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h University of Te
hnologyWe 
onsider the 
lass of autoregressive pro
esses with ARCH(1)errors given by the sto
hasti
 di�eren
e equationXn = �Xn�1 +q� + �X2n�1"n ; n 2 N ;where ("n)n2N are i.i.d. random variables. Under general and tra
tableassumptions we show the existen
e and uniqueness of a stationary distribu-tion. We prove that the stationary distribution has a Pareto-like tail witha well-spe
i�ed tail index whi
h depends on �, � and the distribution ofthe innovations ("n)n2N. This paper generalizes results for the ARCH(1)pro
ess (the 
ase � = 0) proved by Kesten (1973), Vervaat (1979) andGoldie (1991). The generalization requires a new method of proof and weinvoke a Tauberian theorem.1. Introdu
tion. Re
ently there has been 
onsiderable interest in nonlineartime series models (see e.g. the books by Priestley (1988), Tong (1990) and Taylor(1995)). Many of these models were introdu
ed to allow the 
onditional varian
e ofa time series model to depend on past information (
onditional heteros
edasti
ity).It has turned out that su
h models �t very well to many types of �nan
ial data.Early empiri
al work (see e.g. Mandelbrot (1963), Fama (1965)) has shown thatlarge 
hanges in equity returns and ex
hange rates, with high sampling frequen
y,tend to be followed by large 
hanges settling down after some time to a more normalbehavior. This observation leads to models of the formXn = �n "n ; n 2 N ;(1.1)where the innovations ("n)n2N are i.i.d. symmetri
 random variables with meanzero, and the volatility �n des
ribes the 
hange of (
onditional) varian
e.The autoregressive 
onditionally heteros
edasti
 (ARCH) models are one of thespe
i�
ations of (1.1). In this 
ase the 
onditional varian
e �2n is a linear fun
tionof the squared past observations. ARCH(p) models introdu
ed by Engle (1982) areRe
eivedAMS 1991 subje
t 
lassi�
ations. Primary 60H25; se
ondary 60G10, 60J05.Key words and phrases. ARCH model, autoregressive pro
ess, geometri
 ergodi
ity, heavytail, heteros
edasti
 model, Markov pro
ess, re
urrent Harris 
hain, regular variation, Tauberiantheorem. 1



2 M. BORKOVEC AND C. KL�UPPELBERGde�ned by�2n = �0 + pXj=1 �jX2n�j ; �0 > 0 ; �1; : : : ; �p�1 � 0; �p > 0 ; n 2 N ;(1.2)where p is the order of the ARCH pro
ess.In a series of papers, the ARCH model has been analyzed, generalized and usedto test for time-varying risk premia in the �nan
ial market. We refer for instan
eto the survey arti
le by Bollerslev, Chou and Kroner (1992). The most famousgeneralization to so-
alled generalized ARCH (GARCH) pro
esses was proposed inBollerslev (1986). The volatility �n is now a linear fun
tion of Xn�1; Xn�2; ::: and�n�1; �n�2; ::: . ARCH and GARCH models are widely used to model �nan
ial timeseries sin
e they 
apture 
ertain empiri
al observations in �nan
ial data, namely thetenden
y for volatility 
lustering and the fa
t that un
onditional pri
e and returndistributions tend to have fatter tails than the normal distribution.The 
lass of autoregressive (AR) models with ARCH errors introdu
ed by Weiss(1984) are another extension. These models are also 
alled SETAR-ARCH models(self-ex
iting autoregressive). They are de�ned byXn = f(Xn�1; :::; Xn�k) + �n "n; n � k ;(1.3)where f is again a linear fun
tion in its arguments and �n is given by (1.2). Thismodel 
ombines the advantages of an AR model whi
h targets more on the 
ondi-tional mean of Xn (given the past) and an ARCH model whi
h 
on
entrates on the
onditional varian
e of Xn (given the past).The 
lass of models de�ned by (1.3) embodies various nonlinear models. In thispaper we fo
us on the AR(1) pro
ess with ARCH(1) errors, i.e. f(Xn�1; :::; Xn�k) =�Xn�1 for some � 2 R and �n is given in (1.2) with p = 1. This Markovian modelis analyti
ally tra
table and may serve as a prototype for the larger 
lass of models(1.3).The purpose of this arti
le is to investigate the tail of the stationary distributionof the AR(1) pro
ess with ARCH(1) errors (Xn)n2N. The model has also been 
on-sidered by Diebolt and Gu�egan (1990) and Maer
ker (1997). For � = 0 the pro
essis an AR(1) pro
ess whose stationary distribution is determined by the innovations("n)n2N, for "n normal it is a Gaussian pro
ess. In the ARCH(1) 
ase (the 
ase when� = 0) the tail is known (see e.g. Goldie (1991) or Embre
hts, Kl�uppelberg andMikos
h (1997), Se
tion 8.4). The result was obtained by 
onsidering the squareARCH(1) pro
ess whi
h leads to a sto
hasti
 di�eren
e equation whi
h �ts in thesetting of Kesten (1973) and Vervaat (1979). This approa
h is, however, in generalnot possible or at least not obvious for � 6= 0. Nevertheless for "n normal, provideda stationary distribution exists, a 
hara
teristi
 fun
tion argument transforms the



THE TAIL OF AN AR(1)-PROCESS WITH ARCH(1) ERRORS 3model su
h that the results by Kesten (1973), Vervaat (1979) and Goldie (1991)may be applied. We refer to Remark 10 for further details.For the general 
ase we present another te
hnique for evaluating the tail ofthe stationary distribution using the Drasin-Shea Tauberian theorem whi
h 
anbe found for instan
e in Bingham, Goldie and Teugels (1987). In 
ontrast toKesten (1973) and Goldie (1991), this approa
h has the drawba
k that it gives noinformation on the slowly varying fun
tion present in the tail of the stationarydistribution. However, on the other side, the method also applies to pro
esseswhi
h do not �t in the framework of Kesten (1973) or Goldie (1991). Furthermore,the Tauberian approa
h does not depend on additional assumptions whi
h areoften very hard to 
he
k (e.g. the existen
e of 
ertain moments of the stationarydistribution). See also the dis
ussion in the introdu
tion of Se
tion 4. Combiningour method with results in Goldie (1991), we �nally spe
ify the slowly varyingfun
tion of the tail of the stationary distribution of (Xn)n2N. Note that Goldie'sresults 
annot be applied in the general 
ase without the Tauberian approa
h.The Tauberian approa
h guarantees that the assumptions in Goldie (1991) aresatis�ed. The results in the present paper 
an be applied to study the behaviorof the extremes and of the sample auto
ovarian
e and auto
orrelation fun
tion of(Xn)n2N; see Borkove
 (2000) and Borkove
 (2001).The organization of this paper is as follows. In Se
tion 2 we present the modeland introdu
e the required assumptions on the innovations ("n)n2N. We distinguishbetween the so-
alled general 
onditions and the te
hni
al 
onditions (D:1)�(D:3).They are assumed to hold throughout this paper if it is not stated otherwise. InSe
tion 3 we determine the parameter set of stationarity for our model and thetail of the stationary distribution. In Theorem 3 we summarize some probabilisti
properties of (Xn)n2N, in parti
ular the existen
e and uniqueness of a stationarydistribution. Se
tion 4 investigates the tail of the stationary distribution. Theorem 8is the main theorem in this se
tion. We show that the stationary distribution hasa Pareto-like tail with a well-spe
i�ed tail index. For � = 0 our result 
oin
ideswith the 
orresponding result in Goldie (1991) whereas for � 6= 0 the tail indexis determined by the autoregressive 
oeÆ
ient � and the ARCH(1) parameter �.The proof of this result will be an appli
ation of a modi�
ation of the Drasin-SheaTauberian theorem.2. Assumptions on the model. We 
onsider throughout this paper an au-toregressive model of order 1 with autoregressive 
onditionally heteros
edasti
 er-rors of order 1 (AR(1) model with ARCH(1) errors) whi
h is de�ned by the sto
has-



4 M. BORKOVEC AND C. KL�UPPELBERGti
 di�eren
e equationXn = �Xn�1 +q� + �X2n�1"n ; n 2 N ;(2.1)where ("n)n2N are i.i.d. symmetri
 random variables, � 2 R; �; � > 0 and X0 isindependent of ("n)n2N.Let " be a generi
 random variable with the same distribution fun
tion H as"n. In what follows, we assume without loss of generality � � 0 (for a justi�
a-tion see Remark 4 below) and that the following general 
onditions for " are in for
e:" has full support R ;" is symmetri
 with 
ontinuous Lebesgue density p ;(2.2) the se
ond moment of " exists :Note that the pro
ess is evidently a homogeneous Markov 
hain with state spa
e Requipped with the Borel �-algebra. The transition kernel density is given byP (X1 2 dy jX0 = x) = 1p� + �x2 p( y � �xp� + �x2 )dy ; x 2 R :(2.3)Under appropriate 
onditions on � and �, Theorem 3 in Se
tion 2 guarantees theexisten
e and uniqueness of a stationary distribution � of (Xn)n2N. By F we denotethe distribution fun
tion of � and X is a random variable with distribution fun
tionF . From the sto
hasti
 di�eren
e equation (2.1) it is straightforward thatX satis�esthe �xpoint equation X d= �X +p� + �X2 " ;(2.4)where " is independent ofX . In order to determine the tail of the stationary distribu-tion fun
tion F we need some additional te
hni
al assumptions on p andH = 1�H ,the density and the distribution tail of ":(D:1) p(x) � p(x0) for every 0 � x < x0 .(D:2) The lower and upper Matuszewska indi
es of H are equal, i.e.�1 � 
 := lim�!1 log lim supx!1H(�x)=H(x)log �= lim�!1 log lim infx!1H(�x)=H(x)log � � 0 :(D:3) If 
 = �1 then for all Æ > 0 there exist 
onstants q 2 (0; 1) and x0 > 0 su
hthat for all x > x0 and t > xqp(x� �tp�t2 ) � (1� Æ) p( x� �tp� + �t2 ) :(2.5)If 
 > �1 then for all Æ > 0 there exist 
onstants x0 > 0 and T > 0 su
h that forall x > x0 and t > T the inequality (2.5) holds.



THE TAIL OF AN AR(1)-PROCESS WITH ARCH(1) ERRORS 5The de�nition of the lower and upper Matuszewska indi
es 
an be found e.g. inBingham et al. (1987), p. 68; for the above representation we used Theorem 2.1.5and Corollary 2.1.6. The 
ase 
 = �1 
orresponds to a tail whi
h is exponen-tially de
reasing. For 
 2 (�1; 0℄ 
ondition (D:2) is equivalent to the existen
e of
onstants 0 � 
 � C <1 su
h that for all � > 1, uniformly in � 2 [1;�℄,
(1 + o(1))�
 � H(�x)H(x) � C(1 + o(1))�
 ; x!1 :(2.6)In parti
ular, a distribution with a regularly varying tail satis�es (D:2); the value 
is then the tail index. Due to the equality of the Matuszewska indi
es and themonotoni
ity of p we obtain easily some asymptoti
 properties of H and of p,respe
tively.Proposition 1. Suppose the general 
onditions (2.2) and (D:1)� (D:3) hold.Then the following holds:(a) limx!1 xmH(x) = 0 and E(j"jm) <1 for all m < �
.(b) limx!1 xmH(x) =1 and E(j"jm) =1 for all m > �
.(
) limx!1 xm+1p(x) = 0 for all m < �
.(d) If 
 > �1, there exist 
onstants 0 < 
 � C <1 su
h that
 � lim infx!1 x p(x)H(x) � lim supx!1 x p(x)H(x) � C :Moreover, there exist 
onstants 0 � d � D < 1 su
h that for all � > 1, uniformlyin � 2 [1;�℄,d(1 + o(1))�
�1 � p(�x)p(x) � D(1 + o(1))�
�1 ; x!1 :(2.7)Furthermore, in this 
ase (2.7) is equivalent to (2.6) or (D:2).Proof. Statements (a) and (b) are immediate 
onsequen
es of Theorem 2.2.2of Bingham et al. (1987). (
) follows from (a) and the monotoni
ity of p. Applying(2.6) and using again the monotoni
ity of p yields (d).The general 
onditions (2.2) and assumption (D:1) are fairly general and 
an be
he
ked easily, whereas (D:2) and in parti
ular (D:3) seem to be quite te
hni
aland intra
table. Nevertheless, numerous densities satisfy these assumptions.Example 1. We give two di�erent 
lasses of densities, whi
h satisfy the general
onditions (2.2) and (D:1)� (D:3).(a) p�;�(x) / exp(�jxj�� ), x 2 R, for parameters �; � > 0.Note that this family of densities in
ludes the Lapla
e (double exponential) density



6 M. BORKOVEC AND C. KL�UPPELBERG(� = 1) and the normal density with mean 0 (� = 2).It is straightforward that the general 
onditions and (D:1); (D:2) with 
 = �1hold. In order to show (D:3), 
hoose q 2 (�=(� + 2); 1). Then for every x > 0 andt > xq , p�;� �x� �tp�t2 �p�;�  x� �tp� + �t2! = p�;� � xp�t � �p��p�;�  � xp�t � �p���1 + ��t2��1=2!= exp��1� ��� xp�t � �p� �����1� ���1 + ��t2 �����=2��� exp�� 
���2��1+�=2 jxj���q�2q � 
�����2��1+�=2 jxj�2q� ;where 
� = max(1; 2�). The rhs is arbitrary 
lose to 1 for x suÆ
iently large andtherefore (D:3) holds.(b) pa;�;�(x) / �1 + x2� ��(�+1)=2�1 + a sin �2� log(1 + x2� )��, x 2 R,for parameters � > 2, � > 0 and a 2 �0; �+ 1�+ 1 + 4� �.This family of densities in
ludes e.g. the Student's distribution density with param-eter � (set a = 0 and � = �).One 
an easily see that the general 
onditions hold. (D:1) is satis�ed be
ause of the
hoi
e of a. Furthermore, for all � > 1, uniformly in � 2 [1;�℄,1� a1 + a (1 + o(1))��(�+1) � p(�x)p(x) � 1 + a1� a (1 + o(1))��(�+1) ; x!1 :In parti
ular, pa;�;� is regularly varying if and only if a = 0. By Proposition 1(d),
ondition (D:2) is satis�ed with 
 = ��. It remains to show (D:3). Let Æ > 0 bearbitrary and 
hoose T su
h that�1 + ��T 2��(�+1)=2�1� 2� a �(1� a)�T 2� � 1� Æ :(2.8)Next note that for every x > 0, setting b(t) = 1 + �=(�t2), t � 0, we obtain�����1 + a sin �2� log �1 + y2b(T )=���1 + a sin (2� log (1 + y2=�)) � 1����� � 2� a �(1� a)�T 2 :(2.9)



THE TAIL OF AN AR(1)-PROCESS WITH ARCH(1) ERRORS 7Using (2.8) and (2.9), we have for every t � T , x > 0 and y = � xp�t � �p�� =pb(T ),pa;�;� �x� �tp�t2 �pa;�;� x� �tp� + �t2! = pa;�;� �ypb(t)�pa;�;�(y)� pa;�;� �ypb(T )�pa;�;�(y)� b(T )�(�+1)=2 1 + a sin �2� log �1 + y2b(T )=���1 + a sin (2� log (1 + y2=�))� b(T )�(�+1)=2�1� 2� a �(1� a)�T 2�� 1� Æ :3. Existen
e and uniqueness of a stationary distribution. In this se
tionwe summarize in Theorem 3 some properties of the pro
ess (Xn)n2N. In parti
ular,the geometri
 ergodi
ity guarantees the existen
e and uniqueness of a stationarydistribution. For an introdu
tion to Markov 
hain terminology we refer to Tweedie(1976) or Meyn and Tweedie (1993).The next proposition follows easily from well-known properties of moment gen-erating fun
tions (one 
an follow the proof of the 
ase � = 0; see e.g. Lemma 8.4.6of Embre
hts et al. (1997)).Proposition 2. Let " be a random variable with probability density p satisfyingthe general 
onditions (2.2). De�ne h�;� : [0;1) ! [0;1℄ for � 2 R and � > 0 byh�;�(u) := E(j�+p� "ju) ; u � 0 :(3.1)(a) The fun
tion h�;�(�) is stri
tly 
onvex in [0; T ), whereT := inffu � 0 jE(jp� "ju) =1g :(b) If furthermore the parameters � and � are 
hosen su
h thath0�;�(0) = E(log j�+p� "j) < 0 ;(3.2)



8 M. BORKOVEC AND C. KL�UPPELBERGthen there exists a unique solution � = �(�; �) > 0 to the equation h�;�(u) = 1.Moreover, under h0�;�(0) < 0 ,�(�; �)8><>:> 2 ; �2 + �E("2) < 1 ;= 2 ; �2 + �E("2) = 1 ;< 2 ; �2 + �E("2) > 1 :(3.3)Remark 2. (a) By Jensen's inequality �2 + �E("2) < 1 implies h0�;�(0) < 0.(b) Proposition 2 holds in parti
ular for a standard normal random variable ". Inthis 
ase T =1.(
) In general, it is not possible to determine expli
itly whi
h parameters � and �satisfy (3.2). If � = 0 (i.e. in the ARCH(1)-
ase) and " � N(0; 1) (3.2) is ful�lledif and only if � 2 (0; 2e
), where 
 is Euler's 
onstant (see e.g. Embre
hts et al.(1997), Se
tion 8.4). For � 6= 0, Tables 1 and 2 show numeri
al domains of � and� for " � N(0; 1). See also Kiefersbe
k (1999) for numeri
al results in some non-normal 
ases.(d) Note that � is a fun
tion of � and �. Sin
e " is symmetri
 � does not dependon the sign of �. For " � N(0; 1) we 
an show: for �xed �, � is de
reasing in j�j.See also Table 3.Proof Let '(� j�; �2) denote the normal density with mean � and varian
e �2.Then, by symmetry of ',�h�;�(u)�� = 1� Z 1�1 jyju(y � �)'(yj�; �)dy= 1� �Z 0�1(�y)u(y � �)'(yj�; �)dy + Z 10 yu(y � �)'(yj�; �)dy�= u Z 10 yu�1 ('(yj�; �) � '(yj � �; �)) dy > 0 ; u � 0 ;where the last line follows by integration by parts with respe
t to y. We maytherefore 
on
lude that, if �0 > � then h�;�(u) < h�0;�(u) for any �; u. Assume�(�) � �(�0). Then we have by Proposition 2(b) and H�older's inequality that1 = h�;�(�(�)) < h�0;�(�(�)) � h�0;�(�(�0))�(�)=�(�0) = 1 ;whi
h is a 
ontradi
tion.We are now ready to state the following theorem.Theorem 3. Consider the pro
ess (Xn)n2N in (2.1) with ("n)n2N satisfyingthe general 
onditions (2.2) and with parameters � and � satisfying (3.2). Then thefollowing assertions hold:



THE TAIL OF AN AR(1)-PROCESS WITH ARCH(1) ERRORS 9j�j 0 0.1 0.2 0.3 0.4 0.5 0.6� (0,3.56℄ (0,3.55℄ (0,3.52℄ (0,3.47℄ (0,3.39℄ (0,3.30℄ (0,3.18℄j�j 0.8 0.9 1 1.1 1.2 1.25 1.27� (0,2.87℄ (0,2.66℄ (0,2.42℄ (0.17,2.11℄ (0.38,1.69℄ (0.58,1.38℄ (0.75,1.19℄Table 1Numeri
al domain of � dependent on j�j su
h that h0�;�(0) < 0 in the 
ase " � N(0; 1).
� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9j�j 1.05 1.11 1.16 1.20 1.23 1.25 1.26 1.27 1.28� 1 1.1 1.2 1.5 2 2.5 3 3.5 3.56j�j 1.28 1.27 1.27 1.23 1.13 0.97 0.72 0.24 0.04Table 2Numeri
al supremum of j�j dependent on � su
h that h0�;�(0) < 0 in the 
ase " � N(0; 1).

j�j � 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0 2.5 3.0 3.50 12.85 6.09 3.82 2.67 1.99 1.54 1.07 0.61 0.33 0.15 0.010:2 11.00 5.49 3.52 2.51 1.89 1.46 1.03 0.59 0.32 0.13 0.010:4 8.12 4.28 2.87 2.10 1.61 1.26 0.90 0.51 0.27 0.10 -0:6 5.41 3.03 2.12 1.60 1.25 0.99 0.71 0.39 0.19 0.05 -0:8 3.00 1.85 1.37 1.07 0.85 0.68 0.48 0.25 0.09 - -1:0 0.96 0.83 0.70 0.57 0.47 0.37 0.25 0.09 - - -1:2 - 0.01 0.01 0.01 0.01 0.01 0.01 - - - -Table 3Numeri
al solution of h�;�(�) = 1 for � = �(�;�) dependent on � and � in the 
ase " � N(0; 1).For � = 0 a similar table 
an be found in de Haan et al. (1989).



10 M. BORKOVEC AND C. KL�UPPELBERG(a) Let � be the normalized Lebesgue-measure �(�) := �(�\[�M;M ℄)=�([�M;M ℄).Then (Xn)n2N is an aperiodi
 positive �-re
urrent Harris 
hain with regener-ation set [�M;M ℄ for M large enough.(b) (Xn)n2N is geometri
 ergodi
. In parti
ular, (Xn)n2N has a unique stationarydistribution and satis�es the strong mixing 
ondition with geometri
 rate of
onvergen
e. The stationary distribution is 
ontinuous and symmetri
.(
) If �2 + �E("2) < 1, then the stationary distribution of (Xn)n2N has �nitese
ond moment.Remark 4. (a) Statements (a) and (b) are basi
ally a 
olle
tion of results ofDiebolt and Gu�egan (1990) and Maer
ker (1997). They assume �2 + �E("2) < 1and hen
e only 
over the �nite varian
e 
ase. The model �ts also into the moregeneral framework of \iterated random Lips
hitz fun
tions"; see Alsmeyer (2000).(b) When we study the stationary distribution of (Xn)n2N we may w.l.o.g. assumethat � � 0. For a justi�
ation, 
onsider the pro
ess ( eXn)n2N = ((�1)nXn)n2Nwhi
h satis�es to the sto
hasti
 di�eren
e equationeXn = �� eXn�1 +q� + � eX2n�1 "n ; n 2 N ;where ("n)n2N are the same random variables as in (2.1) and eX0 = X0. If � < 0,be
ause of the symmetry of the stationary distribution, we may hen
e study thenew pro
ess ( eXn)n2N:(
) By statement (
), the assumption �2+�E("2) < 1 is suÆ
ient for the existen
eof the se
ond moment. We will see in Remark 9(
) that it is also ne
essary.Proof of Theorem 3.3. Be
ause of the stri
t positivity and 
ontinuity of thetransition density the pro
ess (Xn)n2N is a �-irredu
ible Feller 
hain. By Feigin andTweedie (1984), p. 3, this implies that every 
ompa
t set of the state spa
e withpositive Lebesgue measure is small and thus [�M;M ℄ is small for arbitraryM > 0.Finally, by Proposition 5.3 of Tweedie (1976), [�M;M ℄ is a status set for (Xn)n2N.(a) Be
ause of Proposition 2, for � 2 R and � > 0 su
h that h0�;�(0) < 0 thereexists a � > 0 su
h that h�;�(u) < 1 for every u 2 (0; �) and h�;�(0) = h�;�(�) = 1.Now 
hoose � 2 (0;min(�; 2)) and Æ 2 (0; 1�h�;�(�)) arbitrary. For any su
h � andÆ there exists a 
onstant C = C(�; Æ) 2 (0; 1) su
h thath�;�(�) + Æ � 1� 2C :(3.4)



THE TAIL OF AN AR(1)-PROCESS WITH ARCH(1) ERRORS 11De�ne g(x) := 1 + jxj� � 1 for every x 2 R. For M large enough and jxj > M wehave by 
ontinuity of h�;� in ����h�x=px2+�=� ;�(�)� h�;�(�)��� < Æ(3.5)and C g(x) � 1 + (h�;�(�)� Æ)(�1 +O(jxj��2)) ;(3.6)sin
e � < 2, h�;�(�) � Æ is independent of x and g in
reases to 1. From (2.3) weobtain for x!1Z(�1;1) g(y)P (X1 2 dy jX0 = x)= 1 + (� + �x2)�=2E(j �xp�x2 + � + "j�)= 1 + (�� + x2)�=2h�x=px2+�=� ;�(�)= 1 + (1 +O(x�2))jxj� h�x=px2+�=� ;�(�)= 1 +O(jxj��2)h�x=px2+�=� ;�(�) + jxj� h�x=px2+�=� ;�(�)= 1 + ��1 +O(jxj��2)� h�x=px2+�=� ;�(�) + g(x)h�x=px2+�=� ;�(�) ;where the third line follows from Taylor expansion. Together with (3.4)-(3.6), weobtain for every x 2 R with jxj > M ,Z(�1;1) g(y)P (X1 2 dy jX0 = x) � C g(x) + (1� 2C)g(x)(3.7) = (1� C)g(x) :De�ne �[�M;M ℄ := inffn � 1 jXn 2 [�M;M ℄gand let x 2 R be arbitrary. Then we haveE(�[�M;M ℄ jX0 = x) = E(1fX12[�M;M ℄gE(�[�M;M ℄jX1)jX0 = x)+E(1fX12[�M;M ℄
gE(�[�M;M ℄jX1)jX0 = x)� 1 +E(1fX12[�M;M ℄
gE(�[�M;M ℄jX1)jX0 = x)� 1 + Z[�M;M ℄
 E(�[�M;M ℄jX1 = y)P (X1 2 dyjX0 = x) :



12 M. BORKOVEC AND C. KL�UPPELBERGBy (3.7), Theorem 3 of Tweedie (1983a) holds and we obtain for all x 2 R ,E(�[�M;M ℄jX0 = x) � 1 + Z[�M;M ℄
 g(y)C P (X1 2 dyjX0 = x)� 1 + 1C +E �����x+p�x2 + �"����� <1(3.8)and thus [�M;M ℄ is Harris re
urrent. Sin
e the transition density of (Xn)n2N isstri
tly positive on [�M;M ℄ we know from Asmussen (1987), p. 151, that thereexists some 
onstant eC 2 (0; 1) su
h thatP (X1 2 B jX0 = x) � eC �(B)(3.9)for every x 2 [�M;M ℄ and any Borel-measurable set B, i.e. (Xn)n2N is a Harris
hain with regeneration set [�M;M ℄. Finally, by Theorem 9.1 of Tweedie (1976),(3.7) and the fa
t that [�M;M ℄ is a status set, (Xn)n2N is positive Harris �-re
urrent.(b) Note that supx2[�M;M ℄ZR g(y)P (X1 2 dyjX0 = x)= 1 + supx2[�M;M ℄E �����x+p�x2 + �"����� < 1 :(3.10)Thus the geometri
 ergodi
ity follows from Theorem 4 of Tweedie (1983a) and thesame arguments as in the proof of statement (a) of this theorem. The pro
ess istherefore strongly mixing with a geometri
 rate. The symmetry of the stationarydistribution follows from the ergodi
ity and the fa
t that the pro
esses (Xn)n2N and(�Xn)n2N have the same transition probabilities, hen
e the same unique stationarydistribution. Finally, be
ause of the 
ontinuity of the transition probabilities, thestationary distribution fun
tion is 
ontinuous as well.(
) De�ne now the small setA := �x 2 R jx2 � maxf1; �E("2)(1� 2Æ)� (�2 + �E("2))g�with Æ > 0 su
h that (1 � 2 Æ) � (�2 + �E("2)) > 0. Choose g(x) = 1 + x2 . Notethat for every x 2 A
 ,ZR g(y)P (X1 2 dy jX0 = x) � 1 + x2 ��2 + �E("2) + � E("2)x2 �� 1 + x2 (1� 2Æ)= 1� x2Æ + x2(1� Æ)� 1� Æ + x2(1� Æ) = g(x) (1� Æ) :



THE TAIL OF AN AR(1)-PROCESS WITH ARCH(1) ERRORS 13This together with (3.10) for � = 2 and A instead of [�M;M ℄, Theorem 3 ofTweedie (1983b) holds and the se
ond moment of the stationary distribution is�nite.Even if the building blo
ks ("n)n2N have moments of all orders, i.e. 
 = �1,not all moments of the stationary distribution are �nite.Proposition 3. Suppose (Xn)n2N is given by equation (2.1) with ("n)n2N sat-isfying the general 
onditions (2.2) and with parameters � and � satisfying (3.2).Let X be the stationary limit variable of (Xn)n2N. Choose N > 0 su
h thatE(jp�"jN ) > 2 :(3.11)Then E(jX jN) =1 :Proof. Assume that the N -th moment is �nite. As a 
onsequen
e of (2.4)(re
all that w.l.o.g. � � 0)E(jX jN ) = E(j�X +p� + �X2 "jN )= E(1fX<0gjX jN j�+r �X2 + � (�")jN )+E(1fX>0gjX jN j�+r �X2 + � "jN )= E(jX jN j�+r �X2 + � "jN)� E(jX jN)E(1f">0gjp� "jN)> E(jX jN) ;where we used in the third and fourth line that X and " are independent. The lastline is a 
onsequen
e of (3.11) and the symmetry of ".Remark 5. (a) Note that N > 2 if �2+�E("2) < 1 sin
e the se
ond momentexists by Theorem 3(
).(b) Condition (3:11) 
an be repla
ed by E(1f">0gj� +p�"jN ) > 1 for � � 0 andE(1f"<0gj�+p�"jN ) > 1 for � < 0, respe
tively. These alternative 
onditions mayenable us to �nd a smaller N .Be
ause of Proposition 3 we know that the distribution of X is heavy-tailed inthe sense that not all moments exist. The following se
tion 
onsiders the pre
iseasymptoti
 behavior of its tail.



14 M. BORKOVEC AND C. KL�UPPELBERG4. The tail of the stationary distribution. Estimating the (heavy) tail ofa stationary distribution of a Markov pro
ess is in general a non-trivial problemand few expli
it results are known in the literature. There are basi
ally two ar-ti
les whi
h refer to this topi
 and whi
h are somewhat related to our problem.Kesten (1973) investigates the tail of the limit distribution of the solution of a lin-ear di�eren
e equation, and Goldie (1991) proves and extends Kesten's results inthe one-dimensional 
ase by applying a renewal type argument.Unfortunately, both approa
hes are not dire
tly appli
able for the AR(1) pro
esswith ARCH(1) errors, sin
e (Xn)n2N does not �t in their framework. Considerinstead the pro
ess (Yn)n2N given by the sto
hasti
 di�eren
e equationYn = �����Yn�1 +q� + �Y 2n�1"n���� ; n � 1 ;(4.1)where ("n)n2N are the same i.i.d. random variables as in Theorem 3, the 
onstantsare the same as for the pro
ess (Xn)n2N and Y0 equals jX0j a.s. It 
an be seeneasily that (Yn)n2N d= (jXnj)n2N if X0 � �. Hen
e (Yn)n2N and (jXnj)n2N havethe same stationary distribution and P (X > x) = 1=2P (Y > x), x 2 R. SettingM := j� +p� "j and � as in Lemma 3.1, the 
onditions of Corollary 2.4 of Goldie(1991) on M are satis�ed. Thus, under the additional assumption thatE ����(j�Y +p� + �Y 2 "j)� � (j�+p� "jY )����� <1 ;(4.2)the tail of the stationary distribution of (Yn)n2N is Pareto, i.e.P (Y > x) � 
 x�� ; x!1 ;(4.3)where 
 is a well-spe
i�ed non-negative 
onstant. Note that a suÆ
ient 
onditionfor (4.2) is E(Y ��1) <1 .The above pro
edure using Goldie's result seems to be at �rst sight very sim-ple. However, in spite of the strength and elegan
e of the results in Goldie (1991),additional 
onditions su
h as (4.2) are hard to 
he
k. Sin
e the knowledge of theexisten
e of moments is in some way equivalent to the knowledge of the (unknown)tail distribution (or at least the tail index of the stationary distribution), we 
on-sider dire
tly the tail of the stationary distribution of the pro
ess (Xn)n2N. Thetail is derived by applying a Tauberian theorem whi
h, as far as we know, is anew approa
h. This method may also be applied to other pro
esses given by ran-dom re
urren
e equations whi
h do not �t in the framework of Kesten (1973) orGoldie (1991), or whi
h simply do not ful�ll all the 
onditions in the two referredarti
les. Note that our approa
h gives no information on the slowly varying fun
-tion present in the tail of the heavy-tailed stationary distribution. In the 
ase of theAR(1) pro
ess with ARCH(1) errors we determine the tail index of the stationary
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h and draw then the 
on
lusion thatthe slowly varying fun
tion is a well-spe
i�ed 
onstant.In order to present our method we need the notion of O-regular variation; seeBingham et al. (1987), Chapter 2, for relevant de�nitions and results.Proposition 4. Let F (x) := P (X > x), x � 0, be the tail of the stationarysolution of the pro
ess (Xn)n2N given by (2.1). Then F is O-regularly varying. Inparti
ular, if H := 1�H denotes the tail of the distribution fun
tion of ", for every� � 1, F (�x)F (x) � H �max(0; �� �p� )� for all x � 0 :(4.4)Proof. Let � � 1 be arbitrary. Sin
e X is symmetri
 and (jXnj) and (Yn)have the same law when X0 � �, we have for every x � 0,P (X > �x)P (X > x) = P (Y > �x)P (Y > x)� P (�Y +p� + �Y 2" > �x; " > 0)P (Y > x)� P (Y > �x=(�+p�"); " > 0)P (Y > x)� Z 1max(0;(���)=p�) P (Y > �x=(�+p�t))P (Y > x) p(t)dtBy monotoni
ity, the integrand is bounded from below by 1. Therefore, (4.4) holds.Note that the rhs of (4.4) does not depend on x. Letting x ! 1 and applyingCorollary 2.0.6 of Bingham et al. (1987) shows that F is O-regularly varying.Remark 6. Sin
e F is O-regularly varying, its lower Matuszewska index
 > �1. Therefore, by Theorem 2.2.2 of Bingham et al. (1987), for every� 2 (�
;1) there exist C > 0 and x0 > 0 su
h that x� F (x) � C for all x � x0.It turns out that the following modi�
ation of the Drasin-Shea Theorem (Bing-ham et al. (1987), Theorem 5.2.3, p. 273) is the key to our result.Theorem 7. Let k : [0;1)! [0;1) be an integrable fun
tion and let (a; b) bethe maximal open interval (where a < 0) su
h that�k(z) = Z(0;1) t�z k(t)t dt <1 ; for z 2 (a; b) :



16 M. BORKOVEC AND C. KL�UPPELBERGIf a > �1, assume limÆ#0 �k(a+ Æ) =1, if b <1, assume limÆ#0 �k(b� Æ) =1. Leth : [0;1)! [0;1) be lo
ally bounded. Assume h has bounded in
rease. Iflimx!1 R(0;1) k(x=t)h(t)dt=th(x) = 
 > 0 ;(4.5)then 
 = �k(�) for some � 2 (a; b) and h(x) � x�l(x) ; x!1 ;where l is some slowly varying fun
tion.We will identify h with the tail F of the distribution of X . The following is ourmain theorem.Theorem 8. Suppose (Xn)n2N is given by equation (2.1) with ("n)n2N satis-fying the general 
onditions (2.2) and (D:1) � (D:3) and with parameters � and �satisfying (3.2). Let F (x) = P (X > x); x � 0; be the right tail of the stationarydistribution fun
tion. Then F (x) � 
 x�� ; x!1 ;where 
 = 12� E �����jX j+p� + �X2"���� � ���(�+p�")jX j�����E �j�+p�"j� log j�+p�"j�(4.6)and � is given as the unique positive solution toE(j� +p�"j�) = 1 :(4.7)Remark 9. (a) For the ARCH(1) pro
ess (i.e. the 
ase � = 0) this result iswell-known (see Goldie (1991) or Embre
hts et al. (1997), Se
tion 8.4).(b) Let E(j� + p�"j�) = h�;�(�) be as in Lemma 2. Re
all that for " � N(0; 1)and �xed �, the exponent � is de
reasing in j�j. This means that the distribution ofX gets heavier tails. In parti
ular, our new model has for � 6= 0 heavier tails thanthe ARCH(1) pro
ess (see also Table 3).(
) Theorem 8 together with Lemma 2 implies that the se
ond moment of thestationary distribution exists if and only if �2 + �E("2) < 1.The proof of Theorem 8 will be an appli
ation of Theorem 7. Proposition 5presents an impli
it formula for the right tail F = 1 � F of the distribution of X .We shall need the formula to show that assumption (4.5) is ful�lled. In the followingall assumptions of Theorem 8 hold. Re
all that w.l.o.g. � � 0.



THE TAIL OF AN AR(1)-PROCESS WITH ARCH(1) ERRORS 17Proposition 5.1 = H(x=p�)F (x) + Z 10 f(x; t)dt + Z 10 h(x; t)dt ; x > 0 ;(4.8)where H(x) = P (" > x), x > 0, and for every x > 0; t > 0,f(x; t) := �p( x� �tp� + �t2 ) + p( x+ �tp� + �t2 )� x�t2(� + �t2)3=2 F (t)F (x) 1t � 0 ;h(x; t) := �p( x� �tp� + �t2 )� p( x+ �tp� + �t2 )� ��t(� + �t2)3=2 F (t)F (x) 1t � 0 :Proof. By (2.4) and the symmetry of X , we haveF (x) = Z 1�1 P (�X +p� + �X2 " > x j X = t)dF (t)= � Z 10 P (��t+p� + �t2" > x)dF (�t) + Z 10 P (�t+p� + �t2" > x)dF (t)= � Z 10 P (��t+p� + �t2" > x)dF (t) + Z 10 P (�t+p� + �t2" > x)dF (t)= � Z 10 �H( x+ �tp� + �t2 ) +H( x� �tp� + �t2 )�dF (t) :Integration by parts (see e.g. Theorem 18.4 in Billingsley (1995)) and again sym-metry yieldsF (x) = H( xp� )� Z 10 �p( x+ �tp� + �t2 )�(� + �t2)� (x + �t)�t(� + �t2)3=2+ p( x� �tp� + �t2 )��(� + �t2)� (x� �t)�t(� + �t2)3=2 �F (t)dt= H( xp� ) + Z 10 �p( x� �tp� + �t2 ) + p( x+ �tp� + �t2 )� x�t2(� + �t2)3=2F (t)dtt+ Z 10 �p( x� �tp� + �t2 )� p( x+ �tp� + �t2 )� ��t(� + �t2)3=2F (t)dtt :Finally, h(x; t) � 0 for every x > 0, t > 0 be
ause of (D:1) and the symmetry of p.This �nishes the proof.We investigate now (4.8). Using Proposition 3, Proposition 4 and Remark 6 wederive some te
hni
al results in the next three lemmata. These results will be 
ru
ialin applying Theorem 7.



18 M. BORKOVEC AND C. KL�UPPELBERGLemma 1. For every a � 0 and b > 0,limx!1 H ((x� a)=b)F (x) = 0 :Proof. Assume �rst that 
 = �1. Be
ause of Proposition 1(a) and Remark 6the statement follows immediately.Now 
onsider the 
ase where 
 > �1. Let N := inffn > 0 : E(j"jn) > 2g and
hoose m 2 (N;�
). This is possible be
ause of Proposition 1(a). Similarly as inProposition 4 we derive thatF (x)H ((x� a)=b) = 12 P (j�Y +p� + �Y 2 "j > x)H ((x� a)=b)� 12 Z 10 H((x � � t)=p� + �t2)H ((x� a)=b) dFY (t)� 12 Z 1maxf2a=�;b=p�g H �(x � a)=p�t�H ((x � a)=b) dFY (t) :Applying the Lemma of Fatou and Proposition 2.2.1(a) of Bingham et al. (1987)yieldslim infx!1 F (x)H ((x� a)=b) � 12 Z 1maxf2a=�;b=p�g lim infx!1 H �(x� a)=p�t�H ((x� a)=b) dFY (t)� 
onst Z 1maxf2a=�;b=p�g tmdFY (t)= 
onst E(jX jm1fjXj>maxf2a=�;b=p�g) :Sin
e m > N and E(jX jN ) =1, the statement follows by Proposition 3.Lemma 2. For every T > 0,limx!1 Z 10 f(x; t)dt = limx!1 Z 1T f(x; t)dt = 1 :Moreover, if the lower Matuszewska index 
 = �1, then for every q 2 (0; 1),limx!1 Z 1xq f(x; t)dt = 1 :Proof. Note that0 � h(x; t) � ��x� f(x; t); for every t � 1 and x > 0 :(4.9)Thus, for every x > 0,0 � Z 11 h(x; t)dt � ��x� Z 11 f(x; t)dt :(4.10)



THE TAIL OF AN AR(1)-PROCESS WITH ARCH(1) ERRORS 19Next 
hoose T � 0 arbitrary. By (D:1), for every t 2 [0; T ℄ and x large enough0 � maxff(x; t); h(x; t)g � maxf2�T; ��g�3=2 p( x� �Tp� + �T 2 ) xF (x) ;and therefore distinguishing again between 
 = �1 and 
 > �1 (in the �rst 
aseuse Remark 6 otherwise Lemma 1 and Proposition 1(d)) we getlimx!1 f(x; t) = 0 and limx!1h(x; t) = 0 ; for every t 2 [0; T ℄ :Thus, by the dominated 
onvergen
e theorem,limx!1 Z T0 f(x; t)dt = 0 and limx!1 Z T0 h(x; t)dt = 0 :(4.11)Combining the result in Lemma 1 with (4.10) and (4.11) the �rst statement follows.Finally, by (D:1), Remark 6 and Proposition 1(
), supposing that 
 = �1 andx large enough,Z xqT f(x; t)dt � 2 p( x� �xqp� + �x2q ) xq+1�(� + �T 2)3=2 1F (x)xq� 
onst(T ) p( x1�q � �p�=x2q + � )(x1�q)(2q+1+�)=(1�q) ! 0 ; x!1 :This 
ompletes the proof.Lemma 3. De�ne for x > 0, t > 0g(x; t) := �p(x� �tp�t ) + p(x+ �tp�t )� x�t2(�t2)3=2 F (t)F (x) 1t ;then limx!1 R10 g(x; t)dt = 1.Proof. Note �rst that integration by parts and Lemma 1 yield for every T > 00 � lim supx!1 Z T0 g(x; t)dt� lim supx!1 F (T )0�H�(x� �T )=p�T�F (x) + H�(x + �T )=p�T�F (x) 1A+ lim supx!1 Z T0 �H�(x� �t)=p�t�+H�(x+ �t)=p�t��F (x) dF (t)(4.12) � 4 lim supx!1 H�(x� �T )=p�T�F (x) = 0 :



20 M. BORKOVEC AND C. KL�UPPELBERGFurthermore, by the general 
onditions (2.2) and assumption (D:1) , for every x >0, t � 0 p(x� �tp� t ) � p( x� �tp� + �t2 )and hen
e with Lemma 2 and (4.12) we getlim supx!1 Z 10 g(x; t)dt = lim supx!1 Z 1T g(x; t)dt� � ��T 2 + 1�3=2 lim supx!1 Z 1T f(x; t)dt= � ��T 2 + 1�3=2 :Letting T !1 we 
on
lude thatlim supx!1 Z 10 g(x; t)dt � 1 :It remains to show that the 
onverse inequality holds for the limes inferior. Werestri
t ourselves to 
 = �1 (for 
 > �1 repla
e in what follows the lowerintegration limit xq with T ). Choose Æ > 0 arbitrary and let q be the 
onstant in(D:3). By assumption (D:3) and Lemma 2lim infx!1 Z 10 g(x; t)dt � lim infx!1 Z 1xq g(x; t)dt� (1� Æ) lim infx!1 Z 1xq f(x; t) (� + �t2)3=2(�t2)3=2 dt� (1� Æ) lim infx!1 Z 1xq f(x; t)dt= 1� Æ :Sin
e Æ > 0 was arbitrary the statement follows.We are now ready to prove Theorem 8.Proof of Theorem 8. The proof is an appli
ation of Theorem 7. Choosek(x) = xp��p(x� �p� ) + p(x+ �p� )� ; x > 0 ;(4.13)and h(x) = F (x) ; x > 0 :(4.14)
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an readily see that k is non-negative, h is non-negative, lo
ally bounded andof bounded in
rease sin
e it is non-in
reasing. Note that for every z 2 (�1;1)�k(z) = Z 10 t�z k(t)t dt= Z 10 t�z 1p�p( t� �p� )dt+ Z 0�1(�t)�z 1p�p( t� �p� )dt= E(j�+p�"j�z) :Let (a; b) be the maximal open interval su
h that�k(z) <1 for z 2 (a; b) :Note that a = �T = � inffu � 0 jh�;�(u) = 1g < 0 and b = 1 be
ause ofProposition 2 and the fa
t that for z � 0Z 11 t�z k(t)t dt � Z 11 1p��p( t� �p� ) + p( t+ �p� )�dt <1and Z 10 t�z k(t)t dt � 
onst Z 10 t�zdt = (<1 ; z < 1 ;=1 ; z � 1 :Furthermore, by the dominated and monotone 
onvergen
e theorem, respe
tively,limÆ#0 �k(a+ Æ) = limÆ#0 E �1fj�+p� "j�1gj�+p� "j�(a+Æ)�+ limÆ#0 E �1fj�+p� "j>1gj�+p� "j�(a+Æ)�= E �1fj�+p� "j�1gj�+p� "jT� + E �1fj�+p� "j>1gj�+p� "jT�= h�;�(T ) = 1and limÆ#0 �k(b� Æ) = limÆ#0 Z 10 t�(1�Æ) 1p��p( t� �p� ) + p( t+ �p� )�dt� 
onst limÆ#0 Z 10 t�(1+Æ)dt = 
onst limÆ#0 1Æ = 1 :Finally, by Lemma 3, we havelimx!1 R10 k(x=t)F (t)dt=tF (x) = limx!1 Z 10 g(x; t)dt = 1and hen
e 
ondition (4.5) is ful�lled with 
 = 1. Therefore all assumptions ofTheorem 7 are satis�ed and we 
on
lude (setting � = ��)F (x) � x��l(x) ; x!1 ;(4.15)



22 M. BORKOVEC AND C. KL�UPPELBERGwhere l is some slowly varying fun
tion and � is determined by the equationE(j�+p�"j�) = 1 ; for some � 2 (�1; T ) :(4.16)Sin
e the tail of the stationary distribution fun
tion is de
reasing, the solution �in (4.16) has to be stri
tly positive and hen
e by Theorem 7 there exists a solution� 2 (0; T ) in (4.16) whi
h is unique be
ause of Lemma 2. Finally, with the pro-
eeding des
ribed in the introdu
tion of Se
tion 4 it follows that the slowly varyingfun
tion l is the 
onstant 
 given in Theorem 8 .Remark 10. The approa
h proposed in this paper for evaluating the tail ofthe stationary distribution of (Xn)n2N is quite lengthy and te
hni
al and requiresthe unpleasant 
onditions (D:2) and (D:3). Unfortunately, as already mentioned inthe introdu
tion of Se
tion 4, there does not exist any obvious simpler derivationfor general " . However, in the 
ase " � N(0; 1), the result in Theorem 8 
an beobtained mu
h more easily using the spe
ial stru
ture of the 
hara
teristi
 fun
tionof the normal distribution.Re
all that the random variableX whi
h has the stationary distribution fun
tionis 
hara
terized by the �xpoint equationX d= �X + p� + �X2 " :(4.17)Now note that for every t 2 RE(eitX ) = E(eit�XE(eitp�+�X2 " jX) )= e��t2=2E(eit�X�t2�X2=2)(4.18) = E(eitp�N1)E(eit(�X+p�X N2)) ;where N1 and N2 are independent standard normal random variables, independentof X . From (4.18) we obtain the �xpoint equationX d=p�N1 + (�+p�N2)X :Hen
e X is limit variable of the ergodi
 pro
ess ( eXn)n2N given by the sto
hasti
di�eren
e equation eXn =p�N1;n + (�+p�N2;n) eXn�1 ;(4.19)where (N1;n; N2;n)n2N is an iid sequen
e of random variables with same distributionas (N1; N2). The stationary distribution of the pro
ess ( eXn)n2N follows from Goldie(1991, Theorem 4.1), see also Embre
hts et al. (1997), Se
tion 8.4.
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