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Individual Migraine Risk Management usingBinary State Spa
e Mixed ModelsBy CLAUDIA CZADOSCA Zentrum Mathematik, Te
hnis
he Universit�at M�un
hen, D-80290 M�un
hen, Germanye-mail: 

zado�ma.tum.deSummaryIn this paper binary state spa
e mixed models of Czado and Song (2001) are applied to
onstru
t individual risk pro�les based on a daily dairy of a migraine heada
he su�erer. Thesemodels allow for the modeling of a dynami
 stru
ture together with parametri
 
ovariate e�e
ts.Sin
e the analysis is based on posterior inferen
e using Markov Chain Monte Carlo (MCMC)methods, Bayesian model �t and model sele
tion 
riteria are adapted to these binary state spa
emixed models. It is shown how they 
an be used to sele
t an appropriate model, for whi
h theprobability of a heada
he today given the o

urren
e or nono

urren
e of a heada
he yesterdayin dependen
y on weather 
onditions su
h as wind
hill and humidity 
an be estimated. This 
anprovide the basis for pain management of su
h patients.Some key words: Binary time series, longitudinal data, Markov 
hain Monte Carlo, probit, regression,state spa
e models, model �t and sele
tion.1. Introdu
tionAbout half of all migraine patients believe that weather is a trigger for their heada
hes (Raskin1988). Weather 
onditions su
h as 
old, heat, bright sunshine, 
hanges in pressure, warm drywinds and others have been suggested to in
rease the probability of a heada
he. However,many studies investigating these suggestions have been negative or in
on
lusive. Wilkinson andWoodrow (1979) and Diamond et. al. (1990) found no 
orrelation between heada
he frequen
yand adverse weather 
onditions in London, England and Chi
ago, U.S.A., respe
tively. In 
on-trast, Cull (1982) found that a sharp rise in barometri
 pressure in S
otland redu
ed the frequen
yof migraine atta
ks. On the other hand, the studies of S
hulman et. al. (1980) in Boston, U.S.A.and of Nursall (1981) in southern Ontario, Canada, showed no relationship between migraine andpressure. Nursall (1981) however showed that the heada
he frequen
y in
reased as temperatureand humidity in
reased. These studies are 
ommonly based on daily patient diaries reporting onthe o

urren
e or nono

urren
e of a migraine heada
he. However, more re
ently the presen
e ofChinook winds of the Canadian Ro
kies has been identi�ed as a trigger for migraine heada
hes(Piore
ky et. al. (1996) and Cooke et. al. (2000)) in some patient groups. One possible expla-nation of these results might be that the in
uen
e of weather 
onditions on migraine heada
hesvaries from individual to individual. Therefore it is of interest to 
onstru
t patient spe
i�
 riskpro�les from an individual patient dairy, whi
h is the fo
us of this paper.As an example of su
h data, we investigate in this paper the heada
he dairy of a 52 year oldfemale, who is working part-time in a 
leri
al position. She re
orded daily between February



2 Claudia Czado25 until November 30, 1995, if she experien
ed a heada
he that day or not. On 98 days outof the 279 re
orded days she re
orded a heada
he. She su�ers from migraines without aurafor 15 years. Sin
e she believes that her heada
he is triggered by weather 
onditions, weatherrelated information on a daily basis was also 
olle
ted. These in
luded information on humidity,wind
hill, temperature and pressure 
hanges, wind dire
tion, pre
ipitation and 
loud 
over. Sin
eshe is working part-time a 
y
li
al o

urren
e of migraine atta
ks 
an be suspe
ted. The generalproblem of re
ursivity is 
onsidered by Cugini et. al. (1990). The data is part of a larger studyon determinants of migraine heada
hes 
olle
ted by the psy
hologist T. Koste
ki-Dillon, YorkUniversity, Toronto, Canada.Early analyses ignored the 
orrelation of multiple measurements on the same patient, whilePiore
ky et. al. (1996) utilized a generalized estimating approa
h (GEE) introdu
ed by Zeger andLiang (1986) to adjust for this dependen
y. For the 
olle
ted long time series, we prefer a modelthat allows for evolution over time and is likelihood based to investigate the in
uen
e of weather
onditions on the frequen
y of migraine atta
ks. For this task we are looking for a model whi
h
an a

ommodate time dependent 
ovariates su
h as given by the weather 
onditions togetherwith a dynami
 me
hanism whi
h models the dependen
y between su

essive days. Su
h modelswere introdu
ed and studied by Czado and Song (2001), whi
h use a threshold approa
h togetherwith a state spa
e approa
h.While state spa
e models are �rst studied for gaussian dynami
 systems (e.g. West andHarrison (1989), Jones (1993)), they have be
ome more popular for non gaussian dynami
 systems(see for example Fahrmeir (1992), Carlin and Polson (1992) and Song (2000)). While Carlinand Polson (1992) also use a threshold approa
h, they do not allow for parametri
 
ovariatee�e
ts. For longitudinal 
ount data state spa
e models with parametri
 
ovariate e�e
ts havebeen 
onsidered by Zeger (1988), Chan and Ledolter (1995) and Jorgensen et. al (1999).In this paper we utilize the binary state spa
e mixed models as introdu
ed and studied byCzado and Song (2001) for the heada
he dairy. We 
onsider several model spe
i�
ations forthis data set and use Markov Chain Monte Carlo (MCMC) methods to fa
ilitate the statisti
alinferen
e. We also apply some Bayesian model sele
tion 
riteria su
h as the Bayesian devian
einformation 
riteria by Spiegelhalter et. al (1998) and posterior predi
tive simulations (see forexample Gelman and Meng (1996) and Gelman et. al (1996)) to help to assess model �t and todis
riminate between models.The analysis of the heada
he dairy of this patient reveals the presen
e of strong day e�e
tstogether with weather e�e
ts. The presen
e of severe wind
hill in
reases the probability of aheada
he, while the e�e
t of humidity is less severe. It is also shown that the presen
e or absen
eof a heada
he on the previous day also in
uen
es the presen
e or absen
e of a heada
he today.Patient spe
i�
 risk pro�les are 
onstru
ted, whi
h might help the patient to manage her migraineatta
ks more pre
isely.The paper is organized as follows: Se
tion 2 gives a short review of binary state spa
e mixedmodels, while Se
tion 3 dis
usses Bayesian model �t and model sele
tion 
riteria. Se
tion 4presents the analysis of the heada
he data set. Con
lusions and dis
ussions are presented inSe
tion 5. 2. Binary State Spa
e Mixed ModelsFor a binary longitudinal data (Yt;Xt); t = 1; : : : ; T , Czado and Song (2001) adopted the so-
alled threshold approa
h (e.g. Albert and Chib, 1993) to model the serial dependen
e for thebinary response ve
tor Y�T = (Y1; � � � ; YT )0. They assume that the unobservable latent threshold
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e Mixed Models 3variable ve
tor Z�T = (Z1; � � � ; ZT )0 allows for the following linear state spa
e formulationZt = �X0t�� �t + ut; t = 1; � � � ; T; (2.1)�t = 
�t�1 + �t; t = 1; � � � ; T; (2.2)where � is a p-dimensional regression parameter and f�t; t = 0; � � � ; T g denotes the 
olle
tionof state variables. It is further assumed that ut i.i.d.� N(0; 1) and �t i.i.d.� N(0; �2t ), whereN(�; �2) denotes a normal distribution with mean � and varian
e �2. The varian
e parametersf�2t > 0; t = 1; � � � ; Tg in the state equation (2.2) are assumed to be unknown, time-varying,and bounded. Therefore the state pro
ess governed by (2.2) may a

ommodate more 
exiblepatterns of variation for the data than a stationary AR(1) pro
ess that is a spe
ial 
ase of (2.2)with the �2t �xed 
onstant. In addition, we require mutual independen
e between two sets ofinnovations fut; t = 1; � � � ; Tg and f�t; t = 1; � � � ; Tg. This implies that given �t, Zt is 
onditionallyindependent of the other Zt's and �t's. As initial 
ondition we assume �0 � N(0; �20)� Finallythe latent threshold variables Zt are related to the observed binary responses Yt through thefollowing latent variable representation:Yt = 1() Zt � 0; t = 1; � � � ; T � (2.3)Representation (2.3) ensures that the marginal distribution of Yt given both state variable �t and
ovariate ve
tor Xt follows a probit model, i.e., pt = P (Yt = 1j�t;Xt) = �(X0t�+ �t) where �(�)denotes the 
umulative distribution fun
tion of N(0; 1). The 
orresponding history ve
tors willbe denoted by Y�t = (Y1; � � � ; Yt)0, Z�t = (Z1; � � � ; Zt)0, ��t = (�0; � � � ; �t)0 and �2�t = (�21 ; � � ��2t )0.For the Bayesian approa
h, independent prior distributions for the parameters (�; ��T ; �2�T ; 
),indi
ated in a joint density of the form �(�; ��T ; �2�T ; 
) = �(�) � �(��T ) � �(�2�T ) � �(
) areassumed.Czado and Song (2001) followed Tanner and Wong's (1987) Gibbs Sampling approa
h withdata augmentation. They showed that the 
onditional distributions of [Z�T jY�T ; �; ��T ; �2�T ; 
℄,[�jY�T ;Z�T ; ��T ; �2�T ; 
℄, [��T jY�T ;Z�T ; �; �2�T ; 
℄, [�2�T jY�T ;Z�T ; �; ��T ; 
℄ and [
jY�T ;Z�T ; ��T ; �2�T ; �℄ aretra
table when appropriate prior distributions are 
hosen. We give now these 
onditional dis-tributions for the binary response 
ase, derivation and details 
an be found in Czado and Song(2001). The binomial response 
ase is also 
onsidered there.Latent Variable Update:The 
onditional distribution of the latent variables given the remaining parameters is given by[Z�T jY�T ; �; ��T ; ��T ; 
℄ = TYt=1[ZtjYt; �; �t℄;where [ZtjYt; �; �t℄ is independent univariateN(�XTt ���t; 1) distributed trun
ated to [�1; 0℄([0;1℄)for Yt = 1(Yt = 0)Regressions Parameter Update:Let ��T1 = (�1; � � � ; �T )0 and assume a multivariate Np(�p;�p) prior for �, the 
onditionaldistribution of [�jY�TZ�T ; ��T1℄ is multivariate normal with expe
tation ve
tor�m = �(X0X+��1p )�1(��1m �p +X0(Z�T + �0T1))and 
ovarian
e matrix �m = (��1p +X0X)�1�



4 Claudia CzadoState Variable Update:Czado und Song (2001) showed that [��T jY�T ;Z�T ; �; �2�T ; 
℄ is (T+1) dimensional normallydistributed with expe
tation ve
tor�
;�(IT +A�
;�A0)�1(Z�T +X�)and 
ovarian
e matrix �
;� � �
;�A0(IT +A�
;�A0)�1A�
;�;where �
;� = P�0
 D�1� P�1
 withP
 = 0BBB� 1 �
 0 � � � 00 1 �
 � � � 0... ... ... ... ...0 0 0 � � � 1 1CCCA , D� = 0BBB� ��20 0 � � � 00 ��21 � � � 0... ... ... ...0 0 � � � ��2T 1CCCAand A = 0BBB� 0 �1 0 � � � 0 00 0 �1 � � � 0 0... ... ... ... ... ...0 0 0 � � � 0 �1 1CCCA 2 RT�(T+1)�Alternatively to the joint update of the state variables, individual updates are also possible,however Czado and Song (2001) showed that this leads to poor mixing. Further, �
;� 
an be
omputed re
ursively.State Varian
e Update:Assuming an inverse gamma prior IG(at; bt) for [�2t ℄ given by�(�2t ) = 1batt �(at)(�2t )at+1 exp(� 1bt�2t ) with at; bt > 0;it follows that [�2t j�t; �t�1; 
℄ � IG(a�t ; b�t ) witha�t = at + �5 and b�t = [ 1bt + (�t � 
�t�1)22 ℄�1�In the 
ase where prior information about �t is sparse, we assume �t = �. It follows that for a 
atprior for �2, the 
onditional [�2j��T ; 
℄ � IG(T2 � 1;n 1b + 12PTt=1(�t � 
�t�1)2o�1). In the 
aseof a uniform(l,u) prior for �2,[�2j��T ; 
℄ is inverse gamma distributed with the same parametersas above but trun
ated to [l,u℄. A trun
ation might be 
onsidered to avoid domination of thedynami
 term.State Correlation Update:A uniform prior on [�1; 1℄ is used for 
. This implies that [
j��T ; �2�T ℄ is univariate normallydistributed with mean �
 and varian
e �2
 trun
ated to [-1,1℄, where�
 = [PTt=1 �t�t�1=�2t ℄[PTt=1 �2t�1=�2t ℄ and �2
 = "PTt=1 �2t�1�2t # �
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e Mixed Models 53. Bayesian Goodness of Fit and Model Sele
tionAfter one has obtained posterior estimates of parameters or quantities of interest throughMCMC, one is interested in assessing �rst the goodness of �t and se
ondly 
omparing severalmodels with regard to model �t and model 
omplexity.We 
onsider the problem of assessing the goodness of �t in a model �rst. For this we utilizeposterior predi
tive distributions, whi
h were introdu
ed by Guttman (1967) and Rubin (1981,1984). In 
ontrast to the 
lassi
al approa
h these measures 
an depend on unknown parameters.Meng (1994) uses posterior p-values for testing hypotheses of parameters within a given model,while Gelman et. al. (1996) 
on
entrate on dis
repan
y measures whi
h are not traditionaltest statisti
s. Gelman and Meng (1996) showed how these 
an be fa
ilitated in an MCMCframework by posterior predi
tive simulation. For this, one 
hooses appropriate dis
repan
ymeasures, whi
h measure the �t of the model. For our data example, we 
hose 
lassi
al measuressu
h as the Pearson �2 statisti
s or the devian
e given byD�2(�; ��T1; Y �T ) = TXt=1 (Yt � pt)2pt(1� pt) (3.1)Ddev(�; ��T1; Y �T ) = �2 TXt=1 [Yt log(pt) + (1� Yt) log(1� pt)℄ ; (3.2)where pt = �(X0t� + �t). Note that given the state variables independen
e is assumed. To
ondu
t the posterior predi
tive simulation, we draw regression parameter estimates �r andstate variable estimates �rt ; t = 0; � � � ; T for r = m+1; � � � ; R as an approximate sample from theposterior. Here, m is an appropriately 
hosen burnin. Given these parameter estimates �r and�rt ; t = 0; � � � ; T , we generate hypotheti
al data Y �rT from the 
orresponding binary state spa
emixed model. If the model �ts adequately, we expe
t the distributions of Y �rT and the observeddata Y �T to be similar. In parti
ular we expe
t the 
orresponding dis
repan
y measures (3.1) and(3.2) to be 
lose. Therefore we determine the estimated posterior predi
tive p-valuesp�2 = 1R�m RXr=m+1 IfD�2 (�;��T1;Y �T )�D�2 (�;��T1;Y �rT )g (3.3)pdev = 1R�m RXr=m+1 IfDdev(�;��T1;Y �T )�Ddev(�;��T1;Y �rT )g� (3.4)We expe
t an estimated posterior predi
tive p-value of around .5, if the model �ts adequately.We now turn to the problem of model sele
tion. Model 
omparison in a 
lassi
al frameworkusually assumes a measure of model �t together with a measure of model 
omplexity. Sin
ein
reasing 
omplexity of model results in a better model �t, models are 
ompared by tradingthese two quantities o�. Likelihood ratio tests and Akaike's information 
riterion (Akaike 1973)are su
h measures. Spiegelhalter et al. (1998) propose the devian
e information 
riterion (DIC)to use for model sele
tion within the MCMC framework. For this, they use the devian
e formeasuring the goodness of �t. As in Dempster (1974), Spiegelhalter et. al. 
onsider the posteriordistribution of the saturated devian
e given by (3.2) in binary state spa
e mixed models. Theysuggest to use the posterior mean of the saturated devian
e as summary of the model �t. Forthe binary state mixed models this is given by:D = E�;��T1;
;�2jY �T (Ddev(�; ��T1; Y �T ))�



6 Claudia CzadoTable 1. Potentially important 
ovariates identi�ed byordinary probit analysesWCD Wind
hill index when present, 0 otherwiseHDXD Humidity index when present, 0 otherwiseWC.IND 1 if WCD present, 0 otherwiseS.SE South-Southeast Wind Indi
atorTMND1P Mean temperature 
hange from previous dayWDAY WeekdayAs measure of model 
omplexity Spiegelhalter et. al (1998) propose to use the e�e
tive numberof parameters pD, de�ned as di�eren
e between the posterior mean of the devian
e and thedevian
e evaluated at the posterior expe
tations of the model parameters. For the binary statespa
e mixed model pD is given bypD = E�;��T1;
;�2jY �T (Ddev(�; ��T1; Y �T ))�Ddev(E�jY �T (�); E��T1jY �T (��T1); Y �T ))�Finally, the devian
e information 
riterion is de�ned asDIC = D + pD�Spiegelhalter et al. showed that DIC 
an be 
onsidered a natural generalization of Akaike'sinformation 
riterion. 4. Bayesian Analysis of the Heada
he DataFor the heada
he data we de�neYt = � 1 heada
he on day t0 otherwisefor t = Feb. 25, � � �, Nov. 30, 1995. This gives a total of 279 binary observations. An initialexploratory analysis using ordinary probit models, thus ignoring the dependen
y identi�ed po-tentially important 
ovariates given in Table 1. In parti
ular, the e�e
t of pressure and pressure
hanges was not identi�ed as signi�
ant in this explanatory analysis.For our analysis we assume the following binary state spa
e mixed modelYt = 1fZt�0g; t = 1; � � � ; 279Zt = ��t � �t + ut; ut � N(0; 1) independent�t = 
�t�1 + �t; �t � N(0; �2) independentut and �t are independent for all ttogether with the following two mean spe
i�
ations:Model 1: �t = �0 + �WCDWCDt + �WC�INDWC�INDt (4.1)+ �HDXDHDXDt + �TUESTUESt + �WEDWEDt+ �THURTHURt + �FRIFRIt + �SATSATt + �S�SES�SEt
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e Mixed Models 7Model 2:�t = �0 + �SATSATt + �SUNSUNt + �MONMONt (4.2)+ �TUESTUESt + �WEDWEDt + �THURTHURt+ �TMND1PTMND1Pt + �S�SES�SEt+ �SAT�TMND1PSATt � TMND1Pt + �SUN�TMND1PSUNt � TMND1Pt+ �MON�TMND1PMONt � TMND1Pt + �TUES�TMND1P TUESt � TMND1Pt+ �WED�TMND1PWEDt � TMND1Pt + �THUR�TMND1P THURt � TMND1PtThe devian
e in the standard probit analysis of Model 1 (Model 2) results in 326.36 (316.89)with 268 (264) degrees of freedom.Following the experien
e gained from 
omparing di�erent MCMC algorithms in Czado andSong (2001), we utilize the MCMC algorithm with a 
at noninformative prior for the regressionparameters and a uniform prior on the state varian
e �2 = �2t . As trun
ation interval for �2 we
hose [0�1; 1℄ and [0�1; 10℄. 10000 iterations were run, with every 10th iteration re
orded. Thetime sequen
e plots of the parameters show that a burnin of 50 re
orded iterations is suÆ
ient.Figures 1 and 2 present posterior mean estimates of the regression parameters together with90% 
redible intervals for mean spe
i�
ations (4.1) and (4.2) for di�erent prior 
hoi
es for �2. For
omparison we also in
lude probit estimates together with 90% 
on�den
e intervals. They showthat the data shows eviden
e that strong weekday e�e
ts are present, while the e�e
ts of wind
hilland humidity indi
es are less pronoun
ed. The presen
e of south-southeast winds redu
es theheada
he probability. This is 
onsistent with weather pattern for southwestern Ontario indi
atedin Nursall and Phillip (1980) and Nursall (1981), who reported that these wind dire
tions areoften related to ni
e weather. The e�e
t of temperature 
hanges from the previous day intera
tswith weekday e�e
ts, whi
h might be explained by the part time work s
hedule of the patient.For both mean spe
i�
ations we see that weather 
onditions have an in
uen
e on the o

urren
eor nono

urren
e of heada
he for this patient.Sin
e the varian
es of the latent variables Zt vary, it might be appropriate to 
onsider s
aledregression parameters. In parti
ular, Czado and Song showed that��T1 � NT (0;�1
�);where �1
� = (�
�)t;s=1���;T . Using the re
ursion formulas given in Czado and Song (2001), itfollows that V ar(Zt) = 1 + �2 1� 
2(t+1)1� 
2 (4.3)Cov(Zt; Zs) = �2
t�s 1� 
2(s+1)1� 
2 ; s � t� (4.4)We 
an approximate V ar(Zt) by 1+ �21�
2 , therefore it makes sense to 
onsider s
aled regressionparameters �s de�ned by �s = �q1 + �21�
2 �Posterior mean estimates of these s
aled regression parameters are given in Figures 3 and 4.They show that the 
redible intervals are larger than the 
orresponding 
on�den
e intervals ofthe probit estimates, whi
h is to be expe
ted when dependen
y is not ignored. Further we see
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Fig. 1. Posterior mean estimates with 90% 
redible intervals for the regression parameters in Model 1 (.. . . . = probit estimate with 90% CI, - - - - - = posterior estimate with 90% 
redible interval using auniform(.1,1) �2 prior, || = posterior estimate with 90% 
redible interval using a uniform(.1,10) �2prior)that all estimates of the s
aled regression parameters are 
lose, thus indi
ating similar e�e
tsregardless of the �2 prior.We now investigate the posterior estimates of the parameters determining the dynami
 stru
-ture of the model. Posterior density estimates of 
 and � are presented in Figures 5 and 6,respe
tively. The 
hosen trun
ation interval in
uen
es the posterior estimate of 
. A largerupper bound for �2 redu
es the 
orrelation. We also see that the MCMC algorithm wants to �tlarger state varian
es.The results for the state variables �t are given in Figure 7. They indi
ate similar e�e
ts as forthe state 
orrelation. The range of the state variables in
reases as the upper trun
ation boundfor �2 prior in
reases.Finally we investigate the behavior of posterior mean estimates of the su

ess probabilitiesgiven by pt = P (Yt = 1) = �(X0t�+ �t)�Figure 8 gives posterior mean estimates of the su

ess probabilities together with the observedsu

esses and failures. From this we see that posterior mean estimates using a uniform(.1,10) �2prior are 
loser to the observed su

esses and failures, whi
h indi
ates a better model �t.
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Fig. 2. Posterior mean estimates with 90% 
redible intervals for the regression parameters in Model 2 (.. . . . = probit estimate with 90% CI, - - - - - = posterior estimate with 90% 
redible interval using auniform(.1,1) �2 prior, || = posterior estimate with 90% 
redible interval using a uniform(.1,10) �2prior)To see if a higher state varian
e has in
uen
e on the 
ovariate proportion explained by themodel, we 
onsidered the following quantity:prop
ovariate = 1T TXt=1 jX0t�jjX0t�j+ j�tj �Note that the in the probit model the mean of the latent variable is 
lose to the log odds; for amarginal logit model equality holds. Therefore it makes sense to 
onsider what proportion of thelog odds is explained on the average by the parametri
 part and the dynami
 part, respe
tively.Table 2 gives posterior mean estimates of prop
ovariate, whi
h shows that the dynami
 part ofthe model does not dominate the parametri
 part, even though there is a moderate de
line whena larger upper trun
ation point for the state varian
e is used.We now investigate the model �t and model sele
tion of the two mean spe
i�
ations and thetwo di�erent prior 
hoi
es. First we present the results of the posterior predi
tive simulationusing the last 500 re
orded iterations of MCMC 
hain.
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Fig. 3. Posterior mean estimates with 90% 
redible intervals for the s
aled regression parameters inModel 1 (. . . . . = probit estimate with 90% CI, - - - - - = posterior estimate with 90% 
redibleinterval using a uniform(.1,1) �2 prior, || = posterior estimate with 90% 
redible interval using auniform(.1,10) �2 prior)Table 2. Posterior Mean Estimates of prop
ovariateModel 1 Model 2uniform[.1,1℄ uniform[.1,10℄ uniform[.1,1℄ uniform[.1,10℄�2 prior �2 prior �2 prior �2 prior.55 .45 .53 .46Table 3. Estimated p-values from the poste-rior predi
tive simulationModel p�2 pdevModel 1 (uniform(.1,1) �2 prior) .32 .24Model 1 (uniform(.1,10) �2 prior) .44 .41Model 2 (uniform(.1,1) �2 prior) .23 .18Model 2 (uniform(.1,10) �2 prior) .45 .44
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Fig. 4. Posterior mean estimates with 90% 
redible intervals for the s
aled regression parameters inModel 2 (. . . . . = probit estimate with 90% CI, - - - - - = posterior estimate with 90% 
redibleinterval using a uniform(.1,1) �2 prior, || = posterior estimate with 90% 
redible interval using auniform(.1,10) �2 prior)The results in Table 3 show that using a larger upper trun
ation limit for the �2 prior yieldsa better �t. The di�eren
e between the two mean spe
i�
ations is moderate with a very slightpreferen
e toward Model 2. The predi
tive simulations also show that the model �t is adequatewhen a larger upper trun
ation limit for the �2 prior is used.We now 
onsider density estimates of the posterior devian
e whi
h are given in Figure 9. Herewe also 
an see a lower posterior devian
e for the models with a larger upper trun
ation, whilethe di�eren
e between the two mean spe
i�
ations is minimal. It should also be noted thatthe posterior mean devian
es are 
onsiderably lower than the devian
es obtained using ordinaryprobit, thus indi
ating an improvement when using binary state mixed models over ordinaryprobit analyses.Finally we present in Table 4 the results using the devian
e information 
riterion. DIC wouldsele
t mean spe
i�
ation Model 2 with a uniform(.1,10) prior for �2.In summary, the model adequa
y is a
hieved when a uniform(.1,10) prior for �2 is used, whilethe di�eren
e in the mean spe
i�
ations is minimal. Therefore we present now predi
tions usingModel 1 spe
i�
ation, whi
h 
an be used for the pain management of this patient. To ease
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Fig. 7. Posterior mean estimates of state variables �tTable 4. Model �t D, e�e
tive parameters pD andDICModel D pD DICModel 1 (uniform(.1,1)) 268.29 65.25 333.53Model 1 (uniform(.1,10)) 111.62 100.05 211.67Model 2 (uniform(.1,1)) 252.95 73.28 326.23Model 2 (uniform(.1,10)) 104.37 95.38 199.75presentation we restri
t this analysis to Wednesdays for the marginal analysis and to Tuesdaysand Wednesdays for the joint analysis. To obtain predi
tion of the marginal heada
he probabilityunder 
ertain 
onditions, we utilize now that the V ar(Zt) 
an be approximated by 1 + �21�
2 ,therefore estimated marginal heada
he probabilities are given byp̂t = �24 X0t�̂q1 + �̂21�
̂2 35 �For example, in Figure 10 we plot estimated marginal heada
he probabilities for Wednesdays independen
y of wind
hill and humidity, respe
tively. The solid (dotted) lines indi
ate the presen
e
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Fig. 8. Posterior mean estimates of probabilities pt(absen
e) of south-southeast winds. For this patient wind
hill in
uen
es the heada
he probabilitymore severely than humidity. It is interesting to note that an in
rease in humidity de
reases theheada
he probability somewhat for this patient.Sin
e dependen
y is present, a marginal analysis as above is insuÆ
ient. Therefore, we areinterested in determining estimated joint heada
he probabilities. For this we utilize that a

ordingto (4.4) the 
orrelation between Zt and Zt+1 
an be approximated by 
. Using the bivariatenormal distribution fun
tion, Figures 11 and 12 give 
ontour lines of estimated heada
he/noheada
he probabilities depending on di�erent levels of wind
hill and humidity values for Tuesdaysand Wednesdays when no south-southeast winds are present on both days, respe
tively.Finally, we 
onsider 
orresponding 
onditional probabilities, whi
h are given in Figure 13.From this we see that the e�e
t of a previous day heada
he in
uen
es the heada
he probabilityof the 
urrent day 
onsiderably. This shows that even a moderate 
orrelation between the statevariables indu
es a 
onsiderable dependen
y on the 
onditional probabilities. Thus dependen
y
annot be ignored. 5. Con
lusions and Dis
ussionThis paper investigates the usefulness and appli
ability of binary state spa
e mixed models topain risk management for migraine heada
he patients. Binary state spa
e mixed models allowthe joint assessment of a dynami
 stru
ture to model longitudinal dependen
y together with time
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Fig. 9. Estimated density of the posterior devian
edependent 
ovariate e�e
ts su
h as weather 
onditions for migraine su�erers.Parameter estimation is fa
ilitated by MCMC. In addition to parameter estimation, the adap-tation of several model �t and sele
tion for a Bayesian inferen
e using MCMC methods arepresented. They allow for the assessment of mean and prior spe
i�
ations. For the data setstudied a reasonable model was found, whi
h allows for a patient spe
i�
 risk assessment.For the �nal model sele
ted, estimated risk pro�les for su�ering heada
hes are 
onstru
tedunder possible weather 
onditions. In addition to a marginal analysis, joint and 
onditionalanalyses are given. They show that even a moderate 
orrelation among the state variables 
anindu
e 
onsiderable in
uen
e on estimated 
onditional heada
he probabilities. For example, theheada
he probability for Wednesdays is in
reased roughly by .10 when a heada
he was also presenton Tuesday, while the �tted 
orrelation among the state variable was only .25.The original data set also measured heada
he severity on a �ve point s
ale. Therefore anextension of the methods presented to mixed state spa
e models with ordinal responses is ne
es-sary and is the fo
us of 
urrent resear
h e�orts of the author. Another extension is to 
onstru
tmultivariate binary state spa
e mixed models for the analysis of several patient dairies.A
knowledgements:The author's resear
h was supported by the Deuts
he Fors
hungsgemeins
haft, Sonderfors
hungs-
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Fig. 10. In
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e of wind
hill and humidity on the estimated marginal heada
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