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Abstract

A frame in a Hilbert space H allows every element in ‘H to be written as
a linear combination of the frame elements, with coefficients called frame
coeflicients. Calculations of those coeflicients and many other situations
where frames occur, require knowledge of the inverse frame operator. But
usually it is hard to invert the frame operator if the underlying Hilbert
space is infinite dimensional. We introduce a method for approximation
of the inverse frame operator using finite subsets of the frame. In parti-
cular this allows to approximate the frame coefficients (even in £2-sense)
using finite-dimensional linear algebra. We show that the general method
simplifies when the frame contains a Riesz basis.

1 Introduction

Let H be a separable Hilbert space with the inner product < -,- > linear in
the first entry.
Definition 1.1. {f;}icr C H is a frame if there exist constants A,B > 0
such that
AFIP <D< £ fi > P < BIIfIP?
1€l
forall f € H. A, B are called frame bounds.

Given a frame {f;}icr, the frame operator is defined by
S:H—H, Sf=> <ffi>fi
iel

S is bounded, invertible, and self-adjoint; this leads to the important frame
decomposition:

f=88f=> <f,S'fi>fi, VfEN. (1.1)

el
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For practical purposes, it is a problem that calculation of the frame coefficients
< f,871f; > requires inversion of S. In the following we develope methods for
approximation of S~! using finite subsets of {f;}ic;-

For convenience, we describe the theory for a frame indexed by the natural
numbers. Given a frame {f;}3°,, let n € IN and consider {f;}}*,, which is a
frame for H,, := span{ f;};. One can prove that the orthogonal projection P,
of H onto H,, is given by

Pnf:i<fasn71fi>fi’ fEHa

i=1

where

n
Sn t Hn — Hn, Snf:Z<f>fi>fi-

i=1

Observe that S, ™! (and hence P,) can be found using finite-dimensional linear
algebra.

Our starting point is the theorem below, which is proved in [3].

Theorem 1.2. Let {f;}2, be a frame. Given n € IN, let A, denote a lower
frame bound for {f;}7_, (as frame for span{f;}7_,) and choose m(n) such that

o0

A .
Yoo I<fpfi>P< =g forj=1,..,n.
it=n+m(n)+1 n

Let V,, : Hyy — Hy, denote the frame operator for the finite family {Pnfi}?jlm(n).
Then
V., 'P.f = S1f, Vf € H.

Theorem 1.2 demonstrates that S~! can be approximated arbitrary well in the
strong operator topology using finite-dimensional linear algebra. However, for
practical calculation of V! it is desirable that m(n) is not too large. But for
most frames of practical interest (see section 3 and 4) one can prove that

A, = 0asn — oo,

which forces m(n) to be large. In the next section we show that Theorem 1.2
can be improved under an extra assumption.
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2 Frames containing a Riesz basis

Recall that {f;}icr C H is a Riesz basis for H if span{ fi}ic;r = H and there
exist constants A, B > 0 such that

AY lal? <Y afil? <BY il
for all finite sequences {c;}.

Given a Riesz basis {f;}ier, it is well known [8] that there exists a dual Riesz
basis {g;}icr such that

F=Y <fgi>fi,VfeH (2.1)

il

Observe the similarity between the equations (1.1) and (2.1)! In both cases
the convergence is unconditional, i.e., independent of the order of summation.
Intuitively, it is natural to think about a frame as an ”overcomplete basis”,
but it turns out that this does not hold in the strict sense: There exist frames
{fi}ier for which no subfamily is a basis for H. This is the reason for the
following definition.

Definition 2.1. A frame {fi}icr contains a Riesz basis if there is an index
set J C I for which {f;}ics is a Riesz basis for H.

General information about frames containing a Riesz basis can be found in [1]
and [2].

For a frame containing a Riesz basis, Theorem 1.2 can be improved:

Theorem 2.2. Let {f;}52, be a frame, containing a Riesz basis { fi}ics with
lower (Riesz)bound A. Choose finite index sets I, for which

LCLC...CI,TJ

and let P, be the orthogonal projection onto span{f;}icr,. Givenn € IN, choose
a finite set J, containing I, such that

A
S I<ffi>Ps
i¢dn n - L)

Let Vy, : Hyp — Hy denote the frame operator for the finite family {Py, fi}icJ, -
Then

, Vi € I.

Vi, 'Pf = S f asn— o0, Vf € H.
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Proof. Let n € IN. First, it can be proved that for all f € H,,,

YL > <GP

i@ Jn
and

(PSS —=Va)fs f>= D | < f. fi > %

i¢Jn

So P, S —V,, is a positive operator on H,, and ||(FP,S — Vp) .|| < %

We leave it to the reader to prove that A — % is a lower frame bound for
{P, fi}ics,; this implies that ||V, f € H we obtain that

1S7 f = Va ' Puf|]

< (I =P)S I+ 1PuS ' F = Vi Pufl|

< (= P)S U I + Vo |- [VaPuS 2 f = Pufl]

< 0= P)STHI+ 5 (VaPaS7Uf = PuSPaS ||+ |PaSPaS™ S = Puf )
< 1-P)S (Vi = PuS)PuS  fI| +11SPuS £ = £

n

( AP ST+ IS [1PST = 57D

< - POs Al +

1
1 B )
nA(A-L) 1A+ (= + DI = Pw)S ik

IA

3

O

The importance of Theorem 2.2 lies in the fact that the lower bound A,, ap-
pearing in Theorem 1.2 is replaced by A - independently of n. Furthermore, a
typical value for A is ~ 1, while A,, is usually much smaller.

3 Frames of exponentials

Let {A},cz € R. A frame for L*(—m,n) of the form {e“‘”}nez is called
a frame of erponentials. This is actually the context in which frames were
introduced in the original paper [6] by Duffin/Schaeffer in 1952!
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Whether {¢*»} =5 is a frame or not depends on the density of {\,}, 7. Given
r > 0, let n~(r) denote the minimal number of points from {A,}, .7 to be found
in an interval of length r and let

D~({An)) = lim ™).

T—00 T

D~ ({A}) is called the lower Beurling density of {\,}, 7.
Recall that {\,}, 7 is separated (with separation constant §) if

[An — Am| = 0 > 0 whenever n # m.

{An}, ez is relatively separated if {\,}, .7 is a finite union of separated sets.
Seip [7] proved the following:

Theorem 3.1. If {)‘n}nez is separated and has lower density strictly larger
than one, then {ei’\“‘”}nez is a frame for L?>(—m,m) containing a Riesz basis.

It can be proved that if {ei)‘"z}nez is a Riesz basis, then D™ ({\,}) = 1. For a
regular distribution of points, i.e., A\, = nb for some b > 0, the lower density
is D™ ({\n}) = 3. When b < 1, it follows by Theorem 3.1 that {ei”bm}nez is a
frame for L?(—m, ) containing a Riesz basis {*?*},,c; for some J C Z . Tt is
interesting to observe that if b is irrational, no subfamily of the form {nNb} 7
has density one; thus the Riesz basis {e™*},c; necessarily corresponds to
points {nb},ecs which are irregular distributed.

Seip also proved that for {\,} = {n(1 — |n|_1/2)}|n|>1, {e"*»*} is a frame for
L?(—m, ) which does not contain a Riesz basis.

We now return to the question about approximation of the inverse frame op-
erator. First, it turns out to be very difficult to get good estimates for the
lower frame bounds for a finite set of exponentials {e**}N | in L?(—x,).
Assuming that {\,}2_, is separated with separation constant J, it has been
proved in [5] that

Ay :=1.6-10"14. (6/2)2N+L. (N + 1))~8

is a lower bound, but this bound is clearly too small for practical purposes.
We would like to pose it as an open problem:

How can one obtain good estimates for the lower frame bound for a
finite set of exponentials?
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Without good estimates for the lower frame bound, Theorem 1.2 is not very
useful for general frames of exponentials. The situation improves if {ei’\"‘”}n 7
contains a Riesz basis {€*%},c;. For convenience, assume that {Ak} ez 18
separated and ordered such that

A1 <A< A<

Choose Iy CIo C--- C I, 1 J. For n € IN, let 7 := maxgey, |k| and let
In = {k} k) <m(n)+i)

As before, P, denotes the orthogonal projection onto span{e™*®}.c; .

Theorem 3.2. Suppose that the frame {ei’\kw}kez contains a Riesz basis
{eM} e with lower bound A. Given n € IN, choose

8-n-|I,
i) 2

and let V,, : H,, — H,, denote the frame operator for the finite family
{P,e?®} e s . Then for all f € L?(—m,7),

Vo, P f = S7TLf, as n — .

The proof can be found in [5].

4 Gabor frames

Definition 4.1. Let g € L?(IR), a,b > 0. A frame for L?>(R) of the form

{eQWimbmg(z _ na)}m,neZ’

is called a Gabor frame.

By introducing the operators on L?(IR)

Translation by a € R: (T,f)(z) = f(xr —a), z € R

and
Modulation by b€ R: (Epg)(z) = 2™ f(z), z € R,
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we can use {Emanag}m,n <7 as short notation for a Gabor frame.

Usually, one thinks about a Gabor frame {E,;T,.9} 7 as the set of time-

m,nec
frequency shifts of g along the lattice {(na,mb)} 7 C IR% In order for
{EmpThag},, o7 to be a frame, the lattice has to be dense enough, in the sense

that ab < 1. Also, if {E,,3Theg} 7 is a frame, then

m,ne

{EmbTnag},, nc7 18 @ Riesz basis < ab=1 (4.1)

It is easy to construct Gabor frames containing a Riesz basis. For example, by
choosing g, a, b such that {E,,T,.9} 7 is a Riesz basis and letting N € IN,

m,ne
the family {e2"™%g(z — N{ )} neZ 18 @ frame containing a Riesz basis.

For another example, let {Am }mer C IR be a separated set for which D™ ({Am}) >
1. By Theorem 3.1, {e"m*},.c; is a frame for L?(—m, ) containing a Riesz
basis. Thus, for every function g for which

supp (g) € [-m, 7], A <|g(z)| < B,a.e x € [-m, 7],

the family {e*n%g(z — n2m)},c 1 nez is a Gabor frame for L?(IR) which con-
tains a Riesz basis. The remark after Theorem 3.1 implies that even in the
lattice case A, = 2wmb, only for very special values of b, the Riesz basis con-
tained in {e?2™™%% g(z — n27) }momez Will correspond to a sublattice of the form

{ei27rmb’xg($ —n2m)} where o' > 0.

However, besides such constructions, it is very difficult to decide when a given
Gabor frame contains a Riesz basis. We put it as an open problem:

m,nEZ’

When does a Gabor frame {E;3Tha9},, ncZ contains a Riesz basis?

We now want to apply the general approximation theory to Gabor frames
{ErTia9},, jcZ containing a Riesz basis {Ekalag}(k,l)eJ. First, choose finite
sets {I,} such that

LCLC...CI,TJ
Given n € IN, let 7 = maxk yyer, {|kl; [I[} and let

In = {(k, 1) : [k, || <7+ m(n)}.

As before, the question is how to choose m(n) € IN such that Theorem 2.2 can
be applied. We need the Lemma, below.
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Lemma 4.2. If |K'|,|I'| <7, then for all choices of m(n) € IN,
> | < EwTag, ExpTyag > > < > | < EwTrag,9 > |*.
(k)¢ JIn {(k,0): |k .|t <m(n)}e
In particular, the estimate holds when (K',I') € I,,.
Proof. Suppose that |k'|,|l'| < 7. Then

Y n)gdn | < ExoTiag, ErpTiag > |?
= Y kg | < Bt T—1)a9:9 > |
= Ykiez| < Ege—wpLi-r)a9-9 > I
= (k) kLl <itm(n)} | < Be—kpTa-1)a9,9 > %

Now, since |k, [I'| < 7,

2 (e): k| <itmm)} | < Bty Ti-11a9,9 > |
> Y (e)elkl, 1 <mm)y | < EroTiag,g > 1%,

from which the Lemma follows. O

Now, with the above definition of J,, and with P, beeing the orthogonal projec-
tion onto span{EysT1a9}(k,)er, We get the following consequence of Theorem
2.2:

Theorem  4.3.  Suppose that {ExyTi.9}, .7 contains a Riesz basis

{ExoT1a9} (kp)es with lower bound A. For n € IN, choose a number m(n) such
that

2
2 (ki <mimyel < ProTiag,g > I <

n|L,|
Let Vi : "y — My be the frame operator for {P, ExyTiag}(kyes,- Then, as
n — 00,

Vo P f = ST, Vf € L*(R).

If a Gabor frame does not contain a Riesz basis, one has to use Theorem 1.2
instead of Theorem 4.3. However, then we need some lower frame bounds
for finite Gabor systems. The following theorem gives some lower bounds for
certain functions g which have one-sided bounded support. Since it does not
present any extra difficulty to handle irregular systems {?™Am® g(w—an)}%’ ’éV:l,
i.e. where A\, and a,, are not necessarily of the form \,, = bm and a, = an
for some a,b > 0, we will immediately do it for these systems.
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Theorem 4.4. Let a1,-..,any and Ai,..., Ay be two finite separated se-
quences of real numbers, the latter separated by € > 0. Let g € L*(IR) be such
that suppg C (—o0,c| for some ¢ € IR, and suppose there is a non-degenerate
interval I C [c —¢€,c] and a positive number d such that

lg(z)| >d VYzel.

Denote a lower bound for {2™m®}M_ in [2(I) by A, and an upper bound for

{e2mAmT ()M | in L2(IR) by B'. Then {e*™*m%g(z — an)}%’:]\ll,nzl is linearly
independent with lower frame bound

N—1
d’A
Ay =d*A .
v =d (16B'>
Proof. W.l.o.g. we suppose a; < ... < ay. Since a finite sequence is a Riesz

basis for its linear span if and only if it is linearly independent, and since in
that case the frame bounds and the Riesz bounds coincide, it suffices to show
that

k M
Z Z mn627rz)\m( ( _an)

=1m=

\lAk 3 Z el (4.2)
L(R)

n=1m=1

holds for all k € {1,..., N} and all sequences {cmn}T]\,;"’:A{WZ1 of complex scalars.
We do this by induction on k:
For k£ = 1, we have

M .
> eme®™mOg(. — ay)
m=1

M .
3" emie?™AnOg( — ay)
m=1

M
>di| A |em |
L2(1) m=1

Now suppose that k£ > 2 and that (4.2) holds for k—1. We distinguish between
two cases:

Case 1:

L*(IR)

M .
3 epperidmtalg

m=1

k—1 M M
JAIC 1 Z Z |Cmn| J z |cmk|2 (4.3)

n=1m=1 m=1

We then have
>

L*(IR)

k M ]
Z Z Cmne27m/\m(.)g(' - an)

n=1m=1
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k-1 M . .
> Y come™ (- - an) g —a)| >
n=1m=1 L*(R) L*(R)
k—1 M M (4 )
A1 DY lemnl? = | B D lemil? >
n=1m=1 m=1
k-1 M
Ap1 Y > |Cmn|2
n=1m=1
k-1 M M
A1) D lemnl? + B' > |emkl? >
n=1m=1 m=1
k M k M
\/Ak 1 Z Z |Cmn| Ak Z Z |Cmn|2'
n=1m=1 n=1m=1
Case 2:

k—1 M M
Ak 1 Z Z |Cmn|2 < B’ Z |ka|2 (44)
m=1

n=1m=1

Then we have

k M k M )
Z Z CmneZM)‘m ( _ an) > Z Z Cmne%rz)\m(-)g(_ o an) >
n=1m=1 L2(R) n=1m=1 L2(I+ay)

M ) k=1 M )
Z kae%z)\m(-)g(_ — ak) - Z Z Cmn€2m)\m(')g(' — an) >

= L2(I+a;) n=llm=1 L%(I+ay)

M (4.4) 1| M k=1 M
A S et 8 0 (15 e+ 1) A5 S
m=1 m=1 = =

d\/AAk 14 z Z len|? = \lAk i i |Cmn |2,

n=1m=1 n=1m=1

thus completing the induction step. The proof is over. O

With the help of Theorems 1.2, 4.4 and Lemma 4.2, one can now state an
approximation result similar to Theorem 4.3, for certain Gabor frames which
do not necessarily contain a Riesz basis. We leave the details to the reader.
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Remark 4.5.

a) Note that an explicit value for the occuring lower bound A of {e?™Amz}M_
in L2(I) has been given in section 3. Also, without further assumptions we
can use B’ = N - ||g||?. In case {e*™mZg(x — an)}%[’zj\{,n:l is a subset of a
frame {e2"mTg(z — an)}pv=1n=1 With upper bound B we can use B = B’

independently of N.

b) Since the Fourier Transform of the function e*™*n%g(z — a,,) is given by

e27ri,\mane—27rianyg(y _ )\m) and since |627ri)\man| =1, {eZWi)\m.’Eg(x B an)}r]\r/z[,zl\lf,nzl

is linearly independent if and only if {e=2™"=Yg(y — )\m)}%i\{,nzl is, and the
lower frame bounds are the same. Thus it is clear that an analogue statement

to Theorem 4.4 holds if suitable conditions are posed on § instead on g.

c) Theorem 4.4 does only cover functions g with one-sided bounded support. In
[4] there have been obtained lower bounds for a more general class of funtions
g, which e.g. also includes the gaussian.
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