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Abstract 

A systematic approach to determining reliability-based acceptance criteria for deteriorating 

elements in structural systems is proposed, as a basis for calibration of safety factors in codes 

and standards and for verifying acceptability of inspection and maintenance strategies for 

specific structures. The goal is to establish deterioration acceptance criteria for the elements of 

a structural system in compliance with criteria formulated for the system. Existing methods 

significantly overestimate the deterioration reliability of redundant structural systems because 

they neglect the joint effect of deterioration failures of different elements. To more realistically 

capture the load-sharing behavior of deteriorating redundant structural systems, it is proposed 

to establish deterioration acceptance criteria based on easily computable, idealized structural 

systems, which are calibrated to the characteristics of the real structure. The approach is 

validated on an example structural system and is found to represent a significant improvement 

over current methods. The paper concludes with a study of the main factors influencing 

acceptance criteria of deterioration reliability.  
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Introduction 

Owners of structural systems are confronted with the problem of determining whether their 

structures and their inspection/maintenance/repair policies are acceptable with regard to 

potential deterioration failures. While this applies equally to newly built and existing 

structures, the problem is particularly relevant for the latter, for which the cost of increasing the 

reliability is generally much higher (Melchers 2001). Extensive research has been carried out 

on probabilistic modeling of deterioration in structural systems, as reviewed by Frangopol et al. 

(2004). Furthermore, methods for reliability analysis of deteriorating structural systems have 

been developed over the past two decades, including works by Mori and Ellingwood (1993), Li 

(1995), Ciampoli (1998), Estes and Frangopol (1999) and Stewart and Val (1999). These 

methods enable the computation of the time-variant reliability of structures with deteriorating 

elements, which in the general case is a highly complex task. Because of this complexity, such 

integrated reliability analysis is rarely performed in engineering practice; rather, deterioration 

is assessed at the level of structural details or elements. The present paper, therefore, follows a 

different strategy. It proposes a method for determining the required level of deterioration 

reliability at the level of structural elements that ensures acceptability of the risks at the 

structural system level. The method accounts for the relevant influencing factors in an 

approximate sense, while remaining sufficiently simple for practical applications. The approach 

is motivated by practices in structural engineering for fixed offshore structures applied since 

the 1980s, where acceptance criteria for fatigue deterioration are determined as a function of 

the structural redundancy with respect to element failure (Kirkemo 1990, Moan 2005). The 

proposed method can be applied to determine acceptability of specific structures and 
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inspection/maintenance strategies (Straub and Faber 2005b), or for calibration of safety factors 

for deterioration limit states in codes and standards. 

Problem setting 

Existing codes typically specify design criteria and safety factors for individual structural 

elements. This applies for failures caused by static or dynamic overloading of the structural 

elements, as described by ultimate limit states, as well as for deterioration failures, e.g., 

described by fatigue limit states. However, deterioration failures exhibit some fundamental 

differences as compared to overloading failures, which make it necessary to explicitly account 

for the system characteristics. When structural systems collapse because of overloading, all 

elements involved in the realized failure mode normally fail during the same load event (when 

considering cascading failure sequences as a single event). For this reason, the safety margins 

of the individual elements exhibit strong statistical dependence and the system reliability 

approximately equals the reliability of the individual elements (assuming that all elements have 

been designed to have the same target reliability index). Failures of structural elements caused 

by deterioration, on the other hand, are likely to occur at different times depending on the 

nature of the deterioration process. These events have lower statistical dependence and the 

corresponding system reliability, therefore, substantially differs from the deterioration 

reliability of the individual elements. For these reasons, the acceptability of deterioration 

failures must be assessed as a function of structural redundancy. In addition, deterioration can 

be detected before failure occurs, but deterioration failures can also remain undetected. The 

inspection and repair policies, therefore, influence the acceptability of deterioration failures. 

These aspects are partly reflected in design codes such as Eurocode 3 (1992) and NORSOK 

(1998), where safety factors for fatigue limit states are specified as a function of the 



 - 4 - 

consequences of element failure (structural importance) and the possibility to inspect an 

element.  

In the past, reliability-based acceptance criteria for deterioration limit states have been 

considered mainly for structures subject to fatigue, in particular fixed offshore structures, e.g., 

HSE (2002), Ronalds et al. (2003), Moan (2005), and Straub and Faber (2005a). These 

acceptance criteria were determined as a function of the structural importance of the considered 

element. The structural importance of each element was assessed by comparing the overall 

capacity of the intact structural system with the capacity of the structural system when the 

element is removed. As shown in this paper, this approach is only suitable for elements with 

high reliability and if the statistical dependence among deterioration failures is low, because it 

neglects the possibility of joint occurrence of more than one deterioration failure. These 

conditions often are not satisfied in practice. For many structural systems, deterioration states 

of structural elements are correlated. As previously stated, this correlation is lower than that for 

limit states of element failures due to overloading (for which the correlation coefficient is close 

to one), but it is non-negligible for most structural systems. As an example, in an investigation 

of the integrity of mooring systems for floating offshore structures, it was found that 

deterioration typically affects all mooring lines to roughly the same extent (HSE 2006), which 

implies large statistical dependence among the corresponding deterioration states. Since 

mooring systems have significant redundancy (failure of an individual mooring line is 

generally not critical), the dependence among the deterioration processes of different elements 

strongly influences the system reliability. Another example is the study reported by 

Vrouwenvelder (2004), which inferred statistical dependence among fatigue performance of 

welded joints by comparing within-batch variability to batch-to-batch variability. On this basis, 

the correlation coefficient between fatigue crack growth parameters of two welded joints in the 
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same structure was estimated as 0.85. Thus, fatigue failure events in structural systems are 

expected to exhibit significant statistical dependence, which must not be neglected.  

The goal of this paper is to introduce a practical yet scientifically sound method for 

determining reliability acceptance criteria for deteriorating elements in general structural 

systems, as a function of overall system acceptance criteria, the structural importance of the 

individual element within the system, the statistical dependence among deterioration failures 

throughout the structure and the inspection and repair policy. Let T
DS  denote the target 

reliability index associated with the deteriorated structural system and T
DEi  denote the target 

reliability index for deterioration failure of the ith element in the structure. Our objective is to 

determine T
DEi  so that the overall system complies with T

DS . This approach is motivated by 

the Probabilistic Model Code of the Joint Committee on Structural Safety, JCSS (2006), where 

target reliabilities are specified for the entire structural system based on socio-economical 

principles, including life safety aspects.  

 

Target reliability indices for the structural system 

In the Probabilistic Model Code of the Joint Committee on Structural Safety (JCSS 2006), 

target reliability indices T  for ultimate limit states are specified as a function of the 

consequences of component failure and the relative cost of a safety measure, see Table 1. This 

differentiation reflects the fact that the target reliability indices are based on an optimization of 

expected life-cycle costs (Rackwitz 2000). The values in Table 1 are equally valid for new and 

existing structures, but the relative cost of safety measures is typically larger for the latter, 

leading to generally lower target reliability indexes for existing structures. 
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Table 1. Tentative target reliability indices T  for ultimate limit states and one year reference period, as 

recommended in JCSS (2006). 

Relative cost of 
safety measure 

Minor consequences 
of failure 

Moderate consequences 
of failure 

Large consequences 
of failure 

Large T=3.1 (pF
 T

  10-3) T=3.3 (pF
 T

  5  10-3) T=3.7 (pF
 T

  10-4) 

Normal T=3.7 (pF
 T

  10-4) T=4.2 (pF
 T

  10-5) T=4.4 (pF
 T

  5  10-6) 

Small T=4.2 (pF
 T

  10-5) T=4.4 (pF
 T

  5  10-6) T=4.7 (pF
 T

  10-6) 

 

According to JCSS (2006), “the values given [in Table 1] relate to the structural system or in 

approximation to the dominant failure mode.” In the absence of owner-specified reliability 

targets, these values can be considered as the target reliability indices associated with 

deterioration-induced system collapse, T
DS . Mitigation measures against deterioration typically 

are expensive, in particular for existing structures, and the target reliability indices in most 

cases will be as given in the upper two lines of Table 1. 

System model 

To verify compliance with T
DSβ , a model for computing the probability of collapse of the 

deteriorating structural system, DSp , and the corresponding reliability index DS , is needed. 

Deterioration in a system is deemed acceptable if DS
T
DS  .We propose a formulation based 

on a simplified model of the element and system behavior. The first simplification is that, on a 

system level, deterioration of any element i at time t  is modeled by a binary random process 

( )iE t  with outcome space { , }i iF F , iF  being the event of deterioration failure of the element 

and a superposed bar indicating the complement. Thus, no gradual decay of the element 

strength is considered:  At a given time t , the element either has its full capacity (not 

deteriorated) or has completely lost its capacity due to deterioration. (The appropriateness of 

this idealization is discussed later in the section on deterioration models.) The deterioration 



 - 7 - 

state of the system, represented by the random process ( )t , is a function of ( )iE t , 

1,2,...,i n , where n is the number of deteriorating structural elements. The outcome space of 

( )t  thus consists of 2n  disjoint states, i , ni 2,,1 . The first of these states corresponds to 

the event of no deterioration failure in the structural system, 1 1 2{ ... }nF F F     , and the 

last to the event that all elements have failed due to deterioration, }{ψ 212 nFFFn   .  

A second simplification is that the deterioration state of the system is constant over a time 

period 1t  year, which is considered to be small in relation to the service life of the 

structure. To be on the conservative side, the system deterioration state in the period ],( ttt   

is set equal to the state at time t , ( )t  . The event of structural collapse in that time interval is 

denoted by )(tC . The probability of this event conditioned on the deterioration state of the 

system at time t , )](|)(Pr[ ttC  , can be computed by performing reliability analyses of the 

structure with the elements damaged according to (t), i.e., all elements that are failed due to 

deterioration are removed in the structural model employed in the reliability analysis. However, 

for real structures it is not feasible to evaluate all 2n  values of )](|)(Pr[ ttC  , as this would 

require an enormously large number of system reliability analyses ( 2n  being the size of the 

outcome space of (t)). To circumvent this problem, later in this paper we propose to compute 

)](|)(Pr[ ttC   for an approximately equivalent idealized system, which is constructed based on 

a set of indicators of the real structural system.  

The probability of structural collapse in the reference period ],( ttt   is given by the total 

probability theorem as 

            i
i

iDS tttCtCtp
n

 


PrPrPr
2

1

 (1) 
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The associated reliability index is 1( ) [ ( )]DS DSt p t   , where 1  is the inverse of the 

standard normal cumulative distribution function. Pr[ ( ) ]it    in Equation (1)  is obtained as 

a function of probabilities of the element deterioration failure events ii FtE )( , accounting for 

the statistical dependence among these events. Because we can set )β(])(Pr[ T
DEiii FtE   

for an element designed at the limit of the acceptance criterion, Equation (1) establishes the 

connection between the system criterion DS
T
DS   and the target deterioration reliability 

indices of the individual elements, T
DEi , 1,2,...,i n . Obviously, the single condition 

DS
T
DS   is not sufficient to determine the n individual quantities T

DEi  and additional rules are 

required. Such rules are proposed in this paper, based on the same equivalent idealized system 

as introduced for computing Pr[ ( ) | ( ) ]iC t t   . 

 

Modeling deterioration failure events 

Deterioration is modeled at the level of structural elements, e.g., structural members, welded 

joints, area segments of a continuous surface. The event of deterioration failure of element i at 

time t  is represented by a limit-state function ),( tgi X , with X  being a vector of random 

variables that describe the deterioration model, so that }0),({})({  tgFtE iii X . The 

corresponding failure probability, Pr[ ( ) ]i iE t F , can be computed by the methods of structural 

reliability analysis. An example deterioration limit state model is 

  BAtDtg ,X  (2) 

where t  is the time since installation or repair of the element, D  is the damage limit and A  

and B  are parameters describing the deterioration process. For 1B , this corresponds to most 

applied corrosion models as well as to the Palmgren-Miner fatigue model with a stationary 
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stress process; for 5.0B , the model is representative of diffusion-controlled deterioration, 

and for 2B  the model approximates concrete deterioration due to sulfate attack. 

Deterioration in an element occurs gradually with time and representing the capacity of such an 

element by the two-state random process ( )iE t  is a strong simplification. Therefore, care is 

required in defining the failure criterion in the deterioration limit state function, such as D  in 

Equation (2). If the failure event is defined so that the capacity of the element is significantly 

reduced before the limit state is reached, the binary model can be unconservative. On the other 

hand, if the failure event is defined so that the element is considered failed after a small loss of 

capacity, the model will give conservative results for the system. In general, the assumed 

binary model would be most appropriate when the deterioration initiates and failure occurs 

within the same time interval ],( ttt  . 

For fatigue deterioration, limit states provided in codes generally correspond to defect initiation 

or the event of a through-thickness crack and not to loss of capacity; the remaining capacity of 

the element or joint at the limit state may be close to its capacity in the undamaged state. 

Therefore, the proposed model is conservative for fatigue limit states; however, the degree of 

conservatism can vary.  For some structural details, fatigue can lead to unstable crack growth 

and complete loss of capacity shortly after reaching the limit state and the model is accurate. 

On the other hand, in many structural configurations loads redistribute once a loss of stiffness 

occurs and crack growth slows down after the limit state is reached; the model is conservative 

in this case. Despite its potential conservatism, we believe the proposed binary model is 

justified for modeling high-cycle fatigue failures in engineering practice. For low-cycle fatigue, 

however, the model can be non-conservative. Damaging stress cycles due to low-cycle fatigue 

usually occur during extreme events, and it is more probable that deterioration failures and 
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structural collapse occur during the same load event. By not accounting for this likely 

concurrence, the model might underestimate the probability of collapse. 

The binary model is suitable for other deterioration processes that lead to rapid reduction of 

capacity after an initiation period. These include various forms of stress corrosion cracking and 

deterioration processes that are controlled by a protection system. In the latter case, the 

deterioration failure event should be defined (conservatively) as the failure of the protection 

system. 

For other deterioration mechanisms that lead to slow reduction of the element capacity, such as 

uniform corrosion or distributed pitting corrosion on steel surfaces and on reinforcement of RC 

structures, the binary model is less appropriate. It might still be applied if the failure criterion is 

selected conservatively, e.g., by defining the allowable corrosion loss in ship structures as the 

damage limit in Equation (2) or by defining the failure of the reinforcement as corrosion-

induced loss of bond. Depending on the application, the results obtained with the model 

presented in this paper can be overly conservative and approaches based on structure-specific 

system reliability analyses might become necessary. However, it is noted that for deterioration 

of RC structures, serviceability limit states are often found to be determining the required level 

of deterioration reliability (Stewart and Val 2003). In this case, the present approach can still be 

used to check whether the reliability levels implied by the serviceability criteria are complying 

with the system safety criterion. 

Modeling statistical dependence among deterioration failure events 

The deterioration failure events of elements in a structural system are generally statistically 

dependent due to common uncertain influencing factors, such as environmental conditions and 
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material characteristics. Statistical dependence among element deterioration failures can be 

expressed through the correlation coefficients among the corresponding limit state functions. 

As an example, consider the deterioration limit state in Equation (2). This can be reformulated 

into the equivalent form 

  tBADtg lnlnln, X  (3) 

If both D  and A  are modeled by a Lognormal distribution and B  is modeled by a Normal 

distribution, assuming independence of the three variables, the reliability index at time t 

without inspection becomes 

 
 222 lnσζζ

lnμλλ
β

t

t
t

BAD

BAD
DEi




  (4) 

with Dλ , A  and Bμ  being the means of ln , Aln  and B , and  , A  and Bσ  being the 

corresponding standard deviations, respectively. As an example, assume the statistical 

dependence between the deterioration failures of two elements i  and j  arises due to 

correlation between the corresponding variables iDln  and jDln and between iAln  and jAln , 

denoted ln A  and ln , respectively, while variable B  remains statistically independent from 

element to element. Assuming identical marginal probability distributions of these variables for 

the two elements, the correlation coefficient between the corresponding pairs of limit states 

functions is 

 
 

2 2
ln ln

22 2 ln
A A

M

A B

t
t

 



   
 

    
 (5) 



 - 12 - 

For the special case considered here, with the limit-state functions being jointly normally 

distributed, the pair-wise correlation coefficients  M t  together with )(tDEi  fully describe the 

probability mass function (PMF) of )(t , i.e., the probabilities of all possible combinations of 

element deterioration failures in the system. In the more general case, when the deterioration 

limit state function is not linear and the random variables are not normal or lognormal,  M t  

can be taken as the correlation coefficient between the linearized limit states obtained from a 

FORM solution of a parallel system with two elements (Ditlevsen and Madsen 1996). 

 

Investigation of earlier models for developing deterioration acceptance criteria in 
redundant structural systems  

In principle, to establish the element acceptance criterion T
DEi  as a function of the system 

acceptance criterion T
DS , it is required to solve Equation (1). Because of the difficulty in 

computing ])()(Pr[ ttC   for all outcomes of )(t , existing approaches (HSE 2002, Ronalds et 

al. 2003, Moan 2005, Straub and Faber 2005a) employ an approximate version of  Equation 

(1). As an example, HSE (2002) utilizes the following approximation: 

                ii

n

i
niiiDS FtEFFFFFttCttCtp  


 Pr......PrPr

1
1111

 (6) 

Here, the influence of individual deterioration failures iF  is appraised through the probability 

of system failure with element i removed and all other elements 

intact: 1 1 1Pr[ ( ) | ( ) ( )]i i i nC t t F F F F F          . This conditional probability has 

often been used as an indicator for redundancy of the structure with respect to failure of 

element i (Lotsberg and Kirkemo 1989, Gharaibeh et al. 2002). The approach based on Eq. (6)  
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requires only one additional reliability analysis per element, i.e., n  analyses instead of 2n , 

which makes it practically feasible. By comparing Equations (1) and (6), it can be seen that the 

two formulations are identical if the element deterioration failure events are mutually exclusive 

and if the probability of collapse of the intact structure is zero,   0)()(Pr 1  ttC . As 

discussed in Straub and Faber (2005a), and as demonstrated by a numerical example later in 

this paper, the approximation is reasonable when the individual structural elements have high 

deterioration reliability ( 5.3)(  tDEi ), when the number of structural elements is small and 

when deterioration failure events are uncorrelated. In such a case, the probability of the joint 

occurrence of two or more deterioration failures becomes negligible. (If all elements have the 

same failure probability pFtE ii  ])(Pr[ , the probability of more than one statistically 

independent failure event among n  elements is 2/)1()1()1(1 21 pnnpnpp nn   , which 

is much smaller than p  when p  is small and n  is of order smaller than p/1 .) 

Unfortunately, these conditions are not generally fulfilled for real structures. 

Motivated by the approximation in Equation (6), we define the Single-Element Importance 

(SEI) measure for element i as 

   1 1 1 1 1 1Pr ( ) | ( ) ... ... Pr ( ) | ( )i i nSEI C t t F F F F F C t t 
                (7) 

As can be seen, iSEI  is the difference in the failure probability of the system with all elements 

intact (not deteriorated) and the system where only element i has failed due to deterioration.  

In addition to Equation (6), further conditions are required to establish the element acceptance 

criteria. It has been suggested, explicitly in (Straub and Faber 2005a) and implicitly in (Ronalds 

et al. 2003, Moan 2005, HSE 2002), to determine the T
DEi  such that all summation terms in 
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Equation (6) are equal, i.e., all elements contribute equally to the probability of system failure 

associated with deterioration. The target reliability indices for all elements are then obtained as: 

      
     














 

1

11

Pr

Pr1





ttCSEI

ttC

n i

T
DST

DEi  (8) 

Both Equations (6) and (8) neglect the contribution of joint deterioration failure events of two 

or more elements. To examine this effect, in the following an idealized system, for which 

Pr[ ( ) | ( )]C t t  is easily computable, is investigated.  

To simplify the notation, hereafter )(β tDEi  is written as DEi , because the structure is verified 

under the assumption that the element deterioration reliability is at its limit, i.e. T
DEiDEi t β)(β  , 

which does not depend on time. In addition, the random variables ( )C t  and ( )t  are written as 

C  and  , since the probability Pr[ | ]C   does not change with time under the common 

assumption that the distribution of the annual maximum load is constant with time and )Pr(  

does not change with time if the DEi  are constant with time. 

The SEI for a Daniels system 

Consider the Daniels system (Daniels 1945) shown in Figure 1. The elements of the system 

have independent and identically distributed (iid) capacities, i.e. they are exchangeable in the 

statistical sense. In Gollwitzer and Rackwitz (1990), the characteristics of this system are 

examined for a variety of element behaviors. This idealized system is well suited for 

representing the load-sharing phenomenon present in structural systems, with the two cases (a) 

and (b) in Figure 1 representing the extremes of true material behavior. Note that the distinction 

between the brittle and ductile failure modes relates to element failures due to overloading of 
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the structure. Deterioration, on the other hand, affects the capacities of the elements. In the 

simplified model considered here, the deterioration failure of an element is tantamount to 

reduction of its capacity to zero. The deterioration state of the system essentially dictates the 

number of elements that are available to resist the applied load through either a ductile or brittle 

behavior.  

For the idealized system, computation of the SEIi according to Equation (7) is straightforward. 

The two needed terms are  

    1 1 1 1 1Pr | ... ... Pr | 1i n FC F F F F F C N            (9) 

   1Pr Pr 0FC C N      (10) 

where FN  is the number of elements failed due to deterioration. 

 

EI = 

R1 R2 Rn

L
ε

R
Ri

. . .R3 ε

R
Ri

Case a)

Case b)

∞

 

Figure 1. Idealized structural system under external load. Case a) brittle element behavior (original 
Daniels system), b) ductile element behavior. 

To evaluate Equations (9) and (10), the conditional failure probability Pr( | )FC N j  is 

required. For given probability distributions of the element capacities iR   and the load L , this 
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is readily obtained for the above system. In accordance with the definition of C , L  is the 

maximum load in the period ],( ttt  . For case a), the required conditional probability is 

calculated as 

     Pr Pr ,F L

L

C N j C l n j f l dl      (11) 

where the probability of system failure for given load l  and number of surviving elements 

)( jn  , Pr[ | , ( )]C l n j , is computed according to the solution provided in Daniels (1945). For 

case b), the solution is given by  

 
1

Pr Pr 0
n j

F i
i

C N j R L




 
    

 
  (12) 

which is easily computed using structural reliability methods.  

Because of exchangeability of its elements, Equation (1) for the Daniels system simplifies to  





n

i
FFDS jNjNCp

0

)Pr()|Pr(  (13) 

The probability that j  elements have failed due to deterioration, Pr[ ]FN j , is a function of 

the element deterioration reliability indices DEi  and the correlation coefficients M  between 

their limit states. We assume DEi  is the same for all elements and M  is the same for all pairs 

of elements. The probability of j deterioration failures among N elements then is 
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       

 

Pr

with  
1

n j j

F

DEi M

M

n
N j u p u p u du

n j

u
p u






 
    

   
   

  


 (14) 

where ( )  is the standard Normal probability density function. This equation is based on a 

binomial model with uncertain parameter p, which accounts for the statistical dependence 

among the Bernoulli trials according to the correlation coefficient M . 

Numerical investigations 

With the Daniels system as an example of a structural system, we can now investigate the 

effect of the approximation made in existing approaches for determining the deterioration 

target reliability index. This is done by comparing the true deterioration reliability of the 

Daniels system with the one computed according to Equation (6). For this purpose, the load, L , 

is modeled by a lognormal distribution with coefficient of variation (c.o.v.) 0.25L   and the 

capacities of the elements, iR , are modeled by independent and identical normal distributions 

with c.o.v. 15.0δ R . The ratio of the mean values of inR  and L , which can be considered as 

the mean safety factor for system overload failures, is determined such that the system in its 

undamaged state (without deterioration failures) has reliability index 

1
1{Pr[ | ]} 4.4

DS
C       . (This value has reference period 1yrt  , but is not 

dependent on time t .) For a system with 20n  elements, this gives  / 3.67
iR Ln    for the 

brittle material behavior and / 2.90
iR Ln    for the ductile behavior. For this system, 

Pr( | )FC N j  is illustrated in Figure 2 as a function of j  for the two material models as 

computed by use of Equation (14). It is observed that the criticality of deterioration failures is 

almost identical for the two material behaviors. (It is reminded that the difference in material 
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behaviors relates only to overload failures. Deterioration failures for both material behaviors 

are modeled as brittle, i.e., without remaining load capacity.) In the remainder of this section, 

only the system with ductile elements is considered. 
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Figure 2. Failure probability of Daniels system as a function of the number of elements failed due to 
deterioration. 

To appraise the effect of the approximation introduced in previous approaches to determining 

the deterioration acceptance criteria, we compute the system reliability associated with 

deterioration failures, 1( )DS DSp   , according to Equation (6) and Equation (13). Equation 

(6) represents the approximation used in previous approaches and is based on the SEIi, which 

here is the same for all elements and is computed as )0|Pr()1|Pr(  FFi NCNCSEI . 

Equation (13) gives the exact value of DS  for the Daniels system and is used as a reference. In 

Figure 3, DS  is shown as a function of the number of elements, n, the deterioration reliability 

index of the individual elements, 
iDE , and the pair-wise correlation coefficient among the 

deterioration safety margins, M . 
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Figure 3. System deterioration reliability index as a function of number of elements (left chart), element 
deterioration reliability index (middle chart), and correlation among deterioration limit states (right 

chart). 

The results in Figure 3 clearly demonstrate that the approximation made in previous approaches 

to determining deterioration acceptance criteria overestimates the reliability of the investigated 

system, and the same tendency is expected for every redundant structural system. This effect is 

relatively constant with the number of elements in the Daniels system, n , except when n  is 

close to one, representing systems with limited or no redundancy. Furthermore, as mentioned 

earlier, the approximation is close to the correct result when the deterioration reliability index 

of the individual elements is large and when the statistical dependence among deterioration 

failure events is low ( 3.0M ). In these cases, the probability of joint occurrence of several 

element deterioration failures is negligible. However, for most real structural systems, these 

assumptions do not hold, and an improved approximation to the actual system deterioration 

reliability DS  is required. Such an approximation is presented and investigated in the 

remainder of this paper. 
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Acceptance criteria for deteriorating structural elements in general redundant systems 

Equivalent structural systems 

Our aim here is to set a target reliability index T
DEiβ  for each deteriorating element of a 

structural system so that the system reliability index considering deterioration, DSβ , is no less 

than a specified target reliability index T
DSβ . Obviously T

DEiβ  may need to be different for 

different elements, depending on the relative structural importance of each element. The 

relationship between element and system reliability indices, however, is an intricate one, 

governed by the nature of load-sharing between the elements, the configuration of the system 

and, in particular, the distribution of deteriorating elements within the structure. It is 

impractical to use an exact representation of the system (e.g., as a series system of parallel 

subsystems, Hohenbichler and Rackwitz 1982) to establish this relationship. Instead, here we 

make use of an idealized “equivalent” representation of the system to determine the required 

relationship. It is desirable to choose an idealized system with exchangeable (statistically 

independent and identically distributed) elements, because this property facilitates computation 

of the relation between T
DEiβ  and DSβ , as earlier demonstrated for the Daniels system.. 

However, the elements in the real structure have varying importance and cannot be represented 

as exchangeable elements within a single idealized system. Therefore, a different idealized 

system is defined for each deteriorating element in the real structure.  

For the idealized system to provide an accurate representation, it must be calibrated to the 

reliability characteristics of the real element and the real structure. Hence, for each element, the 

corresponding idealized system is defined so that it correctly represents the reliability of the 

intact structure and the reliability of the structure with the element removed. The difference 

between these two reliability measures, which is equal to the SEI of the element, in a sense 
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reflects the redundancy of the real system with respect to the selected element. Additionally, 

the idealized system should reflect the total number of deteriorating elements in the real 

structure, n. This is because, for given reliability of the intact structure and its redundancy with 

respect to the selected element, a larger n implies a higher number of failure modes and 

consequently lower system reliability. To assure satisfaction of the overall system reliability 

requirements, the target reliability index for the selected element must account for n.  

For each element i  in the real structure, the proposed equivalent idealized system consists of a 

set of k  Daniels subsystems in series, each having in  elements with statistically independent 

and identically distributed capacities. in  is selected so that it represents the redundancy of the 

real structural system with respect to deterioration failure of element i; when this redundancy is 

large, equivalent Daniels subsystems with larger number of elements are used, wherein failure 

of one element has a smaller effect. Since in  is determined purely based on the redundancy of 

the system with respect to element i , it does not reflect the total number of elements in the real 

system. For this reason, k  subsystems are considered in series, where k  is selected to 

appropriately represent the total number of elements in the real structure n . A larger value of 

n  for constant in  implies a larger value of k . The numerical determination of in  and k  is 

described later. 

The deterioration failure events of the elements within each Daniels system with in  elements 

are characterized by the common target reliability index T
DEiβ  and the common correlation 

coefficient M , which represents the dependence of the deterioration failure of element i  on 

those of other elements, e.g. computed according to Eq. (5). Deterioration failure events in 

different Daniels subsystems are assumed to be statistically independent. The loads acting on 

the k  subsystems are statistically independent and identically distributed. Due to this latter 
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assumption, which is necessary to maintain exchangeability of the elements, the system cannot 

be interpreted as a single structural system. Instead, it is a logical system, which fails if any of 

its k  Daniels subsystems fails. The idealized system is illustrated in Figure 4. 

 

Figure 4. The equivalent system for element i. In their undeteriorated state, all ni·k elements have 
independent and identically distributed capacities jiR ,  relative to overload failure. System failure 

occurs if any of the k subsystems fails. 

The distributions of the loads jL  and the element capacities ijR ,  must be selected so as to 

represent the characteristics of the dominant load case, and the parameters are selected so that 

the idealized system in its intact state has the same reliability as the real structure without 

deterioration failures. As an example, for an offshore structure in a hurricane-prone area, 

typical values of the c.o.v. are 35.0L  and 15.0
iR  (Stahl et al. 2000).  These values are 

utilized in the numerical examples in this paper, and it is assumed that jL  is modeled by a 

Lognormal distribution and ijR ,  by a Normal distribution. The ratio between the mean values 

of jL  and ,i j in R  is determined by matching the reliabilities of the real and idealized systems in 

their intact (not deteriorated) states. Specifically, the ratio /
ii R Ln   is determined iteratively 

from the condition 

   
1

1Pr 0 1 k
i F DS

C N         (15) 
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where 
DS

  is the reliability index of the real structure in its intact state, iC  is the event of 

failure of a Daniels system with in  elements and Pr( | 0)i FC N   is computed according to 

Equation (11) or (12). 

in , the number of elements in each Daniels system, represents the redundancy of the real 

structural system with respect to deterioration failure of element i. Specifically, in  is selected 

as the number of elements of the Daniels system for which the (exchangeable) elements have 

the same SEI as element i in the real structure. The SEI of the elements in the equivalent 

system, denoted by iSEI  , is obtained as 

     1
1 1 Pr 0 1 Pr 1

k

i F F DS
SEI C N C N


                (16) 

Here, Pr( )FC N j  is the probability of failure of a Daniels system with in  elements, of 

which j  elements have failed due to deterioration, and is given by Equations (11) and (12). 

Since in  is an integer variable, the iSEI  computed for element i  of the real structure cannot be 

exactly matched. Instead, the two integer values of in  that give iSEI   values closest to iSEI  are 

determined and the analysis is carried out for the two systems.  

Since in  is not a direct function of the number of deteriorating elements in the real structure n , 

the effect of n  on the system reliability is accounted for by k , the number of Daniels systems 

in series. For given values nini ,...,1,  , k can be determined as the sum of the contributions of 

the elements in their respective equivalent systems, which can be stated as 

1

1n

i i

k
n

   (17) 
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Alternatively, k  can be determined from the condition that the mean number of elements in the 

equivalent subsystems should be equal to the true number of deteriorating elements. It then 

follows that 




 n

i
in

n
k

1

2

 (18) 

Hereafter, we employ Equation (17), but we note that Equation (18) gives similar results and 

both formulations give exact results in the extremes: for a series system with n  elements where 

1in  for all elements, both equations correctly give nk  , and for a parallel system with n  

elements where nni  , they correctly give 1k .  

So far we have described how the parameters defining the equivalent systems, i.e., k , 

nini ,...,1,   and the ratio between the mean values of jL  and ,i j in R , are obtained separately, 

assuming that the other parameters are given. To determine all parameters jointly, an iterative 

procedure is utilized. An initial guess of k  is made, and the remaining parameters are 

determined for the given k . With the resulting values of nini ,...,1,  , a new value of k  is 

computed and the process is repeated until convergence in k  is achieved. Figure 5 summarizes 

the procedure for determining the parameters of the equivalent systems. The computational 

effort for this procedure is reasonable and not critical for practical implementations (in the 

order of seconds on a standard Pentium II PC for an implementation in Matlab).  
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Algorithm for establishing the equivalent systems 
Input: System target deterioration reliability T

DSβ ; reliability of the 
system without deterioration SDβ ; structural importance of all 
deteriorating elements niSEIi ...1, = ; distribution model and the 
c.o.v. of Lj and ijR , ; material behavior (brittle, ductile). 
Output: Parameters k  and nini ...1, =  describing the equivalent 
systems. 
1.  Make an initial guess of k : 0kk ←′  
2.  Select an initial range for the equivalent numbers of elements 

i,maxi,mini nn :←′n  
3.  For all jn in in′  do: 

⋅ determine ( )/
jj R L tn μ μ  from the condition in Equation 18; 

⋅ determine j js SEI′ ′=  as a function of jn  according to 
Equation 21. 

4.  If not )max()min( ss ′≤≤′ iSEI  for all ni ...1= , then: 
⋅ if not iSEI≤′)min(s  for all ni ...1= , then select a new, 

higher value for i,maxn   
⋅ if not )max(s′≤iSEI  for all ni ...1= , then select a new, 

lower value for i,minn  
⋅ i,maxi,mini nn :←′n  
⋅ go to 3.  

5.  For all ni ...1= , determine in  as a function of  iSEI  by 
interpolation from in′  and s′ . 

6.  )/1(1 i
n
i nk =Σ←  

7.  If not tolkktolk +′≤≤−′  then kk ←′ ; go to 2. 
 Else end.  

Figure 5. Algorithm for establishing the equivalent systems. 

Determination of the element acceptance criterion from the equivalent system 

Once the equivalent system for element i is established, this system is utilized to determine the 

element deterioration acceptance criterion T
DEi . The equivalent system has exchangeable 

elements, so all its elements have the same deterioration reliability index. The value of T
DEi  is 

determined from the condition T
DSDS  , where DSβ  is the reliability index associated with 

deterioration failures in the equivalent system. 

The probability of failure of the equivalent system is  

     
k

n

j
FFDS

i

jNjNCCp 







 

0

PrPr11Pr  (19) 
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Pr( | )FC N j  is given by Equations (11) and (12), and Pr( )FN j  is obtained from Equation (14) 

as a function of T
DEi  and M . Finally, T

DEi  is obtained by finding the value that fulfills 

1( )T
DS DSp   , with DSp  according to Equation (19). 

Validation 

To validate the proposed model, we apply it to the simple 2-D frame structure shown in Figure 

6. This structure is chosen because, despite its small number of elements, it captures some of 

the characteristics of real structures. In particular, the structure exhibits redundancy with 

respect to individual deterioration failures. The deterioration target reliability indices of the 

structural elements are determined according to the proposed model. For validation, the 

deterioration reliability of the system designed according to these target values is then 

determined according to Equation (1), and is compared with the system deterioration target 

reliability index. This comparison requires computing the reliability index of the system for all 

n2  combinations of system deterioration states.  

L

Elements 1-4: 
Elements 5-11: 
Top girder:

W18x130
W18x76
W36x150

1 2

3 4

5 6

7 8

9 10 11

7m

7m

3.5m

 

Figure 6. Structural system for model validation. 
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The considered structure is subjected to a random horizontal load, whose annual maximum L  

has the Gumbel distribution with mean 351kNL   and c.o.v. 0.35L  . The material and 

geometrical properties of the structural elements are modeled deterministically. The capacity of 

the structure with respect to L  is evaluated using non-linear FE (pushover) analysis. For the 

intact structure, this capacity is assessed as 1461kN, which implies an annual reliability index 

4.4
DS

  . It is assumed that deterioration can occur in structural elements 1-11, but not in the 

top girders. Therefore, there are 112 2048  possible combinations of system deterioration 

states   and this number of pushover analyses are performed to evaluate Pr[ | ]iC     for all 

i.  

Table 2 shows the resulting SEIi and corresponding ni values for the 11 elements, together with 

the target reliability indices T
DEi  for different cases of  T

DS  and M , assuming ductile material 

behaviour. The parameter k, which describes the number of equivalent Daniels systems, is 

computed as k = 2.3 by Equation (17). (A non-integer value of k has no physical meaning, but 

mathematically there is no difficulty in using such a value. The results obtained with a value of 

k = 2.3 lie between results obtained with k = 2 and k = 3.)  

Table 2. Resulting deterioration target reliability indices T
DEi   for the validation structure. 

Elements i SEIi  ni Target reliability index T
DEi      

 [10-3]  3.7T
DS      4.2T

DS      
   M = 0.0 M = 0.3 M = 0.6 M = 0.0 M = 0.3 M = 0.6 
1, 2 0.27 3.5 2.20 2.60 3.10 2.80 3.10 3.60 
3, 4 0.69 2.9 2.40 2.75 3.15 3.00  3.25 3.65 
5, 6 0.017 7.7 1.50 2.20 2.85 2.10 2.60 3.35 
7, 8 0.078 4.6 1.90 2.45 3.00 2.50 2.90 3.50 
9, 11 0.023 6.8 1.55 2.25 2.90 2.20 2.70 3.40 
10 0.017 7.7 1.50 2.20 2.85 2.10 2.60 3.35 
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Assuming that at time t  all elements have deterioration reliability indices exactly equal to their 

target T
DEi  according to Table 2, the probability of each system deterioration state, Pr[ ]i   , 

1, 2,..., 2048i  , is computed. The true system deterioration reliability index DS  of the 

structural system in Figure 6 with the T
DEi  as given in Table 2 is then computed by Equation  

(1). The results are summarized in Table 3. Also listed in the table in parentheses are true 

system reliability indices obtained when using T
DEi  as determined by the current simplistic 

method, which disregards the statistical dependence between deterioration failures. 

Table 3. Resulting system deterioration reliability indices for the validation structural system (in 
parentheses: values obtained with the existing simplistic approach). 

Target T
DS   DS       

 M = 0.0 M = 0.3 M = 0.6 
3.7 3.5 (1.8) 3.4 (1.4) 3.5 (1.3) 
4.2 4.1 (3.8) 4.0 (3.0) 4.0 (2.5) 

As observed in Table 3, the proposed use of the idealized systems leads in all investigated 

cases to a system deterioration reliability index that is close to but somewhat lower than the 

system deterioration target reliability index. More striking, however, is the significant 

improvement relative to the existing simplistic method. This is due to the approximate 

accounting of the dependence between the deterioration failure events of the structural 

elements by use of the equivalent Daniels systems. 

Numerical investigation of influencing factors 

The proposed model is applied to investigate the influence of the main input parameters. The 

following base case is considered: 4.4
SD

; 7.3T
DS ; 20n ; 410iSEI  for i = 1,…,n; 

4.0M ; L  is Lognormal distributed with 0.1L  and c.o.v. 35.0L ; iR  are Normal 

distributed with c.o.v. 15.0
iR ; all elements have ductile material behavior. These values of 
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SD
  and T

DS  correspond to the case of a structure with large consequences of failure and with 

normal cost of safety measures against overload failures and large cost of safety measures 

against deterioration failures, see Table 1. Figure 7 presents the deterioration target reliability 

index T
DEi  for the elements as a function of the system parameters. 
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Figure 7. Target reliability indices as a function of various influencing parameters. 

The results in Figure 7 allow identifying the main influencing parameters. As expected, the 

structural importance of the element, as expressed through the iSEI , is a key parameter (Figure 

7a), as is the target reliability index for deterioration on the system level, T
DS  (Figure 7b). As 

confirmed by the numerical investigations presented earlier, the statistical dependence among 

deterioration safety margins has a strong influence on the system reliability (Figure 7c). The 

resulting deterioration target reliability index for 4.0M  is 4.3T
DEi  as opposed to 
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9.2T
DEi  for the case of no correlation 0.0M . This demonstrates that statistical 

dependence among deterioration failure events of the elements must be considered when 

determining the target reliability indices of redundant systems.  

The reliability of the intact structure 
SD

  has a moderate influence on T
DEi  (Figure 7d). T

DEi  

increases with increasing 
SD

 , which is due to the influence of 
SD

  on the SEIi, Equation (7); 

for fixed value of the SEIi, the probability of collapse given deterioration failure of element i 

increases with increasing 
SD

 . The influence of L , the c.o.v. of the annual maximum load on 

the structure, is low (Figure 7e), which is fortunate, since this indicates that assumptions 

regarding the overload failure mode of the structure are not critical when determining T
DEi . 

Figure 7f demonstrates that T
DEi  increases with increasing number of elements. This fact may 

seem counter-intuitive but is due to the fact that the element structural importance is held 

constant in the numerical investigation shown in Figure 7d. In reality, structures with more 

elements tend to exhibit higher degrees of redundancy, thus having lower iSEI . To account for 

this effect, Figure 8 presents T
DEi  for systems with varying degrees of redundancy. T

DEi  is 

shown as a function of iSEI , whereby the parameter describing the system size is held constant 

as 5k . The number of elements is then computed as iknn  , with in  being a function of the 

iSEI . As an example, for 310iSEI  it follows that 2in  and thus 10n , whereas for 

510iSEI , 8in  and 40n .  
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Figure 8. Target reliability indices obtained according to the proposed Daniels system model for 
example systems with varying number of elements and corresponding SEIi.  

 

Concluding remarks 

As illustrated by the numerical examples in this paper, system effects, i.e., the joint effect of 

several deterioration failures on the structural integrity, are relevant when determining target 

reliability indices for deteriorating elements in redundant structural systems. However, a full 

analysis of the system, which includes system reliability assessments for all combinations of 

deterioration failures, is impractical for general structures. For this reason, highly simplified 

system models have been used in the past to describe the effect of an element failure on the 

integrity of the structure. These models do not represent the deterioration system effects 

adequately and are not suitable for redundant structures. To account for the system effects in 

determining acceptance criteria for individual deteriorating elements, this paper proposes using 

idealized Daniels systems to represent the deteriorating elements in the structural system. This 

is an idealization of the true system, which facilitates computation while capturing the overall 
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characteristics of the structural system, including its redundancy (load-sharing among 

elements), and the influence of statistical dependence among deterioration failures on the 

effective redundancy. Indicators for the structural importance of the system elements that have 

been applied by previous approaches, such as the SEI, are used to define the characteristics of 

the idealized Daniels systems. As demonstrated by the validation example, the proposed model 

represents a significant improvement over current methods.  

The proposed model is based on a number of idealizations and assumptions. In applying the 

model, it must be checked whether these are justified, or whether the model must be extended. 

Future research should be directed towards investigating applications for which these 

assumptions do not hold. Two idealizations/assumptions of the model are deemed critical for a 

number of applications: (a) the representation of deterioration by a two-state random variable, 

which neglects that deterioration occurs gradually, and (b) disregard of progressive 

deterioration failures. Concerning (a), future research efforts should be directed towards 

identifying deterioration limit state functions which best represent the effect of deterioration on 

the system reliability. It is noted that the current practice for defining deterioration failure is 

often conservative, in particular for fatigue, where structural elements at failure still retain most 

of their capacity. Concerning (b), progressive deterioration might be accounted for within the 

existing model framework by assigning high correlation coefficients and an increased 

probability of deterioration failure of the individual elements. Alternatively, the structural 

elements that are jointly affected by the progressive deterioration mechanism might be 

considered as a single (macro-)element in the system model.  
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