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1 IntrodutionIt seems to be ommon wisdom that long term stok investment leads to an almost suregain over loally riskless bond investments. In the long run stok indies are growingfaster than riskless rates, despite the repeated ourrene of stok market delines. Theonventional wisdom therefore holds that the more distant the planning horizon, thegreater should be one's wealth in risky assets. One of our main �ndings presented in thispaper will be the demonstration that there is indeed a reasonable portfolio problem witha solution that supports this empirial observation.Traditional portfolio seletion as introdued by Markowitz (1959) and Sharpe (1964) isbased on a mean-variane analysis. This approah annot explain the above phenomenon:the use of the variane as a risk measure of an investment leads to a dereasing proportionof risky assets in a portfolio, when the planning horizon inreases (see Example 2.10).In reent years ertain variants of the lassial Markowitz mean-variane portfolioseletion riterion have been suggested. Suh alternatives are typially based on the notionof downside risk onepts suh as lower partial moments. The lower partial moment oforder n is de�ned as LPMn(x) = Z x�1(x� r)ndF (r) ; x 2 R ;(1.1)where F is the distribution funtion of the portfolio return. Examples an be found inFishburn (1977) or Harlow (1991), who suggested for instane the shortfall probability(n = 0), the expeted target shortfall (n = 1), the target semi-variane (n = 2), andtarget semi-skewness (n = 3). Harlow (1991) also disusses some pratial onsequenesof various downside risk measures.In this paper we onentrate on the Capital-at-Risk (CaR) as a replaement of thevariane in portfolio seletion problems. We think of the CaR as the apital reserve inequity. The CaR is de�ned via the Value-at-Risk; i.e. a low quantile (typially the 5%-or 1%-quantile) of the pro�t-loss distribution of a portfolio; see e.g. Jorion (1997). TheCaR of a portfolio is then ommonly de�ned as the di�erene between the mean of thepro�t-loss distribution and the VaR. VaR has beome the most prominent risk measureduring reent years. Even more, the importane of VaR models ontinues to grow sineregulators aept these models as a basis for setting apital requirements for market riskexposure. If the pro�t-loss distribution of a portfolio is normal with mean � and variane�2, then the CaR of the portfolio based on the �-quantile (e.g., � = 0:05 or � = 0:01) isCaR = �� (�� �z�) ;(1.2)where z� is the �-quantile of the standard normal distribution and � is positive. In thispaper we will use another de�nition of the CaR.2



The ruial point in the appliation of CaR models for setting apital requirement isthe determination of reliable and aurate �gures for the VaR, espeially for non-normalases. Consequently, VaR has attrated attention from a statistial point of view; e.g., seeEmbrehts, Kl�uppelberg and Mikosh (1997) for estimation via extreme value methodsand further referenes, see Emmer, Kl�uppelberg and Tr�ustedt (1998) for an example.In the ontext of hedging, VaR has been onsidered as a risk measure by F�ollmerand Leukert (1999); see also Cvitani and Karatzas (1999). They replae the traditional\hedge without risk" (perfet hedge) whih typially only works in a omplete marketsetting by a \hedge with small remaining risk" (so-alled quantile-hedging). This oneptan also deal with inomplete markets. In ontrast to our problem, their main task onsistsof approximating a given laim. Surprisingly, the existene of that target wealth makestheir problem more tratable than ours.In a disrete world Zagst and Kehrbaum (1998) investigate the problem of optimizingportfolios under a limited CaR from a pratial point of view, they solve the problemby numerial approximation, and they present a ase study. This work is ontinued inSheuenstuhl and Zagst (1998). Under a mean-variane and shortfall preferene struturefor the investor, they obtain optimal portfolios onsisting of stoks and options via anapproximation method.One aim of our paper is to show that a replaement of the variane by the CaR in aontinuous-time Markowitz-type model resolves exatly the above-mentioned ontradi-tion between theory and empirial fats. Furthermore, we aim at losed form solutionsand an eonomi interpretation of our results. In a Gaussian world, represented by aBlak-Sholes market, possibly enrihed with a jump omponent, the mean-CaR sele-tion proedure leads to rather expliit solutions for the optimal portfolio. It is, however,not surprising that as soon as we move away from the Gaussian world, the optimizationproblem beomes analytially untratable.The paper is organized as follows. In Setion 2 we highlight the onsequenes of theintrodution of the CaR as risk measure in a simple Blak-Sholes market where we anobtain expliit losed form solutions. We also examine onsequenes for the investor whenintroduing CaR in a portfolio optimization problem. This approah indeed supports theabove-mentioned market strategy that one should always invest in stoks for long-terminvestment.Setion 3 is devoted to the study of the portfolio problem for more general modelsof the stok prie. As prototypes of models to allow for larger utuations than pureGaussian models, we study jump di�usions and generalized inverse Gaussian di�usionproesses. This also shows how the solution of the problem beomes muh more involvedwhen the Blak-Sholes assumptions are abandoned. In partiular, we show how the opti-3



mal portfolio under a CaR onstraint reats to the possibility of jumps. In the generalizedinverse Gaussian di�usion setting even the problem formulation beomes questionable aswe annot ensure a �nite expeted terminal wealth of the optimal portfolio. We give anapproximate solution, whih allows for some interpretation, and also a numerial algo-rithm.2 Optimal portfolios and Capital-at-Risk in the Blak-Sholes settingIn this setion, we onsider a standard Blak-Sholes type market onsisting of one risklessbond and several risky stoks. Their respetive pries (P0(t))t�0 and (Pi(t))t�0 for i =1; : : : ; d evolve aording to the equationsdP0(t) = P0(t)rdt ; P0(0) = 1 ;dPi(t) = Pi(t)�bidt+Pdj=1 �ijdWj(t)� ; Pi(0) = pi ; i = 1; : : : ; d :Here W (t) = (W1(t); : : : ;Wd(t))0 is a standard d-dimensional Brownian motion, r 2 Ris the riskless interest rate, b = (b1; : : : ; bd)0 the vetor of stok-appreiation rates and� = (�ij)1�i;j�d is the matrix of stok-volatilities. For simpliity, we assume that � isinvertible and that bi � r for i = 1; : : : ; d.Let �(t) = (�1(t); : : : ; �d(t))0 2 Rd be an admissible portfolio proess, i.e. �i(t) is thefration of the wealth X�(t), whih is invested in asset i (see Korn (1997), Setion 2.1 forrelevant de�nitions). Denoting by (X�(t))t�0 the wealth proess, it follows the dynamidX�(t) = X�(t) f((1� �(t)01)r + �(t)0b)dt+ �(t)0�dW (t)g ; X�(0) = x ;(2.1)where x 2 R denotes the initial apital of the investor and 1 = (1; : : : ; 1)0 denotes thevetor (of appropriate dimension) having unit omponents. The fration of the investmentin the bond is �0(t) = 1� �(t)01. Throughout the paper, we restrit ourselves to onstantportfolios �(t) = � = (�1; : : : ; �d) for all t 2 [0; T ℄. This means that the frations in thedi�erent stoks and the bond remain onstant on [0; T ℄. The advantage of this is two-fold: �rst we obtain, at least in a Gaussian setting, expliit results; and furthermore, theeonomi interpretation of the mathematial results is omparably easy. Finally, let usmention that for many other portfolio problems the optimal portfolios are onstant ones(see Setions 3.3. and 3.4 of Korn (1997)). It is also important to point out that followinga onstant portfolio proess does not mean that there is no trading. As the stok priesevolve randomly one has to trade at every time instant to keep the frations of wealthinvested in the di�erent seurities onstant. Thus, following a onstant portfolio proessstill means one must follow a dynami trading strategy.4



Standard Itô integration and the fat that EesW (1) = es2=2; s 2 R, yield the followingexpliit formulae for the wealth proess for all t 2 [0; T ℄ (see e.g. Korn and Korn (2000)).X�(t) = x exp �(�0(b� r1) + r � k�0�k2=2)t+ �0�W (t)� ;(2.2) E(X�(t)) = x exp ((�0(b� r1) + r)t) ;(2.3) var(X�(t)) = x2 exp (2(�0(b� r1) + r)t) �exp(k�0�k2t)� 1� :(2.4)The norm k � k denotes the Eulidean norm in Rd .De�nition 2.1 (Capital-at-Risk)Let x be the initial apital and T a given time horizon. Let z� be the �-quantile of thestandard normal distribution. For some portfolio � 2 Rd and the orresponding terminalwealth X�(T ), the �-quantile of X�(T ) is given by�(x; �; T ) = x exp�(�0(b� r1) + r � k�0�k2=2)T + z�k�0�kpT� ;i.e., �(x; �; T ) = inffz 2 R : P (X�(T ) � z) � �g. Then we de�neCaR(x; �; T ) = x exp(rT )� �(x; �; T )= x exp(rT )��1� exp((�0(b� r1)� k�0�k2=2)T + z�k�0�kpT )�(2.5)the Capital-at-Risk of the portfolio � (with initial apital x and time horizon T ). �Assumption 2.2 To avoid (non-relevant) subases in some of the following results wealways assume � < 0:5 whih leads to z� < 0.Remark 2.3 (i) Our de�nition of the Capital-at-Risk limits the possibility of exesslosses over the riskless investment.(ii) We typially want to have a positive CaR (although it an be negative in our de�nitionas the examples below will show) as the upper bound for the \likely losses" (in the sensethat (1��)� 100% of ourring \losses" are smaller than CaR(x; �; T )) ompared to thepure bond investment. Further, we onentrate on the atual amount of losses appearingat the time horizon T . This is in line with the mean-variane seletion proedure enablingus to diretly ompare the results of the two approahes; see below.In the following it will be onvenient to introdue the funtion f(�) for the exponent in(2.5), that isf(�) := z�k�0�kpT � k�0�k2T=2 + �0(b� r1)T ; � 2 Rd :(2.6) 5



By the obvious fat that f(�) k�0�k!1�! �1we have sup�2Rd CaR(x; �; T ) = x exp(rT ) ;i.e., the use of extremely risky strategies (in the sense of a high norm k�0�k) an lead toa CaR whih is lose to the total apital. The omputation of the minimal CaR is donein the following proposition.(iii) Note how ruial the de�nition of CaR depends on the assumption of a onstantportfolio proess. Moving away from this assumption makes the problem untratable. Inpartiular, �(x; �; T ) is nearly impossible to obtain for a general random �(:). �Proposition 2.4 Let � = k��1(b� r1)k.(a) If bi = r for all i = 1; : : : ; d, then f(�) attains its maximum for �� = 0 leading to aminimum Capital-at-Risk of CaR(x; ��; T ) = 0.(b) If bi 6= r for some i 2 f1; : : : ; dg and�pT < jz�j ;(2.7)then the minimal CaR equals zero and is only attained for the pure bond strategy.() If bi 6= r for some i 2 f1; : : : ; dg and�pT � jz�j ;(2.8)then the minimal CaR is attained for�� = �� � jz�jpT � (��)�1(b� r1)k��1(b� r1)k(2.9)with CaR(x; ��; T ) = x exp(rT )�1� exp�12(pT� � jz�j)2�� < 0:(2.10)Proof (a) follows diretly from the expliit form of f(�) under the assumption of bi = rfor all i = 1; : : : ; d and the fat that � is invertible.(b),() Consider the problem of maximizing f(�) over all � whih satisfyk�0�k = "(2.11) 6



for a �xed positive ". Over the (boundary of the) ellipsoid de�ned by (2.11) f(�) equalsf(�) = z�"pT � "2T=2 + �0(b� r1)T :Thus, the problem is just to maximize a linear funtion (in �) over the boundary of anellipsoid. Suh a problem has the expliit solution��" = "(��0)�1(b� r1)k��1(b� r1)k(2.12)with f(��") = �"2T=2 + "� �T � jz�jpT� :(2.13)As every � 2 Rd satis�es relation (2.11) with a suitable value of " (due to the fat that �is regular), we obtain the minimum CaR strategy �� by maximizing f(��") over all non-negative ". Due to the form of f(��") the optimal " is positive if and only if the multiplierof " in representation (2.13) is positive. Thus, ondition (2.7) implies assertion (b). Underassumption (2.8) the optimal " is given as" = � � jz�jpT :Inserting this into equations (2.12) and (2.13) yields the assertions (2.9) and (2.10) (withthe help of equations (2.5) and (2.6)). �Remark 2.5 (i) Part (a) of the proposition states that in a risk-neutral market the CaRof every strategy ontaining stok investment is bigger than the CaR of the pure bondstrategy.(ii) Part () states the (at �rst sight surprising) fat that the existene of at least onestok with a mean rate of return di�erent from the riskless rate implies the existene ofa stok and bond strategy with a negative CaR as soon as the time horizon T is large.Thus, even if the CaR would be the only riterion to judge an investment strategy thepure bond investment would not be optimal if the time horizon is far away. On one handthis fat is in line with empirial results on stok and bond markets. On the other handthis shows a remarkable di�erene between the behaviour of the CaR and the varianeas risk measures. Independent of the time horizon and the market oeÆients, pure bondinvestment would always be optimal with respet to the variane of the orrespondingwealth proess.(iii) The deomposition method to solve the optimization problem in the proof of parts(b) and () of Proposition 2.4 will be ruial for some of the proofs later in this paper.Note how we use it to overome the problem that f(�) is not di�erentiable in � = 0. �7



The rest of this setion is devoted to setting up a Markowitz mean-variane type op-timization problem where we replae the variane onstraint by a onstraint on the CaRof the terminal wealth. More preisely, we solve the following problem:max�2Rd E(X�(T )) subjet to CaR(x; �; T ) � C ;(2.14)where C is a given onstant of whih we assume that it satis�esC � x exp(rT ) :(2.15)Due to the expliit representations (2.4), (2.5) and a variant of the deomposition methodas applied in the proof of Proposition 2.4 we an solve problem (2.14) expliitly.Proposition 2.6 Let � = k��1(b � r1)k and assume that bi 6= r for at least one i 2f1; : : : ; dg. Assume furthermore that C satis�es0 � C � x exp(rT ) if �pT < jz�j;(2.16) x exp(rT )� 1� exp� 12(pT� � jz�j)2�� � C � x exp(rT ) if �pT � jz�j :(2.17)Then problem (2.14) will be solved by�� = "� (��0)�1(b� r1)k��1(b� r1)kwith "� = (� + z�=pT ) +q(� + z�=pT )2 � 2=T ;where  = ln �1� Cx exp(�rT )�. The orresponding maximal expeted terminal wealthunder the CaR onstraint equalsE �X��(T )� = x exp ��r + "�k��1(b� r1)k�T � :(2.18)Proof The requirements (2.16) and (2.17) on C ensure that the CaR onstraint in problem(2.14) annot be ignored: in both ases C lies between the minimum and the maximumvalue that CaR an attain (see also Proposition 2.4). Every admissible � for problem(2.14) with k�0�k = " satis�es the relation(b� r1)0�T � + 12"2T � z�"pT(2.19) 8



whih is in this ase equivalent to the CaR onstraint in (2.14). But again, on the setgiven by k�0�k = " the linear funtion (b� r1)0�T is maximized by�" = "(��0)�1(b� r1)k��1(b� r1)k :(2.20)Hene, if there is an admissible � for problem (2.14) with k�0�k = " then �" must alsobe admissible. Further, due to the expliit form (2.3) of the expeted terminal wealth, �"also maximizes the expeted terminal wealth over the ellipsoid. Consequently, to obtain� for problem (2.14) it suÆes to onsider all vetors of the form �" for all positive " suhthat requirement (2.19) is satis�ed. Inserting (2.20) into the left-hand side of inequality(2.19) results in (b� r1)0�"T = "k��1(b� r1)kT ;(2.21)whih is an inreasing linear funtion in " equalling zero in " = 0. Therefore, we obtainthe solution of problem (2.14) by determining the biggest positive " suh that (2.19) isstill valid. But the right-hand side of (2.21) stays above the right-hand side of (2.19) untiltheir largest positive point of intersetion whih is given by"� = (� + z�=pT ) +q(� + z�=pT )2 � 2=T ;The remaining assertion (2.18) an be veri�ed by inserting �� into equation (2.3). �Remark 2.7 (i) Note that the optimal expeted value only depends on the stoks via thenorm k��1(b�r1)k. There is no expliit dependene on the number of stoks. We thereforeinterpret Proposition 2.4 as a kind ofmutual fund theorem as there is no di�erene betweeninvestment in our multi-stok market and a market onsisting of the bond and just onestok with appropriate market oeÆients b and �.(ii) Consider for a general utility funtion U(x) the problem ofmax�2Rd E(U(X�(T ))) subjet to CaR(x; �; T ) � C:The above method of solving the mean-CaR problem would still work as long as E(U(X�(T )))is of the form f(x) exp(h(�)) with h a linear funtion. This is e.g. the ase for the hoieof the HARA funtion U(x) = x=. It would also work for the log-utility ase; i.e.U(x) = lnx as then we would haveE(U(X�(T ))) = lnx+ rT + (b� r1)0�T � �0��0�T=2 :9



Here, instead of looking at the exponent, we an also look atlnx + rT � (b� r1)0�t� "2T=2 ;whih for all � with k�0�k = " is a linear funtion in �. However, for reasons of omparisonto the Markowitz type problems below we restrit ourselves to the mean-CaR problem.

0 5 10 15 20

0
50

0
10

00
b=0.1
b=0.15

Figure 1: CaR(1 000; 1; T ) of the pure stok portfolio (one risky asset only) for di�erent appreiationrates as a funtion of the planning horizon T ; 0 < T � 20. The volatility is � = 0:2. The riskless rate isr = 0:05.Example 2.8 Figure 1 shows the dependene of CaR on the time horizon illustratedby CaR(1 000,1,T). Note that the CaR �rst inreases and then dereases with time, abehaviour whih was already indiated by Proposition 2.4. It di�ers substantially fromthe behaviour of the variane of the pure stok strategy, whih inreases with T . Figures 2and 3 illustrate the behaviour of the optimal expeted terminal wealth with varyingtime horizon orresponding to the pure bond strategy and the pure stok strategy asfuntions of the time horizon T . The expeted terminal wealth of the optimal portfolioeven exeeds the pure stok investment. The reason for this beomes lear if we look atthe orresponding portfolios. The optimal portfolio always ontains a short position in thebond as long as this is tolerated by the CaR onstraint. This is shown in Figure 4 wherewe have plotted the optimal portfolio together with the pure stok portfolio as funtionof the time horizon. For b = 0:15 the optimal portfolio always ontains a short position inthe bond. For b = 0:1 and T > 5 the optimal portfolio (with the same CaR onstraint asin Figures 2 and 3) again ontains a long position in both bond and stok (with dereasingtendeny of � as time inreases!). This is an immediate onsequene of the inreasing CaRof the stok prie. For the smaller appreiation rate of the stok it is simply not attrativeenough to take the risk of a large stok investment. Figure 5 shows the mean-CaR eÆientfrontier for the above parameters with b = 0:1 and �xed time horizon T = 5. As expetedit has a similar form as a typial mean-variane eÆient frontier.10
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Figure 2: Expeted terminal wealth of di�erent investment strategies depending on the time horizon T ,0 < T � 5. The parameters are d = 1, r = 0:05, b = 0:1, � = 0:2, and � = 0:05. As the upper bound Cof the CaR we used CaR(1 000; 1; 5), the CaR of the pure stok strategy with time horizon T = 5.
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Figure 3: Expeted terminal wealth of di�erent investment strategies depending on the time horizon T ,0 � T � 20. The parameters are d = 1, r = 0:05, b = 0:1, � = 0:2, and � = 0:05. As the upper boundC of the CaR we used CaR(1 000; 1; 5), the CaR of the pure stok strategy with time horizon T = 5. Onthe right border we have plotted the density funtion of the wealth for the optimal portfolio. It is alwaysbetween 0 and 0.0004.We will now ompare the behaviour of the optimal portfolios for the mean-CaR withsolutions of a orresponding mean-variane problem. To this end we onsider the followingsimpler optimization problem:max�2Rd E(X�(T )) subjet to var(X�(T )) � C :(2.22)By using the expliit form (2.4) of the variane of the terminal wealth, we an rewrite the
11
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Figure 4: For the same parameters as in Figure 2 and di�erent appreiation rates the �gure shows theoptimal portfolio and the pure stok portfolio.
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Figure 5: Mean-CaR eÆient frontier with the mean on the horizontal axis and the CaR on the vertialaxis. The parameters are the same as in Figure 2.variane onstraint in problem (2.22) as(b� r1)0�T � 12 ln� Cx2(exp("2T )� 1)�� rT =: h("); k�0�k = "(2.23)for " > 0. More preisely, if � 2 Rd satis�es the onstraints in (2.23) for one " > 0 then italso satis�es the variane onstraint in (2.22) and vie versa. Noting that h(") is stritlydereasing in " > 0 with lim"#0 h(") =1 lim"!1h(") = �1we see that left-hand side of (2.23) must be smaller than the right-hand one for small valuesof " > 0 if we plug in �" as given by equation (2.20). Reall that this was the portfoliowith the highest expeted terminal wealth of all portfolios � satisfying k�0�k = ". It evenmaximizes (b� r1)0�T over the set given by k�0�k � ". If we have equality(b� r1)0�b"T = h(b")(2.24) 12



for the �rst time with inreasing " > 0 then this determines the optimal b" > 0. To seethis, note that we haveE(X�(T )) � E(X�b"(T )) for all � with k�0�k � b" ;and for all admissible � with " = k�0�k > b" we obtain(b� r1)0�T � h(") < h(b") = (b� r1)0�b"T :By solving the non-linear equation (2.24) for b" we have thus ompletely determined thesolution of problem (2.22):Proposition 2.9 If bi 6= r for at least one i 2 f1; : : : ; dg, then the optimal solution ofthe mean-variane problem (2.22) is given byb� = b" (��0)�1(b� r1)k��1(b� r1)k ;where b" is the unique positive solution of the non-linear equationk��1(b� r1)k"T � 12 ln� Cx2(exp("2T )� 1)� + rT = 0 :The orresponding maximal expeted terminal wealth under the variane onstraint equalsE(Xb�(T )) = x exp �(r + b" k��1(b� r1)k)T � : �Example 2.10 Figure 6 below ompares the behaviour of b" and "� as funtions of thetime horizon. We have used the same data as in Example 2.8. To make the solutions ofproblems (2.14) and (2.22) omparable we have hosen C di�erently for the variane andthe CaR risk measures in suh a way that b" and "� onide for T = 5. Notie that C forthe variane problem is roughly the square of C for the CaR problem taking into aountthat the variane measures an L2-distane, whereas CaR measures an L1-distane. The(of ourse expeted) bottom line of Figure 6 is that with inreasing time the varianeonstraint demands a smaller fration of risky seurities in the portfolio. This is also truefor the CaR onstraint for small time horizons. For larger time horizon T (T � 20) "�inreases again due to the fat that the CaR dereases. In ontrast to that, b" dereasesto 0, sine the variane inreases. �
13
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Figure 6: b" and "� as funtions of the time horizon; 0 < T � 20. The parameters are the same as inFigure 2.3 Capital-at-Risk portfolios and more general prieproessesIn this setion we onsider again the mean-CaR problem (2.14) but drop the assumptionof log-normality of the stok prie proess. The self-�naning ondition, however, will stillmanifest itself in the form of the wealth equationdX�(t)X�(t�) = (1� �01) dP0(t)P0(t�) + dXi=1 �i dPi(t)Pi(t�) ; t > 0 ; X�(0) = x ;where Pi is the prie proess for stok i. Of ourse, the expliit form of the stohastiproess Pi is ruial for the omputability of the expeted terminal wealth X�(T ). Toonentrate on these tasks we simplify the model in assuming d = 1, a bond prie givenby P0(t) = ert, t � 0, as before, and a risky asset prie satisfyingdP (t)P (t�) = bdt+ dY (t) ; t > 0 ; P (0) = p ;(3.1)where b 2 R and Y is a semimartingale with Y (0) = 0. Under these assumptions thehoie of the portfolio � leads to the following expliit formula for the wealth proessX�(t) = x exp((r + �(b� r))t)E(�Y (t))= x exp((r + �(b� r))t) exp ��Y (t)� 12�2 hY it�� Y0<s�t(1 + ��Y (s)) ; t � 0 ;(3.2)where Y  denotes the ontinuous part and �Y the jump part of the proess Y (morepreisely, �Y (t) is the height of a (possible) jump at time t). This means that the wealthproess is a produt of a deterministi proess and the stohasti exponential E(�Y ) of�Y (see Protter (1990)). Analogously to De�nition 2.1 we de�ne the CaR in this moregeneral ontext. 14



De�nition 3.1 Consider the market given by a riskless bond with prie P0(t) = ert,t � 0, for r 2 R and one stok with prie proess P satisfying (3.1) for b 2 R and asemimartingale Y with Y (0) = 0. Let x be the initial apital and T a given time horizon.For some portfolio � 2 R and the orresponding terminal wealth X�(T ) the �-quantile ofX�(T ) is given by e�(x; �; T ) = x exp((�(b� r) + r)T ) � ez� ;where ez� is the �-quantile of E(�Y (T )), i.e. ez� = inffz 2 R : P (E(�Y (T )) � z) � �g.Then we all CaR(x; �; T ) = x exp(rT )(1� exp(�(b� r)T ) � ez�)(3.3)the Capital-at-Risk of the portfolio � (with initial apital x and time horizon T ). �One of our aims of this setion is to explore the behaviour of the solutions to themean-CaR problem (2.14) if we model the returns of the prie proess by proesses havingheavier tails than the Brownian motion.We present some spei� examples in the followingsubsetions.3.1 The Blak-Sholes model with jumpsWe onsider a stok prie proess P , where the random utuations are generated by botha Brownian motion and a ompound jump proess, i.e., we onsider the model (3.1) withdY (t) = �dW (t) + nXi=1 (�idNi(t)� �i�idt) ; t > 0 ; Y (0) = 0 ;(3.4)where n 2 N , and for i = 1; : : : ; n the proess Ni is a homogeneous Poisson proess withintensity �i. It ounts the number of jumps of height �i of Y . In order to avoid negativestok pries we assume �1 < �1 < � � � < �n <1 :An appliation of Itô's formula results in the expliit formP (t) = p exp  b� 12�2 � nXi=1 �i�i! t+ �W (t) + nXi=1 (Ni(t) ln(1 + �i))! ; t � 0 :(3.5)In order to avoid the possibility of negative wealth after an \unpleasant" jump we have
15



to restrit the portfolio � as follows
� 2 8>>>>>><>>>>>>:

�� 1�n ;� 1�1� if �n > 0 > �1 ;��1;� 1�1� if �n < 0 ;�� 1�n ;1� if �1 > 0 :(3.6)
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Figure 7: Optimal portfolios for Brownian motion with and without jumps depending on the timehorizon T , 0 < T � 20. The basi parameters are the same as in Figure 2. The possible jump size is� = �0:1.Under these preliminary onditions we obtain expliit representations of the expetedterminal wealth and the CaR orresponding to a portfolio � similar to the equations (2.3)and (2.5).Lemma 3.2 With a stok prie given by equation (3.5) let X� be the wealth proessorresponding to the portfolio � satisfying (3.6). Then for initial apital x and �nite timehorizon T ,X�(T ) = x exp((r + �(b� r)� nXi=1 ��i�i � 12�2�2)T + ��W (T ) + nXi=1 Ni(T ) ln(1 + ��i)) ;E(X�(T )) = x exp((r + �(b� r))T ) ;CaR(x; �; T ) = x exp(rT ) 1� exp  �(b� r)� nXi=1 ��i�i � 12�2�2!T + ez�!! ;where ez� is the �-quantile of��W (T ) + nXi=1 (Ni(T ) ln(1 + ��i)) ;16



i.e. the real number ez� satisfying� = P  ��W (T ) + nXi=1 (Ni(T ) ln(1 + ��i)) � ez�!= 1Xn1;:::;nn=0 � 1j��jpT  ez� � nXi=1 (ni ln(1 + ��i))!!� exp �T nXi=1 �i! nYi=1 (T�i)nini! ! :(3.7)
Proof X�(T ) is a result of an appliation of Itô's formula. To obtain the expeted valuesimply note that the two proessesexp��12�2t + �W (t)� and exp0�� nXi=1 �i�it+ nXi=1 Ni(t)Xj=1 ln(1 + �i)1Aare both martingales with unit expetation and that they are independent. Regardingthe representation of the CaR, only equation (3.7) has to be ommented on. But this isa onsequene of onditioning on the number of jumps of the di�erent jump heights in[0; T ℄. �Unfortunately, ez� annot be represented in suh an expliit form as in the ase withoutjumps. However, due to the expliit form of E(X�(T )), it is obvious that the orrespondingmean-CaR problem (2.14) will be solved by the largest � that satis�es both the CaRonstraint and requirement (3.6). Thus for an expliit example we obtain the optimalmean-CaR portfolio by a simple numerial iteration proedure, where we approximatedthe in�nite sum in (3.7) by the �nite sum of its �rst 2[�T ℄ + 1 summands, if we set n = 1and � = �1. Comparisons of the solutions for the Brownian motion with and withoutjumps are given in Figure 7.We have used the same parameters as in the examples of Setion 2, but have inludedthe possibility of a jump of height � = �0:1, ouring with di�erent intensities. For� = 0:3 one would expet a jump approximately every three years, for � = 2 even twojumps per year. Notie that the stok has the same expeted terminal value in both ases!To explain this we rewrite equation (3.5) as follows:dP (t)P (t�) =  b� nXi=1 �i�i! dt+ �W (t) + nXi=1 �idNi(t) ; t > 0 ; P (0) = p :Whereas a jump ours for instane for � = 0:3 on average only every three years, meaningthat with rather high probability there may be no jump within two years, the drift hasa permanent inuene on the dynami of the prie proess. Despite this additional stok17
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Figure 8: Wealth orresponding to the optimal portfolios for Brownian motion with and without jumpsdepending on the time horizon T , 0 < T � 5 (top) and 0 < T � 20 (bottom). The parameters are thesame as in Figure 7. The possible jump size is again � = �0:1.drift of �� 0� the optimal portfolio for stok pries following a geometri Brownian motionwith jumps is always below the optimal portfolio of the geometri Brownian motion (solidline). This means that the threat of a downwards jump of 10% leads an investor to a lessrisky behaviour, and the higher � is, the less risky is the investor`s behaviour.3.2 Generalized inverse Gaussian di�usionMoving away from the Blak-Sholes model towards more general di�usion models isa rather obvious generalization. It is also desirable, sine marginal distributions of thelog-returns of stok pries are often heavier tailed than normal. This has been shownvery onviningly, for instane, by a data analysis in Eberlein and Keller (1995). Variousmodels have been suggested: a simple hyperboli model has been investigated by Bibbyand S�rensen (1997); a more general lass of models has been suggested by Barndor�-Nielsen (1998).We onsider a generalized inverse Gaussian di�usion model (for brevity we write GIGdi�usion) for the log-returns of stok pries. This lass of di�usions has been introduedin Borkove and Kl�uppelberg (1998) and we refer to this soure for details.18



The following equations determine a general di�usion market.dP0(t) = P0(t)rdt ; P0(0) = 1 ;dP (t) = P (t)(bdt+ dY (t)) ; P (0) = p ;Y (t) = U(t)� u ; Y (0) = 0 ;(3.8)In our ase we now hoose U as a GIG di�usion given by the SDEdU(t) = 14�2U2�2(t) ( + 2(2 + �� 1)U(t)� �U2(t)) dt+�U(t)dW (t); U(0) = u > 0 ;(3.9)where W is standard Brownian motion. The parameter spae is given by � > 0,  � 1=2,�;  � 0, max(�;  ) > 0, and� 2 R if �;  > 0 ;� � min(0; 2(1� )) if � = 0;  > 0 ;� � min(0; 2(1� )) if � > 0;  = 0 :(3.10)The GIG model is a formal extension of the Blak-Sholes model, whih orresponds tothe hoie of parameters  =  = 0, � = 1; � = 0. It also ontains the (generalized)Cox-Ingersoll-Ross model as a speial ase. The advantage of our onstrution lies in thestrutural resemblane of the resulting prie proess to the geometri Brownian motionmodel. We an deompose the stok prie into a drift termmultiplied by a loal martingale:P (t) = p exp�bt + 14�2 Z t0 U2�2(s) � + 2(2 + �� 1)U(s)� �U2(s)� ds�� exp�� Z t0 U(s)dW (s)� 12�2 Z t0 U2(s)ds� ; t � 0 :The following lemma shows another property of the proess U that is useful, when de-sribing the wealth proess.Lemma 3.3 Let U be the GIG di�usion given by (3.9) and � > 0. Then the proesseU = �U is again a GIG di�usion with eU(0) = �U(0) and parameterse� = ��1� ; e =  � ; e� = �=� :(3.11)The parameters  and � remain the same.Proof Notie �rst that all parameters of eU satisfy the neessary non-negativity assump-tions and (3.9). The assertion now follows by alulating deU(t) = d(�U(t)) = �dU(t),t � 0. �19



Remark 3.4 As a onsequene of Lemma 3.3 the wealth proess X� has a very nieexpliit form. Indeed it is of a similar form as the stok prie proess P :X�(t) = x exp�(1� �)rt+ebt+ eY (t)� 12heY it� ; t � 0 ;(3.12)where eb = �b and eY (t) = eU(t)� �u ; t � 0 ;for any positive portfolio �. �Aording to De�nition 3.1 for the CaR(x; �; T ) we have to determine the �-quantile ofeY (T ) � 12heY iT . Here we see one of the big advantages of the CaR as a risk measure: itdoes not depend on the existene of moments. Even for an in�nite mean it is well-de�ned.However, if we want to solve the mean-CaR problem, we have to ensure that X�(T )has a �nite mean. In general, it is not always possible to easily deide if this is the ase.A natural assumption is to assume U(T ) or eU(T ) to have the stationary distribution ofthe proess U or eU respetively. This is ertainly justi�ed if the time horizon T is hosensuÆiently large. As in Bibby and S�rensen (1998) we therefore make this simplifyingassumption whih helps us to give a result about the existene of E(X�(T )).Proposition 3.5 Assume that U(T ) and eU(T ) are GIG distributed with parameters  ,�, � and e , e�, � respetively, i.e. they have the stationary distributions of the proessesU(�) and eU(�) respetively. Assume that � is a positive portfolio. Then X�(T ) has a �nitemean if e� = �=� > 2.Proof As eU is always positive, we estimateX�(T ) � x exp�(1� �)rT +ebT + eU(T )� �u� :If E exp(eU(T )) <1, then EX�(T ) <1. By J�rgensen (1982) we know the expliit formof the moment generating funtion of the GIG distribution leading toE �exp(eU(T ))� = K� �p� (1� 2=e�)�K� �p� � (1� 2=e�)�=2 ;(3.13)where K�(�) denotes the generalized Bessel funtion of the third kind. The rhs of equation(3.13) is �nite for e� > 2. �Thus if the original parameters satisfy � > 2 and � 2 [0; 1℄, then also e� > 2 and in thisase X�(T ) has a �nite mean. In this ase the mean-CaR problem is well-de�ned and an20



be solved, however one annot hope for an analyti solution. In the following example weshow how the mean-CaR problem an be solved using analyti properties of the proessas far as possible, and then present a simple simulation proedure to solve the problemnumerially.Example 3.6 (Generalized Cox-Ingersoll-Ross model (GCIR))As an example we onsider the generalized Cox-Ingersoll-Ross model, i.e., the GIG marketmodel with parameters  = 1, � = 0. This results in the following expliit form for U :U(t) = exp�12�2�t+ �W (t)� �u+ 14�2 Z t0 exp��12�2�s� �W (s)� ds� ; t � 0 ;whih has meanEU(t) = 8<: exp�(�+ 1)�22 t��u+  2(�+ 1) �1� exp��(� + 1)�22 t��� if � 6= �1 ;u+ 12�2 t if � = �1 ;(see e.g. Borkove and Kl�uppelberg (1998)). Further, note that we haveY (t) = U(t)� u = 14�2 t + 12(1 + �)�2 Z t0 U(s)ds+ � Z t0 U(s)dW (s)(3.14)and we obtain the same representations for eU(t) and eY (t) if we substitute  by e = � .An expliit solution of the mean-CaR problem does not seem to be possible. What remainsare Monte-Carlo simulations and numerial approximations.A simple algorithm to solve the mean-CaR problem would be the following:For large N and i = 1; : : : ; N :� Simulate sample paths (Wi(t))t2[0;T ℄ of the Brownian motion (W (t))t2[0;T ℄:� Compute realisations Ui(T ) and R T0 U2i (t)dt of U(T ) and R T0 U2(t)dt, respetively,from the simulated sample paths of (Wi(t))t2[0;T ℄.� For \all" � 2 R omputeeZ�i (T ) = �Ui(T )� 12�2�2 Z T0 U2i (t)dt� �u:� Get estimators b�(�) for E(X�(T )) and b�(x; �; T ) for CaR(x; �; T ) :b�(�) := xN NXi=1 exp �(r + (b� r)�)T + eZ�i (T )�b�(x; �; T ) := x exp(rT ) (1� exp (�(b� r)T + bz�(�))) ;where bz�(�) is the �-quantile of the empirial distribution of the eZ�i (T ) with theonvention we already used in De�nition 3.1.21



� Choose the portfolio � with the largest value of b�(�) suh that b�(x; �; T ) is belowthe upper bound C for the CaR.Of ourse, it is not possible to ompute the quantities b�(�) and bz�(�) for all � 2 R expli-itly. A pratial method onsists in hoosing K = 100 values of � in a bounded intervalof interest and derive funtions �(�); z�(�) via interpolation. One then hooses that valueof � that solves the mean-CaR problem orresponding to these funtions.
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Figure 9: Ten sample paths of ( eZ(t))0�t�20 for � = 1 (left) and ten sample paths of ( eZ�(20))�2(0;1)(right) for parameter values x = 1000; r = 0:05; b = 0:10;  = 4; � = 0; � = 0:05 and u = 5.To give an impression of the behaviour of eZ(t) the �rst diagram in Figure 9 shows tensample paths for the parameter values x = 1000; r = 0:05; b = 0:10;  = 4; � = 0; � =0:05 and u = 5. The seond diagram depits the behaviour of eZ(20) as a funtion of �.Figure 10 shows a result of the simulation algorithm desribed above. It is the result ofN = 100 simulations for T = 20 and the remaining parameters hosen as those of Figure9. As expeted, both the mean terminal wealth and the CaR inrease with �. Thereforethe problem an be solved by identifying that portfolio � in the right side diagram thatorresponds to the given upper bound C for the CaR.4 ConlusionWe have investigated some simple portfolio problems ontaining an upper bound on theCaR as an additional onstraint. As long as we were able to alulate expetations andquantiles of the stok pries in expliit form we ould also solve the problems expliitly.This an be done within a Gaussian world, but very little beyond. The Blak-Sholesmodel with jumps is just feasible and easily understood. As soon as one moves away22
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