
Developments in Insuran
e Mathemati
sDedi
ated to Hans B�uhlmannon the o

asion of his seventieth birthdayClaudia Kl�uppelbergCenter of Mathemati
al S
ien
es, Muni
h University of Te
hnology, D-80290Muni
h, Germany?Abstra
t. Insuran
e mathemati
s in the 1990s has been in
uen
ed �rstly, bythe in
rease in 
atastrophi
 
laims whi
h had already be
ome apparent dur-ing the early 1970s and 1980s and required new mathemati
al and statisti
almethods, and, se
ondly, by a fast in
reasing �nan
ial market that is interestedin new investment possibilities. Ideas from extreme-value theory and mathe-mati
al �nan
e have been introdu
ed into insuran
e mathemati
s and enri
hed
lassi
al insuran
e methods. But the ex
hange is not only from mathemati
al�nan
e to insuran
e mathemati
s. The 
ontinuing o

urren
e of 
rashes in the�nan
ial market has led to a new development in mathemati
al �nan
e: modelsand tools from insuran
e mathemati
s have entered the world of �nan
e. Thispaper presents examples, from both the insuran
e and the �nan
ial worlds.The 
hoi
e of topi
s is guided by personal taste and my own work.1 Introdu
tionThe profession of the a
tuary is one of the oldest in the �nan
ial world.It began in the middle of the 19th Century with life insuran
e, and,until the 1960s, mathemati
al methods were largely applied to pri
e lifeinsuran
e 
ontra
ts, develop mortality tables using statisti
al data, and
al
ulate reserves.The starting point of 
olle
tive risk theory in non-life insuran
e isthe work by Filip Lundberg in 1903. His idea of the standard 
ompoundPoisson model was made mathemati
ally rigorous by Harald Cram�er inthe 1930s. This model has been extended in various ways to this day:general renewal pro
esses and Cox pro
esses repla
e the Poisson pro
ess;a random environment allows for random 
hanges in the intensity of the
laim-number pro
ess and in the 
laim-size distribution; interest ratesare 
onsidered on the premium in
ome side; and pie
ewise deterministi
Markov pro
esses provide new insight and models. Various books onrisk theory appeared; see e.g. Bowers et al. [7℄, B�uhlmann [9℄, Daykin,Pentik�ainen and Pesonen [13℄, Embre
hts, Kl�uppelberg and Mikos
h [16℄,Gerber [19℄, Grandell [21℄, Panjer and Willmot [31℄, and Rolski et al. [34℄.One of the mathemati
ally most ex
iting �elds in 
olle
tive risk the-ory is ruin theory, where �rst-passage events above a high threshold areinvestigated. New and old results 
an be embedded into martingale the-ory providing a new method of deriving Lundberg's inequality for very? Email: 
klu�ma.tum.de http://www.ma.tum.de/stat/



2 Claudia Kl�uppelberggeneral models, guaranteeing that for small 
laims the ruin probabil-ity de
reases exponentially fast. A spe
ial Cram�er{Lundberg theory forlarge 
laims is developed. For both the small- and large-
laims regime,
onditional limit theorems allow for a pre
ise probabilisti
 des
ription ofa sample path of the risk pro
ess leading to ruin; see Asmussen [3℄ andEmbre
hts et al. [16℄, Se
tion 8.3.Interesting new 
hallenges during the 1990s are mainly due to the
oin
iden
e of two fa
tors:{ the in
rease of 
atastrophi
 
laims during the 1970s and 1980s;{ the development of the �nan
ial market.Consequently, mathemati
al tools, hitherto unknown in insuran
emathemati
s, are introdu
ed into the �eld, and also new problems arise,o�ering new 
hallenges to mathemati
ians and statisti
ians. In what fol-lows we review some of these new developments in insuran
e mathemat-i
s and give re
ent referen
es. Some of the topi
s we treat in more detaillater in the paper.Huge 
atastrophe 
laims in the 1970s and 1980s ex
eeded the 
over-age 
apa
ity of the primary and reinsuran
e market. A fast in
reasing�nan
ial market was eagerly looking for new investment possibilities,interested in bets not only on �nan
ial assets but also on natural 
atas-trophes su
h as earthquakes and storms.The frequen
y and severity of large 
laims stimulated the need formore sophisti
ated statisti
al models and a pre
ise probabilisti
 and sta-tisti
al analysis of large 
laims. Extreme-value theory provides the ne
es-sary tools and was introdu
ed into this �eld, o�ering an alternative to theotherwise used method of s
enario generation. Books on extreme-valuetheory in the 
ontext of insuran
e problems in
lude Embre
hts et al. [16℄and Reiss and Thomas [32℄. For some interesting analyses of insuran
edata we refer to work by M
Neil [27℄, Resni
k [33℄, and Rootz�en andTajvidi [36,37℄. Extreme-value methods 
an be su

essfully applied to
al
ulate premiums for large-
laims portfolios and to pri
e 
atastrophe-linked se
urities. An appli
ation of extreme-value theory to the pri
ingof 
atastrophe bonds 
an be found in Se
tion 2.1.Pri
ing methods are at �rst sight very di�erent in insuran
e and�nan
e. Sin
e the 1970s, �nan
ial pri
ing is traditionally no-arbitragepri
ing based on hedging arguments under the assumption of a 
ompletemarket, leading to a unique martingale pri
ing measure. Unfortunately,markets that in
lude insuran
e produ
ts are usually in
omplete: if mar-tingale measures exist at all, then there are in�nitely many. This impliesthat uniqueness of a martingale pri
ing measure 
an only be a
hieved byimposing 
ertain optimality 
onditions leading to risk minimizing mea-sures. Insuran
e pri
ing avoids the problem of non-existen
e or in�nitelymany di�erent pri
es (or martingale measures). Here, pri
es are based onthe physi
al probability measure and use e.g. the law of large numbers(mean-value prin
iple) with prote
tion against random 
u
tuations bymeans of a loading fa
tor. For more 
ompli
ated produ
ts within 
atas-trophe insuran
e or with a link to �nan
ial markets su
h pri
ing methods



Developments in Insuran
e Mathemati
s 3give rise to interesting mathemati
al questions. In Se
tion 2.2 large de-viations theory for heavy-tailed models (where exponential moments donot exist) is applied to pri
e 
atastrophe futures and options. For moredetailed dis
ussions on the 
omparison of a
tuarial and �nan
ial pri
ingwe refer to Embre
hts [15℄ and S
hweizer [40℄.Bridging of the insuran
e and 
apital markets happens not only inone dire
tion. During the 1980s investment banks realized that hedgingof �nan
ial risks does not provide suÆ
ient 
overage for market risks.The so-
alled Basle a

ord from 1988, with amendments in 1994{1996,introdu
ed the traditional insuran
e method of building risk reserves intoa bank's risk management. Reserves have to be built to 
over the earn-ings at risk, i.e. the di�eren
e between the mean and the 1%-quantile ofthe pro�t/loss distribution. The estimation of an extremely low quantileagain requires spe
ial statisti
al methods based on extreme-value the-ory; see Borkove
 and Kl�uppelberg [6℄, Embre
hts et al. [16℄, Emmer,Kl�uppelberg and Tr�ustedt [17℄, and Rootz�en and Kl�uppelberg [35℄.A
tuarial methods in �nan
e have also been introdu
ed to modeland quantify 
redit risk. A portfolio of 
redits 
an be 
ompared to a
lassi
al insuran
e risk portfolio: the default of a 
redit 
orresponds tothe o

urren
e of a 
laim; the interest paid for a 
redit has a 
omponentwhi
h is 
omparable to a risk premium. This idea is the basis of the
ommer
ial produ
t CreditRisk+ [11℄, whi
h we explain in more detailin Se
tion 3.Coming ba
k to future insuran
e developments, with the in
reas-ing level of sophisti
ation in the insuran
e market, primary insurers aredemanding more 
exible solutions to provide 
loser support for theirholisti
 approa
h to risk management. To respond e�e
tively to this de-velopment, re
ent alternative risk transfer (ART) produ
ts have to be
omplemented and re�ned. New produ
ts, 
alled integrated risk manage-ment (IRM) solutions, adopt a more integrated view of the �nan
ial andinsuran
e risk exposures. The 
exibility, provided by these IRM prod-u
ts for the risk management of the operating result, goes well beyondthe possibilities o�ered by separately pur
hasing traditional reinsuran
eand �nan
ial hedging. More details 
an be found in Se
tion 4.It is not until re
ently, albeit quite naturally, that sto
hasti
 
ontroltheory and tools have been introdu
ed to solve insuran
e problems. Ap-parently, many 
ontrol variables, su
h as reinsuran
e, dividend paymentor investment, to mention a few examples, are adjusted dynami
ally. Bymeans of a standard 
ontrol tool su
h as the Hamilton{Ja
obi{Bellmanequation, optimal solutions 
an be 
hara
terized and 
omputed (some-times only numeri
ally), and the smoothness of the value fun
tion 
an beshown. An early paper within this 
ontext is Martin-L�of [26℄. Optimal in-vestment for insurers, taking the 
laims pro
ess and the investment intoa

ount, has been 
onsidered by Browne [8℄, see also Hipp and Plum [22℄and Hojgaard and Taksar [23℄.The traditional thought patterns of life insuran
e mathemati
s kepta
tuaries 
hained for too long to deterministi
 non-variable, te
hni
al



4 Claudia Kl�uppelberginterest rates for the entire duration of an insuran
e 
ontra
t. With alonger life expe
tan
y and a 
hanging �nan
ial market su
h unrealisti
assumptions 
an be dangerous. Finan
ial risks a�e
ting the investment ofan insuran
e 
ompany in
lude, for instan
e, interest rate 
hanges, sto
kindex movements or 
u
tuations in foreign-ex
hange rates. Seminal workin this area has been done by Ragnar Norberg and his 
olleagues inCopenhagen; see e.g. Norberg [30℄. He provides an axiomati
 approa
hto interest and the valuation of payment streams. For a re
ent book onthis subje
t we refer to Koller [25℄ whi
h supplements the 
lassi
al bookby Gerber [18℄.Furthermore, new produ
ts, su
h as equity-linked or unit-linked lifeinsuran
e 
ontra
ts, are dire
tly linked to the �nan
ial market. A unit-linked life insuran
e 
ontra
t is a 
ontra
t where the insuran
e bene�tsdepend on the pri
e of some spe
i�
 traded sto
ks. Typi
ally, the pol-i
yholder will re
eive the maximum of the sto
k pri
e and some assetvalue guarantee stipulated in the 
ontra
t. The pri
ing and hedging oflife insuran
e 
ontra
ts has to take �nan
ial risks for long-term invest-ment into a

ount. Aase and Persson [2℄ and Nielsen and Sandmann [29℄treat the problem of pri
ing su
h life insuran
e 
ontra
ts. M�ller [28℄investigates the hedging problem for unit-linked life insuran
e 
ontra
ts,taking both the �nan
ial and the mortality risk into a

ount.The paper is organized as follows. In Se
tion 2 we des
ribe se
uritieswhi
h have some built-in insuran
e 
omponent. As an example we treatthe Winterthur 
onvertible 
atastrophe (`CAT') bond. To determine thepri
e of this bond one needs an estimate for the far-end tail of the lossdistribution. We use the POT (peaks over thresholds) method for estima-tion whi
h is based on extreme-value theory. We explain the pro
edurein detail in Subse
tion 2.1. In Subse
tion 2.2 we model 
atastrophe op-tions and futures, in
luding so-
alled small and large 
aps. The topi
 ofSe
tion 3 is the modelling and quanti�
ation of 
redit risk. This is an ex-ample where a
tuarial methods 
ontribute to �nan
ial risk management.A 
redit portfolio is treated like a portfolio of liabilities; a 
redit default
orresponds to an insuran
e 
laim. Se
tion 4 is devoted to integrated riskmanagement. We explain the advantage of 
ombined reinsuran
e and �-nan
ial prote
tion in 
ontrast to independent treatment of both risks.We explain the double-trigger stru
ture of IRM and indi
ate how su
hprodu
ts 
an be pri
ed by �nan
ial and/or a
tuarial methods.2 Insuran
e-Linked Se
uritiesIn
reasing 
orrelation between traditional investment markets 
ausedby the globalization of world e
onomies leaves fewer diversi�
ation op-portunities for investors. Natural 
atastrophes, however, have minimal
orrelation to any investment market. On the other hand, there is anoti
eable shortfall between the 
laims potential of the largest US 
atas-trophe risks (hurri
anes in the south and east and earthquakes in the
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e Mathemati
s 5west) and the 
overage 
apa
ity of the primary and reinsuran
e mar-kets. Total 
laims arising from Hurri
ane Andrew, the most expensive
laim in the period 1970{1999, 
aused 
osts of USD 18,600 M. Even su
ha high 
laim amounts to only 0.2% of the total market 
apitalization ofthe US share market, and so it lies within the normal daily volatilityrange of this market.In 1992 the Chi
ago Board of Trade (CBOT) introdu
ed futures andoptions on the Insuran
e Servi
e OÆ
e (ISO) 
atastrophe index, whi
hwere followed in 1995 by options on the Property Claim Servi
es (PCS)
atastrophe index. Su
h 
atastrophe options and bonds, as des
ribed,are also used by insuran
e 
ompanies for risk management.Various investment banks have worked on so-
alled CAT bonds (
atas-trophe bonds), a type of instrument also suitable for other investors. Aninvestor will earn a spe
i�
 maximal interest/return if no relevant 
atas-trophi
 event o

urs, yet he/she would lose some of this interest or evensome of the 
apital in the 
ase of a damaging event.2.1 Catastrophe BondsThe 
oupon and prin
ipal payment of a 
atastrophe bond depend onthe performan
e of a pool or index of natural 
atastrophe risk. >Fromthe perspe
tive of a lo
al insurer the se
urities behave like a reinsuran
e
ontra
t. A simple one-year stru
ture provides 
apital to 
over losses inthe event of a hurri
ane. The transa
tion involves three parties: investors,the 
edant and the issuer. We explain the prin
iple of su
h a se
urity ina spe
ial example, a so-
alled physi
al trigger bond.Example: Convertible CAT-BondIn 1997 the Winterthur Insuran
e Company issued a three-year 
onvert-ible bond with 
oupons on Swiss hail risk. The interest 
oupon is subje
tto risk and is kno
ked out if, in the 
ourse of one year, more than a �xednumber of motor vehi
les insured with Winterthur in Switzerland aredamaged during any single hail or major storm event. The kno
k-outthreshold is 6,000 vehi
les damaged during any single day (Winterthurinsured 773,600 
ars in Switzerland in 1997). At redemption the holderis entitled to 
onvert the bond into Winterthur registered shares at aspe
i�
 exer
ise pri
e (European-style option); for details see [12℄.Question: What is the Fair Pri
e for this Bond?For a 
onventional �xed 
oupon not dependent on 
atastrophe risk, pri
-ing would be an easy dis
ounting exer
ise. For bearing a small portion ofWinterthur's damage-to-vehi
le risk, the investor re
eives an extra an-nual yield premium. To 
al
ulate this extra premium, we need to in
or-porate a model for the extremal damage events. In the 10 years 1987{1996 there were only two events whi
h would have 
aused no 
oupon



6 Claudia Kl�uppelbergpayment, namely in 1992 and 1993. Hen
e any model for this event hasvery little statisti
al signi�
an
e. We 
ompensate the drawba
k of veryfew data points by mathemati
al theory. Just as 
entral limit theoremsprovide mathemati
ally reasonable models for sums and means, extreme-value theorems provide mathemati
ally reasonable models for extremalevents; see [16℄. This paragraph is taken from Emmer, Kl�uppelberg andTr�ustedt [17℄.The POT MethodPOT provides a tool for estimating a tail or a quantile, based on theextreme observations of a sample. The method 
onsists of three parts.Ea
h part is based on a probabilisti
 prin
iple whi
h will be explainedin the following paragraphs. Fig. 1 serves as an illustration.(1) Point Pro
ess of Ex
eedan
es. We derive a limit pro
ess for thepoint pro
ess of ex
eedan
es of high thresholds. Given a high thresholdun we index ea
h observation of the sample X1; : : : ; Xn ex
eeding un. (InFig. 1 these are observations 2,3,5,6,10,12). To obtain a limit result, welet the sample size n tend to in�nity and, simultaneously, the thresholdun in
rease, and this in the 
orre
t proportion.For independent and identi
ally distributed (iid) data, ea
h datapoint has the same 
han
e of ex
eeding the threshold un, the su

essprobability being simply P (Xi > un) for i = 1; : : : ; n. Hen
e, the num-ber of observations ex
eeding this threshold#fi : Xi > un ; i = 1; : : : ; ng = nXi=1 I(Xi > un)follows a binomial distribution with parameters n and P (Xi > un).Here, I(Xi > un) = 1 or 0, a

ording as Xi > un or � un. If for some
u
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X13Fig. 1. Data X1; : : : ; X13 with 
orresponding ex
esses Y1; : : : ; YNu .
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e Mathemati
s 7� 2 (0;1), limn!1 nP (Xi > un) = � ; (2.1)then by the 
lassi
al Poisson limit theorem, the distribution of #fi :Xi > un; i = 1; : : : ; ng 
onverges to a Poisson distribution with param-eter � . If Xi, i = 1; : : : ; n, 
ome from an absolutely 
ontinuous distri-bution, (2.1) is a rather weak 
ondition: for all pra
ti
ally relevant ab-solutely 
ontinuous distributions and every � > 0, a suitable series (un)
an be found (see e.g. Embre
hts et al. [16℄, Chapter 3). Indexing allpoints fi : Xi > un; i = 1; : : : ; ng in the interval [0; n℄, the latter be
omelarger and larger whereas the indexed points be
ome sparser and sparser(as the threshold un rises with n). A more e
onomi
al representation isgained by plotting the points not on the interval [0; n℄ but rather on theinterval [0; 1℄. An observation Xi ex
eeding un is then plotted not at ibut at i=n. If for n 2 N we de�neNn((a; b℄) = #fi=n 2 (a; b℄ : Xi > un; i = 1; : : : ; ngfor all intervals (a; b℄ � [0; 1℄, then Nn de�nes a point pro
ess on theinterval [0; 1℄. This pro
ess is 
alled the time-normalized point pro
essof ex
eedan
es. 3Choosing un su
h that (2.1) holds, the series Nn ofpoint pro
esses 
onverges (as n!1) in distribution to a Poisson pro
esswith parameter � . For the measure-theoreti
 ba
kground on 
onvergen
eof point pro
esses see e.g. Embre
hts, Kl�uppelberg and Mikos
h [16℄,Chapter 5.(2) The Generalized Pareto Distribution. For the ex
eedan
es ofa high threshold, we are not only interested in when and how often theyo

ur, but also in how large the ex
ess X � ujX > u is. (In Fig. 1the ex
esses are labelled Y1; : : : ; YNu and the number of ex
eedan
es isNu = 6). Under 
ondition (2.1) it 
an be shown that for a measurablepositive fun
tion a,limu!1P �X � ua(u) > y����X > u� = (1 + �y)�1=� ; (2.2)if the left-hand side 
onverges at all. For � = 0 the right-hand sideis interpreted as e�y. For all � 2 R the right-hand side is the tail ofa distribution fun
tion, the so-
alled generalized Pareto distribution. If� � 0 the support of this distribution is [0;1); for � < 0 the support isa 
ompa
t interval. The 
ase � < 0 is of no interest for our appli
ationand therefore not 
onsidered.(3) Independen
e. Finally, it 
an be shown that the point pro
ess ofex
eedan
es and the ex
esses, that is, the sizes of the ex
eedan
es, areindependent in the limit.



8 Claudia Kl�uppelbergHow 
an these limit theorems be used to estimate tails and quantiles?Our next paragraph illustrates the POT method for a given sampleX1; : : : ; Xn. For a high threshold u we de�neNu = #fi : Xi > u; i = 1; : : : ; ng : (2.3)We refer to the ex
esses of X1; : : : ; Xn as Y1; : : : ; YNu , as indi
ated inFig. 1. The tail of F is denoted by F = 1�F . De�ning F u(y) = P (Y1 >yjX > u) yieldsFu(y) = P (X � u > yjX > u) = F (u+ y)F (u) ; y � 0 :Consequently, we haveF (u+ y) = F (u)F u(y) ; y � 0 : (2.4)An observation larger than u+y is obtained if an observation ex
eeds u,i.e. an ex
eedan
e is required, and if, furthermore, su
h an observationhas an ex
ess over u that is also greater than y. An estimator of the tail(for values greater than u) 
an be obtained by estimating both tails onthe right-hand side of (2.4).A variant of this method is applied to estimate the kno
k-out proba-bility PCAT for the Winterthur CAT bond. The data as given expli
itlyin [12℄ 
onsist of past events (hail and storm) for the years 1987{1996
ausing over 1; 000 adjusted 
laims. Given are the exa
t dates of theevent, the number of 
laims and the number of 
laims adjusted to therespe
tive size of the portfolio during the 10 years of the observationperiod. We work with the adjusted data whi
h 
an be assumed to bestationary.The data in the form of ex
eedan
es of u = 1; 000 are presented inFig. 2 together with a mean-ex
ess plot of the ex
eedan
es. The empiri
almean-ex
ess fun
tion on the right-hand side of Fig. 2 in
reases, hen
e,
learly, the data are heavy tailed. Furthermore, the approximation ofthe generalized Pareto distribution to the ex
eedan
es as indi
ated inequation (2.5) is equivalent to the approximation of a linear fun
tionto the empiri
al mean-ex
ess fun
tion. For a dis
ussion of the mean-ex
ess plot and other exploratory tools for data analyses in the 
ontextof extreme-value theory see Embre
hts et al. [16℄, Chapter 6.Denote as in (2.3) Nu = #fi : Xi > u; i = 1; : : : ; ng. For u = 1; 000we have Nu = 17, but the total number n of 
laims is unknown, sin
eonly events 
ausing more than u = 1; 000 adjusted 
laims have beenlisted.For t = 1; : : : ; 10 denote by eNu(t) the number of ex
esses of u inyear t, and assume that they are iid random variables (rv). Write Yj(t),j = 1; : : : ; eNu(t), for the ex
esses in year t. The kno
k-out probability ofthe 
oupon of year t is thenPCAT(t) = P �Yj(t) > u+ y for some j = 1; : : : ; eNu(t)�
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eedan
es above u = 1; 000 (left) and 
orresponding empiri
al mean-ex
ess fun
tion (right).= P  max1�j� eNu(t)Yj(t) > u+ y!� P 0� eNu(t)Xj=1 Yj(t) > u+ y1A� E eNu(t)P (X > u+ yjX > u) ; y !1 ; (2.5)where we used standard properties of subexponential distributions; seee.g. Embre
hts et al. [16℄ or Goldie and Kl�uppelberg [20℄.We estimate E eNu(t) by the empiri
al mean, where we use all datafrom the N = 10 years of observation:\E eNu(t) = NuN ;resulting in \E eNu(t) = 17=10 = 1:7 ; t = 1; : : : ; 10 :Then, we approximate F u(y) by the generalized Pareto distribution,where the s
ale fun
tion a(u) has to be taken into a

ount. The latter isin
luded as a parameter in the model. This givesF u(y) � �1 + � y���1=� ;where � and � have to be estimated (by b� and b�). By (2.5) this yieldsfor �xed given u and large y the following estimator for the kno
k-out
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Fig. 3. Maximum likelihood estimation of the shape parameter � as a fun
tionof the threshold u with the asymptoti
 95%-
on�den
e intervals.probability per year: bPCAT = NuN �1 + b� yb���1=b� : (2.6)The 
ru
ial estimate is b� and Fig. 3 shows the maximum likelihood es-timator for � depending on di�erent thresholds u (equivalently, di�er-ent numbers of upper order statisti
s). We use the same estimates asS
hmo
k [38℄, Se
tion 10 (for b� this value is indi
ated by the straightline in Fig. 3), i.e. b� = 0:7243 and b� = 970:3 :For u = 1; 000 and y = 5; 000 we obtain the estimated kno
k-out proba-bility of the 
oupon per year asbPCAT = 1:7� 0:07575 = 0:128775 :The theoreti
al total value of the 
onvertible bond with WinCAT
oupons is the sum of the following three 
omponents:(i) The prin
ipal value: the dis
ounted amount payable at maturity.(ii) The value of the WinCAT 
oupons: the sum of the present valuesof expe
ted 
oupon payments, whereby the kno
k-out probability istaken into a

ount.(iii) The value of the 
onversion right: the weighted sum of two European
all options with di�erent exer
ise pri
es (the pri
e if the last 
ouponis kno
ked-out and the pri
e if the last 
oupon is not kno
ked-out),weighted by the respe
tive probabilities.
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ale).The values of the three 
omponents, apart from the kno
k-out probabil-ity, are 
al
ulated by standard methods from mathemati
al �nan
e. Fordetails on these 
al
ulations see [12℄.Estimation of the kno
k-out probability is a typi
al insuran
e mathe-mati
al question, and we have demonstrated above how to estimate su
han extreme event. For an extension of su
h methods for this parti
ularexample see S
hmo
k [38℄.2.2 CAT Futures and OptionsA (European 
all) option is a 
ontra
t whi
h allows its holder to pur
hasean asset at a �xed pri
e on a �xed future day.In 
ontrast, a futures 
ontra
t is an agreement between two parties tomake a parti
ular ex
hange (with pri
e �xed in the 
ontra
t) at a �xedfuture date. At the time of delivery one partner re
eives the pur
hasedasset and the other the 
ontra
t pri
e. The asset may be a 
ar, the wheatharvest of a farmer, an oun
e of gold et
. For CAT futures and optionsthe asset is `an insurer's loss ratio'.In the insuran
e business, su
h produ
ts 
an be stru
tured as hedginginstruments. PCS options, for example, enable insurers to implement`
all spread' strategies (buying a 
all option and simultaneously sellinga 
all option with a higher exer
ise pri
e), e�e
tively providing themwith a reinsuran
e layer. The main problem for su
h a 
ontra
t is theequivalent of an underlying, whi
h in the above examples is the marketpri
e (of the 
ar, the harvest, one oun
e of gold).An arti�
ial `underlying' is 
reated as a representative 
laim indexwhi
h re
e
ts the development of the loss ratio of a so-
alled pool,whi
h is a representative 
olle
tive of insuran
e 
ompanies. Companiesare mainly pooled on a geographi
 basis; i.e. the index is basi
ally the



12 Claudia Kl�uppelbergtotal 
laim amount of the portfolios (of a spe
ial insuran
e risk) of all
ompanies in the pool at time t.Ea
h option 
overs a so-
alled loss period (3 or 12 months), but the
ash settlement of the 
ontra
t is made only 6 to 12 months after theend of the loss period. This time gap is required to register all 
laimsand to make the ne
essary 
al
ulations to determine the index value.As a �rst approximation, ignoring the problem of delay in reportingand settlement of 
laims, a reasonable model for the index is a 
ompoundPoisson model (S(t))t�0.Pri
ing a CAT FutureAt time T , the �nal settlement value V (T ) of the futures pri
e is de�nedby the CBOT asV (T ) = $25; 000min�S(T )P (T ) ; 2� = $25; 000 S(T )P (T ) ��S(T )P (T ) � 2�+! ;where a+ = max(0; a) and P (t) denotes the premium in
ome in thepool until time t 
orresponding to the 
laims in the pool. Noti
e thatS(T )=P (T ) is the loss ratio of the pool at maturity T . In the 
lassi
alPoisson model, the premiums P (t) 
an be taken as a loaded version ofthe mean value �(t) of S(t), thusP (t) = 
�(t) ; t � 0 ;for some 
 > 1. We extend the 
lassi
al insuran
e risk model slightly intaking the total 
laim amount asS(t) = N(t)Xn=1Xn ; t � 0 ; (2.7)where (N(t))t�0 are Poisson rvs with intensity �(t)!1 (they need not
onstitute a Poisson pro
ess), independent of (Xn)n2N. This in
ludesthe 
ase of `high-density data', where the settlement time T is �xedor relatively small, but the intensity �(T ) is large; i.e. in a relativelyshort time a huge number of 
laims 
an o

ur. This �ts well with thesituation we 
onsider, sin
e the pool of insuran
e 
ompanies guarantees ahigh density of 
laim arrivals. CAT futures are designed for 
atastrophi
events, hen
e a reasonable model for the 
laims Xn is a heavy-taileddistribution. A rather general model is the Pareto-like distribution:P (Xn > x) = F (x) = x��l(x) ; x � 0 ;where � > 1 (guaranteeing a �nite mean) and l is a slowly varyingfun
tion, i.e. limx!1 l(xt)=l(x) = 1 for all t > 0. This 
lass in
ludes thePareto, the log-gamma and the Burr distribution.
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s 13For evaluation of the pri
e of the futures 
ontra
t it is of parti
ularinterest to determine moments of V (T ).In Kl�uppelberg and Mikos
h [24℄ the following is proved by large-deviations arguments.Theorem 1. Under the above assumptions the following estimates holdas �(t)!1:(a) Uniformly for x � 
�(t) for all 
 > 0:P � max1�n�N(t)Xn > x� � �(t)F (x) :(b) Uniformly for x � 
�(t) for all 
 > 0:P (S(t)� �(t) > x) � �(t)F (x) :(
) E � S(t)
�(t) �K�+ � 
�(t)
(� � 1)F (
�(t)) ; 
 = K
� 1 > 0 :(d) EV (t) = $25; 000
 �1� (1 + o(1)) (2
� 1)�(t)�� 1 F ((2
� 1)�(t)�(t))�.(e) If varX <1 then,varV (t) = ($25; 000)2
2�� EX2�2�(t)�(1 + o(1))2(2
�1)2�(t)��2 F ((2
�1)�(t)�(t))� :Knowledge of these quantities allows for a
tuarial pri
ing a

ord-ing to the mean-value prin
iple, varian
e prin
iple or standard-deviationprin
iple. Alternative models and pri
ing formulae are based on equiva-lent martingale measures. This is, however, only possible for distributionswith �nite exponential moments, whi
h ex
ludes all the large-
laimsmodels. In Embre
hts et al. [16℄, Se
tion 8.7, it is also explained howa home-owner insurer 
an use these futures as a hedging instrument.Note that the model is only a simpli�
ation of the dynami
s of theindex. In reality, the �rst three months, 
alled event quarter, would de�nethe 
laim o

urren
e period, the next three months, 
alled runo� quarter,were added to allow for 
laim settlement. One would hope that at the endof the six months a high per
entage of the 
laims were settled. The valueV (T ) would then be made available in a �rst interim report shortly afterthe end of the reporting period. The �nal report for the future would bepublished during the fourth month after the reporting period.Pri
ing a PCS OptionPCS options are also based on a 
laims index whi
h has similar dynami
sto the 
orresponding index for the CAT futures. The owner of a PCS-
all-option obtains some payment at the end T of the runo� period



14 Claudia Kl�uppelberg(European style), if the value of the index is higher than the strike pri
eK of the 
ontra
t. There are small 
aps with a strike pri
e K 2 [0; 2℄and large 
aps with K 2 [2; 5℄ available (the unit is 100 M USD). Withinthe runo� period (the 
laims period has passed) the value of the optionat time t is given byC(t) = min�(S�(t)�K)+ ; 2�K	 ; 0 � K � 2 ; small 
ap ;C(t) = min�(S�(t)�K)+ ; 5�K	 ; 2 � K � 5 ; large 
ap ;where S�(t) = S(t)=100, 0 � t � T , is the normalized total 
laim amountwithin the runo� period, during whi
h the option is traded. Pri
ing for-mulae based on the Bla
k{S
holes model for the index and other modelswith exponential moments have been derived in S
hradin [39℄. They are,however, not adequate models for 
atastrophi
 
laims. Sin
e PCS optionsare parti
ularly designed for large 
laims, insuran
e pri
ing methods asdeveloped in [24℄ and explained above would be more appropriate.3 Credit Risk ModellingIn 1997 Cr�edit Suisse Finan
ial Produ
ts laun
hed a new produ
t tomanage 
redit risk; it uses mathemati
al te
hniques applied widely inthe insuran
e industry to model the sudden event of a 
redit to default.This approa
h 
ontrasts with the mathemati
al te
hniques typi
ally usedin �nan
e, but re
ognizes the similarity of the �nan
ial risks of a port-folio of 
redit exposures and a portfolio of insuran
e exposures. In both
ases, losses 
an be su�ered from a portfolio 
ontaining a large numberof individual risks, ea
h with a low probability of o

urring. The riskmanager is 
on
erned with assessing the frequen
y of the unexpe
tedevents as well as the severity of the losses.The risk of the overall 
redit portfolio is assessed by the estimateddistribution of default losses or related quantities su
h as its moments ormoment-generating fun
tion. We start with a �xed time horizon of oneyear.The 
lassi
al 
olle
tive risk model translated into this 
ontext is basedon a Poisson rv N for the frequen
y of 
redit defaults, random iid 
reditlosses (Xi)i2N, whi
h are independent of the 
ounting variable N . Start-ing with this model, 
ertain 
redit portfolio properties are taken intoa

ount. First of all, e
onomi
 se
tors whi
h are a�e
ted by a relativelysmall number of systemati
 e
onomi
 fa
tors are modelled separately.An initial example might be a division of the portfolio a

ording to the
ountry of domi
ile of ea
h obligor.It is noti
ed (as also often in insuran
e portfolios) that within ea
hse
tor the estimated mean and the estimated varian
e of the numberof defaults are di�erent, whereas for the Poisson distribution mean andvarian
e are equal. There is so-
alled overdispersion, i.e. the 
oeÆ
ient ofvariation is greater than 1. This might be 
aused by 
ommon e
onomi
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tors for ea
h se
tor, whi
h 
an a
t like an epidemi
 or infe
tious dis-ease. The usual insuran
e remedy for this e�e
t is to take a mixed Poissondistribution. The Poisson parameter � is mixed by a gamma distributionwith density f(�) = 1��� (�)e��=����1 ; � > 0 ; (3.8)where �; � > 0 and � (�) = R10 e�xx��1dx is the gamma fun
tion. Thisyields a negative binomial model; in insuran
e mathemati
s it is also
alled the P�olya model.The Basi
 ModelAssume a portfolio of 
redit risks, whi
h is 
lassi�ed into K 2 N se
tors.The number of 
redit defaults in se
tor k, 1 � k � K, is modelled by anegative binomial variable Nk with distributionP (Nk = j) = �j + �k � 1j �pjk(1� pk)�k ; j 2 N0 ; (3.9)where pk = �k=(1+�k) and (�k; �k) is the parameter ve
tor of a gammadistribution as in (3.8). Then, the total 
redit default loss of the portfolioin one year is given by S = KXk=1 NkXn=1Xkn : (3.10)Assume furthermore, that the se
tors are independent. The 
redit lossesin ea
h se
tor are assumed to be independent, but they may have di�er-ent distributions in di�erent se
tors. Consequently, the Nk, 1 � k � K,are independent negative binomial rvs with distributions given in (3.9)and the default lossesXkn are independent, and we assume for ea
h �xed1 � k � K that the rvs Xk1; : : : ; XkNk are iid.Then, the moment-generating fun
tion of S 
an be 
al
ulated (weuse the 
onvention P0i=1 ai = 0 and Q0i=1 ai = 1):E "exp t KXk=1 NkXn=1Xkn!# = KYk=1 1Xj=0 P (Nk = j) jYn=1 etXkn= KYk=1 1Xj=0�j+�k�1j �pjk(1�pk)�k jYn=1EetXkn :Example: Exponential Default Losses. If for ea
h 1 � k � K theXkn, 1 � n � Nk, are exponentially distributed with parameter �k, thenEetXkn = �k�k � t ; t < �k ;



16 Claudia Kl�uppelberggivingEetS = KYk=1(1� pk)�k 1Xj=0�j + �k � 1n �pjk � �k�k � t�j ; t < min1�k�K �k :If �k = � for all 1 � k � K, thenEetS = KYk=1� 1� pk1� pk�=(�� t)��k ; t < � :This moment-generating fun
tion 
an now be used to 
al
ulate moments,or to obtain the distribution fun
tion of S by inversion. utOn the other hand, 
redit losses may, rather, behave like large 
laims,i.e. the exponential distribution may not be an appropriate model. Thefollowing family has proved to be useful in the 
ontext of large insuran
e
laims. Although 
redits (and 
laims) are usually thought of as boundedabove, su
h models are reasonable models when, in prin
iple, arbitrarilylarge 
redits (or 
laims) are admitted to the portfolio.De�nition 2. (Subexponential Distribution Fun
tion)Let X;X1; : : : ; Xn be iid positive rvs with distribution fun
tion F su
hthat F (x) < 1 for all x > 0. DenoteF (x) = 1� F (x) ; x � 0 ;the tail of F andFn�(x) = 1� Fn�(x) = P (X1 + � � �+Xn > x) ; x � 0 ;the tail of the n-fold 
onvolution of F . F is 
alled a subexponential df(F;X 2 S) if one of the following equivalent 
onditions holds:(a) limx!1 Fn�(x)F (x) = n for some (all) n � 2 ,(b) limx!1 P (X1 + � � �+Xn > x)P (max(X1; : : : ; Xn) > x) = 1 for some (all) n � 2. utExamples of subexponential distributions are the Pareto, lognormaland heavy-tailed Weibull distributions. For further properties of subex-ponential distributions we refer to Embre
hts et al. [16℄ or Goldie andKl�uppelberg [20℄. The notation a(x) � b(x), x!1 means that the ratioa(x)=b(x) tends to 1 as x!1.The following result is an immediate 
onsequen
e of Theorems 5.1and 5.2 of [20℄.Theorem 3. Let Xk be a generi
 rv modelling a loss in se
tor k, 1 �k � K, where losses in one se
tor are iid and losses in di�erent se
torsare independent. Assume that X 2 S andP (Xk > x) � 
kP (X > x) ; x!1 ;
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s 17where 
k 2 [0;1) for all 1 � k � K, and that at least one of the 
k ispositive. Then, for the total 
redit default loss given by (3.10) we haveP (S > x) � P (X > x) KXk=1 
kENk ; x!1 :This basi
 model is extended by introdu
ing so-
alled exposure bandswhi
h de
ompose a se
tor. This 
ompli
ates the notation, and may rather
onfuse the stru
tural ideas of the model. We have therefore refrainedfrom presenting this detail, although it may be important in pra
ti
e.The 
olle
tive modelling of 
redit risk provides an important 
ontri-bution to estimation of the risk inherent in a portfolio. The other side ofthe 
oin is the 
ontribution of a single 
redit to the portfolio risk. In [11℄the varian
e is used as a risk measure and dependen
e is modelled by the
ovarian
es. The risk of an obligant is measured by its varian
e 
ontri-bution to the overall portfolio varian
e. This approa
h is typi
al for the�nan
ial world, where normal distributions are almost ex
lusively used.More re
ently, so-
alled lower partial moments have been suggestedas risk measures. The lower partial moment of order n is de�ned asLPMn(x) = Z x�1(x � r)ndP (S � x) ; x 2 R : (3.11)Examples are the shortfall probability (n = 0), the expe
ted target short-fall (n = 1), the target semi-varian
e (n = 2), and target semi-skewness(n = 3). The inverse of the shortfall probability is simply the quantile andis also 
alled value-at-risk. Risk 
ontributions and performan
e measure-ment for various risk measures, in
luding those mentioned above, havebeen investigated in detail in Tas
he [44℄.4 Integrated Risk ManagementWhile the primary task of traditional reinsuran
e is to smooth the under-writing result, IRM solutions are espe
ially stru
tured to fo
us on hedg-ing the downside risk of the 
edent's operating result, although downside-risk and volatility redu
tion 
an be o�ered simultaneously within someIRM frameworks. This se
tion is based on [43℄.A traditional stop-loss insuran
e treaty 
overs insuran
e 
laims inex
ess of the underwriting trigger. Separate �nan
ial prote
tion is ob-tained if the return on investment drops below the �nan
ial trigger. Thisindependent view of liability and asset prote
tion may result in a posi-tion of over-hedging; see Fig. 5. In a situation of high investment losses,but relatively low loss ratio, and vi
e versa, i.e. high insuran
e 
laimsbut good investment results, losses are mutually neutralized. IRM prod-u
ts take these aspe
ts into 
onsideration and lead to a redu
tion of the
edent's risk 
apital. This redu
tion is illustrated in Fig. 6.Su
h ideas, of 
ourse, also apply to banks with 
redit risk portfo-lios, when 
redit losses are 
onsidered as liabilities as des
ribed in thepre
eding se
tion.
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- Fig. 5. Separate reinsuran
e/�nan
ial prote
tion.Pri
ing a Double-Trigger Produ
tDouble triggers are very attra
tive solutions for 
lients worrying aboutsimultaneous extreme �nan
ial and underwriting events that might a�e
ttheir operating results. As operating result we 
onsideroperating result = (premium � expenses � losses) � investment result:This means that for double-trigger produ
ts 
overage is triggered onlywhen the 
ompany is a�e
ted by an important downturn of �nan
ialmarkets and su�ers at the same time from a high underwriting loss. Asa dire
t 
onsequen
e, hedging extreme and rare events via double-triggerstru
tures is less expensive than a separate hedging solution.We explain the example of a double-trigger stop-loss reinsuran
e 
on-tra
t. The following quantities are needed:{ R atta
hment point level (underwriter trigger);{ C maximum 
over;{ L aggregate underwriting losses;{ S0 market value of the sto
k portfolio at the start of the exposureperiod;{ S1 market value of the sto
k portfolio at the end of the exposureperiod.The stop-loss obliges the reinsurer to pay the primary insurer a 
laimspayment of CP = minf(L+ (S0 � S1)�R)+; Cg :
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e/�nan
ial prote
tion.This means that at expiry of the 
ontra
t the reinsurer pays for thetotal underwriting and �nan
ial losses in ex
ess of R with a limit of C.It also shows the possibility of splitting the reinsuran
e 
laim into twoparts.CP = ((L+ S0 �R)� S1)+ � ((L+ S0 �R� C)� S1)+ : (4.12)This de
omposition shows that the stop-loss 
over 
an be interpreted asa �nan
ial position in a bear spread of put options written on the sto
kportfolio S1 with strike pri
es given by L+ S0 �R and L+ S0 �R�Crespe
tively. For an illustration see Fig. 7.
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e, the �nal pri
e 
an be 
omputed by evaluating the di�erent �-nan
ial options embedded in the original reinsuran
e treaty. Noti
e thatthe interdependen
e of the `loss events' of su
h produ
ts makes them notentirely repli
able �nan
ial assets. Therefore, the risk-neutral valuationte
hnique traditionally used for the pri
ing of �nan
ial derivatives 
an-not be applied dire
tly, but needs to be adjusted and 
omplemented bya
tuarial methods.Pri
ing su
h a produ
t needs integrated �nan
ial and a
tuarial meth-ods. Traditional a
tuarial methods, 
omplemented by extreme-value te
h-niques in the 
ase of highly adverse and rare events, are 
ombined withmethods from mathemati
al �nan
e.5 Con
lusionsWhereas until the 1990s insuran
e and �nan
ial mathemati
s developedmore or less separately, both �elds have realized in re
ent years thatthey work on two ends of the same problem. Risk management is their
ommon topi
. This understanding, even if it 
ame late, has enri
hedboth �elds. Not only have models and methods been transferred from one�eld into the other, but by 
onsidering and integrating thought patternsfrom both dis
iplines, new produ
ts have arisen in both insuran
e and�nan
e. This leads to new 
hallenging problems, e
onomi
ally, and alsomathemati
ally. In this paper we have given some examples for thisex
iting development. It is our �rm belief that both �elds will 
ontinueto 
onverge, and merge to an even more ex
iting �eld of mathemati
s.A
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