokes equations. International Journal
for Numerical Methods in Fluids, 34(8):651–684, 2000.

[52] B. Khalighi, S. Jindal, J.P. Johnson, K.H. Chen, and G. Iaccarino. Validation
of the immersed boundary cfd approach for complex aerodynamic flows. In Fred
Browand, Rose McCallen, and James Ross, editors, The Aerodynamics of Heavy
Vehicles II: Trucks, Buses, and Trains, volume 41 of Lecture Notes in Applied and
Computational Mechanics, pages 21–38. Springer Berlin / Heidelberg, 2009.

[53] R.C. Kirby and A. Logg. A compiler for variational forms. ACM Transactions on
Mathematical Software, 32(3), 2006.

[54] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A C++ Li-
brary for Parallel Adaptive Mesh Refinement Coarsening Simulations. Engineering
with Computers, 22(3–4):237–254, 2006.

[55] U. Kuettler and W.A. Wall. Fixed-point fluid-structure interaction solvers with
dynamic relaxation. In Computational Mechanics. Springer, 2008.

[56] M.-C. Lai and C. S. Peskin. An Immersed Boundary Method with Formal Second-
Order Accuracy and Reduced Numerical Viscosity. Journal of Computational
Physics, 160(2):705–719, May 2000.

[57] X. S. Li and J. W. Demmel. Superlu dist: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM Trans. Math. Softw., 29:110–140,
June 2003.

[58] A. Logg. Efficient representation of computational meshes. International Journal
of Computational Science and Engineering, 4(4):283–295, 2009.

[59] A. Logg, K.-A. Mardal, G.N. Wells, et al. Automated Solution of Differential Equa-
tions by the Finite Element Method. Springer, 2012.

[60] K. Long. Sundance 2.0 tutorial, 2004.

[61] K. Long. http://www.math.ttu.edu/ klong/sundance/html/index.html, 2007.

[62] K. Long, R. Kirby, and B. van Bloemen Waanders. Unified embedded parallel finite
element computations via software-based frechet differentiation. Siam Journal on

189

Bibliography

Scientific Computing (SISC), November 2010.

[63] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. SIGGRAPH Comput. Graph., 21:163–169, 1987.

[64] U. Mayer, A. Popp, A. Gerstenberger, and W. Wall. 3d fluid-structure-contact
interaction based on a combined xfem fsi and dual mortar contact approach. Com-
putational Mechanics, 46:53–67, 2010.

[65] R.J. Meyers, T.J. Tautges, and Tuchinsky P.M. The hex-tet hex-dominant meshing
algorithm as implemented in cubit. In Proceedings of the 7th International Meshing
Roundta-ble, 1998.

[66] R. Mittal, C. Bonilla, and H.S. Udaykumar. Cartesian grid methods for simulat-
ing flows with moving boundaries. In Computational Methods and Experimental
Measurements XI, Greece, 2003.

[67] R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid
Mechanics, 37(1):239–261, 2005.

[68] N. Moës, J. Dolbow, and M. Tourbieree. A finite element method for crack growth
without remeshing. International Journal for Numerical Methods in Engineering,
46:131–150, 1999.

[69] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei
Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Ab-
handlungen aus dem Mathematischen Seminar der Universität Hamburg, 36:9–15,
1971.

[70] S. Osher and J. A. Sethian. Fronts propagating with curvature dependent speed: Al-
gorithms based on hamilton-jacobi formulations. Journal of Computational Physics,
79(1):12–49, 1988.

[71] Paraview. http://www.paraview.org/, 2000.

[72] J. Parvizian, A. Düster, and E. Rank. Finite cell method: h- and p- extension for
embedded domain methods in solid mechanics. Computational Mechanics, (41):121–
133, 2007.

[73] F. Pellegrini. Scotch. url http://www.labri.fr/perso/pelegrin/scotch.

[74] C. Peskin. Flow patterns around heart valves: A numerical method. Journal of
Computational Physics, 10(2):252–271, October 1972.

[75] P. Popov, L. Bi, Y. Efendiev, R.E. Ewing, G. Qin., J. Li, and Y. Ren. Multi-physics
and multi-scale methods for modeling fluid flow through naturally-fractured vuggy
carbonate reservoirs. In SPE Middle East Oil and Gas Show and Conference, 2007.

190

Bibliography

[76] I. Ramière, P. Angot, and M. Belliard. A fictitious domain approach with spread
interface for elliptic problems with general boundary conditions. Computer Methods
in Applied Mechanics and Engineering, 196(4-6):766 – 781, 2007.

[77] M. Sala and M. Heroux. Robust algebraic preconditioners with IFPACK 3.0. Tech-
nical Report SAND-0662, Sandia National Laboratories, 2005.

[78] R. Sampath and G. Biros. A parallel geometric multigrid method for finite elements
on octree meshes. SIAM Journal on Scientific Computing, 32:1361–1392, 2010.

[79] B. Satish, D. G. William, C. M. Lois, and F. S. Barry. Efficient management of par-
allelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset,
and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing,
pages 163–202. Birkhauser Press, 1997.

[80] M. Schäfer and S. Turek. Benchmark computations of laminar flow around a cylin-
der. In Flow simulation with high-performance computers. Bd. 2., volume 52 of
Notes on numerical fluid mechanics, pages 547–566. Vieweg, Braunschweig, Jan-
uary 1996.

[81] D. Schillinger, M. Ruess, N. Zander, Y. Bazilevs, A. Düster, and E. Rank. Large
deformation analysis with the p- and b-spline versions of the finite cell method (1)
part i: A geometrically nonlinear fcm formulation based on repeated deformation
resetting in the fictitious domain. submitted to Computational Mechanics, 2011.

[82] D. Schillinger, M. Ruess, N. Zander, Y. Bazilevs, A. Düster, and E. Rank. Large
deformation analysis with the p- and b-spline versions of the finite cell method (2)
part ii: Unfitted dirichlet boundary conditions, severe mesh distortion and appli-
cation to complex voxel-based geometries. submitted to Computational Mechanics,
2011.

[83] J. R. Shewchuk. http://www.cs.cmu.edu/ quake/showme.html, 2007.

[84] R. Stenberg. On some techniques for approximating boundary conditions in the
finite element method. J. Comput. Appl. Math., 63:139–148, November 1995.

[85] T. Strouboulis, K. Copps, and I. M. Babuška. The generalized finite element
method: an example of its implementation and illustration of its performance. In-
ternational Journal for Numerical Methods in Engineering, 47:1401–1417, 2000.

[86] R.S. Sundar, H. Sampath and G. Biros. Bottom-up construction and 2:1 balance
refinement of linear octrees in parallel. SIAM Journal on Scientific Computing,
30:2675–2708, 2008.

[87] T. E. Tezduyar and Y. Osawa. Finite element stabilization parameters computed
from element matrices and vectors. Computer Methods in Applied Mechanics and
Engineering, 190(31):411–430, 2000.

191

Bibliography

[88] S. Turek, J. Hron, M. Razzaq, H. Wobker, and M. Schäfer. Numerical Benchmark-
ing of Fluid-Structure Interaction: A Comparison of Different Discretization and
Solution Approaches, volume 73 of Lecture Notes in Computational Science and
Engineering, chapter 15, pages 413–424. Springer Berlin Heidelberg, 2010.

[89] R. Verzicco, P. Orlandi, J. Mohd-Yusof, and D. Haworth. Les in complex geometries
using boundary body forces. AIAA Journal, 38:427–433, 2000.

[90] W. Wall, A. Gerstenberger, P. Gamnitzer, C. Förster, and E. Ramm. Large defor-
mation fluid-structure interaction - advances in ale methods and new fixed grid ap-
proaches. In Hans-Joachim Bungartz and Michael Schäfer, editors, Fluid-Structure
Interaction, volume 53 of Lecture Notes in Computational Science and Engineering,
pages 195–232. Springer Berlin Heidelberg.

[91] W. A. Wall. Introduction to finite elements, lecture script, 2010.

[92] T. Weinzierl. A Framework for Parallel PDE Solvers on Multiscale Adaptive Carte-
sian Grids. Verlag Dr. Hut, 2009.

[93] P. Wriggers. Nonlinear Finite Element Methods. Springer, 2010.

[94] C. S. Zender. Analysis of self-describing gridded geoscience data with netcdf oper-
ators (nco). Environ. Modell. Softw., 23(10), 2008.

[95] A. Zilian and A. Legay. The enriched space-time finite element method (est) for
simultaneous solution of fluid-structure interaction. International Journal for Nu-
merical Methods in Engineering, 75(3):305–334, 2008.

192

