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Individual Migraine Risk Management usingBinary State Spae Mixed ModelsBy CLAUDIA CZADOSCA Zentrum Mathematik, Tehnishe Universit�at M�unhen, D-80290 M�unhen, Germanye-mail: zado�ma.tum.deSummaryIn this paper binary state spae mixed models of Czado and Song (2001) are applied toonstrut individual risk pro�les based on a daily dairy of a migraine headahe su�erer. Thesemodels allow for the modeling of a dynami struture together with parametri ovariate e�ets.Sine the analysis is based on posterior inferene using Markov Chain Monte Carlo (MCMC)methods, Bayesian model �t and model seletion riteria are adapted to these binary state spaemixed models. It is shown how they an be used to selet an appropriate model, for whih theprobability of a headahe today given the ourrene or nonourrene of a headahe yesterdayin dependeny on weather onditions suh as windhill and humidity an be estimated. This anprovide the basis for pain management of suh patients.Some key words: Binary time series, longitudinal data, Markov hain Monte Carlo, probit, regression,state spae models, model �t and seletion.1. IntrodutionAbout half of all migraine patients believe that weather is a trigger for their headahes (Raskin1988). Weather onditions suh as old, heat, bright sunshine, hanges in pressure, warm drywinds and others have been suggested to inrease the probability of a headahe. However,many studies investigating these suggestions have been negative or inonlusive. Wilkinson andWoodrow (1979) and Diamond et. al. (1990) found no orrelation between headahe frequenyand adverse weather onditions in London, England and Chiago, U.S.A., respetively. In on-trast, Cull (1982) found that a sharp rise in barometri pressure in Sotland redued the frequenyof migraine attaks. On the other hand, the studies of Shulman et. al. (1980) in Boston, U.S.A.and of Nursall (1981) in southern Ontario, Canada, showed no relationship between migraine andpressure. Nursall (1981) however showed that the headahe frequeny inreased as temperatureand humidity inreased. These studies are ommonly based on daily patient diaries reporting onthe ourrene or nonourrene of a migraine headahe. However, more reently the presene ofChinook winds of the Canadian Rokies has been identi�ed as a trigger for migraine headahes(Pioreky et. al. (1996) and Cooke et. al. (2000)) in some patient groups. One possible expla-nation of these results might be that the inuene of weather onditions on migraine headahesvaries from individual to individual. Therefore it is of interest to onstrut patient spei� riskpro�les from an individual patient dairy, whih is the fous of this paper.As an example of suh data, we investigate in this paper the headahe dairy of a 52 year oldfemale, who is working part-time in a lerial position. She reorded daily between February



2 Claudia Czado25 until November 30, 1995, if she experiened a headahe that day or not. On 98 days outof the 279 reorded days she reorded a headahe. She su�ers from migraines without aurafor 15 years. Sine she believes that her headahe is triggered by weather onditions, weatherrelated information on a daily basis was also olleted. These inluded information on humidity,windhill, temperature and pressure hanges, wind diretion, preipitation and loud over. Sineshe is working part-time a ylial ourrene of migraine attaks an be suspeted. The generalproblem of reursivity is onsidered by Cugini et. al. (1990). The data is part of a larger studyon determinants of migraine headahes olleted by the psyhologist T. Kosteki-Dillon, YorkUniversity, Toronto, Canada.Early analyses ignored the orrelation of multiple measurements on the same patient, whilePioreky et. al. (1996) utilized a generalized estimating approah (GEE) introdued by Zeger andLiang (1986) to adjust for this dependeny. For the olleted long time series, we prefer a modelthat allows for evolution over time and is likelihood based to investigate the inuene of weatheronditions on the frequeny of migraine attaks. For this task we are looking for a model whihan aommodate time dependent ovariates suh as given by the weather onditions togetherwith a dynami mehanism whih models the dependeny between suessive days. Suh modelswere introdued and studied by Czado and Song (2001), whih use a threshold approah togetherwith a state spae approah.While state spae models are �rst studied for gaussian dynami systems (e.g. West andHarrison (1989), Jones (1993)), they have beome more popular for non gaussian dynami systems(see for example Fahrmeir (1992), Carlin and Polson (1992) and Song (2000)). While Carlinand Polson (1992) also use a threshold approah, they do not allow for parametri ovariatee�ets. For longitudinal ount data state spae models with parametri ovariate e�ets havebeen onsidered by Zeger (1988), Chan and Ledolter (1995) and Jorgensen et. al (1999).In this paper we utilize the binary state spae mixed models as introdued and studied byCzado and Song (2001) for the headahe dairy. We onsider several model spei�ations forthis data set and use Markov Chain Monte Carlo (MCMC) methods to failitate the statistialinferene. We also apply some Bayesian model seletion riteria suh as the Bayesian devianeinformation riteria by Spiegelhalter et. al (1998) and posterior preditive simulations (see forexample Gelman and Meng (1996) and Gelman et. al (1996)) to help to assess model �t and todisriminate between models.The analysis of the headahe dairy of this patient reveals the presene of strong day e�etstogether with weather e�ets. The presene of severe windhill inreases the probability of aheadahe, while the e�et of humidity is less severe. It is also shown that the presene or abseneof a headahe on the previous day also inuenes the presene or absene of a headahe today.Patient spei� risk pro�les are onstruted, whih might help the patient to manage her migraineattaks more preisely.The paper is organized as follows: Setion 2 gives a short review of binary state spae mixedmodels, while Setion 3 disusses Bayesian model �t and model seletion riteria. Setion 4presents the analysis of the headahe data set. Conlusions and disussions are presented inSetion 5. 2. Binary State Spae Mixed ModelsFor a binary longitudinal data (Yt;Xt); t = 1; : : : ; T , Czado and Song (2001) adopted the so-alled threshold approah (e.g. Albert and Chib, 1993) to model the serial dependene for thebinary response vetor Y�T = (Y1; � � � ; YT )0. They assume that the unobservable latent threshold



Individual Migraine Risk Management using Binary State Spae Mixed Models 3variable vetor Z�T = (Z1; � � � ; ZT )0 allows for the following linear state spae formulationZt = �X0t�� �t + ut; t = 1; � � � ; T; (2.1)�t = �t�1 + �t; t = 1; � � � ; T; (2.2)where � is a p-dimensional regression parameter and f�t; t = 0; � � � ; T g denotes the olletionof state variables. It is further assumed that ut i.i.d.� N(0; 1) and �t i.i.d.� N(0; �2t ), whereN(�; �2) denotes a normal distribution with mean � and variane �2. The variane parametersf�2t > 0; t = 1; � � � ; Tg in the state equation (2.2) are assumed to be unknown, time-varying,and bounded. Therefore the state proess governed by (2.2) may aommodate more exiblepatterns of variation for the data than a stationary AR(1) proess that is a speial ase of (2.2)with the �2t �xed onstant. In addition, we require mutual independene between two sets ofinnovations fut; t = 1; � � � ; Tg and f�t; t = 1; � � � ; Tg. This implies that given �t, Zt is onditionallyindependent of the other Zt's and �t's. As initial ondition we assume �0 � N(0; �20)� Finallythe latent threshold variables Zt are related to the observed binary responses Yt through thefollowing latent variable representation:Yt = 1() Zt � 0; t = 1; � � � ; T � (2.3)Representation (2.3) ensures that the marginal distribution of Yt given both state variable �t andovariate vetor Xt follows a probit model, i.e., pt = P (Yt = 1j�t;Xt) = �(X0t�+ �t) where �(�)denotes the umulative distribution funtion of N(0; 1). The orresponding history vetors willbe denoted by Y�t = (Y1; � � � ; Yt)0, Z�t = (Z1; � � � ; Zt)0, ��t = (�0; � � � ; �t)0 and �2�t = (�21 ; � � ��2t )0.For the Bayesian approah, independent prior distributions for the parameters (�; ��T ; �2�T ; ),indiated in a joint density of the form �(�; ��T ; �2�T ; ) = �(�) � �(��T ) � �(�2�T ) � �() areassumed.Czado and Song (2001) followed Tanner and Wong's (1987) Gibbs Sampling approah withdata augmentation. They showed that the onditional distributions of [Z�T jY�T ; �; ��T ; �2�T ; ℄,[�jY�T ;Z�T ; ��T ; �2�T ; ℄, [��T jY�T ;Z�T ; �; �2�T ; ℄, [�2�T jY�T ;Z�T ; �; ��T ; ℄ and [jY�T ;Z�T ; ��T ; �2�T ; �℄ aretratable when appropriate prior distributions are hosen. We give now these onditional dis-tributions for the binary response ase, derivation and details an be found in Czado and Song(2001). The binomial response ase is also onsidered there.Latent Variable Update:The onditional distribution of the latent variables given the remaining parameters is given by[Z�T jY�T ; �; ��T ; ��T ; ℄ = TYt=1[ZtjYt; �; �t℄;where [ZtjYt; �; �t℄ is independent univariateN(�XTt ���t; 1) distributed trunated to [�1; 0℄([0;1℄)for Yt = 1(Yt = 0)Regressions Parameter Update:Let ��T1 = (�1; � � � ; �T )0 and assume a multivariate Np(�p;�p) prior for �, the onditionaldistribution of [�jY�TZ�T ; ��T1℄ is multivariate normal with expetation vetor�m = �(X0X+��1p )�1(��1m �p +X0(Z�T + �0T1))and ovariane matrix �m = (��1p +X0X)�1�



4 Claudia CzadoState Variable Update:Czado und Song (2001) showed that [��T jY�T ;Z�T ; �; �2�T ; ℄ is (T+1) dimensional normallydistributed with expetation vetor�;�(IT +A�;�A0)�1(Z�T +X�)and ovariane matrix �;� � �;�A0(IT +A�;�A0)�1A�;�;where �;� = P�0 D�1� P�1 withP = 0BBB� 1 � 0 � � � 00 1 � � � � 0... ... ... ... ...0 0 0 � � � 1 1CCCA , D� = 0BBB� ��20 0 � � � 00 ��21 � � � 0... ... ... ...0 0 � � � ��2T 1CCCAand A = 0BBB� 0 �1 0 � � � 0 00 0 �1 � � � 0 0... ... ... ... ... ...0 0 0 � � � 0 �1 1CCCA 2 RT�(T+1)�Alternatively to the joint update of the state variables, individual updates are also possible,however Czado and Song (2001) showed that this leads to poor mixing. Further, �;� an beomputed reursively.State Variane Update:Assuming an inverse gamma prior IG(at; bt) for [�2t ℄ given by�(�2t ) = 1batt �(at)(�2t )at+1 exp(� 1bt�2t ) with at; bt > 0;it follows that [�2t j�t; �t�1; ℄ � IG(a�t ; b�t ) witha�t = at + �5 and b�t = [ 1bt + (�t � �t�1)22 ℄�1�In the ase where prior information about �t is sparse, we assume �t = �. It follows that for a atprior for �2, the onditional [�2j��T ; ℄ � IG(T2 � 1;n 1b + 12PTt=1(�t � �t�1)2o�1). In the aseof a uniform(l,u) prior for �2,[�2j��T ; ℄ is inverse gamma distributed with the same parametersas above but trunated to [l,u℄. A trunation might be onsidered to avoid domination of thedynami term.State Correlation Update:A uniform prior on [�1; 1℄ is used for . This implies that [j��T ; �2�T ℄ is univariate normallydistributed with mean � and variane �2 trunated to [-1,1℄, where� = [PTt=1 �t�t�1=�2t ℄[PTt=1 �2t�1=�2t ℄ and �2 = "PTt=1 �2t�1�2t # �



Individual Migraine Risk Management using Binary State Spae Mixed Models 53. Bayesian Goodness of Fit and Model SeletionAfter one has obtained posterior estimates of parameters or quantities of interest throughMCMC, one is interested in assessing �rst the goodness of �t and seondly omparing severalmodels with regard to model �t and model omplexity.We onsider the problem of assessing the goodness of �t in a model �rst. For this we utilizeposterior preditive distributions, whih were introdued by Guttman (1967) and Rubin (1981,1984). In ontrast to the lassial approah these measures an depend on unknown parameters.Meng (1994) uses posterior p-values for testing hypotheses of parameters within a given model,while Gelman et. al. (1996) onentrate on disrepany measures whih are not traditionaltest statistis. Gelman and Meng (1996) showed how these an be failitated in an MCMCframework by posterior preditive simulation. For this, one hooses appropriate disrepanymeasures, whih measure the �t of the model. For our data example, we hose lassial measuressuh as the Pearson �2 statistis or the deviane given byD�2(�; ��T1; Y �T ) = TXt=1 (Yt � pt)2pt(1� pt) (3.1)Ddev(�; ��T1; Y �T ) = �2 TXt=1 [Yt log(pt) + (1� Yt) log(1� pt)℄ ; (3.2)where pt = �(X0t� + �t). Note that given the state variables independene is assumed. Toondut the posterior preditive simulation, we draw regression parameter estimates �r andstate variable estimates �rt ; t = 0; � � � ; T for r = m+1; � � � ; R as an approximate sample from theposterior. Here, m is an appropriately hosen burnin. Given these parameter estimates �r and�rt ; t = 0; � � � ; T , we generate hypothetial data Y �rT from the orresponding binary state spaemixed model. If the model �ts adequately, we expet the distributions of Y �rT and the observeddata Y �T to be similar. In partiular we expet the orresponding disrepany measures (3.1) and(3.2) to be lose. Therefore we determine the estimated posterior preditive p-valuesp�2 = 1R�m RXr=m+1 IfD�2 (�;��T1;Y �T )�D�2 (�;��T1;Y �rT )g (3.3)pdev = 1R�m RXr=m+1 IfDdev(�;��T1;Y �T )�Ddev(�;��T1;Y �rT )g� (3.4)We expet an estimated posterior preditive p-value of around .5, if the model �ts adequately.We now turn to the problem of model seletion. Model omparison in a lassial frameworkusually assumes a measure of model �t together with a measure of model omplexity. Sineinreasing omplexity of model results in a better model �t, models are ompared by tradingthese two quantities o�. Likelihood ratio tests and Akaike's information riterion (Akaike 1973)are suh measures. Spiegelhalter et al. (1998) propose the deviane information riterion (DIC)to use for model seletion within the MCMC framework. For this, they use the deviane formeasuring the goodness of �t. As in Dempster (1974), Spiegelhalter et. al. onsider the posteriordistribution of the saturated deviane given by (3.2) in binary state spae mixed models. Theysuggest to use the posterior mean of the saturated deviane as summary of the model �t. Forthe binary state mixed models this is given by:D = E�;��T1;;�2jY �T (Ddev(�; ��T1; Y �T ))�



6 Claudia CzadoTable 1. Potentially important ovariates identi�ed byordinary probit analysesWCD Windhill index when present, 0 otherwiseHDXD Humidity index when present, 0 otherwiseWC.IND 1 if WCD present, 0 otherwiseS.SE South-Southeast Wind IndiatorTMND1P Mean temperature hange from previous dayWDAY WeekdayAs measure of model omplexity Spiegelhalter et. al (1998) propose to use the e�etive numberof parameters pD, de�ned as di�erene between the posterior mean of the deviane and thedeviane evaluated at the posterior expetations of the model parameters. For the binary statespae mixed model pD is given bypD = E�;��T1;;�2jY �T (Ddev(�; ��T1; Y �T ))�Ddev(E�jY �T (�); E��T1jY �T (��T1); Y �T ))�Finally, the deviane information riterion is de�ned asDIC = D + pD�Spiegelhalter et al. showed that DIC an be onsidered a natural generalization of Akaike'sinformation riterion. 4. Bayesian Analysis of the Headahe DataFor the headahe data we de�neYt = � 1 headahe on day t0 otherwisefor t = Feb. 25, � � �, Nov. 30, 1995. This gives a total of 279 binary observations. An initialexploratory analysis using ordinary probit models, thus ignoring the dependeny identi�ed po-tentially important ovariates given in Table 1. In partiular, the e�et of pressure and pressurehanges was not identi�ed as signi�ant in this explanatory analysis.For our analysis we assume the following binary state spae mixed modelYt = 1fZt�0g; t = 1; � � � ; 279Zt = ��t � �t + ut; ut � N(0; 1) independent�t = �t�1 + �t; �t � N(0; �2) independentut and �t are independent for all ttogether with the following two mean spei�ations:Model 1: �t = �0 + �WCDWCDt + �WC�INDWC�INDt (4.1)+ �HDXDHDXDt + �TUESTUESt + �WEDWEDt+ �THURTHURt + �FRIFRIt + �SATSATt + �S�SES�SEt



Individual Migraine Risk Management using Binary State Spae Mixed Models 7Model 2:�t = �0 + �SATSATt + �SUNSUNt + �MONMONt (4.2)+ �TUESTUESt + �WEDWEDt + �THURTHURt+ �TMND1PTMND1Pt + �S�SES�SEt+ �SAT�TMND1PSATt � TMND1Pt + �SUN�TMND1PSUNt � TMND1Pt+ �MON�TMND1PMONt � TMND1Pt + �TUES�TMND1P TUESt � TMND1Pt+ �WED�TMND1PWEDt � TMND1Pt + �THUR�TMND1P THURt � TMND1PtThe deviane in the standard probit analysis of Model 1 (Model 2) results in 326.36 (316.89)with 268 (264) degrees of freedom.Following the experiene gained from omparing di�erent MCMC algorithms in Czado andSong (2001), we utilize the MCMC algorithm with a at noninformative prior for the regressionparameters and a uniform prior on the state variane �2 = �2t . As trunation interval for �2 wehose [0�1; 1℄ and [0�1; 10℄. 10000 iterations were run, with every 10th iteration reorded. Thetime sequene plots of the parameters show that a burnin of 50 reorded iterations is suÆient.Figures 1 and 2 present posterior mean estimates of the regression parameters together with90% redible intervals for mean spei�ations (4.1) and (4.2) for di�erent prior hoies for �2. Foromparison we also inlude probit estimates together with 90% on�dene intervals. They showthat the data shows evidene that strong weekday e�ets are present, while the e�ets of windhilland humidity indies are less pronouned. The presene of south-southeast winds redues theheadahe probability. This is onsistent with weather pattern for southwestern Ontario indiatedin Nursall and Phillip (1980) and Nursall (1981), who reported that these wind diretions areoften related to nie weather. The e�et of temperature hanges from the previous day interatswith weekday e�ets, whih might be explained by the part time work shedule of the patient.For both mean spei�ations we see that weather onditions have an inuene on the ourreneor nonourrene of headahe for this patient.Sine the varianes of the latent variables Zt vary, it might be appropriate to onsider saledregression parameters. In partiular, Czado and Song showed that��T1 � NT (0;�1�);where �1� = (��)t;s=1���;T . Using the reursion formulas given in Czado and Song (2001), itfollows that V ar(Zt) = 1 + �2 1� 2(t+1)1� 2 (4.3)Cov(Zt; Zs) = �2t�s 1� 2(s+1)1� 2 ; s � t� (4.4)We an approximate V ar(Zt) by 1+ �21�2 , therefore it makes sense to onsider saled regressionparameters �s de�ned by �s = �q1 + �21�2 �Posterior mean estimates of these saled regression parameters are given in Figures 3 and 4.They show that the redible intervals are larger than the orresponding on�dene intervals ofthe probit estimates, whih is to be expeted when dependeny is not ignored. Further we see
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Fig. 1. Posterior mean estimates with 90% redible intervals for the regression parameters in Model 1 (.. . . . = probit estimate with 90% CI, - - - - - = posterior estimate with 90% redible interval using auniform(.1,1) �2 prior, || = posterior estimate with 90% redible interval using a uniform(.1,10) �2prior)that all estimates of the saled regression parameters are lose, thus indiating similar e�etsregardless of the �2 prior.We now investigate the posterior estimates of the parameters determining the dynami stru-ture of the model. Posterior density estimates of  and � are presented in Figures 5 and 6,respetively. The hosen trunation interval inuenes the posterior estimate of . A largerupper bound for �2 redues the orrelation. We also see that the MCMC algorithm wants to �tlarger state varianes.The results for the state variables �t are given in Figure 7. They indiate similar e�ets as forthe state orrelation. The range of the state variables inreases as the upper trunation boundfor �2 prior inreases.Finally we investigate the behavior of posterior mean estimates of the suess probabilitiesgiven by pt = P (Yt = 1) = �(X0t�+ �t)�Figure 8 gives posterior mean estimates of the suess probabilities together with the observedsuesses and failures. From this we see that posterior mean estimates using a uniform(.1,10) �2prior are loser to the observed suesses and failures, whih indiates a better model �t.
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Fig. 2. Posterior mean estimates with 90% redible intervals for the regression parameters in Model 2 (.. . . . = probit estimate with 90% CI, - - - - - = posterior estimate with 90% redible interval using auniform(.1,1) �2 prior, || = posterior estimate with 90% redible interval using a uniform(.1,10) �2prior)To see if a higher state variane has inuene on the ovariate proportion explained by themodel, we onsidered the following quantity:propovariate = 1T TXt=1 jX0t�jjX0t�j+ j�tj �Note that the in the probit model the mean of the latent variable is lose to the log odds; for amarginal logit model equality holds. Therefore it makes sense to onsider what proportion of thelog odds is explained on the average by the parametri part and the dynami part, respetively.Table 2 gives posterior mean estimates of propovariate, whih shows that the dynami part ofthe model does not dominate the parametri part, even though there is a moderate deline whena larger upper trunation point for the state variane is used.We now investigate the model �t and model seletion of the two mean spei�ations and thetwo di�erent prior hoies. First we present the results of the posterior preditive simulationusing the last 500 reorded iterations of MCMC hain.
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Fig. 3. Posterior mean estimates with 90% redible intervals for the saled regression parameters inModel 1 (. . . . . = probit estimate with 90% CI, - - - - - = posterior estimate with 90% redibleinterval using a uniform(.1,1) �2 prior, || = posterior estimate with 90% redible interval using auniform(.1,10) �2 prior)Table 2. Posterior Mean Estimates of propovariateModel 1 Model 2uniform[.1,1℄ uniform[.1,10℄ uniform[.1,1℄ uniform[.1,10℄�2 prior �2 prior �2 prior �2 prior.55 .45 .53 .46Table 3. Estimated p-values from the poste-rior preditive simulationModel p�2 pdevModel 1 (uniform(.1,1) �2 prior) .32 .24Model 1 (uniform(.1,10) �2 prior) .44 .41Model 2 (uniform(.1,1) �2 prior) .23 .18Model 2 (uniform(.1,10) �2 prior) .45 .44
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Fig. 4. Posterior mean estimates with 90% redible intervals for the saled regression parameters inModel 2 (. . . . . = probit estimate with 90% CI, - - - - - = posterior estimate with 90% redibleinterval using a uniform(.1,1) �2 prior, || = posterior estimate with 90% redible interval using auniform(.1,10) �2 prior)The results in Table 3 show that using a larger upper trunation limit for the �2 prior yieldsa better �t. The di�erene between the two mean spei�ations is moderate with a very slightpreferene toward Model 2. The preditive simulations also show that the model �t is adequatewhen a larger upper trunation limit for the �2 prior is used.We now onsider density estimates of the posterior deviane whih are given in Figure 9. Herewe also an see a lower posterior deviane for the models with a larger upper trunation, whilethe di�erene between the two mean spei�ations is minimal. It should also be noted thatthe posterior mean devianes are onsiderably lower than the devianes obtained using ordinaryprobit, thus indiating an improvement when using binary state mixed models over ordinaryprobit analyses.Finally we present in Table 4 the results using the deviane information riterion. DIC wouldselet mean spei�ation Model 2 with a uniform(.1,10) prior for �2.In summary, the model adequay is ahieved when a uniform(.1,10) prior for �2 is used, whilethe di�erene in the mean spei�ations is minimal. Therefore we present now preditions usingModel 1 spei�ation, whih an be used for the pain management of this patient. To ease
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Fig. 7. Posterior mean estimates of state variables �tTable 4. Model �t D, e�etive parameters pD andDICModel D pD DICModel 1 (uniform(.1,1)) 268.29 65.25 333.53Model 1 (uniform(.1,10)) 111.62 100.05 211.67Model 2 (uniform(.1,1)) 252.95 73.28 326.23Model 2 (uniform(.1,10)) 104.37 95.38 199.75presentation we restrit this analysis to Wednesdays for the marginal analysis and to Tuesdaysand Wednesdays for the joint analysis. To obtain predition of the marginal headahe probabilityunder ertain onditions, we utilize now that the V ar(Zt) an be approximated by 1 + �21�2 ,therefore estimated marginal headahe probabilities are given byp̂t = �24 X0t�̂q1 + �̂21�̂2 35 �For example, in Figure 10 we plot estimated marginal headahe probabilities for Wednesdays independeny of windhill and humidity, respetively. The solid (dotted) lines indiate the presene
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Fig. 8. Posterior mean estimates of probabilities pt(absene) of south-southeast winds. For this patient windhill inuenes the headahe probabilitymore severely than humidity. It is interesting to note that an inrease in humidity dereases theheadahe probability somewhat for this patient.Sine dependeny is present, a marginal analysis as above is insuÆient. Therefore, we areinterested in determining estimated joint headahe probabilities. For this we utilize that aordingto (4.4) the orrelation between Zt and Zt+1 an be approximated by . Using the bivariatenormal distribution funtion, Figures 11 and 12 give ontour lines of estimated headahe/noheadahe probabilities depending on di�erent levels of windhill and humidity values for Tuesdaysand Wednesdays when no south-southeast winds are present on both days, respetively.Finally, we onsider orresponding onditional probabilities, whih are given in Figure 13.From this we see that the e�et of a previous day headahe inuenes the headahe probabilityof the urrent day onsiderably. This shows that even a moderate orrelation between the statevariables indues a onsiderable dependeny on the onditional probabilities. Thus dependenyannot be ignored. 5. Conlusions and DisussionThis paper investigates the usefulness and appliability of binary state spae mixed models topain risk management for migraine headahe patients. Binary state spae mixed models allowthe joint assessment of a dynami struture to model longitudinal dependeny together with time
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Fig. 9. Estimated density of the posterior devianedependent ovariate e�ets suh as weather onditions for migraine su�erers.Parameter estimation is failitated by MCMC. In addition to parameter estimation, the adap-tation of several model �t and seletion for a Bayesian inferene using MCMC methods arepresented. They allow for the assessment of mean and prior spei�ations. For the data setstudied a reasonable model was found, whih allows for a patient spei� risk assessment.For the �nal model seleted, estimated risk pro�les for su�ering headahes are onstrutedunder possible weather onditions. In addition to a marginal analysis, joint and onditionalanalyses are given. They show that even a moderate orrelation among the state variables anindue onsiderable inuene on estimated onditional headahe probabilities. For example, theheadahe probability for Wednesdays is inreased roughly by .10 when a headahe was also presenton Tuesday, while the �tted orrelation among the state variable was only .25.The original data set also measured headahe severity on a �ve point sale. Therefore anextension of the methods presented to mixed state spae models with ordinal responses is nees-sary and is the fous of urrent researh e�orts of the author. Another extension is to onstrutmultivariate binary state spae mixed models for the analysis of several patient dairies.Aknowledgements:The author's researh was supported by the Deutshe Forshungsgemeinshaft, Sonderforshungs-
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