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1 Introduction

It seems to be common wisdom that long term stock investment leads to an almost sure
gain over locally riskless bond investments. In the long run stock indices are growing
faster than riskless rates, despite the repeated occurrence of stock market declines. The
conventional wisdom therefore holds that the more distant the planning horizon, the
greater should be one’s wealth in risky assets. One of our main findings presented in this
paper will be the demonstration that there is indeed a reasonable portfolio problem with
a solution that supports this empirical observation.

Traditional portfolio selection as introduced by Markowitz (1959) and Sharpe (1964) is
based on a mean-variance analysis. This approach cannot explain the above phenomenon:
the use of the variance as a risk measure of an investment leads to a decreasing proportion
of risky assets in a portfolio, when the planning horizon increases (see Example 2.10).

In recent years certain variants of the classical Markowitz mean-variance portfolio
selection criterion have been suggested. Such alternatives are typically based on the notion
of downside risk concepts such as lower partial moments. The lower partial moment of
order n is defined as

x
(1.1) LPM, (z) = / (x —r)"dF(r), x€R,

—0
where F'is the distribution function of the portfolio return. Examples can be found in
Fishburn (1977) or Harlow (1991), who suggested for instance the shortfall probability
(n = 0), the expected target shortfall (n = 1), the target semi-variance (n = 2), and
target semi-skewness (n = 3). Harlow (1991) also discusses some practical consequences
of various downside risk measures.

In this paper we concentrate on the Capital-at-Risk (CaR) as a replacement of the
variance in portfolio selection problems. We think of the CaR as the capital reserve in
equity. The CaR is defined via the Value-at-Risk; i.e. a low quantile (typically the 5%-
or 1%-quantile) of the profit-loss distribution of a portfolio; see e.g. Jorion (1997). The
CaR of a portfolio is then commonly defined as the difference between the mean of the
profit-loss distribution and the VaR. VaR has become the most prominent risk measure
during recent years. Even more, the importance of VaR models continues to grow since
regulators accept these models as a basis for setting capital requirements for market risk
exposure. If the profit-loss distribution of a portfolio is normal with mean p and variance
o2, then the CaR of the portfolio based on the a-quantile (e.g., @ = 0.05 or o = 0.01) is

(1.2) CaR=p— (p—024),

where z, is the a-quantile of the standard normal distribution and o is positive. In this

paper we will use another definition of the CaR.



The crucial point in the application of CaR models for setting capital requirement is
the determination of reliable and accurate figures for the VaR, especially for non-normal
cases. Consequently, VaR has attracted attention from a statistical point of view; e.g., see
Embrechts, Kliippelberg and Mikosch (1997) for estimation via extreme value methods
and further references, see Emmer, Kliippelberg and Triistedt (1998) for an example.

In the context of hedging, VaR has been considered as a risk measure by Follmer
and Leukert (1999); see also Cvitanic and Karatzas (1999). They replace the traditional
“hedge without risk” (perfect hedge) which typically only works in a complete market
setting by a “hedge with small remaining risk” (so-called quantile-hedging). This concept
can also deal with incomplete markets. In contrast to our problem, their main task consists
of approximating a given claim. Surprisingly, the existence of that target wealth makes
their problem more tractable than ours.

In a discrete world Zagst and Kehrbaum (1998) investigate the problem of optimizing
portfolios under a limited CaR from a practical point of view, they solve the problem
by numerical approximation, and they present a case study. This work is continued in
Scheuenstuhl and Zagst (1998). Under a mean-variance and shortfall preference structure
for the investor, they obtain optimal portfolios consisting of stocks and options via an
approximation method.

One aim of our paper is to show that a replacement of the variance by the CaR in a
continuous-time Markowitz-type model resolves exactly the above-mentioned contradic-
tion between theory and empirical facts. Furthermore, we aim at closed form solutions
and an economic interpretation of our results. In a Gaussian world, represented by a
Black-Scholes market, possibly enriched with a jump component, the mean-CaR selec-
tion procedure leads to rather explicit solutions for the optimal portfolio. It is, however,
not surprising that as soon as we move away from the Gaussian world, the optimization
problem becomes analytically untractable.

The paper is organized as follows. In Section 2 we highlight the consequences of the
introduction of the CaR as risk measure in a simple Black-Scholes market where we can
obtain explicit closed form solutions. We also examine consequences for the investor when
introducing CaR in a portfolio optimization problem. This approach indeed supports the
above-mentioned market strategy that one should always invest in stocks for long-term
investment.

Section 3 is devoted to the study of the portfolio problem for more general models
of the stock price. As prototypes of models to allow for larger fluctuations than pure
Gaussian models, we study jump diffusions and generalized inverse Gaussian diffusion
processes. This also shows how the solution of the problem becomes much more involved

when the Black-Scholes assumptions are abandoned. In particular, we show how the opti-



mal portfolio under a CaR constraint reacts to the possibility of jumps. In the generalized
inverse Gaussian diffusion setting even the problem formulation becomes questionable as
we cannot ensure a finite expected terminal wealth of the optimal portfolio. We give an
approximate solution, which allows for some interpretation, and also a numerical algo-

rithm.

2 Optimal portfolios and Capital-at-Risk in the Black-
Scholes setting

In this section, we consider a standard Black-Scholes type market consisting of one riskless
bond and several risky stocks. Their respective prices (Py(t))i>o and (P(t))iso for i =

1,...,d evolve according to the equations

dPy(t) = Py(t)rdt, P0) = 1,
dP(t) = P1) (bidt+zjzlaijdwj(t)), P0) = pi, i=1,....d.

Here W (t) = (Wy(t),...,Wy(t))" is a standard d-dimensional Brownian motion, r € R
is the riskless interest rate, b = (by,...,by)" the vector of stock-appreciation rates and
o = (0ij)1<ij<a 18 the matrix of stock-volatilities. For simplicity, we assume that o is
invertible and that b; > r for =1,...,d.

Let 7(t) = (mi(t),...,m4(t)) € R? be an admissible portfolio process, i.e. m;(t) is the
fraction of the wealth X™(¢), which is invested in asset i (see Korn (1997), Section 2.1 for
relevant definitions). Denoting by (X™(¢)):>o the wealth process, it follows the dynamic

(2.1) dX7(t) = X™(t) {((L = w(t)'L)r + 7 (¢)'D)dt + 7(t)' cdW (t)} , X"(0) ==,

where z € R denotes the initial capital of the investor and 1 = (1,...,1)" denotes the
vector (of appropriate dimension) having unit components. The fraction of the investment
in the bond is mg(t) = 1 — 7(¢)'1. Throughout the paper, we restrict ourselves to constant
portfolios () = 7 = (my,...,me) for all ¢ € [0,T]. This means that the fractions in the
different stocks and the bond remain constant on [0,7]. The advantage of this is two-
fold: first we obtain, at least in a Gaussian setting, explicit results; and furthermore, the
economic interpretation of the mathematical results is comparably easy. Finally, let us
mention that for many other portfolio problems the optimal portfolios are constant ones
(see Sections 3.3. and 3.4 of Korn (1997)). It is also important to point out that following
a constant portfolio process does not mean that there is no trading. As the stock prices
evolve randomly one has to trade at every time instant to keep the fractions of wealth
invested in the different securities constant. Thus, following a constant portfolio process

still means one must follow a dynamic trading strategy.
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Standard It6 integration and the fact that Fes"V(®) = ¢5*/2 s € R, yield the following
explicit formulae for the wealth process for all ¢ € [0, 7] (see e.g. Korn and Korn (2000)).

(2.2) X™(t) = wexp((x'(b—rl) +r—||7'o|?/2)t + 7'oW (1)) ,
(2.3) E(X™(t)) = wexp((x'(b—rl)+r)t),

(2.4) var(X™(t)) = z’exp (2(7'(b—rl) + r)t) (exp(||7'o]|*t) — 1) .
The norm || - || denotes the Euclidean norm in R¢.

Definition 2.1 (Capital-at-Risk)
Let x be the initial capital and T a given time horizon. Let z, be the a-quantile of the

standard normal distribution. For some portfolio 1 € R? and the corresponding terminal
wealth X™(T), the a-quantile of X™(T) is given by

p(z,m,T) = xexp <(7r'(b —rl)+r—||7'o|?/2)T + Za||7T’0||\/T) ,
i.e., plx,m,T) =inf{z € R: P(X™(T) < 2z) > a}. Then we define

CaR(z,7,T) = wzexp(rT) — p(z,m,T)
(2.5) = xexp(r?T)
x (1= exp((' (b = 11) = 7' |[2/2)T + 2ol |VT))

the Capital-at-Risk of the portfolio m (with initial capital x and time horizon T ). O

Assumption 2.2 To avoid (non-relevant) subcases in some of the following results we

always assume a < 0.5 which leads to z, < 0.

Remark 2.3 (i) Our definition of the Capital-at-Risk limits the possibility of excess

losses over the riskless investment.

(ii) We typically want to have a positive CaR (although it can be negative in our definition
as the examples below will show) as the upper bound for the “likely losses” (in the sense
that (1 —a) x 100% of occurring “losses” are smaller than CaR(z,7,T")) compared to the
pure bond investment. Further, we concentrate on the actual amount of losses appearing
at the time horizon T'. This is in line with the mean-variance selection procedure enabling

us to directly compare the results of the two approaches; see below.

In the following it will be convenient to introduce the function f(7) for the exponent in
(2.5), that is

(2.6) f(7) = 2|7 o||VT = |70 |’ T/2 + «'(b—r1)T, wcRE.
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By the obvious fact that

|7’ o|| =00
flm) " — " =
we have

sup CaR(z,m,T) = zexp(rT);

TERd
i.e., the use of extremely risky strategies (in the sense of a high norm ||7'c]|) can lead to
a CaR which is close to the total capital. The computation of the minimal CaR is done

in the following proposition.

(iii) Note how crucial the definition of CaR depends on the assumption of a constant
portfolio process. Moving away from this assumption makes the problem untractable. In

particular, p(x,m,T) is nearly impossible to obtain for a general random 7(.). O

Proposition 2.4 Let 0 = ||[o (b —r1)]|.

(a) If b; = for all i = 1,...,d, then f(m) attains its mazimum for m* = 0 leading to a
minimum Capital-at-Risk of CaR(z,7*,T) = 0.

(b) If b; # r for some i € {1,...,d} and

(2.7) VT < |24,

then the minimal CaR equals zero and is only attained for the pure bond strategy.
(¢) If b; # r for some i € {1,...,d} and

(2.8) VT > |z,

then the minimal CaR is attained for

e (o 17l (00) ' (0 —rl)
(2.9) ™= <9 ﬁ) |o=t(b—r1)||

with
(2.10)  CaR(z,7",T) = zexp(rT) <1 ~exp (%(ﬁe _ |za|)2>> <.

Proof (a) follows directly from the explicit form of f(7) under the assumption of b; = r
forall  =1,...,d and the fact that o is invertible.

(b),(c) Consider the problem of maximizing f(7) over all 7 which satisfy
(2.11) |r'o|| = ¢
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for a fixed positive . Over the (boundary of the) ellipsoid defined by (2.11) f(7) equals
f(7) = 20eVT —2T/2+ 7' (b — r1)T .

Thus, the problem is just to maximize a linear function (in 7) over the boundary of an

ellipsoid. Such a problem has the explicit solution

(oo")H(b—rl)

(2.12) T =¢ ||U_1(b—7"l)||
with
(2.13) f(rt) = —e*T/2 + & (0T — |2alVT) .

As every m € R? satisfies relation (2.11) with a suitable value of £ (due to the fact that o
is regular), we obtain the minimum CaR strategy 7* by maximizing f(7*) over all non-
negative . Due to the form of f(7) the optimal ¢ is positive if and only if the multiplier
of € in representation (2.13) is positive. Thus, condition (2.7) implies assertion (b). Under

assumption (2.8) the optimal ¢ is given as

Inserting this into equations (2.12) and (2.13) yields the assertions (2.9) and (2.10) (with
the help of equations (2.5) and (2.6)). O

Remark 2.5 (i) Part (a) of the proposition states that in a risk-neutral market the CaR
of every strategy containing stock investment is bigger than the CaR of the pure bond
strategy.

(ii) Part (c) states the (at first sight surprising) fact that the existence of at least one
stock with a mean rate of return different from the riskless rate implies the existence of
a stock and bond strategy with a negative CaR as soon as the time horizon 7' is large.
Thus, even if the CaR would be the only criterion to judge an investment strategy the
pure bond investment would not be optimal if the time horizon is far away. On one hand
this fact is in line with empirical results on stock and bond markets. On the other hand
this shows a remarkable difference between the behaviour of the CaR and the variance
as risk measures. Independent of the time horizon and the market coefficients, pure bond
investment would always be optimal with respect to the variance of the corresponding
wealth process.

(iii) The decomposition method to solve the optimization problem in the proof of parts
(b) and (c) of Proposition 2.4 will be crucial for some of the proofs later in this paper.

Note how we use it to overcome the problem that f(7) is not differentiable in 7 = 0. O



The rest of this section is devoted to setting up a Markowitz mean-variance type op-
timization problem where we replace the variance constraint by a constraint on the CaR

of the terminal wealth. More precisely, we solve the following problem:

(2.14) max E(X™(T)) subject to CaR(z,n,T)<C,
e

where C' is a given constant of which we assume that it satisfies
(2.15) C < zexp(rT).

Due to the explicit representations (2.4), (2.5) and a variant of the decomposition method

as applied in the proof of Proposition 2.4 we can solve problem (2.14) explicitly.

Proposition 2.6 Let 0 = |jo~ (b — rl)|| and assume that b; # r for at least one i €
{1,...,d}. Assume furthermore that C satisfies

(2.16)

0<
(2.17) z exp(rT) (1 ~exp <%(\/Te _ |za|)2>> <

Then problem (2.14) will be solved by

C <zexp(rT) if OVT < |z,
C <xexp(rT) if OVT > |za].

(o) (b—rl)

*

T =¢
o=t (b —r1)]]
with
e = (0+ 20 /VT) + /(0 + 2a/VT)2 — 2¢/T,
where ¢ = In (1 — %exp(—rT)). The corresponding mazximal expected terminal wealth

under the CaR constraint equals
(2.18) E (X”*(T)) = T exp ((r + ¥ (b — rl)||) T) .

Proof The requirements (2.16) and (2.17) on C' ensure that the CaR constraint in problem
(2.14) cannot be ignored: in both cases C' lies between the minimum and the maximum
value that CaR can attain (see also Proposition 2.4). Every admissible 7 for problem
(2.14) with ||7'o|| = e satisfies the relation

1
(2.19) (b—rl)nT > c+ §€2T — 2eVT



which is in this case equivalent to the CaR constraint in (2.14). But again, on the set

given by ||7'c|| = ¢ the linear function (b — r1)'7T is maximized by

N i et
“T e =Dl

(2.20)

Hence, if there is an admissible 7 for problem (2.14) with ||7'o|| = & then 7. must also
be admissible. Further, due to the explicit form (2.3) of the expected terminal wealth, .
also maximizes the expected terminal wealth over the ellipsoid. Consequently, to obtain
7 for problem (2.14) it suffices to consider all vectors of the form 7, for all positive  such
that requirement (2.19) is satisfied. Inserting (2.20) into the left-hand side of inequality
(2.19) results in

(2.21) (b—rL)7.T =cllo ' (b—r)||T,

which is an increasing linear function in ¢ equalling zero in € = 0. Therefore, we obtain
the solution of problem (2.14) by determining the biggest positive £ such that (2.19) is
still valid. But the right-hand side of (2.21) stays above the right-hand side of (2.19) until

their largest positive point of intersection which is given by

e = (0 + 24 /VT) + \/(9+ 20/VT)? = 2¢/T,

The remaining assertion (2.18) can be verified by inserting 7* into equation (2.3). O

Remark 2.7 (i) Note that the optimal expected value only depends on the stocks via the
norm ||~ (b—r1)]|. There is no explicit dependence on the number of stocks. We therefore
interpret Proposition 2.4 as a kind of mutual fund theorem as there is no difference between
investment in our multi-stock market and a market consisting of the bond and just one

stock with appropriate market coefficients b and o.

(ii) Consider for a general utility function U(z) the problem of

max E(U(X™(T))) subject to CaR(z,7,T) < C.

TERY

The above method of solving the mean-CaR problem would still work as long as E(U(X™(T)))
is of the form f(x)exp(h(w)) with h a linear function. This is e.g. the case for the choice
of the HARA function U(x) = 27/v. It would also work for the log-utility case; i.e.

U(x) = Inx as then we would have

EUX™T)))=lnxz+rT+ (b—rl)nT —r'oo'nrT/2.



Here, instead of looking at the exponent, we can also look at
Inz+ 7T — (b—rl)nt—e*T/2,

which for all 7 with ||7'o|| = ¢ is a linear function in 7. However, for reasons of comparison

to the Markowitz type problems below we restrict ourselves to the mean-CaR. problem.

500 1000

0

(0] 5 10 15 20

Figure 1: CaR(1000,1,T) of the pure stock portfolio (one risky asset only) for different appreciation
rates as a function of the planning horizon T'; 0 < T' < 20. The volatility is ¢ = 0.2. The riskless rate is
r = 0.05.

Example 2.8 Figure 1 shows the dependence of CaR on the time horizon illustrated
by CaR(1000,1,T). Note that the CaR first increases and then decreases with time, a
behaviour which was already indicated by Proposition 2.4. It differs substantially from
the behaviour of the variance of the pure stock strategy, which increases with 71'. Figures 2
and 3 illustrate the behaviour of the optimal expected terminal wealth with varying
time horizon corresponding to the pure bond strategy and the pure stock strategy as
functions of the time horizon 1. The expected terminal wealth of the optimal portfolio
even exceeds the pure stock investment. The reason for this becomes clear if we look at
the corresponding portfolios. The optimal portfolio always contains a short position in the
bond as long as this is tolerated by the CaR constraint. This is shown in Figure 4 where
we have plotted the optimal portfolio together with the pure stock portfolio as function
of the time horizon. For b = 0.15 the optimal portfolio always contains a short position in
the bond. For b= 0.1 and T" > 5 the optimal portfolio (with the same CaR constraint as
in Figures 2 and 3) again contains a long position in both bond and stock (with decreasing
tendency of 7 as time increases!). This is an immediate consequence of the increasing CaR
of the stock price. For the smaller appreciation rate of the stock it is simply not attractive
enough to take the risk of a large stock investment. Figure 5 shows the mean-CaR efficient
frontier for the above parameters with b = 0.1 and fixed time horizon T = 5. As expected

it has a similar form as a typical mean-variance efficient frontier.
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Figure 2: Expected terminal wealth of different investment strategies depending on the time horizon T,
0 < T < 5. The parameters are d = 1, r = 0.05, b = 0.1, 0 = 0.2, and « = 0.05. As the upper bound C
of the CaR we used CaR(1000, 1,5), the CaR of the pure stock strategy with time horizon T' = 5.

_— optimal
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(0] 5 10 15 20

Figure 3: Expected terminal wealth of different investment strategies depending on the time horizon T’
0 < T < 20. The parameters are d = 1, » = 0.05, b = 0.1, 0 = 0.2, and a = 0.05. As the upper bound
C of the CaR we used CaR(1000,1,5), the CaR of the pure stock strategy with time horizon T' = 5. On
the right border we have plotted the density function of the wealth for the optimal portfolio. It is always
between 0 and 0.0004.

We will now compare the behaviour of the optimal portfolios for the mean-CaR with
solutions of a corresponding mean-variance problem. To this end we consider the following

simpler optimization problem:

(2.22) max E(X™(T)) subject to var(X"(7)) <C .

TeRd

By using the explicit form (2.4) of the variance of the terminal wealth, we can rewrite the
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Figure 4: For the same parameters as in Figure 2 and different appreciation rates the figure shows the

optimal portfolio and the pure stock portfolio.

1000

600

0 200

1500 2000 2500 3000

Figure 5: Mean-CaR efficient frontier with the mean on the horizontal axis and the CaR on the vertical
axis. The parameters are the same as in Figure 2.

variance constraint in problem (2.22) as

C
z?(exp(e?T) — 1)

1
(2.23) (b—rl)'nT < 5 In ( ) — 7T =: h(e), |7'o|| =<
for £ > 0. More precisely, if 7 € R? satisfies the constraints in (2.23) for one £ > 0 then it
also satisfies the variance constraint in (2.22) and vice versa. Noting that h(e) is strictly
decreasing in € > 0 with

lglﬁf)l h(e) = o0 Ell}nc;lo h(e) = —oc0

we see that left-hand side of (2.23) must be smaller than the right-hand one for small values
of & > 0 if we plug in 7. as given by equation (2.20). Recall that this was the portfolio
with the highest expected terminal wealth of all portfolios 7 satisfying ||7'c|| = e. It even

maximizes (b — r1)'7T over the set given by ||7'c|| < . If we have equality
(2.24) (b—rl)'mT = h(2)

12



for the first time with increasing ¢ > 0 then this determines the optimal £ > 0. To see

this, note that we have
E(X™(T)) < E(X™(T)) forall w with ||7'o|| <&,
and for all admissible 7 with ¢ = ||7’c|| > & we obtain
(b—rl)nT < h(e) < h(#) = (b—rl)nT .

By solving the non-linear equation (2.24) for £ we have thus completely determined the

solution of problem (2.22):

Proposition 2.9 If b; # r for at least one i € {1,...,d}, then the optimal solution of

the mean-variance problem (2.22) is given by

P g(O'OJ)_l(b - Tl)
lo= (b —rL)||

where £ is the unique positive solution of the non-linear equation

C
z?(exp(e?T) — 1)

1
||0_1(b—rl)||6T—§ln< ) +r7=0.

The corresponding mazximal expected terminal wealth under the variance constraint equals

E(XT(T))=zexp ((r+&llc " (b—r1)|)T) . O

Example 2.10 Figure 6 below compares the behaviour of £ and ¢* as functions of the
time horizon. We have used the same data as in Example 2.8. To make the solutions of
problems (2.14) and (2.22) comparable we have chosen C' differently for the variance and
the CaR risk measures in such a way that £ and * concide for T' = 5. Notice that C for
the variance problem is roughly the square of C' for the CaR problem taking into account
that the variance measures an L?-distance, whereas CaR measures an L!-distance. The
(of course expected) bottom line of Figure 6 is that with increasing time the variance
constraint demands a smaller fraction of risky securities in the portfolio. This is also true
for the CaR constraint for small time horizons. For larger time horizon T (7' > 20) &*
increases again due to the fact that the CaR decreases. In contrast to that, & decreases

to 0, since the variance increases. 0
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Figure 6: £ and ¢* as functions of the time horizon; 0 < T' < 20. The parameters are the same as in
Figure 2.

3 Capital-at-Risk portfolios and more general price

processes

In this section we consider again the mean-CaR problem (2.14) but drop the assumption
of log-normality of the stock price process. The self-financing condition, however, will still
manifest itself in the form of the wealth equation

X7 _ )y Bl AR

X (t—) o) " ;“w—) ’

t>0, X™(0) ==z,

where P; is the price process for stock 7. Of course, the explicit form of the stochastic
process P; is crucial for the computability of the expected terminal wealth X7 (7). To
concentrate on these tasks we simplify the model in assuming d = 1, a bond price given
by Py(t) =™, ¢t > 0, as before, and a risky asset price satisfying

dP(t)
P(t—)
where b € R and Y is a semimartingale with Y (0) = 0. Under these assumptions the

(3.1)

=bdt+dY(t), t>0, P0)=p,

choice of the portfolio 7 leads to the following explicit formula for the wealth process

X™(t) = wexp((r+n(b—r))t)E(nY(t))

32) = exp((r (0~ 1)) exp (VD) — 2 (7))
x [ (0 +7av(s),t >0,

where Y¢ denotes the continuous part and AY the jump part of the process Y (more
precisely, AY (t) is the height of a (possible) jump at time t). This means that the wealth
process is a product of a deterministic process and the stochastic exponential £(7Y") of
7Y (see Protter (1990)). Analogously to Definition 2.1 we define the CaR in this more

general context.
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Definition 3.1 Consider the market given by a riskless bond with price Py(t) = €',

t >0, for r € R and one stock with price process P satisfying (3.1) for b € R and a
semimartingale Y with Y (0) = 0. Let x be the initial capital and T a given time horizon.
For some portfolio m € R and the corresponding terminal wealth X™(T) the a-quantile of
X™(T) is given by

plo, 7, T) =zexp((n(b—71)+r)T) - Z4,

where Z, is the a-quantile of E(rY(T)), i.e. z, = inf{z € R: P(E(rY(T)) < z) > a}.

Then we call
(3.3) CaR(z,n,T) =z exp(rT)(1 —exp(n(b—1)T) - Z4)

the Capital-at-Risk of the portfolio m (with initial capital x and time horizon T ). O

One of our aims of this section is to explore the behaviour of the solutions to the
mean-CaR problem (2.14) if we model the returns of the price process by processes having
heavier tails than the Brownian motion. We present some specific examples in the following

subsections.

3.1 The Black-Scholes model with jumps

We consider a stock price process P, where the random fluctuations are generated by both

a Brownian motion and a compound jump process, i.e., we consider the model (3.1) with
(34) Y () =odW(t)+ Y (BidNi(t) — Bididt) , t>0, Y(0)=0,

i=1
where n € N, and for ¢ = 1,...,n the process N; is a homogeneous Poisson process with

intensity A;. It counts the number of jumps of height 5; of Y. In order to avoid negative

stock prices we assume
—“1<pfi << B, <.

An application of It6’s formula results in the explicit form

(3.5)P(t) = pexp ((b — %02 — l:ilﬁl)\l> t+oW(t)+ g (N;(t) In(1 + 51))) ,t>0.

In order to avoid the possibility of negative wealth after an “unpleasant” jump we have
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to restrict the portfolio 7 as follows

_Bi:_é> if ﬂn>0>517
(3.6) Te { (—oo, —ﬁi] if B, <0,

\ 1

_ﬂi’OO> if 61 >0.

lambda=0

o lambda=0.3
lambda=2
pure stock

[qN]

—

o T

(0] 5 10 15 20

Figure 7: Optimal portfolios for Brownian motion with and without jumps depending on the time
horizon T, 0 < T' < 20. The basic parameters are the same as in Figure 2. The possible jump size is
B =-0.1.

Under these preliminary conditions we obtain explicit representations of the expected
terminal wealth and the CaR corresponding to a portfolio 7 similar to the equations (2.3)
and (2.5).

Lemma 3.2 With a stock price given by equation (3.5) let X™ be the wealth process
corresponding to the portfolio  satisfying (3.6). Then for initial capital x and finite time
horizon T,

n

XHT) = wexp((r+m(b—r) = Y whA - %HO—?)T oW (T)+ Y0 N(T) In(1 + 763),

E(X™(T)) = zexp((r+n(b—1))T),
CaR(z,n,T) = zexp(rT) (1 — exp ((’N(b —r)— Zwﬂi)\i — %7(20'2> T+ Ea>> :

where z, is the a-quantile of

n

roW(T) + Z(Nz(T) In(1+476;)),

=1
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i.e. the real number z, satisfying

a = P(WU (Ni(T)ln(1+Wﬁi))§5a)

(3.7) = . jno ( (ﬁ ( lzn;(nz In(1 +7T[3z'))>>
xexp(—TZA)H nl) .

=1

Proof X™(T) is a result of an application of It6’s formula. To obtain the expected value

simply note that the two processes

exp (—%0’2?5 + 0W(t)> and  exp Z Biit + Z Z In(1 + 3;)

=1 j=1

are both martingales with unit expectation and that they are independent. Regarding
the representation of the CaR, only equation (3.7) has to be commented on. But this is
a consequence of conditioning on the number of jumps of the different jump heights in
[0, 7. O

Unfortunately, z, cannot be represented in such an explicit form as in the case without
jumps. However, due to the explicit form of E(X7™ (7)), it is obvious that the corresponding
mean-CaR problem (2.14) will be solved by the largest 7 that satisfies both the CaR
constraint and requirement (3.6). Thus for an explicit example we obtain the optimal
mean-CaR portfolio by a simple numerical iteration procedure, where we approximated
the infinite sum in (3.7) by the finite sum of its first 2[A\T] 4+ 1 summands, if we set n = 1
and A = A\;. Comparisons of the solutions for the Brownian motion with and without
jumps are given in Figure 7.

We have used the same parameters as in the examples of Section 2, but have included
the possibility of a jump of height 5 = —0.1, occuring with different intensities. For
A = 0.3 one would expect a jump approximately every three years, for A = 2 even two
jumps per year. Notice that the stock has the same expected terminal value in both cases!

To explain this we rewrite equation (3.5) as follows:

;ﬁf (b—ZBZ )dt+oW +Zﬁsz t>0, P0)=p.

Whereas a jump occurs for instance for A = 0.3 on average only every three years, meaning

that with rather high probability there may be no jump within two years, the drift has

a permanent influence on the dynamic of the price process. Despite this additional stock
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Figure 8: Wealth corresponding to the optimal portfolios for Brownian motion with and without jumps
depending on the time horizon T, 0 < T' < 5 (top) and 0 < T < 20 (bottom). The parameters are the

same as in Figure 7. The possible jump size is again § = —0.1.

drift of —f'\ the optimal portfolio for stock prices following a geometric Brownian motion
with jumps is always below the optimal portfolio of the geometric Brownian motion (solid
line). This means that the threat of a downwards jump of 10% leads an investor to a less

risky behaviour, and the higher A is, the less risky is the investor‘s behaviour.

3.2 Generalized inverse Gaussian diffusion

Moving away from the Black-Scholes model towards more general diffusion models is
a rather obvious generalization. It is also desirable, since marginal distributions of the
log-returns of stock prices are often heavier tailed than normal. This has been shown
very convincingly, for instance, by a data analysis in Eberlein and Keller (1995). Various
models have been suggested: a simple hyperbolic model has been investigated by Bibby
and Sgrensen (1997); a more general class of models has been suggested by Barndorff-
Nielsen (1998).

We consider a generalized inverse Gaussian diffusion model (for brevity we write GIG
diffusion) for the log-returns of stock prices. This class of diffusions has been introduced

in Borkovec and Kliippelberg (1998) and we refer to this source for details.
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The following equations determine a general diffusion market.

dPy(t) = Py(t)rdt, Py(0) =1,
(3:8) dP(t) = P(t)(bdt+dY( ), P(0)=p,
Y@E) = U@)- Y(0) =0,

In our case we now choose U as a GIG diffusion given by the SDE

dU(t) = 30°U%72(t) ( +2(2y + A — 1)U(t) — xU2(¢)) dt

(3.9 +U (AW (1), U(0) = u >0,

where W is standard Brownian motion. The parameter space is given by o > 0, v > 1/2,
X,@/) Z 07 maX(X, Zb) > 0, and

AER if X, ¥ >0,
(3.10) A < min(0,2(1 — 7)) if x=0,1>0,

A > min(0,2(1 — 7)) if xX>0,9=0.
The GIG model is a formal extension of the Black-Scholes model, which corresponds to
the choice of parameters v = ¢ = 0, A = 1,x = 0. It also contains the (generalized)
Cox-Ingersoll-Ross model as a special case. The advantage of our construction lies in the

structural resemblance of the resulting price process to the geometric Brownian motion

model. We can decompose the stock price into a drift term multiplied by a local martingale:

P(t) = pexp <bt + 302 /Ot UP72(s) (v + 22y + A = 1)U(s) — xU?(s)) ds)

X exp <a/0t U (5)dW (s) — %(12 /Ot U27(s)ds> 0.

The following lemma shows another property of the process U that is useful, when de-

scribing the wealth process.

Lemma 3.3 Let U be the GIG diffusion given by (3.9) and m > 0. Then the process
U = nU is again a GIG diffusion with U(0) = xU(0) and parameters

(3.11) F=or'", ¢ =1r, X = Xx/7.
The parameters v and \ remain the same.

Proof Notice first that all parameters of U satisfy the necessary non-negativity assump-
tions and (3.9). The assertion now follows by calculating dU(t) = d(xU(t)) = wdU(%),
t>0. O
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Remark 3.4 As a consequence of Lemma 3.3 the wealth process X™ has a very nice

explicit form. Indeed it is of a similar form as the stock price process P:
(3.12) X™(t) = zexp <(1 — )t + bt + Y (t) — %(%t) , t>0,
where

b=nb and ?(t) = ﬁ(t) —7nu, t>0,

for any positive portfolio 7. O

According to Definition 3.1 for the CaR(z,7,T) we have to determine the a-quantile of
~ 1 ~
Y(T) — §(Y>T. Here we see one of the big advantages of the CaR as a risk measure: it

does not depend on the existence of moments. Even for an infinite mean it is well-defined.
However, if we want to solve the mean-CaR problem, we have to ensure that X™(T")
has a finite mean. In general, it is not always possible to easily decide if this is the case.
A natural assumption is to assume U(T') or U(T) to have the stationary distribution of
the process U or U respectively. This is certainly justified if the time horizon T is chosen
sufficiently large. As in Bibby and Sgrensen (1998) we therefore make this simplifying
assumption which helps us to give a result about the existence of E(X™(T)).

Proposition 3.5 Assume that U(T) and U(T) are GIG distributed with parameters v,
X, A and 1;, X, A respectively, i.e. they have the stationary distributions of the processes
U(-) and U(-) respectively. Assume that 7 is a positive portfolio. Then X™(T') has a finite
mean if X = x/m > 2.

Proof As U is always positive, we estimate

X™(T) < xexp ((1 — )T +bT + U(T) — 7ru) :

If Eexp(U(T)) < oo, then EX™(T') < co. By Jorgensen (1982) we know the explicit form

of the moment generating function of the GIG distribution leading to

~ Ky (Vxd (1 - 2/%))
(3.13) E (exp(U(T))) = K (\/W) (1—2/x)V2’

where K, (+) denotes the generalized Bessel function of the third kind. The rhs of equation
(3.13) is finite for y > 2. O

Thus if the original parameters satisfy y > 2 and 7 € [0, 1], then also ¥ > 2 and in this
case X™(7T) has a finite mean. In this case the mean-CaR problem is well-defined and can
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be solved, however one cannot hope for an analytic solution. In the following example we
show how the mean-CaR problem can be solved using analytic properties of the process
as far as possible, and then present a simple simulation procedure to solve the problem

numerically.

Example 3.6 (Generalized Cox-Ingersoll-Ross model (GCIR))
As an example we consider the generalized Cozx-Ingersoll-Ross model, i.e., the GIG market

model with parameters v = 1, x = 0. This results in the following explicit form for U:

1 1 ! 1
U(t) = exp <502)\t + 0W(t)> {u + 1021/)/0 exp <—502)\s — aW(s)) ds} ,t >0,

which has mean

EU(t) = eXp(()le)a;t) <u+ﬁ<l—exp<—()\+l)§t>>> if A # -1,

u+ 30t if \=—1,
(see e.g. Borkovec and Kliippelberg (1998)). Further, note that we have
1 1 t t
(314) V() = U(1) ~u= 10"t + 501+ A)UQ/ U(s)ds + 0/ U (s)dW (s)
0 0

and we obtain the same representations for U (¢) and Y (¢) if we substitute 1 by 1 = ).
An explicit solution of the mean-CaR problem does not seem to be possible. What remains
are Monte-Carlo simulations and numerical approximations.

A simple algorithm to solve the mean-CaR problem would be the following:
For large N and ¢t =1,..., N:

e Simulate sample paths (W;(t))icpo,r) of the Brownian motion (W (t)):cjo.11-

e Compute realisations U;(T) and fOT UZ(t)dt of U(T) and fOT U?(t)dt, respectively,

)

from the simulated sample paths of (Wj(t))¢co,11-

e For “all” 7 € R compute
~ 1 T
ZNT) = nUy(T) — =7%0? / U? (t)dt — Tu.
0

e Get estimators pi(m) for E(X™(T)) and v(z,7,T) for CaR(z, 7, T) :

i(r) = % > exp ((r +(b—r)m)T + Z?f(T))
v(x,m,T) = xexp(rT) (1 —exp (n(b—1r)T + Zy(7))) ,

where Z, () is the a-quantile of the empirical distribution of the Z7(T') with the

convention we already used in Definition 3.1.
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e Choose the portfolio 7 with the largest value of fi(7) such that v(x, 7, T) is below
the upper bound C for the CaR.

Of course, it is not possible to compute the quantities zi(7) and 2, (7) for all 7 € R explic-
itly. A practical method consists in choosing K = 100 values of 7 in a bounded interval
of interest and derive functions p(7), z,(7) via interpolation. One then chooses that value

of m that solves the mean-CaR problem corresponding to these functions.

0.5

-0.5

L
-

0] 5 10 15 20 0.0 0.2 0.4 0.6 0.8 1.0

Figure 9: Ten sample paths of (Z(t))ostggo for 7 = 1 (left) and ten sample paths of (Z’T(2O)),re(0,1)
(right) for parameter values = 1000, = 0.05,b = 0.10,v» =4, A= 0,0 = 0.05 and u = 5.

To give an impression of the behaviour of Z (t) the first diagram in Figure 9 shows ten
sample paths for the parameter values x = 1000, = 0.05,b = 0.10,¢ = 4, A = 0,0 =
0.05 and u = 5. The second diagram depicts the behaviour of 5(20) as a function of 7.
Figure 10 shows a result of the simulation algorithm described above. It is the result of
N = 100 simulations for 1" = 20 and the remaining parameters chosen as those of Figure
9. As expected, both the mean terminal wealth and the CaR increase with 7. Therefore
the problem can be solved by identifying that portfolio 7 in the right side diagram that
corresponds to the given upper bound C for the CaR.

4 Conclusion

We have investigated some simple portfolio problems containing an upper bound on the
CaR as an additional constraint. As long as we were able to calculate expectations and
quantiles of the stock prices in explicit form we could also solve the problems explicitly.
This can be done within a Gaussian world, but very little beyond. The Black-Scholes

model with jumps is just feasible and easily understood. As soon as one moves away
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Figure 10: Estimated expected terminal wealth (left) and the corresponding CaR (right) as functions of
the portfolio 7 for the GCIR model for T=20 and the same parameters as in Figure 9 (based on N=100
simulations). The expected terminal wealth and the CaR for the GCIR model increase for all = € (0, 1).

from such simple models the solution of the mean-CaR problems becomes less tractable
and Monte Carlo simulation and numerical solutions are called for. As an example we
treated the generalized Cox-Ingersoll-Ross model, which gave us a first impression of the
complexity of the problem.

In this sense the paper should be understood as the starting point of a larger research
project. We indicate some of the problems we want to deal with in future work:

— A deeper analysis should investigate the influence of the parameters of the generalized
inverse Gaussian; also other models should be investigated as for instance hyperbolic and
normal inverse Gaussian models (see Eberlein, Keller and Prause (1998) and Barndorft-
Nielsen (1998)).

— Investigate the optimization problem for other downside risk measures; replace for
instance the quantile in Definition 2.1 by the expected shortfall. Comparisons of results
for the CaR with respect to the quantile and the shortfall can be found in Emmer,
Kliippelberg and Korn (2000).

— Replace the constant portfolio by a general portfolio process. Then we have to bring
in much more sophisticated techniques to deal with the quantiles of the wealth process,

and our method of solving the optimization problem explicitly will no longer work.
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