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1 Introdu
tionIt seems to be 
ommon wisdom that long term sto
k investment leads to an almost suregain over lo
ally riskless bond investments. In the long run sto
k indi
es are growingfaster than riskless rates, despite the repeated o

urren
e of sto
k market de
lines. The
onventional wisdom therefore holds that the more distant the planning horizon, thegreater should be one's wealth in risky assets. One of our main �ndings presented in thispaper will be the demonstration that there is indeed a reasonable portfolio problem witha solution that supports this empiri
al observation.Traditional portfolio sele
tion as introdu
ed by Markowitz (1959) and Sharpe (1964) isbased on a mean-varian
e analysis. This approa
h 
annot explain the above phenomenon:the use of the varian
e as a risk measure of an investment leads to a de
reasing proportionof risky assets in a portfolio, when the planning horizon in
reases (see Example 2.10).In re
ent years 
ertain variants of the 
lassi
al Markowitz mean-varian
e portfoliosele
tion 
riterion have been suggested. Su
h alternatives are typi
ally based on the notionof downside risk 
on
epts su
h as lower partial moments. The lower partial moment oforder n is de�ned as LPMn(x) = Z x�1(x� r)ndF (r) ; x 2 R ;(1.1)where F is the distribution fun
tion of the portfolio return. Examples 
an be found inFishburn (1977) or Harlow (1991), who suggested for instan
e the shortfall probability(n = 0), the expe
ted target shortfall (n = 1), the target semi-varian
e (n = 2), andtarget semi-skewness (n = 3). Harlow (1991) also dis
usses some pra
ti
al 
onsequen
esof various downside risk measures.In this paper we 
on
entrate on the Capital-at-Risk (CaR) as a repla
ement of thevarian
e in portfolio sele
tion problems. We think of the CaR as the 
apital reserve inequity. The CaR is de�ned via the Value-at-Risk; i.e. a low quantile (typi
ally the 5%-or 1%-quantile) of the pro�t-loss distribution of a portfolio; see e.g. Jorion (1997). TheCaR of a portfolio is then 
ommonly de�ned as the di�eren
e between the mean of thepro�t-loss distribution and the VaR. VaR has be
ome the most prominent risk measureduring re
ent years. Even more, the importan
e of VaR models 
ontinues to grow sin
eregulators a

ept these models as a basis for setting 
apital requirements for market riskexposure. If the pro�t-loss distribution of a portfolio is normal with mean � and varian
e�2, then the CaR of the portfolio based on the �-quantile (e.g., � = 0:05 or � = 0:01) isCaR = �� (�� �z�) ;(1.2)where z� is the �-quantile of the standard normal distribution and � is positive. In thispaper we will use another de�nition of the CaR.2



The 
ru
ial point in the appli
ation of CaR models for setting 
apital requirement isthe determination of reliable and a

urate �gures for the VaR, espe
ially for non-normal
ases. Consequently, VaR has attra
ted attention from a statisti
al point of view; e.g., seeEmbre
hts, Kl�uppelberg and Mikos
h (1997) for estimation via extreme value methodsand further referen
es, see Emmer, Kl�uppelberg and Tr�ustedt (1998) for an example.In the 
ontext of hedging, VaR has been 
onsidered as a risk measure by F�ollmerand Leukert (1999); see also Cvitani
 and Karatzas (1999). They repla
e the traditional\hedge without risk" (perfe
t hedge) whi
h typi
ally only works in a 
omplete marketsetting by a \hedge with small remaining risk" (so-
alled quantile-hedging). This 
on
ept
an also deal with in
omplete markets. In 
ontrast to our problem, their main task 
onsistsof approximating a given 
laim. Surprisingly, the existen
e of that target wealth makestheir problem more tra
table than ours.In a dis
rete world Zagst and Kehrbaum (1998) investigate the problem of optimizingportfolios under a limited CaR from a pra
ti
al point of view, they solve the problemby numeri
al approximation, and they present a 
ase study. This work is 
ontinued inS
heuenstuhl and Zagst (1998). Under a mean-varian
e and shortfall preferen
e stru
turefor the investor, they obtain optimal portfolios 
onsisting of sto
ks and options via anapproximation method.One aim of our paper is to show that a repla
ement of the varian
e by the CaR in a
ontinuous-time Markowitz-type model resolves exa
tly the above-mentioned 
ontradi
-tion between theory and empiri
al fa
ts. Furthermore, we aim at 
losed form solutionsand an e
onomi
 interpretation of our results. In a Gaussian world, represented by aBla
k-S
holes market, possibly enri
hed with a jump 
omponent, the mean-CaR sele
-tion pro
edure leads to rather expli
it solutions for the optimal portfolio. It is, however,not surprising that as soon as we move away from the Gaussian world, the optimizationproblem be
omes analyti
ally untra
table.The paper is organized as follows. In Se
tion 2 we highlight the 
onsequen
es of theintrodu
tion of the CaR as risk measure in a simple Bla
k-S
holes market where we 
anobtain expli
it 
losed form solutions. We also examine 
onsequen
es for the investor whenintrodu
ing CaR in a portfolio optimization problem. This approa
h indeed supports theabove-mentioned market strategy that one should always invest in sto
ks for long-terminvestment.Se
tion 3 is devoted to the study of the portfolio problem for more general modelsof the sto
k pri
e. As prototypes of models to allow for larger 
u
tuations than pureGaussian models, we study jump di�usions and generalized inverse Gaussian di�usionpro
esses. This also shows how the solution of the problem be
omes mu
h more involvedwhen the Bla
k-S
holes assumptions are abandoned. In parti
ular, we show how the opti-3



mal portfolio under a CaR 
onstraint rea
ts to the possibility of jumps. In the generalizedinverse Gaussian di�usion setting even the problem formulation be
omes questionable aswe 
annot ensure a �nite expe
ted terminal wealth of the optimal portfolio. We give anapproximate solution, whi
h allows for some interpretation, and also a numeri
al algo-rithm.2 Optimal portfolios and Capital-at-Risk in the Bla
k-S
holes settingIn this se
tion, we 
onsider a standard Bla
k-S
holes type market 
onsisting of one risklessbond and several risky sto
ks. Their respe
tive pri
es (P0(t))t�0 and (Pi(t))t�0 for i =1; : : : ; d evolve a

ording to the equationsdP0(t) = P0(t)rdt ; P0(0) = 1 ;dPi(t) = Pi(t)�bidt+Pdj=1 �ijdWj(t)� ; Pi(0) = pi ; i = 1; : : : ; d :Here W (t) = (W1(t); : : : ;Wd(t))0 is a standard d-dimensional Brownian motion, r 2 Ris the riskless interest rate, b = (b1; : : : ; bd)0 the ve
tor of sto
k-appre
iation rates and� = (�ij)1�i;j�d is the matrix of sto
k-volatilities. For simpli
ity, we assume that � isinvertible and that bi � r for i = 1; : : : ; d.Let �(t) = (�1(t); : : : ; �d(t))0 2 Rd be an admissible portfolio pro
ess, i.e. �i(t) is thefra
tion of the wealth X�(t), whi
h is invested in asset i (see Korn (1997), Se
tion 2.1 forrelevant de�nitions). Denoting by (X�(t))t�0 the wealth pro
ess, it follows the dynami
dX�(t) = X�(t) f((1� �(t)01)r + �(t)0b)dt+ �(t)0�dW (t)g ; X�(0) = x ;(2.1)where x 2 R denotes the initial 
apital of the investor and 1 = (1; : : : ; 1)0 denotes theve
tor (of appropriate dimension) having unit 
omponents. The fra
tion of the investmentin the bond is �0(t) = 1� �(t)01. Throughout the paper, we restri
t ourselves to 
onstantportfolios �(t) = � = (�1; : : : ; �d) for all t 2 [0; T ℄. This means that the fra
tions in thedi�erent sto
ks and the bond remain 
onstant on [0; T ℄. The advantage of this is two-fold: �rst we obtain, at least in a Gaussian setting, expli
it results; and furthermore, thee
onomi
 interpretation of the mathemati
al results is 
omparably easy. Finally, let usmention that for many other portfolio problems the optimal portfolios are 
onstant ones(see Se
tions 3.3. and 3.4 of Korn (1997)). It is also important to point out that followinga 
onstant portfolio pro
ess does not mean that there is no trading. As the sto
k pri
esevolve randomly one has to trade at every time instant to keep the fra
tions of wealthinvested in the di�erent se
urities 
onstant. Thus, following a 
onstant portfolio pro
essstill means one must follow a dynami
 trading strategy.4



Standard Itô integration and the fa
t that EesW (1) = es2=2; s 2 R, yield the followingexpli
it formulae for the wealth pro
ess for all t 2 [0; T ℄ (see e.g. Korn and Korn (2000)).X�(t) = x exp �(�0(b� r1) + r � k�0�k2=2)t+ �0�W (t)� ;(2.2) E(X�(t)) = x exp ((�0(b� r1) + r)t) ;(2.3) var(X�(t)) = x2 exp (2(�0(b� r1) + r)t) �exp(k�0�k2t)� 1� :(2.4)The norm k � k denotes the Eu
lidean norm in Rd .De�nition 2.1 (Capital-at-Risk)Let x be the initial 
apital and T a given time horizon. Let z� be the �-quantile of thestandard normal distribution. For some portfolio � 2 Rd and the 
orresponding terminalwealth X�(T ), the �-quantile of X�(T ) is given by�(x; �; T ) = x exp�(�0(b� r1) + r � k�0�k2=2)T + z�k�0�kpT� ;i.e., �(x; �; T ) = inffz 2 R : P (X�(T ) � z) � �g. Then we de�neCaR(x; �; T ) = x exp(rT )� �(x; �; T )= x exp(rT )��1� exp((�0(b� r1)� k�0�k2=2)T + z�k�0�kpT )�(2.5)the Capital-at-Risk of the portfolio � (with initial 
apital x and time horizon T ). �Assumption 2.2 To avoid (non-relevant) sub
ases in some of the following results wealways assume � < 0:5 whi
h leads to z� < 0.Remark 2.3 (i) Our de�nition of the Capital-at-Risk limits the possibility of ex
esslosses over the riskless investment.(ii) We typi
ally want to have a positive CaR (although it 
an be negative in our de�nitionas the examples below will show) as the upper bound for the \likely losses" (in the sensethat (1��)� 100% of o

urring \losses" are smaller than CaR(x; �; T )) 
ompared to thepure bond investment. Further, we 
on
entrate on the a
tual amount of losses appearingat the time horizon T . This is in line with the mean-varian
e sele
tion pro
edure enablingus to dire
tly 
ompare the results of the two approa
hes; see below.In the following it will be 
onvenient to introdu
e the fun
tion f(�) for the exponent in(2.5), that isf(�) := z�k�0�kpT � k�0�k2T=2 + �0(b� r1)T ; � 2 Rd :(2.6) 5



By the obvious fa
t that f(�) k�0�k!1�! �1we have sup�2Rd CaR(x; �; T ) = x exp(rT ) ;i.e., the use of extremely risky strategies (in the sense of a high norm k�0�k) 
an lead toa CaR whi
h is 
lose to the total 
apital. The 
omputation of the minimal CaR is donein the following proposition.(iii) Note how 
ru
ial the de�nition of CaR depends on the assumption of a 
onstantportfolio pro
ess. Moving away from this assumption makes the problem untra
table. Inparti
ular, �(x; �; T ) is nearly impossible to obtain for a general random �(:). �Proposition 2.4 Let � = k��1(b� r1)k.(a) If bi = r for all i = 1; : : : ; d, then f(�) attains its maximum for �� = 0 leading to aminimum Capital-at-Risk of CaR(x; ��; T ) = 0.(b) If bi 6= r for some i 2 f1; : : : ; dg and�pT < jz�j ;(2.7)then the minimal CaR equals zero and is only attained for the pure bond strategy.(
) If bi 6= r for some i 2 f1; : : : ; dg and�pT � jz�j ;(2.8)then the minimal CaR is attained for�� = �� � jz�jpT � (��)�1(b� r1)k��1(b� r1)k(2.9)with CaR(x; ��; T ) = x exp(rT )�1� exp�12(pT� � jz�j)2�� < 0:(2.10)Proof (a) follows dire
tly from the expli
it form of f(�) under the assumption of bi = rfor all i = 1; : : : ; d and the fa
t that � is invertible.(b),(
) Consider the problem of maximizing f(�) over all � whi
h satisfyk�0�k = "(2.11) 6



for a �xed positive ". Over the (boundary of the) ellipsoid de�ned by (2.11) f(�) equalsf(�) = z�"pT � "2T=2 + �0(b� r1)T :Thus, the problem is just to maximize a linear fun
tion (in �) over the boundary of anellipsoid. Su
h a problem has the expli
it solution��" = "(��0)�1(b� r1)k��1(b� r1)k(2.12)with f(��") = �"2T=2 + "� �T � jz�jpT� :(2.13)As every � 2 Rd satis�es relation (2.11) with a suitable value of " (due to the fa
t that �is regular), we obtain the minimum CaR strategy �� by maximizing f(��") over all non-negative ". Due to the form of f(��") the optimal " is positive if and only if the multiplierof " in representation (2.13) is positive. Thus, 
ondition (2.7) implies assertion (b). Underassumption (2.8) the optimal " is given as" = � � jz�jpT :Inserting this into equations (2.12) and (2.13) yields the assertions (2.9) and (2.10) (withthe help of equations (2.5) and (2.6)). �Remark 2.5 (i) Part (a) of the proposition states that in a risk-neutral market the CaRof every strategy 
ontaining sto
k investment is bigger than the CaR of the pure bondstrategy.(ii) Part (
) states the (at �rst sight surprising) fa
t that the existen
e of at least onesto
k with a mean rate of return di�erent from the riskless rate implies the existen
e ofa sto
k and bond strategy with a negative CaR as soon as the time horizon T is large.Thus, even if the CaR would be the only 
riterion to judge an investment strategy thepure bond investment would not be optimal if the time horizon is far away. On one handthis fa
t is in line with empiri
al results on sto
k and bond markets. On the other handthis shows a remarkable di�eren
e between the behaviour of the CaR and the varian
eas risk measures. Independent of the time horizon and the market 
oeÆ
ients, pure bondinvestment would always be optimal with respe
t to the varian
e of the 
orrespondingwealth pro
ess.(iii) The de
omposition method to solve the optimization problem in the proof of parts(b) and (
) of Proposition 2.4 will be 
ru
ial for some of the proofs later in this paper.Note how we use it to over
ome the problem that f(�) is not di�erentiable in � = 0. �7



The rest of this se
tion is devoted to setting up a Markowitz mean-varian
e type op-timization problem where we repla
e the varian
e 
onstraint by a 
onstraint on the CaRof the terminal wealth. More pre
isely, we solve the following problem:max�2Rd E(X�(T )) subje
t to CaR(x; �; T ) � C ;(2.14)where C is a given 
onstant of whi
h we assume that it satis�esC � x exp(rT ) :(2.15)Due to the expli
it representations (2.4), (2.5) and a variant of the de
omposition methodas applied in the proof of Proposition 2.4 we 
an solve problem (2.14) expli
itly.Proposition 2.6 Let � = k��1(b � r1)k and assume that bi 6= r for at least one i 2f1; : : : ; dg. Assume furthermore that C satis�es0 � C � x exp(rT ) if �pT < jz�j;(2.16) x exp(rT )� 1� exp� 12(pT� � jz�j)2�� � C � x exp(rT ) if �pT � jz�j :(2.17)Then problem (2.14) will be solved by�� = "� (��0)�1(b� r1)k��1(b� r1)kwith "� = (� + z�=pT ) +q(� + z�=pT )2 � 2
=T ;where 
 = ln �1� Cx exp(�rT )�. The 
orresponding maximal expe
ted terminal wealthunder the CaR 
onstraint equalsE �X��(T )� = x exp ��r + "�k��1(b� r1)k�T � :(2.18)Proof The requirements (2.16) and (2.17) on C ensure that the CaR 
onstraint in problem(2.14) 
annot be ignored: in both 
ases C lies between the minimum and the maximumvalue that CaR 
an attain (see also Proposition 2.4). Every admissible � for problem(2.14) with k�0�k = " satis�es the relation(b� r1)0�T � 
+ 12"2T � z�"pT(2.19) 8



whi
h is in this 
ase equivalent to the CaR 
onstraint in (2.14). But again, on the setgiven by k�0�k = " the linear fun
tion (b� r1)0�T is maximized by�" = "(��0)�1(b� r1)k��1(b� r1)k :(2.20)Hen
e, if there is an admissible � for problem (2.14) with k�0�k = " then �" must alsobe admissible. Further, due to the expli
it form (2.3) of the expe
ted terminal wealth, �"also maximizes the expe
ted terminal wealth over the ellipsoid. Consequently, to obtain� for problem (2.14) it suÆ
es to 
onsider all ve
tors of the form �" for all positive " su
hthat requirement (2.19) is satis�ed. Inserting (2.20) into the left-hand side of inequality(2.19) results in (b� r1)0�"T = "k��1(b� r1)kT ;(2.21)whi
h is an in
reasing linear fun
tion in " equalling zero in " = 0. Therefore, we obtainthe solution of problem (2.14) by determining the biggest positive " su
h that (2.19) isstill valid. But the right-hand side of (2.21) stays above the right-hand side of (2.19) untiltheir largest positive point of interse
tion whi
h is given by"� = (� + z�=pT ) +q(� + z�=pT )2 � 2
=T ;The remaining assertion (2.18) 
an be veri�ed by inserting �� into equation (2.3). �Remark 2.7 (i) Note that the optimal expe
ted value only depends on the sto
ks via thenorm k��1(b�r1)k. There is no expli
it dependen
e on the number of sto
ks. We thereforeinterpret Proposition 2.4 as a kind ofmutual fund theorem as there is no di�eren
e betweeninvestment in our multi-sto
k market and a market 
onsisting of the bond and just onesto
k with appropriate market 
oeÆ
ients b and �.(ii) Consider for a general utility fun
tion U(x) the problem ofmax�2Rd E(U(X�(T ))) subje
t to CaR(x; �; T ) � C:The above method of solving the mean-CaR problem would still work as long as E(U(X�(T )))is of the form f(x) exp(h(�)) with h a linear fun
tion. This is e.g. the 
ase for the 
hoi
eof the HARA fun
tion U(x) = x
=
. It would also work for the log-utility 
ase; i.e.U(x) = lnx as then we would haveE(U(X�(T ))) = lnx+ rT + (b� r1)0�T � �0��0�T=2 :9



Here, instead of looking at the exponent, we 
an also look atlnx + rT � (b� r1)0�t� "2T=2 ;whi
h for all � with k�0�k = " is a linear fun
tion in �. However, for reasons of 
omparisonto the Markowitz type problems below we restri
t ourselves to the mean-CaR problem.
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Figure 1: CaR(1 000; 1; T ) of the pure sto
k portfolio (one risky asset only) for di�erent appre
iationrates as a fun
tion of the planning horizon T ; 0 < T � 20. The volatility is � = 0:2. The riskless rate isr = 0:05.Example 2.8 Figure 1 shows the dependen
e of CaR on the time horizon illustratedby CaR(1 000,1,T). Note that the CaR �rst in
reases and then de
reases with time, abehaviour whi
h was already indi
ated by Proposition 2.4. It di�ers substantially fromthe behaviour of the varian
e of the pure sto
k strategy, whi
h in
reases with T . Figures 2and 3 illustrate the behaviour of the optimal expe
ted terminal wealth with varyingtime horizon 
orresponding to the pure bond strategy and the pure sto
k strategy asfun
tions of the time horizon T . The expe
ted terminal wealth of the optimal portfolioeven ex
eeds the pure sto
k investment. The reason for this be
omes 
lear if we look atthe 
orresponding portfolios. The optimal portfolio always 
ontains a short position in thebond as long as this is tolerated by the CaR 
onstraint. This is shown in Figure 4 wherewe have plotted the optimal portfolio together with the pure sto
k portfolio as fun
tionof the time horizon. For b = 0:15 the optimal portfolio always 
ontains a short position inthe bond. For b = 0:1 and T > 5 the optimal portfolio (with the same CaR 
onstraint asin Figures 2 and 3) again 
ontains a long position in both bond and sto
k (with de
reasingtenden
y of � as time in
reases!). This is an immediate 
onsequen
e of the in
reasing CaRof the sto
k pri
e. For the smaller appre
iation rate of the sto
k it is simply not attra
tiveenough to take the risk of a large sto
k investment. Figure 5 shows the mean-CaR eÆ
ientfrontier for the above parameters with b = 0:1 and �xed time horizon T = 5. As expe
tedit has a similar form as a typi
al mean-varian
e eÆ
ient frontier.10
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Figure 2: Expe
ted terminal wealth of di�erent investment strategies depending on the time horizon T ,0 < T � 5. The parameters are d = 1, r = 0:05, b = 0:1, � = 0:2, and � = 0:05. As the upper bound Cof the CaR we used CaR(1 000; 1; 5), the CaR of the pure sto
k strategy with time horizon T = 5.
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Figure 3: Expe
ted terminal wealth of di�erent investment strategies depending on the time horizon T ,0 � T � 20. The parameters are d = 1, r = 0:05, b = 0:1, � = 0:2, and � = 0:05. As the upper boundC of the CaR we used CaR(1 000; 1; 5), the CaR of the pure sto
k strategy with time horizon T = 5. Onthe right border we have plotted the density fun
tion of the wealth for the optimal portfolio. It is alwaysbetween 0 and 0.0004.We will now 
ompare the behaviour of the optimal portfolios for the mean-CaR withsolutions of a 
orresponding mean-varian
e problem. To this end we 
onsider the followingsimpler optimization problem:max�2Rd E(X�(T )) subje
t to var(X�(T )) � C :(2.22)By using the expli
it form (2.4) of the varian
e of the terminal wealth, we 
an rewrite the
11
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Figure 4: For the same parameters as in Figure 2 and di�erent appre
iation rates the �gure shows theoptimal portfolio and the pure sto
k portfolio.
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Figure 5: Mean-CaR eÆ
ient frontier with the mean on the horizontal axis and the CaR on the verti
alaxis. The parameters are the same as in Figure 2.varian
e 
onstraint in problem (2.22) as(b� r1)0�T � 12 ln� Cx2(exp("2T )� 1)�� rT =: h("); k�0�k = "(2.23)for " > 0. More pre
isely, if � 2 Rd satis�es the 
onstraints in (2.23) for one " > 0 then italso satis�es the varian
e 
onstraint in (2.22) and vi
e versa. Noting that h(") is stri
tlyde
reasing in " > 0 with lim"#0 h(") =1 lim"!1h(") = �1we see that left-hand side of (2.23) must be smaller than the right-hand one for small valuesof " > 0 if we plug in �" as given by equation (2.20). Re
all that this was the portfoliowith the highest expe
ted terminal wealth of all portfolios � satisfying k�0�k = ". It evenmaximizes (b� r1)0�T over the set given by k�0�k � ". If we have equality(b� r1)0�b"T = h(b")(2.24) 12



for the �rst time with in
reasing " > 0 then this determines the optimal b" > 0. To seethis, note that we haveE(X�(T )) � E(X�b"(T )) for all � with k�0�k � b" ;and for all admissible � with " = k�0�k > b" we obtain(b� r1)0�T � h(") < h(b") = (b� r1)0�b"T :By solving the non-linear equation (2.24) for b" we have thus 
ompletely determined thesolution of problem (2.22):Proposition 2.9 If bi 6= r for at least one i 2 f1; : : : ; dg, then the optimal solution ofthe mean-varian
e problem (2.22) is given byb� = b" (��0)�1(b� r1)k��1(b� r1)k ;where b" is the unique positive solution of the non-linear equationk��1(b� r1)k"T � 12 ln� Cx2(exp("2T )� 1)� + rT = 0 :The 
orresponding maximal expe
ted terminal wealth under the varian
e 
onstraint equalsE(Xb�(T )) = x exp �(r + b" k��1(b� r1)k)T � : �Example 2.10 Figure 6 below 
ompares the behaviour of b" and "� as fun
tions of thetime horizon. We have used the same data as in Example 2.8. To make the solutions ofproblems (2.14) and (2.22) 
omparable we have 
hosen C di�erently for the varian
e andthe CaR risk measures in su
h a way that b" and "� 
on
ide for T = 5. Noti
e that C forthe varian
e problem is roughly the square of C for the CaR problem taking into a

ountthat the varian
e measures an L2-distan
e, whereas CaR measures an L1-distan
e. The(of 
ourse expe
ted) bottom line of Figure 6 is that with in
reasing time the varian
e
onstraint demands a smaller fra
tion of risky se
urities in the portfolio. This is also truefor the CaR 
onstraint for small time horizons. For larger time horizon T (T � 20) "�in
reases again due to the fa
t that the CaR de
reases. In 
ontrast to that, b" de
reasesto 0, sin
e the varian
e in
reases. �
13
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Figure 6: b" and "� as fun
tions of the time horizon; 0 < T � 20. The parameters are the same as inFigure 2.3 Capital-at-Risk portfolios and more general pri
epro
essesIn this se
tion we 
onsider again the mean-CaR problem (2.14) but drop the assumptionof log-normality of the sto
k pri
e pro
ess. The self-�nan
ing 
ondition, however, will stillmanifest itself in the form of the wealth equationdX�(t)X�(t�) = (1� �01) dP0(t)P0(t�) + dXi=1 �i dPi(t)Pi(t�) ; t > 0 ; X�(0) = x ;where Pi is the pri
e pro
ess for sto
k i. Of 
ourse, the expli
it form of the sto
hasti
pro
ess Pi is 
ru
ial for the 
omputability of the expe
ted terminal wealth X�(T ). To
on
entrate on these tasks we simplify the model in assuming d = 1, a bond pri
e givenby P0(t) = ert, t � 0, as before, and a risky asset pri
e satisfyingdP (t)P (t�) = bdt+ dY (t) ; t > 0 ; P (0) = p ;(3.1)where b 2 R and Y is a semimartingale with Y (0) = 0. Under these assumptions the
hoi
e of the portfolio � leads to the following expli
it formula for the wealth pro
essX�(t) = x exp((r + �(b� r))t)E(�Y (t))= x exp((r + �(b� r))t) exp ��Y 
(t)� 12�2 hY 
it�� Y0<s�t(1 + ��Y (s)) ; t � 0 ;(3.2)where Y 
 denotes the 
ontinuous part and �Y the jump part of the pro
ess Y (morepre
isely, �Y (t) is the height of a (possible) jump at time t). This means that the wealthpro
ess is a produ
t of a deterministi
 pro
ess and the sto
hasti
 exponential E(�Y ) of�Y (see Protter (1990)). Analogously to De�nition 2.1 we de�ne the CaR in this moregeneral 
ontext. 14



De�nition 3.1 Consider the market given by a riskless bond with pri
e P0(t) = ert,t � 0, for r 2 R and one sto
k with pri
e pro
ess P satisfying (3.1) for b 2 R and asemimartingale Y with Y (0) = 0. Let x be the initial 
apital and T a given time horizon.For some portfolio � 2 R and the 
orresponding terminal wealth X�(T ) the �-quantile ofX�(T ) is given by e�(x; �; T ) = x exp((�(b� r) + r)T ) � ez� ;where ez� is the �-quantile of E(�Y (T )), i.e. ez� = inffz 2 R : P (E(�Y (T )) � z) � �g.Then we 
all CaR(x; �; T ) = x exp(rT )(1� exp(�(b� r)T ) � ez�)(3.3)the Capital-at-Risk of the portfolio � (with initial 
apital x and time horizon T ). �One of our aims of this se
tion is to explore the behaviour of the solutions to themean-CaR problem (2.14) if we model the returns of the pri
e pro
ess by pro
esses havingheavier tails than the Brownian motion.We present some spe
i�
 examples in the followingsubse
tions.3.1 The Bla
k-S
holes model with jumpsWe 
onsider a sto
k pri
e pro
ess P , where the random 
u
tuations are generated by botha Brownian motion and a 
ompound jump pro
ess, i.e., we 
onsider the model (3.1) withdY (t) = �dW (t) + nXi=1 (�idNi(t)� �i�idt) ; t > 0 ; Y (0) = 0 ;(3.4)where n 2 N , and for i = 1; : : : ; n the pro
ess Ni is a homogeneous Poisson pro
ess withintensity �i. It 
ounts the number of jumps of height �i of Y . In order to avoid negativesto
k pri
es we assume �1 < �1 < � � � < �n <1 :An appli
ation of Itô's formula results in the expli
it formP (t) = p exp  b� 12�2 � nXi=1 �i�i! t+ �W (t) + nXi=1 (Ni(t) ln(1 + �i))! ; t � 0 :(3.5)In order to avoid the possibility of negative wealth after an \unpleasant" jump we have
15



to restri
t the portfolio � as follows
� 2 8>>>>>><>>>>>>:

�� 1�n ;� 1�1� if �n > 0 > �1 ;��1;� 1�1� if �n < 0 ;�� 1�n ;1� if �1 > 0 :(3.6)
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Figure 7: Optimal portfolios for Brownian motion with and without jumps depending on the timehorizon T , 0 < T � 20. The basi
 parameters are the same as in Figure 2. The possible jump size is� = �0:1.Under these preliminary 
onditions we obtain expli
it representations of the expe
tedterminal wealth and the CaR 
orresponding to a portfolio � similar to the equations (2.3)and (2.5).Lemma 3.2 With a sto
k pri
e given by equation (3.5) let X� be the wealth pro
ess
orresponding to the portfolio � satisfying (3.6). Then for initial 
apital x and �nite timehorizon T ,X�(T ) = x exp((r + �(b� r)� nXi=1 ��i�i � 12�2�2)T + ��W (T ) + nXi=1 Ni(T ) ln(1 + ��i)) ;E(X�(T )) = x exp((r + �(b� r))T ) ;CaR(x; �; T ) = x exp(rT ) 1� exp  �(b� r)� nXi=1 ��i�i � 12�2�2!T + ez�!! ;where ez� is the �-quantile of��W (T ) + nXi=1 (Ni(T ) ln(1 + ��i)) ;16



i.e. the real number ez� satisfying� = P  ��W (T ) + nXi=1 (Ni(T ) ln(1 + ��i)) � ez�!= 1Xn1;:::;nn=0 � 1j��jpT  ez� � nXi=1 (ni ln(1 + ��i))!!� exp �T nXi=1 �i! nYi=1 (T�i)nini! ! :(3.7)
Proof X�(T ) is a result of an appli
ation of Itô's formula. To obtain the expe
ted valuesimply note that the two pro
essesexp��12�2t + �W (t)� and exp0�� nXi=1 �i�it+ nXi=1 Ni(t)Xj=1 ln(1 + �i)1Aare both martingales with unit expe
tation and that they are independent. Regardingthe representation of the CaR, only equation (3.7) has to be 
ommented on. But this isa 
onsequen
e of 
onditioning on the number of jumps of the di�erent jump heights in[0; T ℄. �Unfortunately, ez� 
annot be represented in su
h an expli
it form as in the 
ase withoutjumps. However, due to the expli
it form of E(X�(T )), it is obvious that the 
orrespondingmean-CaR problem (2.14) will be solved by the largest � that satis�es both the CaR
onstraint and requirement (3.6). Thus for an expli
it example we obtain the optimalmean-CaR portfolio by a simple numeri
al iteration pro
edure, where we approximatedthe in�nite sum in (3.7) by the �nite sum of its �rst 2[�T ℄ + 1 summands, if we set n = 1and � = �1. Comparisons of the solutions for the Brownian motion with and withoutjumps are given in Figure 7.We have used the same parameters as in the examples of Se
tion 2, but have in
ludedthe possibility of a jump of height � = �0:1, o

uring with di�erent intensities. For� = 0:3 one would expe
t a jump approximately every three years, for � = 2 even twojumps per year. Noti
e that the sto
k has the same expe
ted terminal value in both 
ases!To explain this we rewrite equation (3.5) as follows:dP (t)P (t�) =  b� nXi=1 �i�i! dt+ �W (t) + nXi=1 �idNi(t) ; t > 0 ; P (0) = p :Whereas a jump o

urs for instan
e for � = 0:3 on average only every three years, meaningthat with rather high probability there may be no jump within two years, the drift hasa permanent in
uen
e on the dynami
 of the pri
e pro
ess. Despite this additional sto
k17
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Figure 8: Wealth 
orresponding to the optimal portfolios for Brownian motion with and without jumpsdepending on the time horizon T , 0 < T � 5 (top) and 0 < T � 20 (bottom). The parameters are thesame as in Figure 7. The possible jump size is again � = �0:1.drift of �� 0� the optimal portfolio for sto
k pri
es following a geometri
 Brownian motionwith jumps is always below the optimal portfolio of the geometri
 Brownian motion (solidline). This means that the threat of a downwards jump of 10% leads an investor to a lessrisky behaviour, and the higher � is, the less risky is the investor`s behaviour.3.2 Generalized inverse Gaussian di�usionMoving away from the Bla
k-S
holes model towards more general di�usion models isa rather obvious generalization. It is also desirable, sin
e marginal distributions of thelog-returns of sto
k pri
es are often heavier tailed than normal. This has been shownvery 
onvin
ingly, for instan
e, by a data analysis in Eberlein and Keller (1995). Variousmodels have been suggested: a simple hyperboli
 model has been investigated by Bibbyand S�rensen (1997); a more general 
lass of models has been suggested by Barndor�-Nielsen (1998).We 
onsider a generalized inverse Gaussian di�usion model (for brevity we write GIGdi�usion) for the log-returns of sto
k pri
es. This 
lass of di�usions has been introdu
edin Borkove
 and Kl�uppelberg (1998) and we refer to this sour
e for details.18



The following equations determine a general di�usion market.dP0(t) = P0(t)rdt ; P0(0) = 1 ;dP (t) = P (t)(bdt+ dY (t)) ; P (0) = p ;Y (t) = U(t)� u ; Y (0) = 0 ;(3.8)In our 
ase we now 
hoose U as a GIG di�usion given by the SDEdU(t) = 14�2U2
�2(t) ( + 2(2
 + �� 1)U(t)� �U2(t)) dt+�U
(t)dW (t); U(0) = u > 0 ;(3.9)where W is standard Brownian motion. The parameter spa
e is given by � > 0, 
 � 1=2,�;  � 0, max(�;  ) > 0, and� 2 R if �;  > 0 ;� � min(0; 2(1� 
)) if � = 0;  > 0 ;� � min(0; 2(1� 
)) if � > 0;  = 0 :(3.10)The GIG model is a formal extension of the Bla
k-S
holes model, whi
h 
orresponds tothe 
hoi
e of parameters 
 =  = 0, � = 1; � = 0. It also 
ontains the (generalized)Cox-Ingersoll-Ross model as a spe
ial 
ase. The advantage of our 
onstru
tion lies in thestru
tural resemblan
e of the resulting pri
e pro
ess to the geometri
 Brownian motionmodel. We 
an de
ompose the sto
k pri
e into a drift termmultiplied by a lo
al martingale:P (t) = p exp�bt + 14�2 Z t0 U2
�2(s) � + 2(2
 + �� 1)U(s)� �U2(s)� ds�� exp�� Z t0 U
(s)dW (s)� 12�2 Z t0 U2
(s)ds� ; t � 0 :The following lemma shows another property of the pro
ess U that is useful, when de-s
ribing the wealth pro
ess.Lemma 3.3 Let U be the GIG di�usion given by (3.9) and � > 0. Then the pro
esseU = �U is again a GIG di�usion with eU(0) = �U(0) and parameterse� = ��1�
 ; e =  � ; e� = �=� :(3.11)The parameters 
 and � remain the same.Proof Noti
e �rst that all parameters of eU satisfy the ne
essary non-negativity assump-tions and (3.9). The assertion now follows by 
al
ulating deU(t) = d(�U(t)) = �dU(t),t � 0. �19



Remark 3.4 As a 
onsequen
e of Lemma 3.3 the wealth pro
ess X� has a very ni
eexpli
it form. Indeed it is of a similar form as the sto
k pri
e pro
ess P :X�(t) = x exp�(1� �)rt+ebt+ eY (t)� 12heY it� ; t � 0 ;(3.12)where eb = �b and eY (t) = eU(t)� �u ; t � 0 ;for any positive portfolio �. �A

ording to De�nition 3.1 for the CaR(x; �; T ) we have to determine the �-quantile ofeY (T ) � 12heY iT . Here we see one of the big advantages of the CaR as a risk measure: itdoes not depend on the existen
e of moments. Even for an in�nite mean it is well-de�ned.However, if we want to solve the mean-CaR problem, we have to ensure that X�(T )has a �nite mean. In general, it is not always possible to easily de
ide if this is the 
ase.A natural assumption is to assume U(T ) or eU(T ) to have the stationary distribution ofthe pro
ess U or eU respe
tively. This is 
ertainly justi�ed if the time horizon T is 
hosensuÆ
iently large. As in Bibby and S�rensen (1998) we therefore make this simplifyingassumption whi
h helps us to give a result about the existen
e of E(X�(T )).Proposition 3.5 Assume that U(T ) and eU(T ) are GIG distributed with parameters  ,�, � and e , e�, � respe
tively, i.e. they have the stationary distributions of the pro
essesU(�) and eU(�) respe
tively. Assume that � is a positive portfolio. Then X�(T ) has a �nitemean if e� = �=� > 2.Proof As eU is always positive, we estimateX�(T ) � x exp�(1� �)rT +ebT + eU(T )� �u� :If E exp(eU(T )) <1, then EX�(T ) <1. By J�rgensen (1982) we know the expli
it formof the moment generating fun
tion of the GIG distribution leading toE �exp(eU(T ))� = K� �p� (1� 2=e�)�K� �p� � (1� 2=e�)�=2 ;(3.13)where K�(�) denotes the generalized Bessel fun
tion of the third kind. The rhs of equation(3.13) is �nite for e� > 2. �Thus if the original parameters satisfy � > 2 and � 2 [0; 1℄, then also e� > 2 and in this
ase X�(T ) has a �nite mean. In this 
ase the mean-CaR problem is well-de�ned and 
an20



be solved, however one 
annot hope for an analyti
 solution. In the following example weshow how the mean-CaR problem 
an be solved using analyti
 properties of the pro
essas far as possible, and then present a simple simulation pro
edure to solve the problemnumeri
ally.Example 3.6 (Generalized Cox-Ingersoll-Ross model (GCIR))As an example we 
onsider the generalized Cox-Ingersoll-Ross model, i.e., the GIG marketmodel with parameters 
 = 1, � = 0. This results in the following expli
it form for U :U(t) = exp�12�2�t+ �W (t)� �u+ 14�2 Z t0 exp��12�2�s� �W (s)� ds� ; t � 0 ;whi
h has meanEU(t) = 8<: exp�(�+ 1)�22 t��u+  2(�+ 1) �1� exp��(� + 1)�22 t��� if � 6= �1 ;u+ 12�2 t if � = �1 ;(see e.g. Borkove
 and Kl�uppelberg (1998)). Further, note that we haveY (t) = U(t)� u = 14�2 t + 12(1 + �)�2 Z t0 U(s)ds+ � Z t0 U(s)dW (s)(3.14)and we obtain the same representations for eU(t) and eY (t) if we substitute  by e = � .An expli
it solution of the mean-CaR problem does not seem to be possible. What remainsare Monte-Carlo simulations and numeri
al approximations.A simple algorithm to solve the mean-CaR problem would be the following:For large N and i = 1; : : : ; N :� Simulate sample paths (Wi(t))t2[0;T ℄ of the Brownian motion (W (t))t2[0;T ℄:� Compute realisations Ui(T ) and R T0 U2i (t)dt of U(T ) and R T0 U2(t)dt, respe
tively,from the simulated sample paths of (Wi(t))t2[0;T ℄.� For \all" � 2 R 
omputeeZ�i (T ) = �Ui(T )� 12�2�2 Z T0 U2i (t)dt� �u:� Get estimators b�(�) for E(X�(T )) and b�(x; �; T ) for CaR(x; �; T ) :b�(�) := xN NXi=1 exp �(r + (b� r)�)T + eZ�i (T )�b�(x; �; T ) := x exp(rT ) (1� exp (�(b� r)T + bz�(�))) ;where bz�(�) is the �-quantile of the empiri
al distribution of the eZ�i (T ) with the
onvention we already used in De�nition 3.1.21



� Choose the portfolio � with the largest value of b�(�) su
h that b�(x; �; T ) is belowthe upper bound C for the CaR.Of 
ourse, it is not possible to 
ompute the quantities b�(�) and bz�(�) for all � 2 R expli
-itly. A pra
ti
al method 
onsists in 
hoosing K = 100 values of � in a bounded intervalof interest and derive fun
tions �(�); z�(�) via interpolation. One then 
hooses that valueof � that solves the mean-CaR problem 
orresponding to these fun
tions.
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Figure 9: Ten sample paths of ( eZ(t))0�t�20 for � = 1 (left) and ten sample paths of ( eZ�(20))�2(0;1)(right) for parameter values x = 1000; r = 0:05; b = 0:10;  = 4; � = 0; � = 0:05 and u = 5.To give an impression of the behaviour of eZ(t) the �rst diagram in Figure 9 shows tensample paths for the parameter values x = 1000; r = 0:05; b = 0:10;  = 4; � = 0; � =0:05 and u = 5. The se
ond diagram depi
ts the behaviour of eZ(20) as a fun
tion of �.Figure 10 shows a result of the simulation algorithm des
ribed above. It is the result ofN = 100 simulations for T = 20 and the remaining parameters 
hosen as those of Figure9. As expe
ted, both the mean terminal wealth and the CaR in
rease with �. Thereforethe problem 
an be solved by identifying that portfolio � in the right side diagram that
orresponds to the given upper bound C for the CaR.4 Con
lusionWe have investigated some simple portfolio problems 
ontaining an upper bound on theCaR as an additional 
onstraint. As long as we were able to 
al
ulate expe
tations andquantiles of the sto
k pri
es in expli
it form we 
ould also solve the problems expli
itly.This 
an be done within a Gaussian world, but very little beyond. The Bla
k-S
holesmodel with jumps is just feasible and easily understood. As soon as one moves away22
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Figure 10: Estimated expe
ted terminal wealth (left) and the 
orresponding CaR (right) as fun
tions ofthe portfolio � for the GCIR model for T=20 and the same parameters as in Figure 9 (based on N=100simulations). The expe
ted terminal wealth and the CaR for the GCIR model in
rease for all � 2 (0; 1).from su
h simple models the solution of the mean-CaR problems be
omes less tra
tableand Monte Carlo simulation and numeri
al solutions are 
alled for. As an example wetreated the generalized Cox-Ingersoll-Ross model, whi
h gave us a �rst impression of the
omplexity of the problem.In this sense the paper should be understood as the starting point of a larger resear
hproje
t. We indi
ate some of the problems we want to deal with in future work:{ A deeper analysis should investigate the in
uen
e of the parameters of the generalizedinverse Gaussian; also other models should be investigated as for instan
e hyperboli
 andnormal inverse Gaussian models (see Eberlein, Keller and Prause (1998) and Barndor�-Nielsen (1998)).{ Investigate the optimization problem for other downside risk measures; repla
e forinstan
e the quantile in De�nition 2.1 by the expe
ted shortfall. Comparisons of resultsfor the CaR with respe
t to the quantile and the shortfall 
an be found in Emmer,Kl�uppelberg and Korn (2000).{ Repla
e the 
onstant portfolio by a general portfolio pro
ess. Then we have to bringin mu
h more sophisti
ated te
hniques to deal with the quantiles of the wealth pro
ess,and our method of solving the optimization problem expli
itly will no longer work.
23
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