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Abstract

Dynamical systems are a valuable tool for exploring the regulatory organi-

zation of living organisms on a molecular level. Here, profound knowledge

about underlying reaction rate parameters is essential for biological predic-

tions and hypotheses. Bayesian methods provide a sophisticated approach

to infer these parameters including statistical dependencies and uncertain-

ties. Moreover, they are able to determine an appropriate model structure

by model selection. As the posterior distributions involved are generally

analytically intractable, Markov Chain Monte Carlo (MCMC) methods are

used for inference. However, owing to posterior complexity, these methods

are often inefficiently sampling from the according parameter spaces. In this

thesis we develop a Copula based Independence/random walk Metropolis-

Hastings (CIMH) sampling scheme for efficient model inference of differen-

tial equation based dynamical systems. The concept exploits a vine copula

decomposition of the estimated posterior distribution in order to generate

proposals that are distributed according to an approximation of the true

posterior distribution, which yields high acceptance rates. The basic CIMH

algorithm is furthermore extended to an Adaptive MCMC scheme (ACIMH)

to speed up convergence in complex systems. We thoroughly compare CIMH

and ACIMH to existing methods on various examples. Furthermore, in ap-

plications from the field of systems biology, we examine the mechanism of

nuclear phosphorylated STAT3 dimer import in the JAK1-STAT3 signaling

pathway. Here, ACIMH infers a pathway model based on mouse hepato-

cyte data. In addition, using CIMH, we analyze a biokinetic compartment

model for zirconium processing in the human body that can readily be used

in radiation protection. Transfer rates (including credible intervals) for an

average individual are provided and form the basis for analyses considering

retrospective dosimetry and bone retention of zirconium.



Zusammenfassung

Dynamische Systeme sind nützliche Hilfsmittel zur Erforschung der moleku-

laren Funktionsweise lebender Organismen. Fundiertes Wissen über Reak-

tionsparameter ist hierbei entscheidend für biologische Modellvorhersagen

und Hypothesen. Bayesianische Verfahren bieten einen differenzierten An-

satz zur Schätzung dieser Parameter. Darüber hinaus ermöglichen sie die

Inferenz einer geeigneten Modellstruktur durch Modellselektion. Da die zu-

gehörigen Posteriori-Verteilungen i.Allg. analytisch unlösbar sind, verwen-

det man approximative Markov-Chain-Monte-Carlo-Verfahren (MCMC-Ver-

fahren). Im Falle komplexer Posteriori-Verteilungen generieren diese jedoch

häufig ineffiziente Stichprobenvorschläge. Wir entwickeln in dieser Arbeit

einen Metropolis-Hastings-Algorithmus (CIMH) zur effizienten Modellinfe-

renz von dynamischen Systemen, welche auf Differentialgleichungen basie-

ren. Das Konzept nutzt die Vine-Copula-Zerlegung einer approximativen

Posteriori-Verteilung zur Erzeugung von Stichprobenvorschlägen, welche

ähnlich der wahren Posteriori-Verteilung verteilt sind. Der CIMH-Algorith-

mus wird anschließend zu einem adaptiven Verfahren erweitert (ACIMH).

Dies beschleunigt die Konvergenz in komplexen Systemen. Wir vergleichen

CIMH und ACIMH mit etablierten Verfahren anhand verschiedener Bei-

spiele. Darüber hinaus wenden wir die Algorithmen auf Fragestellungen

aus dem Bereich der Systembiologie, wie etwa den Ablauf des STAT3-Di-

mertransports in den Zellkern für den JAK1-STAT3-Signalweg, an. Hier

benutzen wir ACIMH, um ein auf Maushepatozyten basierendes, mathe-

matisches Signalwegmodell zu inferieren. Zudem verwenden wir CIMH zur

Analyse biokinetischer Modelle für die Verarbeitung von Zirkonium (Zr) im

menschlichen Körper. Übertragungsraten (mit Kredibilitätsintervallen) für

eine Durchschnittsperson werden berechnet und bilden die Grundlage für

retrospektive Dosimetrie und die Analyse von Zr-Einlagerungen in Knochen.
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1

Introduction

Dynamical systems are used in various fields of science. Frequently modeled by para-

metrized ordinary or delay differential equations they find application in physics, engi-

neering, computational biology, and many more. In systems biology differential equa-

tion driven dynamical systems are commonly used to study the evolution and mainte-

nance of cellular functionality over time. Here, scarce and noisy data for the mostly

large and complex models hamper the unraveling of molecular interaction mechanisms.

However, determining the underlying reaction rate parameters is crucial for profound

model based predictions. Extensive research has therefore been done on the inference

of these systems. The issue is typically addressed by initial value or maximum like-

lihood approaches (Horbelt et al. [2002]), which yield the supposedly most probable

systematic parameter values. However, as the data and models are generally impre-

cise, determining single best values is often inadequate. In the last few years fully

statistical Bayesian approaches were considered for parameter estimation in differential

equation systems (Brown & Sethna [2003]; Lawrence et al. [2010]; Wilkinson [2006]).

These Bayesian methods provide a nice way of combining the parameters of interest

with the underlying data and a priori information by means of a posterior distribution,

even when dealing with very complex models or partially unobserved quantities. More-

over they can readily be applied for model selection purposes and provide an overall

model inference scheme that naturally corrects for overfitting – an issue classical model

selection approaches are subject to.

1



1. INTRODUCTION

Figure 1.1: Posterior distribution of the JAK1-STAT3 model (7.1) introduced in Chapter

7 marginalized on the k1 and k6 dimension.

As analytic inference of the posterior distributions quickly becomes intractable, Markov

Chain Monte Carlo (MCMC) methods are nowadays widely used to tackle the problem

(Brooks [1998]; Gamerman & Lopes [2006]). Despite of their computationally costly na-

ture MCMC methods have of late drawn major interest in the scientific community. One

of the most successful and influential (Beichl & Sullivan [2000]; Wilkinson [2007]) algo-

rithms for Markov chain sampling was developed by Metropolis and Hastings (Hastings

[1970]; Metropolis et al. [1953]). It can draw samples from any probability distribu-

tion, given that a function proportional to the according probability density function

is available. Throughout the sampling process a random walk proposal function based

on the current Markov chain sample is used to generate a possible subsequent Markov

chain candidate.

Fine-tuning the Metropolis-Hastings (MH) algorithm for performing efficient posterior

inference is nevertheless a daunting task: It is easy to see that an efficient MH pro-

posal function should ideally be (at least locally) very similar to the actual posterior

distribution of interest. Figure 1.1 shows the ”banana”-shaped posterior distribution

2



of the JAK1-STAT3 model (7.1) introduced in Chapter 7 marginalized on two dimen-

sions (i.e. for the parameters k1 and k6). Such spiky, complex distributions are hard to

mimic using a globally constant random walk proposal scheme as applied in the classical

MH algorithm. More generally, strong parameter dependencies and complex sampling

spaces limit MH algorithms to conservative parameter update schemes (Ramsay et al.

[2007]). In other words, vast traversals in the parameter space call for huge amounts

of MCMC iterations in situations with complex sampling spaces. Towards this end,

a variety of algorithms based on techniques from mathematical optimization theory

have been developed by Duane et al. [1987], Girolami & Calderhead [2011], Roberts &

Stramer [2002], or Ter Braak & Vrugt [2008] in order to improve the MCMC sampling

efficiency. These approaches propose Markov chain candidates using local information

about the posterior manifold structure and with this attain higher proposal acceptance

rates compared to the classical random walk MH algorithm. Another Ansatz that has

of late drawn a lot of interest in the MCMC community is based on the successive

adaption of the MH proposal function in order to amplify the sampling efficiency. Var-

ious algorithms were proposed by Haario et al. [1999], Haario et al. [2001], Roberts &

Rosenthal [2007], Holden et al. [2009], or Müller & Sbalzarini [2010]. This can speed

up the inference process severely as pointed out by Rosenthal [2011], and Gilks et al.

[1998].

In this thesis we extend the classical MH algorithm by a novel estimated MH proposal

function which generates Markov chain candidates almost independent of the current

Markov chain state while taking into account the full estimated parameter dependency

structure. This results in a proposal function that is ideally close to the actual posterior

distribution and is therefore able to efficiently sample the often times complex distri-

butions of the dynamical systems mentioned above. The sampling scheme is based on

mimicking the posterior distribution by means of a D-vine copula decomposition. Up-

dating the proposal copula during the sampling process leads to an adaptive sampling

scheme. We employ this approach for the inference of two biological systems: first of

all we analyze a model of the JAK1-STAT3 signaling pathway in order to investigate

the effectiveness of tyrosine-phosphorylated STAT3 homodimers working as transcrip-

tion factors for gene regulation. Secondly, we infer a biokinetic model for zirconium

3



1. INTRODUCTION

processing in the human body, which can readily be used to derive limiting values of

detrimental effects in radiation protection.

Overview of this thesis

In Chapter 2 we first introduce some basic notions and notations from probability

theory used throughout this thesis. Then the concept of vine copula decomposition

of probability densities is outlined. In addition, we shortly summarize the theory of

random processes and Markov chains in particular. We focus on the important aspects

regarding Markov Chain Monte Carlo methods. Moreover, a short introduction on

biological signaling pathways and dynamical systems is given.

Chapter 3 considers the concept of Bayesian model inference. Here, Bayes’ theorem

yields posterior distributions that are proportional to the likelihood in combination with

prior distributions for a series of given observations. More precisely, Bayesian model

inference comprises two main aspects: On the one hand we introduce Bayes factors,

which are capable of inferring the best model structure for a given set of parametrized

models, i.e. we deduce the model M with the highest probability that the observations

were generated according to M. For this model selection task various approaches,

such as the prior arithmetic mean estimate, the posterior harmonic mean estimate,

and thermodynamic integration are presented. On the other hand the second strain

of Bayesian model inference is treated: Given a specific parametrized model M, we

summarize the concept of posterior parameter inference.

Drawing samples from a posterior distribution is essential for Bayesian inference. As the

posteriors are generally non-standard distributions, Chapter 4 addresses the concept

of Markov Chain Monte Carlo (MCMC) sampling. Interestingly, both Bayesian model

inference aspects can be simultaneously covered by MCMC sampling. We introduce the

basic version of the Metropolis-Hastings sampling scheme (Hastings [1970]; Metropolis

et al. [1953]) and discuss dependency and convergence diagnostics of the generated

Markov chains. The latter find use in all applications throughout this thesis. Finally,

extensions to optimization problems via simulated annealing (Kirkpatrick et al. [1983])

and the direct application to the model selection issue via reversible jump MCMC

(Green [1995]) are given.

4



Due to the aforementioned complex posterior surfaces MCMC approaches often struggle

with sampling efficiency. Especially the inference of parametrized differential equations

likes to trap MCMC samplers between high proposal rejection rates and strong autocor-

relation structures – both leading to a low number of independent samples drawn over

time. In Chapter 5 we review two current approaches addressing the issue of improv-

ing the Metropolis-Hastings proposal function. Considered are a successive proposal

function adaption scheme (Müller & Sbalzarini [2010]) and the simplified Riemann Man-

ifold Metropolis adjusted Langevin algorithm (Girolami & Calderhead [2011]), which

exploits the geometric posterior parameter structure for proposal generation.

In Chapter 6 we develop a novel vine copula based (adaptive) MCMC approach for

efficient parameter inference in complex dynamic systems. Although copulas are well

established in various fields of science, we are the first to exploit this concept for fine

tuning the Metropolis-Hastings algorithm. Copulas are capable of handling asymmetric

dependency structures (Aas et al. [2009]; Kurowicka & Cooke [2006a]; Kurowicka & Joe

[2011]) – a characteristic also inherent to most posterior densities subject to MCMC

sampling. The basic version of our novel hybrid Copula based Independence/random

walk Metropolis-Hastings algorithm (CIMH) is presented and subsequently extend to

an adaptive sampling scheme (ACIMH). This is the first major contribution of this

thesis. The chapter is based on Schmidl et al. [2012a] and in part even identical.

In Chapter 7 we apply ACIMH to infer a model of the JAK1-STAT3 signaling pathway.

Using thermodynamic integration we analyze the effect of direct tyrosine-phosphorylated

STAT3 dimer import into the nucleus as compared to a model considering tyrosine-

serine-phosphorylated STAT3 dimer import only. The estimated maximum a posteriori

rate constants of the JAK1-STAT3 pathway are provided.

We conclude with the second major contribution of this thesis by analyzing a model for

zirconium processing in the human body in Chapter 8. Again, using thermodynamic

integration, this time in combination with CIMH, we compare a biokinetic model re-

cently put forward by Greiter et al. [2011] to the model established by the International

Commission on Radiological Protection. The latter is currently used for radiation pro-

tection. The former turns out to be superior based on in vivo plasma and urine data of

16 investigations in humans. Transfer rates (including credible intervals) for an average

5



1. INTRODUCTION

individual are given. We also provide an estimation of initially ingested amounts of zir-

conium for ex post measurements, which is crucial for determining detrimental effects

at occupational exposure. Furthermore, zirconium retention in bone is analyzed. The

chapter is based on Schmidl et al. [2012b] and in part even identical.

Main scientific contributions

The main scientific contributions of this thesis are (i) the development of a novel vine

copula based (adaptive) MCMC approach for efficient parameter inference in complex

dynamic systems and (ii) the in-depth analysis of a model for zirconium processing in

the human body. The latter includes the estimation of initially ingested amounts of zir-

conium for ex post measurements and zirconium retention in bone. These contributions

are contained in the following two manuscripts:

• D. Schmidl, C. Czado, and F.J. Theis. A vine-copula based adaptive MCMC

sampler for efficient inference of dynamical systems. Under revision at Bayesian

Analysis.

• D. Schmidl, S. Hug, W.B. Li, M.B. Greiter, and F.J. Theis. Bayesian model

selection validates a biokinetic model for zirconium processing in humans. BMC

Systems Biology, 6(95), 2012.

Further scientific contributions

The following publications are not contained in this thesis. They present the results of

various collaborations and projects in computational systems biology.

• D.M. Wittmann, D. Schmidl, F. Blöchl, and F.J. Theis. Reconstruction of graphs

based on random walks. Journal of Theoretical Computer Science, 410 (38-40),

2009.

• A. Ruepp, A. Kowarsch, D. Schmidl, F. Buggenthin, B. Brauner, I. Dunger, G.

Fobo, G. Frishman, C. Montrone, and F.J. Theis. PhenomiR: a knowledgebase

for microRNA expression in diseases and biological processes. Genome Biology

11(1):R6, 2010.
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• A. Kowarsch, C. Marr, D. Schmidl, A. Ruepp, and F.J. Theis. Tissue-specific

target analysis of disease-associated microRNAs in human signaling pathways.

PLoS one, 5(6), 2010.

• A. Kowarsch, D. Schmidl, S. Braun, S. Bohl, R. Merkle, U. Klingmüller, and F.J.

Theis. MicroRNA-mediated regulation has an impact on the dynamic behavior

of the JAK-STAT pathway. Manuscript in preparation.
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2

Prerequisites

The following chapter holds the basic notions and notations from probability theory,

the theory of Markov chains, copula constructions, and dynamical systems. These will

be used in subsequent chapters.

2.1 Basics on probability theory

We start with the introduction of basics on probability theory, mostly following Chap-

ter 1.3 of Theis [2002] with some extensions. For proofs see e.g. the book of Klenke

[2008]. Throughout this thesis we denote vectors/matrices by bold letters, while non

bold letters with subscript indices denote vector/matrix elements. Markov chains are

displayed as sets, such as {X(t)}t∈I for some index set I, where the superscript (t)

denotes the tth element.

Definition 2.1 (Probability space). A probability space is a triplet (Ω,F, P ) consisting

of a non-empty set Ω, a sigma-algebra F on Ω and a probability measure P on F with

P (Ω) = 1.

The sets A ∈ F are called events, while P (A) is called the probability of the event A.

By definition we have P (A) ∈ [0, 1]. An event A ∈ F is said to occur almost surely, if

the probability of A to not occur is zero.
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2. PREREQUISITES

Definition 2.2 (Random variable/random vector). Suppose (Ω,F, P ) is a probability

space and (E′,E′) a measurable space. Suppose furthermore X : Ω −→ E′ is a measur-

able mapping. Then X is called a random variable with values in E′. An n-dimensional

random vector with values in E is a vector-valued function X = (X1, . . . , Xn)> :

Ω −→ E into a measurable space (E,E) whose components Xi are random variables

on (Ω,F, P ).

For each ω ∈ Ω we call x = X(ω) ∈ E a realization of X. As we allow n = 1, we will

further on speak of random vectors only. In our applications (E,E) = (Rn,B(Rn)),

where B(Rn) denotes the Borel sigma algebra on Rn. In this case we call X a real-

valued random vector or simply random vector. For A ∈ E we write X(P )(A) :=

P (X−1(A)) := P (X ∈ A) := PX(A). This is a probability measure X(P ) : E −→
[0, 1], A 7−→ PX(A), since PX(E) = P (Ω) = 1. The functionX(P ) is called distribution

of X with respect to P . We write X ∼ PX and call X to be PX distributed.

For a finite sequence X(1), . . . ,X(T ) of T ∈ N random vectors on (Ω,F, P ) with values

in (E,E) we define the function X(1) ⊗ . . .⊗X(T ) by

X(1) ⊗ . . .⊗X(T ) : Ω −→ E × . . .× E

ω 7−→ (X(1)(ω)>, . . . ,X(T )(ω)>)>.

The function X(1) ⊗ . . . ⊗X(T ) also constitutes a random vector called product ran-

dom vector of X(1), . . . ,X(T ). The according distribution PX(1)⊗...⊗X(T ) is called joint

(product) distribution of X(1), . . . ,X(T ).

Definition 2.3 (Distribution function). For a real-valued random vector X : Ω −→ Rn

on (Ω,F, P ) the function

FX : Rn −→ [0, 1]

(x1, . . . , xn)> 7−→ PX((−∞, x1])× . . .× (−∞, xn])

is called distribution function ofX with respect to P , or likewise, cumulative distribution

function (cdf) of X.

The opposite direction also holds true, which allows us to identify a real-valued random

vector with its distribution:
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2.1 Basics on probability theory

Proposition 2.1. For each distribution function F there exists a real-valued random

vector X with FX = F .

Definition 2.4 (Density function). If f : Rn −→ [0,∞) is a non-negative Lebesgue-

integrable function, such that the distribution function FX : Rn −→ [0, 1] with respect

to P can be written as

FX(x1, . . . , xn) =

∫ x1

−∞
. . .

∫ xn

−∞
f(u1, . . . , un) dun . . . du1

then f is called density function with respect to P , or likewise, probability density func-

tion (pdf) of X. We also write fX for f .

Clearly, if a distribution function F is sufficiently differentiable at a point (x1, . . . , xn)> ∈
Rn, the according probability density function is given by

f(x1, . . . , xn) =
∂n

∂x1 . . . ∂xn
F (x1, . . . , xn). (2.1)

In this situation we also write X ∼ f(x) instead of X ∼ PX .

Following are two very important examples of distributions: (i) the uniform distribution

will play a key role when dealing with copula densities as their margins are uniformly

distributed random variates and (ii) the normal distribution, which is a common pro-

posal density for the prominent Metropolis-Hastings algorithm defined in Chapter 4.1.

A selection of important univariate density functions is given in Appendix A.

Example 2.1 (Uniform distribution). Suppose A ⊂ Rn is a non-empty measurable set

and 1A the indicator function on A, this is

1A : Rn −→ R

x −→

1, if x ∈ A

0, otherwise.

A random vector X : Ω −→ Rn is called uniformly distributed on A, if for the n-

dimensional Lebesgue measure λn the density function

fX(x) =
1

λn(A)
1A(x)

exists. We then write X ∼ U[A].
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Example 2.2 (Normal distribution). A random vector X : Ω −→ Rn is said to be

normally distributed (or Gaussian), if there exists a vector µ ∈ Rn along with a positive-

semidefinite symmetric matrix Σ ∈ Mat(n× n,R), such that the density function

fX(x) =
1√

(2π)n det (Σ)
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
exists. We then write X ∼ Nn(µ,Σ). The quantities µ and Σ are called mean and

covariance matrix of Nn(µ,Σ), respectively. An example of a bivariate normal density

function can be seen in Figure 2.1(b).

Heading towards Markov chains, we need the notions of marginal and conditional dis-

tribution functions. While the former averages over a subset of random variables of

X, the latter fixes this subset to a specific value and in some sense cuts through the

graph of the joint probability distribution function along this value. More precisely:

Suppose we are given a random vector X = (X1, . . . ,Xn)> : Ω −→ Rn together with

its density function fX : Rn −→ R. Setting Y := (Xn1 . . . , Xnk)> for a non-empty

subset {n1, . . . , nk} ( {1, . . . , n}, then for {n′1, . . . , n′l} := {1, . . . , n} \ {n1, . . . , nk}, the

vector Y is a random vector with distribution function

FY (xn1 . . . , xnk) =

∫ xn1

−∞
. . .

∫ xnk

−∞

∫ ∞
−∞

. . .

∫ ∞
−∞

fX(u1, . . . , un) dun′l . . . dun
′
1

dunk . . . dun1 .

The function FY is said to be the marginal distribution function of Y . Assuming (after

variable permutation) without loss of generality that {n1, . . . , nk} = {1, . . . , k} and

defining the complement of Y with respect to X as Z = (Xk+1, . . . , Xn)> then the

marginal density function of Y is given by

fY (x1 . . . , xk) =

∫ ∞
−∞

. . .

∫ ∞
−∞

fX(x1, . . . , xk, uk+1, . . . , un) dun . . . duk+1.

We can now turn to conditional distribution functions.

Definition 2.5 (Conditional distribution function). Using the definitions from above

the conditional distribution function of Y = (X1, . . . , Xk)
> given Z = (xk+1, . . . , xn)>

for some xk+1, . . . , xn ∈ R is for fZ(xk+1 . . . , xn) > 0 given by

FY |Z(x1, . . . , xk|xk+1, . . . , xn) =

∫ x1

−∞
. . .

∫ xk

−∞

fX(u1, . . . , uk, xk+1, . . . , xn)

fZ(xk+1 . . . , xn)
duk . . . du1.
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2.1 Basics on probability theory

Definition 2.6 (Conditional density function). The conditional density function of Y

given Z is for fZ(xk+1 . . . , xn) > 0 given by

fY |Z(x1, . . . , xk|xk+1, . . . , xn) =
fX(x1, . . . , xn)

fZ(xk+1 . . . , xn)
.

Suppose a, b ∈ Rn and A is the open n-dimensional cube with lower limits a and upper

limits b, i.e A = (a1, b1)× . . .× (an, bn). Then P (X ∈ A) computes to

P (X ∈ A) =

∫ b1

a1

. . .

∫ bn

an

f(u1, . . . , un) dun, . . . ,du1.

With this the notion of a conditional distribution function generalizes in the sense of

the Borel measure in the usual way for all measurable sets A ⊂ Rn that are non-

cubic (such as unions of n-dimensional cubes). This gives a sound definition for the

probability P (Y ∈ B|xn′1 , . . . , xn′l) for any set B ∈ B(Rk). For these we also write

P (Y ∈ B|Xn′1
= xn′1 , . . . , Xn′l

= xn′l) or P (B|xn′1 , . . . , xn′l).

In order to simplify notation later on we also write for Y = (Xn1 . . . , Xnk)> and

Z = (Xn′1
. . . , Xn′l

)>

Fn1...nk , fn1...nk , Fn1...nk|n′1...n′l , and fn1...nk|n′1...n′l

instead of

FY , fY , FY |Z , and fY |Z ,

respectively.

Definition 2.7 (Independent random vector). Let X(1), . . . ,X(T ) be a finite sequence

of random vectors on some probability space (Ω,F, P ). Let furthermore FX(1)⊗...⊗X(T )(·)
be the distribution function of X(1) ⊗ . . . ⊗X(T ). Then X(1), . . . ,X(T ) are called in-

dependent, if

FX(1)⊗...⊗X(T )(x(1), . . . ,x(T )) =
T∏
t=1

FX(t)(x(t)).

In Markov Chain Monte Carlo methods a sequence of realizations of random vectors is

drawn in order to approximate a distribution PX for some random vector X. The law

of large numbers will lay the basis for this procedure. We therefore define:
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Definition 2.8 (Expectation). For an integrable random vector X : Ω −→ Rn on a

probability space (Ω,F, P )

EPX
[X] =

∫
Rn
xPX

is referred to as the expectation or mean of X.

In case there exists a density function f(x) corresponding to PX , we also write Ef(x)[X]

instead of EPX
[X], or, where clear without ambiguity, simply E[X]. The expectation

behaves nicely with respect to the product of independent random vectors:

Proposition 2.2. For a sequence of independent integrable random vectors X(1), . . . ,X(T )

the component-wise product
∏T
j=1X

(j) is integrable and

E

 T∏
j=1

X(j)

 =
T∏
j=1

E[X(j)].

We denote a series of realizations x(1), . . . ,x(T ) from the very same random vector X

to be independent identically distributed ( i.i.d.) of the distribution PX . This leads us

to:

Theorem 2.1 (Strong law of large numbers). For an i.i.d. sequence x(1), . . . ,x(T ) of

realizations of X

lim
T→∞

1

T

T∑
i=1

(x(i) − E[X]) = lim
T→∞

(
1

T

T∑
i=1

x(i)

)
− E[X] = 0 ∈ Rn

almost surely.

This shows that the expected mean

x̄ =
1

T

T∑
i=1

x(i)

of a set of i.i.d. realizations x(1), . . . ,x(T ) truly converges to the expectation of X. The

approximation of E[X] by x̄ gets better as T increases.

For a random vector X an unbiased approximation for the variance

Var[X] = E
[
(X − E[X])2

]
,
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2.2 Copula distributions

if existent, is given by the expected variance

sx =
1

T − 1

T∑
i=1

(x(i) − x̄)2,

where the square is taken component-wise.

For two random vectors X = (X1, . . . , Xn)> and Y = (Y1, . . . , Yn)> with existing

variance the covariance cov[X,Y ] is defined by the matrix

cov[X,Y ] = (covi,j)i,j=1,...,n with covi,j = E[(Xi − E[Xi])(Yj − E[Yj ])].

Moreover, Pearson’s correlation matrix of X and Y is given by

corr[X,Y ] = (corri,j)i,j=1,...,n with corri,j =
cov[Xi, Xj ]√

Var[Xi] ·
√

Var[Yj ]
.

Pearson’s correlation matrix contains the linear dependence between X and Y . Since

the dependence between X and Y can also be nonlinear, we also define a rank-based

dependence measure: For two random vectors X and Y , Kendall’s τ is given by the

component-wise difference of the probability of concordance and the probability of

discordance of X and Y , this is

τ [X,Y ] = (τi,j)i,j=1,...,n

with τi,j = P ((Xi −X ′i)(Yj − Y ′j ) ≥ 0)− P ((Xi −X ′i)(Yj − Y ′j ) < 0)

for the joint probability P of X and Y and two independent identically distributed

copies X ′ of X and Y ′ of Y .

Lastly, in order to compare the distance between two distributions PX and PY for two

random vectors X and Y with values in (E,E), we define the total variation norm as

‖PX − PY ‖TV = sup
A∈E
|PX(A)− PY (A)|.

2.2 Copula distributions

We now turn to the task of characterizing a continuous n-variate distribution function

F (x) with given margins by its according univariate pdf’s f(xi), i = 1, . . . , n, and

a second n-variate distribution function C(u) with uniformly distributed margins on
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[0, 1], called copula (see below for a rigorous definition). This concept allows for efficient

modeling of multivariate distributions with asymmetric tail dependencies. It splits up

F (x) into one part containing the dependency structure and another one containing

all marginal informations on the according random vector X. Copulas have been

successfully applied in the fields of economics, finance, or geology. For a thorough

introduction on the theory (including proofs) and applications see for example Joe

[1997] or Nelsen [2006].

Definition 2.9 (Copula). A function C : [0, 1]n −→ [0, 1] is called n-dimensional

copula, if the following properties hold:

(i) C(u) = 0 for all u = (u1, . . . , un)> ∈ [0, 1]n with ui = 0 for some i ∈ {1, . . . , n}.

(ii) C(u) = ui for all u = (u1, . . . , un)> ∈ [0, 1]n with uj = 1 for all i 6= j.

(iii) C(u) is n-increasing, i.e. for all cubes A = ×ni=1[ai, bi] ⊆ [0, 1]n the volume of A

with respect to C is non-negative:

VC(A) :=
∑

u∈×ni=1{ai,bi}

sgn(u)C(u) ≥ 0.

Here, sgn is a sign function with value one, if ui = ai for an even number of i’s

and minus one for an odd number of i’s.

The following fundamental theorem by Sklar [1959] uniquely links multivariate cdf’s

on Rn with its univariate margins by means of a copula. Here, Rn denotes the n-

dimensional cartesian product of R := R ∪ {−∞,∞}.

Theorem 2.2 (Sklar). Suppose F is an n-dimensional distribution function with con-

tinuous univariate margins F1, . . . , Fn. Then there exists a unique copula C, such that

for all x = (x1, . . . , xn)> ∈ Rn

F (x) = C(F1(x1), . . . , Fn(xn)). (2.2)

Conversely, for any copula C and univariate distribution functions F1, . . . , Fn the func-

tion F defined by Equation (2.2) is a multivariate distribution function with margins

F1, . . . , Fn.
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The relation (2.2) furthermore defines the density of a copula C: Suppose the necessary

derivatives exist, then the chain rule yields

f(x) =
∂nC(F1(x1), . . . , Fn(xn))

∂x1 . . . ∂xn
=
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1) . . . ∂Fn(xn)

n∏
i=1

fi(xi) (2.3)

at some point x = (x1, . . . , xn)> ∈ Rn. As suggested by Equation (2.1) we set

c(F1(x1), . . . , Fn(xn)) :=
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1) . . . ∂Fn(xn)
. (2.4)

Hence, every probability density function f can be decomposed as product

f(x) = c(F1(x1), . . . , Fn(xn)) · f1(x1) · . . . · fn(xn). (2.5)

for the corresponding copula density c to f . For strictly positive marginal distribution

functions f1, . . . , fn

c(F1(x1), . . . , Fn(xn)) =
f(x)

f1(x1) · . . . · fn(xn)
.

The copula density thus contains the dependency structure, while the marginal infor-

mation is “divided” out.

Sklar’s theorem also yields a natural recipe for the construction of copulas based on dis-

tribution functions F with invertible margins F1, . . . , Fn: we set for u = (u1, . . . , un)> ∈
[0, 1]n

C(u) = F (F−1
1 (u1), . . . , F−1

n (un)). (2.6)

This method is called inversion method (Nelsen [2006]) and lays the basis for sampling

from copula distributions. In order to familiarize the reader with the concept of copulas

we consider two very prominent classes of multivariate copula densities: these are for

one Archimedean and for the other elliptical copulas.

Theorem 2.3 (Archimedean copula). Suppose ϕ : [0, 1] −→ [0,∞] is a continuous

strictly decreasing function with ϕ(0) = ∞ and ϕ(1) = 0. Suppose furthermore that

the inverse ϕ−1 of ϕ is completely monotonic, i.e. ϕ−1 is continuous and satisfies

(−1)k dk

dxk
ϕ−1(x) ≥ 0 for all x ∈ (0,∞) and all k ∈ N0. Then

C(u) = ϕ−1(ϕ(u1) + . . .+ ϕ(un))

is a copula.
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The copula C defined by Theorem 2.3 is called Archimedean copula. The function ϕ is

said to be the generator of C. A proof of Theorem 2.3 is given in Nelsen [2006].

Example 2.3 (Independence copula). The independence copula is defined as

CI : [0, 1]n −→ [0, 1]

(u1, . . . , un) 7−→
n∏
i=1

ui.

It is an Archimedean copula with generator ϕ(x) = − log(x). A plot of a bivariate

independence copula density function is shown in 2.1(a). The term “independence”

originates from the corresponding copula density function cI : For any multivariate

continuous distribution function F with according density function f Equation (2.4)

yields

cI(F1(x1), . . . , Fn(xn)) =
∂nCI(F1(x1), . . . , Fn(xn))

∂F1(x1) . . . ∂Fn(xn)
= 1.

Equation (2.5) therefore gives

f(x) =
n∏
i=1

fi(xi).

This means the corresponding random variables X1, . . . , Xn are independent.

The inversion method of Equation (2.6) yields the class of elliptical copulas for elliptical

density functions f(x), this is

f(x) =
cn√

det(Σ)
g((x− µ)>Σ−1(x− µ))

for some constant cn ∈ R, a univariate function g, a mean vector µ ∈ Rn, and covariance

matrix Σ ∈ Rn×n.

Example 2.4 (Gaussian copula). Suppose f(x) is the n-variate Gaussian density func-

tion from Example 2.2 with mean vector µ and covariance matrix Σ. For the corre-

sponding correlation matrix S the Gaussian copula is given by

C(u) = ΦS(Φ−1(u1), . . . ,Φ−1(un)),

where Φ−1 is the inverse cdf of the univariate standard normal distribution N(0, 1) and

ΦS the n-variate normal cdf with covariance matrix S. The density is given by

c(u) =
1√

det(S)
exp

(
−1

2
x>(S−1 − In)x

)
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Figure 2.1: (a) Independence copula density function. (b) Correlated Gaussian density

function with correlation parameter ρ = 0.5. (c) Gaussian copula density function for the

correlated Gaussian density from (b).

with x := (Φ−1(u1), . . . ,Φ−1(un))> for u = (u1, . . . , un)> ∈ [0, 1]n and the n-dimensional

identity matrix In (Arbenz [2011]). A plot of a bivariate Gaussian density with

µ =

(
1

1

)
and Σ =

(
1

√
3/4√

3/4 3

)

is shown in Figure 2.1(b). Here, the according correlation parameter ρ = 0.5. The

corresponding copula density function is depicted in Figure 2.1(c).

Although there are multivariate copulas that are neither Archimedean, nor elliptic,

the task of fitting a parametrized1 multivariate copula to some vector of observations

can be daunting. In the following we introduce a more flexible approach for fitting

parametrized copulas to a given vector of observations.

2.2.1 Pair copula decomposition

The class of classical multivariate copulas has been considerably extended by Joe [1996].

Joe showed that a decomposition involving only bivariate copula densities and marginal

densities provides a valid multivariate density. We follow Aas et al. [2009] for the

introduction of these pair copula decompositions.

1We call a copula parametrized, if it depends on some parameter vector θ i.e. C(·) = C(·|θ).

19



2. PREREQUISITES

SupposeX = (X1, . . . , Xn)> is a random vector with distribution function F (x1, . . . , xn)

and probability density function f(x1, . . . , xn). Then, except for permutation of the

variables, we are given the unique decomposition

f(x1, . . . , xn) = f(xn) · f(xn−1|xn) · f(xn−2|xn−1, xn) · . . . · f(x1|x2, . . . , xn), (2.7)

for the respective conditioned distribution functions F (·|·) and density functions f(·|·).

We iteratively derive a pair copula decomposition of f starting at n = 2: Using Sklar’s

theorem (Theorem 2.2), there exists a unique bivariate copula density function c1,2,

such that

f(x1, x2) = c1,2(F1(x1), F2(x2)) · f1(x1) · f2(x2).

Thus, it follows from Equation (2.7) that, using c1,2, the conditional density f(x1|x2)

can be written as

f(x1|x2) = c1,2(F1(x1), F2(x2)) · f1(x1). (2.8)

For n = 3 we consider the conditional density function f(x1, x2|x3) of f(x1, x2, x3).

Again, by Sklar’s theorem there exists a copula density function c1,2|3, such that

f(x1|x2, x3) = c1,3|2(F1|2(x1|x2), F3|2(x3|x2)|x2) · f(x1|x2). (2.9)

We already see that this decomposition is not unique as there also exists a copula

density function c1,2|3 with

f(x1|x2, x3) = c1,2|3(F1|3(x1|x3), F2|3(x2|x3)|x3) · f(x1|x3). (2.10)

Nevertheless, using Equation (2.9) in combination with (2.8)

f(x1|x2, x3) = c1,3|2(F1|2(x1|x2), F3|2(x3|x2)|x2) · c1,2(F1(x1), F2(x2)) · f1(x1).

For n > 3 we now see that the decomposition of the conditional density function

f(xt|xt+1, . . . , xn) is for t ≤ n− 2 given by

f(xt|v) = ct,j|D−j (F (xt|v−j), F (vj |v−j)|v−j) · f(xt|v−j), (2.11)

where j ∈ D for D := {1, . . . , t − 1} with D−j := D \ j, and v−j denotes the vector

v = (x1, . . . , xt−1)> with missing jth component. This allows us to decompose f into
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2.2 Copula distributions

the product of a series of bivariate copula density and marginal density functions using

Equation (2.7).

In general the conditional pair copula densities in (2.11) depend on the conditioning

values v−j . However, we will assume the restriction that the ct,j|Dj (·, ·|v−j) do not

depend on v−j . This means that the decomposition (2.11) captures the dependency

on the conditioning values solely through the arguments F (xt|v−j) and F (vj |v−j).

Hobæk Haff et al. [2010] showed that this restriction is not severe. In the Gaussian

and multivariate Student-t-case the conditional pair copula densities are independent

of the conditioning values.

Aas et al. [2009] were the first to consider standard estimation methods for parameters

of vine copulas such as stepwise and maximum likelihood estimation (MLE). Since we

have an explicit expression for the joint density, the likelihood is easily derived (see

e.g. Aas et al. [2009]). These expressions however involve conditional cdf’s: Joe [1996]

showed that the conditional distribution functions corresponding to Equation (2.11)

can be computed by

F (xt|v) =
∂ Ct,j|D−j (F (xt|v−j), F (vj |v−j))

∂F (vj |v−j)
, (2.12)

where Ct,j|D−j is the copula distribution function corresponding to ct,j|D−j . There-

fore, the required conditional cdf’s can be computed recursively. Equation (2.12) is

furthermore used for sampling from copulas as shown in Aas et al. [2009].

For bivariate Gaussian copulas as building blocks and Gaussian marginals the resulting

joint density is multivariate Gaussian. Here, the bivariate copula parameters corre-

spond to partial correlations, which can be chosen arbitrarily between -1 and 1 and

still induce a positive definite correlation matrix (Joe [1996]). Similarly, if one uses

bivariate t-copulas together with a restriction on the degree of freedom parameters for

different numbers of conditioning variables, a multivariate t-distribution emerges.

Example 2.5 (Trivariate copula decomposition). Suppose X = (X1, X2, X3)> is a nor-

mally distributed random vector with standard normally distributed marginals f1(x1),

f2(x2), f3(x3) and pdf f(x1, x2, x3). Then there exist bivariate Gaussian copula densi-

ties c1,2, c2,3, and c1,3|2 with respective correlation parameters ρ12, ρ23 and ρ13|2 such
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that

f(x1, x2, x3) =c1,3|2(F1|2(x1|x2), F3|2(x3|x2))

· c1,2(F1(x1), F2(x2)) · c2,3(F2(x2), F3(x3)) ·
3∏
i=1

fi(xi).
(2.13)

Conversely (c.f. Aas et al. [2009]), for given correlation parameters ρ12, ρ23 and ρ13|2,

Equation (2.13) defines a trivariate normal distribution with correlation matrix

S =

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 .

Here, ρ13 is given by

ρ13 = ρ13|2

√
(1− ρ2

12)(1− ρ2
23) + ρ12ρ23.

In summary, pair copula decomposition constitutes a natural and flexible tool for mod-

eling complex multivariate distribution functions. Fundamental properties, such as

asymmetric or tail dependencies are broken down to the direct interactions of pairs of

random variables (Joe et al. [2010]). A list of important bivariate copulas is given in

Appendix B.

2.2.2 Vines

We already saw from Equations (2.9) and (2.10) that the pairwise decomposition of

a density function f into the product of bivariate copulas and marginal distributions

is by no means unique. Bedford & Cooke [2001, 2002] came up with a graphical

representation to classify general pair copula models, called regular vines or R-vines.

Essentially, they are represented by a collection of linked trees. In our applications we

will focus on a subclass of these R-vines, called D-vines. This fixes the decomposition

structure to some extent and by that reduces the number of possible decompositions

severely. However, before we can characterize D-vines, we need some definitions from

graph theory:

An (undirected) graph is a pair G = (V,E), where for k, k′ ∈ N, V = {v1, . . . , vk} is

a set of nodes (also called vertices) and E = {e1, . . . , ek′} is a set of edges, such that
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2.2 Copula distributions

e = (v, v′) ∈ E for some v, v′ ∈ V . The order of v and v′ in e is of no importance here,

i.e. we identify e = (v, v′) = (v,′ v). A path P = (V ∗, E∗) in a graph G = (V,E) is a

graph with V ∗ = {v∗1, . . . , v∗l } ⊆ V and E∗ = {(v∗1, v∗2), (v∗2, v
∗
3), . . . , (v∗l−1, v

∗
l )} ⊆ E. If

v∗l = v∗1, then G is said to be a cycle. A graph G is called acyclic, if it does not contain

cycles. An acyclic graph T = (V,E) is called a tree.

Definition 2.10 (Regular vine). A regular vine on n ∈ N nodes is a collection of (n−1)

trees V = (T1, . . . , Tn−1) such that:

(i) T1 = (V1, E1) has the set of nodes V1 = {v1, . . . , vn}.

(ii) For i = 2, . . . , n− 1 the set of nodes of Ti = (Vi, Ei) is given by Vi = Ei−1.

(iii) For i = 2, . . . , n−1 every element (vi, v
′
i) ∈ Ei consists of two elements (vi−1, v

′
i−1)

and (wi−1, w
′
i−1) ∈ Ei−1 where exactly one of the v’s coincides with one of the

w’s.

Loosely speaking, condition (ii) says that every edge e in a tree Ti becomes a node in the

subsequent tree Ti+1, while condition (iii) states that two adjacent nodes in tree Ti are

connected to a common node in Ti−1. In the following the nodes of tree T1 = (V1, E1)

will correspond to some random vector X = (X1, . . . , Xn)>, i.e. vi = Xi for all vi ∈ V1.

On the other hand, we depict the edges of tree Ti by an ordered labeling kl|D with k < l

for vk = Xk and vl = Xl. Here, D is the set of conditioning variables, which is ordered

increasingly as well. This results in a unique representation for every R-vine. The

labeling corresponds directly to the set of varying and conditioning variables k, l and D

of the copula ck,l|D. An example of a graphical representation of a six-dimensional R-

vine is shown in Figure 2.2(a). The class of R-vines is sufficient to represent pair copula

decompositions. However, this is no longer true for higher dimensional copulas as their

graphical representation can contain loops (see e.g. Diestel [2000] for a definition).

Since the notion of R-vines does not impose much structure on the number of resulting

decompositions, we later on restrict ourselves to D-vines.

Definition 2.11 (D-vine). A regular vine is called D-vine, if the degree of each node

v in T1 is at most two, i.e. v is contained in at most two edges of E1.
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For completeness we need to point out another very prominent class of vines: We call a

regular vine a canonical vine or C-vine, if there exists one node v in T1, which is directly

connected to all other nodes. Such a graph is also often called a star. Note that for

i = 2, . . . , n − 1 all trees Ti in a C-vine are stars as well. An example of a graphical

representation of a six-dimensional C-vine and a six-dimensional D-vine is depicted

in Figure 2.2(b) and 2.2(c), respectively. While the number of different R-vines on n

nodes computes to
(
n
2

)
· (n − 2)! · 2(n−2

2 ) (Morales-Nápoles et al. [2010]), the number

of possible C- or D-vines on n nodes is given by n!
2 (Aas et al. [2009]). For n = 6 we

can build 23.040 different R-vines and 320 different C- or D-vines. Hence, the notion

of C- and D-vines clearly imposes some structure on the pair copula decomposition.

A comprehensive introduction to vines is for instance given in Kurowicka & Cooke

[2006b].

For distinct indices i, j, i1, . . . , ik ∈ {1, . . . , n} with k ≤ (n− 2), i < j and i1 < · · · < ik

we abbreviate

ci,j|i1,...,ik := ci,j|i1,...,ik(F (xi|xi1 , . . . , xik), F (xj |xi1 , . . . , xik)).

Using the variable order of Equation (2.7) we get the D-vine decomposition

f(x1, . . . , xn) =

n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1

 · [ n∏
k=1

fk(xk)

]
. (2.14)

For example, the joint density function of a five dimensional D-vine is given by

f(x1, . . . , x5) =

[
5∏

k=1

fk(xk)

]
·c1,2 ·c2,3 ·c3,4 ·c4,5 ·c1,3|2 ·c2,4|3 ·c3,5|4 ·c1,4|2,3 ·c2,5|3,4 ·c1,5|2,3,4.

For a C-vine we on the other hand have the decomposition

f(x1, . . . , xn) =

n−1∏
j=1

n−j∏
i=1

cj,i+j|1,...,j−1

 · [ n∏
k=1

fk(xk)

]
. (2.15)

And the joint density function of a five dimensional C-vine is given by

f(x1, . . . , x5) =

[
5∏

k=1

fk(xk)

]
·c1,2 ·c1,3 ·c1,4 ·c1,5 ·c2,3|1 ·c2,4|1 ·c2,5|1 ·c3,4|1,2 ·c3,5|1,2 ·c4,5|1,2,3.

Note that the decompositions (2.14) and (2.15) of the joint density consist of pair copula

densities ci,j|i1,...,ik(·, ·) evaluated at conditonal distribution functions F (xi|xi1 , . . . xik)

and F (xj |xi1 , . . . , xik) for specified indices i, j, i1, . . . , ik and marginal densities fk.
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2.2 Copula distributions

(a)

(b)

(c)

Figure 2.2: (a) Example of an R-vine on six nodes. (b) Example of a D-vine on six nodes.

(c) Example of a C-vine on six nodes.
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2.3 Markov chains

In the following we introduce the concept of Markov chains and address some of their

properties. We do not go into full detail, but rather focus on the important aspects

regarding Markov Chain Monte Carlo (MCMC) methods. The reader may consult

Wilkinson [2006] for an easily readable and Meyn et al. [1996] for a thorough intro-

duction on the topic. We here take an approach similar to Robert & Casella [2004]

and Tierney [1994]. Loosely speaking a Markov chain is a series of random vectors

in which every element depends on its very last predecessor only. This can be seen

as a generalization of a first-order autoregressive process allowing for non-linear de-

pendency functions and non-Gaussian noise. Before we proceed to the definition of

Markov chains, we introduce the more general concept of random vectors evolving on

some arbitrary non-empty index set I. In later applications I ⊆ N0 indexes a series of

model parameters ξ(t) ∈ Rn. Throughout this chapter (Ω,F, P ) denotes a probability

space, and all random vectors are functions X : Ω −→ E onto a measurable space

(E,E) ⊆ (Rn,B(Rn)). Without loss of generality we furthermore assume that the den-

sity function for each random vector exists and that it is positive for any realization

x ∈ E mentioned.

Definition 2.12 (Stochastic/random process). Given a probability space (Ω,F, P ) to-

gether with the measurable space (E,E), a stochastic (or random) process {X(t)}t∈I on

some index set I is a function

X : Ω× I −→ E

(ω, t) 7−→X(t)(ω),

such that the functions

X(t) : Ω −→ E

ω 7−→X(t)(ω),

are (F,E)-measurable, i.e. X(t) : Ω −→ E are random vectors living on the same

probability space. If I ⊆ R, we call {X(t)}t∈I a time-continuous random process and if

I ⊆ Z (naturally including I = N) a time-discrete random process.
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2.3 Markov chains

For a finite subset If ⊆ I the set {x(t)}t∈If is a realization or sample path of {X(t)}t∈I ,
if for all t ∈ If , x(t) is a realization of X(t). In our applications the realizations

{x(t)}t∈If consist of samples x(t) of a posterior distribution dependent on some vector

of observations.

Example 2.6 (Time-discrete random process.). Suppose I = N and {X(t)}t∈N are inde-

pendent univariate random vectors with

P (X(t) = +1) = P (X(t) = −1) =
1

2
.

Setting X(0) = 0 and Y (k) =
∑k

t=1X
(t), the process Y := {Y (k)}k∈N defines a time-

discrete (and even space-discrete) random process. A realization of {Y (k)}k∈N can be

seen in Figure 2.3(a). For standard normally distributed X(t)’s we get a time-discrete

random process on a continuous sample space. A realization is given in Figure 2.3(b).

Example 2.7 (Time-continuous random process). A random process {W (t)}t∈R+
0

with

W (t) = (W
(t)
1 , . . . ,W

(t)
n )> and

(a) W (0) = 0

(b) W (t) is almost surely continuous and

(c) W (t) has independent increments with W
(t)
j −W

(s)
j ∼ N(0, t− s) (for j = 1, . . . , n

and 0 ≤ s < t)

is called a Wiener process or standard Brownian motion. This is a time- and space-

continuous random process. A one dimensional realization is given in Figure 2.3(c).

By prerequisite (c) above each random vector W (t) in a Wiener process depends on

the history of all preceding random vectors W (s) for 0 ≤ s < t. On the contrary,

a random process for which the transition probability between different states in the

state-space only depends on the current state is termed a Markov process. Mathemati-

cally this means that for the joint distributions PX(0)⊗...⊗X(t+1) of X(0), . . . ,X(t+1) and

PX(t)⊗X(t+1) of X(t) and X(t+1) we have

PX(t+1)|X(0)⊗...⊗X(t)(X(t+1) ∈ A|x(0), . . . ,x(t)) = PX(t+1)|X(t)(X(t+1) ∈ A|x(t)),

for any measurable A ⊆ E and x(0), . . . ,x(t) ∈ E.
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Figure 2.3: (a) Realization of a time-discrete and space-discrete random process. (b)

Realization of a time-discrete and space-continuous random process. (c) Realization of a

Wiener process.

Hence, while ignoring historic events, a Markov process predicts future events solely

based on the current state. Note that the transition probabilities between two states

X(t) and X(t+1) can depend on t ∈ I. As our realizations of Markov chain elements

x(t) later on are always drawn from the very same distribution for all t ∈ I, we define:

Definition 2.13 (Stationary process). Let I = R/Z/N; let furthermore {X(t)}t∈I be

a stochastic process on I. We call {X(t)}t∈I stationary, if for all {t1, . . . , tk} ⊆ I and

all τ ∈ I the joint distributions of

X(t1+τ ), . . . ,X(tk+τ ) and X(t1), . . . ,X(tk)

are equal, i.e.

P
X(t1+τ )⊗...⊗X(tk+τ )(X

(t1+τ ), . . . ,X(tk+τ )) = PX(t1)⊗...⊗X(tk)(X
(t1), . . . ,X(tk)).

This means that a shift in time has no effect on the joint statistics of any order. In

other words, the joint distribution is time independent. Markov processes {X(i)}i∈I
on the continuous index set I = R are commonly termed diffusion processes. Diffusion

processes are an important modeling technique when dealing with single entity pro-

cesses, such as molecule or protein interactions. Here, random effects often determine

the modeling results and therefore call for a stochastic approach (see Dargatz [2010] or

Øksendal [2003] for nice introductions). These are modeled by stochastic differential
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equations of the form

dX(t)

dt
= µ(X(t), t) + Σ(X(t), t)η(t), (2.16)

where µ : E × I −→ Rn and Σ : E × I −→ Rn×m are jointly measurable functions

for the n-dimensional random vectors X(t) and m-dimensional Gaussian white noise

η : I −→ Rm, such that η(t) i.i.d.∼ Nm(0, 1) ∀t ∈ I. While the function µ determines

the so-called systematic (non-stochastic) drift, the Σ-term regulates the strength of the

diffusion. Equation (2.16) is also commonly written as

dX(t) = µ(X(t), t)dt+ Σ(X(t), t)dW (t),

where dW (t) = η(t)dt is the notation for standard Brownian motion (compare e.g.

Dargatz [2010]). For a thorough introduction to Markov processes on continuous index

sets the reader may be referred to Meyn et al. [1996]. In this work all measurements are

taken at fixed time points. Therefore we will restrict ourselves to time-discrete Markov

processes, called Markov chains.

Definition 2.14 (Markov chain). Let (Ω,F, P ) be a probability space. A stochastic

process {X(t)}t∈I with values in E is called a Markov chain, if the index set I = N0 and

for any measurable set A ⊆ E, any T ∈ I \ {0, 1}, and any realization x(0), . . . ,x(T ) of

X(0), . . . ,X(T ), the random vector X(T+1) does not depend on x(0), . . . ,x(T−1), that

is

PX(T+1)|X(0)⊗...⊗X(T )(X(T+1) ∈ A|x(0), . . . ,x(T )) = PX(T+1)|X(T )(X(T+1) ∈ A|x(T )).

Furthermore, a stationary Markov chain is also called (time) homogeneous. From this

point on, we consider all Markov chains to be time homogeneous. In the next step,

we want to simplify the notation of the joint distribution PX(0)⊗...⊗X(t) for the ran-

dom vectors X(0), . . . ,X(t): When dealing with Markov chains the joint probability

PX(0)⊗...⊗X(t+1) is often seen as transition probability from a state X(t) = x to some

A ⊆ E. Put differently, it contains the distribution for X(t+1) given X(t) = x.

Definition 2.15 (Transition kernel). For a Markov chain {X(t)}t∈I on a probability
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space (Ω,F, P ) with values in E and a measurable set A ⊆ E the distribution

k(A|x) := PX(t+1)|X(t)(X(t+1) ∈ A|X(t) = x)

=

∫
A
PX(t+1)|X(t)(dy|x)

is called (time homogeneous) transition kernel (or transition probability) from x ∈ E to

A ⊆ E.

The transition kernel is a time independent function

k : E× E −→ [0, 1],

where (c.f. Robert & Casella [2004])

(i) k(·|x) is a probability measure for all x ∈ E and

(ii) k(A|·) is measurable for all A ∈ E.

Technically, it can be expressed via a function p : E × E −→ [0,∞) as

k(dy|x) = p(y|x)dy + r(x)1x(dy), (2.17)

where 1x(dy) is the indicator function, p(x|x) = 0 and r(x) = 1 −
∫
E p(y|x)dy (c.f.

Tierney [1994]). Here, the function p governs the transition from x to y while r(x)

holds the probability for X(t+1) to remain at X(t) = x. We will see later that in fact

r(x) needs to be positive for Markov Chain Monte Carlo methods.

Proposition 2.3. Given an initial value x(0) ∈ E, the transition kernel k fully deter-

mines the respective Markov chain.

Proof. For all x(0) ∈ E and Ai ∈ E

PX(1)|X(0)(A1|x(0)) = k(A1|x(0))

PX(1)⊗X(2)|X(0)((X(1),X(2)) ∈ A1 ×A2|x(0)) =

∫
A1

k(A2|y1)k(dy1|x(0))

...
...

PX(1)⊗...⊗X(t)|X(0)((X(1), . . . ,X(t)) ∈ A1 × . . .×At|x(0)) =

∫
A1

. . .

∫
At−1

k(At|yt−1)

× k(dyt−1|yt−2) . . . k(dy1|x(0)).
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This allows us to not specify the different (conditional) probability distributions explic-

itly, but simply denote the distribution on any set X(t1), . . . ,X(ts) for t1, . . . , ts ⊂ I

by P . For reasons of readability we will in the following make use of this notation.

Note that the joint distribution P = PX(t1)⊗...⊗X(ts) for X(t1), . . . ,X(ts) should not be

confused with the probability measure P on the probability space (Ω,F, P ).

The primary goal of Markov Chain Monte Carlo (MCMC) methods lies in the inference

of a distribution π by means of a Markov chain {X(t)}t∈I . Towards this end we need

to make sure that the chain essentially converges towards π, regardless of where it

begins. The following definitions form the basis for proper MCMC methods: We call a

distribution π invariant or stationary for the transition kernel k(·|·), if

π(A) =

∫
E
k(A|x)π(dx)

=

∫
E
k(A|x)πd(x) dx, ∀A ∈ E

(2.18)

where πd is the probability density function to π with respect to the Lebesque measure.

A stationary Markov chain is reversible, if for A ∈ E,

P (X(t+1) ∈ A|X(t+2) = x) = P (X(t+1) ∈ A|X(t) = x). (2.19)

Reversibility essentially states that the direction of the evolution on I does not influence

the dynamics of the chain. A sufficient condition for invariance and reversibility is given

by:

Definition 2.16 (Detailed balance condition). A Markov chain with transition kernel

k(dy|x) = p(y|x)dy+ r(x)1x(dy) as introduced in (2.17) satisfies the detailed balance

condition, if there exists a probability density function πd, such that

p(x|y)πd(y) = p(y|x)πd(x). (2.20)

Theorem 2.4. If the detailed balance condition holds for a Markov chain with transi-

tion kernel k and density function πd, then

(i) the associated distribution π is invariant with respect to k and

(ii) the Markov chain is reversible.
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Proof. Part (i) follows directly by checking Equation (2.18):∫
E
πd(x)k(A|x) dx =

∫
E

∫
A
πd(x)p(y|x) dy dx+

∫
A
πd(x)r(x) dx

=

∫
A

∫
E
πd(x)p(y|x) dxdy +

∫
A
πd(x)r(x) dx

=

∫
A
πd(y) (1− r(y)) + πd(y)r(y) dy

=

∫
A
π(dy).

Part (ii): As π is invariant with respect to k it follows that if X(0) ∼ π, then X(t) ∼
π ∀t ∈ I. Together with Bayes’ theorem this yields

p(y|x) + r(x)1x(y) =
(p(x|y) + r(y)1y(x)) · πd(y)

πd(x)

=
(p(y|x) + r(y)1y(x)) · πd(x)

πd(x)

= p(y|x) + r(y)1y(x).

Hence, for A ∈ E

P (X(t+1) ∈ A|X(t) = x) =

∫
A
p(y|x) + r(x)1y(x) dy

=

∫
A
p(y|x) dy

=

∫
A
p(x|y) dy

= P (X(t+1) ∈ A|X(t+2) = x).

We have to point out that the detailed balance condition is sufficient but not necessary

for the existence of an invariant distribution π. However, its simplicity makes it easy

to check and it is therefore frequently assumed in most MCMC algorithms. Up to now

we laid grounds for the existence of a reversible invariant distribution π. This invariant

distribution might nonetheless be non-unique. If every Markov chain governed by the

transition kernel k is converging to the same invariant distribution π, independent of

the starting value x(0) ∈ E, we call π an equilibrium distribution. In terms of the
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2.3 Markov chains

m-step transition kernel km(A|x) =
∫
E k

m−1(A|y)k(dy|x) for the transition from x to

A in m ∈ N steps this means

lim
m→∞

km(A|x(0)) = π(A)

for almost all x(0) ∈ E. Naturally, k1(A|x) := k(A|x). We need some more definitions

to characterize equilibrium distributions. Luckily these are easy to prove for most

practical applications.

A Markov chain {X(t)}t∈I with transition kernel k is called π-irreducible for a σ-finite

π, if for any x ∈ E and A ∈ E with π(A) > 0 there exists an m ∈ N such that

km(A|x) > 0.

Here, km(A|x) denotes the associated m-step transition kernel. This means the Markov

chain can get from any state x ∈ E to any other state in E within a finite number of

steps. If m = 1, we call the chain strongly π-irreducible.

A π-irreducible Markov chain with transition kernel k is periodic, if for some integer

s ≥ 2 there exists a sequence (A0, A1, . . . , As−1) of pairwise disjoint non-empty subsets

Ai ∈ E, such that for all i = 0, . . . , s− 1 and all x ∈ Ai

k(Aj |x) = 1 for j = i+ 1 mod s.

We call the chain aperiodic, if it is not periodic. Frankly spoken, aperiodic Markov

chains do not contain deterministic cycles.

Suppose Px(A) reflects the probability that, starting at x ∈ E, we obtain for the

number c
(t)
A := card{x(s) ∈ A|0 ≤ s ≤ t} of visits to some subset A ∈ E up to t, that

c
(t)
A → ∞ for t → ∞. A Markov chain is Harris recurrent, if there exists an invariant

distribution π, such that for every A ∈ E with π(A) > 0

Px(A) = 1 for all x ∈ E.

As pointed out in Tierney [1994], it follows from Corollary 5.2 of Nummelin [2004]

that there exists an invariant measure ν on E for every π-irreducible Harris recurrent

Markov chain. The measure ν is unique up to a multiplicative constant. The chain is

called positive Harris recurrent, if ν(E) < ∞. We want to point out that there exists
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also the somewhat weaker notion of a recurrent – as opposed to Harris recurrent –

Markov chain. However, as all MCMC methods introduced in Chapter 4 start at some

arbitrary random vector x(0) ∈ Rn, we have to make sure that the algorithms converge

to a unique invariant distribution independent of x(0). This is shown in Theorem 2.5

for Harris recurrent chains claiming some weak assumptions. It summarizes the neces-

sary and sufficient conditions for the convergence of a Markov chain to an equilibrium

distribution (Tierney [1994]). For a thorough proof see Sethuraman et al. [1992]. In

the case of recurrent chains the theorem only holds for almost all x(0) ∈ E.

Theorem 2.5. Suppose {X(t)}t∈I is a π-irreducible, aperiodic and Harris recurrent

Markov chain with transition kernel k and invariant distribution π. Then

(i) k is positive Harris recurrent,

(ii) π is the (unique) equilibrium distribution and

(iii) k is ergodic for π, i.e. {X(t)}t∈I converges regardless of its starting value x(0) ∈
E, i.e. for every x ∈ E and every A ∈ E

‖km(A|x)− π(A)‖TV → 0 for m→∞.

Hence, we later on only need to test for the existence of an invariant distribution π,

along with π-irreducibility, aperiodicity, and Harris recurrence in order to establish

a valid MCMC method. A corollary to Theorem 3.6 in Chapter 4 of Revuz [1984]

in combination with Corollary 1 of Tierney [1994] describes the limiting behavior of

averages. It states a law of large numbers and can be derived from the Chacon-Ornstein

or ergodic theorem (c.f. Tierney [1994]).

Theorem 2.6. Suppose {X(t)}t∈I is a positive Harris recurrent aperiodic Markov chain

with invariant distribution π. Suppose furthermore f : E −→ R is π-integrable with∫
E |f(x)|π(dx) <∞. Then for a realization {x(t)}t∈I the sample mean

f̄m =
1

m+ 1

m∑
t=0

f(x(t)) −→
∫
E
f(x)π(dx) = Eπ [f(E)] almost surely as m→∞.

Example 2.8 (Discrete state space). For a discrete state space E = {x1, . . . ,xS} the

transition kernel k(X(t+1) = {xj}|X(t) = xi) := k(xj |xi) := ki,j can be written in
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2.4 A short introduction on molecular biology

matrix notation as

K =


k(x1|x1) . . . k(xS |x1)

...
. . .

...

k(x1|xS) . . . k(xS |xS)

 .

The matrix K is right stochastic, i.e.
∑S

j=1 ki,j = 1. Every starting distribution can

be written as vector π(0) ∈ [0, 1]S . Suppose the Markov chain starts at x(0) = xj for

some j ∈ {1, . . . , S}, then π
(0)
j = 1 while π

(0)
i = 0 for i 6= j. The probability for moving

to state xs at t = 1 is given by

π(1) = π(0)K.

Applying the m-step transition kernel Km =: (k
[m]
i,j )i,j=1,...,S , i.e. k

[m]
i,j = P (X(m+t) =

xj |X(t) = xi) we iteratively obtain

π(t) = π(s)Kt−s (2.21)

for 1 ≤ s < t. Equation (2.21) is known as the discrete Chapman-Kolmogorov equation.

A continuous version is given in Lemma 4.1. It essentially states that a move from state

x(t) to x(t+2) passes through any of the states x1, . . . ,xS with the respective probability.

The Markov chain {X(t)}t∈I is π-invariant, if π = πK. Thus, π needs to be a left-

eigenvector for the eigenvalue 1 of K. For k̃i,j = P (X(t+1) = xj |X(t+2) = xi) and a

stationary distribution π = (π1, . . . , πS)> Bayes’ theorem yields

k̃i,j =
k̃j,i · πj
πi

=
πj
πi
kj,i. (2.22)

Hence, the detailed balance condition emerges naturally by Equation (2.22) for a re-

versible chain in the discrete case. The Markov chain is irreducible, if every state

can be reached from any other state within a certain number of steps, i.e if for all

i, j ∈ {1, . . . , S} there exists a natural number mij with k
[mij ]
i,j > 0. It is aperiodic, if

for all m > 0 k
[m]
i,i 6= 1 for all i ∈ {1, . . . , S}. For characterizing recurrence we finally

need the hitting times Ti = inf{t ≥ 1|X(t) = xi given X(0) = xi} for i ∈ {1, . . . , S}.
The chain is recurrent, if the probability Pr(Ti < ∞) = 1 ∀i. It is positive (Harris)

recurrent, if the expected value of the hitting time is finite.

2.4 A short introduction on molecular biology

It is an amazing fact that almost every cell in a living organism contains a full blueprint

for the development and functionality of the entire organism. This information is stored
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in the so-called Deoxyribonucleic acid (DNA) within the cell nucleus. A gene is a short

sequence of this DNA strain holding information for the construction of a protein. While

there are approximately 20,000-25,000 genes in the human genome (i.e. the entity of

all genes in an organism), plants often times endow more than twice this number. The

pure amount of genes is therefore no indicator for the complexity of a life form. An

organism is in fact regulated by a complex network of protein interactions.

For a gene to code for a protein the processes of transcription and translation need to

take place. In transcription RNA Polymerase enzymes (proteins) along with various

transcription factor proteins identify a specific gene on the DNA strain. This gene then

gets synthesized and transformed into Ribonucleic acid (RNA), the basis for protein

construction. There are various types of RNA molecules that play an important role

in the actual protein building process, which itself takes place in the cytoplasm during

the translation step: Mitochondrial ribosomes consisting inter alia of ribosomal RNAs

(rRNAs) convert the information stored on messenger RNAs (mRNAs) into a protein.

This protein consist of different amino acids that are transported to the ribosomes by

transfer RNAs (tRNAs). Moreover, short RNA sequences called silencing RNAs (siR-

NAs) and micro RNAs (miRNAs) control the protein coding mechanism. In addition,

there are also non-coding RNAs (ncRNAs). Although these do not contain informa-

tion for the translation process, it is believed that they control processes, such as gene

regulation. Much of their functionality has however not been inferred yet.

Proteins, protein complexes, or peptides (i.e. short amino acid sequences generally

built from larger precursor proteins) regulate the majority of cellular processes. These

comprise amongst others structural proteins used for all rigid components of the cell

(such as cell membranes), transcription factors that control the transcription process,

enzymes responsible for regulating the metabolism and the activation of proteins by

transferring phosphate groups (such as kinases), or growth factors (such as cytokines or

hormones) that trigger proliferation and cellular growth. For a thorough introduction

to cellular design and functionality the reader may be referred to Alberts et al. [2002].

Although the Human Genome project deciphered the entire human genome in 2003,

we are yet far from fully understanding its mechanistic interplay. The dynamics of all

of the underlying mechanisms are highly complex. They can be and are classified and

studied as dynamical systems (see Chapter 2.5).
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2.4 A short introduction on molecular biology

2.4.1 Signaling pathways

We saw above that proteins are essential entities for the functionality of an organism,

but how does a cell know which proteins to express when? This is mostly regulated by

cellular signaling. On the molecular level these signals are again mainly mediated by

proteins, small peptides, single amino acids, or lipids. Specifically, intercellular signals

are either transmitted by direct cell-to-cell exchange of molecules or by the secretion

of molecules from the signaling cell; these in turn provoke a reaction on the surface

receptor proteins of a receiving cell. In the latter mechanism a signaling protein binds

to an extracellular receptor and induces a series of biochemical reactions that trans-

port the information through the cell membrane. Within the receiving cell a receptor

associated kinase or kinase domain is thereupon activated. This induces the activation

of diverse intracellular proteins or other signaling molecules which finally transmit the

signal to a specific cellular compartment, such as the nucleus. Generally, the alter-

ation of various proteins by a series of phosphorylation and dephosphorylation steps

is responsible for signal maintenance (Kowarsch [2011]). In the nucleus the transmit-

ted signal controls processes like transcription. These are in turn responsible for cell

growth, differentiation, apoptosis, or protein synthesis to name just a few. The mecha-

nism of transmitting an extracellular signal to a cellular compartment for the induction

of a specific response is called cellular signaling pathway or simply signaling pathway.

In summary, cellular signaling pathways are processing and transmitting intercellular

signals in order to control cellular processes.

2.4.2 The JAK-STAT pathway

An important representative for signaling pathways in mammals is the so-called JAK-

STAT pathway (JAK stands for Janus Kinase, and STAT for Signal Transducer and

Activator of Transcription). It is utilized by more than 50 different cytokines, hor-

mones, and other growth factors and plays a key role in gene regulation (Subramaniam

et al. [2001]). Scientifically it is therefore of major interest. Malfunctioning results

in diseases like leukemia or bronchial asthma (Igaz et al. [2001]). In the JAK-STAT

pathway a cellular transmembrane receptor is triggered by different molecules of the cy-

tokine or growth factor families. Examples include the epidermal growth factor (EGF),
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erythropoietin (EPO), interferones (INFα, INFβ, INFγ), and Interleukin-6 (IL-6). Cy-

toplasmic STAT proteins are inactive in unstimulated cells. Upon receptor activation

the receptor-bound JAK proteins catalyze auto-phosphorylation and build tyrosine

residues for tyrosine-phosphorylation of STAT proteins between STAT Src-homology 2

(SH2) domains and the tyrosine residues (Aaronson & Horvath [2002]). The tyrosine-

activated STAT proteins homo- and heterodimerize and get rapidly transported into the

nucleus subsequent to a possible second serine phosphorylation step of the dimer (Wen

et al. [1995]). In the nucleus the activated STAT dimer dramatically upregulates the

transcription rate of the target promoter. After the transcription process inactive, i.e.

unphosphorylated, STAT is released back into the cytoplasm. Four evolutionarily con-

served JAK proteins (JAK1, JAK2, JAK3, TYK2) and seven STAT coding genes with

corresponding proteins (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6)

are known for mammals (Aaronson & Horvath [2002]). These however only work in

specific combinations coordinated by SH2-phosphotyrosine interactions.

In Chapter 6.3.4, we use a delay differential equation model of the JAK2-STAT5 path-

way in order to evaluate the performance of the copula based Metropolis-Hastings

algorithms introduced in this thesis. In Chapter 7 model inference helps to address the

question, whether tyrosine phosphorylated STAT3 can work as transcription factor in

the JAK1-STAT3 pathway.

2.5 Dynamical systems in molecular biology

Understanding the mechanisms of cellular functionality is a key challenge in the field

of systems biology. In recent years much effort has gone into the inference of gene

regulatory, metabolic and signaling networks, which inter alia govern gene expression,

cellular communication, or intra cellular molecular transfer (De Jong [2002]; Palsson

[2006]). All of these processes may be modeled by a system of biochemical reactions of

the form

R1 : a11A11 + . . .+ a1r1A1r1 −→ b11B11 + . . .+ b1s1B1s1

...

Rm : am1Am1 + . . .+ amrmAmrm −→ bm1Bm1 + . . .+ bmsmBmsm

(2.23)
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where the reactants Ai1, . . . , Airi are transformed into the products Bi1, . . . , Bisi . The

natural numbers ai1, . . . , airi and bi1, . . . , bisi hold the number of reactants and products

involved in the reactions (2.23). Conventionally for i = 1, . . . ,m the greatest common

divisor of these quantities is equal to one. Biochemical reactions solely control cellular

activity. Generally, each reaction Ri obeys the law of mass action, which states that

the probability of Ri to occur is proportional to the product of the concentrations of

all reactants.

Example 2.9 (Elementary biochemical reactions). Wilkinson [2006] analyzes a simple

auto-regulatory gene network in prokaryotes: A protein P is coded for by a gene g, i.e.

g is transcribed into the transcript r, which is subsequently translated into the protein

P . After translation the protein P builds a protein complex P2 consisting of two copies

of P . This homodimer P2 finally inhibits the transcription of gene g. The network is

based on the interaction of the following biochemical reactions:

transcription: g −→ g + r

mRNA translation: r −→ r + P

repression: g + P2 ←→ g · P2

dimerization: 2P ←→ P2

mRNA degradation: r −→ ∅
protein degradation: P −→ ∅

Here, products connected by a dot represent a gene-protein complex. The empty set ∅
indicates that the reactant on the left hand side of the reaction is degraded. Reactions

with a double sided arrow are reversible, which means that the right hand side of the

equation can act as reactant producing the left hand side as product as well.

There are various approaches for modeling the dynamics of the reactions (2.23) over

time. Gillespie [2007] presented a nice review on the topic. We shortly summarize its

key aspects in the following.

Biochemical reactions occur, when a molecule transforms itself to another isomeric

form or two or more molecules form a molecular complex. While the first scenario is

governed by quantum mechanics, the latter depends on the chance of these molecules

to come within a certain distance to each other. The dynamics of molecular systems

thus exhibit some stochasticity. Let us assume here that the system is well-stirred

and has a constant volume and temperature throughout the modeling process. These

39



2. PREREQUISITES

assumption guarantee that the positions and velocities of the individual molecules have

no effect on the system’s dynamics. As bottom line we want to estimate the state

vector X(t) = (X
(t)
1 , . . . , X

(t)
d )> based on some initial configuration X(t0), where X

(t)
i

denotes the number of molecules of species i at time point t and d is the number of

species present. Each reaction Rj (j ∈ {1, . . . ,m}) is then characterized by

(i) a state change vector vj = (v1,j , . . . vd,j)
> and

(ii) a propensity function aj(·).

The elements vi,j hold the change in the copy number of species i, if reaction Rj occurs,

i.e. reaction Rj updates the current configuration X(t) = x to x + vj . On the other

hand, aj(x)dt gives the probability that reaction Rj occurs in the infinitesimal time

interval [t, t + dt) while the system is in the configuration x. For instance, let us

consider a unimolecular reaction Rj : Aj,i −→ B, where Aj,i represents a molecule of

species i (reactant) and B is some product. Then, due to the laws of physics, there

exists a rate constants (also called reaction rate) kj , such that the probability for any

of the molecules of type Aj,i to react in the infinitesimal time interval [t, t + dt) is

given by kjdt. Hence, the propensity function reads aj(x) = kjxi (i ∈ {1, . . . , d})
for the configuration X(t) = x = (x1, . . . , xd)

>. Similarly, for a bimolecular reaction

Rj′ : Aj′,i1 +Aj′,i2 −→ B′ there exists a rate constant kj′ , such that aj′(x) = kj′xi1xi2

(i1 6= i2, i1, i2 ∈ {1, . . . , d}). In the case i1 = i2 we instead have aj′(x) = 1
2kj′xi1(xi1−1).

Since all biochemical reactions can be built using a combination of uni- and bimolecular

reactions, we do not consider higher order reactions for now.

The propensity functions aj(x) (j = 1, . . . ,m) allow to describe the evolution over time

of the probability P (x, t|x0, t0) that the system is at configuration x at time point t,

given it started in x0 at t0. The result (see e.g. Gillespie [1992] for a derivation) is the

so-called chemical master equation

P (x, t|x0, t0)

dt
=

m∑
j=1

(aj(x− vj)P (x− vj , t|x0, t0)− aj(x)P (x, t|x0, t0)) . (2.24)

Equation (2.24) completely determines P (x, t|x0, t0). Unfortunately it can only be

solved analytically in the most simplest scenarios and even a computational approxi-

mation is often times too costly in larger systems.
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Algorithm 1: The stochastic simulation algorithm.

Input: System configuration x0 at time t0, final simulation time tf > t0, state change vectors

v1 . . . ,vm, and propensity functions a1(·), . . . , am(·).
Output: Realization of the process X(t) as finite series of pairs {(x0, t0), (x1, t1), (x2, t2), . . .}.

Initialize k ← 0

while tk < tf do

for i← 1 to m do

bi ← ai(xk)

Set b0 ←
∑m
i=1 bi.

Sample r ∼ U[0, 1] and set τ ← −b−10 log(r).

Sample s ∼ U[0, 1] and set j ← smallest l such that
∑l
l′=1 bl′ > sb0.

Update k ← k + 1.

Set tk ← tk−1 + τ and xk ← xk−1 + vj .

Instead of solving the chemical master equation explicitly, we can also try to simulate

a realization of X(t) over time. The key to this approach is to consider the probability

P (τ, j|x, t)dτ of the reaction Rj to occur as next reaction in the infinitesimal time

interval [t + τ, t + τ + dτ), given that the system is in configuration X(t) = x at time

point t. Here, according to Gillespie [1992], we have

P (τ, j|x, t) = aj(x) exp

−
 m∑
j′=1

aj′(x)

 τ

 . (2.25)

This forms the basis for the stochastic simulation algorithm depicted in Algorithm 1.

Extensions to Algorithm 1 e.g. for the case of large m and d were given by Gibson &

Bruck [2000] or Cao et al. [2004].

We now want to approximate the sometimes computationally expensive outcome of

the stochastic simulation algorithm by means of a stochastic differential equation. For

this we assume that for some τ > 0 all propensity functions a1(·), . . . , am(·) are close

to constant on the time interval [t, t + τ). Then the number of reactions Rj within

[t, t+ τ) is Poisson distributed with mean aj(x)τ . We obtain the discrete update rule

X(t+ τ) ≈ x+

m∑
j=1

ηjvj

for the configurationX(t) = x and m independent Poisson distributed random variables

ηj , j = 1, . . . ,m, with according means aj(x)τ . Assuming furthermore that for all
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j = 1, . . . ,m, aj(x)τ � 1, we can approximate the Poisson distributions using the

m normal distributions N(aj(x)τ, aj(x)τ) with means aj(x)τ and variances aj(x)τ

(j = 1, . . . ,m). For small τ ’s this leads to the chemical Langevin equation

dX(t)

dt
=

m∑
j=1

aj(X
(t))vj +

m∑
j=1

√
aj(X

(t))η
(t)
j , (2.26)

where η
(t)
j denotes some independent Gaussian white noise process (Dargatz [2010]).

For a thorough introduction to stochastic differential equations see for instance Øksendal

[2003]. Equation (2.26) can now be used to speed up the simulation of X(t) over time.

In the thermodynamic limit, i.e. if the copy number of species i and the volume simul-

taneously approach infinity while their quotient stays constant, the second term on the

right hand side of Equation (2.26) becomes negligible compared to the first term (Gille-

spie [1992]). Hence, if the substances involved in the biochemical reactions have numer-

ous copy numbers and the cellular volume is large compared to the sizes of its molecules

chemical kinetics can be modeled by sets of ordinary differential equations. Allowing ad-

ditionally time delays for transcription, translation or diffusion processes (c.f. De Jong

[2002]) we end up with a set of delay differential equations. In both cases we are deal-

ing with continuous vectors of concentrations x(t) = (x1(t), . . . , xd(t))
> ≥ 0 ∈ Rd of

biochemical substances x1(t), . . . , xd(t) within a given time interval [0, T ]. These sub-

stances can be proteins, RNA’s, small molecules, and the like. As seen above, the rate

of change for their concentrations is given by a set of differential equations

dx(t)

dt
= gξ(x1(t), . . . , xd(t), x1(t− τ1), . . . , xd(t− τd),u(t), t), (2.27)

linking the solution x(t) via a ξ-parametrized (nonlinear) Lipschitz-continuous func-

tion gξ : R2d
+ × Rk+1 −→ R2d to the derivative of x(t) with respect to time t. For

readability we generally omit the dependence of x(t) on the parameter vector ξ ∈ Rn.

The latter can contain reaction rates, initial values to (2.27), but also noise parameters

of the measurements or further constants as will become clear later. While u(t) ∈ Rk

represents an input vector of externally-supplied energy or input signals, the constants

τ1, . . . , τd denote discrete time delays. For τ1 = . . . = τd = 0 we call (2.27) a system of

(nonlinear) ordinary differential equations (ODE’s). Otherwise (2.27) is denoted as a

system of (nonlinear) delay differential equations (DDE’s). We also write

dx(t)

dt
= gξ(x(t), τ ,u(t), t), (2.28)
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for the system (2.27), where τ = (τ1, . . . , τd)
> denotes the vector of time delays. Ex-

amples for systems of differential equations in computational biology are the modeling

of mRNA synthesis (Goodwin [1963]) or the modeling of cell cycles in Caulobacter

crescentus (Li et al. [2008]) and yeast (Chen et al. [2004]).

Remark 2.1. We have to point out that there are other approaches for modeling the

dynamics of cellular processes, too. For instance, especially in large systems we are

often given no particular information about the number of reactants and products

involved, i.e. we only have qualitative information such as “a gene is expressed at time

point t”. This gives a qualitative view on the system’s behavior which is frequently

modeled by a so-called Boolean network. The dynamics are given by simple logic-driven

recombinations of binary ON/OFF states for the substances involved (c.f. Bornholdt

[2008]; Kauffman [1969]; Thomas [1991] for an introduction). As Boolean networks

do not contain information about molecular copy-numbers or concentrations they only

provide a rather crude view on the system’s evolution. This modeling technique might

be essential if the number of species is very large. However, in general it is avoided in

smaller systems.

In the following we will only deal with ordinary and delay differential equation models,

which is what we call a dynamical system in this thesis. From the derivation of these

systems above we saw that a large abundance of entities is necessary throughout the

modeling process in order to justify the approach. This also implies that rate con-

stants are constant at all times. We therefore consider the model parameters to be

time-independent. We furthermore assume that the system is well-stirred and external

influences such as the temperature or the osmotic pressure are constant throughout the

modeling process. This allows us to ignore any spacial constraints that would e.g. call

for models involving hard-to-handle partial differential equations. Raia et al. [2011]

showed that the number of STAT5 and STAT6 molecules contained in human lym-

phoma cells (L1236) is ∼ 2 · 105 each. For the JAK-STAT pathways of Chapters 6.3.4

and 7 the assumption of being close to the thermodynamic limit is hence well justified

and we can in fact approximate the dynamics by applying a differential equation model.

Example 2.10 (ODE representation of biochemical reactions). According to the law of
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Figure 2.4: Time courses for Equation (2.29). (a) All rate constants were set to 0.5.

The initial concentrations were g(0) = 1 and r(0) = P (0) = P2(0) = gP2(0) = 0. (b)

Again, all rate constants were set to 0.5. The initial concentrations were g(0) = 5 and

r(0) = P (0) = P2(0) = gP2(0) = 0. Both systems are close to individual steady states at

time point t = 30.

mass action the corresponding ODE-system to Example 2.9 is given by

dg(t)

dt
= k1gP2(t)− k2g(t)P2(t)

dr(t)

dt
= k3g(t)− k4r(t)

dP (t)

dt
= k5r(t) + k6P2(t)− k7P (t)2 − k8P (t)

dP2(t)

dt
=

1

2
k7P (t)2 + k1gP2(t)− 1

2
k6P2(t)− k2g(t)P2(t)

dgP2(t)

dt
= k2g(t)P2(t)− k1gP2(t)

(2.29)

for the concentrations g(t), r(t), P (t), P2(t), gP2(t) of g, r, P, P2, gP2 at time point t and

some non-negative reaction rates k1, . . . , k8. The corresponding parameter vector is

given by ξ = (k1, . . . , k8)> ∈ R8
+. Note that the dimerization process needs two proteins

P to form one dimer P2. This is reflected in the second to last equation by multiplying

the rate constants k6 and k7 by one half. There is no basal production rate for any of

the elements. Various examples for possible dynamics of Equation (2.29) are shown in

Figure 2.4.

The solution of (nonlinear) ordinary differential equations can be numerically approxi-

mated using e.g. Matlab’s ode15s (Shampine & Reichelt [1997]), or SUNDIALS’ CVODEs
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Figure 2.5: (a) The SIR model. (b) Time course for the SIR model with transfer rates

β1 = 0.1, β2 = 0.01 and initial conditions s(0) = 0.9, i(0) = 0.1, and r(0) = 0.

(Serban & Hindmarsh [2005]) solvers. For delay differential equations Matlab’s dde23

solver (Shampine & Thompson [2001]) can be used.

2.5.1 Compartment models

A compartment model consists of a finite set of mutually exclusive compartments. Each

compartment holds a group of objects unambiguously identifiable with the respective

compartment (Jacquez [1985]). The interaction of compartments is governed by transi-

tion equations, which control the exchange of objects between compartments. The net

flow between compartments is based on the density of its objects. All compartments

are assumed to be well-mixed and homogeneous with constant volume. This implies

that all objects distribute instantly after transition. In this thesis compartment models

are also seen as dynamical systems since transition equations are defined by a system of

differential equations. In contrast to biochemical reactions we consider closed systems

only, i.e. there is no external flow of objects into or out of the system.

Example 2.11 (SIR model). Probably the most prominent example for a compartment

model stems from epidemiology. It estimates the spread of an epidemic, such as measles,

in large populations (Anderson & May [1992]). A simple version contains the three com-

partments S (susceptible subjects), I (infectious subjects) and R (recovered subjects),

which are governed by the system of ODE’s:
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ds(t)

dt
= −β1 · i(t) · s(t)

di(t)

dt
= β1 · i(t) · s(t)− β2 · i(t)

dr(t)

dt
= β2 · i(t)

where β1 and β2 are transfer rates and s(t), i(t), r(t) the concentrations corresponding

to the compartments S, I and R at time t. The hazard of an individual for an infection

depends on the concentration of infected individuals and the transfer rate β1. The

chance for recovery on the other hand is solely controlled by β2. A time course of the

model is shown in Figure 2.5.

2.5.2 Parameter estimation in dynamical systems

Parameter inference of differential equation systems is a prominent topic in the field

of computational systems biology. Despite the arrival of new, high-throughput mea-

surement techniques, compared to model complexity most systems suffer from very low

observation numbers and noisy measurements. Moreover, as biological organisms need

to be able to quickly adjust to various environmental conditions, we hence expect these

models to be somewhat insensitive to parameter variations. Some may even show two

ranges of functionality (Kaplan et al. [2008]).

Given the general dynamical system

dx(t)

dt
= gξ(x(t), τ ,u(t), t), (2.30)

the vector ξ ∈ Rn in (2.30) holds the parameters defining gξ. As mentioned above, it can

contain rate constants, initial values to (2.30) or other constants e.g. necessary for the

link functions defined in the following. In practical applications ξ needs to be inferred

from a set of given observations {y1, . . . ,ym}, where yi was observed at the time

points ti ∈ [0, T ] for i = 1, . . . ,m. It is assumed that there exists a parameter vector

ξ such that the simulation of the differential equation trajectory of (2.30) contains

the true dynamics of the particular biological system. More precisely, the observation

yi = (yi,1, . . . , yi,li)
> with li ∈ N is supposed to satisfy the equation

yi,j = h
(i,j)
ξ (x(ti)) + εi,j , j = 1, . . . , li (2.31)
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for the realizations εi,j of some independent normally distributed random variable with

mean zero and unknown variance. Note that the li’s can vary between observations

as we do not require the measurements to be of the same dimension at every time

point ti. The functions h
(i,j)
ξ : Rd −→ R denote ξ-dependent link functions, where

h
(i,j)
ξ can correspond to a simple projection on the jth component of x(ti), to sums

xj1(ti)+. . .+xjr(ti) (j1, . . . , jr ∈ {1, . . . , li}) thereof, or their rescaled versions s1 ·xj(ti),
or s2 · (xj1(ti) + . . .+xjr(ti)), where s1 and s2 are unknown scaling constants contained

in ξ. These link functions arise since technical limitations frequently prevent to observe

each concentration xi individually.

On the basis of Equation (2.31) the parameter vector ξ of 2.30 is generally estimated

by minimizing the squared error loss function

χ2(ξ) =
m∑
i=1

li∑
j=1

(
yi,j − h(i,j)

ξ (x(ti))
)2

σ2
i,j

, (2.32)

with respect to ξ (see Horbelt et al. [2002] or Maiwald & Timmer [2008]), where σ2
i,j

denote known measurement errors. Very promising approaches for the minimization

process include global nonlinear optimization methods, such as the simulated annealing

algorithm (see Černỳ [1985]; Kirkpatrick et al. [1983] or Chapter 4.6), the genetic

algorithm (Fraser & Burnell [1970]), or coupled local minimizers (Suykens & Vandewalle

[2002]; Suykens et al. [2002]). These techniques have shown to work well in practice as

they try to avoid getting trapped in local minima. Nevertheless, deterministic methods,

such as steepest decent algorithms (Fletcher [1987]) started various times at different

initial ξ-values can also be applied.

2.5.3 Parameter identifiability in dynamical systems

Technical limitations generally prevent experimentalists from individually measuring

every substance involved in a biological process. This means that we are dealing with

incomplete data when modeling a particular system. Moreover, there might even be

a considerable amount of noise on the measurements. Therefore, we need to raise the

question, whether a model – or rather its parameters – can at all be identified based

on some noisy, incomplete observations y := {y1, . . . ,ym}?
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An approach to address this issue for dynamical systems has been proposed by Raue

et al. [2009] (see also Murphy & Van der Vaart [2000] and Venzon & Moolgavkar [1988]).

The authors consider sets of the form

CRα := {ξ|χ2(ξ)− χ2(ξ̂) < ∆α},

where χ2(ξ) is the squared error loss function of Equation (2.32), ξ̂ is the according

estimated argmin, i.e. χ2(ξ) > χ2(ξ̂) for all defined ξ’s, and ∆α is the α-quantile of the

χ2-distribution with one degree of freedom (for details see Press et al. [1986]). Meeker

& Escobar [1995] showed that the borders of CRα represent confidence regions for ξ̂ in

linear systems.

A parameter ξi of ξ = (ξ1, . . . , ξn)> is then said to be identifiable, if the confidence

interval [li, ui] (of the estimate ξ̂i) defined by li := min{ξi|∃ ξ, s.t. χ2(ξ)−χ2(ξ̂) < ∆α}
and ui := max{ξi|∃ ξ, s.t. χ2(ξ)−χ2(ξ̂) < ∆α} (if existent and −∞/+∞ otherwise), is

finite. Moreover, Raue et al. [2009] propose even finer notions of identifiability: They

call a system structurally identifiable, if χ2(ξ) possesses a unique minimum. Further-

more, a system is named practically identifiable, if it possesses a unique minimum and

none of the confidence intervals [li, ui] (i ∈ {1, . . . , n}) has infinite size. Frankly spoken,

structural identifiability issues arise, if there exists a functional relationship between

individual model parameters. Practical identifiability issues, on the other hand, are

caused by too noisy measurements; although the measurements allow for a minimum of

χ2(ξ) at ξ̂, the χ2(ξ) function is too flat around ξ̂ to consider the estimate significant.

The following example gives an instance of a structurally non-identifiable model:

Example 2.12 ( Structural non-identifiability). Let us consider the compartment model

inspired by the models of Chapter 8:

dx1(t)

dt
= −β1x1(t)− β3x1(t)− β4x1(t) + β2x2(t) + β5x3(t)

dx2(t)

dt
= β1x1(t)− β2x2(t)

dx3(t)

dt
= β4x1(t)− β5x3(t)

(2.33)

where (without loss of generality) β1, . . . , β5 are positive rate constants controlling

the flow between the compartments x1, x2, and x3. The rate β3 corresponds to the

degradation of the elements in x1. Suppose x1(0) = 10 and x2(0) = x3(0) = 0 in
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Figure 2.6: (a) Schematic representation of model (2.33). (b) Time course for com-

partment x1 of the model in (a) for x1(0) = 10 and x2(0) = x3(0) = 0. The blue

line corresponds to β1 = β4 = 2, β2 = β3 = β5 = 0.5, the dashed black line to

β1 = 3, β4 = 1, β2 = β3 = β5 = 0.5.

arbitrary units. For the vector of concentrations x(t) = (x1(t), x2(t), x3(t))> the linear

ODE (2.33) has the solution

x(t) = exp(A·t)·

10

0

0

 for the matrix A =

−β1 − β3 − β4 β2 β5

β1 −β2 0

β4 0 −β5

 .

Setting β2 = β5 the characteristic polynomial in λ is

χ(λ) = (β2 + λ)2(c+ β3)− (β2 + λ)β2c,

where c = β1 + β4 > 0. This shows that the parameters β1 and β4 are not identifiable,

since for any β1 6= c we get the same solution to (2.33) setting β4 = c−β1. A schematic

representation of (2.33) including a time course can be found in Figure 2.6.

For checking the identifiability of a particular model the Matlab based PottersWheel

software (Maiwald & Timmer [2008]) can be used. Here, the finiteness of the confidence

intervals [li, ui] is estimated via the so-called profile likelihood function

χ2
PL(ξ0

i ) := min
A
χ2(ξ)

for A = {ξ = (ξ1, . . . , ξn)>|ξi = ξ0
i }. The profile likelihood checks whether for i =

1, . . . , n the bounds li and ui are finite by proceeding into the direction of the least

increase of χ2(ξ) starting at the estimated argmin ξ̂ of χ2(ξ).
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Various other methods for parameter identifiability analysis were proposed by Hengl

et al. [2007]; Lecourtier et al. [1987]; Ljung & Glad [1994] or D. et al. [2003]. All of

these approaches do however not test for practical identifiability.

In summary, before performing parameter estimation in dynamic systems, an iden-

tifiability analysis has to be performed in order to ensure the validity of parameter

estimates.
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Bayesian model inference

We now turn to the concept of Bayesian model inference. For the application in dynam-

ical systems this comprises two aspects: On the one hand, given a specific parametrized

model M = M(ξ), we want to infer the parameter values ξ ∈ Rn and their correspond-

ing uncertainties based on a series of observations y = {y1, . . . ,ym}. This can be seen

as extension to the parameter estimation approach described in Chapter 2.5.2. On

the other hand, given a set of parametrized models M1, . . . ,Mk with according param-

eter vectors ξ1 ∈ Rn1 , . . . , ξk ∈ Rnk , we want to infer the best model structure Mi

resembling the observations y, i.e. we want to deduce the model Mi with the highest

probability that the observations y were generated by Mi. Interestingly, both aspects

can be covered by the technique of Markov Chain Monte Carlo (MCMC) sampling

addressed in Chapter 4.

3.1 Bayesian parameter inference

First, we address the issue of inferring the parameter vector ξ ∈ Rn for a given

parametrized model M based on observations y = {y1, . . . ,ym}. Taking a frequen-

tistic approach, y is considered the outcome of one of infinitely many repetitions of the

same experiment based on ξ. Conversely, in the Bayesian paradigm ξ is considered as a

realization of a random parameter vector (Robert & Casella [2004]). Every data point

yi is here seen as realization of a random vector X ∼ f(x|ξ) for a density function
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f(·|ξ) conditioned on the parameter vector ξ. Given f(·|ξ) we define the likelihood

function (or simply likelihood) for y = {y1, . . . ,ym} by

L(ξ|y) = L(ξ|y1, . . . ,ym)

=

m∏
i=1

f(yi|ξ).

This is a function of the parameter vector ξ. In combination with a prior density

function π(ξ), containing information about ξ before observing y, Bayes’ theorem gives

rise to a probability distribution function

π(ξ|y) =
L(ξ|y)π(ξ)∫

Rn L(ξ|y)π(ξ) dξ
(3.1)

(see for instance Berger [1985] or Bernardo et al. [1994] for the foundations of this

approach). The term π(ξ|y) in (3.1) is called posterior distribution of ξ and represents

the core of Bayesian inference. It contains the distribution of ξ while taking into account

both the data y itself as well as prior knowledge about the parameters (by means of

π(ξ)). Note that we abusively use ξ to denote a realization of the random parameter

vector and the variable of the density function (3.1). The integral in the denominator

π(y) =

∫
Rn

L(ξ|y)π(ξ) dξ (3.2)

is called marginal likelihood (or model evidence). As we will see in Chapter 3.4, π(y) is

subject to model inference, but generally analytically intractable. In high dimensions

numerical approximations of π(y) are difficult and mostly inaccurate. Sophisticated

approaches such as the ones introduced in Section 3.4.3 have to be applied. The infer-

ence of the posterior distribution of (3.1) is often done by MCMC sampling (Chapter

4). These methods exploit the fact that π(y) does not depend on the parameter vector

ξ: As the vector of observations y is fixed, the inference is solely based on the relation

π(ξ|y) ∝ L(ξ|y)π(ξ). (3.3)

Analogously to Chapter 2.5.2 we want to infer the parameter distribution of a parametrized

differential equation of the form

dx(t)

dt
= gξ(x(t), τ ,u(t), t), (3.4)
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based on noisy observations y = {y1, . . . ,ym} at the time points t1, . . . , tm. For

Bayesian parameter estimation we assume that the observations contain independent

measurement errors, i.e. for yi = (yi,1, . . . , yi,li)
> we have

yi,j = h
(i,j)
ξ (x(ti)) + εi,j , j = 1, . . . , li (3.5)

where εi,j are realizations distributed according to some time-independent noise model

density functions f (i,j)(·|ξ). Here, h
(i,j)
ξ again denote link functions introduced in Equa-

tion (2.31). We hence infer the distribution

π(ξ|y) ∝
m∏
i=1

li∏
j=1

f (i,j)(yi,j − h(i,j)
ξ (x(ti))|ξ)π(ξ)

for some prior π(ξ) and the solution x(t) of Equation (3.4) corresponding to the param-

eter vector ξ. The vector ξ can contain rate constants, time delays, or initial conditions

of the differential equation, but also parameters of the applied noise model, such as the

standard deviation in case of a Gaussian error model.

We define the maximum likelihood estimator (MLE) for a given likelihood function

L(ξ|y) as the parameter vector ξ̂ML ∈ Rn at which L(ξ|y) attains its maximum,

if existent. Furthermore, the maximum a posteriori estimate (MAP) for a posterior

function π(ξ|y) is the value ξ̂MAP ∈ Rn at which π(ξ|y) attains its maximum, if

existent. Clearly, both estimators coincide, if the prior density π(ξ) is uniform and its

support contains ξ̂ML. It is easy to see that for Gaussian noise model density functions

f (i,j)(·|ξ) with known measurement errors σ2
(i,j), the estimate ξ̂ML coincides with the

minimization result of Equation (2.32). Note however that contrary to the classical

parameter estimation approach unknown measurement errors σ2
(i,j) can be estimated

simultaneously in the Bayesian paradigm, this is, ξ can contain the σ2
(i,j)’s.

Analogously to confidence intervals, we can compute credible intervals for each compo-

nent ξj of ξ: For j ∈ {1, . . . , n} and confidence level α the 100%(1−α) credible interval

for ξj is the interval Ij = [I lowj , Iupj ] with lower bound

I lowj = Π−1
j (α/2|y) and upper bound Iupj = Π−1

j (1− α/2|y),

where Π−1
j (·|y) is the univariate quantile function corresponding to the marginal pos-

terior density function π(ξj |y) for ξj , i.e. Π−1
j (·|y) is the inverse of the corresponding
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posterior distribution function Π(ξj |y). Clearly,∫
Ij

π(ξj |y) dξj = 1− α. (3.6)

As in classical approaches α = 0.1 and α = 0.05 are popular, although arbitrary,

confidence levels. We may point out that there exist generic cases for which the jth

component (j ∈ {1, . . . , n}) of the MLE or MAP is not contained in the credible interval

Ij . However, in practical applications this is generally not an issue.

While in the frequentistic paradigm confidence intervals hold the probability for the

“true” parameter value to be contained within the confidence interval of a parameter ξ,

in the Bayesian language credible intervals hold the probability that ξ itself is contained

in this interval. Credible intervals are thus considered one of the strongest points of

Bayesian inference.

3.2 Prior distributions

A crucial issue in Bayesian statistics is the correct choice of prior distributions. When-

ever we are given information about the model or observations y1, . . . ,ym, it should

(and must) be contained in the inference process. However, since priors can have con-

siderable influence on the obtained results, the topic has to be treated with care. A very

popular choice for prior distributions constitutes the class of conjugate priors: When

the likelihood is of the exponential family, this is, the likelihood has the form

L(ξ|y) = h(y) exp(ξ ·R(y)−Ψ(ξ))

with functions h : Rl −→ R, R : Rl −→ Rn, Ψ : Rn −→ R – the product ξ ·R(y) is to

be understood as scalar product in Rn – then for ζ ∈ Rn, λ > 0 the conjugate prior is

defined as

π(ξ|ζ, λ) = k(y) exp(ζ · ξ − λΨ(ξ))

where k : Rl −→ R is a function dependent on y only (Marin & Robert [2007]). Since

the data y is fixed, k can also be considered as constant. The prior parameters ζ and

λ are called hyperparameters, as are all parameters influencing the prior distribution.

For a conjugate prior the posterior can be written as

π(ξ|y) = π(ξ|ζ +R(y), λ+ 1).
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In this case the posterior distribution just “updates” the prior parameters. Robert &

Casella [2004] pointed out that using conjugate priors for computational reasons might

introduce effects unrelated to reality on the inference process. Hence, in this thesis we

frequently use non-informative priors1

π(ξ) ∝ 1S(ξ)

on some support set S ⊆ Rn. Although the choice of a finite support S already in-

troduces prior information on ξ, the restriction is usually very mild: Rate constants

of biological systems are generally considered to be non-negative and setting an upper

bound can also be easily done without considerably influencing the posterior distribu-

tion.

Interestingly, we can choose any non-negative function π : Rn −→ R with∫
Rn
π(ξ) dξ = c

for a constant c ∈ (0,∞] as prior distribution, as long as the marginal likelihood fulfills

π(y) =

∫
Rn

L(ξ|y)π(ξ) dξ <∞ (3.7)

almost surely with respect to y (Marin & Robert [2007]). This becomes clear as c is

independent of ξ, recalling that we are only interested in the proportionality (3.3). In

case c 6= 1, we call π(ξ) improper and proper otherwise.

In summary, while the use of non-informative priors might be necessary for unknown

parameter values, there needs to be a sufficient amount of observations in order to gain

valuable inference results. The term “sufficient amount” is generally hard to specify and

whenever possible the modelers expertise, information from related experiments or the

literature should guide the choice in prior selection. Moreover, the use of very distinct

priors can help weighting down the influence of the data in the posterior distribution

(Bernardo et al. [1994]), a situation possibly aspired for error prone observations. In

general we make use of independent prior distributions, i.e. π(ξ) =
∏n
i=1 π(ξi), for the

marginal density functions π(xi) of ξi. This, however, is not a necessity!

1The notion of non-informative priors is only vaguely defined in the literature. Essentially, the

influence of the prior distribution needs to be as small as possible (Marin & Robert [2007]). Therefore,

although there are other prior types with little influence on the posterior, we stick to the definition via

the indicator function.
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3.3 Bayesian parameter identifiability

The MAP of high dimensional dynamical systems is oftentimes the center of inter-

est when performing parameter inference. However, especially for non-informative

priors π(ξ) = 1S(ξ) this might inherit some issues as seen in the structural non-

identifiability Example 2.12. While for uni- or bivariate posterior distributions a

graphical visualization of the posterior density can help to identify these issues this

approach is not possible for higher dimensional systems. However, analogously to

Meeker & Escobar [1995], exchanging the squared error loss function (2.32) by twice

the negative logarithm −2 log(π(ξ|y)) of the posterior density function π(ξ|y) natu-

rally extends the identifiability analysis of Chapter 2.5.3 to the Bayesian paradigm:

We call a dynamical system identifiable with respect to the MAP or simply identifiable,

if for i = 1, . . . , n the confidence intervals [li, ui] (of the ith component of the esti-

mate ξ̂MAP ) defined by li := min{ξi|∃ ξ, s.t. 2 log(π(ξ̂MAP |y)) − 2 log(π(ξ|y)) < ∆α}
and ui := max{ξi|∃ ξ, s.t. 2 log(π(ξ̂MAP |y)) − 2 log(π(ξ|y)) < ∆α} (if existent and

−∞/ +∞ otherwise), is finite. With this, structural and practical identifiability can

also be defined as in Chapter 2.5.3. Note that the posterior distribution only needs to

be known up to a scaling constant as scaling constants cancel out in the differences of

the definitions of the li’s and ui’s. For Gaussian noise functions the Bayesian definition

of identifiability coincides with the definition in Chapter 2.5.3.

3.4 Bayes factors

We now turn to the issue of Bayesian model selection. Generally, statistical modeling

of any kind of data crucially depends on the modeler’s expertise in model construction.

Inferring parameter values based on the wrong model can have severe effects on the

outcome of the model’s predictions. Towards this end the task of model selection

has ever since been a very important step in the process of data analysis. A well

established approach to address this problem is the likelihood ratio test. For general

applications it is based on the ratio of the maximal likelihood value of a model with

restricted parameter space and the maximal likelihood value of the same model on

the full parameter space (Casella & Berger [2001]). Since the latter always performs
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at least as good as the former one, the test analyzes how much more likely the full

model compared to the restricted one is with respect to the data. However, the need

to restrict the parameter space limits this approach to nested models only, i.e. the

simpler model can be transformed into the more complex one by the introduction of

additional parameters. A more sophisticated test for non-nested models was established

by Vuong (Vuong [1989]). As the likelihood ratio test, the Vuong test is also based on

the likelihood ratio of two competing models, but additional corrects by a Kulback-

Leibler information criterion driven term. In any case, all of the approaches above

suffer from two major drawbacks: (i) they are based on two single maximally likely

values – one for each model – not taking into account any kind of uncertainty in the

parameters and, moreover, (ii) due to the maximality restriction the test statistic is

defined on the probability of extreme events, anticipating that the data produces events

at least as extreme as the tested ones.

The Bayesian way of model selection – the second strain in Bayesian model inference

– naturally circumvents these problems by taking into account full parameter distri-

butions rather than single maximal parameter values. In the following, we introduce

the concept of Bayesian model selection including a practical approach for comput-

ing the so-called Bayes factor, a statistic used for pairwise model comparison. A nice

comprehensive discussion about this topic is given in Kass & Raftery [1995].

As we have seen in Section 3.1, the posterior distribution π(ξ|y) contains the full

structural dependency of all parameters involved in the model. In Bayesian model

selection we simply extend π(ξ|y) by an additional model parameter, this is, given

a set of (possibly non-nested) models M1, . . . ,Mk with according parameter vectors

ξ1 ∈ Rn1 , . . . , ξk ∈ Rnk we consider the distribution defined by

π(ξi,Mi|y) =
Li(ξi|y)π(ξi,Mi)∑k

j=1

∫
Rnj Lj(ξj |y)π(ξj ,Mj) dξj

(3.8)

where Li(ξi|y) denotes the likelihood function and π(ξi,Mi) the joint prior density for

model Mi and parameter vector ξi. Clearly, conditioning Equation (3.8) on model Mi

gives the relation (3.3), where the proportionality is to be understood with respect to

the data and model.
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3. BAYESIAN MODEL INFERENCE

In the case of two models M1 and M2, we – similarly to classical hypothesis testing –

get the posterior odds ratio via integration over the corresponding parameter spaces:

π(M1|y)

π(M2|y)
=

∫
Rn1 π(ξ1,M1|y) dξ1∫
Rn2 π(ξ2,M2|y) dξ2

=

(
π(M1)

∫
Rn1 L1(ξ1|y)π(ξ1|M1) dξ1∑2

j=1 π(Mj)
∫
Rnj Lj(ξj |y)π(ξj |Mj) dξj

)

·

(
π(M2)

∫
Rn2 L2(ξ2|y)π(ξ2|M2) dξ2∑2

j=1 π(Mj)
∫
Rnj Lj(ξj |y)π(ξj |Mj) dξj

)−1

=
π(y|M1)

π(y|M2)

π(M1)

π(M2)
,

(3.9)

where

π(y|Mj) =

∫
Rnj

Lj(ξj |y)π(ξj |Mj) dξj = Eπ(ξj |Mj)[Lj(ξj |y)] (3.10)

(j = 1, 2) is the model evidence of model Mj defined in Equation (3.2). The expression

B12 :=
π(y|M1)

π(y|M2)
(3.11)

from Equation (3.9) is called Bayes factor of model M1 versus M2. We have to em-

phasize that contrary to Bayesian parameter inference the Bayes factor can not handle

improper prior distributions. This can be seen as follows: Assume (without loss of

generality) we are given the improper prior distributions π(ξ1|M1) for model M1. Let

π(y|M1) be the marginal distribution corresponding to model M1 and c > 0 an arbi-

trary constant. Then π∗(ξ1|M1) = c · π(ξ1|M1) is a valid prior distribution and

π∗(y|M1) =

∫
Rn1

L1(ξ1|y)π∗(ξ1|Mj) dξ1 = c · π(y|M1).

Hence, Bayes factors are not well defined for improper prior distributions as they can

be varied by arbitrary constants.

Typically we do not favor any model a priori. The prior odds ratio π(M1)/π(M2) is then

simply one and the Bayes factor coincides with the ratio of the posterior probabilities

of model M1 and M2. As Kass & Raftery [1995] pointed out, it is possible for nested

models to avoid specifying the prior density functions π(ξi,Mi) from Equation (3.8)

using the so-called Schwarz criterion

SC = log(π(y|ξ̂1,M1))− log(π(y|ξ̂2,M2))− 1

2
(n1 − n2) log(N)
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3.4 Bayes factors

where log is the natural logarithm, N the number of samples used to compute SC, ξ̂j

the MLE of model j, and nj the dimension of ξ̂j , respectively. For N →∞

SC − log(B12)

log(B12)
→ 0.

Hence, exp(SC) is an approximation of the Bayes factor B12. Although, the approxi-

mation is not very accurate even for large sample sizes N , a famous statistic derived

from the Schwarz criterion is the Bayesian information criterion (BIC). It is given by

BIC = −2SC. Harold Jeffreys established a widely used interpretation of the Bayes

factor in Jeffreys [1961]. He suggested to classify the evidence in favor of model M1 by

log10-half-scale units as:

log10(B12) B12 Evidence in favor of model M1

0 – 0.5 1 – 3.2 Not worth more than a bare mention
0.5 – 1.0 3.2 – 10 Substantial
1.0 – 1.5 10 – 32.6 Strong
1.5 – 2.0 32.6 – 100 Very strong
2.0 – ∞ 100 – ∞ Decisive

This grouping is known as Jeffreys’ scale of evidence. Certainly some applications chal-

lenge this classification (see e.g. Evett [1991]). Nevertheless, Jeffreys’ scale of evidence

is well established and widely used in the Bayesian community.

The Bayes factor has several advantages compared to classical odds ratio tests: Due

to its construction it naturally holds both the evidence in favor of model M1 and the

evidence in favor of model M2. The latter is simply given by

B21 =
π(y|M2)

π(y|M1)
=

1

B12

as we did not make any assumptions about the parameter space of model M1 and M2,

i.e. the Bayes factor is able to handle non-nested models. Furthermore, for k models

M1, . . . ,Mk with uniform model prior densities π(Mj) (j = 1, . . . , k) and Bayes factors

B1j =
π(y|M1)

π(y|Mj)

we have the posterior probability that an observation y originates from model Mi given

by (c.f. Kass & Raftery [1995])

π(Mi|y) =
Bi1

1 +
∑k

j=2Bj1
.
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3. BAYESIAN MODEL INFERENCE

A huge advantage of Bayes factors is their ability to naturally correct for overfitting

issues (Lodewyckx et al. [2011]; Myung & Pitt [1997]; Pitt et al. [2002]). Since we

marginalize rather than maximize with respect to the according parameter spaces, the

Bayes factor can compensate for areas that extraordinarily pander a specific model (see

Spiegelhalter & Smith [1982] as well as Jefferys & Berger [1992] and references therein).

Although there will never be any “certainty” we picked the “true” model, the process

of model selection is still an important issue and draws lots of interest. Naturally, there

has been extensive research on the computation of the marginal likelihood (see e.g.

Kass & Raftery [1995]; Lartillot & Philippe [2006]; Newton & Raftery [1994] or Friel

& Pettitt [2008]) in settings where no analytical solution is tractable. In the following

we give a brief overview about the most prominent approaches. All of them are based

on sampling – i.e. generating a number of realizations of– the parameter vector ξj of

model Mj .

3.4.1 The prior arithmetic mean estimate

The simplest approach to approximate a marginal likelihood π(y) – for reasons of

clarity we drop the model dependency for now – is based on drawing a total of T

samples ξ(1), . . . , ξ(T ) i.i.d.∼ π(ξ) from the prior distribution π(ξ). Equation (3.10) then

suggests

π(y) = Eπ(ξ)[L(ξ|y)] ≈ 1

T

T∑
j=1

L(ξ(j)|y), (3.12)

where L(ξ|y) denotes the likelihood function. The right hand side of Equation (3.12)

is known as the prior arithmetic mean estimate (Lartillot & Philippe [2006]). When

the number of samples tend to infinity the strong law of large numbers (almost surely)

guarantees convergence. However, in practical applications with complex and often

times spiky posterior distributions the prior arithmetic mean estimate can be very in-

efficient as many samples might fall in regions with comparatively low likelihood values

(Gamerman & Lopes [2006]). A large number of samples is needed for accurate results.

Especially in high-dimensional systems this issue aggravates. Thus, the application of

the prior arithmetic mean estimate can afford high computational power in order to

obtain acceptable results (Lewis [1994]).
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3.4 Bayes factors

3.4.2 The posterior harmonic mean estimate

Newton & Raftery [1994] suggested an alternative to the prior arithmetic mean esti-

mator: Instead of sampling from the prior distribution, they proposed to sample from

the posterior directly. Explicitly, for the samples ξ(1), . . . , ξ(T ) i.i.d.∼ π(ξ|y) from the

posterior distribution π(ξ|y), the posterior harmonic mean estimate is defined via the

right hand side of

π(y) ≈

 1

T

T∑
j=1

1

L(ξ(j)|y)

−1

(3.13)

where L(ξ|y) is the likelihood with respect to the observations y. To see the relation

in (3.13), we recall that the samples are drawn from the posterior distribution. Fur-

thermore, the expectation of the inverse of the likelihood function with respect to the

posterior distribution is given by

Eπ(ξ|y)

[
1

L(ξ|y)

]
=

∫
Rn

1

L(ξ|y)
π(ξ|y) dξ

=

∫
Rn

1

L(ξ|y)

L(ξ|y)π(ξ)

π(y)
dξ

=
1

π(y)

∫
Rn
π(ξ) dξ

=
1

π(y)
,

which leads directly to the approximation of Equation (3.13) (remember that all prior

distributions should be proper). The strong law of large numbers guarantees almost

sure convergence. Intuitively, this approach circumvents the aforementioned problem

of spiky likelihood functions as the samples are generated by means of this spiky dis-

tribution itself. However, the posterior harmonic mean estimate suffers severe variance

issues, which can be seen from the following simple example given by Neal [2008].

Example 3.1 (Neal [2008]). Suppose we are given the single data point y ∼ N(ξ, σ2
1)

with a posterior distribution π(ξ|y) for a parameter ξ ∈ R. We want to infer the

marginal likelihood π(y) taking the prior distribution ξ ∼ N(0, σ2
2) and assuming that

the variances σ2
1 and σ2

2 are known. This is a conjugate prior as we will see below. The

posterior density function is then for

σ :=

(
1

σ2
1

+
1

σ2
2

)− 1
2
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3. BAYESIAN MODEL INFERENCE

given by

π(ξ|y) =
1

π(y)

1√
2πσ1

exp

(
− 1

2σ2
1

(ξ − y)2

)
· 1√

2πσ2

exp

(
− 1

2σ2
2

ξ2

)
=

1

π(y)

1

2πσ1σ2
exp

(
−1

2

(
ξ2

σ2
2

+
ξ2

σ2
1

− 2ξ
y

σ2
1

+
y2

σ2
1

))
=
Z(y)

π(y)

1√
2πσ

exp

(
− 1

2σ2

(
ξ − yσ2

σ2
1

)2
) (3.14)

where

Z(y) =
σ√

2πσ1σ2

exp

(
−1

2

(
y2

σ2
1

− y2σ2

σ4
1

)2
)

=
1√

2π(σ2
1 + σ2

2)
exp

(
− 1

2(σ2
1 + σ2

2)
y2

)
.

(3.15)

The calculation yields two things: (i) Equation (3.14) shows that the posterior distribu-

tion for ξ given y is N
(
yσ2

σ2
1
, σ2
)

, which allows us to sample directly from the posterior;

(ii) Integrating both sides of Equation (3.14) over R yields Z(y) = π(y). According to

Equation (3.15) the true marginal likelihood for y can be computed via the probability

density function corresponding to N
(
0, σ2

1 + σ2
2,
)
.

Now, as we have inferred all relevant terms, let us assume

y = 1, σ2
1 = 1 and σ2

2 = 100.

For T = 106 random samples from the posterior N
(

100
101 ,

100
101

)
the estimated mean (in-

cluding one standard error) for the marginal likelihood based on R =1,000 runs in

Matlab is 0.0946±3.22 ·10−7. The harmonic mean constantly overestimates the “true”

value of π(y = 1) = 0.0395 more than twice. With increasing σ2
2 this gap increases.

The corresponding prior arithmetic mean estimate for T = 106 samples from the prior

N(0, 101) is 0.0395 ± 1.06 · 10−11 and approximates the “true” value extraordinarily

well.

Newton & Raftery [1994] also proposed a weighted combination of the prior arithmetic

mean estimator and posterior harmonic mean estimator called the stabilized harmonic

mean estimator. This helps to reduce the issues of the individual estimators.
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3.4 Bayes factors

3.4.3 Thermodynamic integration

Contrary to the two approaches described above we employ a method based on path

sampling (Gelman & Meng [1998]) in this thesis: The principle of thermodynamic inte-

gration for marginal likelihood estimation was introduced by Lartillot & Philippe [2006]

and Friel & Pettitt [2008] and applied to problems from systems biology by Calderhead

& Girolami [2009]. These methods are founded on the integral representation of the

natural logarithm of the marginal likelihood by means of the power posterior

πt(ξ|y) =
L(ξ|y)tπ(ξ)

πt(y)
, (3.16)

where t ∈ [0, 1] and for the prior π(ξ)

πt(y) =

∫
Rn

L(ξ|y)tπ(ξ) dξ. (3.17)

Note that the power posterior πt(ξ|y) is truly a probability density function. For t = 0

and t = 1 the marginal π0(y) is equal to one and π1(y) is the marginal likelihood; for

any other t, πt(y) is weighing the influence of the data y on the posterior πt(ξ|y) via

the influence of the likelihoods L(ξ|y)t. Taking the derivative of the logarithm of πt(y)

with respect to t yields

d

dt
log(πt(y)) =

1

πt(y)

d

dt
πt(y)

=
1

πt(y)

∫
Rn

d

dt
L(ξ|y)tπ(ξ) dξ

=

∫
Rn

log(L(ξ|y))
L(ξ|y)tπ(ξ)

πt(y)
dξ

= Eπt(ξ|y)[log(L(ξ|y))].

The thermodynamic integral is then given by integration of t on [0, 1] as

log(π(y)) =

∫ 1

0
Eπt(ξ|y)[log(L(ξ|y))] dt. (3.18)

This approach tackles the problem of spiky likelihoods by considering a path (from

0 to 1) that gradually puts more and more weight on the likelihood function. An

illustrative example for the two-dimensional posterior distribution of Figure 1.1 of

the introduction (depicting the k1-k6 marginalized posterior distribution of the JAK1-

STAT3 model (7.1)) is shown in Figure 3.1. Unfortunately, Equation (3.18) can only
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t=0	
  

t=0.25	
  

t=0.5	
  

t=0.75	
  

t=1	
  

t=0.1	
  

Figure 3.1: Example path for thermodynamic integration based on the posterior distri-

bution of the JAK1-STAT3 model (7.1) introduced in Chapter 7 marginalized on the k1

and k6 dimension.
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3.4 Bayes factors

be solved analytically in the most simplest situations. In general log(π(y)) is ob-

tained by numerical integration using a finite number of evaluations between t = 0 and

t = 1 applying the trapezium rule (Friel & Pettitt [2008]). Using the discretization

0 = t0 < t1 < . . . < tT = 1 Calderhead & Girolami [2009] have shown that

log(π(y)) =
1

2

T−1∑
i=0

(ti+1 − ti)
(
Eπti+1 (ξ|y)[log(L(ξ|y))] + Eπti (ξ|y)[log(L(ξ|y))]

)
+

1

2

T−1∑
i=0

(
KL(πti(ξ|y)||πti+1(ξ|y))−KL(πti+1(ξ|y)||πti(ξ|y))

) (3.19)

where

KL(πti(ξ|y)||πti+1(ξ|y)) =

∫
Rn
πti(ξ|y) log

(
πti(ξ|y)

πti+1(ξ|y)

)
dξ

is the Kullback-Leibler divergence between πti(ξ|y) and πti+1(ξ|y) (Kullback & Leibler

[1951]). It is non-negative and can be seen as measure for the asymmetric difference

between the two distributions as in the limit KL(πti(ξ|y)||πti+1(ξ|y)) → 0 whenever

ti → ti+1. Equation (3.19) can easily be obtained based on the relation

L(ξ|y)ti+1

L(ξ|y)ti
πti(ξ|y) =

L(ξ|y)ti+1π(ξ)

L(ξ|y)tiπ(ξ)
· L(ξ|y)tiπ(ξ)

πti(y)
=
πti+1(y)

πti(y)
πti+1(ξ|y). (3.20)

With t ∈ [0, 1] we get

log(π(y)) = log(π1(y))− log(π0(y)) =
T−1∑
i=0

log

(
πti+1(y)

πti(y)

)

=

T−1∑
i=0

[∫
Rn

log

(
πti+1(y)

πti(y)
πti+1(ξ|y)

)
πt(ξ|y) dξ −

∫
Rn

log(πti+1(ξ|y))πt(ξ|y) dξ

]

=
T−1∑
i=0

[∫
Rn

log

(
L(ξ|y)ti+1

L(ξ|y)ti
πti(ξ|y)

)
πt(ξ|y) dξ −

∫
Rn

log(πti+1(ξ|y))πt(ξ|y) dξ

]

=
T−1∑
i=0

[∫
Rn

log

(
L(ξ|y)ti+1

L(ξ|y)ti

)
πt(ξ|y) dξ +

∫
Rn

log

(
πti(ξ|y)

πti+1(ξ|y)

)
πt(ξ|y) dξ

]
.

Applying the trapezium rule for t = ti and t = ti+1 yields Equation (3.19). Naturally,

this leads to the approximation

log π((y)) ≈
T−1∑
i=0

1

2
(ti+1−ti)

(
Eπti+1 (ξ|y)[log(L(ξ|y))] + Eπti (ξ|y)[log(L(ξ|y))]

)
, (3.21)
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as the second expression involving the Kullback-Leibler divergence introduces small er-

rors for πti+1 ≈ πti only. This approximation coincides with the one in Friel & Pettitt

[2008]. The Kullback-Leibler term can be seen as bias for discretely approximating

the integral in (3.18). Taking the expectation in (3.21) at each evaluation index ti is

adding to the numerical stability of the marginal likelihood estimate. Nevertheless, for

estimating the expectation Eπt(ξ|y)[log(L(ξ|y))] at an arbitrary index t, a series of sam-

ples drawn from the power posterior πt(ξ|y) is necessary. This makes thermodynamic

integration computationally expensive. Hence, the discretization schedule of the unit

interval is of great relevance in order to quickly obtain numerically stable estimations

for the marginal likelihood: Friel & Pettitt [2008] propose a power law like division of

the unit interval via

ti = (i/T )c (3.22)

(i = 0, . . . , T ) where T ∈ N and c > 0. Calderhead & Girolami [2009] then show that

this scheme also minimizes the Kullback-Leibler bias for linear regression models in

the approximation of the logarithm of the marginal likelihood. The application to dy-

namical systems yielded good results in Calderhead & Girolami [2009] which is why we

mostly use their proposals of T = 30 and c = 5 in this thesis. Although thermodynamic

integration is computationally more expensive than the methods in Chapters 3.4.1 and

3.4.2, it performs well on most statistical models including differential equations based

systems (Calderhead & Girolami [2009]).

3.4.4 Example: A Gaussian mixture model

We now apply the techniques introduced above to a two component Gaussian mix-

ture model. This rather simple setting is analytically tractable and we are able to

depict and practically verify the different concepts. Suppose we are given observa-

tions y = {y1, . . . , ym} with y1, . . . , ym ∈ R, such that y1, . . . , ym1

i.i.d.∼ N(µ1, σ
2) and

ym1+1, . . . , ym
i.i.d.∼ N(µ2, σ

2). For known variance σ2 our two competing models are

defined by

(i) a model with µ := µ1 = µ2, designated M1. This essentially is a single univariate

normal distribution model with y1, . . . , ym
i.i.d.∼ N(µ, σ2) for the mean µ = µ1 = µ2

and standard deviation σ.

66



3.4 Bayes factors

(ii) a model with possibly µ1 6= µ2, designated M2,

This leaves us with one free parameter µ for model M1 and two free parameters µ1 and

µ2 for model M2. The prior distributions are chosen to be conjugate with µ = µ1 =

µ2 ∼ N(0, σ2) in M1 and µ1 ∼ N(2, σ2) and µ2 ∼ N(−2, σ2) in M2. The likelihood for

both models is

L(µ1, µ2|y) =

(
1√
2πσ

)m
exp

− 1

2σ2

m1∑
i=1

(yi − µ1)2 +
m∑

j=m1+1

(yj − µ2)2


yielding after some simple calculations (Appendix C.1 and C.2) the posterior distribu-

tions

(i) N
(∑m

i=1 yi
m+1 , σ2

m+1

)
for model M1,

(ii) N2

 2+
∑m1
i=1 yi

m1+1

−2+
∑m
j=m1+1 yj

m−m1+1

 ,

(
σ2

m1+1 0

0 σ2

m−m1+1

) for model M2.

In order to compute the Bayes factor, we need the marginal likelihoods π(y|M1) and

π(y|M2). As computed in Appendix C.1 for ȳ = 1
m

∑m
i=1 yi:

π(y|M1) =
1√
m+ 1

(
1√
2πσ

)m
exp

(
1

2σ2

(
m2ȳ2

m+ 1
−

m∑
i=1

y2
i

))
.

Similarly, (c.f. Appendix C.2) we have for ȳ1 = 1
m1

∑m1
i=1 yi and ȳ2 = 1

m2

∑m
j=m1+1 yj ,

where m2 = m−m1

π(y|M2) =
1√

(m1 + 1)(m2 + 1)

(
1√
2πσ

)m
· exp

(
− 1

2σ2

(
m∑
i=1

y2
i + 8− (m1ȳ1 + 2)2

m1 + 1
− (m2ȳ2 − 2)2

m2 + 1

))
.

The Bayes factor B21 for model M2 versus model M1 is hence

B21 =
π(y|M2)

π(y|M1)
(3.23)

=

√
m+ 1√

m1 + 1
√
m2 + 1

exp

(
− 1

2σ2

(
8 +

(mȳ)2

m+ 1
− (m1ȳ1 + 2)2

m1 + 1
− (m2ȳ2 − 2)2

m2 + 1

))
.

Recall that the Bayes factor for M1 versus M2 is simply B−1
12 . For the use in ther-

modynamic integration we exemplary compute the expected value of the log-likelihood
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logL(µ|y) of model M1 under the power posterior πt(µ|y,M1). As shown in Appendix

C.3 we have

Eπt(µ|y,M1) (logL(µ|y)) =

∫
R

logL(µ|y)
L(µ, |y)tπ(µ)∫

RL(µ, |y)tπ(µ) dµ
dµ

= − 1

2σ2

{(
m∑
i=1

(
y2
i + 2σ2 log(

√
2πσ)

))

+
mσ2 − 2ȳ2m2t

mt+ 1
+

m3ȳ2t2

(mt+ 1)2

}
.

The computations for model M2 are very similar, but a lot more cumbersome. They

hold no more insights and we leave this to the considerate reader.

Now, setting σ2 = 1 and sampling ten observations

y1, . . . , y5
i.i.d.∼ N(1, 12) and y6, . . . , y10

i.i.d.∼ N(−1, 12)

the prior arithmetic mean estimate (including one standard error) of the Bayes factor

B21 based on ten runs with 100,000 samples per model each was 77.68 ± 0.11. This

is close to the true value of 77.47 computed via Equation (3.23). On the other hand,

the corresponding posterior harmonic mean estimate (211.50± 0.08) overestimated the

true value quite strongly. Using the power law division ti = (i/T )c with c = 5 and

T = 25, we also computed B21 applying thermodynamic integration. At each ti, we

used 4,000 samples to estimate Eπt(·|y,·) (logL(·|y)), again resulting in a total of 100,000

samples per model for the approximation of B21. Thermodynamic integration yielded

the closest result of 77.34±0.16. The average expected value of Eπt(µ|y,M1) (logL(µ|y)),

−25.40, was very closely approximated by −24.77± 10−2.
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4

Markov Chain Monte Carlo

(MCMC) methods

We have seen in the previous chapter that sampling from some posterior distribution

π(ξ|y) lies at the core of Bayesian inference. Up to this point, we were able to directly

draw from π(ξ|y) using e.g. conjugate prior distributions. However, in most appli-

cations π(ξ|y) is not a standard sampling distribution and we have to turn to more

advanced techniques. A solution to this problem is given by Markov Chain Monte

Carlo (MCMC) methods: As the name implies, MCMC methods attempt to generate

a Markov chain directly drawing from some complex posterior distribution. With the

advent of MCMC methods Bayesian inference has skyrocketed in various fields of sci-

ence and is likely to continue spreading in the future. One of the most successful and

influential (Beichl & Sullivan [2000]; Wilkinson [2006]) algorithms was developed by

Metropolis and Hastings (Hastings [1970]; Metropolis et al. [1953]). In the following

we first introduce the basic version of the Metropolis-Hasting (MH) algorithm. Subse-

quently, Chapter 4.5 introduces its direct application to model selection. Interestingly,

the MH algorithm can also be applied for optimization problems via simulated an-

nealing (Chapter 4.6). Finally, we address the issues of dependency and convergence

diagnostics of the Markov chains generated in Chapters 4.2 to 4.4.
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4. MARKOV CHAIN MONTE CARLO (MCMC) METHODS

4.1 The Metropolis-Hastings (MH) algorithm

Historically the Metropolis-Hastings algorithm was introduced by Metropolis and Hast-

ings in Metropolis et al. [1953] and Hastings [1970] for integration of complex functions

by random sampling: The integral ∫ b

a
h(ξ) dξ

for some function h : Rn −→ R can be computed by decomposing h(ξ) into the product

f(ξ)π(ξ), where f : Rn −→ R is a function defined over (a, b) and π(ξ) a probability

density function on (a, b). The integral is then∫ b

a
h(ξ) dξ =

∫ b

a
f(ξ)π(ξ) dξ = Eπ(ξ)[h(ξ)].

Now, given a number of samples ξ(0), . . . , ξ(T ) of π(ξ), Monte Carlo integration approx-

imates ∫ b

a
h(ξ) dξ = Eπ(ξ)[h(ξ)] ≈ 1

T

T∑
i=1

f(ξ(i)).

We already applied this principle for the prior harmonic mean estimate (see Equation

(3.13)), where f was the likelihood function. For sampling from the density function

π(ξ), Metropolis and Hastings used the algorithm depicted in Algorithm 2. Here, the

realization {ξ(j)}j=0,...,T of a Markov chain {X(t)}t∈N0 is sampled as follows: In each

iteration the algorithm generates a proposal ξp according to some transition density

function q(ξ|ξ(j)) that (possibly) depends on the current element ξ(j) of the Markov

chain. It is accepted with the Metropolis-Hastings acceptance probability

α(ξp|ξ(j)) = min

{
π(ξp)q(ξ(j)|ξp)
π(ξ(j))q(ξp|ξ(j))

, 1

}
. (4.1)

If ξp is accepted, the Markov chain element ξ(j+1) is defined by ξ(j+1) = ξp and by

ξ(j+1) = ξ(j) otherwise. The transition density function q(ξ|ξ′) is also called proposal

function and, like the density function π(ξ), only needs to be explicitly available up to

a multiplicative constant independent of ξ′; this is due to the fact that these constants

cancel out in the Metropolis-Hastings acceptance probability. We call the percentage

of accepted MH steps the acceptance rate of a realization ξ(0), . . . , ξ(T ).
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4.1 The Metropolis-Hastings (MH) algorithm

Algorithm 2: The Metropolis-Hastings algorithm

Input: Initial value ξ(0) ∈ Rn, (transition) density function q(ξ|ξ′) on Rn such that q(ξ|ξ(0))
exists, arbitrary target density function π : Rn −→ R, and chain length T ∈ N.

Output: Markov chain realization {ξ(j)}j=0,...,T .

for j ← 0 to T − 1 do

Generate proposal ξp ∼ q(ξ|ξ(j))
Set

ξ(j+1) ←

ξp with probability α(ξp|ξ(j)),

ξ(j) with probability 1− α(ξp|ξ(j)),

where

α(ξp|ξ(j)) = min

{
π(ξp)q(ξ(j)|ξp)
π(ξ(j))q(ξp|ξ(j))

, 1

}
.

In Bayesian model inference we use the MH algorithm for sampling from complex

posterior distributions π(ξ|y). Since the algorithm is quite general, we impose the

regularity condition q(ξ|ξ′) > 0 for all ξ, ξ′ in the support of π(ξ|y) in order to avoid

convergence issues. This means the proposal function q(ξ|ξ′) allows to proceed from

any point to any other point on the support of π(ξ|y).

Theorem 4.1 (Convergence of the MH algorithm ). Let {X(t)}t∈N0 be a Markov chain

governed by Algorithm 2 with target density function π(ξ). Suppose the proposal func-

tion q(ξ|ξ′) fulfills the regularity condition. Then π is the equilibrium distribution of

{X(t)}t∈N0.

Proof. According to Theorem 2.5 we have to show that {X(t)}t∈N0 is (i) π-irreducible,

(ii) Harris recurrent and (iii) aperiodic with (iv) invariant distribution π.

(i) Due to the regularity condition for q, (i) is naturally satisfied.

(ii) According to Lemma 7.3 in Robert & Casella [2004] π-irreducibility of {X(t)}t∈N0

also implies Harris recurrence (a proof involves further theory on bounded har-

monic functions and tail events, which, however, is beyond the scope of this thesis.

Nevertheless, the interested reader may be referred to Robert & Casella [2004] or

Nummelin [2004]).
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4. MARKOV CHAIN MONTE CARLO (MCMC) METHODS

(iii) The aperiodicity condition follows as for each t ∈ N, X(t) = X(t+1) with positive

probability, this is, the Markov chain can stay in place in every step.

(iv) For proving invariance, we show that the kernel corresponding to {X(t)}t∈N0 ful-

fills the detailed balance condition: The transition kernel density function associ-

ated with {X(t)}t∈N0 is given by

k(ξ′|ξ) = α(ξ′|ξ)q(ξ′|ξ) + r(ξ)1ξ(ξ
′),

where for the the support of S of π, r(ξ) = 1 −
∫
S q(ξ

′|ξ) dξ′, as introduced in

Chapter 2.3. Clearly,

r(ξ)1ξ(ξ
′)p(ξ) = r(ξ′)1ξ′(ξ)p(ξ′)

for any two realizations ξ and ξ′ of X(t) and X(t+1) (t ∈ N0). Furthermore,

without loss of generality let α(ξ′|ξ) < 1 (while the case α(ξ′|ξ) = 1 is trivial,

exchanged roles of ξ and ξ′ yield the case α(ξ|ξ′) < 1). Then

α(ξ′|ξ) =
π(ξ′)q(ξ|ξ′)
π(ξ)q(ξ′|ξ)

and α(ξ|ξ′) = 1.

Hence,

α(ξ′|ξ)q(ξ′|ξ)π(ξ) =
π(ξ′)q(ξ|ξ′)
π(ξ)q(ξ′|ξ)

q(ξ′|ξ)π(ξ)

= q(ξ|ξ′)π(ξ′)

= α(ξ|ξ′)q(ξ|ξ′)π(ξ′)

and k(ξ′|ξ) satisfies the detailed balance condition. Theorem 2.4 now provides

that π is an invariant distribution for the Markov chain, which finalizes the proof.

A very popular choice for the proposal density q(ξ|ξ′) is the n-dimensional normal

distribution Nn(ξ′,Σ) with mean ξ′ and covariance matrix Σ. In each MCMC step

a new proposal is generated based on the current sample ξ(c) as ξp = ξ(c) + ε, where

ε ∼ Nn(0,Σ). We refer to this scheme as Random Walk Metropolis-Hastings (RWMH)

algorithm. In case there is no knowledge about the covariance structure of the pa-

rameters, Σ = kRW In is typically chosen, where kRW is the step-size tuning or scaling

parameter and In the n-dimensional identity matrix. If the proposal function in each it-

eration is independent of the current sample, i.e. if q(ξ|ξ′) = q(ξ), the sampling scheme
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Figure 4.1: (a) Realization of a Markov chain generated by the random walk proposal

function q1; (b) corresponding histogram for the samples in (a) and “true” posterior density.

(c) Realization of a Markov chain generated by the independence chain proposal function

q2; (d) corresponding histogram for the samples in (c) and “true” posterior density.

is called an Independence chain Metropolis-Hastings (IMH) algorithm. There are gen-

erally no limitations regarding the choice of q as long as it is positive on the support of

the posterior distribution π(ξ|y). Its choice however is very crucial for the performance

of the algorithm: An efficient MH algorithm shows high acceptance rates for the pro-

posed samples at simultaneously low autocorrelation between generated Markov chain

elements (see Chapter 4.3). Especially in high dimensions this is hard to attain, because

small update step sizes result in high acceptance rates, but also in highly correlated

Markov chain samples and vice versa.

Example 4.1 (Mean of a normal distribution). Suppose we want to generate the real-

ization of a Markov chain from the posterior distribution of the one-component model

M1 of Chapter 3.4.4 using the MH algorithm with (i) a random walk proposal func-

tion q1 and (ii) an independence proposal function q2. Given the i.i.d. observations

y1, . . . , y10 ∼ N(µ = 0, 12) and the prior distribution N(0, 12) for the parameter µ the

posterior distribution is then given by N
(∑10

i=1 yi
11 , 1

11

)
(Chapter 3.4.4). Starting at

ξ(0) = 0.5 we generate the proposal ξp based on the current Markov chain sample ξ(c)

as

ξp ∼ N(ξ(c), 0.52) in case of q1 and ξp ∼ N(1, 12) in case of q2.

Figures 4.1(a) and 4.1(c) hold 1,000 realizations for q1 and q2, respectively. The

according histograms of these realizations as well as the “true” posterior distribution

and depicted in Figures 4.1(b) and 4.1(d). Note that our samples are no independent

realizations of the posterior distribution as the Markov chain inherits some intrinsic

dependency.
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4. MARKOV CHAIN MONTE CARLO (MCMC) METHODS

4.2 Independent identically distributed samples from a

Markov chain

From a general point of view, we try to draw i.i.d. samples from a density π by means

of a Markov chain {X(t)}t∈N0 . At first sight, this seems to be a conflicting goal as any

realization of {X(t)}t∈N0 can at best only approximate π and generating independent

samples based on a dependent process seems unintuitive. However, in order to address

the dependency issue we can make use of the limited memory of the Markov chain

in combination with the so-called Chapman-Kolmogorov equations (see Papoulis et al.

[1965] for a proof):

Lemma 4.1 (Chapman-Kolmogorov equations). Suppose {X(t)}t∈N0 is a Markov chain

on a probability space (Ω,F, P ) with values in a measurable space (E,E). Suppose

further A ∈ E, x ∈ E and km(A|x) denotes the m-step transition kernel corresponding

to {X(t)}t∈N0. It holds for every (m1,m2) ∈ N2

km1+m2(A|x) =

∫
E
km2(A|y)km1(dy|x). (4.2)

This means in order to get from x to A in m1 + m2 steps, we need to pass through

some y on the mth
2 step. Thus, for the realization of a Markov chain {x(j)}j∈{0,...,T}

and any two natural numbers i′, i with 0 < i ≤ T

ki
′
(A|x(i)) ≤

∫
E
ki
′
(A|y)k(dy|x(i−1)) = ki

′+1(A|x(i−1))

The chain in some sense “loses” its memory on the states visited a long time back in

the past. Therefore, taking every ith sample only, provides more or less independent

samples from the distribution π. How to infer i is derived in Chapter 4.3 with the help

of the autocorrelation function, a statistic commonly used for analyzing time series data

in the field of signal processing.

As far as the convergence of a Markov chain to a limiting distribution π is concerned, we

need to keep in mind that computational methods are always discrete due to calculation

accuracy. Thus, all we can hope for solving a continuous problem using a computational

approach is a good approximation of the problem at hand. Recalling that we are dealing

with dependent Markov chains, we nevertheless want to start the sampling procedure
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in an area where π possesses a considerable amount of mass. This can e.g. be achieved

using the simulated annealing algorithm introduced in Chapter 4.6 or the convergence

statistics of Chapter 4.4.

4.3 A measure for independence

We now turn to the problem of determining the right amount of thinning in order to

resolve the dependency issue of a Markov chain. For the rest of this chapter, we assume

that the first and second moment of the posterior distribution π(·|·) exist. To introduce

the basic concept of thinning, we for now assume that the elements of the following

random processes are univariate.

Definition 4.1 (Autocorrelation and autocovariance). Let {X(t)}t∈N0 be a Markov

chain. The autocovariance is defined as function

γ : N0 × N0 −→ R, (s, t) 7→ E[(X(t) − µt)(X(s) − µs)],

where µt and µs denote the means of X(t) and X(s). If furthermore {X(t)}t∈N0 is

non-Dirac, i.e. for all t the random vector X(t) is not constant (we exclude random

varibles with Dirac distribution and therefore standard deviation 0), the autocorrelation

is defined as

ρ : N0 × N0 −→ R, (s, t) 7→ E[(X(t) − µt)(X(s) − µs)]
σtσs

,

where σt and σs are the respective standard deviations of X(t) and X(s).

The autocovariance takes on values in [−∞,+∞] and the autocorrelation in [−1, 1],

similar to the covariance and correlation statistics. Our goal is to generate samples

from the probability density function π(·|·) based on a Markov chain {X(t)}t∈N0 . Here,

{X(t)}t∈N0 needs to be a stationary stochastic process. This means X(t) is independent

of the index t and

µ := E[X(t)] = µt = µs = E[X(s)]
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4. MARKOV CHAIN MONTE CARLO (MCMC) METHODS

for all t, s ∈ N0. In this setting, we somewhat abuse the notation of the autocorrelation

and autocovariance above and write

γ(t, s) = E[(X(t) − µt)(X(s) − µs)] = E[(X(t) − µ)(X(s) − µ)]

= E[(X(t) − µ)(X(t+τ) − µ)] = γ(τ),

and also

ρ(t, s) =
E[(X(t) − µt)(X(s) − µs)]

σtσs
=

E[(X(t) − µ)(X(s) − µ)]

σ2

=
E[(X(t) − µ)(X(t+τ) − µ)]

σ2
= ρ(τ),

for τ = s− t and σ2 = σ2
t = σ2

s .

The autocorrelation describes the correlation between all possible pairs (X(t), X(s)) in

the Markov chain. This definition also includes negative lags τ < 0, which will not be

of further interest to us, since γ and ρ are clearly symmetric, this is,

γ(τ) = γ(−τ) and ρ(τ) = ρ(−τ).

We now determine the thinning rate r for a realization {ξ(t)}t=1,...,T of the Markov chain.

More precisely, we want to infer the parameter r, such that the chain {ξ(t′)}t′∈J with

J = {0, r, 2r, . . . , bTr c·r} has a very low autocorrelation value for all lags τ 6= 0 (compare

Neal [1993]). Note that ρ(τ = 0) = 1. For estimating r only very few approaches exist.

For one, visual inspection of the sample autocorrelation function of the Markov chain

{ξ(t)}t can help to determine the size of r. A sharp decrease in all dimensions should

here be obtained within the first few lags after thinning. A widely used estimate for r,

the so-called INEFficiency Factor (INEFF), is also based on autocorrelation functions

(Bartlett [1966]; Kass [1993]; Kass et al. [1998]):

Lemma 4.2 (Inefficiency factor (INEFF)). For the realization of a stationary Markov

chain {ξ(t)}t∈{1,...,T} and the autocorrelation function ρ(τ) we can consider samples that

are at least

1 + 2

T∑
τ=1

(
1− τ

T + 1

)
ρ(τ)

indices apart as independent.
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Proof. The idea is to monitor the effect of thinning on the expected variance of ξ :=

{ξ(t)}t. For the expected mean

ξ̄ =
1

T + 1

T∑
t=0

ξ(t), (4.3)

the law of large numbers guarantees ξ̄ −→ E[ξ] almost surely for T → ∞. Now, if the

elements of the chain were pairwise independent, we would get the well-known result

Var[ξ̄] = Var

[
1

T + 1

T∑
t=0

ξ(t)

]
=

1

(T + 1)2

T∑
t=0

Var
[
ξ(t)
]

=
σ2

T + 1
.

Due to the autocorrelation in the chain the variance of the estimator ξ̄ is given by

Var[ξ̄] = E[(ξ̄ − E[ξ])2]

(4.3)
= E

( 1

T + 1

T∑
t=0

(ξ(t) − E[ξ])

)2


=
1

(T + 1)2

T∑
t,t′=0

E
[
(ξ(t) − E[ξ])(ξ(t′) − E[ξ])

]

=
1

(T + 1)2

T∑
t,t′=0

γ(t′ − t)

=
1

(T + 1)2

 ∑
−T≤τ≤T

(γ(τ) (T + 1− |τ |)) + (T + 1)γ(0)


=

1

T + 1

∑
−T ≤ τ ≤ T

τ 6= 0

(
1− |τ |

T + 1

)
γ(τ) +

σ2

T + 1

=
σ2

T + 1
·

(
1 + 2

T∑
τ=1

(
1− τ

T + 1

)
ρ(τ)

)
,

which proofs the claim.

Generally, the autocorrelation function is not known explicitly and we have to use the

sample autocorrelation function

ρ̂(τ) =
1

(T + 1− τ)σ̂2

T−τ∑
j=0

(ξ(j) − ξ̄)(ξ(j+τ) − ξ̄)
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as estimator for ρ(τ) instead. Here, σ̂2 = 1
T

∑T
j=0(ξ(j) − ξ̄)2 denotes the expected

variance. For an n-dimensional Markov chain we compute the sample autocorrelation

function ρ̂i(τ) along each dimension i and estimate the INEFF by

r̂ := max
i=1,...,n

{(
1 + 2

T∑
τ=1

(
1− τ

T + 1

)
ρ̂i(τ)

)}
.

A related, frequently used statistic is the Effective Sampling Size (ESS) defined by

ESS = T/r̂.

4.4 Convergence to the stationary distribution

Another important issue for sampling from a Markov chain is its starting value ξ(0).

Choosing ξ(0) arbitrarily can lead to convergence issues as can be seen in the following

simple example:

Example 4.2 (Sampling from a one dimensional normal distribution). Say we want to

generate samples from the univariate standard normal distribution N(0, 12) using a

simple random walk Metropolis-Hastings sampler. We compare the convergence of

the chain to N(0, 12) taking ξ(0) = 0.1 and ξ(0) = 20 as initial values. In both cases

we tune the step-size of the Metropolis-Hastings algorithm to 2.4, which is optimal

for convergence as shown by Gelman et al. [1996], i.e. the Metropolis-Hastings update

function is given by ξp ∼ N(x(c), 2.42). Our quality measure is to approximate the true

mean µ = 0 and the standard deviation σ = 1 within an [−0.05, 0.05] and [0.95, 1.05]

error bound, respectively. Each of the 100 runs is thinned by computing the INEFF.

While starting at ξ(0) = 0.1 needs in average 137 steps to converge, starting at ξ(0) = 20

takes 7,257 steps. This is more than 50 times as much as for ξ(0) = 0.1. The reason

for this behavior is the sometime slow proceeding of the Markov chain towards regions

with high mass in the probability mass function.

In the following we introduce convergence statistics in order to remedy this effect. These

can be split into two classes: While the first class is based on multiple chains, i.e. a

set of Markov chains is run in parallel, generally starting at different initial values, the

second class is based on a single chain. Both determine the number of samples to be

removed before we can consider the Markov chain to be stationary. This limit is called

burn-in period of the Markov chain.
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We first consider one of the most prominent single chain methods: The Geweke test

(Geweke [1992]) splits the realization of a Markov chain {ξ(j)}j=0,...,T into two distinct

subsamples. It generally takes the first 10% and last 50% of the samples. For a station-

ary Markov chain the mean of these parts should be approximately equal. Therefore,

in order to remove the burn-in period of {ξ(j)}j=0,...,T a z-score can be used, i.e. for

given z0 (generally z0 = 2 is chosen) we monitor the number of samples m, such that

for am, bm ∈ N with am + bm +m ≤ T∣∣∣∣∣ ξ̄am − ξ̄bm√
σ̂am + σ̂bm

∣∣∣∣∣ < z0

where | · | denotes the absolute value, σ̂· the according expected variances, and ξ̄am =

1
am

∑m+am
j=m+1 ξ

(j) and ξ̄bm = 1
bm

∑m+T
j=m+T−bm+1 ξ

(j). Here, the natural number am is the

index corresponding to the first 10% of the reduced Markov chain {ξ(j)}j=m,...,T , bm

the index corresponding to the last 50% of this chain.

Let us now turn to the most prominent multiple chains method: The Gelman-Rubin

statistic R̂ (Brooks & Gelman [1998]; Gelman & Rubin [1992]) compares the variances

within each chain to the variance between the chains. For a stationary Markov chain,

these two statistics should coincide. More precisely, suppose we are given L realizations

{ξ(j)
l }j=0,...,T of the Markov chain {X(t)}t∈N starting at different initial values ξ

(0)
l

(l = 1, . . . , L). We monitor the number of samples m, such that for the between-chain

variance B

B(m) =
T −m
L− 1

L∑
l=1

(ξ̄l(m)− ξ̄(m))2

where

ξ̄l(m) =
1

T −m

T∑
j=m+1

ξ
(j)
l and ξ̄(m) =

1

L

L∑
l=1

ξ̄l(m)

and the within-chain variance W

W (m) =
1

L

L∑
l=1

σ̂2
l (m)

where

σ̂2
l (m) =

1

T −m− 1

L∑
j=m+1

(ξ
(j)
l − ξ̄l(m))2
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the Gelman-Rubin statistic

R̂(m) =

√
σ̂(m)

W (m)

is close to one (generally a limit of 1.2 is chosen), where

σ̂(m) = (1− 1/(T −m))W (m) +B(m)/(T −m).

The Gelman-Rubin statistic can also be computed using a single realization {ξ(j)}j=0,...,T

only. For this, we split apart {ξ(j)}j=0,...,T into a number of subsamples of equal length.

The subsamples are then considered as parallel chains and the Gelman-Rubin statistic

is computed as described above. This raises the question, whether a single chain or

multiple chains starting at different initial values should be used for posterior infer-

ence? In this thesis we will follow Geyer [1992] who argues that a single longer chain is

superior to multiple chain approaches as various smaller chains may not reach conver-

gence during the sampling process. We therefore do not consider multi-chain MCMC

methods any further.

4.5 Reversible jump MCMC

We have seen in Chapter 3.4 how to apply Bayesian methods for the purpose of model

selection using the posterior odds ratio π(M1|y)
π(M2|y) for two competing models M1 and M2

based on the observations y. Given a series of models M1, . . . ,Mk, pairwise application

of the posterior odds ratio can be used in order to infer the best model for y. For each

Mi the MH algorithm from Chapter 4.1 may be applied for inference of the according

posterior distribution. The sampling is thereby restricted on the specific parameter

space Ξi of Mi. Naturally, there has been extensive research in order to simultaneously

cover the issue of model selection and model inference (see e.g. Geyer & Møller [1994];

Ripley [1977]). This is of importance, if the number of models is denumerable, as could

be the case for Gaussian mixture models (compare Chapter 3.4.4) with an unknown

number of components, or for the application in model averaging (see e.g. Hastie et al.

[2009] Chapter 8.8). However, a general formalization has only rather recently been

presented by Green [1995]:
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Suppose we are given a series of models {Mi}i∈I on some discrete index set I with

according proper parameter prior distributions π(ξi|Mi) on the parameter space Ξi for

model Mi and a model prior distribution π(Mi) holding the probability distribution for

model Mi. Then the joint prior for the parameter ξi in model Mi on the parameter

space

Ξ =
⋃
i

{i} × Ξi

is given by

π(ξi,Mi) = π(ξi|Mi)π(Mi)

with respective Lebesgue measure induced by π(ξi|Mi). For the jump between two

parameter spaces Ξi and Ξj , Green’s approach is based on the bijective identification

of artificial extensions of these spaces. More precisely, we have to define a series of

artificial sets {Uij}ij∈I×I together with deterministic bijections

Tij : Ξi × Uij −→ Ξj × Uji

(ξi,uij) 7−→ (ξj ,uji).

This is known as dimension matching condition. Note that Tij 6= T−1
ji is possible, albeit

not common. In general, a move from ξi ∈ Ξi to some ξj ∈ Ξj is proposed by sampling

ui ∼ gi(ui) according to some proper proposal function gi(·) and setting

(ξj ,uj) = Tij(ξi,ui).

The reverse move is given by sampling uj ∼ gj(uj) for some proper proposal func-

tion gj(·) such that (ξi,ui) = T−1
ij (ξj ,uj). Green [1995] showed that the according

acceptance probability for the move from Mi to Mj is then

α(j, ξj |i, ξi) = min

{
Lj(ξj |y)π(ξj , j)pjigj(uj)

Li(ξi|y)π(ξi, i)pijgi(ui)

∣∣∣∣∂Tij(ξi,ui)∂(ξi,ui)

∣∣∣∣ , 1} ,
where Lk(ξk|y) is the likelihood function for model Mk given the observations y,∣∣∣∂Tij(ξi,ui)∂(ξi,ui)

∣∣∣ is the Jacobian of the transformation Tij at (ξi,uij), pkl is the probability

for jumping from Mk to Ml, and gk is the density function of uk. As in the classical MH

algorithm the posterior distribution needs to be known up to a multiplicative constant.

However, all prior distributions π(ξi|Mi) need to be normalized up to the same mul-

tiplicative constant. The according sampling scheme is called reversible jump MCMC
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(RJMCMC) algorithm. It explores the joint model/parameter space posterior distribu-

tion π(ξi,Mi|y) based on the observations y and can therefore be used for simultaneous

model selection and inference. For a finite set of models {Mi}i=1,...,k RJMCMC draws

samples from the posterior distribution

π(ξi,Mi|y) =
Li(ξi|y)π(ξi|Mi)π(Mi)

π(y)

with normalizing constant

π(y) =

k∑
j=1

∫
Ξj

Lj(ξj |y)π(ξj |Mj)π(Mj) dξj .

The relation

π(Mi|y) =

∫
Ξi

π(ξi,Mi|y) dξi

=
1

π(y)
π(Mi)

∫
Ξi

Li(ξi|y)π(ξi|Mi) dξi

naturally provides the Bayes factor by RJMCMC via

Bij =
π(Mi|y)π(Mj)

π(Mi|y)π(Mi)
=

∫
Ξi

Li(ξi|y)π(ξi|Mi) dξi∫
Ξj

Lj(ξj |y)π(ξj |Mj) dξj
(4.4)

which can be approximated using the parameter samples of the models Mi and Mj .

Hence, there is a one-to-one relation between Bayes factors and RJMCMC with respect

to Bayesian model selection. However, for a denumerable number of models RJMCMC

is an essential Bayesian modeling tool. Using a uniform model prior π(Mi) = π(Mj)

for all i, j ∈ {1, . . . , k}, Equation (4.4) can simply be approximated by the quotient ni
nj

of instances nk the Markov chain visited model Mk (Bartolucci et al. [2006]).

Example 4.3 (RJMCMC for the Gaussian mixture model). We again turn to the Gaus-

sian mixture example from Chapter 3.4.4 reusing the notation from above. The pa-

rameter space is given by

Ξ = {1} × R ∪ {2} × R2.

As proposed by Robert & Casella [2004] we define the bijections

T12(µ, u) = (µ1, µ2) := (µ−u, µ+u) and T21(µ1, µ2) = (µ, u) =

(
µ2 + µ1

2
,
µ2 − µ1

2

)
,
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4.6 The simulated annealing algorithm

where u ∼ N(0, 12). The Jacobians are then∣∣∣∣∂T12(µ, u)

∂(µ, u)

∣∣∣∣ = 2 and

∣∣∣∣∂T21(µ1, µ2)

∂(µ1, µ2)

∣∣∣∣ =
1

2
.

We set the jump probabilities p12 = p21 = 1, i.e. we propose a model jump in each

RJMCMC step. With the model prior distribution ρ(1) = ρ(2) = 1
2 , the acceptance

probabilities are given by

α(2, µ1, µ2|1, µ, u) = min

{
L2(µ2, µ1|y)ϕ2(µ1)ϕ−2(µ2)

L1(µ|y)ϕ0(µ)ϕ0(u)
2, 1

}
and

α(1, µ, u|2, µ1, µ2) = min

{
L1(µ|y)ϕ0(µ)ϕ0(u)

L2(µ1, µ2|y)ϕ2(µ1)ϕ−2(µ2)

1

2
, 1

}
,

where ϕ0(·), ϕ2(·), and ϕ−2(·) are the probability density functions corresponding to

N(0, 12), N(2, 12) and N(−2, 12), respectively. Reusing the observations y from the

Gaussian mixture example of Chapter 3.4.4 and running the RJMCMC algorithm for

ten runs on N =100,000 proposals each, the Bayes factor was computed as 63.21±11.27

(including one standard error). Although this is close to the “true” value of 77.47,

thermodynamic integration yielded better results!

4.6 The simulated annealing algorithm

For completeness we want to point out that the MH algorithm can also be directly

applied to global optimization problems: Consider a real valued function h : E −→ R
on a finite set E – for infinite sets E convergence is very problematic in practical

applications – along with the minimization problem

min
ξ∈E

h(ξ). (4.5)

Minimization is not a restriction here as we can maximize h by minimizing the func-

tion −h. Generally, h is a function with various local minima making deterministic

minimization algorithms inapplicable. Now, for T ∈ (0, 1] we can use Algorithm 2 to

sample from the stationary distribution

π(ξ) ∝ exp(−h(ξ)/T ).

The MH acceptance probability then computes to

α(ξ|ξ(c)) = min{exp((h(ξ(c))− h(ξ))/T ), 1}
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for some proposal function q(ξ|ξ(c)) where ξ(c) is the current Markov chain element.

Naturally, ξ is accepted, if h(ξ) < h(ξ(c)). However, there is a chance (inversely

proportional to T ) for proposals ξ to get accepted even if h(ξ(c)) < h(ξ). The Markov

chain can hence escape local minima. Setting up a cooling schedule, i.e. defining a

series of “temperatures” T1 = 1 > T2 > . . . Tk > 0, the iterative application of the MH

algorithm for these Ti’s solves the minimization problem (4.5). The according algorithm

is called simulated annealing algorithm and was introduced by Kirkpatrick et al. [1983].

Although the theory of time-homogeneous Markov chains introduced in Chapter 2.3

does not provide the necessary convergence properties (c.f. Robert & Casella [2004]),

convergence can nevertheless be shown for slow cooling schedules (see e.g. Mitra et al.

[1986]).
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5

Extensions to the

Metropolis-Hastings algorithm

In the last few years various extensions to the classical random walk MH algorithm have

been proposed. Examples include adaptive MCMC, population MCMC, hybrid Monte

Carlo and tempering methods (see Liu [2008] for an overview). All of these approaches

try to generate MH proposals that have a high chance of getting accepted by the MH

acceptance probability (4.1). This increases the overall sampling efficiency. In the

current chapter we introduce two prominent MH extensions. The first exploits the ge-

ometric posterior parameter structure by generating proposals guided by the Jacobian

matrix. The second successively improves the algorithmic parameters of the transi-

tion density function during the sampling process. Chapter 5.3 also introduces some

notation needed for the definition of the copula based Metropolis-Hastings algorithms

introduced in Chapter 6.

5.1 Simplified Riemann Manifold Metropolis Adjusted

Langevin Algorithm (SMALA)

An extension to the classical MH algorithm was derived from diffusion theory (Grenan-

der & Miller [1994]): For the stationary target distribution π(·) the Langevin diffusion

85
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is defined by the stochastic differential equation

dX(t) =
1

2
∇X(t) log(π(X(t)))dt+ dW (t), (5.1)

where ∇X(t) is the nabla operator with respect to X(t) and W (t) denotes n-dimensional

standard Brownian motion. The stationary distribution of Equation (5.1) is given by

π(·). A first order Euler discretization of (5.1) then leads to the Metropolis Adjusted

Langevin Algorithm (MALA) proposal function q(ξ|ξ′) (used in an MH algorithm) with

ξ = ξ′ +
ε2

2
∇ξ′ log(π(ξ′)) + εη (5.2)

for η ∼ Nn(0, In). The scaling parameter ε can be used to fine tune the algorithmic step

size, which opens up the possibility to control MH acceptance rates. Since the nabla

operator ∇ξ only considers the directional derivatives with respect to the parameter

vector ξ, strong parameter correlations can disturb the efficacy of MALA. Roberts &

Stramer [2002] suggested to circumvent this issue using a preconditioning matrix G

such that

ξ = ξ′ +
ε2

2
G∇ξ′ log(π(ξ′)) + ε

√
Gη,

where
√
G is the square root of G obtained by eigen- or Cholesky decomposition.

However, finding an appropriate preconditioning matrixG needs structural information

about the target distribution. Regarding Bayesian inference Girolami & Calderhead

[2011] were the first to consider a parameter dependent preconditioning matrix G(ξ)

as geometric tensor that takes into account the local geometric structure of the joint

data and parameter distribution π(y, ξ). The concept exploits the distance between

two ξ-parametrized distributions π(y|ξ) and π(y|ξ + δξ) given by the quadratic form

δξ>G(ξ)δξ for some positive definite metric tensor G(ξ) (Rao [1945]). Rao noted that

G(ξ) by definition yields the metric of a Riemann manifold. Given that log(π(y|ξ)) is

twice absolutely continuously differentiable with respect to ξ (as is the case in almost

all practical applications, Girolami & Calderhead [2011] finally suggested to take G(ξ)
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5.1 Simplified Riemann Manifold Metropolis Adjusted
Langevin Algorithm (SMALA)

to be the expected Fisher information matrix minus the Hessian of the log-prior, i.e.

G(ξ) = −Eπ(y|ξ)

[
∂2

∂ξ2 log(π(y, ξ))

]
= −Eπ(y|ξ)

[
∂2

∂ξ2 log(π(y|ξ)π(ξ))

]
= −Eπ(y|ξ)

[
∂2

∂ξ2 log(π(y|ξ))

]
︸ ︷︷ ︸
expected Fisher information matrix

− ∂2

∂ξ2 log(π(ξ))︸ ︷︷ ︸
Hessian of log-prior

= cov

[(
∂

∂ξ
log(π(y|ξ))

)>
,

(
∂

∂ξ
log(π(y|ξ))

)>]
− ∂2

∂ξ2 log(π(ξ)).

The last equation follows assuming Fisher regularity for the target distribution (Schervish

[1995], Prop. 2.84). Generally, a Langevin diffusion with invariant distribution π(·) can

be defined on a Riemann manifold via its metric tensor G(·) by

dX(t) =
1

2
∇̃X(t) log(π(X(t)))dt+ dW̃

(t)
, (5.3)

where

∇̃X(t) log(π(X(t))) = G−1(X(t))∇X(t) log(π(X(t)))

for the natural gradient ∇X(t) on Rn (Amari & Nagaoka [2007]). On the other hand,

the Brownian motion on the manifold is given by

dW̃
(t)
i = det(G(X(t)))−

1
2

n∑
j=1

∂

∂X(t)

(
G(X(t))i,j det(G(X(t)))

1
2

)
dt

+

(√
G−1(X(t))dW (t)

)
i

,

(5.4)

i = 1, . . . , n (Chung [1982]). Expanding the differential in Equation (5.4) in combina-

tion with a first order Euler discretization of Equation (5.3) finally yields the Riemann

Manifold MALA (MMALA) proposal function q(ξ|ξ′) via

ξi =ξ′i +
ε2

2

(
G−1(ξ′)∇ξ′ log π(y|ξ′)

)
i
− ε2

n∑
j=1

(
G−1(ξ′)

∂G(ξ′)

∂ξ′j
G−1(ξ′)

)
i,j

+
ε2

2

n∑
j=1

(
G−1(ξ′)

)
i,j

tr

(
G−1(ξ′)

∂G(ξ′)

∂ξ′j

)
+

(
ε

√
G−1(ξ′)η

)
i

(5.5)

for i = 1, . . . , n and η ∼ Nn(0, In). In summary, MMALA exploits the local Riemann

manifold structure of the parameter space at stake in order to efficiently explore the
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target distribution π(ξ|y). This becomes clear as the MH proposal function proposes

moves with respect to the Riemannian metric defined by G(ξ) rather than with respect

to the standard Euclidian distance on Rn. Sampling results in Girolami & Calderhead

[2011] showed that simplifying the proposal (5.5) by assuming a constant curvature

throughout the manifold, i.e. ∂2

∂ξ2
log(π(y, ξ)) = const. and hence ∂

∂ξG(ξ) = 0, drasti-

cally decreases the computational demand for proposal generation. Although the ef-

fective sample size decreases, the number of i.i.d. samples drawn per second increases.

This holds true especially for the dynamic systems considered in the paper. The MH

sampling scheme assuming constant manifold curvature is called Simplified MMALA

(SMALA) algorithm. The according proposal function simplifies to

ξ = ξ′ +
ε2

2
G−1(ξ′)∇ξ′ log π(y|ξ′) + ε

√
G−1(ξ′)η. (5.6)

for η ∼ Nn(0, In). Clearly, even though the manifold curvature is generally not con-

stant, the proposal scheme (5.6) defines a valid MCMC sampler in combination with

the MH acceptance rule. Here, the proposals are somewhat generated in the direction

of highest local improvement with respect to the posterior distribution. Compared to

random walk proposals this can improve the chance of acceptance.

5.2 Adaptive MCMC

Another very tempting approach to attain high proposal acceptance rates is the fine

tuning of algorithmic parameters, such as the scaling parameter kRW of the RWMH

algorithm, during the sampling process. This algorithmic parameter adaption is gener-

ally done based on preceding Markov chain realizations. A major pitfall of this attempt

is, that the stochastic process {X(t)}t∈N0 is no longer Markovian, i.e.

P (X(t)|X(t−1), . . . ,X(0)) 6= P (X(t)|X(t−1)).

Thus, the convergence, or rather the ergodicity of the MCMC sampler at hand is no

longer guaranteed (Rosenthal [2011]). More generally spoken, the application of differ-

ent Markov chain transition kernels in the very same inference process of an arbitrary

probability distribution can destroy the ergodicity constraint, even if all of these tran-

sition kernels have the same equilibrium distribution. This can be seen in the following

simple (discrete) example inspired by Roberts & Rosenthal [2007]:
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5.2 Adaptive MCMC

(a) (b)

Figure 5.1: Graphical representation of the discrete state space models. Depicted are

the transition probabilities for (a) the transition kernel k1(·|·) and (b) the transition kernel

k2(·|·). Here, black arrows correspond to a transition probability of 1
2 and red arrows to a

transition probability of 1.

Example 5.1. Suppose E = {1, 2, 3, 4} is a discrete state space and we want to sample

from the uniform distribution π(·) with

π(1) = π(2) = π(3) = π(4) =
1

4
.

Suppose furthermore we are given the irreducible and aperiodic transition kernels k1(·|·)
and k2(·|·) with

k1(2|1) = k2(1|2) = 1,

k1(3|2) = k1(4|2) = k1(1|3) = k1(4|3) = k1(1|4) = k1(3|4) =
1

2
,

k2(3|1) = k2(4|1) = k2(2|3) = k2(4|3) = k2(2|4) = k2(3|4) =
1

2

(see Figure 5.1). Following Example 2.8 π(·) is the unique stationary distribution for

k1 and k2. Now, iteratively applying k1 and k2 starting at ξ(0) = {1} yields a Markov

chain that exclusively visits the states {1} and {2}. Hence, the chain does not converge

to π(·).

Adaptive MCMC methods preserving ergodicity have been proposed amongst others by

Gilks et al. [1998] or Holden et al. [2009]. Gilks allows updating the proposal function

whenever the Markov chain reaches a set A ⊂ E of the state space (E,E), such that

π(A) > 0 and X(t+1),X(t+2), . . . is conditionally independent of X(0), . . . ,X(t) given

X(t) ∈ A. The set A is called a proper atom of the Markov chain and whenever the
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chain enters A, it is said to regenerate. For continuous state spaces (E,E) proper atoms

might not exist. Although a technique due to Nummelin [2004] allows to construct

regenerating Markov chains on some augmented state space also for continuous state

spaces, the practical application of regenerating Markov chains remains an engineering

art form. Holden and coworkers, on the other hand propose an adaptive independence

sampling scheme that takes into account almost the full history of the proposed samples.

They show convergence as long as the proposal distribution satisfies the strong Doeblin

condition that we introduce in Remark 6.1.

Theoretical results with respect to convergence of adaptive MCMC samplers have been

derived by Roberts & Rosenthal [2007]. They all require that the transition kernels used

are uniformly bounded. Furthermore, the amount of modification of the algorithmic

parameters has to either diminish as t → ∞ – this is e.g. the case for the Adaptive

Metropolis algorithm of Haario et al. [2001] introduced in the following – or the adaption

process is applied with diminishing probability PA(t), i.e. PA(t)→ 0 for t→∞.

5.3 Metropolis Gaussian Adaption algorithm (M-GaA)

Haario et al. [1999] introduced a rather simple but efficient adaptive Monte Carlo sam-

pler called Adaptive Proposal (AP) algorithm. The basic idea is to apply a RWMH

algorithm using a multivariate Gaussian proposal function whose covariance matrix is

continuously updated based on a fixed number of previously accepted Markov chain

samples. With this the MCMC process (locally) adapts to the target distribution and

provides an effective proposal scheme. As the covariance matrix can be updated se-

quentially (Haario et al. [2001]), the additional computational cost is by far outweighed

by the improvement in efficiency. Although the AP algorithm has empirically proven to

outperform the classical (non-adaptive) Metropolis-Hastings algorithm, rigorous proofs

of convergence are yet still missing. In fact, Haario et al. [1999] pointed out that AP

algorithm might be slightly biased. Nevertheless, the paper also shows that the differ-

ence between the AP sampled and true limiting distribution is very small for practical

applications.

The AP algorithm was extended by Müller & Sbalzarini [2010] such that the adapted

covariance matrix of the RWMH proposal function maximizes the entropy of the target
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distribution π(·) under the constraint that the proposed MCMC samples are accepted

with a predefined theoretical MH acceptance rate α0 ∈ (0, 1). In contrast to the classical

AP algorithm the covariance matrix is based on all previously accepted Markov chain

samples. This sampling scheme was named Metropolis Gaussian Adaption (M-GaA)

algorithm. Without going into detail we shortly review the basic sampling procedure

applying the strategic algorithmic parameter setting of Müller & Sbalzarini [2010]:

Starting at some initial value ξ(0) ∈ Rn, the empirical proposal covariance matrix of

step j is decomposed as

Σ(j) = r2
√

Σ(j)
√

Σ(j)
>

where
√

Σ(j) denotes the normalized square root of Σ(j) found by eigen- or Cholesky

decomposition, i.e. det
(√

Σ(j)
)

= 1. The parameter r is of no importance for the rest

of the proposal scheme. The algorithm uses the n-dimensional identity matrix In as

proposal covariance matrix Σ(i) as long as ξ(i) = ξ(0) for i ∈ N. An MCMC proposal

is then generated based on the current sample ξ(j) via

ξp = ξ(j) + r(j)
√

Σ(j)η(j)

for some η(j) ∼ Nn(0, In) and some step size parameter r(j) defined below. Due to the

symmetry in the proposal function we accept ξp according to the Metropolis-Hastings

acceptance probability

α(ξp|ξ(j)) = min

{
π(ξp)

π(ξ(j))
, 1

}

with respect to the target density π(·). The proposal covariance matrix Σ(j) is updated

based on the Markov chain sample ξ(j+1) via

Σ(j+1) = (1− s) ξ(j+1) + s(ξ(j+1) − ξ(j)) · (ξ(j+1) − ξ(j))>

for some algorithmic parameter s. Müller & Sbalzarini [2010] suggested to choose

s = log(n+1)
(n+1)2

< 1 as s directly controls the influence of the n2 values of Σ(j). Finally,

the step size parameter r(j) was suggested to be updated as

r(j+1) =


(1 + s (1− α0)) · r(j) if ξp was accepted and

(1− sα0) · r(j) otherwise,
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where α0 denotes the predefined acceptance rate of the M-GaA algorithm. Note that

r(j+1) is reduced in case ξp was rejected and increased otherwise. We will see in Chap-

ter 6.3.4 that the actual acceptance rate of M-GaA can fail to meet α0 in complex

applications.

Remark 5.1 ( Adaptive Metropolis algorithm). An adaptive MCMC scheme very similar

to the AP and M-GaA algorithms was introduced in Haario et al. [2001]: The Adaptive

Metropolis (AM) algorithm updates the multivariate Gaussian RWMH proposal func-

tion with covariance matrix Σ based on all previously accepted Markov chain samples.

The explicit covariance adaption at the jth MCMC step is given by

Σ(j) =

Σ(0) for j ≤ j0
sdCov(ξ(0), . . . ξ(j−1)) + sdεIn for j > j0.

where Σ(0) is some initial covariance matrix applied up to step j0 with ξ(i) 6= ξ(i−1)

for some i ≤ j0. Cov(ξ(0), . . . ξ(j−1)) denotes the empirical covariance matrix based on

the Markov chain realizations ξ(0), . . . ξ(j−1) and In the n-dimensional identity matrix.

The parameter sd is a predefined scaling constant and ε > 0 an auxiliary constant

introduced to avoid singularities in the covariance matrices Σ(j). Haario et al. [2001]

provided a proof of convergence for the AM algorithm for bounded target distributions

π(·) on a bounded support S ⊂ Rn, this is, there exists a constant M ∈ R such that

π(x) ≤M for all x ∈ S and π(X) ≡ 0 for all x ∈ Rn \ S.

While the SMALA and M-GaA algorithms try to locally improve the MH transition

kernel, we took a global approach in order to elevate the MH sampling efficiency. Here,

an approximation of the posterior distribution generates samples that are distributed

similar to the true posterior. The concept is introduced in the next chapter.
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6

Improving the

Metropolis-Hastings algorithm

using copulas

We have seen in Figure 1.1 that even in two dimensions posterior complexity can be

quite severe. For an independent posterior parameter distribution π(ξ1, . . . , ξn|y) =

π(ξ1|y) · . . . · π(ξn|y) the inference process can be focused on the distributions π(ξi|y),

i = 1, . . . , n, individually, avoiding the so-called curse of dimensionality (Hastie et al.

[2009]) that aggravates the inference of the joint distribution π(ξ1, . . . , ξn|y). Especially

model inference of parametrized differential equations likes to trap Markov Chain Monte

Carlo samplers between high proposal rejection rates and strong autocorrelation struc-

tures within the sampled Markov chains – both leading to a low number of independent

samples drawn over time. A crucial issue for the efficacy of an MH algorithm is the

choice of the proposal function. Clearly, the optimal proposal function is given by the

actual posterior density, which transforms the Metropolis acceptance probability to

α(ξp|ξ(c)) = min

{
π(ξp|y)π(ξ(c)|y)

π(ξ(c)|y)π(ξp|y)
, 1

}
= 1.

However, if direct sampling from the posterior is possible, the MH algorithm becomes

uncalled-for. The best we can hope for is to use a proposal function that approxi-

mates the posterior density as close as possible. We addressed this issue by developing
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USING COPULAS

a novel (adaptive) MCMC approach for efficient parameter inference in highly depen-

dent systems: The Copula based Independence MH algorithm (CIMH) and its extension,

the Adaptive Copula based Independence MH algorithm (ACIMH), exploit the concept

of a vine copula decomposition of the posterior distribution densities. They allow

to generate problem specific proposals for a hybrid independence chain/random walk

Metropolis-Hastings sampler. The key advantage of this approach is a reduced auto-

correlation structure in the sampled Markov chain and with this an increased number

of independent samples drawn over time. In ACIMH all copula densities are updated

during the sampling procedure for fine-tuning.

The performance of our method(s) is assessed on three small scale examples and finally

evaluated on a DDE model for the JAK2-STAT5 signaling pathway fitted to time-

resolved western blot data. In the first three examples we compare our copula based

sampler to a random walk MH algorithm (RWMH), an independence chain sampler

(IMH) and a second order moment based random walk MH algorithm (CovRWMH),

as introduced in Chapter 4.1 and further specified below. Due to the simplicity of the

systems we do not consider the SMALA and M-GaA algorithms here. However, they

additionally come into play for performance evaluation on the complex JAK2-STAT5

pathway.

6.1 Copula based Independence MH algorithm (CIMH)

We now turn to the definition of CIMH. As mentioned above, it is based on a vine

copula proposal function similar to the posterior density. However, since the copula

may be based on insufficient data, we extend this proposal function by two additional

transition functions, the first of which is a random walk density and the second a

heavy-tailed independence density. The latter is essential to safeguard convergence.

Overall, we end up with a hybrid copula based independence/random walk proposal

function. The sampling scheme consists of four steps: (i) a prerun, (ii) a uniformization

step of the prerun samples, (iii) a D-vine copula decomposition of the dependent prerun

samples, and (iv) the generation of a Markov chain by means of the hybrid copula based

independence chain/random walk sampler. Throughout, we assume that the sampling

space is a Borel measurable subset of Rn.
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6.1 Copula based Independence MH algorithm (CIMH)

6.1.1 The basic copula MH sampling procedure

(i) Prerun: Our goal is to efficiently sample an independent Markov chain realization

{ξ(j)}j=0,...,T with ξ(j) ∈ Rn from the posterior distribution π(ξ|y) based on the ob-

servations y. For this, we first generate an initial Markov chain {ξ̆(j)}j=0,...,T ′ , the

so-called prerun samples, using e.g. RWMH or any other sampling algorithm. The

chain length T ′+1 should ideally be large enough for the prerun samples to sufficiently

cover the support of π(ξ|y). Determining T ′ can either be left to the modeler’s expe-

rience or monitored utilizing convergence statistics such as the Gelman-Rubin statistic

introduced in Chapter 4.4. Although too small values of T ′ have a negative effect on the

performance of CIMH, to our experience we can generally choose T ′ a lot smaller than

the chain length T + 1 of the final Markov chain {ξ(j)}j=0,...,T . The prerun samples

{ξ̆(j)}j=0,...,T ′ form the basis for the copula proposal function. Note that we do not

demand independence in the realization {ξ̆(j)}j .

(ii) Uniformization: Based on {ξ̆(j)}j , we fit a θ-parametrized D-vine copula c1,...,n(u|θ)

in step (iii). As seen in Chapter 2.2, copulas are defined on the n-dimensional unit cube

[0, 1]n. Hence, each prerun sample ξ̆
(j)

needs to be transformed to [0, 1]n. Depending

on the shape of the histograms of the n sample marginals ξ̆i := (ξ̆
(1)
i , . . . , ξ̆

(T ′)
i )>, we

fit for i = 1, . . . , n γi-parametrized continuous cdf’s Gi(ξ|γi) to the respective sample

marginal. Clearly, the support of the marginal posterior density function π(ξi|y) needs

to be covered by the support of Gi(ξ|γi). This is not a limitation as the support of

π(ξi|y) is controlled by the support of the prior distributions and the claim can easily

be satisfied. Each ξ̆
(j)

is then transformed to ŭ(j) := (G1(ξ̆
(j)
1 |γ̂1), . . . , Gn(ξ̆

(j)
n |γ̂n))> ∈

[0, 1]n based on the estimates γ̂i of γi. In the following we refer to {ŭ(j)}j=0,...,T ′ as

copula data. Let us consider a simple example: Say, for instance, n = 2 and the sample

marginals of {ξ̆(j)}j are normally distributed. Based on the estimated means µ̂1, µ̂2

and variances σ̂2
1, σ̂

2
2 of {ξ̆(j)}j we transform

ŭ
(j)
1 = Φ

(
ξ̆

(j)
1 − µ̂1

σ̂1

)
and ŭ

(j)
2 = Φ

(
ξ̆

(j)
2 − µ̂2

σ̂2

)
,

where Φ(·) is the cdf of a standard normal random variable. Step (ii) does not change

the dependency structure inherent to the prerun samples {ξ̆(j)}j , which is exclusively

modeled by the D-vine copula (see Aas et al. [2009]). This implies that the estimated
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Kendall’s τ ’s for {ξ̆(j)}j are identical to the estimated Kendall’s τ ’s for {ŭ(j)}j . The

procedure works for more general vine structures, such as R-vines, as well, but for the

application to dynamical systems a sequential dependency structure seems appropriate.

(iii) Copula decomposition: The user defined D-vine structure fixes the variable order

for the D-vine copula, i.e. a permutation function ι : {1, . . . , n} −→ {1, . . . , n}, i 7→ ι(i)

rearranges each sample ŭ(j) = (ŭ
(j)
1 , . . . , ŭ

(j)
n )> to ũ(j) := (ŭ

(j)
ι(1), . . . , ŭ

(j)
ι(n))

>. Defining

ι such that for i = 1, . . . , (n − 1) the pairs (ι(i), ι(i) + 1) cover the highest pairwise

absolute dependency works well in our simulations. For determining the dependency

structure, estimated pairwise Kendall’s τ ’s for {ŭ(j)}j can be used. Based on {ũ(j)}j
we then fit1 a θ-parametrized D-vine copula density function

c1,...,n(u|θ) =

n−1∏
j=1

n−j∏
i=1

cj,j+i|j+1,...,j+i−1(F (uj |uj+1,...,j+i−1,θ), F (uj+i|uj+1,...,j+i−1,θ)|θ),

(6.1)

where F (u`|uD,θ) is the θ-parameterized conditional cdf of u` given UD = uD and

uD is a set of [0, 1] valued variables. Here, the order of the variables in (6.1) cor-

responds to the permutation ι chosen above. In our notation the parameter θ =

{θi,j+i|(j+1),...,(j+i−1)} for j = 1, . . . , (n− 1) and i = 1, . . . , (n− j) contains the copula

parameters and types. However, all bivariate copulas cj,j+i|(j+1),...,(j+i−1) depend only

on θi,j+i|(j+1),...,(j+i−1).

(iv) Generation of the Markov chain: The copula proposal function is defined as follows:

For generating n-dimensional copula proposals ξ̃ ∈ Rn, we sample ũ ∼ c1,...,n(u|θ̂)

from the estimated copula c1,...,n(u|θ̂). The sample ũ is then transformed by ξ̃i :=

G−1
ι−1(i)

(ũι−1(i)|γ̂ι−1(i)) to yield ξ̃ = (ξ̃1, . . . , ξ̃n)>. In the setting of the example above,

say, we choose ι to be the identity function. The corresponding samples ξ̃ on R2 are

then for i = 1, 2 given by

ξ̃i = G−1
ι−1(i)

(ũι−1(i)|µ̂ι−1(i), σ̂
2
ι−1(i)) = Φ−1(ũι−1(i))σ̂ι−1(i) + µ̂ι−1(i) = Φ−1(ũi)σ̂i + µ̂i.

Thus, all copula proposals ξ̃ are generated according to the joint proposal function

q1(ξ|γ̂, θ̂) := c1,...,n(G1(ξ1|γ̂1), . . . , Gn(ξn|γ̂n)|θ̂) ·
n∏
i=1

gi(ξi|γ̂i) (6.2)

1See Remark 6.2.
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where gi(ξ|γ̂i) are the density functions corresponding to Gi(ξ|γ̂i). Now, let q2(ξ|ξ′) be

a random Metropolis-Hastings proposal function of choice and q3(ξ) a (compared to the

posterior density π(ξ|y)) heavy-tailed independence proposal function with q2(ξ|ξ′) > 0

and q3(ξ) > 0 on the support of the prior distribution. Let furthermore ξ(0) ∈ Rn be

an initial sample. For fixed constants r1 ∈ [0, 1) and r2 ∈ [0, 1) with r1 + r2 < 1, we

define the copula based hybrid independence/random walk proposal function for CIMH

via the density function

qcop(ξ|ξ′, γ̂, θ̂) := r1q1(ξ|γ̂, θ̂) + r2q2(ξ|ξ′) + (1− r1 − r2)q3(ξ). (6.3)

Pseudo-code for CIMH is depicted in Algorithm 3. For readability, we write qcop(ξ|ξ′)
for qcop(ξ|ξ′, γ̂, θ̂). With this, the Metropolis-Hastings acceptance probability is given

by

αcop(ξ|ξ′) = min

{
π(ξ|y)qcop(ξ′|ξ)

π(ξ′|y)qcop(ξ|ξ′)
, 1

}
. (6.4)

We need to point out that although qcop(ξ|ξ′) is independent of the current Markov

chain sample ξ′ for r2 = 0, the acceptance probability nevertheless depends on ξ′.

Hence, the Markov chain generally inherits some autocorrelation structure even for

r2 = 0. The constants r1 and r2 are generally chosen such that r1 + r2 is close to one

in order to ”waste” as few samples as possible.

Proposition 6.1 (Convergence of CIMH ). The CIMH sampling scheme converges to

the posterior equilibrium distribution.

Proof. The proof is identical to the one of Theorem 4.1 recalling that for i = 1, . . . , n

the support of the marginal posterior density function π(ξi|y) is covered by the support

of the transformation functions Gi(ξ|γi). Hence, with q2(ξ|ξ′) > 0 and q3(ξ) > 0 on

the support of the prior distribution, qcop(ξ|ξ′) > 0 on the support of π(ξ|y), which

yields the regularity condition of Theorem 4.1.

Remark 6.1 (Strong Doeblin condition ). The heavy-tailed independent proposal func-

tion q3(ξ) guarantees that the proposal distribution qcop(ξ|ξ′) has uniformly heavier

tails than the posterior distribution π(ξ|y). Hence, the strong Doeblin condition1 holds,

i.e. there exists an integer s > 0 and a constant as ∈ (0, 1] such that

(qcop)s(ξ, ξ′) ≥ asπ(ξ|y) for all ξ, ξ′ ∈ Rn. (6.5)

1See e.g. Holden [2000] for details.
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Algorithm 3: The CIMH algorithm

(i) Input: RWMH prerun samples {ξ̆
(j)
}j=0,...,T ′ with ξ̆

(j)
= (ξ̆

(j)
1 , . . . , ξ̆

(j)
n )>, sampling

parameters r1, and r2, variable permutation function ι, chain length T , starting value

ξ0, and transition densities q2 and q3.

Output: Markov chain {ξ(j)}j=0,...,T .

Set ξ(0) ← ξ0
(ii) for i← 1 to n do

Fit γ̂i for parametrized cdf Gi(·|γi) based on {ξ̆(k)i }k=0,...,T ′

for k ← 0 to T ′ + j do

Set ŭ
(k)
i ← Gi(ξ̆

(k)
i |γ̂i)

(iii) Fit θ̂ for D-vine copula c1,...,n(u1, . . . , un|θ) based on {(ŭ(k)ι(1), . . . , ŭ
(k)
ι(n))

>}k=0,...,T ′

for j ← 1 to T do

(iv) Sample r ∼ U[0, 1]

if r ≤ r1 then

Generate (ũ1, . . . , ũn)> with density c1,...,n(u1, . . . , un|θ̂)

for i← 1 to n do

Set ξ̃i ← G−1ι(i)(ũι−1(i)|γ̂ι(i))

Define ξ̃ = (ξ̃1, . . . , ξ̃n)>

else if r1 < r ≤ r1 + r2 then

Sample ξ̃ ∼ q2(ξ|ξ(j−1))
else if r > r1 + r2 then

Sample ξ̃ ∼ q3(ξ)

Set

ξ(j) ←

ξ̃ with probability αcop(ξ̃|ξ(j−1))

ξ(j−1) with probability 1− αcop(ξ̃|ξ(j−1))

As pointed out by Holden et al. [2009], if the strong Doeblin condition does not hold

for some states in the sampling space, the MCMC algorithm will tend to undersample

these areas. This is not crucial, if further inference does not depend on tail behavior,

but may become problematic for questions of extreme value theory.

Remark 6.2 (Pairwise copula estimation ). The estimation of the copula decomposition

parameters of step (iii) for a given parameter order ι can be done as follows: Since the

number of parameters grows quadratically in the dimension n, it is useful to consider

a stepwise estimation approach, where we estimate the parameters from pair copulas
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6.1 Copula based Independence MH algorithm (CIMH)

with no conditioning to the ones with n − 2 conditioning variables. In an initial step,

we estimate the parameters corresponding to the pair copulas with no conditioning.

For the copula parameters with a single conditioning value, we transform the data

with the appropriate conditional cdf’s using the estimated parameters to determine

pseudo realizations needed in the pair copulas with a single conditioning variable. We

proceed as before until all parameters have been estimated. These so-called sequen-

tial estimates have shown to be consistent and asymptotically normally distributed

(Hobæk Haff [2010]). They are then used as starting values for numerically determin-

ing the maximum likelihood estimates. When several bivariate copula families for a

pair copula term are available, the family is chosen according to Akaike’s information

criterion (AIC). Brechmann [2010] shows that AIC performs well with regard to several

alternatives. The R package CDVine of Brechmann & Schepsmeier [2011] can be used

to fit the according D-vines.

Remark 6.3 (Likelihood based copula parameter estimation ). Likelihood based copula

parameter estimation was first proposed by Aas et al. [2009] and current developments

in this active area can be found in Czado [2010] and Kurowicka & Joe [2011]. Bayesian

analyses of D-vines using MCMC are also available (see Min & Czado [2010]). Further-

more, Bayesian model selection methods are implemented using indicator variables by

Smith et al. [2010] and using reversible jump MCMC by Min & Czado [2011], respec-

tively.

6.1.2 CIMH as adaptive sampling scheme

Interestingly, CIMH can also be seen as an adaptive MCMC sampler. Before we elab-

orate this, we need to introduce some more notation. We follow Roberts & Rosenthal

[2007]: As usual, let X(t) be a real valued random variable for t ∈ N0. Moreover, let

Γ(t) be a K-valued random variable representing the choice of the transition kernel for

updating X(t) to X(t+1). The random variable (X(t),Γ(t)) generates a filtration

Gt = σ(X(0), . . . ,X(t),Γ(0), . . . ,Γ(t))

i.e. Gt is the smallest σ-algebra with respect to which (X(t),Γ(t)) is measurable for all

s < t. Clearly, Gs ⊆ Gt for all s < t. The Markov chain transition kernel is then

kγ(A|ξ) = P (X(t+1) ∈ A|X(t) = ξ,Γ(t) = γ,Gt−1)

for some ξ ∈ Rn, A ⊆ Rn, and γ ∈ K.
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Definition 6.1 (Independent adaption). An adaptive MCMC algorithm is called in-

dependent adaption algorithm, if for all t ∈ N the random variable Γ(t) is independent

of X(0), . . . ,X(t).

Now, let us interpret CIMH as an independent adaption algorithm: Suppose {k1, k2, k3}
is the set of Markov chain kernels induced1 by the proposal functions q1, q2 and q3

of CIMH, respectively. Then for i = 1, . . . , 3, ki(ξ|ξ′) is ergodic for the posterior

distribution π(ξ|y), that is, each ki(ξ|ξ′) converges to the equilibrium distribution

π(ξ|y). Nevertheless, the speed of convergence can differ severely. Instead of using

the proposal function qcop introduced above, we can in each MCMC step j sample the

proposal function qi, i ∈ {1, 2, 3}, according to

P (Γ(j) = 1) = r1, P (Γ(j) = 2) = r2, and P (Γ(j) = 3) = 1− r1 − r2.

The Metropolis-Hastings acceptance probability is then computed with respect to qi of

step j instead of qcop, i.e.

α(ξp|ξ(j)) = min

{
π(ξp|y)qi(ξ

(j)|ξp)
π(ξ(j)|y)qi(ξ

p|ξ(j))
, 1

}
.

This somewhat reduces the computational cost and speeds up the inference process as

the proposed sample ξp ∼ qi of step j does not need to be evaluated by the proposal

density functions qj for j 6= i in the Metropolis-Hastings acceptance probability. We

call this sampling scheme independent adaption CIMH.

Proposition 6.2 (Convergence of CIMH as independent adaption algorithm). The

independent adaption CIMH sampling scheme converges to the posterior equilibrium

distribution.

Proof. As qi(·|·) > 0 for i = 1, 2, 3 on the support of the prior distributions, the

corresponding Markov chain {X(t)}t∈N0 of the independent adaption CIMH is π(·|y)-

irreducible, and Harris recurrent for the posterior π(·|y). Again, since for each t ∈ N,

X(t) = X(t+1) with positive probability the aperiodicity condition holds. We are left

to prove invariance of the posterior distribution, i.e.∫
ξ∈Rn

P (X(t+1) ∈ A|X(t) = ξ,Gt−1)π(dξ|y) = π(A|y) for all A ⊆ Rn.

1See e.g. the proof of Theorem 4.1.
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Since Γ(t) is independent of X(t′) for all t, t′ ∈ N0 we have∫
ξ∈Rn

P (X(t+1) ∈ A|X(t) = ξ,Gt−1)π(dξ|y)

=

∫
ξ∈Rn

3∑
γ=1

P (X(t+1) ∈ A|X(t) = ξ,Γ(t) = γ,Gt−1)P (Γ(t) = γ|X(t) = ξ,Gt−1)π(dξ|y)

=

∫
ξ∈Rn

3∑
γ=1

P (Γ(t) = γ|Gt−1)kγ(A|ξ)π(dξ|y) = π(A|y)
3∑

γ=1

P (Γ(t) = γ|Gt−1) = π(A|y).

For more details on adaptive MCMC sampling we refer the reader to Fearnhead [2008].

6.2 Adaptive Copula based Independence MH algorithm

(ACIMH)

Based on short preruns {ξ̆(j)}j=1,...T ′ , it is sometimes difficult to guarantee sufficient

sampling from the posterior’s marginals’ tails in order to fit an efficient proposal copula.

To avoid setting r1 + r2 � 1 and thus generating rather ineffective proposals, we

propose an extension of the basic CIMH algorithm by sequentially updating the copula

functions based on preceding Markov chain samples. This changes the proposal function

qcop during the sampling process and leads to a limited adaption scheme: For integers

R,S > 0 we set the copula update probability for the jth MCMC step, Pu(j), to

Pu(j) =

{
1, if j mod R ≡ 0 and j < R · S and

0, otherwise.
(6.6)

This is, the estimated copula parameters γ̂ and θ̂ become dependent on the proposal

step j, resulting in a step dependent proposal function qcop(ξ|ξ(j), γ̂(j), θ̂
(j)

), where

γ̂(j) and θ̂
(j)

are updated based on the concatenated prerun samples and the samples

generated up to step j according to (6.6). We refer to the hybrid Adaptive Copula

update Independence chain/random walk MH algorithm as ACIMH. The pseudo code

for ACIMH is shown in Algorithm 4.

Proposition 6.3 (Convergence of ACIMH). The ACIMH sampling scheme converges

to the posterior equilibrium distribution.
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Proof. The update probability (6.6) initiates a total of S update steps (including the

initial copula estimation after the prerun). Hence, K = {1, . . . , S}. Setting

d(ξ, γ, s) = ‖ksγ(·|ξ)− π(·|y)‖TV

for the posterior distribution π(·|y), ξ ∈ Rn, γ ∈ {1, . . . , S}, and the s step transition

kernel

ksγ(A|ξ) = P (X(t+s+1) ∈ A|X(t) = ξ,Γ(t) = γ,Gt−1), (A ⊆ Rn),

we have lims→∞ d(ξ, γ, s) = 0 independent of ξ ∈ Rn. After R′ = (S − 1) · R
Markov chain steps Γ(R′+s) = Γ(R′) for all s ≥ 0. For any realization ξ(0), . . . , ξR

′
and

γ(0), . . . , γR
′

of the Markov chain generated by ACIMH, lims→∞ d(ξ(R′), γ(R′), s) = 0

independent of ξ(0), . . . , ξR
′

and γ(0), . . . , γR
′
. Therefore, for all A ⊆ Rn and any

ξ(R′), ξ(0) ∈ Rn

0 = lim
s→∞
|ksγ(A|ξ)− π(A|y)| = lim

s→∞
|P (X(s+1) ∈ A|X(0) = ξ(0),Γ(0) = γ(0))− π(A|y)|.

6.3 Performance of CIMH and ACIMH

For benchmarking CIMH and ACIMH, the algorithms were tested on four examples:

First, we draw samples from a strongly correlated two dimensional normal distribution.

This is a simple proof-of-concept example of an analytically tractable system. Subse-

quently, we turn to dynamic systems defined by differential equations (DEs). More

precisely, examples 2 and 3 examine the performance for ordinary nonlinear parame-

ter dependencies and parameter distributions with non-symmetric tail dependencies.

Finally, we apply our samplers to a delay differential equation (DDE) model of the

JAK2-STAT5 signaling pathway as published by Swameye et al. [2003]. Here, a so-

phisticated proposal generation is crucial as there exists no closed form solution of the

DDE system, calling for a computationally very expensive numerical solution for ev-

ery evaluation of the likelihood. Moreover, the seven parameters involved show high

dependency, which additionally complicates the posterior inference.

We evaluated the following performance indices: (I1) the quotient of acceptance rate

and INEFF. This was motivated by the antagonistic behavior of high acceptance rates
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Algorithm 4: The ACIMH algorithm

(i) Input: RWMH prerun samples {ξ̆
(j)
}j=0,...,T ′ with ξ̆

(j)
= (ξ̆

(j)
1 , . . . , ξ̆

(j)
n )>, update and

sampling parameters R, S, r1, and r2, variable permutation function ι, chain length

T , starting value ξ0, and transition densities q2 and q3.

Output: Markov chain {ξ(j)}j=0,...,T .

Initialize s← 0

Set ξ(0) ← ξ0
for j ← 0 to T do

if j mod R ≡ 0 and j < R · S then

Update s← s+ 1

(ii) for i← 1 to n do

Fit γ̂
(s)
i for parametrized cdf Gi(·|γi) based on {ξ̆(k)i }k=0,...,T ′+j

for k ← 0 to T ′ + j do

Set ŭ
(k)
i ← Gi(ξ̆

(k)
i |γ̂

(s)
i )

(iii) Fit θ̂
(s)

for D-vine copula c1,...,n(u1, . . . , un|θ) based on {(ŭ(k)ι(1), . . . , ŭ
(k)
ι(n))

>}k=0,...,T ′+j

(iv) Sample r ∼ U[0, 1]

if j > 0 then

if r ≤ r1 then

Generate (ũ1, . . . , ũn)> with density c1,...,n(u1, . . . , un|θ̂
(s)

)

for i← 1 to n do

Set ξ̃i ← G−1ι(i)(ũι−1(i)|γ̂
(s)
ι(i))

Define ξ̃ = (ξ̃1, . . . , ξ̃n)>

else if r1 < r ≤ r1 + r2 then

Sample ξ̃ ∼ q2(ξ|ξ(j−1))
else if r > r1 + r2 then

Sample ξ̃ ∼ q3(ξ)

Set

ξ(j) ←

ξ̃ with probability αcop(ξ̃|ξ(j−1))

ξ(j−1) with probability 1− αcop(ξ̃|ξ(j−1))

and ξ̆
(T ′+j)

← ξ(j)

versus high INEFF’s as the Markov chain converges slowly for small proposal variances

and the MH algorithm conversely rejects a large amount of its proposed moves for too

high variances (see Roberts et al. [1997], Liu [2008], or Girolami & Calderhead [2011]).
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Clearly (I1) ∈ [0, 1], with higher values being superior. Furthermore, we monitor the

number (I2) of i.i.d. samples generated per second. As all algorithms were implemented

in Matlab using the same underlying MH code, (I2) is well justified. Time here denotes

the CPU-time on a two Six-Core Opteron 2427 (2.2 GHz) machine.

Using (I1) and (I2), the performance of CIMH and ACIMH was compared to (i) a regu-

lar RWMH, (ii) an IMH, and (iii) a random walk MH algorithm with a covariance based

proposal function (CovRWMH) in the first three examples. The JAK2-STAT5 pathway

was additionally evaluated by means of the (iv) SMALA and (v) M-GaA algorithms.

In each example jointly updating all parameters of RWMH at once outperformed sin-

gle parameter updates with respect to the acceptance rates. Therefore, a joint update

scheme was used for all algorithms. Since there is generally little to no knowledge about

the underlying parameter dependency, we applied an uncorrelated normal update func-

tion in RWMH, i.e. a new proposal ξp was generated based on the current sample ξ(c)

by ξp = ξ(c) + ε for ε ∼ N(0,ΣRW ) with ΣRW defined as follows: We determined

the maximum a posteriori estimate for all n parameters using a simulated annealing

algorithm. Denoting these estimates by si, the ith diagonal element of ΣRW was set

to kRW · si, where kRW was adjusted in each example to yield an acceptance rate of

approximately 23% as suggested in Roberts et al. [1997] – our exact limits were set to

10% and 36%. This approach tries to compensate the sometimes large differences in

parameter magnitude and therefore sensitivity. The unthinned Markov chains sampled

by RWMH were directly taken as prerun samples for IMH, CovRWMH, CIMH, and

ACIMH. The sampling times for RWMH were added to the respective sampling times

of IMH, CovRWMH, CIMH, and ACIMH.

Two major issues of RWMH are (P1) a rather strong autocorrelation between subse-

quent MCMC iterations and (P2) its lack of incorporating any information about the

limiting distribution when proposing new samples. To address (P1) we set up the IMH

whose proposals are generated independently of the current state of the Markov chain:

as for the copula based algorithms we fit one-dimensional parametrized cdf’s Gi(ξ|γi) to

each of the n empirical marginal parameter distributions sampled in the prerun. In fact,

these were identical for IMH, CIMH, and ACIMH. The IMH proposals ξ̃
(j)
i were jointly

generated by sampling n · (T + 1) independent samples u
(j)
i ∼ U[0, 1] (i = 1, . . . , n,

j = 0, . . . , T ), which are subsequently transformed to ξ̃
(j)
i = G−1

i (u
(j)
i |γ̂i). In other
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words, IMH generates proposals assuming an independent parameter structure. The

MH acceptance probability is given by

α = min

{
π(ξp|y) ·

∏
i gi(ξ

(c)
i |γ̂i)

π(ξ(c)|y) ·
∏
i gi(ξ

p
i |γ̂i)

, 1

}
,

where gi(ξ|γ̂i) denotes the pdf to Gi(ξ|γ̂i). This somewhat reduces the autocorrelation

compared to the Markov chain of the RWMH since all proposals are independent of

any foregoing MCMC elements. Nevertheless, the IMH Markov chain can still be

strongly autocorrelated and needs to be thinned. Note that with independence in

π(ξ|y) =
∏
i π(ξi|y) and gi(ξi|γ̂i) = π(ξi|y) for all i, the MH acceptance probability

collapses to α = 1, allowing the IMH to generate an independent sample in each MCMC

step.

Rather than directly reducing the autocorrelation in the Markov chain, CovRWMH

exploits the expected covariance matrix Ĉ of the prerun and addresses (P2): The reg-

ular RWMH proposal function is changed to ξp = ξ(c) + ε with ε ∼ N(0, kCovRW · Ĉ).

Simulations show that the acceptance rate of CovRWMH outperforms the acceptance

rate of RWMH for kCovRW = kRW . Thus, fine tuning kCovRW to yield an approxi-

mate acceptance rate of 23% generally decreases the autocorrelation in the CovRWMH

Markov chain by increasing the increments ξpi − ξ
(c)
i compared to the regular RWMH.

While IMH and CovRWMH can in some sense be seen as antagonistic approaches

with respect to (P1) and (P2), CIMH and ACIMH address both issues at once. For

performance assessment CIMH and ACIMH were applied as introduced in Chapter

6.1 and 6.2. Throughout, the Metropolis-Hastings proposal function q2 was taken to

be identical with the one of the CovRWMH, reusing the tuning parameter kCovRW ;

q3 and the proposal probabilities r1 and r2 were adjusted individually (see Chapter

6.3.1 - 6.3.4). For thorough performance evaluation, the first three examples were

each run 100 times for 50,000 MCMC iterations, the last one 10 times for 50,000

MCMC iterations. In all examples the copula update parameters for ACIMH were

set to R =10,000 and S =4. While the copulas were fitted on 1,000 prerun samples

in the first three examples, we used 3,000 samples for the JAK2-STAT5 inference,

owing to the complexity of the system. The time for the prerun was added to the

sampling times of IMH, CovRWMH, CIMH, and ACIMH, respectively. Note that we

do not need to generate independent samples from the prerun’s MCMC chain since
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fitting the copula to dependent data only slightly effects the efficiency of the proposal

distribution. This also holds for fitting Gi(ξ|γi) and the estimation of the covariance

matrix in the CovRWMH proposal function. Nevertheless, insufficient coverage of the

sampling space by the prerun samples decreases the performance of all samplers. For

copula fitting and copula sample generation the CDVine R-package (Brechmann &

Schepsmeier [2011]) was used. Here, sampling from c1,...,n(u|θ̂) is done sequentially

as proposed by Aas et al. [2009]. For the copula type of each pair copula term 32

types were available: Implemented are the independence copula, Gaussian copula (N),

Student-t copula (S), Clayton copula (C), Gumbel copula (G), Frank copula (F ),

Joe copula (J), BB1 copula, BB6 copula, BB7 copula, BB8 copula, as well as the

corresponding 90◦, 180◦, and 270◦ rotated versions of S,C,G, F, J,BB1, BB6, BB7,

andBB8 (see Appendix B for details). Copula type and the corresponding parameter(s)

for each copula term in (6.1) are estimated by a sequential likelihood based approach

described in Dißmann et al. [2011]. Finally, the SMALA and M-GaA algorithms were

directly applied as introduced in Chapter 5.1 and 5.3. In both cases the respective free

algorithmic parameters ε and α0 were tuned to yield a Metropolis-Hastings acceptance

rate between 10%− 36% and of 23%, respectively. The SMALA geometric tensor G(·)
for the JAK2-STAT5 DDE system is computed in Appendix E.

6.3.1 Sampling from a strongly correlated 2-dim. normal distribution

In our first example we want to draw samples from a strongly correlated bivariate

normal distribution N2 (µ,Σ) with respective mean and covariance matrix

µ =

(
µ1

µ2

)
=

(
0
0

)
and Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
=

(
1 0.95 ·

√
3

0.95 ·
√

3 3

)
.

Here, ρ = 0.95. The MH acceptance probability for this example is given by

α = min

 Φ2 (ξp | µ,Σ) · q(ξ(c)|ξp)

Φ2

(
ξ(c) | µ,Σ

)
· q(ξp|ξ(c))

, 1

 ,

where Φ2 (ξ | µ,Σ) is the density function of N2 (µ,Σ) and q(ξ|ξ′) the proposal func-

tion.

We chose this example as it is both illustrative as well as analytically tractable. Canon-

ically, the cdf’s of N(0, 1) and N(0, 3) were used to transform the prerun samples to
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[0, 1]2. The independence proposal density q3 was taken to be a bivariate student-t

distribution with location parameter (0, 1)> and identity scale matrix. Furthermore,

we set r1 = 0.99 and r2 = 0. Table 6.1 (Lower table) nicely shows that all samplers

approximate the two dimensional normal distribution with negligible errors. This can

also be seen from the thinned Markov chain samples depicted in Figure 6.1. The sam-

ples are based on the (unthinned) Markov chains from Figure 6.2. The chains exhibit

a better mixing behavior when generated by a copula based algorithm compared to

the non-copula based ones. Although the sampling times for IMH and CovRWMH

were about twice as long as for RWMH (Table 6.1 (Upper table)), IMH is comparable

with RWMH and CovRWMH even outperforms RWMH with respect to (I1) and (I2)

(Figure 6.3(a) and 6.3(b)). The most efficient of all algorithms turned out to be CIMH.

Caused by the additional time needed for copula refitting, ACIMH in average produced

slightly less independent samples per second than CovRWMH. We have to point out

that (I1) is very close to one for CIMH and ACIMH. This means that in almost every

MCMC iteration an independent sample was generated (see also Figure 6.4 for the

autocorrelation functions after thinning by INEFF). At first sight this might almost

seem too good a result, but clearly, due to the simplicity of the problem, the copula

was fit almost perfectly (Figure 6.3(c)) leading to an independent proposal function

qcop(ξ|ξ′) = qcop(ξ) that is very close to the true sampling distribution N2 (µ,Σ). This

pushes the MH acceptance probability close to one. We will see in later examples that

this index generally attains high values. It can also be seen as combined goodness-of-fit

index for the fitted marginal cdf’s and vine copula decomposition.

The copula families for ACIMH did not change in any of the 100 runs, meaning that the

dependency structure was already well covered by the preruns. The bivariate copula

c1,2(u1, u2|θ) of the first of the 100 runs was fit to be Gaussian with an estimated

parameter value of θ̂ = 0.953. This is very close to the actual correlation value of

ρ = 0.95. The corresponding Kendall’s τ for the copula parameters was estimated to

be τ̂m = 0.805, which coincides with the Kendall’s τ estimated for the prerun (Figure

6.3(c)). All other runs showed similar outcomes. Note that the time needed for fitting

a single copula is almost identical to the time needed for the complete RWMH run (c.f.

Table 6.1 (Upper table)). All MCMC runs were started at the origin.
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Figure 6.1: Thinned Markov chain samples of the first run of the (a) ACIMH, (b) CIMH,

(c) CovRWMH, (d) IMH, and (e) RWMH. The red lines display the p · 10% quantiles of

the normal distribution for p = 1, . . . , 9.

Thinning was performed according to the INEFF and caused a nice decrease in the

autocorrelation functions as depicted in Figure 6.4. Interestingly, the INEFF slightly

underestimated the thinning rate for the last three algorithms, which can be seen from

the rather slow decreases in the autocorrelation functions. A nice analogy between

CovRWMH and the copula based algorithms is given by the fact that all three were

using the same Gaussian copula. However, while CovRWMH was applying it for lo-

cally proposing new samples, the (I1) index was quite low compared to CIMH and

ACIMH. On the other hand, CovRWMH was taking less than half the time of the

copula algorithms resulting in a very good performance on (I2).
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Figure 6.2: Unthinned Markov chains of the first run of the (a) ACIMH, (b) CIMH, (c)

CovRWMH, (d) IMH, and (e) RWMH. While the x-axis holds the step number, the y-axis

displays the parameter value. The copula based samplers show a slightly better mixing

behavior compared to the non-copula algorithms.

6.3.2 Performance on a steady state model with nonlinear parameter

dependency

We will now consider posterior inference in dynamic systems. We first take a look at a

simple, but completely unidentifiable1 steady state example: Consider the system

dx(t)

dt
= 0 with x(0) := x0 unknown. (6.7)

We are interested in the behavior of y(t) = kx(t), where x(t) is the solution to (6.7).

The parameter k is introduced since biological experiments very often only yield relative

concentrations. Again, k is unknown. At the time points t = ti = i (i = 1, . . . , 5) we

1Note that MCMC algorithms are able to deal with unidentifiable systems as such. The inference

of meaningful reaction rates is however not possible in this scenario.
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ŭ1

(c)

Figure 6.3: Results for the 2-dim. normal distribution. Figure (a): Quotient of accep-

tance rate versus INEFF (I1). Figure (b): Number of i.i.d. samples drawn per second (I2).

Error bars show the estimated standard errors based on 100 runs. Figure (c): Marginal

copula data (c.f. Chapter 6.1.1 (ii)) to fit the CIMH/ACIMH copula of run one – for

uniformization the cdf’s of N(0, 1) and N(0, 3) were applied. The diagonal holds the his-

tograms of the MCMC sample marginals and τe is the corresponding empirical Kendall’s

τ .
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Figure 6.4: Autocorrelation functions of the first run of the (a) ACIMH, (b) CIMH, (c)

CovRWMH, (d) IMH, and (e) RWMH. All plots range over 15 lags on the x-axis. The

INEFF is slightly underestimated in the last three algorithms.
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Sampler i.i.d. samples INEFF AR (%) time (sec.)

ACIMH 48250.0± 641.1 1.1±0.03 95.3±0.6 51.1± 0.3

CIMH 48750.0± 547.6 1.1±0.02 95.2±1.1 25.8± 0.2

CovRWMH 21051.5±1318.3 3.6±0.30 21.9±0.4 17.6±4 · 10−3

IMH 7821.3± 566.4 14.9±1.70 24.3±0.4 14.6±7 · 10−3

RWMH 4836.9± 316.2 17.9±1.70 23.5±0.2 8.3±2 · 10−3

Sampler µ̂1 − µ1 µ̂2 − µ2 σ̂2
1 − σ2

1 σ̂2
2 − σ2

2 ρ̂− ρ
(×10−3) (×10−3) (×10−3) (×10−3) (×10−5)

ACIMH 0.40±0.46 0.27±0.77 −0.06±0.77 −1.35± 2.17 −692.84±0.04

CIMH −0.33±0.50 −0.46±0.86 −0.86±0.62 −1.54± 1.68 −692.90±0.05

CovRWMH −1.91±1.37 −3.80±2.41 0.48±2.17 2.44± 6.51 −692.85±0.13

IMH 1.74±3.19 3.82±5.57 −4.92±7.25 −13.88±20.96 −693.69±0.38

RWMH 4.12±3.07 6.94±5.41 1.52±3.67 5.04±11.92 −692.79±3.07

Table 6.1: Two-dimensional normal example. Upper table: Depicted are the average

number of i.i.d. samples per run (ESS), INEFF’s, acceptance rates (AR), and sampling

times based on 100 runs including estimated standard errors. All samplers ran for 50,000

MCMC proposals. Lower table: Residual differences between the average posterior mean,

standard deviation, and correlation coefficient estimates and the true parameter values

based on 100 runs including estimated standard errors. The true values are µ1 = 0,

µ2 = 0, σ2
1 = 1, σ2

2 = 3, and ρ = 0.95.

measure noisy observations yi of y(t), which are assumed to follow yi ∼ N(kxi, 0.1
2),

with xi = x(ti). For simplicity we chose k = x0 = 1 for toy data generation (see Figure

6.5(a)). We thus have x(t) = kx0 = 1. Although there is clearly no way to determine

any of the parameters k or x0 = 1/k here, models such as the one of the JAK2-

STAT5 pathway introduced by Swameye et al. [2003] suffer a similar kind of practical

unidentifiability (see Section 6.3.4). Nevertheless, the system provides a nice benchmark

for the performance of our algorithms on nonlinear parameter dependencies. Since no

prior knowledge other than x0 > 0 and k > 0 is available we assume independent

uniform prior distributions x0 ∼ U[0, 2.5] and k ∼ U[0, 2.5]. The system’s posterior

distribution is then given by

π(x0, k|y) =
1

Z

5∏
i=1

Φ(yi|kxi, 0.12)1[0,2.5](x0)1[0,2.5](k)

with normalizing constant Z =

2.5∫
0

2.5∫
0

5∏
i=1

Φ(yi|kxi, 0.12) dx0 dk.

(6.8)
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Here, Φ(·|µ, σ2) denotes the density function of a univariate normal random variable

with mean µ and variance σ2 and 1[a,b] the density function corresponding to U[a, b].

Note that xi = x(ti) depends on the initial condition x0.

Sampler i.i.d. samples INEFF AR (%) time (sec.)

ACIMH 35446.3±1511.5 1.8± 0.1 70.40±0.05 43.948± 1.3

CIMH 35224.9±1501.6 1.8± 0.1 70.20±0.09 23.043± 0.3

CovRWMH 1594.4± 134.5 56.4± 4.5 10.48±0.04 13.847±6 · 10−3

IMH 1576.6± 128.9 58.9± 5.5 5.43±0.02 11.129±6 · 10−3

RWMH 335.8± 23.5 241.5±18.9 21.14±0.03 6.532±3 · 10−3

ACIMH CIMH CovRWMH IMH RWMH

E[k|y] 1.129±0.001 1.128±0.001 1.125±0.003 1.129±0.003 1.124±0.007

E[x0|y] 1.129±0.001 1.130±0.001 1.132±0.003 1.128±0.003 1.135±0.008

Table 6.2: Steady state model. Upper table: Depicted are the average number of i.i.d.

samples per run (ESS), INEFF’s, acceptance rates (AR), and sampling times based on 100

runs including standard errors. All samplers ran for 50,000 MCMC proposals. Lower table:

Average posterior mean estimates for k and x0 based on MCMC samples. Standard errors

are estimated based on 100 runs. The numerical estimate is 1.129.

We chose the independence proposal density q3 to be uniform on [0, 2.5]2, which co-

incides with the joint prior distribution. Again, r1 = 0.99 and r2 = 0. The prerun

samples ξ̆
(j)

= (k(j), x
(j)
0 )> (j = 1, . . . ,50,000) shown in Figure 6.5(c) indicate that

the sample marginals for k and x0 are close to being lognormally distributed. Hence,

we used two lognormal distributions gi(·|µi, σi) (i = 1, 2) for the uniformization step.

Although for i = 1, 2 and fitted parameters µ̂i, σ̂i for µi, σi the transformed samples

˘u(j)
i = gi(

˘ξ(j)
i|µ̂i, σ̂i) (j = 1, . . . ,50,000) are not exactly uniformly distributed (c.f.

histograms in Figure 6.5(b)), the CIMH and ACIMH proposals were accepted with a

probability of about 70% (Table 6.2 (Upper table)). The approximation of the copula

proposal function to the posterior of equation (6.8) was nevertheless very good as the

index (I1) had values around 0.5 for CIMH and ACIMH (Figure 6.7(a)). This can

also be seen from the excellent mixing behavior of the Markov chains for the copula

based sampling schemes (Figure 6.6). Moreover, these algorithms drew an indepen-

dent sample of the posterior in approximately every second MCMC iteration. We also

tested uniformization by exponential and Gamma distributions ending up with com-

parable results (not shown). While the performance of CovRWMH with respect to
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Figure 6.5: (a) Toy data used for sampling the steady state model. Depicted are the true

underlying concentration x(t) (solid line), the posterior median solution (dashed line) as

well as the according 95% credible interval (shaded area) of the thinned first ACIMH run.

The dots depict noisy data yi including 95% confidence intervals. (b) Copula data (c.f.

Section 6.1.1 (ii)) of the first run used to fit the CIMH copula. For uniformization of k

and x0 the cdf’s of LN(µ1= -0.03, σ1=0.54) and LN(µ2=0.01, σ2=0.54) were applied. The

diagonal displays the histograms of the MCMC sample marginals and τe the respective

empirical Kendall’s τ . (c) Thinned MCMC samples of the first RWMH run.
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Figure 6.6: Unthinned Markov chains of the first run of the (a) ACIMH, (b) CIMH, (c)

CovRWMH, (d) IMH, and (e) RWMH. While the x-axis holds the step number, the y-axis

displays the parameter value. The copula based samplers show a superior mixing.
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Figure 6.7: Results for the steady state model. Figure (a): Quotient of acceptance rate

and INEFF (I1). Figure (b): Number of independent samples drawn per second (I2). Error

bars show the estimated standard errors based on 100 runs.

(I2) was similar to the performance of ACIMH in the first example, it here ran into

problems generating adequate proposals due to the nonlinear parameter dependency.

The estimated Pearson correlation coefficient used by CovRWMH lay around ρ̂ = −0.9,

which is close to the rank based estimated Kendall’s τ , given as τe = −0.95 (Figure

6.5(b)). Nevertheless, ACIMH outperformed CovRWMH as well as RWMH and IMH

more than 5-fold with respect to (I2). All ACIMH copulas were fitted to be of Gaussian

type with a correlation parameter of θ̂ = −0.99 and did not change throughout the

sampling process. Saving the time for copula refitting, CIMH even outperformed the

non copula based algorithms more than 10-fold (Figure 6.7(b)). The MCMC samples’

based solutions to equation (6.7) nicely approximate the data: Figure 6.5(a) depicts

the posterior median solution with corresponding 95% credible interval for the thinned

first ACIMH run, i.e. at time point t equation (6.7) was solved numerically for all

ACIMH MCMC samples (after thinning); subsequently the pointwise median over all

solutions – called posterior median solution – as well as the 95% credible interval were

computed. Although in general neither the posterior median solution, nor the upper

or lower boundary of the 95% credible interval need to be a solution to a differential

equation system, the steady state property in this example guarantees that all three

are in fact solutions to (6.7).

For analytically verifying the sampling results, we numerically evaluated the expected
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posterior means of k and x0. The means are given by

E[x0|y] = E[k|y] =

2.5∫
0

k
2.5∫
0

5∏
i=1

Φ(yi|kxi, 0.12)dx0dk

2.5∫
0

2.5∫
0

5∏
i=1

Φ(yi|kxi, 0.12)dx0dk

= 1.129. (6.9)

As Table 6.2 (Lower table) shows, all samplers closely approximated (6.9).

6.3.3 Performance on a small compartment model

Our last toy example is motivated by a model for the biokinetic behavior of zirconium

(Zr) in the human body (see Chapter 8). Compartmentalizing major organs, Li et al.

[2011a,b] analyzed the circulation of Zr in the human body. The paper compares

transfer rates of two competing compartment models with respect to sensitivity and

predictability in order to establish a new model for radiation risk analysis. Both models

are structurally identical as far as the interaction of the compartments “Small intestine”

and “Transfer” is concerned, which is what our toy model is based on: After ingestion

Zr passes through the “Small intestine”. Subsequently it is either excreted directly

or passes through the “Transfer” compartment as depicted in Figure 6.8(a). Since

taking accurate measurements of Zr in the “Small intestine” compartment is technically

not possible, we chose to generate data for the “Transfer” compartment only. The

differential equations underlying the data are

dx1(t)

dt
= −k2x1(t)− k3x1(t) and

dx2(t)

dt
= k2x1(t)− k1x2(t) (6.10)

with x1(0) = 100 and x2(0) = 0 in arbitrary units, making our model similar to

the ones proposed in Li et al. [2011a,b]. Note that the concentrations xi(t) depend

on k1, k2, and k3. However, for readability the dependency on these parameters is

omitted. Our data was generated for k1 = 1, k2 = 1, and k3 = 20 at the time points

ti = 0, 0.1, 0.2, . . . , 1.0 as yi = x2(ti) + εi with εi
i.i.d.∼ N(0, 12) for i = 1, . . . , 11. We

assume the initial concentrations x1(0) = 100 and x2(0) = 0 to be known. Under

independent prior distributions k1 ∼ N[0,1000](1, 1
2), k2 ∼ N[0,1000](1, 1

2), and k3 ∼
N[0,1000](20, 202), where N[a,b](µ, σ

2) denotes the [a, b]-truncated normal distribution,

the posterior is proportional to

π(k1. . . . , k3|y1, . . . , y11) ∝
11∏
i=1

Φ(yi|x2(ti), 1
2)

2∏
j=1

Φ[0,1000](kj |1, 12)Φ[0,1000](k3|20, 202)
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for the truncated normal density function Φ[a,b](·|µ, σ2) corresponding to N[a,b](µ, σ
2).

The data is depicted in Figure 6.8(b).

As independence proposal density q3 we chose a uniform distribution on [0, 1000]3 and

set r1 = 0.99 and r2 = 0. There is an interesting dependency structure between

the parameters k1, k2, and k3 inherent to the system. While k2 and k3 show strong

positive but non-symmetric dependency, k1 is almost independent of k2 and k3 (compare

Figure 6.8(c) and recall that the dependency structure between the ki’s and the ŭi’s is

identical). This can be explained as follows: An increase in k3 at constant k2 results

in a decrease of the Zr concentration in the “Transfer” compartment. In order to

compensate this effect k2 needs to be increased simultaneously, resulting in a positive

dependence between k2 and k3. The degradation rate k1 on the other hand is pairwise

almost independent from k2, and k3 since it only depends on the concentration x2(t),

which itself depends directly on the data (y1, . . . , y11)>.

After uniformization of the prerun samples by fitted normal distributions the pairwise

scatterplots in Figure 6.8(c) indicate some lower tail dependence between the param-

eters ŭ2 and ŭ3 (corresponding to k2 and k3). Using the notation of Chapter 2.2

the proposal copula for the first of the 100 runs was decomposed as c1,2,3(u1,2,3|θ) =

c1,2(u1,2|θ) · c2,3(u2,3|θ) · c1,3|2(F (u1|u2,θ), F (u3|u2,θ)|θ) with the following estimated

pair copulas: (i) ĉ1,2 a 90◦ rotated Clayton copula with estimated parameter θ̂1,2 =

−0.19 and corresponding estimated Kendall’s τ̂ = −0.08, (ii) ĉ2,3 a 180◦ rotated

BB6 copula with estimated parameters θ̂2,3 = (1.24, 3.07) and corresponding esti-

mated Kendall’s τ̂ = 0.71, and (iii) ĉ1,3|2 a Gaussian copula with estimated parameter

θ̂1,3|2 = −0.79 and corresponding estimated Kendall’s τ̂ = −0.58. Note that the es-

timated Kendall’s τ ’s of the ĉ1,2 and ĉ2,3 copula nicely coincided with the estimated

Kendall’s τ ’s of the copula sample (Figure 6.8(c)). This indicates a good parameter

dependency coverage by the proposal copula, at least on the unconditioned copula

decomposition level. All other runs yielded similar decompositions. The order ι was

chosen to be the identity function. Lower tail dependence of ŭ2 and ŭ3 was covered

by the rotated 180◦ BB6 copula ĉ2,3. Interestingly, the estimated pairwise dependency

between k1 and k3 (τe = −0, 28, Figure 6.8(c)) more than doubles when conditioning on

k2, as the estimated Kendall’s τ corresponding to θ̂1,3|2 is given by τ̂ = −0.58. Loosely

speaking Zr is to be excreted within a fixed time period. Moreover, Figure 6.8(c) gives

116



6.3 Performance of CIMH and ACIMH

Transfer Small 
intestinex1x2

k1 k3

k2

(a) (b)

 

 

0.20.6 1

ŭ3
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Figure 6.8: (a) Schematic representation of the small compartment model. The con-

centration of the shaded “Transfer” compartment is measured at the eleven time points

ti = 0, 0.1, . . . , 1.0. The rates k1 and k3 lead to unobserved downstream compartments and

are therefore considered as degradation rates. (b) Toy data used for sampling the small

compartment model. Depicted are the true underlying concentration x2(t) of the “Trans-

fer” compartment (solid line), the posterior median solution (dashed line) as well as the

according 95% credible interval (shaded area) of the thinned first ACIMH run. The dots

depict noisy data yi including 95% confidence intervals and the unobserved concentration

x1(t) of the “Small intestine” compartment is shown as dashed-dotted line. (c) Copula

data (c.f. Section 6.1.1 (ii)) of the first run used to fit the CIMH copula. For uniformiza-

tion of k1, k2, and k3 the cdf’s of N(1.33, 0.552), N(29.40, 13.032), and N(1.29, 0.472) were

applied. The diagonal displays the histograms of the MCMC sample marginals and τe the

respective empirical Kendall’s τ .

a hint at the order for arranging the sequence of the copula variables. Here, ŭ2 and ŭ3

show a significant dependency and were hence modeled as a direct pair within the pair

copula decomposition.

The fine-tuning parameter kcovRW in CovRWMH could be set to a relatively high value

guaranteeing large jumps in the parameter space and therefore low INEFF’s (Table 6.3

(Upper table)). CovRWMH hence outperformed RWMH and IMH on both (I1) and

(I2) as can be seen from Figure 6.9(a) and 6.9(b). The dependency between k1, k2,

and k3 is significant enough to cause IMH to perform even worse than RWMH on (I2).

Although taking in average more than 1.3 times as long as any other sampler, the

copula based algorithms nicely detected the prerun dependency structure and yielded

the best results. The INEFF slightly decreased when updating the copulas. This means

that the copula structure is – although only slightly – recursively adjusted to better
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(a) (b)

Figure 6.9: Results for the compartment model. Figure (a): Quotient of acceptance rate

and INEFF. Figure (b): Number of independent samples drawn per second. Error bars

show the estimated standard errors based on 100 runs.

fit the true underlying dependency structure of k1, k2, and k3. However, compared to

CIMH the additional time for re-fitting the copula lowered the efficiency with respect

to (I2). For the inference of the marginal MAP estimates, we applied a kernel density

estimator to the respective sampled Markov chains. The posterior mean and mode

estimates including 90% credible intervals are given in Table 6.3 (Lower table). All

predicted modes slightly overestimated the true values k1 = k2 = 1 and k3 = 20.

6.3.4 Performance on a JAK2-STAT5 signaling pathway model

In this section, we apply our sampling schemes to a DDE model of the JAK2-STAT5

signaling pathway1. Here, STAT5 denotes either one of the STAT5A or STAT5B pro-

teins. The system is based on a number of phosphorylation and dephosphorylation steps

within a complex protein interaction network. In case of the JAK2-STAT5 pathway

the Erythropoietin (Epo) hormone first binds to the transmembrane receptor phos-

phorylating Janus Kinase 2 (JAK2). Monomeric Signal Transducer and Activator of

Transcription 5 (STAT5) is thereafter tyrosine phosphorylated by the JAK2/receptor

complex. After a dimerization step the phosphorylated STAT5 homodimer enters the

nucleus and binds to the promoter region of its target gene. It dephosphorylates in the

1For a thorough introduction to the JAK-STAT pathway see Chapter 2.4.2.
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Sampler i.i.d. samples INEFF AR (%) time (sec.)

ACIMH 25255.7±1509.4 3.9±0.9 75.07±0.12 75.10±0.28

CIMH 22414.5±1434.1 5.1±1.0 75.07±0.11 54.20±0.31

CovMH 8756.8± 491.8 7.9±0.5 23.38±0.06 40.94±0.02

IMH 4532.2± 406.9 23.5±2.9 20.79±0.04 40.14±0.02

RWMH 2963.5± 200.5 27.6±2.4 23.46±0.03 19.33±0.01

Sampler ACIMH CIMH CovRWMH IMH RWMH

E[k1|y] 1.25 1.24 1.25 1.25 1.25

M [k1|y] 1.17 1.16 1.17 1.20 1.19

CI[k1|y] (0.74;1.79) (0.74;1.79) (0.74;1.79) (0.74;1.78) (0.74;1.79)

E[k2|y] 1.54 1.54 1.54 1.53 1.53

M [k2|y] 1.33 1.35 1.34 1.31 1.29

CI[k2|y] (0.86;2.31) (0.86;2.31) (0.86;2.31) (0.86;2.30) (0.85;2.30)

E[k3|y] 27.30 27.29 27.30 27.24 27.21

M [k3|y] 23.30 23.73 21.97 22.13 23.87

CI[k3|y] (14.09;42.07) (14.08;42.08) (14.05;42.10) (14.24;41.83) (14.01;41.92)

Table 6.3: Small compartment model. Upper table: Depicted are the average number of

i.i.d. samples per run (ESS), INEFF’s, acceptance rates (AR), and sampling times based

on 100 runs including estimated standard errors. All samplers ran for 50,000 MCMC

proposals. Lower table: Estimated marginal posterior means E[·|y], modes M [·|y] (MAP

estimates), and 90% posterior quantile based credible intervals CI[·|y] for k1, k2, and k3

for the concatenated data of 100 runs.

process and gets subsequently exported to the cytoplasm (Aaronson & Horvath [2002]

and Hou et al. [2002]). A schematic representation can be seen in Figure 6.10(c).

We want to point out that although posterior parameter estimates are given in Table 6.4

the focus of this section lies clearly on the performance evaluation of CIMH and ACIMH

on a complex dynamical system, rather than on novel biological insights. Due to the

complexity of the system caused by high parameter dependencies MCMC sampling is

a daunting task in this scenario. We therefore evaluated the performance of SMALA

and M-GaA (introduced in Chapter 5.1 and Chapter 5.3) in addition to the RWMH,

IMH, and CovRWMH algorithms.

119



6. IMPROVING THE METROPOLIS-HASTINGS ALGORITHM
USING COPULAS

(a) (b)

Epo

target gene

x1

x2

x3

JAK2
P

P
P

P

P
P
P

cell membrane

nucleus

cytoplasm

P P

P P

STAT5

P
k1

k2

k3

k4
STAT5

STAT5

STAT5

STAT5

STAT5
STAT5

(c)

Figure 6.10: (a) Time courses for the numerical solution of phosphorylated STAT5 in

the cytoplasm (y1(t)). Depicted are the posterior median solution (dashed line) as well as

the according 95% credible interval (shaded area) of the thinned first ACIMH run. The

dots represent given measurements yi including 95% confidence intervals. (b) Similarly to

(a), the measurements, the median (dashed line), and the 95% credible interval (shaded

area) for the numerical solution of y2(t). (c) Schematic representation of the JAK2-STAT5

pathway: Erythropoietin (Epo) binds to the transmembrane receptor. Monomeric STAT5

(x1) is tyrosine phosphorylated (x2) by the activated JAK2/receptor complex in the cy-

toplasm. After dimerizing the phosphorylated STAT5 homodimer, (x3) enters the nucleus

and binds to the promoter target gene region. It is then dephosphorylated and released to

the cytoplasm.

Our analysis is based on the data and mass-action DDE model of Swameye et al. [2003]:

dx1(t)

dt
= −k1x1(t)Epo(t) + 2k4x3(t+ τ)

dx2(t)

dt
= −k2x

2
2(t) + k1x1(t)Epo(t)

dx3(t)

dt
= −k3x3(t) +

1

2
k2x

2
2(t)

dx4(t)

dt
= −k4x3(t+ τ) + k3x3(t),

(6.11)

with x1(0) = 1 and x2(0) = x3(0) = x4(0) = 0, where Epo(t) denotes the time-

dependent Epo stimulation function and τ the time lag between STAT5 entering the

nucleus and dephosphorylated cytoplasmic release. Furthermore, x1(t), x2(t), x3(t) are

the concentrations of unphosphorlated, tyrosine-phosphorylated, and dimerized STAT5,

respectively, while x4(t) is the concentration of STAT5 in the nucleus. Note that the sys-

tem inherits a dimerization step as introduced in Example 2.10. Due to the law of mass

conservation, we need to claim k3 ≥ k4. The data we used for inference was provided
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by J.Timmer at http://webber.physik.uni-freiburg.de/∼jeti/PNAS Swameye Data/. It

contains (including 95% confidence intervals) the amount of phosphorylated STAT5,

yε1(ti) = k5(x2(ti) + 2x3(ti) + ε1(ti)) and the total concentration of cytoplasmic STAT5,

yε2(ti) = k6(x1(ti)+x2(ti)+2x3(ti)+ε2(ti)), at 16 time points t1, . . . , t16 (in minutes) in

the interval [0, 60]. Here, k5 and k6 are introduced since all measurements are relative.

The errors εj(ti) are measurement errors included in the data, which are assumed to be

N(0, σ2
i,j) distributed where σ2

i,j was estimated from various experiments. We performed

a Kolmogorov-Smirnov test (Davison [2003]) on normality to ensure that the combined

measurement/model error of the likelihood can not possibly be non-Gaussian. For this,

the residuals between the data points and a simulated annealing MLE based time course

were considered. The null-hypothesis of non-Gaussian noise could not be rejected on

an α = 5% significance level. All seven parameters ξ = (k1, k2, k3, k4, τ, k5, k6)> are

time-independent. Again, for readability the dependence of the solutions xi(t) to (6.11)

on ξ is omitted. A picture of the data can be seen in Figure 6.10(a) and 6.10(b). Simi-

larly to Swameye et al. [2003] we reparametrized the DDE system (see Appendix D) in

order to resolve structural parameter identifiability issues. A discussion on the struc-

tural parameter identifiability issues of the particular system can be found in Timmer

et al. [2004] and Raue et al. [2009]. Due to the lack of knowledge we chose the in-

dependent prior distributions k1, k2, k4, τ, k5, k6
i.i.d.∼ U[0, 50] and k3 ∼ U[k4, 50]. The

lower limit 0 was canonically introduced by the non-negativity constraint for reaction

rates. For y := {yε1(t1), . . . , yε1(t16), yε2(t1), . . . , yε2(t16)} and the prior π(ξ) this leads to

the posterior

π(ξ|y) ∝
16∏
i=1

Φ(yε1(ti)|y1(ti), σ
2
i,1) · Φ(yε2(ti)|y2(ti), σ

2
i,2) · π(ξ).

Here, y1(t) = k5(x2(t) + 2x3(t)) and y2(t) = k6(x1(t) + x2(t) + 2x3(t)) for the solutions

x1(t), x2(t), and x3(t) of the DDE. Since there is no analytical solution to (6.11), we

applied Matlab’s dde23 solver to numerically derive xi(t) (i = 1, 2, 3) in case of the

RWMH, IMH, CovRWMH, M-GaA, CIMH, and ACIMH algorithms. SMALA used

Matlab’s ode15s solver for the geometric tensor derived in Appendix E. As dde23 and

ode15s are quite time consuming, generating good proposals is essential for efficient

sampling from the highly dependent seven dimensional parameter distribution.
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We started the inference by choosing the independence proposal density q3 to be uniform

on [0, 50]7 and setting r1 = 0.7 and r2 = 0.25. The outcome of a simulated annealing

run was taken as starting value for RWMH, making a correction for a burn-in phase

obsolete. A look at the copula data from Figure 6.11(a) reveals that fitting standard

pair copulas to the data – at least on the unconditioned level – is rather involved: the

density plot of the (ŭ2, ŭ7)-pair of the first run (Figure 6.11(b)), for instance, has a non-

standard bent ridge shape with a very dense region at high ŭ7 and low ŭ2 values. The

fitting issue results in rather low acceptance rates for the copula based algorithms (Table

6.5). Nevertheless, both copula algorithms had again comparatively better INEFF’s and

generated far more independent samples than RWMH, IMH, CovRWMH, M-GaA, or

SMALA (Figure 6.12(a) and 6.12(b) and Table 6.5). Except for the M-GaA algorithm,

ACIMH outperformed all non-copula based sampling schemes more than 2.5-fold with

respect to (I2). The prerun samples were transformed to [0, 1]7 using fitted normal

densities for the margins of k1, k2, k3, k4, τ , and k5 and a fitted lognormal density for

the margin of k6. Owing to the complexity of the system, we used 3,000 samples to

fit all copulas involved. By sequential adjustment of the proposal function during the

sampling process ACIMH could increase (I1) and (I2) compared to CIMH. The average

number of pair copula family updates in every ACIMH run was 48%, i.e. almost

every second pair copula was fitted to have different copula types compared to the

fit before. The order of the variables ι was chosen to best capture strong pairwise

dependencies in the samples. More precisely we set ι(1) = 3, ι(2) = 1, ι(3) = 2, ι(4) =

4, ι(5) = 5, ι(6) = 6, ι(7) = 7. SMALA had in average rather high INEFF’s and was

even more time consuming than the copula based samplers, i.e. the time needed for

the computation of the geometric tensor could not be compensated by vast traversals

through the parameter space. On the other hand, the second order moments based

CovRWMH and M-GaA algorithms yielded already good sampling performances with

respect to (I2) as Figure 6.12(b) shows. Clearly, since the covariance matrix Ĉ is based

on a total of 3,000 prerun samples it covers the second order moment of the posterior

in average better than the initial covariance matrices of the M-GaA proposal function.

CovRWMH therefore outperforms M-GaA with respect to (I1). Conversely, the prerun-

time needed to tune Ĉ slows down CovRWMH and gives M-GaA an advantage with

respect to (I2). As mentioned earlier the actual acceptance rate of M-GaA drops

to 14.86% ± 4.79% (Table 6.5) and failed to meet the predefined acceptance rate of
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ŭ1
−0.10

ŭ6

−0.42

ŭ5
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Figure 6.11: Copula data (c.f. Section 6.1.1 (ii)) of the first run used to fit the CIMH

and initial ACIMH copula on 3,000 of the 50,000 MCMC iterations. For uniformization

normal distributions were chosen for k1, k2, k3, k4, τ , and k5 and a lognormal distribution

for k6. The diagonal displays the histograms of the sample marginals and the numbers in

the upper right triangle the estimated Kendall’s τ ’s. (b) Density plot of the (ŭ2, ŭ7) copula

data pair corresponding to (k2, k6) of the first run. Red areas depict higher, blue areas

lower density values.

α0 = 23%. It is nevertheless higher than the ones of IMH, SMALA, CIMH, or ACIMH.

In summary, although CIMH and ACIMH somewhat struggle to cover the complex

posterior distribution, which is indicated by the low (I1) index (Figure 6.12(a)), they

nevertheless yield a superior sampling performance with respect to (I2) compared to

all other algorithms considered (Figure 6.12(b)).

Our Bayesian MCMC approach revealed a strong indeterminacy with respect to the

parameters of the system. There e.g. exist strong dependencies between k2 and k6

and k5 and k6 (compare pairs (ŭ2, ŭ7) and (ŭ6, ŭ7) of Figure 6.11(a)). Table 6.4 shows

the marginal posterior means, modes (MAP estimates), and 90% posterior quantile

based credible intervals for the concatenated data of 10 thinned runs for the respective

algorithms RWMH, IMH, CovRWMH, CIMH, and ACIMH. The MAP estimates of the

time τ a STAT5 molecule remains in the nucleus is ≈ 4 minutes. This means that

the cytoplasmic release turns out to be a bit faster than the value of ≈ 6.4 minutes
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6.3 Performance of CIMH and ACIMH

(a) (b)

Figure 6.12: Results for the JAK2-STAT5 model. Figure (a): Quotient of acceptance

rate and INEFF. Figure (b): Number of independent samples drawn per second. Error

bars show the estimated standard errors based on 10 runs.

Sampler i.i.d. samp. INEFF AR (%) time (sec.)

ACIMH 105.9± 19.5 658.4± 128.8 8.38± 1.38 6635.7± 197.7

CIMH 93.0± 48.1 1859.1± 591.1 8.03± 1.17 6339.7± 195.8

SMALA 47.0± 26.9 3242.1± 968.4 13.92± 4.96 7175.3±2211.3

M-GaA 40.3± 19.1 2922.3±1023.4 14.86± 4.79 7041.9±2346.3

CovRWMH 35.7± 15.6 3573.4± 887.0 29.04± 3.40 5574.8± 34.8

IMH 10.9± 2.4 5366.2± 597.6 0.04±4·10−3 4105.8± 40.3

RWMH 7.6± 0.6 6406.9± 463.3 21.47± 0.60 2328.9± 26.8

Table 6.5: JAK2-STAT5 pathway model. Depicted are the average number of i.i.d.

samples per run (ESS), INEFF’s, acceptance rates (AR), and sampling times based on 10

runs including estimated standard errors. All samplers ran for 50,000 MCMC proposals.

computed by Swameye et al. [2003]. Nevertheless τ ≈ 4 minutes is contained in their

confidence interval of (3.8, 6.9) minutes. All other results coincide well. Overall, the

system represents a very challenging example for MH sampling schemes and is thus a

good benchmark for performance evaluation.

6.3.5 Robustness with respect to the choice of the pair copula decom-

position and cdf’s for prerun sample transformation

Two very crucial factors for the performance of CIMH and ACIMH are the goodness-

of-fit of (i) the pair copula decomposition and (ii) the cdf’s for the transformation
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of the prerun samples. We already inferred the effect of applying oversimplified cop-

ula decompositions: as the independence copula is defined by C : [0, 1]n −→ [0, 1],

(u1, . . . , un) 7→
∏n
i=1 ui, the IMH is essentially a CIMH algorithm with an indepen-

dence copula based proposal function. The JAK2-STAT5 example showed that we can

run into serious problems to fit an appropriate decomposition. More involved tech-

niques such as fitting mixtures of pair copulas as well as non or semi parametric copula

density estimation and sample generation (Hu [2006]) are therefore needed in future

applications. As Kim et al. [2007] showed, the latter can in some cases considerably

improve the robustness against misspecification of the marginal distribution types for

Gi(ξ|γi). To assess the misspecification effect, we resampled the example of Chapter

6.3.2 over 10 runs using fitted lognormal distribution functions on the one hand and

fitted normal distribution functions on the other hand. The amount of independent

samples per second dramatically dropped by a factor of 9 when applying lognormal dis-

tributions. The index (I1) even decreased by a factor of 45. The issue of modeling the

dependency structure therefore needs to be considered carefully. As mentioned above,

(I1) can be taken as index for the goodness-of-fit of the copula proposal function. A

value close to 1 guarantees an efficient sampling performance.

6.4 Conclusions on CIMH and ACIMH

In summary, we saw that the vine copula based sampling schemes CIMH and ACIMH

showed superior performance compared to RWMH, IMH, and CovRWMH in every

example. They outperformed the MCMC algorithms SMALA and M-GaA on complex

systems, such as the JAK2-STAT5 pathway. Especially in the first three examples the

copula based approaches covered the dependency structure of the posterior very well,

which resulted in high sampling efficiencies. Avoiding computationally costly copula

updates CIMH is doing best on these simple systems. However, in the complex JAK2-

STAT5 case these updates could improve the performance of ACIMH by fine-tuning

the transition function. The copula data of the JAK2-STAT5 posterior indicated that

non-standard distributions for marginalization might improve the sampling efficiency

even more; a topic that should be addressed in further research. Nevertheless, CIMH

and ACIMH are yet promising concepts for the inference of dynamical systems.
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7

Model inference of the

JAK1-STAT3 pathway

We already used a mathematical model of the JAK2-STAT5 pathway in Chapter 6.3.4 to

show that ACIMH is capable of efficiently inferring complex dynamical systems of this

type. In the current chapter we focus on the question, whether tyrosine-phosphorylated

STAT3 dimers can directly work as transcription factors in the JAK1-STAT3 pathway1?

From a biological point of view this is of relevance since IL-6 stimulation controls the

spreading of microbes in inflamed cells and endorses cell regeneration after injury as

could be shown in mouse hepatocytes (Bonizzi & Karin [2004]).

Similarly to the JAK2-STAT5 case, STAT3 is activated, i.e. phosphorylated, by JAK1

upon association with the IL-6 stimulated glycoprotein 130 (gp130) transmembrane

receptor. To reach full transcription factor activity the STAT3 dimer can also be

serine phosphorylated (see Wen et al. [1995]). The latter is however not necessary for

the STAT3 dimer to work as transcription factor in the nucleus. In the following we

therefore infer the effect of tyrosine-phosphorylated STAT3 dimer transcription factors.

1For a thorough introduction to the JAK-STAT pathway see Chapter 2.4.2.

127



7. MODEL INFERENCE OF THE JAK1-STAT3 PATHWAY

7.1 Experimental JAK1-STAT3 data

Our data is based on primary mouse hepatocytes (liver cells) stimulated with 1nm

IL-6. Measured were the protein concentrations of total cytoplasmic STAT3, tyrosine-

phosphorylated gp130, tyrosine phosphorylated STAT3, as well as tyrosine-serine-phos-

phorylated STAT3 dimers on a 90 minute time scale using quantitative immunoblotting

as described in Schilling et al. [2005] and Bohl [2009]. The data was kindly provided

by Prof. Dr. U. Klingmüller from the Deutsches Krebsforschungszentrum (DKFZ) in

Heidelberg, Germany. Unfortunately, the strength of measurement errors is unknown.

According to Bohl [2009], phosphorylated gp130 can be directly identified with phos-

phorylated JAK1 proteins. All measurements were normalized using calibrator or nor-

malizer proteins and therefore contain arbitrary units.

7.2 Mathematical models for the JAK1-STAT3 pathway

For inference of the JAK1-STAT3 pathway we adapted the JAK2-STAT5 mass action

DDE model of Chapter 6.3.4 by including an additional serine phosphorylation step of

the STAT3 dimer. Applying the linear chain trick to convert the defining DDE system

into an ODE system (Appendix E, Equation (E.3)), the model reads

dx1(t)

dt
= −k1x1(t)pgp130(t) + 2k5x7(t)

dx2(t)

dt
= −k2x

2
2(t) + k1x1(t)pgp130(t)

dx3(t)

dt
= −k3x3(t) +

1

2
k2x

2
2(t)

dx4(t)

dt
= −k4x4(t) + k3x3(t)

dx5(t)

dt
= −k5x7(t) + k4x4(t)

dx6(t)

dt
=

2

τ
(x4(t)− x6(t))

dx7(t)

dt
=

2

τ
(x6(t)− x7(t)),

(7.1)

where x1(0) = 1 and x2(0) . . . = x7(0) = 0 in arbitrary units. The concentrations

x5(t), x6(t), x7(t) are auxiliary and represent the concentration of STAT3 in the nu-
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7.2 Mathematical models for the JAK1-STAT3 pathway

cleus. However, with respect to inference they are of no further interest. pgp130(t)

denotes the time-dependent tyrosine-phosphorylated gp130 stimulation function and

τ the time lag between STAT3 entering the nucleus and dephosphorylated cytoplas-

mic release. Furthermore, x1(t), x2(t), x3(t), x4(t) are the concentrations of unphos-

phorylated, tyrosine-phosphorylated, tyrosine-phosphorylated dimerized, and tyrosine-

serine-phosphorylated dimerized STAT3, respectively. The law of mass conservation

again claims k2 ≥ k3 and k4 ≥ k5. A schematic representation of the model can be seen

in Figure 7.1(a). We are given the following observations:

yε1(ti) = k6(x2(ti) + 2x3(ti) + ε1(ti)), the amount of tyrosine-phosphorylated STAT3

yε2(ti) = k7(2x4(ti) + ε2(ti)), the amount of tyrosine-serine-phosphorylated STAT3

yε3(ti) = k8(x2(ti) + 2x3(ti) + 2x4(ti) + ε3(ti)), the total cytoplasmic STAT3,

at 30 time points t1, . . . , t30 (in minutes) in the interval [0, 90]. Here, k6, k7 and k8

are introduced due to the relativity of the measurements. It has to be noted that

k1 cannot be inferred without any further knowledge about the gp130 measurements

as it includes a relativity term of the normalized gp130 measurements. The quantities

εj(ti) denote normally distributed measurement errors included in the data. We assume

that all tyrosine-phosphorylated STAT3 molecules are converted into tyrosine-serine-

phosphorylated STAT3 (Bohl [2009]). Therefore, k7 can be approximated via k6 times

the estimated mean quotient r of yε1(ti) and yε2(ti) which eliminates one parameter.

The remaining eight parameters ξ = (k1, k2, k3, k4, k5, τ, k6, k8)> are time-independent.

Again, for readability we omitted the dependence of the solutions xi(t) to (7.1) on ξ.

Since the JAK2-STAT5 pathway is directly comparable to the JAK1-STAT3 pathway

(Aaronson & Horvath [2002]), we used the rates given in Timmer et al. [2004] as

prior information, i.e. we chose k1 ∼ N0(0.021, (0.021
2 )2), k2 ∼ Nk3(2.46, (2.46

2 )2), k4 ∼
Nk5(0.107, (0.107

2 )2), k5 ∼ N0(0.107, (0.107
2 )2) and τ ∼ N0(6.4, (6.4

2 )2), where Na(·, ·)
denotes the a left-truncated univariate normal distribution. The rates k3, k6, and

k8 were chosen to be uniform on the interval [0, 1000]. Here, the lower limit 0 was

canonically introduced by the non-negativity constraint for reaction rates. For y :=

{yε1(t1), . . . , yε1(t30), yε2(t1), . . . , yε2(t30), yε3(t1), . . . , yε3(t30)} and the prior π(ξ) this leads

to the posterior distribution

π(ξ|y) ∝
30∏
i=1

Φ(yε1(ti)|y1(ti), σ
2
1) · Φ(yε2(ti)|y2(ti), σ

2
2) · Φ(yε3(ti)|y3(ti), σ

2
3) · π(ξ),
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Figure 7.1: (a) Schematic representation of the first JAK1-STAT3 pathway model (7.1):

Interleukin 6 (IL-6) binds to the gp130 transmembrane receptor. Monomeric STAT3 (x1)

is tyrosine phosphorylated (x2) by the activated JAK1/gp130 complex in the cytoplasm.

After dimerizing the tyrosine-phosphorylated STAT3 dimer (x3) serine phosphorylates (x4),

gets transported to the nucleus and binds to the promoter target gene region. Subsequently

it is dephosphorylated and released back into the cytoplasm. (b) Graphical representation

of the alternative JAK1-STAT3 pathway model (7.2): The model contains an additional

transfer of tyrosine-phosphorylated STAT3 dimers (x3) into the nucleus.

where y1(t) = k6(x2(t) + 2x3(t)), y2(t) = k6r(2x4(t)) and y3(t) = k8(x1(t) + x2(t) +

2x3(t) + 2x4(t)) for the solutions x1(t), x2(t), x3(t), and x4(t) of (7.1). The standard

deviations σ1, σ2, and σ3 of the measurement errors were inferred by simulated anneal-

ing (Chapter 4.6) before starting posterior inference. Like in the JAK2-STAT5 pathway

we assume normally distributed measurement/model errors for the likelihood. Again,

we performed a Kolmogorov-Smirnov test on normality to ensure that the combined

measurement/model error can not possibly be non-Gaussian. The null-hypothesis of

non-Gaussian noise could not be rejected on an α = 5% significance level for tyrosine-

phosphorylated STAT3, tyrosine-serine-phosphorylated STAT3, or the total cytoplas-

mic STAT3. The test was based on the corresponding time course of the MLE of model

(7.1). The MLE was obtained by simulated annealing.

As mentioned above it is biologically unclear whether the tyrosine-phosphorylated

STAT3 dimer has a strong potential to directly work as transcription factor. We there-

fore compared our first model (7.1) to a model including an additional direct x3(t)
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7.3 Inference of the JAK1-STAT3 model

nucleus import model: once again applying the linear chain trick we have

dx1(t)

dt
= −k1x1(t)pgp130(t) + 2k5x8(t) + 2k5x10(t)

dx2(t)

dt
= −k2x

2
2(t) + k1x1(t)pgp130(t)

dx3(t)

dt
= −k3x3(t)− k9x3(t) +

1

2
k2x

2
2(t)

dx4(t)

dt
= −k4x4(t) + k3x3(t)

dx5(t)

dt
= −k5x8(t) + k4x4(t)

dx6(t)

dt
= −k5x10(t) + k9x3(t)

dx7(t)

dt
=

2

τ
(x5(t)− x7(t))

dx8(t)

dt
=

2

τ
(x7(t)− x8(t))

dx9(t)

dt
=

2

τ ′
(x6(t)− x9(t))

dx10(t)

dt
=

2

τ ′
(x9(t)− x10(t)),

(7.2)

with x1(0) = 1 and x2(0) . . . = x10(0) = 0 in arbitrary units and time delays τ , τ ′

for the nuclear time spent by the tyrosine-serine-phosphorylated STAT3 dimer and the

tyrosine-phosphorylated STAT3 dimer, respectively. Here, x5(t), . . . , x10(t) are auxil-

iary. We claim k2 ≥ k3, and k4 + k9 ≥ k5. The posterior distribution remains almost

unchanged, except that the defining parameter vector of the solutions xi(t) of (7.2) is

given by ξ = (k1, k2, k3, k4, k5, τ, τ
′, k6, k8, k9)> and the prior distribution of model one

is extended by τ ′ ∼ N0(6.4, (6.4
2 )2) and k9 ∼ Nk5−k4(0.107, (0.107

2 )2) for the additional

parameter variables. Due to a different STAT3 dimer transcription activity (Wen et al.

[1995]), we allow τ 6= τ ′. All rates shared by both models are governed by the very

same prior distributions. This means the choice of priors does not influence the model

inference process. A schematic representation of (7.2) is depicted in Figure 7.1(b).

7.3 Inference of the JAK1-STAT3 model

We now want to analyze the effect of direct tyrosine-phosphorylated STAT3 dimer im-

port into the nucleus, i.e. we compare the models (7.1) and (7.2) using thermodynamic
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7. MODEL INFERENCE OF THE JAK1-STAT3 PATHWAY

(a) (b)

(c) (d)

Figure 7.2: JAK1-STAT3 data. (a) pgp130 data (green dots) and according fitted pgp130

stimulating function (solid green line). (b) Time courses for the numerical solution of

tyrosine-phosphorylated STAT3 in the cytoplasm (y1(t)). Depicted are the posterior me-

dian solution (dashed blue line) as well as the according 95% credible interval (shaded

area) of the thinned T30 = 1 ACIMH run for model (7.1). Blues dots represent given mea-

surements yε1(ti). (c) Similarly to (b), the measurements (red dots), the posterior median

solution (dashed red line), and the 95% credible interval (shaded area) for the numerical

solution of y2(t), i.e. tyrosine-serine-phosphorylated STAT3 in the cytoplasm. (d) Similarly

to (b), the measurements (black dots), the posterior median solution (dashed black line),

and the 95% credible interval (shaded area) for the numerical solution of y3(t), i.e. total

STAT3 in the cytoplasm.
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Figure 7.3: JAK1-STAT3 pathway model. Pairwise density plots for all parameter-pairs

of the posterior. Red areas depict higher, blue areas lower density values. The diagonal

displays the histograms of the sample marginals and the numbers in the upper right triangle

the estimated Kendall’s τ ’s.

integration (Chapter 3.4.3). For inference we chose the independence proposal density

q3 of ACIMH to be uniform on [0, 1000]8 for model (7.1) and uniform on [0, 1000]10 for

model (7.2). Furthermore, r1 = 0.7 and r2 = 0.29, i.e. the copula sampling scheme q1

was used for ca. 70%, the CovRWMH sampling scheme q2 for ca. 29%, and q3 for ca.

1% of the proposals. Following Calderhead & Girolami [2009] the thermodynamic in-

tegration schedule Ti = (i/30)5, i = 0, ..., 30, was applied (see Equation (3.22)). Based

on 1,000,000 prerun samples for each Ti we computed the Bayes factor of model (7.2)
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7. MODEL INFERENCE OF THE JAK1-STAT3 PATHWAY

versus model (7.1) using 1,000,000 ACIMH proposals with copula update parameters

of R =100,000 and S =4 (see Equation (6.6)) in each Ti. The model prior probabil-

ity of each model was set to 1
2 . All copulas were fitted on a total of 3,000 samples.

Throughout the permutation function ι was chosen to be the identity function. For

uniformization we applied fitted normal distributions. Each ACIMH run was started

at an arbitrarily drawn sample from the according prior distribution. We applied the

Geweke test (Chapter 4.4) to correct for a burn-in phase in every chain. The resulting

Bayes factor computed to

B1,2 = 1.5 · 103 (7.3)

in favor of model (7.1). Including one standard error, this result is based on 453 ± 59

and 922 ± 149 effective samples for each Ti at average acceptance rates 9.11 ± 0.87%

and 8.10± 0.53% for model (7.1) and model (7.2), respectively. The solutions to (7.1)

and (7.2) were derived numerically applying the transformation of Appendix D as done

for the JAK2-STAT5 system. The time course for pgp130 was fitted prior to inference

using a rescaled lognormal density function (Figure 7.2(a)).

According to (7.3) the first model is favored decisively on Jeffreys’ scale of evidence.

The effect of direct tyrosine-phosphorylated STAT3 dimer import into the nucleus is

thus negligible. Henceforth we focus on model (7.1) for further inference. Model (7.1) is

identifiable as it differs by a second linear transformation step compared to the JAK2-

STAT5 model. The (posterior) time courses are depicted in Figure 7.2. Despite the

error prone total STAT data (Figure 7.2(d)) the model can cover the phosphorylated

STAT measurements well (Figure 7.2(b) and 7.2(c)). Due to the restriction of k4 ≥ k5

there is a strong correlation between theses two parameters (Figure 7.3). Based on k2 ≥

k3 higher order dependencies arise as can be seen in the pairwise density plot. Especially

k8 seems to inherit many nonlinear dependencies (last row of Figure 7.3). In contrast to

the JAK2-STAT5 pathway the nuclear abidance time decreases drastically (Table 7.1).

The MAP estimate for τ computed to 0.252 minutes = 15.12 seconds, while the upper

bound of the 95% credible interval is 2 minutes. This is unnaturally short. Here, the

error prone total STAT data might effect the result. The estimated marginal posterior

means, modes (MAP estimates), as well as the 90% posterior quantile based credible

intervals are given in Table 7.1. An identifiability analysis as introduced in Chapter 3.3
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7.3 Inference of the JAK1-STAT3 model

showed that all parameters are identifiable. Note that k1 contains a relativity constant

as mentioned above and is therefore not meaningful as such.

E[k1|y] 0.024 E[k5|y] 0.176

M [k1|y] 0.023 M [k5|y] 0.176

CI[k1|y] (0.014; 0.035) CI[k5|y] (0.131; 0.226)

E[k2|y] 1.869 E[τ |y] 0.625

M [k2|y] 1.436 M [τ |y] 0.252

CI[k2|y] (1.014; 3.432) CI[τ |y] (0.017; 2.082)

E[k3|y] 0.871 E[k6|y] 28.656

M [k3|y] 0.871 M [k6|y] 26.305

CI[k3|y] (0.356; 1.596) CI[k6|y] (22.900; 38.625)

E[k4|y] 0.182 E[k8|y] 3.674

M [k4|y] 0.178 M [k8|y] 3.657

CI[k4|y] (0.136;0.235) CI[k8|y] (3.394; 3.964)

Table 7.1: JAK1-STAT3 pathway model. Estimated marginal posterior means E[·|y],

modes M [·|y] (MAP estimates), and 90% posterior quantile based credible intervals CI[·|y]

for the parameters k1, k2, k3, k4, k5, τ, k6 and k8. The according units are [min−1] for all

ki’s and [min] for τ .
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8

Inference of biokinetic models for

zirconium processing in humans

Radioactive zirconium (Zr) isotopes are produced in large quantities in nuclear fission

reactors; one of the most common fragments in uranium fission is Zirconium-95 (95Zr).

For example, the estimated released 95Zr activity of the Fukushima and Chernobyl ac-

cidents is considered to have detrimental health effects not only via irradiation, but also

via the intake of edibles (Eidgenössisches Nuklearsicherheitsinspektorat Informations-

dienst [2011]; UNSCEAR [2008]). The estimation of radiation doses is indispensable

for risk analysis for humans exposed to radioactive substances (ICRP [1979, 1988]).

They provide limiting values of detrimental effects and build the basis for applications

in internal dosimetry (ICRP [2007]), the prediction for radioactive zirconium retention

in various organs (ICRP [1998]) as well as retrospective dosimetry, i.e. the estimation

of ingested amounts of zirconium for ex post measurements. This is crucial for occupa-

tional exposure (ICRP [1979]), and for patients undergoing diagnostic and therapeutic

nuclear medicine (ICRP [1988]).

In order to calculate the radiation dose and quantify the deposition of radioactivity

from the incorporated radionuclide inside the human body, the International Commis-

sion on Radiological Protection (ICRP) in ICRP [1989] recommends a compartment

model. It incorporates basic processes in the human physiological system (Guyton &

Hall [2006]; ICRP [1975, 1979, 1989]). All major organs and tissues are simplified in

the model structure as separate compartments that represent kinetically homogeneous
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PROCESSING IN HUMANS

amounts of radionuclides; the connections between organs and tissues are described

via transfer rates, i.e. model parameters that represent the exchange rates between

the individual mutually exclusive compartments. These multi-compartmental systems

along with their transfer parameters describing the kinetic behavior of radionuclides in

the human body are called biokinetic models (ICRP [1989]). Throughout we use the

terms biokinetic model and compartment model interchangeably. The transfer of sub-

stances into and out of compartments is governed by the law of mass balance. Transfer

parameters are frequently evaluated on the basis of experimental data obtained from

laboratory animals and, to a lesser extent, human beings (ICRP [1975]). Although

animal data is not directly comparable to human data, the former can nevertheless

be very helpful as prior information. In order to obtain more reliable dose estimates

for humans, Greiter and coworkers developed a novel biokinetic model (Greiter et al.

[2011]). It is based on the processing of non-radioactive Zr isotopes in 16 investigations

with 12 healthy human subjects. In our case in vivo measurements were taken in urine

and plasma (see Chapter 8.1). Although a global statistical analysis of the HMGU

model was provided in Li et al. [2011a,b], a thorough comparison of the ICRP and

HMGU model by a model selection approach was yet missing.

Applying thermodynamic integration in combination with CIMH we compared the

HMGU and ICRP models based on in vivo plasma and urine data of the 16 investiga-

tions. More precisely, the models were evaluated for each investigation individually and

for the concatenated data of all investigations. The latter allowed to infer transfer rates

(including credible intervals) for an average subject. We also provide an analysis based

on the (i) plasma data and (ii) urine data individually. Furthermore, the difference in

accretion of zirconium in bones is inferred. The Bayesian framework also yields credible

bounds for retrospective dose assessment of an average subject, this is, based on the

concatenated data of all 16 investigations. We provide a simple to use estimation table

for the prediction of initially ingested zirconium mass for ex post measurements. This

impacts the estimation of intake and radiation dose, especially the bone dose, when

aiming for personalized occupational monitoring data.
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8.1 Experimental zirconium data

The human biokinetic data was measured in a stable tracer study executed at the

Helmholtz Zentrum München (HMGU) (Greiter et al. [2011]). It includes 16 investi-

gations with ingestion of a investigation-specific amount of isotopically enriched stable

zirconium. The administered amount was based on the individuals weight, aiming at

a dose of 0.09mg stable tracer per kg body weight. Tracer concentrations were deter-

mined in blood plasma and urine. For the plasma data, samples were taken several

times during the first day in increasing intervals, and more scarcely later on. Urine

was collected completely in 12-24h periods on several days. The last samples were

taken at 100d after tracer administration. Tracer concentrations were normalized to

the respective tracer amount ingested in each investigation, such that the total ingested

amount corresponds 100% at t = 0 in the stomach. Concentrations in blood plasma

were expressed as % per kg plasma. The plasma concentrations were scaled by the total

amount of plasma in the body to get absolute concentrations (Alberts et al. [2002]).

Urine data was expressed as excretion rate in % per day.

8.2 Mathematical models for zirconium processing

The currently used compartmental model was recommended by the ICRP in ICRP

[1975, 1989, 1993] (Figure 8.1(a)). It consists of eleven compartments and 15 transfer

rates. Zirconium enters the body via the stomach compartment x9 and is processed

until it reaches any of the two final compartments urine, x7, or feces, x8. The transfer

compartment was taken to be identical with blood plasma. Some of the transfer rates

and compartments of the ICRP model are however physiologically questionable: The

direct mass transport from the two bone compartments to the urinary bladder contents

and upper large intestine compartments or the distinction between trabecular bone

surface and cortical bone surface as such. In order to address these shortcomings

Greiter et al. [2011] recently proposed an alternative HMGU model combining the two

bone compartments into one single compartment and replacing several mass flows by

physiologically more plausible transfer rates (Figure 8.1(b)). Altogether both models
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Figure 8.1: (a) Schematic representation of the ICRP model. The model consists of eleven

compartments x1,. . . ,x11 and 15 time independent transfer rates k1,. . . ,k8,k13,. . . ,k19. (b)

Schematic representation of the HMGU model. The model consists of ten compartments

x1,. . . ,x10 and twelve transfer rates k1,...,k12. In both models zirconium enters the body

in the stomach compartment x9 and diffuses through the system until it reaches either one

of the two final compartments urine, x7, or feces, x8. The gray compartments x1 and x7

are directly related to the datasets measured.

share eight transfer rates, which we denote by k1, . . . , k8. Transfers present in just one

of the models have a unique index to facilitate distinction.

The dynamics of both models are described by a system of coupled linear first-order

ordinary differential equations (ODEs). The ICRP model reads
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dx1(t)

dt
= (−k1 − k2 − k13)x1(t) + k7x10(t)

dx2(t)

dt
= k1x1(t) + (−k14 − k15)x2(t)

dx3(t)

dt
= k2x1(t) + (−k16 − k17)x3(t)

dx4(t)

dt
= k14x2(t) + k16x3(t)− k3x4(t) + k18x11(t)

dx5(t)

dt
= k15x2(t) + k17x3(t)− k4x5(t) + k8x10(t) + k19x11(t)

dx6(t)

dt
= k4x5(t)− k5x6(t)

dx7(t)

dt
= k3x4(t)

dx8(t)

dt
= k5x6(t)

dx9(t)

dt
= −k6x9(t)

dx10(t)

dt
= k6x9(t) + (−k7 − k8)x10(t)

dx11(t)

dt
= k13x1(t) + (−k18 − k19)x11(t).

(8.1)

The HMGU model on the other hand is defined by

dx1(t)

dt
= (−k1 − k2 − k9 − k10)x1(t) + k11x2(t) + k12x3(t) + k7x10(t)

dx2(t)

dt
= k1x1(t)− k11x2(t)

dx3(t)

dt
= k2x1(t)− k12x3(t)

dx4(t)

dt
= k9x1(t)− k3x4(t)

dx5(t)

dt
= k10x1(t)− k4x5(t) + k8x10(t)

dx6(t)

dt
= k4x5(t)− k5x6(t)

dx7(t)

dt
= k3x4(t)

dx8(t)

dt
= k5x6(t)

dx9(t)

dt
= −k6x9(t)

dx10(t)

dt
= k6x9(t) + (−k7 − k8)x10(t).

(8.2)

In both models x9(0) = 100% and therefore xj 6=9(0) = 0% at time point t = 0, this is,
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the complete amount of zirconium is initially contained in the stomach compartment.

For each investigation i we assume that the data

yi = {xi,11 , xi,21 , . . . , x
i,npi
1 , ẋi,17 , ẋi,27 , . . . , ẋ

i,nui
7 }

follows the solution xξm(t) of the differential equation given in (8.1) and (8.2) for any

of the two models Mm and some corresponding parameter vector ξm. The model index

m ∈ {H, I}, where MI is the ICRP model and MH the HMGU model. Corresponding

to the notation in Figure 8.1(a) and 8.1(b), ξI = (k1, . . . , k8, k13, . . . , k19) and ξH =

(k1, . . . , k12). While for investigation i, xi,·1 indicate measurements in plasma, i.e. in the

transfer compartment x1, ẋi,·7 designate measurements of the excretion rate in the urine

compartment x7. The expressions npi denote the number of measurements in plasma

and nui the number of measurements in urine for investigation i. Assuming furthermore

that all data points contain normally distributed measurement errors, the investigation

i and model Mm specific likelihood function has the form

Li(ξ
m|yi,m) =

npi∏
α=1

Φ

(
xi,α1 |x

p
ξm(tα), σpi

)
︸ ︷︷ ︸

L
p
i (ξm|yi,m)

nui∏
β=1

Φ

(
ẋi,β7 |

d

dt
xuξm(tβ), σui

)
︸ ︷︷ ︸

Lui (ξm|yi,m)

,

where xpξm(tα) denotes the solution for the transfer compartment x1 at time point tα of

the according ODE system, corresponding to the measurement at xi,α1 , for the parame-

ter vector ξm. Furthermore, d
dtx

u
ξm(tβ) is the derivative of the solution for the urine com-

partment x7 at time point tβ, corresponding to the measurement ẋi,β7 , while Φ(·|µ, σ)

is the univariate probability density function of the normal distribution with mean µ

and standard deviation σ. In order to take into account the biological variability, the

combined model/measurement errors for plasma, σpi , and for urine, σui , are fitted inves-

tigation specifically by simulated annealing (Chapter 4.6) before starting the MCMC

sampling process. We tested all 16 investigations for non-Gaussian measurement/model

error using individual MLE based time courses and applying the Kolmogorov-Smirnov

test on normality. The null-hypothesis of non-Gaussian noise could not be rejected on

an α = 5% significance level for any investigation. The complete data (i.e. concatenated

data y = {by1, . . . ,y16}) likelihood is given by LALL(ξm|yi,m) =
∏16
i=1 Li(ξ

m|yi,m)

where in all Li(ξ
m|yi,m) the same fitted investigation independent σpi = σp and
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σui = σu are used. For the calculation of the likelihood L·(ξ
m|y·,m) we solved the

according ODE system semi-analytically: Writing the ODE system as

dxξm(t)

dt
= A(ξm) · xξm(t),

where xξm(t) is the vector of all the compartments of model Mm and the time in-

dependent matrix A(ξm) represents all the interactions between these compartments,

depending on the transfer rate values ξm, the corresponding analytical solution is given

by

xξm(t) = eA(ξm)t · xξm(t = 0).

We computed the matrix exponential eA(ξm)t by eigenvalue decomposition, i.e.

eA(ξm)t = U(ξm)


ed1(ξm)t 0 · · · 0

0 ed2(ξm)t 0
...

. . .
...

0 0 · · · edV (ξm)t

U(ξm)−1

for the eigenvalues d1(ξm), d2(ξm), . . . , dV (ξm) of A(ξm) and some orthonormal matrix

U(ξm). The eigenvalues were estimated using MATLAB’s eig function. As we have

no initial preference for any of the models we chose a uniform model prior. The model

specific, investigation independent prior distributions π(ξm|m) are based on combined

human/animal data as specified in the following section.

8.3 Prior information for zirconium processing and

algorithmic set up

Since the problem of radiation protection is of great relevance, quite a large number

of animal studies have been conducted. These yield excessive prior knowledge for a

Bayesian modeling approach. As the ICRP model is the recommended model used for

dose estimation, there exists information on the distribution types of the parameters

involved in the model along with confidence intervals (Li et al. [2011a], and Table 8.1).

The prior informations are based on a large number of studies and well-established

over the years. Even for the HMGU model, detailed prior information is available from

previous studies (Li et al. [2011a,b], and Table 8.1). Here, the prior informations are

in part directly derived from ICRP recommendations, plus information gained from
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additional experiments based on injected zirconium doses (Li et al. [2011a]). As we

do not use the injection data for our analysis, the HMGU prior informations are not

biasing the sampling outcome.

It is noteworthy that of the eight parameters shared in both models, k8 is the only

one having different distributions in the ICRP and HMGU model. Due to a lack of

knowledge of the dependency structure between the parameters, the multivariate prior

distribution π(ξm|m) of model Mm was taken to be the product of the univariate prior

distributions π(ξm|m) for each parameter kmr , i.e. π(ξm|m) =
∏
r π(kmr |m). Each uni-

variate prior distribution was truncated at zero. While Bayes factors were computed

for each investigation separately (see Chapter 8.4.3), the same prior information was

applied throughout all investigations. This is reasonable, as the priors contain infor-

mation from a huge variety of different preceding experiments.

We again used thermodynamic integration (see Chapter 3.4.3) in combination with the

CIMH algorithm in order to compare the ICRP model with the HMGU model based on

Bayes factors. For all our applications the thermodynamic integration schedule Ti =

(i/29)5, i = 0, ..., 29, was applied (see Equation (3.22)). The independence proposal

function q3 of CIMH was chosen to be the product of the according prior distributions.

Furthermore, r1 = 0.89 and r2 = 0.1, i.e. the copula sampling scheme q1 was used for ca.

89%, the CovRWMH sampling scheme q2 for ca. 10%, and q3 for ca. 1% of the proposals.

Throughout the permutation function ι was chosen to be the identity function. Fitting

copula distributions was done in preruns containing 1,000,000 unthinned samples each.

They were generated for each investigation and model separately. For uniformization of

the prerun samples, we naturally applied the according prior distributions of the models

at hand. Before starting the MCMC sampling procedure, the maximum a posteriori

parameter estimates were computed by simulated annealing and used as initial MCMC

sampling values. This makes a burn-in period dispensable. Finally, all Bayes factors

were computed based on 30,000 proposals of the CIMH algorithm at each Ti throughout

all applications.
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ICRP model

Par. Compartments Med. (d−1) 99.7% CI Distribution µ/a σ/c b

k1 TC → CBS 0.69 [0.086, 5.52] LN(µ, σ) -0.3711 0.6931

k2 TC → Other 1.39 [0.174, 11.12] LN(µ, σ) 0.3293 0.6931

k3 UBC → Urine 12 T(a, b, c) 6 8 24

k4 UpLI → LoLI 1.8 T(a, b, c) 0.9 1.2 3.6

k5 LoLI → Feces 1 T(a, b, c) 0.3 1 1.7

k6 Stomach → SI 24 T(a, b, c) 12 16 48

k7 SI → TC 0.06 [0.0075, 0.48] LN(µ, σ) -2.8134 0.6931

k8 SI → UpLI 6 T(a, b, c) 3 4 12

k13 TC → TBS 0.69 [0.086, 5.52] LN(µ, σ) -0.3711 0.6931

k14 CBS → UBC 5.8 · 10−5 [5.8 · 10−6, 1.1 · 10−4] N(µ, σ) 5.8 · 10−5 1.7 · 10−5

k15 CBS → UpLI 1.2 · 10−5 [1.2 · 10−6, 2.2 · 10−5] N(µ, σ) 1.2 · 10−5 3.5 · 10−6

k16 Other → UBC 0.083 [0.0083, 0.158] N(µ, σ) 0.083 0.025

k17 Other → UpLI 0.0165 [0.00165, 0.0314] N(µ, σ) 0.0165 0.00495

k18 TBS → UBC 5.8 · 10−5 [5.8 · 10−6, 1.1 · 10−4] N(µ, σ) 5.8 · 10−5 1.7 · 10−5

k19 TBS → UpLI 1.2 · 10−5 [1.2 · 10−6, 2.2 · 10−5] N(µ, σ) 1.2 · 10−5 3.5 · 10−6

HMGU model

Par. Compartments Med. (d−1) 99.7% CI Distribution µ/a σ/c b

k1 TC → Bone 0.10 [0.013, 0.8] LN(µ, σ) -2.3026 0.6931

k2 TC → Other 1.35 [0.17, 10.8] LN(µ, σ) 0.3001 0.6931

k3 UBC → Urine 12.0 T(a, b, c) 6.0 8.0 24.0

k4 UpLI → LoLI 1.8 T(a, b, c) 0.9 1.2 3.6

k5 LoLI → Feces 1.0 T(a, b, c) 0.3 1.0 1.7

k6 Stomach → SI 24.0 T(a, b, c) 12.0 16.0 48.0

k7 SI → TC 0.03 [1.1 · 10−3, 0.81] LN(µ, σ) -3.5066 1.0986

k8 SI → UpLI 17.21 [0.64, 464.67] LN(µ, σ) 2.8455 1.0986

k9 TC → UBC 0.031 [0.0011, 0.8370] LN(µ, σ) -3.4738 1.0986

k10 TC → UpLI 0.0062 [0.0002, 0.1674] LN(µ, σ) -5.0832 1.0986

k11 Bone → TC 6.9 · 10−5 [8.7 · 10−6, 5.6 · 10−4] LN(µ, σ) -9.5769 0.6931

k12 Other → TC 0.53 [0.066, 4.24] LN(µ, σ) -0.6349 0.6931

Table 8.1: Overview of priors for the zirconium models. The tables are based on Li et al.

[2011a], where the confidence intervals (CI), the medians (Med.) as well as the parameters

of the normal and lognormal distributions were calculated according to Appendix F. Ab-

breviations are: LN(µ, σ) for a lognormal distribution with location parameter µ and scale

parameter σ, T(a, b, c) for a triangular distribution with lower limit a, upper limit b, and

mode c, as well as N(µ, σ) for a normal distribution with mean µ and standard deviation σ.

Furthermore TC= Transfer compartment; CBS = Cortical Bone Surface; Other = Other

Tissues; UBC = Urinary Bladder Contents; UpLi = Upper Large Intestine; LoLI = Lower

Large Intestine; SI = Small Intestine; TBS = Trabecular Bone Surface.
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8.4 Inference of the zirconium models

We now present the results of our analysis, which primarily addresses the question

of model selection between the HMGU and ICRP models. First several general re-

sults, such as investigation dependency of the Bayes factor and effects of parameter

correlations are shown, before turning to the results of the model selection, and their

consequences for the HMGU and ICRP models.

10−2 10−1 100 101 102

10−2

100

co
nc

en
tr

at
io

n 
[%

]

time [d]

   Plasma data   

 100 101 102

10−2

100

ex
cr

et
io

n 
ra

te
 [%

/d
]

time [d]

   Urine data   

 

 
Inv. 1
Inv. 2
Inv. 3
Inv. 4
Inv. 5
Inv. 6
Inv. 7
Inv. 8
Inv. 9
Inv. 10
Inv. 11
Inv. 12
Inv. 13
Inv. 14
Inv. 15
Inv. 16

Figure 8.2: Plasma and urine data for investigations 1-16 on log-log-scale.

8.4.1 Investigation specificity of transfer rates

In radiation protection the transfer rates for the biokinetics of radionuclides in the hu-

man body are derived from data collected in various independent experiments (ICRP,

2008). We here used plasma and urine measurements of 16 different investigations.

This poses the question whether the models should be compared based on the com-

plete dataset y = {y1, . . . ,y16}, or whether statistical evaluation should be done for

each investigation individually on yi for i = 1, . . . , 16. While the former approach
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results in one overall Bayes factor, the latter yields 16 investigation specific, not di-

rectly comparable Bayes factors. Figure 8.2 shows that all investigations follow the

same pulse-like time courses in the transfer compartment x1 while the excretion rates

in the urine compartment x7 exhibit an exponential decay behavior. However, zirco-

nium tracer concentrations showed up to a 50-fold difference between maximal plasma

concentrations, i.e. for investigation 10 (1.616%, ) and 6 (0.033%).

To test the hypothesis whether the diversity in concentration also effects transfer rates

and therefore the estimated Bayes factors, we pairwise compared the posterior sam-

ple marginals of the MCMC run (corresponding to the samples of T29 = 1) for the

parameter k7 of the ICRP model between all investigations by means of a Kolmogoroff-

Smirnov test. Here k7 was chosen as it directly affects the observed plasma levels

(Li et al. [2011b]). Except for one pair, all p-values were < 6 · 10−8, meaning that

the chance of falsely rejecting the hypothesis of comparable marginals is negligible.

Therefore, as the posterior marginal distributions are quite different, it can be deduced

that the basis for the Bayes factor, the joint posterior distribution, can differ quite

strongly with respect to the individuals. This indicated that each investigation should

be treated separately. Nevertheless, in order to infer the transfer rates of an average

subject (Table 8.5) the concatenated data has to be used. We therefore compared the

HMGU and ICRP model based on both the concatenated data y = {y1, . . . ,y16} and,

in order to account for the biological diversity, the individual patient specific datasets

yi (i = 1, . . . , 16). This could also be the basis for further analysis of influence factors,

such as weight or gender.

8.4.2 Parameter correlations

The posterior probabilities of both the HMGU and ICRP model show strong cor-

relation between the parameters k7 and k8 throughout all investigations. The esti-

mated Kendall’s τ ’s based on the preruns were τ̂HMGU = 0.8027 ± 0.01 and τ̂ICRP =

0.3452± 0.02. This can be explained as follows: At time point t = 0 the stomach com-

partment x9 is the only compartment with non-zero Zr concentration. It is exclusively

connected to the small intestines x10 in both models. Therefore, all Zr compounds

have to pass through x10, which further on distributes them to the observed transfer

compartment x1 via k7 or to the upper large intestines x5 via k8. Aberrations in one of
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Figure 8.3: Pairwise density plots for all parameter-pairs of the HMGU posterior. Red

areas depict higher, blue areas lower density values. The diagonal displays the histograms

of the sample marginals and the numbers in the upper right triangle the estimated Kendall’s

τ ’s.

148



8.4 Inference of the zirconium models

k 19

1e−55e−50.010.020.11e−57e−55 106 90.125400.71.22 310 202 42 8
1e−5

2e−5

0.00 k 183e−5
8e−5

0.03 k 17
0.050.01

0.02

−0.01 k 16
−0.010.02

0.05

0.15

0.03 k 15
−0.00−0.010.031e−5

2e−5

−0.01 k 14
−0.03−0.000.020.015e−5

1e−4

0.01 k 13
−0.02−0.010.090.02−0.025

10

0.04 k 8
0.010.010.020.000.00−0.11

6
9

−0.00 k 7
−0.01−0.010.02−0.030.020.190.16

0.07
0.12

−0.02 k 6
−0.03−0.000.02−0.010.020.00−0.00−0.08

25
40

0.02 k 5
−0.030.000.010.03−0.010.020.02−0.01−0.040.7

1.2

−0.01 k 4
−0.01−0.02−0.01−0.010.00−0.020.01−0.030.04−0.002

3

0.06 k 3
−0.000.020.000.02−0.020.02−0.020.020.010.04−0.02

10

20

0.01 k 2
−0.030.02−0.42−0.040.010.020.010.18−0.01−0.00−0.010.032

4

0.00

k 19

k 1
0.02

k 18

0.03

k 17

0.06

k 16

0.00

k 15

0.02

k 14

−0.36

k 13

−0.07

k 8

0.20

k 7

−0.04

k 6

−0.03

k 5

0.00

k 4

−0.00

k 3

0.06

k 2k 1

Figure 8.4: Pairwise density plot for all parameter-pairs of the ICRP posterior. Red areas

depict higher, blue areas lower density values. The diagonal displays the histograms of the

sample marginals and the numbers in the upper right triangle the estimated Kendall’s τ ’s.
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the parameters k7 or k8 thus have a direct effect on the amount of zirconium predicted

for x1. This affects the according posterior distributions. The same effect is found

for the complete data y (see pairwise scatterplots in Figure 8.4 and 8.3). Despite the

parameter dependencies, the posterior distributions of the ICRP and HMGU model

are identifiable for all 16 investigations, this is, the investigation specific maximum a

posteriori estimates are well defined and inferable (Figure 8.4 and 8.3).

8.4.3 Bayesian model comparison of the HMGU and ICRP models

Applying thermodynamic integration in combination with the CIMH algorithm we

compared the HMGU and the ICRP model based on (i) the concatenated data y =

{y1, . . . ,y16} and (ii) the individual investigation specific datasets yi (i = 1, . . . , 16).

This resulted in a total of 17 Bayes factors. We found that all Bayes factors favored the

HMGU model; in 14 out of the 17 cases even decisively (Table 8.2). Throughout, the

analysis was based on 30,000 proposals for each of the 30 Ti-levels in all 17 cases. Based

on 30,000 proposals the average ESS of the HMGU model including one standard error,

i.e. taken over all Ti levels and investigations, was 5832 ± 405. In case of the ICRP

model we obtained in average 5808 ± 252 (approximately independent) samples from

the Markov chains. This implied high acceptance rates for both models. The sampling

procedure thus captured the power posteriors very well.

In order to take a closer look at the contribution of the plasma and urine data to

the above results, we computed additional Bayes factors based on the likelihoods

L
p
i (ξ

m|yi,m) and Lui (ξm|yi,m) individually. Here, i = 1, . . . , 16, ALL and m ∈ {I,H},
where I represents the ICRP and H the HMGU model. The time courses already sug-

gested better coverage of plasma data by the HMGU model (Figure 8.5, and individual

time courses in Appendix G); for urine the situation is not that clear. This was con-

firmed by the Bayes factors: all 17 Bayes factors based on plasma data favored the

HMGU model; in ten cases even decisively (Table 8.3). For the urine data, three inves-

tigations slightly favored the ICRP model (Table 8.4). In summary, all decisive Bayes

factors are in favor of the HMGU model. This means the HMGU model was never

decisively rejected. On the other hand the ICRP model was decisively rejected in the

majority of cases. Hence, the HMGU model is superior over the ICRP model with
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Inv. BH,I AR HMGU AR ICRP ESS HMGU ESS ICRP

[min, med, max] [min, med, max] [min, med, max] [min, med, max]

ALL 1.2010 · 1011 [0.54, 0.57, 0.64] [0.27, 0.57, 0.60] [1500, 4643, 10000] [639, 4643, 10000]

1 71.7283 [0.56, 0.65, 0.70] [0.55, 0.63, 0.67] [1000, 6000, 15000] [2308, 6000, 10000]

2 114.6109 [0.59, 0.65, 0.69] [0.54, 0.56, 0.58] [2000, 7500, 15000] [1035, 5000, 10000]

3 59532.2127 [0.42, 0.61, 0.66] [0.47, 0.60, 0.66] [181, 5500, 10000] [1667, 6000, 15000]

4 1065.3125 [0.63, 0.66, 0.68] [0.55, 0.62, 0.64] [2500, 7500, 15000] [811, 6000, 15000]

5 219.0939 [0.60, 0.66, 0.69] [0.56, 0.62, 0.65] [3750, 7500, 15000] [1579, 6000, 15000]

6 4642.8755 [0.61, 0.63, 0.68] [0.57, 0.62, 0.66] [1072, 6000, 15000] [1765, 6000, 10000]

7 218.0765 [0.62, 0.66, 0.71] [0.60, 0.64, 0.67] [1667, 7500, 15000] [4286, 7500, 15000]

8 37.5182 [0.47, 0.61, 0.71] [0.59, 0.64, 0.69] [2308, 7500, 15000] [3334, 7500, 15000]

9 462.3241 [0.48, 0.57, 0.71] [0.41, 0.63, 0.67] [770, 6000, 15000] [698, 5500, 15000]

10 861.7574 [0.43, 0.60, 0.71] [0.44, 0.64, 0.68] [2000, 7500, 15000] [126, 5000, 10000]

11 117250.4521 [0.38, 0.49, 0.63] [0.49, 0.57, 0.59] [1072, 4286, 15000] [698, 4286, 7500]

12 177.9964 [0.26, 0.61, 0.72] [0.46, 0.62, 0.68] [313, 5000, 10000] [2308, 6000, 15000]

13 718.7546 [0.10, 0.44, 0.70] [0.53, 0.58, 0.60] [169, 4018, 15000] [2308, 4643, 10000]

14 35.8079 [0.09, 0.41, 0.69] [0.56, 0.64, 0.69] [345, 3000, 15000] [1500, 7500, 15000]

15 6287.6538 [0.22, 0.53, 0.70] [0.46, 0.64, 0.68] [121, 5500, 15000] [1000, 5000, 15000]

16 622.4126 [0.23, 0.56, 0.64] [0.51, 0.58, 0.59] [417, 3000, 10000] [1765, 5000, 10000]

Table 8.2: Bayes factors for the HMGU versus the ICRP model (BH,I) for investigation

1, . . . , 16 and the complete data model (ALL). Green color indicates a Bayes factor in favor

of the HMGU model. Shown are also the minimal, median, and maximal acceptance rates

(AR) and effective sampling sizes (ESS) for both models.

Inv. BpH,I AR HMGU AR ICRP ESS HMGU ESS ICRP

[min, med, max] [min, med, max] [min, med, max] [min, med, max]

ALL 34283.1711 [0.56, 0.61, 0.64] [0.41, 0.57, 0.60] [1000, 6750, 10000] [1875, 5000, 10000]

1 71.1549 [0.53, 0.65, 0.69] [0.56, 0.62, 0.66] [834, 6000, 30000] [455, 6000, 15000]

2 293.4270 [0.58, 0.64, 0.67] [0.59, 0.62, 0.66] [338, 7500, 15000] [546, 7500, 10000]

3 52297.4330 [0.45, 0.62, 0.66] [0.55, 0.61, 0.65] [1200, 6000, 15000] [1765, 6000, 15000]

4 2639.9965 [0.56, 0.60, 0.63] [0.50, 0.56, 0.57] [2308, 6000, 15000] [968, 3334, 10000]

5 473.1182 [0.59, 0.65, 0.69] [0.59, 0.63, 0.68] [3334, 8750, 15000] [1429, 7500, 15000]

6 3926.9639 [0.62, 0.65, 0.70] [0.48, 0.62, 0.66] [577, 7500, 10000] [698, 6000, 10000]

7 229.9698 [0.55, 0.64, 0.72] [0.59, 0.64, 0.68] [968, 6000, 15000] [2143, 6750, 15000]

8 127.7723 [0.38, 0.57, 0.72] [0.56, 0.64, 0.69] [667, 6750, 15000] [2308, 7500, 15000]

9 231.8086 [0.50, 0.57, 0.65] [0.58, 0.65, 0.69] [653, 4286, 15000] [3334, 7500, 15000]

10 115.6091 [0.53, 0.61, 0.65] [0.52, 0.58, 0.60] [215, 4643, 15000] [1667, 6000, 10000]

11 18.0543 [0.56, 0.65, 0.71] [0.59, 0.65, 0.69] [1000, 5500, 15000] [3750, 6750, 15000]

12 5.4764 [0.55, 0.61, 0.64] [0.56, 0.58, 0.60] [750, 6000, 15000] [2728, 5000, 15000]

13 14.1274 [0.50, 0.67, 0.71] [0.60, 0.65, 0.67] [1154, 7500, 15000] [4286, 7500, 15000]

14 7.4250 [0.59, 0.67, 0.72] [0.62, 0.65, 0.69] [2500, 7500, 15000] [2728, 8750, 15000]

15 21.6865 [0.56, 0.61, 0.65] [0.55, 0.58, 0.59] [750, 7500, 15000] [2000, 5000, 10000]

16 13.4114 [0.56, 0.66, 0.70] [0.59, 0.66, 0.68] [625, 7500, 30000] [3334, 7500, 15000]

Table 8.3: Bayes factors for the HMGU versus the ICRP model (BpH,I) for investigation

1, . . . , 16 and the complete data model (ALL) based on plasma data only. Green color

indicates a Bayes factor in favor of the HMGU model. Shown are also the minimal, median,

and maximal acceptance rates (AR) and effective sampling sizes (ESS) for both models.
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Inv. BuH,I AR HMGU AR ICRP ESS HMGU ESS ICRP

[min, med, max] [min, med, max] [min, med, max] [min, med, max]

ALL 47303749.2905 [0.42, 0.58, 0.65] [0.37, 0.57, 0.60] [35, 4286, 15000] [600, 4286, 10000]

1 1.0460 [0.66, 0.70, 0.73] [0.64, 0.66, 0.68] [5000, 10000, 15000] [3750, 7500, 15000]

2 3940.3951 [0.35, 0.54, 0.64] [0.54, 0.57, 0.60] [770, 4643, 10000] [2500, 5000, 7500]

3 1.3352 [0.59, 0.70, 0.73] [0.60, 0.67, 0.70] [2143, 8750, 15000] [4286, 7500, 15000]

4 34.7362 [0.46, 0.65, 0.72] [0.59, 0.65, 0.69] [380, 6000, 15000] [2143, 7500, 15000]

5 133.8984 [0.43, 0.59, 0.64] [0.55, 0.58, 0.60] [244, 4018, 15000] [2308, 5000, 10000]

6 2384.2435 [0.13, 0.48, 0.63] [0.58, 0.61, 0.62] [257, 3000, 15000] [1667, 4286, 7500]

7 1335.8332 [0.13, 0.50, 0.63] [0.58, 0.61, 0.62] [136, 3167, 10000] [2500, 4286, 10000]

8 0.2221 [0.57, 0.69, 0.72] [0.58, 0.66, 0.68] [3750, 10000, 15000] [3334, 7500, 15000]

9 0.1753 [0.33, 0.62, 0.70] [0.46, 0.63, 0.68] [235, 4286, 10000] [770, 7500, 15000]

10 0.1992 [0.48, 0.68, 0.71] [0.58, 0.64, 0.69] [1154, 10000, 30000] [2000, 6750, 15000]

11 2936.7417 [0.33, 0.48, 0.63] [0.52, 0.57, 0.60] [273, 3542, 15000] [2143, 5000, 7500]

12 11.4359 [0.51, 0.59, 0.64] [0.50, 0.57, 0.60] [546, 5500, 10000] [1072, 5000, 7500]

13 4.4105 [0.48, 0.64, 0.71] [0.59, 0.65, 0.69] [1000, 6750, 15000] [2728, 7500, 15000]

14 9.7741 [0.43, 0.54, 0.63] [0.53, 0.57, 0.60] [968, 5000, 15000] [1875, 5000, 10000]

15 160.0045 [0.40, 0.61, 0.71] [0.52, 0.63, 0.68] [320, 5000, 15000] [1875, 6000, 15000]

16 12003.8714 [0.30, 0.50, 0.63] [0.54, 0.61, 0.62] [366, 3334, 7500] [1500, 3750, 10000]

Table 8.4: Bayes factors for the HMGU versus the ICRP model (BuH,I) for investigation

1, . . . , 16 and the complete data model (ALL) based on urine data only. Green color

indicates a Bayes factor in favor of the HMGU model and red color a Bayes factor in favor

of the ICRP model. Shown are also the minimal, median, and maximal acceptance rates

(AR) and effective sampling sizes (ESS) for both models.

respect to zirconium processing in the human body. This not only holds investigation

specifically, but also based on the complete data.

The posterior median (MAP) as well as the according 95% credible intervals for the

HMGU parameter values based on the complete data y are given in Table 8.5. An

identifiability analysis as introduced in Chapter 3.3 showed that all parameter rates

are in fact identifiable. From a comparison with table 8.1, one can see that some

parameters are slightly shifted. Since these parameter values are derived from the

concatenated data, they are valid for all subjects and thus represent the parameters of

choice for an average subject.

8.4.4 Differences in radioactive 95Zr retention in bone predicted by

the HMGU and ICRP models

In internal exposure monitoring, biokinetic models are used to predict the organ reten-

tion or daily excretion of incorporated radionuclides (ICRP, 1998). With an interval of
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Figure 8.5: Posterior median solution (black line) and according 95% credible interval

(shaded area) for the plasma and urinary excretion rate time courses based on the posterior

HMGU and ICRP samples for the data y. Colored markers are the data points. For

readability we truncated the plasma plot at 1 · 10−5[%] and the urine plot at 1 · 10−6[%].

Param. k1 k2 k3 k4

95% CI [0.03,0.42] [0.63,2.99] [7.14,20.91] [1.03,3.18]

MAP 0.08 1.48 9.54 1.28

Param. k5 k6 k7 k8

95% CI [0.47,1.55] [17.57,45.15] [0.10,0.61] [19.58,134.48]

MAP 1.03 37.43 0.19 41.86

Param. k9 k10 k11 k12

95% CI [0.12,0.28] [6.75 · 10−4,0.06] [1.86 · 10−5,2.57 · 10−4] [0.14,0.82]

MAP 0.20 0.0028 3.57 · 10−5 0.27

Table 8.5: Posterior median (MAP) and according 95% credible intervals (CI) for the

HMGU parameters based on the complete data y = {y1, . . . ,y16}.

120 days the radioactivity of 95Zr possibly incorporated by occupational workers is rou-

tinely monitored by whole body counters. Depending on the intake route, the radiation

dose of bone surfaces or colon is taken as regulatory limit for a decision if an individual

is requested for person-specific monitoring (BMU, 2007). In this monitoring procedure,

the biokinetic model structure and parameters are used implicitly in the background.

The organ retention function is the solution of the model in each compartment; the

organ doses are directly related to the integral of radioactivity of 95Zr in source organs

over 50 years.

In order to compare the retention of 95Zr as predicted by the ICRP and HMGU models,

the 90% credible intervals for the time courses in the bone compartments were calcu-

lated based on the posterior samples. It is found that there is a significant difference
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Figure 8.6: Posterior median (solid lines) as well as 90% credible intervals (shaded areas)

for the retention of 95Zr in the bone compartments as predicted by the HMGU (blue) and

ICRP (red) models with radioactive decay taken into account.

between both models (Figure 8.6), where for the ICRP model we added the concentra-

tions in the two bone compartments. The time courses were derived for stable isotopes

of Zr and thus the radioactive decay of 95Zr with half-life of 64.032d (ICRP, 2008) had

to be taken into account. The decrease of retention in bone using the HMGU model

consequently reduces the radiation dose in bone in comparison to the ICRP bone dose

which is currently used in monitoring.

8.4.5 Retrospective dose assessment

Internal doses due to incorporated radionuclides have to be estimated with the help

of biokinetic models based on indirect measurements, using for example bioassays for

blood or urinary excretion. Normally, bioassay or in vivo data (e.g. radioactivity ac-

cumulated in skull or knee detected by a partial body counter) are measured after an

accidental intake of radionuclides. Uncertainties of estimated doses are significant and

have a large impact on remediation and thus action costs. In contrast to conventional

uncertainty analysis (Li et al., 2011a), our Bayesian Ansatz naturally integrates the un-

certainties of measured data and parameters simultaneously. This trait of the Bayesian

approach is helpful as it provides an estimate for the intake and its credible intervals.

For example, if the urinary excretion after accidental exposure is measured, we are able

to compute credible intervals for the initial intake of radionuclide 95Zr by exploiting
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the posterior distribution together with the linearity of the HMGU model. In order

to be as general as possible we use the posterior samples based on the complete data

y. Given a posterior sample ξH , a measurement ẋt7 in [µg/d] for the urinary excretion

rate of zirconium at time point t corresponds to a unique solution xξH (t) of the HMGU

ODE system. Due to the linearity of the ODE’s, the initial concentration xξH (0)

is by definition zero for all except the stomach compartment x9. The latter reads

x9(0) = ẋt7 · 100%/x9
ξH

(t) where x9
ξH

(t) denotes the value of xξH (t) in the stomach

compartment at time point t. Now, assuming that for arbitrary posterior samples ξH

the measurement ẋt7 is contained in the 90% credible interval of the solution xξH (t)

with initial condition x9(0) as given above, lower and upper bounds for credible regions

of the initial amount of zirconium taken in at t0 = 0h emerge. These are based on the

posterior samples. The estimated extrapolation factors for multiplication with a urine

measurement (in [µg/d]) after time t (in [h]) are contained in Table 8.6 and yield the

initially amount of zirconium contained in the stomach at t0 = 0h. For example, if an

amount of ẋ2d
7 = 50µg/d was measured after two days, we find from Table 8.6 that the

90% credible interval for the ingested amount lies between 0.029g and 0.059g. Since the

above calculations are based on non-radioactive Zr isotopes, the results have to take

into account the radioactive decay of the radionuclide in question, i.e. in many cases

95Zr, for dose assessment.

Time t 6h 12h 18h 24h 30h

lbf for IC 1233.91 1820.44 2614.48 3369.70 4100.16

mf for IC 1763.73 2225.90 3153.70 4228.19 5340.23

ubf for IC 2512.54 2832.49 3978.27 5650.86 7516.00

Time t 36h 42h 48h 54h 60h

lbf for IC 4778.27 5352.64 5800.77 6153.80 6450.74

mf for IC 6364.76 7250.67 7977.31 8557.87 9006.97

ubf for IC 9122.11 10655.01 11878.81 12960.61 13903.07

Table 8.6: Retrospective urine predictions for the HMGU model. Shown are the lower

bound factor (lbf), median factor (mf), and upper bound factor (ubf) for multiplication

with a urine measurement (in [µg /d]) after time t (in [h]) on a 60h grid yielding the initial

intake concentration (IC) at t0 = 0h.

Concluding we have seen that transfer rates can differ quite heavily for the various

investigations. However, the HMGU model is able to outperform the current ICRP
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model based on the complete data (corresponding to an average individual) and inves-

tigation specifically. It can hence improve predictions in internal dosimetry compared

to the current ICRP model.
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Conclusions and outlook

In this thesis we have introduced two novel MCMC sampling schemes: The hybrid

vine copula based independence/random walk Metropolis-Hastings algorithm (CIMH)

and the adaptive vine copula based independence/random walk Metropolis-Hastings

algorithm (ACIMH). A vine copula decomposition of the posterior distribution here

exploits higher order parameter dependencies in order to generate efficient problem

specific MCMC proposals. The algorithms were applied for parameter inference and

model selection in various dynamical systems.

We tested the performance of CIMH and ACIMH on four examples: First of all, we

inferred the (i) mean and covariance matrix of a strongly correlated two dimensional

normal distribution. The system was analytically tractable and provided a simple proof-

of-concept example. Subsequently, an (ii) ordinary differential equations driven steady

state as well as an (iii) ordinary differential equations driven compartment model were

considered. Finally an existing (iv) delay differential equations model of the JAK2-

STAT5 signaling pathway (Swameye et al. [2003]) has been inferred.

Throughout, both algorithms were evaluated on the basis of the quotient of acceptance

rate versus inefficiency factor (I1) and the number of independent samples generated per

second (I2). Here, (I1) was motivated by the antagonistic behavior of high acceptance

rates versus high INEFF’s, while (I2) provided an easily interpretable performance

statistic. As competing samplers a simple random walk Metropolis-Hastings, a co-

variance based random walk Metropolis-Hastings, and an independence chain sampler
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were chosen for the first three examples. The JAK2-STAT5 pathway was additionally

evaluated by SMALA and M-GaA. Our copula based approach generally covered the

dependency structure of the posterior very well and outperformed all other sampling

schemes in every example. It turned out that the basic CIMH algorithm is doing best on

simple systems as it does not lose time on extra copula updates. However, in very com-

plex situations, such as the inference of the JAK-STAT5 pathway, copula updates were

needed to fine-tune the proposal distribution and thereby improve the performance.

We applied ACIMH to infer a model of the JAK1-STAT3 signaling pathway. Ther-

modynamic integration provided a Bayes factor that rejected a model covering di-

rect tyrosine-phosphorylated STAT3 dimer import into the nucleus as compared to a

model considering tyrosine-serine-phosphorylated STAT3 dimer import only. The esti-

mated maximum a posteriori estimate for nuclear abidance time of the tyrosine-serine-

phosphorylated STAT3 dimer turned out to be unnaturally short (0.252 minutes). The

error prone total STAT-data might here affect the result. Additional measurements of

total cytoplasmic STAT3 concentrations could supposedly remedy this issue.

Moreover, we evaluated two competing biokinetic models for zirconium processing in

the human body after ingestion for in vivo plasma and urine measurements. In order to

obtain reliable Monte Carlo sampling results, we again combined the numerically stable

thermodynamic integration, this time with CIMH. Based on individual Bayes factors

for 16 investigations as well as a Bayes factor based on the concatenated dataset the

HMGU model was unequivocally superior when compared to the current ICRP model.

Also, when restricting the data on plasma and urine measurements only, we found that

the HMGU model was clearly favored.

In contrast to the ICRP model, the HMGU model predicted a delayed accumulation

of zirconium in bones. Furthermore, we showed that the HMGU model can be applied

for retrospective dose assessment, where the initially ingested amount of zirconium

can be reconstructed (including credible intervals) from ex post urine measurements.

This provided estimates that facilitate the decision if measures have to be taken in

case of accidental exposure. In future applications the HMGU model together with its

posterior samples can readily be used as basis for dose assessment in internal dosimetry.
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In this thesis we primarily focused on the issues of model selection and parameter infer-

ence in dynamic systems governed by ordinary or delay differential equations. Typically,

a closed form solution to the differential equation system is unavailable in real world

applications. The computationally expensive numerical solution for every likelihood

evaluation calls for a sophisticated MCMC proposal generation scheme. However, the

fields of application of CIMH and ACIMH is not limited to this scenario. Both vine

copula based algorithms can be applied to any MCMC inference problem, such as

Bayesian inference of ARMA or GARCH models used in economics and finance. They

are expected to work well on highly dependent posterior distributions, but also very

efficiently in simple systems.

Nevertheless, further research is needed to improve the algorithms for sampling from

highly complex posterior distributions. A simple first step in this direction could be to

apply automated cdf type detection for sample uniformization in each copula adaption

step. Monitoring Markov chain convergence by means of convergence statistics could

moreover lead to variable adaption of the proposal function rates r1, r2, and r3. The

finite copula update scheme of ACIMH might even be generalized to an infinite update

scheme. Clearly, this requires a thorough proof of convergence.

CIMH and ACIMH can readily be extended to population MCMC sampling schemes.

Much in the sense of thermodynamic integration and path sampling (Gelman & Meng

[1998]), tempered MCMC approaches (Liu [2008]) might help to explore the sampling

spaces more quickly. This would possibly produce apt copula decomposition of the

posterior distribution in a much faster way.

The JAK2-STAT5 pathway analysis indicates that non-standard copula and marginal

distributions might be needed to guarantee efficient sampling performances. Fitting

non-parametric cdf’s for sample uniformization as well as non-parametric pair copula

distributions could be a further step to improve the efficiency of CIMH and ACIMH.

However, as proposal generation might become computationally more expensive it has

to be checked whether speed advantages with respect to (I2) would still be retained.

A similar issue constitutes the choice of the copula decomposition: Although the order

of the variables was rather canonical for our examples, introducing more general vine

structures, such as R-vines, could further increase the sampling efficiency. Additional

vine structure selection methods would however be needed in this case.
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Appendix A

Important univariate density

functions

The following univariate density functions are used for the copula based independence

chain Metropolis-Hastings algorithm:

Normal density function

A random variable X is called normally distributed, if its density function is for µ ∈ R
and σ > 0 given by

f(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
.

We write X ∼ N(µ, σ). A plot of the normal density function is shown in Figure A.1(a).

Lognormal density function

A random variable X is called lognormally distributed, if its density function is for

µ ∈ R and σ > 0 given by

f(x) =
1

x
√

2πσ2
exp

(
− 1

2σ2
(log(x)− µ)2

)
1(0,∞)(x),

where 1(0,∞)(x) denotes the indicator function on (0,∞). We write X ∼ LN(µ, σ). A

plot of the lognormal density function is shown in Figure A.1(b).

161



A. IMPORTANT UNIVARIATE DENSITY FUNCTIONS

−5 0 5
0

0.2

0.4

0.6

0.8

1

x

f(
x)

 

 

µ = 0, σ2 = 1
µ = 0, σ2 = 4
µ = 0, σ2 = 0.6
µ = 2, σ2 = 1

(a)

0 5 10 15
0

0.2

0.4

0.6

0.8

x

f(
x)

 

 

µ = 2, σ2 = 1
µ = 2, σ2 = 4
µ = 2, σ2 = 0.36
µ = 0, σ2 = 1

(b)

0 5 10 15
0

0.2

0.4

0.6

0.8

x

f(
x)

 

 

q = 0.8, λ = 0.5
q = 3, λ = 0.5
q = 5, λ = 0.5
q = 3, λ = 2

(c)

0 2 4
0

0.5

1

1.5

2

x

f(
x)

 

 

λ = 0.5
λ = 1
λ = 2

(d)

Figure A.1: Various univariate (a) normal, (b) lognormal, (c) gamma, and (d) exponential

density functions.

Gamma density function

A random variable X is called gamma distributed, if its density function is for q, λ > 0

given by

f(x) =
λq

Γ(q)
xq−1 exp(−λx)1(0,∞)(x),

where 1(0,∞)(x) denotes the indicator function on (0,∞) and

Γ(q) :=

∫ ∞
0

tq−1e−t dt

the Gamma function. We write X ∼ Γ(q, λ). A plot of the Gamma density function is

shown in Figure A.1(c).

Exponential density function

A random variable X is called exponentially distributed, if its density function is for

λ > 0 given by

f(x) = λ exp(−λx)1(0,∞)(x),

where 1(0,∞)(x) denotes the indicator function on (0,∞). We write X ∼ Exp(λ). A

plot of the exponential density function is shown in Figure A.1(d).
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Important bivariate copulas

The following bivariate copulas are used for the copula based independence chain

Metropolis-Hastings algorithm:

Bivariate elliptical copula density functions

The copula density function of the bivariate Gaussian copula (c.f. Aas et al. [2009]) is

given by

c(u1, u2|ρ) =
1√

1− ρ2
exp

(
ρ2(x2

1 + x2
2)− 2ρx1x2

2(1− ρ2)

)
.

Here, ρ ∈ (−1, 1) denotes the (correlation) parameter and xi = Φ−1(ui) for the inverse

Φ−1(·) of the standard normal distribution function. Figure 2.1(c) in Chapter 2.2 shows

a plot of the Gaussian copula density function for ρ = 0.5.

The copula density function of the bivariate Student’s t copula (c.f. Aas et al. [2009])

is for the copula parameters ν > 2 and ρ ∈ (−1, 1) given by

c(u1, u2|ρ, ν) =
Γ(ν/2 + 1)/Γ(ν/2)

νπtdν(x1)tdν(x2)
√

1− ρ2

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)−ν/2−0.5

.

Here, Γ(·) denotes the Gamma function

Γ(x) =

∫ ∞
0

yx−1e−y dy
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B. IMPORTANT BIVARIATE COPULAS

and xi = t−1
ν (ui) for the inverse t−1

ν of the univariate standard student’s t distribution

function with ν degrees of freedom defined via the corresponding density function

tdν(x) =
Γ(n/2 + 0.5)/Γ(n/2)√

νπ

(
1 +

x2

ν

)−n/2−0.5

.

Figure B.1(a) shows a plot of the student’s t copula density function for ρ = 0.7 and

ν = 1.

Bivariate Archimedean copulas

Archimedean copulas are defined via their generators (see Theorem 2.3). The following

table holds a selection of the most prominent Archimedean copulas (c.f. Brechmann &

Schepsmeier [2011]):

Name Generator Parameter(s)

Independence (I) − log(t) –

Clayton (C) (t−θ − 1)/θ θ > 0

Gumbel (G) (− log(t))θ θ ≥ 1

Frank (F) − log ((exp(−θt)− 1)/(exp(−θ)− 1)) θ ∈ R \ {0}
Joe (J) − log

(
1− (1− t)θ

)
θ > 1

BB1 (t−θ − 1)δ θ > 0 , δ ≥ 1

BB6 (− log(1− (1− t)θ))δ θ ≥ 1, δ ≥ 1

BB7 (1− (1− t)θ)−δ − 1 θ ≥ 1, δ > 0

BB8 − log
(
(1− (1− δt)θ)((1− (1− δ)θ)

)
θ ≥ 1, δ ∈ (0, 1]

Table B.1: A selection of Archimedean copulas.

Figure 2.1(a) shows a plot of the independence copula density function. All other

copula density types are depicted in Figure B.1.

We furthermore get for each elliptical or Archimedean copula C the 90◦ , 180◦ and 270◦

rotated copulas C90, C180, and C270 by setting

C90(u1, u2) = u2 − C(1− u1, u2),

C180(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2),

C270(u1, u2) = u1 − C(u1, 1− u2).
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Figure B.1: Copula density functions for the (a) student’s t (0.7,1), (b) Clayton (2), (c)

Gumbel (2), (d) Frank (5), (e) Joe (2), (f) BB1 (2,2), (g) BB6 (2,2), (h) BB7 (2,2), and

(i) BB8 (2,0.8) copula. The bracketed values denote the according parameter values in the

order given in Table B.1.
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Figure B.2: Copula density functions for the 90◦ rotated (a) student’s t (0.7,1), (b) Clay-

ton (2), and (c) Frank (5) copula. The bracketed values denote the according parameter

values in the order given in Table B.1.

Note that some copula types coincide with some of their rotated versions due to reasons

of symmetry. Figures B.2(a), B.2(b), and B.2(c) show a plot of the 90◦ rotated t,

Clayton, and Frank copula density functions.
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Appendix C

Calculations for the Bayes factor

of the Gaussian mixture model

For our Gaussian mixture example from Chapter 3.4.4 we explicitly compute the power

posterior at t ∈ [0, 1] as well as the marginal likelihoods. Subsequently, we exemplary

infer the expected value of the log-likelihood with respect to the power posterior for

the one component case. We use the notations introduced in Chapter 3.4.4.

C.1 Power posterior and marginal likelihood for the one-

component Gaussian (mixture) model

Setting ȳ = 1
m

∑m
i=1 yi, the t-powered product of the likelihood times prior for M1 given

the observations y = {y1, . . . , ym} and the prior distribution µ ∼ N(0, σ2) computes to

L(µ|y)tπ(µ|M1) =

(
1√
2πσ

)mt+1

exp

(
− 1

2σ2

(
t

m∑
i=1

y2
i − 2µt

m∑
i=1

yi + (mt+ 1)µ2

))

=

(
1√
2πσ

)mt+1

exp

(
1

2σ2

(
(mtȳ)2

mt+ 1
− t

m∑
i=1

y2
i

))

· exp

(
−mt+ 1

2σ2

(
mtȳ

mt+ 1
− µ

)2
)

∝ exp

(
−mt+ 1

2σ2

(
µ−

t
∑m

i=1 yi
mt+ 1

)2
)
,
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C. CALCULATIONS FOR THE BAYES FACTOR OF THE GAUSSIAN
MIXTURE MODEL

where the proportionality is to be understood with respect to µ. The power posterior

for t ∈ [0, 1] and µ ∈ R is therefore given by N
(
t
∑m
i=1 yi

mt+1 , σ2

mt+1

)
. Furthermore, setting

t = 1 and integrating over the real line yields the marginal likelihood

π(y|M1) =

∫
R

(
1√
2πσ

)m+1

exp

(
1

2σ2

(
m2ȳ2

m+ 1
−

m∑
i=1

y2
i

))

· exp

(
−m+ 1

2σ2

(
mȳ

m+ 1
− µ

)2
)

dµ

=
1√
m+ 1

(
1√
2πσ

)m
exp

(
1

2σ2

(
m2ȳ2

m+ 1
−

m∑
i=1

y2
i

))

·
∫
R

√
m+ 1√
2πσ

exp

(
−m+ 1

2σ2

(
mȳ

m+ 1
− µ

)2
)

dµ

=
1√
m+ 1

(
1√
2πσ

)m
exp

(
1

2σ2

(
m2ȳ2

m+ 1
−

m∑
i=1

y2
i

))
.

C.2 Power posterior for the two-component Gaussian (mix-

ture) model

Similarly to the one-component case, setting ȳ1 = 1
m1

∑m1
i=1 yi and ȳ2 = 1

m2

∑m
j=m1+1 yj

for m2 := m − m1, the t-powered product of the likelihood times prior for the two-

component model M2 given the observations y = {y1, . . . , ym, ym1+1, . . . , ym} and the

independent prior distributions µ1 ∼ N(2, σ2) and µ2 ∼ N(−2, σ2) computes to

L(µ|y)tπ(µ1|M2)π(µ2|M2) =

(
1√
2πσ

)mt+2

exp

(
− 1

2σ2

(
t
m∑
i=1

y2
i + 8− 2(m1tȳ1 + 2)µ1

− 2(m2tȳ2 − 2)µ2 + (m1t+ 1)µ2
1 + (m2t+ 1)µ2

2

))

∝ exp

(
−m1t+ 1

2σ2

(
µ1 −

2 + t
∑m1

i=1 yi
m1t+ 1

)2
)

· exp

−m2t+ 1

2σ2

(
µ2 −

−2 + t
∑m

j=m1+1 yj

m2t+ 1

)2
 ,
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C.3 Expected value of the log likelihood w.r.t. the power posterior for the
one-component Gaussian (mixture) model

where the proportionality is to be understood with respect to µ1 and µ2. The power

posterior for t ∈ [0, 1] and (µ1, µ2)> ∈ R2 is hence given by

N2

 2+t
∑m1
i=1 yi

m1t+1

−2+t
∑m
j=m1+1 yj

mt−m1t+1

 ,

(
σ2

m1t+1 0

0 σ2

mt−m1t+1

) .

For t = 1 integration over R2 yields the marginal likelihood

π(y|M2) =

∫
R

∫
R

(
1√
2πσ

)m+2

exp

(
− 1

2σ2

(
m∑
i=1

y2
i + 8− 2(m1ȳ1 + 2)µ1

− 2(m2ȳ2 − 2)µ2 + (m1 + 1)µ2
1 + (m2 + 1)µ2

2

))
dµ1dµ2

=
1√

(m1 + 1)(m2 + 1)

(
1√
2πσ

)m
· exp

(
− 1

2σ2

(
m∑
i=1

y2
i + 8− (m1ȳ1 + 2)2

m1 + 1
− (m2ȳ2 − 2)2

m2 + 1

))
.

C.3 Expected value of the log likelihood w.r.t. the power

posterior for the one-component Gaussian (mixture)

model

Exemplary we compute for the power posterior

πt(µ|y,M1) =
L(µ|y)t · π(µ|M1)

πt(y|M1)

the normalizing constant

πt(y|M1) =

∫
R
L(µ|y)t · π(µ|M1) dµ

=

∫
R

(
1√
2πσ

)mt+1

exp

(
− 1

2σ2

(
t

m∑
i=1

y2
i − 2mȳtµ+ (mt+ 1)µ2

))
dµ

=
1√

mt+ 1

(
1√
2πσ

)mt
exp

(
− 1

2σ2

(
t

m∑
i=1

y2
i −

(mtȳ)2

mt+ 1

))
.

In order to compute the expectation of the data’s log-likelihood, logL(µ|y,M1), with

respect to the power posterior πt(µ|y,M1), we first have to do the calculations of
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•
∫
R
A(µ) dµ :=

(
m∑
i=1

(y2
i + 2σ2 log(

√
2πσ))

)∫
R

exp

(
−mt+ 1

2σ2

(
mtȳ

mt+ 1
− µ

)2
)

dµ

•
∫
R
B(µ) dµ := −2mȳ

∫
R
µ exp

(
−mt+ 1

2σ2

(
mtȳ

mt+ 1
− µ

)2
)
dµ

•
∫
R
C(µ) dµ := m

∫
R
µ2 exp

(
−mt+ 1

2σ2

(
mtȳ

mt+ 1
− µ

)2
)

dµ.

For a := mt+1
2σ2 and z := mt

mt+1 ȳ the three integrals are

∫
R
A(µ) dµ =

(
m∑
i=1

(y2
i + 2σ2 log(

√
2πσ))

)∫
R

exp

(
−mt+ 1

2σ2

(
mtȳ

mt+ 1
− µ

)2
)

dµ

=

(
m∑
i=1

(
y2
i + 2σ2 log(

√
2πσ)

)) √
2πσ√
mt+ 1

,

∫
R
B(µ) dµ = −2mȳ

∫
R
µ exp

(
−mt+ 1

2σ2

(
mtȳ

mt+ 1
− µ

)2
)

dµ

= −2mȳ

∫
R
µ exp

(
−a (z − µ)2

)
dµ

= −2mȳ

∫
R

(µ− z) exp
(
−a(z − µ)2

)
+ z exp

(
−a(z − µ)2

)
dµ

= −2mȳ

(∫ ∞
−∞

y exp(−ay2) dy + z

√
2πσ√
mt+ 1

)

= −2mȳz

√
2πσ√
mt+ 1

= −2ȳ2

√
2πσm2t

(mt+ 1)
3
2

,

and
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∫
R
C(µ) dµ = m

∫
R
µ2 exp

(
−mt+ 1

2σ2

(
mtȳ

mt+ 1
− µ

)2
)

dµ

= m

∫
R
µ2 exp

(
−a (z − µ)2

)
dµ

= m

∫
R

(µ− z)2 exp
(
−a (z − µ)2

)
− z2 exp

(
−a (z − µ)2

)
+ 2zµ exp

(
−a (z − µ)2

)
dµ

= m

∫
R
y2 exp

(
−ay2

)
dy −mz2

∫
R

exp
(
−a (z − µ)2

)
dµ

+ 2mz

∫
R
µ exp

(
−a (z − µ)2

)
dµ

= 2m

∫ ∞
0

y2 exp
(
−ay2

)
dy −m

(
mt

mt+ 1
ȳ

)2 √
2πσ√
mt+ 1

+ 2mz

∫
R

(µ− z) exp
(
−a (z − µ)2

)
dµ

+

∫
R
z exp

(
−a (z − µ)2

)
dµ

= 2m
Γ(3

2)

2a
3
2

− m3t2ȳ2
√

2πσ

(mt+ 1)
5
2

+ 2z2m

√
2πσ√
mt+ 1

=
m
√

2πσ3

(mt+ 1)
3
2

+
m3t2ȳ2

√
2πσ

(mt+ 1)
5
2

.

Defining furthermore

α(y|t) := − 1

Z(y|t)
1

2σ2

(
1√
2πσ

)mt+1

,

β(y|t) := α(y|t) exp

(
− 1

2σ2

(
t
m∑
i=1

y2
i −

(mtȳ)2

mt+ 1

))
= − 1

2σ2
,

we finally get:
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Eπt(µ|y,M1) (logL(µ|y))

=

∫
R

logL(µ|y)
L(µ|y)tπ(µ)

Z(y|t,M1)
dµ

=
1

Z(y|t,M1)

∫
R

(
m∑
i=1

(
− 1

2σ2
(y2
i − 2µyi + µ2)

)
−m log(

√
2πσ)

)

·
(

1√
2πσ

)mt+1

exp

(
− 1

2σ2

(
t

m∑
i=1

y2
i − 2mȳtµ+ (mt+ 1)µ2

))
dµ

= α(y|t) ·
∫
R

(
m∑
i=1

(y2
i − 2µyi + µ2) + 2mσ2 log(

√
2πσ)

)

· exp

(
− 1

2σ2

(
t
m∑
i=1

y2
i −

(mtȳ)2

mt+ 1

))
· exp

(
−mt+ 1

2σ2

(
mtȳ

mt+ 1
− µ

)2
)

dµ

= β(y|t) ·
∫
R

(
m∑
i=1

(
y2
i − 2µyi + µ2 + 2σ2 log(

√
2πσ)

))

· exp

(
−mt+ 1

2σ2

(
mtȳ

mt+ 1
− µ

)2
)

dµ

= β(y|t) ·
(∫

R
A(µ) dµ+

∫
R
B(µ) dµ+

∫
R
C(µ) dµ

)
β(y|t)

{(
m∑
i=1

(
y2
i + 2σ2 log(

√
2πσ)

))
·
√

2πσ√
mt+ 1

− 2ȳ2

√
2πσm2t

(mt+ 1)
3
2

+
m
√

2πσ3

(mt+ 1)
3
2

+
m3t2ȳ2

√
2πσ

(mt+ 1)
5
2

}

= β(y|t)
√

2πσ√
mt+ 1

{(
m∑
i=1

(
y2
i + 2σ2 log(

√
2πσ)

))

+
mσ2 − 2tm2ȳ2

mt+ 1
+

m3t2ȳ2

(mt+ 1)2

}
=

= − 1

2σ2

{(
m∑
i=1

(
y2
i + 2σ2 log(

√
2πσ)

))
+
mσ2 − 2ȳ2m2t

mt+ 1
+

m3ȳ2t2

(mt+ 1)2

}
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Appendix D

Transformation of the

JAK2-STAT5 DDE system

In order to resolve structural identifiability issues of the non-linear JAK2-STAT5 DDE

system

dx1(t)

dt
= −k1x1(t)Epo(t) + 2k4x3(t+ τ)

dx2(t)

dt
= −k2x

2
2(t) + k1x1(t)Epo(t)

dx3(t)

dt
= −k3x3(t) +

1

2
k2x

2
2(t)

dx4(t)

dt
= −k4x3(t+ τ) + k3x3(t),

(D.1)

with observables

y1(t) = k5(x2(t) + 2x3(t)) and y2(t) = k6(x1(t) + x2(t) + 2x3(t))

of Chapter 6.3.4 we follow Timmer et al. [2004] and define

zi(t) = k2xi(t) for i = 1, . . . , 4,

k′i =
ki
k2

for i = 5, 6.
(D.2)
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D. TRANSFORMATION OF THE JAK2-STAT5 DDE SYSTEM

The transformed DDE system then reads

dz1(t)

dt
= −k1z1(t)Epo(t) + 2k4z3(t+ τ)

dz2(t)

dt
= −z2

2(t) + k1z1(t)Epo(t)

dz3(t)

dt
= −k3z3(t) +

1

2
z2

2(t)

dz4(t)

dt
= −k4z3(t+ τ) + k3z3(t),

(D.3)

with observables

y1(t) = k′5(z2(t) + 2z3(t)) and y2(t) = k′6(z1(t) + z2(t) + 2z3(t)).

Note that this system is structurally identifiable (Timmer et al. [2004]) and has the

same observables y1(t) and y2(t) as the original system (D.1). The posterior distribution

with respect to (D.1) can hence be directly transformed into the posterior distribution

with respect to (D.3). Since x1(0) = 1 and x2(0) = x2(0) = x4(0) = 0, the initial

conditions for (D.3) are given by z1(0) = k2 and z2(0) = z2(0) = z4(0) = 0, i.e.

k2 corresponds directly to the initial condition for z1(t). The transformed system is

therefore parametrized by

ξ = (k1, k2, k3, k4, τ, k
′
5, k
′
6)>.

Inference of the JAK2-STAT5 parameters was done using (D.3). All estimated pa-

rameter marginal posterior means, modes, and 90% posterior quantile based credible

intervals of Table 6.4 in Chapter 6.3.4 are given with respect to the original parameters

k1, . . . , k4, τ, k5, k6 by application of the inverse transformation to (D.2).
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Appendix E

Geometric tensor for the

JAK2-STAT5 DDE system

For the observations y := {yε1(t1), . . . , yε1(t16), yε2(t1), . . . , yε2(t16)} on the time grid

t1, . . . , t16 and the parameter vector ξ = (k1, k2, k3, k4, τ, k
′
5, k
′
6)> we want to infer the

posterior distribution

π(ξ|y) ∝
16∏
i=1

Φ(yε1(ti)|y1(ti), σ
2
i,1) · Φ(yε2(ti)|y2(ti), σ

2
i,2) · π(ξ), (E.1)

where Φ denotes the pdf of the univariate normal distribution for the known measure-

ment errors σ2
i,j , i = 1, . . . , 16, j = 1, 2, and π(ξ) =

∏
j 6=3

1[0,50](ξj) · π(ξ3|ξ4) – recall

k3 ≥ k4. Furthermore, y1(t) = k′5(z2(t) + 2z3(t)) and y2(t) = k′6(z1(t) + z2(t) + 2z3(t))

for the solutions z1(t), z2(t), and z3(t) of the DDE system (D.3) of Appendix D. The

geometric tensor, as introduced in Chapter 5.1, is given by the expected Fisher infor-

mation matrix of the log-likelihood minus the Hessian of the log-prior. It involves the

partial derivatives of y1(t) and y2(t) with respect to the parameters k1, k2, k3, k4, τ, k
′
5

and k′6. These, however, are not analytically tractable. We therefore (i) approximated

the DDE system (D.3) by means of an ODE system and (ii) subsequently apply the

so-called sensitivity equations to circumvent this issue.

(i) Approximation of the DDE system using the linear chain trick: Simply spoken the

linear chain trick approximates the time delay of a DDE system by a sequence of linear
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segments. More precisely, suppose we are given the differential equation with time

delay τ
dx(t)

dt
= gξ(x(t),x(t− τ),u(t), t) (E.2)

where t ∈ R, x ∈ Rr and – with respect to x(t) and x(t − τ) – Lipschitz-continuous

ξ-parametrized function gξ(x(t),x(t − τ),u(t), t) with gξ(0,0,0, t) = 0 and external

stimulus u(t). Then we can transform (E.2) into a corresponding ODE system using

m ∈ N segments xi(t):

dx(t)

dt
= gξ(x(t),xm(t),u(t), t),

dxi(t)

dt
=
m

τ
(xi−1(t)− xi(t)), i = 1, . . . ,m

by exchanging the delayed elements x(t− τ) with xm(t) (Fall [2002]). In this sense we

introduce two auxiliary functions z5(t) and z6(t) for the system (D.3) of Appendix D

and define the ODE
dz1(t)

dt
= −k1z1(t)Epo(t) + 2k4z6(t)

dz2(t)

dt
= −z2

2(t) + k1z1(t)Epo(t)

dz3(t)

dt
= −k3z3(t) +

1

2
z2

2(t)

dz4(t)

dt
= −k4z6(t) + k3z3(t)

dz5(t)

dt
=

2

τ
(z3(t)− z5(t))

dz6(t)

dt
=

2

τ
(z5(t)− z6(t)),

(E.3)

with z5(0) = z6(0) = 0. Nikolov et al. [2007] discuss the asymptotic stability of (E.3)

and show that the solutions of the original DDE and the approximating ODE model

are very close. We can thus use the much simpler differential equation (E.3) to compute

the geometric tensor for the JAK2-STAT5 system. Note that the approximation error

does not effect the validity but only the efficiency of the posterior inference process in

the SMALA algorithm.

(ii) Sensitivity equations: Suppose we are given an arbitrary ξ-parametrized ODE

system
dx(t)

dt
= gξ(x(t),u(t), t) (E.4)
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with initial conditions x(0) = x0. Using the chain rule the derivative with respect to ξ

and x(0) yields the following sensitivity equations for S(t) = ∂x(t)
∂ξ and S0(t) = ∂x(t)

∂x0
:

d

dt
S(t) =

∂gξ(x(t),u(t), t)

∂x(t)
S(t) +

∂gξ(x(t),u(t), t)

∂ξ
with S(0) = 0

d

dt
S0(t) =

∂gξ(x(t),u(t), t)

∂x(t)
S0(t) with S0(0) = Im

where Im is the m-dimensional identity matrix (Wu et al. [2008]). This means we can

numerically solve the extended differential equations system

dx(t)

dt
= gξ(x(t),u(t), t)

d

dt
S(t) =

∂gξ(x(t),u(t), t)

∂x(t)
S(t) +

∂gξ(x(t),u(t), t)

∂ξ

d

dt
S0(t) =

∂gξ(x(t),u(t), t)

∂x(t)
S0(t)

(E.5)

in order to obtain the solutions for S(t) and S0(t).

This eventually allows us to compute the geometric tensor for the JAK2-STAT5 system:

For z(t) = (z1(t), . . . , z6(t))> and ξ = (k1, k2, k3, k4, τ, k
′
5, k
′
6)> let

dz(t)

dt
= gξ(z(t), Epo(t))

be the ODE system defined by (E.3) with y1(t) = k′5(z2(t) + 2z3(t)) and y2(t) =

k′6(z1(t) + z2(t) + 2z3(t)) intrinsically dependent on the parameter vector ξ. Using the

covariance matrices Σ1 = diag(σ2
1,1, . . . , σ

2
16,1), Σ2 = diag(σ2

1,2, . . . , σ
2
16,2) along with the

vectors v1 = (yε1(t1)−y1(t1), . . . , yε1(t16)−y1(t16))>, v2 = (yε2(t1)−y2(t1), . . . , yε2(t16)−

y2(t16))> we can rewrite the posterior (E.1) as

π(ξ|y) ∝
2∏
i=1

Φ16(vi|Σi) · π(ξ),

for the pdf’s Φ16(·|Σi) of the 16 dimensional normal distribution N16(0,Σi). Defining

vij :=
∂vj
∂ξi

the partial derivative of the log-likelihood log(L(ξ|y)) = log

(
2∏
i=1

Φ16(vi|Σi)

)
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with respect to the ith parameter ξi computes to

∂

∂ξi
log(L(ξ|y)) =

∂

∂ξi

2∑
j=1

(
−1

2
v>j Σ−1

j vj

)

=
2∑
j=1

(
−1

2
(vij)

>Σ−1
j vj −

1

2
v>j Σ−1

j v
i
j

)

= −
n∑
j=1

(vij)
>Σ−1

j vj

It is easy to see that (vij)
>Σ−1

j vj = v>j Σ−1
j v

i
j . According to Chapter 5.1 the (i, j)th

element (i, j = 1, . . . , 7) of the geometric tensor is given as

Gi,j(ξ) = cov

[
∂

∂ξi
log(L(ξ|y))>,

∂

∂ξj
log(L(ξ|y))>

]
− ∂2

∂ξi∂ξj
log(π(ξ))

= cov

[
2∑

k=1

(vik)
>Σ−1

k vk,

2∑
l=1

v>l Σ−1
l v

j
l

]
− ∂2

∂ξi∂ξj
log(π(ξ))

=
2∑

k=1

(vik)
>Σ−1

k v
j
k −

∂2

∂ξi∂ξj
log(π(ξ))

(E.6)

(see Girolami & Calderhead [2011]).

The kth element of vij is
∂yj(tk)
∂ξi

, where i = 1, . . . , 7 is the parameter index, j = 1, 2 the

species index, k = 1, . . . , 16 the time index, and yj(t) the solution to the ODE system

(E.3). Setting vij(t) :=
∂yj(t)
∂ξi

we now have for i = 1, . . . , 7

dvi1(t)

dt
=

6∑
l=1

((
∂

∂zl(t)

dy1(t)

dt

)
∂zl(t)

∂ξi

)
+

∂

∂ξi

dy1(t)

dt

=
6∑
l=1

(
∂k′5(k1z1(t)Epo(t)− 2k3z3(t))

∂zl(t)

∂zl(t)

∂ξi

)
+
∂k′5(k1z1(t)Epo(t)− 2k3z3(t))

∂ξi

dvi2(t)

dt
=

6∑
l=1

((
∂

∂zl(t)

dy2(t)

dt

)
∂zl(t)

∂ξi

)
+

∂

∂ξi

dy2(t)

dt

=

6∑
l=1

(
∂k′6(2k4z6(t)− 2k3z3(t))

∂zl(t)

∂zl(t)

∂ξi

)
+
∂k′6(2k4z6(t)− 2k3z3(t))

∂ξi
.

(E.7)

with vi1(0) = 0 for all i, vi2(0) = 0 for i = 1, 3, 4, 5, 6, v2
2(0) = k′6, and v7

2(0) = k2 which

can be seen by straightforward application of the definition of y1(t) and y2(t). The
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expressions ∂zl(t)
∂ξi

can be computed via the sensitivity equations

d

dt

∂zl(t)

∂ξi
=

6∑
m=1

((
∂gξ(z(t), Epo(t))

∂zm(t)

)
∂zm(t)

∂ξi

)
+
∂gξ(z(t), Epo(t))

∂ξi(t)
for i = 1, 3, . . . , 7, l = 1, . . . , 6

d

dt

∂zl(t)

∂ξ2
=

6∑
m=1

((
∂gξ(z(t), Epo(t))

∂zm(t)

)
∂zm(t)

∂ξ2

)
for l = 1, . . . , 6

∂z2(0)

∂ξ2
=
∂zl(0)

∂k2
= 1

∂zl(0)

∂ξi
= 0 for i = 1, . . . , 7, l = 1, . . . , 6, (i, j) 6= (2, 2).

(E.8)

Hence, vij can be numerically computed by means of the extended ODE system (E.3),

(E.7), and (E.8). We used Matlab’s ode15s solver for the solution of the extended ODE

system, which is faster than the dde23 solver applied for the RWMH, IMH, CovRWMH,

M-GaA, CIMH, and ACIMH algorithms. SMALA might thus have a slight advantage

in speed when solving the differential equation systems (D.1).

For the second term of the right hand side of Equation (E.6) we have due to

k1, k2, k4, τ, k5, k6
i.i.d.∼ U[0, 50] and k3 ∼ U[k4, 50] that

∂2

∂ξi∂ξj
log(π(ξ)) = 0 for all i, j except i = j = 4.

On the other hand

∂2

∂k4∂k4
log(π(ξ)) = −6 log(50)

∂2

∂k4∂k4
log(π(k3|k4))

= −6 log(50)
∂2

∂k4∂k4
log

(
1

50− k4

)
= −6 log(50)

∂

∂k4

1

50− k4

= 6 log(50)
∂

∂k4

1

(50− k4)2
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Appendix F

Parameters for prior

distributions of the zirconium

models

The prior distributions of the HMGU and ICRP model were computed in Li et al.

[2011a]. Since estimated confidence intervals as well as estimated medians were provided

only, we need to infer the location (µ) and scale (σ) parameters for all lognormal

distributions LN(µ, σ). Furthermore, the means µ and standard deviations σ for all

normal distributions N(µ, σ) need to be computed. The formulas are derived in the

following.

Location and scale parameters for the lognormal distribution given the

estimated median and geometric standard deviation

Suppose we are given the estimation m̂ of the median m of a univariate lognormal

distribution LN(µ, σ). According to Johnson et al. [1994], m = exp(µ) and therefore

µ = log(m) ≈ log(m̂).

Furthermore, the geometric standard deviation (GSD) is provided for all lognormally

distributed parameters and is either GSD = 2 or GSD = 3. Since we have GSD =
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exp(σ) in case of a lognormal distribution, this naturally yields for the scale parameter:

σ = ln(2) or σ = ln(3)

Mean and standard deviation for the normal distribution given the

estimated median and the coefficient of variation

Since for the normal distribution N(µ, σ) the mean and median coincide, we do not

further distinguish between the two of them and simply denote their estimates by µ̂.

Clearly, we have

µ ≈ µ̂.

Also, for the normally distributed parameters, we are given a coefficient of variation of

cV = 0.3. Since cV = σ
µ , we obtain

σ = 0.3µ.
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Appendix G

Investigation specific time

courses for the ICRP and

HMGU models

We here present the investigation specific time courses (TC) based on the posterior

samples. Depicted are the time courses for the transfer compartment and for the

excretion rate in the urine compartment together with the corresponding data. The

black lines are the posterior median solutions of the time courses, while the shaded areas

denote the 90 % posterior credible intervals. In addition, the investigation specific zero-

truncated measurement errors, fitted by simulated annealing, are depicted. Note that

neither the upper nor the lower confidence bound, nor the median needs to represent

a solution to the according ordinary differential equation. While plasma time courses

are generally covered well by both models, especially the ICRP model struggles from

time to time with the urinary data. The coloring corresponds to the coloring of the

individuals in Figure 8.2 and Figure 8.5.
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D-vine, 23

delay differential equation, 42

density function, see probability density function
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expectation, 14

199



INDEX

expected

mean, 14

variance, 15

exponential distribution, 162
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distribution, 52
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distribution, 31
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stochastic

process, 26
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limit, 42
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