
Developments in Insurane MathematisDediated to Hans B�uhlmannon the oasion of his seventieth birthdayClaudia Kl�uppelbergCenter of Mathematial Sienes, Munih University of Tehnology, D-80290Munih, Germany?Abstrat. Insurane mathematis in the 1990s has been inuened �rstly, bythe inrease in atastrophi laims whih had already beome apparent dur-ing the early 1970s and 1980s and required new mathematial and statistialmethods, and, seondly, by a fast inreasing �nanial market that is interestedin new investment possibilities. Ideas from extreme-value theory and mathe-matial �nane have been introdued into insurane mathematis and enrihedlassial insurane methods. But the exhange is not only from mathematial�nane to insurane mathematis. The ontinuing ourrene of rashes in the�nanial market has led to a new development in mathematial �nane: modelsand tools from insurane mathematis have entered the world of �nane. Thispaper presents examples, from both the insurane and the �nanial worlds.The hoie of topis is guided by personal taste and my own work.1 IntrodutionThe profession of the atuary is one of the oldest in the �nanial world.It began in the middle of the 19th Century with life insurane, and,until the 1960s, mathematial methods were largely applied to prie lifeinsurane ontrats, develop mortality tables using statistial data, andalulate reserves.The starting point of olletive risk theory in non-life insurane isthe work by Filip Lundberg in 1903. His idea of the standard ompoundPoisson model was made mathematially rigorous by Harald Cram�er inthe 1930s. This model has been extended in various ways to this day:general renewal proesses and Cox proesses replae the Poisson proess;a random environment allows for random hanges in the intensity of thelaim-number proess and in the laim-size distribution; interest ratesare onsidered on the premium inome side; and pieewise deterministiMarkov proesses provide new insight and models. Various books onrisk theory appeared; see e.g. Bowers et al. [7℄, B�uhlmann [9℄, Daykin,Pentik�ainen and Pesonen [13℄, Embrehts, Kl�uppelberg and Mikosh [16℄,Gerber [19℄, Grandell [21℄, Panjer and Willmot [31℄, and Rolski et al. [34℄.One of the mathematially most exiting �elds in olletive risk the-ory is ruin theory, where �rst-passage events above a high threshold areinvestigated. New and old results an be embedded into martingale the-ory providing a new method of deriving Lundberg's inequality for very? Email: klu�ma.tum.de http://www.ma.tum.de/stat/



2 Claudia Kl�uppelberggeneral models, guaranteeing that for small laims the ruin probabil-ity dereases exponentially fast. A speial Cram�er{Lundberg theory forlarge laims is developed. For both the small- and large-laims regime,onditional limit theorems allow for a preise probabilisti desription ofa sample path of the risk proess leading to ruin; see Asmussen [3℄ andEmbrehts et al. [16℄, Setion 8.3.Interesting new hallenges during the 1990s are mainly due to theoinidene of two fators:{ the inrease of atastrophi laims during the 1970s and 1980s;{ the development of the �nanial market.Consequently, mathematial tools, hitherto unknown in insuranemathematis, are introdued into the �eld, and also new problems arise,o�ering new hallenges to mathematiians and statistiians. In what fol-lows we review some of these new developments in insurane mathemat-is and give reent referenes. Some of the topis we treat in more detaillater in the paper.Huge atastrophe laims in the 1970s and 1980s exeeded the over-age apaity of the primary and reinsurane market. A fast inreasing�nanial market was eagerly looking for new investment possibilities,interested in bets not only on �nanial assets but also on natural atas-trophes suh as earthquakes and storms.The frequeny and severity of large laims stimulated the need formore sophistiated statistial models and a preise probabilisti and sta-tistial analysis of large laims. Extreme-value theory provides the nees-sary tools and was introdued into this �eld, o�ering an alternative to theotherwise used method of senario generation. Books on extreme-valuetheory in the ontext of insurane problems inlude Embrehts et al. [16℄and Reiss and Thomas [32℄. For some interesting analyses of insuranedata we refer to work by MNeil [27℄, Resnik [33℄, and Rootz�en andTajvidi [36,37℄. Extreme-value methods an be suessfully applied toalulate premiums for large-laims portfolios and to prie atastrophe-linked seurities. An appliation of extreme-value theory to the priingof atastrophe bonds an be found in Setion 2.1.Priing methods are at �rst sight very di�erent in insurane and�nane. Sine the 1970s, �nanial priing is traditionally no-arbitragepriing based on hedging arguments under the assumption of a ompletemarket, leading to a unique martingale priing measure. Unfortunately,markets that inlude insurane produts are usually inomplete: if mar-tingale measures exist at all, then there are in�nitely many. This impliesthat uniqueness of a martingale priing measure an only be ahieved byimposing ertain optimality onditions leading to risk minimizing mea-sures. Insurane priing avoids the problem of non-existene or in�nitelymany di�erent pries (or martingale measures). Here, pries are based onthe physial probability measure and use e.g. the law of large numbers(mean-value priniple) with protetion against random utuations bymeans of a loading fator. For more ompliated produts within atas-trophe insurane or with a link to �nanial markets suh priing methods



Developments in Insurane Mathematis 3give rise to interesting mathematial questions. In Setion 2.2 large de-viations theory for heavy-tailed models (where exponential moments donot exist) is applied to prie atastrophe futures and options. For moredetailed disussions on the omparison of atuarial and �nanial priingwe refer to Embrehts [15℄ and Shweizer [40℄.Bridging of the insurane and apital markets happens not only inone diretion. During the 1980s investment banks realized that hedgingof �nanial risks does not provide suÆient overage for market risks.The so-alled Basle aord from 1988, with amendments in 1994{1996,introdued the traditional insurane method of building risk reserves intoa bank's risk management. Reserves have to be built to over the earn-ings at risk, i.e. the di�erene between the mean and the 1%-quantile ofthe pro�t/loss distribution. The estimation of an extremely low quantileagain requires speial statistial methods based on extreme-value the-ory; see Borkove and Kl�uppelberg [6℄, Embrehts et al. [16℄, Emmer,Kl�uppelberg and Tr�ustedt [17℄, and Rootz�en and Kl�uppelberg [35℄.Atuarial methods in �nane have also been introdued to modeland quantify redit risk. A portfolio of redits an be ompared to alassial insurane risk portfolio: the default of a redit orresponds tothe ourrene of a laim; the interest paid for a redit has a omponentwhih is omparable to a risk premium. This idea is the basis of theommerial produt CreditRisk+ [11℄, whih we explain in more detailin Setion 3.Coming bak to future insurane developments, with the inreas-ing level of sophistiation in the insurane market, primary insurers aredemanding more exible solutions to provide loser support for theirholisti approah to risk management. To respond e�etively to this de-velopment, reent alternative risk transfer (ART) produts have to beomplemented and re�ned. New produts, alled integrated risk manage-ment (IRM) solutions, adopt a more integrated view of the �nanial andinsurane risk exposures. The exibility, provided by these IRM prod-uts for the risk management of the operating result, goes well beyondthe possibilities o�ered by separately purhasing traditional reinsuraneand �nanial hedging. More details an be found in Setion 4.It is not until reently, albeit quite naturally, that stohasti ontroltheory and tools have been introdued to solve insurane problems. Ap-parently, many ontrol variables, suh as reinsurane, dividend paymentor investment, to mention a few examples, are adjusted dynamially. Bymeans of a standard ontrol tool suh as the Hamilton{Jaobi{Bellmanequation, optimal solutions an be haraterized and omputed (some-times only numerially), and the smoothness of the value funtion an beshown. An early paper within this ontext is Martin-L�of [26℄. Optimal in-vestment for insurers, taking the laims proess and the investment intoaount, has been onsidered by Browne [8℄, see also Hipp and Plum [22℄and Hojgaard and Taksar [23℄.The traditional thought patterns of life insurane mathematis keptatuaries hained for too long to deterministi non-variable, tehnial



4 Claudia Kl�uppelberginterest rates for the entire duration of an insurane ontrat. With alonger life expetany and a hanging �nanial market suh unrealistiassumptions an be dangerous. Finanial risks a�eting the investment ofan insurane ompany inlude, for instane, interest rate hanges, stokindex movements or utuations in foreign-exhange rates. Seminal workin this area has been done by Ragnar Norberg and his olleagues inCopenhagen; see e.g. Norberg [30℄. He provides an axiomati approahto interest and the valuation of payment streams. For a reent book onthis subjet we refer to Koller [25℄ whih supplements the lassial bookby Gerber [18℄.Furthermore, new produts, suh as equity-linked or unit-linked lifeinsurane ontrats, are diretly linked to the �nanial market. A unit-linked life insurane ontrat is a ontrat where the insurane bene�tsdepend on the prie of some spei� traded stoks. Typially, the pol-iyholder will reeive the maximum of the stok prie and some assetvalue guarantee stipulated in the ontrat. The priing and hedging oflife insurane ontrats has to take �nanial risks for long-term invest-ment into aount. Aase and Persson [2℄ and Nielsen and Sandmann [29℄treat the problem of priing suh life insurane ontrats. M�ller [28℄investigates the hedging problem for unit-linked life insurane ontrats,taking both the �nanial and the mortality risk into aount.The paper is organized as follows. In Setion 2 we desribe seuritieswhih have some built-in insurane omponent. As an example we treatthe Winterthur onvertible atastrophe (`CAT') bond. To determine theprie of this bond one needs an estimate for the far-end tail of the lossdistribution. We use the POT (peaks over thresholds) method for estima-tion whih is based on extreme-value theory. We explain the proedurein detail in Subsetion 2.1. In Subsetion 2.2 we model atastrophe op-tions and futures, inluding so-alled small and large aps. The topi ofSetion 3 is the modelling and quanti�ation of redit risk. This is an ex-ample where atuarial methods ontribute to �nanial risk management.A redit portfolio is treated like a portfolio of liabilities; a redit defaultorresponds to an insurane laim. Setion 4 is devoted to integrated riskmanagement. We explain the advantage of ombined reinsurane and �-nanial protetion in ontrast to independent treatment of both risks.We explain the double-trigger struture of IRM and indiate how suhproduts an be pried by �nanial and/or atuarial methods.2 Insurane-Linked SeuritiesInreasing orrelation between traditional investment markets ausedby the globalization of world eonomies leaves fewer diversi�ation op-portunities for investors. Natural atastrophes, however, have minimalorrelation to any investment market. On the other hand, there is anotieable shortfall between the laims potential of the largest US atas-trophe risks (hurrianes in the south and east and earthquakes in the



Developments in Insurane Mathematis 5west) and the overage apaity of the primary and reinsurane mar-kets. Total laims arising from Hurriane Andrew, the most expensivelaim in the period 1970{1999, aused osts of USD 18,600 M. Even suha high laim amounts to only 0.2% of the total market apitalization ofthe US share market, and so it lies within the normal daily volatilityrange of this market.In 1992 the Chiago Board of Trade (CBOT) introdued futures andoptions on the Insurane Servie OÆe (ISO) atastrophe index, whihwere followed in 1995 by options on the Property Claim Servies (PCS)atastrophe index. Suh atastrophe options and bonds, as desribed,are also used by insurane ompanies for risk management.Various investment banks have worked on so-alled CAT bonds (atas-trophe bonds), a type of instrument also suitable for other investors. Aninvestor will earn a spei� maximal interest/return if no relevant atas-trophi event ours, yet he/she would lose some of this interest or evensome of the apital in the ase of a damaging event.2.1 Catastrophe BondsThe oupon and prinipal payment of a atastrophe bond depend onthe performane of a pool or index of natural atastrophe risk. >Fromthe perspetive of a loal insurer the seurities behave like a reinsuraneontrat. A simple one-year struture provides apital to over losses inthe event of a hurriane. The transation involves three parties: investors,the edant and the issuer. We explain the priniple of suh a seurity ina speial example, a so-alled physial trigger bond.Example: Convertible CAT-BondIn 1997 the Winterthur Insurane Company issued a three-year onvert-ible bond with oupons on Swiss hail risk. The interest oupon is subjetto risk and is knoked out if, in the ourse of one year, more than a �xednumber of motor vehiles insured with Winterthur in Switzerland aredamaged during any single hail or major storm event. The knok-outthreshold is 6,000 vehiles damaged during any single day (Winterthurinsured 773,600 ars in Switzerland in 1997). At redemption the holderis entitled to onvert the bond into Winterthur registered shares at aspei� exerise prie (European-style option); for details see [12℄.Question: What is the Fair Prie for this Bond?For a onventional �xed oupon not dependent on atastrophe risk, pri-ing would be an easy disounting exerise. For bearing a small portion ofWinterthur's damage-to-vehile risk, the investor reeives an extra an-nual yield premium. To alulate this extra premium, we need to inor-porate a model for the extremal damage events. In the 10 years 1987{1996 there were only two events whih would have aused no oupon



6 Claudia Kl�uppelbergpayment, namely in 1992 and 1993. Hene any model for this event hasvery little statistial signi�ane. We ompensate the drawbak of veryfew data points by mathematial theory. Just as entral limit theoremsprovide mathematially reasonable models for sums and means, extreme-value theorems provide mathematially reasonable models for extremalevents; see [16℄. This paragraph is taken from Emmer, Kl�uppelberg andTr�ustedt [17℄.The POT MethodPOT provides a tool for estimating a tail or a quantile, based on theextreme observations of a sample. The method onsists of three parts.Eah part is based on a probabilisti priniple whih will be explainedin the following paragraphs. Fig. 1 serves as an illustration.(1) Point Proess of Exeedanes. We derive a limit proess for thepoint proess of exeedanes of high thresholds. Given a high thresholdun we index eah observation of the sample X1; : : : ; Xn exeeding un. (InFig. 1 these are observations 2,3,5,6,10,12). To obtain a limit result, welet the sample size n tend to in�nity and, simultaneously, the thresholdun inrease, and this in the orret proportion.For independent and identially distributed (iid) data, eah datapoint has the same hane of exeeding the threshold un, the suessprobability being simply P (Xi > un) for i = 1; : : : ; n. Hene, the num-ber of observations exeeding this threshold#fi : Xi > un ; i = 1; : : : ; ng = nXi=1 I(Xi > un)follows a binomial distribution with parameters n and P (Xi > un).Here, I(Xi > un) = 1 or 0, aording as Xi > un or � un. If for some
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Developments in Insurane Mathematis 7� 2 (0;1), limn!1 nP (Xi > un) = � ; (2.1)then by the lassial Poisson limit theorem, the distribution of #fi :Xi > un; i = 1; : : : ; ng onverges to a Poisson distribution with param-eter � . If Xi, i = 1; : : : ; n, ome from an absolutely ontinuous distri-bution, (2.1) is a rather weak ondition: for all pratially relevant ab-solutely ontinuous distributions and every � > 0, a suitable series (un)an be found (see e.g. Embrehts et al. [16℄, Chapter 3). Indexing allpoints fi : Xi > un; i = 1; : : : ; ng in the interval [0; n℄, the latter beomelarger and larger whereas the indexed points beome sparser and sparser(as the threshold un rises with n). A more eonomial representation isgained by plotting the points not on the interval [0; n℄ but rather on theinterval [0; 1℄. An observation Xi exeeding un is then plotted not at ibut at i=n. If for n 2 N we de�neNn((a; b℄) = #fi=n 2 (a; b℄ : Xi > un; i = 1; : : : ; ngfor all intervals (a; b℄ � [0; 1℄, then Nn de�nes a point proess on theinterval [0; 1℄. This proess is alled the time-normalized point proessof exeedanes. 3Choosing un suh that (2.1) holds, the series Nn ofpoint proesses onverges (as n!1) in distribution to a Poisson proesswith parameter � . For the measure-theoreti bakground on onvergeneof point proesses see e.g. Embrehts, Kl�uppelberg and Mikosh [16℄,Chapter 5.(2) The Generalized Pareto Distribution. For the exeedanes ofa high threshold, we are not only interested in when and how often theyour, but also in how large the exess X � ujX > u is. (In Fig. 1the exesses are labelled Y1; : : : ; YNu and the number of exeedanes isNu = 6). Under ondition (2.1) it an be shown that for a measurablepositive funtion a,limu!1P �X � ua(u) > y����X > u� = (1 + �y)�1=� ; (2.2)if the left-hand side onverges at all. For � = 0 the right-hand sideis interpreted as e�y. For all � 2 R the right-hand side is the tail ofa distribution funtion, the so-alled generalized Pareto distribution. If� � 0 the support of this distribution is [0;1); for � < 0 the support isa ompat interval. The ase � < 0 is of no interest for our appliationand therefore not onsidered.(3) Independene. Finally, it an be shown that the point proess ofexeedanes and the exesses, that is, the sizes of the exeedanes, areindependent in the limit.



8 Claudia Kl�uppelbergHow an these limit theorems be used to estimate tails and quantiles?Our next paragraph illustrates the POT method for a given sampleX1; : : : ; Xn. For a high threshold u we de�neNu = #fi : Xi > u; i = 1; : : : ; ng : (2.3)We refer to the exesses of X1; : : : ; Xn as Y1; : : : ; YNu , as indiated inFig. 1. The tail of F is denoted by F = 1�F . De�ning F u(y) = P (Y1 >yjX > u) yieldsFu(y) = P (X � u > yjX > u) = F (u+ y)F (u) ; y � 0 :Consequently, we haveF (u+ y) = F (u)F u(y) ; y � 0 : (2.4)An observation larger than u+y is obtained if an observation exeeds u,i.e. an exeedane is required, and if, furthermore, suh an observationhas an exess over u that is also greater than y. An estimator of the tail(for values greater than u) an be obtained by estimating both tails onthe right-hand side of (2.4).A variant of this method is applied to estimate the knok-out proba-bility PCAT for the Winterthur CAT bond. The data as given expliitlyin [12℄ onsist of past events (hail and storm) for the years 1987{1996ausing over 1; 000 adjusted laims. Given are the exat dates of theevent, the number of laims and the number of laims adjusted to therespetive size of the portfolio during the 10 years of the observationperiod. We work with the adjusted data whih an be assumed to bestationary.The data in the form of exeedanes of u = 1; 000 are presented inFig. 2 together with a mean-exess plot of the exeedanes. The empirialmean-exess funtion on the right-hand side of Fig. 2 inreases, hene,learly, the data are heavy tailed. Furthermore, the approximation ofthe generalized Pareto distribution to the exeedanes as indiated inequation (2.5) is equivalent to the approximation of a linear funtionto the empirial mean-exess funtion. For a disussion of the mean-exess plot and other exploratory tools for data analyses in the ontextof extreme-value theory see Embrehts et al. [16℄, Chapter 6.Denote as in (2.3) Nu = #fi : Xi > u; i = 1; : : : ; ng. For u = 1; 000we have Nu = 17, but the total number n of laims is unknown, sineonly events ausing more than u = 1; 000 adjusted laims have beenlisted.For t = 1; : : : ; 10 denote by eNu(t) the number of exesses of u inyear t, and assume that they are iid random variables (rv). Write Yj(t),j = 1; : : : ; eNu(t), for the exesses in year t. The knok-out probability ofthe oupon of year t is thenPCAT(t) = P �Yj(t) > u+ y for some j = 1; : : : ; eNu(t)�
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12 Claudia Kl�uppelbergtotal laim amount of the portfolios (of a speial insurane risk) of allompanies in the pool at time t.Eah option overs a so-alled loss period (3 or 12 months), but theash settlement of the ontrat is made only 6 to 12 months after theend of the loss period. This time gap is required to register all laimsand to make the neessary alulations to determine the index value.As a �rst approximation, ignoring the problem of delay in reportingand settlement of laims, a reasonable model for the index is a ompoundPoisson model (S(t))t�0.Priing a CAT FutureAt time T , the �nal settlement value V (T ) of the futures prie is de�nedby the CBOT asV (T ) = $25; 000min�S(T )P (T ) ; 2� = $25; 000 S(T )P (T ) ��S(T )P (T ) � 2�+! ;where a+ = max(0; a) and P (t) denotes the premium inome in thepool until time t orresponding to the laims in the pool. Notie thatS(T )=P (T ) is the loss ratio of the pool at maturity T . In the lassialPoisson model, the premiums P (t) an be taken as a loaded version ofthe mean value �(t) of S(t), thusP (t) = �(t) ; t � 0 ;for some  > 1. We extend the lassial insurane risk model slightly intaking the total laim amount asS(t) = N(t)Xn=1Xn ; t � 0 ; (2.7)where (N(t))t�0 are Poisson rvs with intensity �(t)!1 (they need notonstitute a Poisson proess), independent of (Xn)n2N. This inludesthe ase of `high-density data', where the settlement time T is �xedor relatively small, but the intensity �(T ) is large; i.e. in a relativelyshort time a huge number of laims an our. This �ts well with thesituation we onsider, sine the pool of insurane ompanies guarantees ahigh density of laim arrivals. CAT futures are designed for atastrophievents, hene a reasonable model for the laims Xn is a heavy-taileddistribution. A rather general model is the Pareto-like distribution:P (Xn > x) = F (x) = x��l(x) ; x � 0 ;where � > 1 (guaranteeing a �nite mean) and l is a slowly varyingfuntion, i.e. limx!1 l(xt)=l(x) = 1 for all t > 0. This lass inludes thePareto, the log-gamma and the Burr distribution.



Developments in Insurane Mathematis 13For evaluation of the prie of the futures ontrat it is of partiularinterest to determine moments of V (T ).In Kl�uppelberg and Mikosh [24℄ the following is proved by large-deviations arguments.Theorem 1. Under the above assumptions the following estimates holdas �(t)!1:(a) Uniformly for x � �(t) for all  > 0:P � max1�n�N(t)Xn > x� � �(t)F (x) :(b) Uniformly for x � �(t) for all  > 0:P (S(t)� �(t) > x) � �(t)F (x) :() E � S(t)�(t) �K�+ � �(t)(� � 1)F (�(t)) ;  = K� 1 > 0 :(d) EV (t) = $25; 000 �1� (1 + o(1)) (2� 1)�(t)�� 1 F ((2� 1)�(t)�(t))�.(e) If varX <1 then,varV (t) = ($25; 000)22�� EX2�2�(t)�(1 + o(1))2(2�1)2�(t)��2 F ((2�1)�(t)�(t))� :Knowledge of these quantities allows for atuarial priing aord-ing to the mean-value priniple, variane priniple or standard-deviationpriniple. Alternative models and priing formulae are based on equiva-lent martingale measures. This is, however, only possible for distributionswith �nite exponential moments, whih exludes all the large-laimsmodels. In Embrehts et al. [16℄, Setion 8.7, it is also explained howa home-owner insurer an use these futures as a hedging instrument.Note that the model is only a simpli�ation of the dynamis of theindex. In reality, the �rst three months, alled event quarter, would de�nethe laim ourrene period, the next three months, alled runo� quarter,were added to allow for laim settlement. One would hope that at the endof the six months a high perentage of the laims were settled. The valueV (T ) would then be made available in a �rst interim report shortly afterthe end of the reporting period. The �nal report for the future would bepublished during the fourth month after the reporting period.Priing a PCS OptionPCS options are also based on a laims index whih has similar dynamisto the orresponding index for the CAT futures. The owner of a PCS-all-option obtains some payment at the end T of the runo� period



14 Claudia Kl�uppelberg(European style), if the value of the index is higher than the strike prieK of the ontrat. There are small aps with a strike prie K 2 [0; 2℄and large aps with K 2 [2; 5℄ available (the unit is 100 M USD). Withinthe runo� period (the laims period has passed) the value of the optionat time t is given byC(t) = min�(S�(t)�K)+ ; 2�K	 ; 0 � K � 2 ; small ap ;C(t) = min�(S�(t)�K)+ ; 5�K	 ; 2 � K � 5 ; large ap ;where S�(t) = S(t)=100, 0 � t � T , is the normalized total laim amountwithin the runo� period, during whih the option is traded. Priing for-mulae based on the Blak{Sholes model for the index and other modelswith exponential moments have been derived in Shradin [39℄. They are,however, not adequate models for atastrophi laims. Sine PCS optionsare partiularly designed for large laims, insurane priing methods asdeveloped in [24℄ and explained above would be more appropriate.3 Credit Risk ModellingIn 1997 Cr�edit Suisse Finanial Produts launhed a new produt tomanage redit risk; it uses mathematial tehniques applied widely inthe insurane industry to model the sudden event of a redit to default.This approah ontrasts with the mathematial tehniques typially usedin �nane, but reognizes the similarity of the �nanial risks of a port-folio of redit exposures and a portfolio of insurane exposures. In bothases, losses an be su�ered from a portfolio ontaining a large numberof individual risks, eah with a low probability of ourring. The riskmanager is onerned with assessing the frequeny of the unexpetedevents as well as the severity of the losses.The risk of the overall redit portfolio is assessed by the estimateddistribution of default losses or related quantities suh as its moments ormoment-generating funtion. We start with a �xed time horizon of oneyear.The lassial olletive risk model translated into this ontext is basedon a Poisson rv N for the frequeny of redit defaults, random iid reditlosses (Xi)i2N, whih are independent of the ounting variable N . Start-ing with this model, ertain redit portfolio properties are taken intoaount. First of all, eonomi setors whih are a�eted by a relativelysmall number of systemati eonomi fators are modelled separately.An initial example might be a division of the portfolio aording to theountry of domiile of eah obligor.It is notied (as also often in insurane portfolios) that within eahsetor the estimated mean and the estimated variane of the numberof defaults are di�erent, whereas for the Poisson distribution mean andvariane are equal. There is so-alled overdispersion, i.e. the oeÆient ofvariation is greater than 1. This might be aused by ommon eonomi



Developments in Insurane Mathematis 15fators for eah setor, whih an at like an epidemi or infetious dis-ease. The usual insurane remedy for this e�et is to take a mixed Poissondistribution. The Poisson parameter � is mixed by a gamma distributionwith density f(�) = 1��� (�)e��=����1 ; � > 0 ; (3.8)where �; � > 0 and � (�) = R10 e�xx��1dx is the gamma funtion. Thisyields a negative binomial model; in insurane mathematis it is alsoalled the P�olya model.The Basi ModelAssume a portfolio of redit risks, whih is lassi�ed into K 2 N setors.The number of redit defaults in setor k, 1 � k � K, is modelled by anegative binomial variable Nk with distributionP (Nk = j) = �j + �k � 1j �pjk(1� pk)�k ; j 2 N0 ; (3.9)where pk = �k=(1+�k) and (�k; �k) is the parameter vetor of a gammadistribution as in (3.8). Then, the total redit default loss of the portfolioin one year is given by S = KXk=1 NkXn=1Xkn : (3.10)Assume furthermore, that the setors are independent. The redit lossesin eah setor are assumed to be independent, but they may have di�er-ent distributions in di�erent setors. Consequently, the Nk, 1 � k � K,are independent negative binomial rvs with distributions given in (3.9)and the default lossesXkn are independent, and we assume for eah �xed1 � k � K that the rvs Xk1; : : : ; XkNk are iid.Then, the moment-generating funtion of S an be alulated (weuse the onvention P0i=1 ai = 0 and Q0i=1 ai = 1):E "exp t KXk=1 NkXn=1Xkn!# = KYk=1 1Xj=0 P (Nk = j) jYn=1 etXkn= KYk=1 1Xj=0�j+�k�1j �pjk(1�pk)�k jYn=1EetXkn :Example: Exponential Default Losses. If for eah 1 � k � K theXkn, 1 � n � Nk, are exponentially distributed with parameter �k, thenEetXkn = �k�k � t ; t < �k ;



16 Claudia Kl�uppelberggivingEetS = KYk=1(1� pk)�k 1Xj=0�j + �k � 1n �pjk � �k�k � t�j ; t < min1�k�K �k :If �k = � for all 1 � k � K, thenEetS = KYk=1� 1� pk1� pk�=(�� t)��k ; t < � :This moment-generating funtion an now be used to alulate moments,or to obtain the distribution funtion of S by inversion. utOn the other hand, redit losses may, rather, behave like large laims,i.e. the exponential distribution may not be an appropriate model. Thefollowing family has proved to be useful in the ontext of large insuranelaims. Although redits (and laims) are usually thought of as boundedabove, suh models are reasonable models when, in priniple, arbitrarilylarge redits (or laims) are admitted to the portfolio.De�nition 2. (Subexponential Distribution Funtion)Let X;X1; : : : ; Xn be iid positive rvs with distribution funtion F suhthat F (x) < 1 for all x > 0. DenoteF (x) = 1� F (x) ; x � 0 ;the tail of F andFn�(x) = 1� Fn�(x) = P (X1 + � � �+Xn > x) ; x � 0 ;the tail of the n-fold onvolution of F . F is alled a subexponential df(F;X 2 S) if one of the following equivalent onditions holds:(a) limx!1 Fn�(x)F (x) = n for some (all) n � 2 ,(b) limx!1 P (X1 + � � �+Xn > x)P (max(X1; : : : ; Xn) > x) = 1 for some (all) n � 2. utExamples of subexponential distributions are the Pareto, lognormaland heavy-tailed Weibull distributions. For further properties of subex-ponential distributions we refer to Embrehts et al. [16℄ or Goldie andKl�uppelberg [20℄. The notation a(x) � b(x), x!1 means that the ratioa(x)=b(x) tends to 1 as x!1.The following result is an immediate onsequene of Theorems 5.1and 5.2 of [20℄.Theorem 3. Let Xk be a generi rv modelling a loss in setor k, 1 �k � K, where losses in one setor are iid and losses in di�erent setorsare independent. Assume that X 2 S andP (Xk > x) � kP (X > x) ; x!1 ;



Developments in Insurane Mathematis 17where k 2 [0;1) for all 1 � k � K, and that at least one of the k ispositive. Then, for the total redit default loss given by (3.10) we haveP (S > x) � P (X > x) KXk=1 kENk ; x!1 :This basi model is extended by introduing so-alled exposure bandswhih deompose a setor. This ompliates the notation, and may ratheronfuse the strutural ideas of the model. We have therefore refrainedfrom presenting this detail, although it may be important in pratie.The olletive modelling of redit risk provides an important ontri-bution to estimation of the risk inherent in a portfolio. The other side ofthe oin is the ontribution of a single redit to the portfolio risk. In [11℄the variane is used as a risk measure and dependene is modelled by theovarianes. The risk of an obligant is measured by its variane ontri-bution to the overall portfolio variane. This approah is typial for the�nanial world, where normal distributions are almost exlusively used.More reently, so-alled lower partial moments have been suggestedas risk measures. The lower partial moment of order n is de�ned asLPMn(x) = Z x�1(x � r)ndP (S � x) ; x 2 R : (3.11)Examples are the shortfall probability (n = 0), the expeted target short-fall (n = 1), the target semi-variane (n = 2), and target semi-skewness(n = 3). The inverse of the shortfall probability is simply the quantile andis also alled value-at-risk. Risk ontributions and performane measure-ment for various risk measures, inluding those mentioned above, havebeen investigated in detail in Tashe [44℄.4 Integrated Risk ManagementWhile the primary task of traditional reinsurane is to smooth the under-writing result, IRM solutions are espeially strutured to fous on hedg-ing the downside risk of the edent's operating result, although downside-risk and volatility redution an be o�ered simultaneously within someIRM frameworks. This setion is based on [43℄.A traditional stop-loss insurane treaty overs insurane laims inexess of the underwriting trigger. Separate �nanial protetion is ob-tained if the return on investment drops below the �nanial trigger. Thisindependent view of liability and asset protetion may result in a posi-tion of over-hedging; see Fig. 5. In a situation of high investment losses,but relatively low loss ratio, and vie versa, i.e. high insurane laimsbut good investment results, losses are mutually neutralized. IRM prod-uts take these aspets into onsideration and lead to a redution of theedent's risk apital. This redution is illustrated in Fig. 6.Suh ideas, of ourse, also apply to banks with redit risk portfo-lios, when redit losses are onsidered as liabilities as desribed in thepreeding setion.
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20 Claudia Kl�uppelbergHene, the �nal prie an be omputed by evaluating the di�erent �-nanial options embedded in the original reinsurane treaty. Notie thatthe interdependene of the `loss events' of suh produts makes them notentirely repliable �nanial assets. Therefore, the risk-neutral valuationtehnique traditionally used for the priing of �nanial derivatives an-not be applied diretly, but needs to be adjusted and omplemented byatuarial methods.Priing suh a produt needs integrated �nanial and atuarial meth-ods. Traditional atuarial methods, omplemented by extreme-value teh-niques in the ase of highly adverse and rare events, are ombined withmethods from mathematial �nane.5 ConlusionsWhereas until the 1990s insurane and �nanial mathematis developedmore or less separately, both �elds have realized in reent years thatthey work on two ends of the same problem. Risk management is theirommon topi. This understanding, even if it ame late, has enrihedboth �elds. Not only have models and methods been transferred from one�eld into the other, but by onsidering and integrating thought patternsfrom both disiplines, new produts have arisen in both insurane and�nane. This leads to new hallenging problems, eonomially, and alsomathematially. In this paper we have given some examples for thisexiting development. It is our �rm belief that both �elds will ontinueto onverge, and merge to an even more exiting �eld of mathematis.AknowledgementI would like to thank Lutz Neumann for the �gures presented in this pa-per and Uwe Shmok for his remarks on the Winterthur CAT bonds. Ihave further pro�ted from disussions with the partiipants of the Meet-ing on Risk Theory in September 1999 in Oberwolfah. Finally, two ref-erees have made valuable omments on the paper.Referenes1. Albreht, P., K�onig, A. and Shradin, H. D.: Katastrophenversiherung-stermingesh�afte: Grundlagen und Anwendungen im Risikomanagementvon Versiherungsunternehmen. Z. Versiherungswiss. 83 (1994) 633{682.http://www.bwl.uni-mannheim.de/Albreht/LS Homepage.html2. Aase, K. K. and Persson, S. A.: Priing of unit-linked life insurane poli-ies. Sand. Atuarial J. (1994) 26{52.3. Asmussen, S.: (2000) Ruin Probabilities. World Sienti�, Singapore.4. Basle Committee on Banking Supervision. 1995. The Supervisory Treat-ment of Market Risks. Bank for International Settlements. Basle, Switzer-land.http://www.bis.org
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