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1 Introduction

We consider a diffusion process (X;);>o with state space R", n € N, of gradient field type,
i.e. (Xi)i>0 solves a SDE of the form

(1.1) dX! = —0,,®(Xy)dt + odB!  i=1,...,n,

where ® € C'(R",R), o > 0 and (B})t>0, i = 1,...,n, are independent one-dimensional
standard Brownian motions. Note that (X;);>¢ is symmetric (and hence reversible) w.r.t.

the measure p on R® with Lebesgue density 1 given by
(1.2) fi(z) = e 2@/ zeR".

p is also the stationary (or invariant) measure of the process (X;);>o and we assume /1 to
be finite.

The main interest of this paper is to characterize the extreme fluctuations of (X;);>o.
More precisely, we analyze the asymptotic behavior of the partial maxima of (X;);>o w.r.t
some distance function ¢, i.e. we study the random variables

Mr = max ¢(X;) T >0.

0<s<T

The distance function ¢ can be of quite general form, we only assume that ¢ is generated
by an ezhausting family of R™. This is by definition an increasing family (Og)g>g, of
open, bounded subsets of R* with smooth boundary, such that . r, Or = R". The set
{R > Ry : x € Or} is not empty for every x € R" and the distance function is then given
by

(1.3) q(z) =inf{R>Ry:x € Og} z€R".

The simplest example for an exhausting family of R are the open balls B := {z € R" :
|z| < R}, R > 0, where |- | is the Euclidean norm. The associated distance function g
coincides with the Euclidean norm.

M is related to absorption at the boundary of the sets Og, R > Ry, in the following
sense. We denote by
(1.4) Tr:=1inf{s > 0: X; € R* \ Og}



the first exit time off O of the process (X;);>o, where P, is the law of the process (X¢)i>o

starting with its stationary measure p. Then
(15) PN(MTSR):P/,L(TR>T) R>R0,T>O

Our approach is inspired by the articles of Newell [New62] and Iscoe and McDonald
[IM89, IM92]. For more information on the history of this problem for one-dimensional
diffusions and some treatment of multi-dimensional processes we refer to Kunz [Kun02]
and the references therein. The key idea of our approach is to express the probability
P,(M7 < R) in terms of the backward semigroup associated to the part of the process
(X¢)i>0 on the ball Og, i.e. to the process (X;);>¢ killed when it leaves Og. The generator
of this semigroup, denoted by Lg, is given by the generator of the full process subject to
Dirichlet boundary conditions on the domain Og. The probability P,(My < R) for large
R is essentially determined by the behavior of the bottom eigenvalue Az of —Lg in the
limit when the domains Og extend to R” as R — .

In Kunz [Kun02] we considered the maximum M7 w.r.t. Euclidean norm. To evaluate
the eigenvalue asymptotics and hence the asymptotic behavior of My, the potential ® in
the SDE (1.1) was approximated by a rotationally symmetric potential. The associated
process can then be regarded as a one-dimensional process and the eigenvalue asymptotics
is known in this case, see e.g. Newell [New62]. We gave conditions on the asymmetric part
of ® such that the eigenvalue asymptotics for the process associated to the rotationally
symmetric potential was not destroyed. From the point of view of spectral analysis, we
gave conditions, when the eigenfunctions corresponding to the bottom eigenvalue Ag can
be suitably approximated by rotationally symmetric functions. If these conditions fail or
if we replace the balls (Bgr)gr-o by an arbitrary exhausting family (Og)grsgr, of R* we
can no longer use rotationally symmetric functions for the evaluation of the eigenvalue
asymptotics.

In Kunz [Kun01], having again the balls (Bg)rso as exhausting family of R", singular
perturbation techniques where used to study the asymptotic shape of the eigenfunction
g corresponding to the bottom eigenvalue Ag. It turns out that the rate of decay of ¥g
near the boundary of By depends on the spherical variables and has to be adjusted to

the slope of the potential ® in the particular direction. From this analysis an asymptotic
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expression for A\p as R — oo can be obtained. It was only assumed that the second
derivative in radial direction and the first angular derivatives of ® vanish faster than the
first derivative of ® in radial direction as |z| — oco. But these techniques have more or
less heuristic character, since it is a-priori assumed that the eigenfunctions g, R > Ry,
have an appropriate asymptotic expansion.

In this paper, we choose an exhausting family of R” which is more adapted to the
geometry of the problem, namely the level sets of the potential ® itself. Assume for the
potential ® in the SDE (1.1) that

(1.6) d(z) — o0 (lz] = o0).
We set
(1.7) Op:={z € R" : ®(x) < R} R > Rj := min ®(z).

zERP
Note that Ry is well defined by condition (1.6) and the sets Of are bounded for every
R > Ry. Hence (O%)gsr, is an exhausting family of R® in the sense of the definition.
This choice of the exhausting family has the following advantage: large fluctuations of
(Xt)i>0 are expected in regions where the potential ® is flat. The level sets of ® are more
extended in this regions and hence stress the directions of large fluctuations of (X;):>o.
Further the choice of the level sets of ® suggests that we should use test-functions for the
evaluation of the eigenvalue asymptotics which are constant on the iso-level sets of ®, i.e.
they are of the form f o ®, where f is a real function. We give conditions when the sharp
eigenvalue asymptotics can be obtained by means of test-functions of the shape described
above. This yields also to a characterization of the maximum M7y of the process w.r.t. the
distance function generated by the level sets (O%)r>r, of the potential ®.

As an example we present, apart from the obvious rotationally symmetric case, a
diffusion processes of gradient field type, where the asymmetric part of the potential ®
factorizes in radial and spherical component. Further we give the example of a diffu-
sion processes of gradient field type with potential of tetragonal shape. In this case the
conditions for getting sharp eigenvalue asymptotics can be explicitly evaluated.

The structure of this paper is as follows. The results are stated in section 2. In section

3 we recall some facts from the theory of Markov processes an operator theory. The proofs



of the results are given in section 4 and some examples are presented in section 5.

2 Results

Let (X;)i>0 be a diffusion process of gradient field type solving the SDE (1.1) with po-
tential ® € C'(R",R). Assume that (X;);>o is symmetric w.r.t. its stationary measure p
with Lebesgue density ji(z) = e~2®(®)/ o* x € R". The existence of a p-symmetric weak

solution of the SDE (1.1) is guaranteed (see section 3 for more details) assuming

(2.1) / e 27|V |?dz < o0,

where V denotes the gradient. Further assume that the stationary measure p is finite, i.e.
(2.2) Ly = / e~ 2@/ 4z < 0.,

Let (Or)r>g, be an arbitrary exhausting family of R”. It will turn out that the asymp-
totic distribution of My := maxo<;<7 ¢(X;), where the distance function ¢ is generated
by (Or)r>r, according to (1.3), is determined by spectral properties of the generator of

the process (X;)i>o. This generator reads formally

(2.3) —Au—Za ®,u = L2l Zaﬁ( ~28/o? azlu) .

For R € (Ry, o0|, the operator L acting on L?(Og, i) with Dirichlet boundary conditions
on Op is denoted by Lg (set O := R™ and no boundary conditions are present, see
section 3 for a definition); the operator L generates a strongly continuous contraction
semigroup (e"#%);5o on L?(Og, ). Assume that —L,, enjoys the spectral gap property in
the sense that

(2.4) A :=inf3(—Ls) N (0,00) >0,

where Y denotes the spectrum of the operator. In Proposition 3.2 we state a sufficient
condition for (2.4) to hold. For R € (Ry, oc], the bottom eigenvalue of the operator —Lg
is denoted by A := inf ¥(—Lg). Proposition 2.1 of Kunz [Kun02] states that for every
T > 0 and sufficiently large R > R,

(2.5) (1 = Ag/A)e™=T < P,(Mp < R) < e 2T,
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Evidently A\p — 0 as R — oo and we need an explicit asymptotic expression for the
convergence A\g — 0 as R — oo.

We make use of the following asymptotic notations: given two real functions a and b,
we write a(t) ~ b(t) and a(t) < b(t) as t — tg € RU {Foo} if limy_y, a(t)/b(t) = 1 and
lim sup,_,;, a(t)/b(t) < 1, respectively. By a(t) 2 b(t) we mean that b(t) S a(t) as t — tg
and we write further a(t) = o(b(t)) as t — to if lim;_, |a(¢)/b(t)| = 0.

We have to find a simple function [ : Rt — R*, given in terms of the potential ® and

the diffusion coefficient o, such that
(2.6) Ar ~ I(R) (R — 00).

Assume for the moment that such a function [ is already given. The following proposition
shows that one can replace in (2.5) the bottom eigenvalue A by the asymptotic expression

I[(R), see Theorems 2.3 and 2.4 of Kunz [Kun02].

Proposition 2.1 Assume that there exists a function | satisfying (2.6). Then
(a) for every T >0

TUR) S P,(Mr>R)S(T+1/A)I(R) (R— o0),
(b) for every sequence Ry /oo as T — o0

|P,(Mp < Ry) —e 'BDT| 50 (T — 00).

A second exhausting family (O, ),sr, of R" is called compatible to the exhausting family

(OR)R>R0 if
(2.7) R, :=inf{R > Ry : 5T C Or} <0 r>Trgy,

where inf() := oo. The next corollary describes how asymptotic lower bounds for the
bottom eigenvalue X, associated to (5,«)0,«0 and hence also for the tail of the maximum

MT := maxo<;<7 ¢(X;) can be obtained, where ¢ is the distance function generated by

(Or)r>r0 .

Corollary 2.2 Assume that there ezists a function | satisfying (2.6) with Ag associated

to (Or)r>ry- Let (Op)rsr, be an ezhausting family of R* compatible to (Or)r>r,- Set

I(r) :=U(R,), r >10. Then X\, > I, as T — oo and hence for every T > 0

Ti(r) < PH(ﬂT > ) (r = 00).



PROOF. Since O, C Opg, we have XT > Mg, for every r > ry. Moreover {70, > T} C
{75, > T} and we obtain invoking the relation (1.5) that P,(Mr > R,) < PN(MT > )
for every r > 1. Further R, — oo as r — oo since (Og)gr>g, and (@VT)DT0 are exhausting
families of R™. Hence the result follows from assumption (2.6) on the function ! and from

the left asymptotic inequality in part (a) of the above Proposition. O

Part (b) of the above proposition allows us to determine the possibly non-degenerated
limit distribution of the (properly normalized) maximum My as T — oo in the spirit of
classical extreme value theory, see e.g. chapter 3 of Embrechts et al. [EKM97]. A univariate
cumulative distribution function F' is said to be in the domain of attraction of an extreme
value distribution H € {A, ®,,¥,} (F € DA(H)), where A is the Gumbel distribution
and ®, and ¥, are the Frechet and Weibull distribution with index « > 0, respectively,

if there exist norming sequences (¢7)rso and (dr)rso with ¢z > 0, T > 0, such that

(2.8) lim F(cpr +dp)" = H(x) z € R.

T—oo

For the proof of the next corollary see e.g. Corollary 2.6 of Kunz [Kun02].

Corollary 2.3 Assume the situation of Proposition 2.1. Set F(R) := e7'® R > 0. If
F € DA(H) for an extreme value distribution H with norming constants (cr)rso, (dr)r>0

according to (2.8), then denoting convergence in distribution by 4
G (Mr—dr) S H (T > o0).

We come back to the evaluation of the asymptotics of the bottom eigenvalue Ag in
the sense of (2.6). It is not a realistic objective to determine a function [ in terms of the
parameters of (X;);>¢ satisfying (2.6) for an arbitrary exhausting family (Og)g>g, of R".
As mentioned in the introduction, we concentrate on the level sets (O) gsr, of ® defined
in (1.7), which are an exhausting family of R" assuming (1.6). In this case, the eigenvalue
asymptotics is evaluated my means of test-functions of the form f o ®, where f is a real
function. In order to apply the generator L defined in (2.3) to these test-functions, we

assuime
(2.9) ® € C*(R",R),
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It is convenient to split up integrals over the level sets Of, R > Ry, into integrals w.r.t.

the iso-level sets of ®. To this aim assume that there exists 2y > Ry such that
(2.10) Ve(z) 0 z€R"\Op, .

Hence for a continuous function f : R* — R and R > R; we can define the following

weighted integral over the iso-level set 0% := {z : ®(z) = R}

(2.11) mo.nlf] == /6 5 % dog n(€),

where dog g is the surface measure on dOF. The proof of the following lemma is deferred

to section 4.

Lemma 2.4 Assume (1.6) and (2.10). Then for every f € C(R",R) and R > R,

R
/ fdz = me [ f]dr.
O%\O%, Ry

The crucial condition to obtain sharp eigenvalue asymptotics is the relation
(2.12) me p[(A®)*] = o (m¢7R[\V<I>|2]) (R — 00).

If ® is of polynomial form in z, then A® (as a second order derivative term) is of lower
order than the first order derivative term |V®| in the limit |z| — co. Hence in this case,

condition (2.12) has a good chance to hold. We also need some growth conditions on ®.

Set,

(2.13) I(R) == / VO(@)2e®@7dy R R,.
03

Assume

(2.14) I(R) Moo, I(R)=o (e4R/02) (R — o0).

The interpretation of the first condition is that |V®(z)| must not decay too fast to zero
as |z| — oo. By L’Hopital’s rule and Lemma 2.4, the second condition also reads as a
growth condition on |[V®| in the form mg g[|V®|?] = 0(e?*/7") as R — oco. In Lemma,
5.1 we state explicit growth conditions on ®, such that (2.14) holds. The proof of the

following theorem is deferred to section 4.



Theorem 2.5 Assume (2.2) and (2.4). Further suppose that the conditions (1.6), (2.9),
(2.10), (2.12), and (2.14) hold. Set

I(R) = 02—2(76‘4R/”21(R) R> Ry,
where Z, defined in (2.2) is the total mass of p and I(R) is defined in (2.13). Then the
function | satisfies (2.6) with A\g associated to the ezhausting family (Op)r>r, defined in
(1.7) generated by the level sets of .

Remark 2.6 (1) By L’Hopital’s rule and Lemma 2.4, the function ! can be replaced
by
2

R
UR) = e / 17y [VO[2dr  R> Ri.
g o Ry

(2) Without loss of generality is suffices to prove Theorem 2.5 under the following
additional assumptions: 02 = 2 and the potential ® is normalized in the sense that
fi(r) = e~®@ is a probability density on R". To recover the general case, the result

for normalized potentials has to be applied to the potential ®, := (2/0%)® — In Z,.

To reduce the integration over O3 in the term I(R) to the integration over O,

R must be replaced by (62/2)(R + In Z,). Further the bottom eigenvalue \p for

the normalized problem has to be multiplied by 2/0?, since the same holds for the

generator, see (2.3).

3 Preliminaries: Markov Processes and Operator The-
ory

The behavior of the maximum My of a diffusion process (X;);>o of gradient field type is
related to spectral properties of its generator. Here M7 is the maximum w.r.t. the distance
function generated by an exhausting family (Og)gsg, of R". According to Remark 2.6.(2)
we assume that o> = 2 and that the measure p with Lebesgue density ji(z) = e @),

z € R", is a probability measure on R". Suppose that the diffusion process (X;):>o solves

the SDE (1.1) and is symmetric w.r.t. p.



We use the following notations: for R € (Ry, 00] we denote by pg the restriction of
1 to the set Op (where we set Oy := R"). We write for short L2 for L*(Og, ug) and
| - |2,z and (-, -)g for norm and scalar product in L? , respectively. Further the indicator
function of a set A is denoted by I4.

Recall that for a p-symmetric process (X;);>o the associated backward semigroup
(P)i>o with P f(z) := E,[f(Xy)], € R*, t > 0, extends (under some regularity con-
ditions) to a strongly contraction semigroup on Lioo. We define the following operators
and quadratic forms leading to a proper definition of the generator L defined in (2.3): for

R € (Ry, <] set
(3.1) Ex(u,v) := Z/ Opu Oz phdx u,v € Cg(Og),
i=1 YOr

where CZ(Og) is the set of two times continuously differentiable functions having value 0
at the boundary of O. For every R € (Ry, oc|, the quadratic form (€5, C2(Bg)) is closable
in L2  and its closure (€, D(Eg)) is a symmetric Dirichlet form, see e.g. section I1.2.(a) in
Ma and Réckner [MR92]. Let (—Lg, D(Lg)) be the positive, selfadjoint operator on L
associated to (€g, D(Er)) and (e"R%),5¢ the strongly continuous contraction semigroup on
L;Zm generated by the operator Lg for every R € (Ry, o0].

Assuming (2.1), there exists a p-symmetric diffusion process (X;);>o solving the SDE
(1.1) in the following sense: there exists an increasing sequence {0, : n € N} of stopping
times with oo, = lim,_,s 0y, such that P,(0x < 00) = 0 and (X;);>0 is a weak solution
of the SDE (1.1) on the set {t < 0y} for every n € N. Further the L’ -extension of
the backward semigroup (P;)>o of (X3)i>o coincides with the semigroup (e*>");>o. This
result has been shown by Meyer and Zheng [MZ85], see also section 6.3 of Fukushima et
al. [FOT94] and Proposition 3.1 of Kunz [Kun02].

For R € (Ry,0), we denote by (X[);>o the part of (X;)i>0 on Og, i.e. the process
(X¢)>0 killed when it hits the set R" \ Og. (X[)i>0 is pr-symmetric and the backward
semigroup (P%)s of (X0 is given by PAf(z) = Eu[f(X0) o), 7 € R, £ > 0,
where 75 is defined in (1.4). (X[);50 is associated to the Dirichlet form £ in the sense
that the L2 -extension of the backward semigroup (P/*)i>q of (X/*);>o coincides with the

semigroup (e“?');5q, see e.g. Theorem 4.4.2 and Theorem 4.4.3(i) of Fukushima et al.
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[FOT94]. Denoting by 1 the constant function with value 1, we deduce that
(3.2) P, (tr>T)=(e"*"1,1)y T >0, R€ (Ry,0).

Recall the definition of the bottom eigenvalue Ag := inf X(—Lg), R € (Ry, oc|, where
¥(—Lg) is the spectrum of the operator —Lp (with respect to L2 ). The term of the RHS
in (3.2) can be estimated from above and below in terms of Ar and the spectral gap A
defined in (2.4) such that, invoking (1.5), we arrive at (2.5), see e.g. theorem 2.13 of Iscoe
and McDonalds [IM94].

To estimate the bottom eigenvalue Ar of —Lg we use the variation principle for upper
bounds and Temple’s inequality for lower bounds. For R € (Ry, oc] and a function v €

D(Lg) we define

(3-3) pr(v) = 0l 5€R(v,v),  1r(V) = [Vl RI LRV R -

Note that pg is the Rayleigh quotient. We summarize the bounds on Ag in the following
proposition. For a proof see e.g. theorems XIII.2 and XIIL.5 of Reed and Simon [RS78],
note also Remark 3.6 of Kunz [Kun02].

Proposition 3.1 Assume (2.4) and let R € (Ry,o0]. Then for every v € D(Lg) with
pr(v) < A

lr(v) — pr(v)?
R

Finally we state a condition on the potential ®, such that the spectral gap assumption

< Ar < pr(v).

(2.4) holds. We will make use of the fact, that the operator — L, is unitarily equivalent
to the Schrédinger operator —A + Vg on R® with potential

(3.4) Vo(z) := Y V®(2)]2 — L1A®(z) z€R".

4 2
We use the notation liminfj; . V(2) := limg_,o inf5s g V(2), where V : R* — R. For

a proof of the next proposition see e.g. theorem 3.1 of Berezin and Shubin [BS91] or

Proposition 3.7 of Kunz [Kun02].

Proposition 3.2 Suppose ® € C*(R",R) and liminf|;_,o Vo(z) > 0. Then the spectral

gap property (2.4) holds.

11



4 Proofs

ProorF oF LEMMA 2.4. We fix R > R; and set for § > 0
Fpe={z:R<P(x) < R+6}.

It suffices to show that

Y fde=merlf]  (6\0).

0 Jrps
Since ® € C'(R",R), we obtain, using (2.10) and the implicit function theorem, that
00% = {z : ®(x) = R} is a n — 1-dimensional C'-surface, which is orthogonal to the
gradient field V®. Let (§)¢cz be a smooth parameterization of d0%. For every £ € 003
we define the flow [0, s*) 3 s — T,¢ € R" as the maximal solution of the system of ODEs

2(s) = [Ve(2(s)| 'VO(2(s))  2(0)=¢.
Note that this is well defined by (2.10) and that the flow s — Ti£ has unit speed. Set
Pe(s) = B(T€) s €[0,5%), £ €90%.

Obviously ¢ is differentiable at s = 0 with ¢;(0) = [V®(£)| > 0 by (2.10). Hence we can
find for every £ € d0% and small § > 0 a constant Sgs > 0 such that ¢¢(Ses) = R+ 0.

Since ¢ is locally invertible near s = 0, S ; is differentiable w.r.t. 6 at 6 = 0 with

I T T
(6 (R) e (0)  [Ve(E)]”

Since ® € C'(R",R), the mapping T : (s,£) — T,¢ is a local diffeomorphism. From

S
(4.1) lim =22 = (¢ 1)/ (R)

assumption (1.6) we deduce that dOF is compact. Hence by shrinking ¢ if necessary,
T is reduced to a global diffeomorphism T : I'; 5 — D['ggs, where I';; = {(s,§) :
£ € 0%, s € [0,S¢4]}. Further the limit in (4.1) can be made uniformly in £ € 903,
since also (s,&) — ¢¢(s) = ®(T:€) is a local diffeomorphism and dO% is compact. Using
the transformation rule for integrals having in mind that the flow s — T¢ has unit speed

we get
1

1 Se.s
(4.2) ; /F =g /a Og( [ rwe ds) doe n(),
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where dog g is the surface measure on dO%. Using (4.1) we compute by means of the

chain rule

.1 [fes B . Ses - f(E)

Using the uniform continuity of f on the compact set I' 5 and the fact that the limit in

(4.1) is uniformly in & € dO%, also the above limit is uniformly in £ € dO%. Hence in
(4.2), the limit § \, 0 can be interchanged with the integration over dO% and the result
follows. O

The main result of this paper, Theorem 2.5, determines the fine asymptotics of the
bottom eigenvalue A as R — oo in the sense that a function [/ is given satisfying (2.6).
Here Ag corresponds to the exhausting family (O%)r>r, of R* generated by the level sets
of the potential ®. To this aim suitable test-functions (vg)rsr, must be found such that
the bounds on Ag in Proposition 3.1 get sharp in the limit R — oo. According to Remark

2.6.(2) we may assume w.l.o.g. that
(4.3) o0 =1+/2 and Ji(z) = e ®® x € R", is a probability density on R”.

The quadratic form € and the operator Lg, R € (Rp,oc0], are taken here w.r.t. the
exhausting family (O%)gsr, of R*. For a function v € D(Eg) we write for short E(v) for

Er(v,v) and the norm in L2 := L*(O%, ug) is again denoted by || - [|2,z-

PROOF OF THEOREM 2.5.

Step 1: Construction and properties of the test-functions. Set for R > R
vp(z) =1 — e2@~F r€0p.

By assumption (2.9), vg € C?(0O%, R) for every R > R, and can be extended continuously
by 0 to the boundary of O%. Hence v € C2(O%,R) C D(Lg) for every R > Ry. Further
Vugr(z) = —e®@~EV® () for every x € O%. Plugging this into the quadratic form &g
defined in (3.1) we obtain for R > Ry
(4.4) Er(vr) = eZR/ 'V |%e® d .

0

L]
R
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Using the alternative representation of L defined in (2.3) one gets for R > Ry

(4.5) | Lvg|)3. = e_ZR'/d)(A(I))Ze<I> dx

Or

Step 2: It suffices to show
(4.6) ILvgll3r = 0 (Er(vr)) (R — o0).

We need to prove that pgr(vg) — 0as R — oo, where pg is defined in (3.3). Proposition 3.1
is then applicable for large R. We can deduce that Ag ~ pg(vg) as R — oo if we can show

Ir(vr) — pr(vR)?
A — pr(vgr)

By construction, vg 1 p-a.s. as R — oo (where vg is extended to a function on R" by

(4.7)

= o0(pr(vr)) (R — 00).

setting 0 on R™ \ O%). Since p is a probability measure on R, we have
(4.8) lorllsr =1 (R— o00).

From the growth condition (2.14) we obtain together with (4.4) that Er(vg) \, 0 as
R — oo. From this and relation (4.8) we deduce that also pr(vg) — 0 as R — oo,
having the definition (3.3) of pgr(vg) in mind. Further (4.8) allows to replace in (4.7) in
the limit R — oo the terms Ir(vg) and pr(vg) (defined in (3.3)) by ||Lvg||3  and Er(vr),
respectively. But then (4.7) follows from (4.6) using again pg(vg) — 0 as R — oo. Hence
we get Ap ~ Er(vg) as R — oo with Eg(vg) in the form (4.4). To obtain the general
asymptotic expression [(R) without assuming the simplifying condition (4.3) see Remark
2.6.(2).
Step 3: Condition (4.6) holds. We need to show that

an = Enlvr) | Luall} = ( / \V@\?e‘l’dx> [ (aapetas 0 (R o0),
[0} 0

g

R
where we used the representations (4.4) and (4.5). The growth condition (2.14) implies
that fo}; |V®[%e® dx /' 0o as R — oo and hence L’Hopital’s rule can be applied to the

quotient gg. Thus we calculate making use of Lemma 2.4

lim gr = lim (e®me pl|VO[?]) " e®me g[(A®)?] = 0.
R—o0 R—o

The last step follows from the crucial condition (2.12). O
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5 Examples

We give some examples of diffusion processes of gradient field type for which the sharp
eigenvalue asymptotics can be evaluated by Theorem 2.5 and hence the asymptotics of
the maximum M7y of the process w.r.t. the distance function generated by the level sets
(O%)r>r, of the potential ® is given by Proposition 2.1 and Corollary 2.3.

The following lemma provides a method to check whether the growth conditions (2.14)
hold. Assume that the open balls (B,),~o around the origin and the level sets (OF)z>r,
(which are an exhausting family of R" by assumption (1.6)) are compatible to each other

in the sense of (2.7). Set for sufficiently large R > 0
p«(R) :=sup{p>0:B,C O3}, p*(R) :=inf{p>0:0% C B,}.

Note that p,(R) ' oo as p — oo by condition (1.6) and p*(R) < oo for every R > Ry.

Further we define for a continuous function f : R* — R the terms f,(p) := ming—, f(z)

and f*(p) := max; -, f(z).

Lemma 5.1 Assume n > 2.

(a) The first growth condition in (2.14) holds, if there exist C' > 0 and py > 0 such that
(5.1) IVO|.(p) > Cp™*  p>po.

(b) Assume that ®, is differentiable and ¥, is finally strictly positive. The second growth
condition in (2.14) holds, if ® satisfies

1|A2(p) s
(5.2) pl L = (e (0))
(@.)'(p)
PROOF. Recall the definition (2.13) of I(R).

(p— 00).

(a) Choose p; > pg such that ®(z) > 0 for every |z| > p; (possible by assumption (1.6)).
Denoting by 7, the volume of the unit sphere in R", we estimate for R with p.(R) > p;

px(R) p«(R)
I(R) > / 'V |%e® dz > fyn/ " YUV (r) dr > C"yn/ rtdr.
Bou(r)

P1 P1
The last expression raises to infinity as R — oo since also p,(R) /' 0o as R — oc.

(b) Applying Lemma 2.4 to the term I(R), it suffices by L'Hopital’s rule to show
(5.3) e Fmeg g[|[VO)] = 0 (R— ).

15



Since O% has C' boundary, we are allowed to apply Stoke’s formula (having in mind that
the outer normal to 0% is given by [V®| V)
e | VO[] = / VO(E) - T2 dog,n(e) = / div(VD () dz = / A®(z) dr.
902 o2 oe

Estimating further we obtain

AdD(z)dx

Ok

p*(R)
5/ |A<I>(a:)|dx§7n/ P AD| (1) dr
B 0

p*(R)

Using the fact that p*(®,(p)) = p and that ®;(p) 7 oo as p — oo, (5.3) is proved by

showing
pe Qo THASR(r)dr L p AR (p)
p—>00 e () - pP—>00 @; (p)etb*(p) -
Here we used L'Hopital’s rule once again and assumption (5.2). O

The following lemma is used for the asymptotic evaluation of integrals over exponential

terms.
Lemma 5.2 Let A, >0 and 6 € R. Then
R
/ e dr ~ (yA) TR AR (R = 00).
1

Proor. Apply L’Hopital’s rule to the quotient. O

5.1 Rotationally symmetric case

Assume that the potential ® in the SDE (1.1) has the property that there exist py > 0
and ¢ € C?([py, >0), R) such that

(5.4) ®(z) =o(z)  [z[>po-
Assume further that

(5.5) lim inf ¢'(p) > 0.

p—00

16



The crucial condition (2.12) in this context has the form of the regularity condition

(5.6) ¢"(p) = o(¢'(p)) (p—00).

Note that ¢(p) 7 0o as p — oo at least linearly by (5.5). Moreover ¢! exists on [Ry, 00)
for some Ry > 0 large enough and also ¢ '(R) /oo as R — oo. Further we obtain for
the level sets

(5.7) 0% = Bysimy = {w: 2] < 67'(R)}.

A simple calculation yields

n—1

(5.8) VO(z)| = ¢'(|z), A®(z) =¢"(|z]) + 7 ¢'(lzl) [z > po.

By 7, we denote the volume of the unit sphere in R". In the rotationally symmetric case,

Theorem 2.5 yields to the following corollary.

Corollary 5.3 Let n > 2. Assume that the potential ® in the SDE (1.1) is of the form
(5.4). Suppose that (5.5) and (5.6) holds.
(a) Set 1
I(R) := %641%/“2 / ¢1 . 2071y ()2 dt R > R,.
o ¢~ (Ro)
Then | satisfies (2.6) with A associated to the exhausting family (O3)r>r,-

(b) Consider the ezhausting family (B,),>0 of R* (B, = {z : |z| < p}). Set l(p) := l(¢(p)),

p> po. Thenl(p) ~ X, as p — oo, where \, is associated to the ezhausting family (B,) 0.

Remark 5.4 Assume the situation of part (b) of the above theorem. In Theorem 5.4 of

Kunz [Kun02] we could show under slightly weaker conditions that E(p) ~ Xp as p — 0o

- 2 P -1
ll (p) = 7 / t17n€2¢(t)/02dt P> pPo-
27,

po
It was only assumed that liminf|, o Va(x) > 0 with Vg defined in (5.9). In particular

where

we did not need to assume the regularity condition (5.6). This is due to the fact that
in [Kun02] we used test-functions which are more adapted to the rotationally symmetric

case. If ¢(p) = p®, p > po, then the two asymptotics expressions I(p) and I;(p) coincide.

17



Using Lemma 5.2 we get as p — o0

~ 29, 402 /p o2, _ Vol o osa g2
l p~ /o 2t% o g 1 1+ 1\2 dt ~ n- nta—2_ —2p%/c
(p) 2 de "o € (O! ) 7 p € ’

~ v (0% . a2\~
Li(p) ~ ( p T at2e20%/ > ~1(p) .

g

27, \ 2a

ProoOF. We have to check that the conditions of Theorem 2.5 are satisfied. Since
oé(p) /oo as p — oo at least linearly by (5.5), the conditions (1.6), (2.2), and (2.10)
hold. We show the spectral gap condition (2.4) by means of Proposition 3.2. The function
Vs defined in (3.4) reads here setting p = |z| and using the representations in (5.8)

_ ¢,(p)2 1 1 n—1 ' o ¢I(p) ¢”(p) n—1

Using (5.5) and (5.6), it is seen that liminf); . Ve(z) > 0 and hence the spectral gap

condition (2.4) holds by Proposition 3.2. To show the crucial condition (2.14) we compute

(5.10)  meg[|VO]?Y] = /IE |:¢I(R)W’(f)\da(ﬁ):%(t"1¢’(t))t:¢-1(3),

(6" (1€]) + 259 (1€1))?
moal(d2f) = [ , do (€)
f El=¢-1(R) ¢'(€)]
_ n— PHOK 2(n—1 n—1)2
(5.11) = g [0 (S 220 + %qﬁ’(t)ﬂt_dj_l(m :
Since ¢ 1(R) 0o as R — oo we have using (5.6)
o map[(APP] e e () L (mo1y2 _
1%1_1)1;0 me,r[| VO[] }%1_1)1;0 ((d”(t)) T e + () >t:¢—1(R) -0

To check the growth conditions (2.14) it suffices to prove the conditions (5.1) and (5.2)
of Lemma 5.1. Obviously ¢'(p) > p~™* for sufficiently large p > 0 by (5.5) and hence
condition (5.1) holds. Using that ¢(p) , oo as p — oo at least linearly by (5.5) and
condition (5.6), we obtain

¢"(p) + 2524 (p)

¢"(p) n—1
¢'(p) "

¢'(p) p

n—1

p —d(p) — -1

‘ e 0 (p = ).

Hence also condition (5.2) is satisfied and the growth conditions (2.14) by Lemma 5.1.
This finishes the proof of part (a). Part (b) is obvious having (5.7) in mind. O
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5.2 Non-Symmetric Processes

We illustrate the method for the following specific potential ® in the SDE (1.1). To avoid
trivialities, we assume n > 2. Using polar coordinates R*\{0} > = = pey where p = |z| > 0
and (eg)gco is a smooth parameterization of the unit sphere S”! in R* (the same symbol
is used for functions in Cartesian as well as in polar coordinates), we suppose that there

exists pp > 1 and a function p € C*(S"1,[0,00)) with mingee p(#) = 0 such that
(5.12) @(p,0) = p* +p0)p”  p>po,0€O,

where o > 1 and € R.

The essential feature in the definition of ® is that the asymmetric part factorizes
in radial and spherical component. It is possible to replace in the definition (5.12) of the
potential ® the terms p® and p? by functions @(p) and (p), see also Example 5.2 in Kunz
[Kun02]. In this case quite technical compatibility and asymptotic growth conditions have
to be imposed. We omit these cumbersome calculations in the present paper.

The expressions |V®| and A® read in polar coordinates (V and A denote the gradient

and the Laplace operator w.r.t. the Cartesian coordinates, respectively)
(5.13) IVO?(p, 0) = (p®' + Bp(0) ") + |Vap(0)[?p7 2,

(5.14) A®(p,0) = ala+n—2)p" 2+ B(B+n—2)p(0)p"* + Agp(8)p° 2.

Here Vy and Ay denote the gradient and Laplace operator w.r.t. the angular coordinates

0, respectively. We obtain the following estimates

(5.15) V®|(p,0) > ap™? p>po, 0 €0O.

Since p € C*(S™ ') and S™! is compact, there exists a constant x > 0 such that
(5.16) [AD|(p, ) < kp™{@P1=2 p>py €O,

Theorem 5.5 Assume that the potential ® in the SDE (1.1) is of the form (5.12). The
assertion of Theorem 2.5 holds in the following situations:
(i) a €[1,2) and B < 2,

(i)« >2 and B <1+ /ala—1)+1.
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Remark 5.6 be imposed. (a) To obtain lower asymptotic bounds on the bottom eigen-
value Xp associated to the exhausting family (B,),~o of R”, where B, is the open ball

around the origin with radius p, we can use Corollary 2.2. Set

(5.17) pri=maxp(0),  ¢lp)=p"+p"0" p>po.

Invoking (2.7) we get R, :=inf{R > Ry : B, C O%} = ¢(p) and obtain that I(p) < A, as
p — oo where for p > pg
~ 2 _
I(p) = I(R,) = ——e 430}/’ / VP2 dy >
o2

o%Z,

22—Ze_4¢(”) V|2 dx .
o

#(p) 7 B,
It can be seen by Laplace’s method that the last integral has exponential decay of order

_929% /g2 .
e 2"/7" as p — oco. Hence we obtain

2 X
Ini(p) 2 = (" +200")  (p—0).

In Kunz [Kun02] the fine eigenvalue asymptotics of X,, was evaluated for the potential of
the form (5.12) in the two-dimensional case for & > 1 and 8 € (0, 2«) in the sense that

Xp ~11(p) as p — oo with

g * P e} -t C * (o
ll (p) — Cpfﬂ/w </ 7,,71627" /a2d7') ~ a_2pa7ﬁ/w 672,0 /o2 (p N oo) ’
p0

o
where the constants C,w* > 0 depend on the curvature of p in its zero points. We used
Lemma 5.2 for the last asymptotic evaluation. It is seen that the exponential decay of
1(p) and 11 (p) differ by the factor e=%"#°/** as p — co. This effect is due to the fact that
the ball B, is compared with the domain Og’(p) which is in general much bigger.

(b) The upper bounds on 3 in situation (i) and (ii) of Theorem 5.5 are used to insure
the crucial condition (2.14) by means of crude estimates, see (5.15) - (5.23). These upper
bounds do not seem to be crucial and may be extended by a more careful analysis for

specific expressions of the function p.

PROOF. Set m := max{«, §}. We have to check the conditions of Theorem 2.5. The
conditions (1.6), (2.2), and (2.10) obviously hold by inequality (5.15) since o > 1. The
spectral gap condition (2.4) is shown by means of Proposition 3.2. The function Vg defined
in (3.4) can be estimated using (5.15) and (5.16)

Ve 0 >a_22(a—1)_ﬁ m—2 heo
a(p,0) 2 —p 5P p>po, 0 €0O.
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Since o > 1 and m < 2« in both situations (i) and (ii), we obtain liminf ;e Va(z) > 0
and hence the spectral gap condition (2.4) holds by Proposition 3.2. To show the growth
conditions (2.14), we prove the conditions (5.1) and (5.2) of Lemma 5.1. Condition (5.1)
holds by the inequality (5.15) since @ > 1. To establish condition (5.2), we use again the
estimations (5.15) and (5.16)
n—1 |é:f)|j((pp)) e %0 < gpnflpmprf(afl) e 50 (p — ).

It remains to show the crucial condition (2.14). We need to parameterize the iso-level sets
00% = {x : ®(x) = R}. Recall the definition of ¢(p) in (5.17). Note that p — ®(p,0) is

strictly monotone increasing for every § € ©. Thus
vr(0) = (- 0) ' (R)  R>d(p), 0 €0

exists. From the inequality ¢(p) < ®(p,0) < o(p), p > po, 0 € O, we deduce for the

inverse functions

-1

(5.18) 6 (R) <vr(®) <RY* R>d(p), 0O,

Recalling the definition (2.11) of mg g[-] we estimate

(5.19) ma,r[[VO[’] > min|[V®|(yx(6),0) - Vol(0O%) ,
(5.20) mae.z[(AD)?] maxpeo(AL)*(yr(0),0) Vol(902).

mingee |V®|(vr(0),0)

Hence the crucial condition (2.14) holds if we can show

maxpco |AP|(yr(0), 0)
mingee [V®|(7r(0),0)

Using the estimations (5.15), (5.16), and (5.18) we obtain that for every 6 € ©

(5.21) J(R) := -0 (R— o).

(5.22) V®|(1&(0),0) > avr(6)°~' > ag (R)*,

. R(m—2)/a m>2,
(5.23) |AD|(7r(6),0) < kyr(0)™? < &

-1

¢ (R™? m<2.

In the case m < 2, corresponding to situation (i), the term J(R) in (5.21) can be further
estimated:

Jp<—¢ ((R)™2D 50  (R— o),

K
(0%
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since a_l(R) S2ooas R— ocoand m—2— (a—1) < 1—a < 0. Hence the crucial
condition (2.14) holds in this case.

In the case m > 2, corresponding to situation (ii), the term J(R) is estimated using

(5.22) and (5.23)

T < (5fo)R™ (57 (8) " R > B(p0).

Instead of showing limp,ec Jr = 0, it suffices to prove lim, o J5,), since also o(p) S oo

as p — 00. We estimate

(p™ + prpl)m- 2 p-(al)

pm(m—Q)/a+1—a (pa—m +p*pﬂ_m)(m_2)/a -0 (p — 0) X

J@(p)

Ql=Q =

This convergence holds, since the last term in braces is bounded and the upper bound on
f in the situation (ii) ensures that m(m — 2)/a+ 1 — a < 0. Hence the crucial condition

(2.14) holds also in this case. O

5.3 Potential of tetragonal shape

We consider the following two-dimensional situation where the potential ® appearing in

the SDE (1.1) satisfies the relation

(524) |$1|(I)($1,.’172)71/ﬂ1 + \3:2\(1)(3:1,3:2)*1/&2 =1 s x1,T9 € R\ {0} .

X

where 0 < i < Bo. Obviously ®(x1,0) = |z|%, - |‘Q1/[32‘
(0,22) = |oof” for o1, 2, € R\ {0} and the iso- | 1,
level set 003 = {z : ®(x) = R} for large R > 0 |
is a tetragon with edges (0, +R'/%2) and (£R'/%1,0), 1

see figure. In this setting we are able to compute the

terms mg gr[|V®|?] and me g[(AP)?] explicitly.

Note the similarities with the potential of the form (5.12) in the last example. In contrast
to the preceding example it will turn out that we do not need growth restriction on the

asymmetric part of the potential (growing with r#) as in Theorem 5.5.
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To overcome the problem that ® ¢ C?(R2?,R), one can smooth the edges of ® in such
a way that the terms resulting from this smoothing procedure do not matter in the limit
R — o00. We will check the conditions of Theorem 2.5. The conditions (2.2) and (1.6)
obviously hold by the definition of ®. Further ®(z) 0o as |z| — o0, i.e. condition (2.10)
holds. We begin to calculate |V®| and A®. By the symmetry of the potential ® it is

sufficient to work only in the positive quadrant. Set
0= 1//81 _1/ﬂ25 h(R,J)) = 1/ﬁ1 —5?J—1/’32$a R,.T) >0.

The relation (5.24) can be rewritten in the positive quadrant z; +z,®° = OB x1 29 > 0.
Applying the partial derivatives w.r.t. x1, xo to this equation we obtain after some obvious

transformations

(5.25) 0p,® = OV VPIR(D,20) 1, 0,0 = B VP R(D,2y) L.

Hence
P1-1/B1-1/82

(5.26) Vo| = ® \/(I)—2/ﬂ1 4 P2/ = \/D2/Br 4 $2/B2 .

h((I),QSQ) h(@,xz)
Applying again the partial derivative w.r.t. x; to the first equation in (5.25) and w.r.t.

x9 to the second equation, respectively, and substituting the arising terms 0,®, i = 1, 2,

according to (5.25), we get after some transformations
(9;@ = (1)1_2/’6ih((1), .TQ)_S(K)i - Ki(b_l/ﬂ2$2) 1= ]_, 2 s

where k1 = 1/81 —1/82, K1 =6 —6%, ky = 1/B1(1+1/B81—2/B2), and Ky = §+ 62. Hence
G2-4/b2

h(®,z5)8
We need the following estimates: since 1/3, < h(R,x3) < 1/ for 25 € [0, RV, we
deduce from (5.26) and (5.27)

2
(5.27) (A®)? = {<I>*25(,~;1 — K0 VP ) + (kg — KQcIrl/%Q)} .

(5.28) min VO > g2R>%5 max IAD| < B3koR'T2/P2 (R = 00).
R R

We claim that the spectral gap property (2.4) holds if 85 > 1. To this aim we estimate
the function Vp defined in (3.4) on the iso-level set 0% using (5.28)

. B o B3ka - _ B Bika
ggg Vo > ZlRQ(l 1/82) _ 22 R172/B2 — R2(1-1/82) Zl _ 22R (R — o0).

23



Since f, > 1 and ®(z) oo as |z| — oo, we obtain that liminf); . Ve(z) > 0 and hence
the spectral gap property (2.4) holds by Proposition 3.2.

In order to show the crucial condition (2.14), we compute mg g[|V®|?] and me z[(AP)?].
Fix R > 0 sufficiently large. Note that the iso-level set 0% in the positive quadrant is the
line joining the points (0, R*/#2) and (R'/%',0), see figure. This line can be parameterized
by

Yr(z2) = (RYP — Roxy,5), x5 € [0, RYP2].

Setting dp := vV R2/PL + R?/B2 we obtain for the infinitesimal curvature |y, (zs)|dzs =
(dr/R'52)dz,. To obtain the values of [V®| and (A®)? on the iso-level set 0% in the
positive quadrant we simply have to set & = R constant in (5.26) and (5.27) using x5
to parameterize 0O%. Recalling the definition (2.11) of mg g[-], we obtain invoking (5.26)
and (5.27)

monlVOP] = [ [V0(E)|doanlc)

R1/B2 1 d
— 4R1—1/ﬂ1—1/ﬂ2 RQ/ﬂl + RQ/’BZ/ R d
0

h(R, z2) R/

! dz
_ 4 RLVBi-2/B déRuﬂQ/O s
= %ln (%) Rl—l/ﬂl—l/ﬂz(R2/ﬁ1 —|—R2/ﬂ2)
(5.29) ~ %m (%) R (R—00).
Similarly

manl(80P] = [ S0 (€ doaae)

A R2—4/ﬂ2 R1/B2 (’{2 _ KQR—I/ﬂQxQ)Q dR
R=YB1=1/B2dp [, h(R, z5)? R1/B2

4 RI+1/B1=4/B2 [1/p2 /1 (ko — K92)? dz
o (1/B1—dz)°
(5.30) = KRW 2% (R ),

dZCQ

where K > 0 is a constant. From (5.29) and (5.30) we see that crucial condition (2.12)

holds for every choice of 0 < 31 < fs.
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The term I(R) defined in (2.13) reads in our situation using (5.29) and Lemma 2.4
4 R
I(R) = -1In <@) / e”/“27°1+‘5(1 + ) dr
o \b/)Jo

207 2
(5.31) ~ % In (%) RToe2R/e (R — 0).

The last step follows from Lemma 5.2. Hence the growth conditions (2.14) are obviously

satisfied. Setting

4 2
I(R) := 5 In (%) R0 =2R/0 R>0,

we obtain by Theorem 2.5 and (5.31), that Az ~ [(R) as R — oo, where \g is the bottom

eigenvalue associated to the exhausting family (OF)gso of R%.
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