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Abstract
We investigate the consequences of the lower frame condition and

the lower Riesz basis condition without assuming the existence of the
corresponding upper bounds. We prove that the lower frame bound
is equivalent to an expansion property on a subspace of the underly-
ing Hilbert space H, and that the lower frame condition alone is not
enough to obtain series representations on all of H. We prove that
the lower Riesz basis condition for a complete sequence implies the
lower frame condition and ω-independence; under an extra condition
the statements are equivalent.

1 Introduction

Let H be a separable Hilbert space. Recall that a sequence {fi}∞i=1 ⊆ H is a
frame if

∃A,B > 0 : A||f ||2 ≤
∞∑
i=1

|〈f, fi〉|2 ≤ B||f ||2, ∀f ∈ H. (1.1)

The sequence {fi}∞i=1 is a Riesz basis if span{fi}i∈I = H and there exist
A,B > 0 such that for all finite scalar sequences {ci},

A
∑
|ci|2 ≤ ||

∑
cifi||2 ≤ B

∑
|ci|2. (1.2)

A Riesz basis is a frame; and if {fi}∞i=1 is a frame, there exists a dual
frame {gi}∞i=1 such that

f =
∞∑
i=1

〈f, gi〉fi =
∞∑
i=1

〈f, fi〉gi, ∀f ∈ H. (1.3)
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In this note we investigate the consequences of the lower bounds in (1.1)
and (1.2) without assuming the existence of the upper bounds. Note that
the lower condition in (1.1) implies that every f ∈ H is uniquely determined
by the inner products {〈f, fi〉}∞i=1: if 〈f, fi〉 = 〈g, fi〉 ∀i ∈ N, then f = g.
That is, in principle we can recover every f ∈ H based on knowledge of the
sequence {〈f, fi〉}∞i=1. We prove that we actually obtain a representation of
the type (1.3) for certain f ∈ H. The question whether the representation
can be extended to work for all f ∈ H has been open for some time. We
present an example where it can not be extended.

2 Some definitions and basic results

For convenience we will index all sequences by the natural numbers N.

Definition 2.1 Let {fi}∞i=1, {gi}∞i=1 ⊆ H. We say that

(i) {fi}∞i=1 is a Riesz-Fischer sequence if there exists a constant A > 0 such
that A

∑
|ci|2 ≤ ||

∑
cifi||2 for all finite scalar sequences {ci};

(ii) {fi}∞i=1 satisfies the lower frame condition if there exists a constant
A > 0 such that A||f ||2 ≤

∑∞
i=1 |〈f, fi〉|2 for all f ∈ H.

(iii) {fi}∞i=1 is a Bessel sequence if there exists a constant B > 0 such that∑∞
i=1 |〈f, fi〉|2 ≤ B||f ||2 for all f ∈ H.

(iv) {fi}∞i=1 is minimal if for all j ∈ N, fj /∈ span{fi}i6=j.

(v) {fi}∞i=1 is ω-independent if
∑∞

i=1 cifi = 0 implies that ci = 0 for all
i ∈ N.

(vi) {fi}∞i=1 is complete if span{fi}∞i=1 = H.

(vii) {fi}∞i=1 and {gi}∞i=1 are biorthogonal if 〈fi, gj〉 = δi,j (Kronecker’s δ).

For a given family {fi}∞i=1 ⊆ H, our analysis is based on the synthesis
operator

T : D(T ) := {{ci}∞i=1 ∈ `2|
∞∑
i=1

cifi converges} → H, T{ci}∞i=1 =
∞∑
i=1

cifi(2.4)
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and the analysis operator

U : D(U) := {f ∈ H |
∞∑
i=1

|〈f, fi〉|2 <∞} → `2, Uf := {〈f, fi〉}∞i=1. (2.5)

The Lemma below is proved in [7].

Lemma 2.2 Let {fi}∞i=1 ⊆ H. Then

(i) {fi}∞i=1 has a biorthogonal sequence if and only if {fi}∞i=1 is minimal;
and if a biorthogonal sequence exists, it is unique if and only if {fi}∞i=1

is complete.

(ii) {fi}∞i=1 is a Riesz-Fischer sequence if and only if the associated analysis
operator is surjective.

We collect two other characterizations of Riesz-Fischer sequences. Ap-
parently, they have not been stated explicitely before; they can be proved
using methods developed in [7].

Proposition 2.3
(i) Let {ei}∞i=1 be an orthonormal basis for H. The Riesz-Fischer sequences
in H are precisely the families {V ei}∞i=1, where V is an operator on H (having
{ei}∞i=1 in the domain), which has a bounded inverse V −1 : R(V )→ H.

(ii) The Riesz-Fischer sequences in H are precisely the families for which a
biorthogonal Bessel sequence exists.

Example 2.4 Let {ei}∞i=1 be an orthonormal basis and consider {gi}∞i=1 :=
{ei + ei+1}∞i=1. Then {gi}∞i=1 is complete and minimal; it is also a Bessel
sequence, but not a frame. A straightforward calculation shows that the
biorthogonal system is given by

fi =
i∑

k=1

(−1)kek if i is even, fi =
i∑

k=1

(−1)k+1ek if i is odd.

{fi}∞i=1 is a Riesz-Fischer sequence by Proposition 2.3.
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3 The lower frame condition

Lemma 3.1 For an arbitrary sequence {fi}∞i=1 ⊆ H, the associated analysis
operator U is closed. Furthermore, {fi}∞i=1 satisfies the lower frame condition
if and only if U has closed range and is injective.

Proof: That U is closed follows by a standard argument. To prove that
{fi}∞i=1 satisfies the lower frame condition if and only if U has closed range
and is injective, note that the existence of a lower frame bound implies in-
jectivity of U . Since U is closed, U−1 is closed. Thus, by the closed graph
theorem, U has closed range if and only if U−1 is continuous on R(U), which
is obviously equivalent to the existence of a lower frame bound. �

Recall that a frame is a Riesz basis if and only if it is ω-independent. The
Theorem below generalizes this result to the case where {fi}∞i=1 only satisfies
the lower frame condition. It connects the concepts listed in Definition 2.1:

Theorem 3.2 Let {fi}∞i=1 ⊆ H with associated synthesis operator T . Con-
sider the following statements:

(i) {fi}∞i=1 is a complete Riesz-Fischer sequence.

(ii) {fi}∞i=1 is minimal and satisfies the lower frame condition.

(iii) {fi}∞i=1 is ω-independent and satisfies the lower frame condition.

Then the implications (i) ⇒ (ii) ⇒ (iii) hold. In general (iii) does not
imply any of the other statements, but if T is closed and surjective, then all
statements are equivalent.

Proof: (i) ⇒ (ii). By Lemma 2.2 (ii), the analysis operator U is sur-
jective, and since {fi}∞i=1 is complete, it is also injective. From Lemma 3.1
it follows that {fi}∞i=1 satisfies the lower frame condition. That {fi}∞i=1 is
minimal follows easily from the definition of Riesz-Fischer sequences.
(ii) ⇒ (iii): Suppose

∑∞
i=1 cifi = 0 with not all ci zero. Then there is some

j such that cj 6= 0 and hence fj = −
∑

i6=j
ci
cj
fi, implying fj ∈ span{fi}i6=j,

contradicting minimality of {fi}∞i=1.
We now show that (iii) does not imply (ii). In Theorem 3.5 we will show
that in an arbitrary Hilbert space there exists a ω-independent sequence
{fi}∞i=1 which satisfies the lower frame condition and for which there is a
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f ∈ H such that no sequence of scalars {ai} satisfies f =
∑∞

i=1 aifi. Then
{fi}∞i=1 ∪ {f} satisfies the lower frame condition and is ω-linearly indepen-
dent, but is not minimal, since {fi}∞i=1 is already complete. Clearly, this
argument also shows that (i) can not be satisfied. On the other hand, if T is
closed and surjective, it is proved in [1] that there exists a Bessel sequence
{gi}∞i=1 such that f =

∑∞
i=1〈f, gi〉fi for all f ∈ H. Assuming (iii), it follows

that 〈fi, gj〉 = δi,j, i.e., {gi}∞i=1 is a biorthogonal Bessel sequence; thus, via
Proposition 2.3, {fi}∞i=1 is a Riesz-Fischer sequence, and completeness of it
follows from the lower frame bound. �

Riesz-Fischer sequences can also be characterized by the following prop-
erty, involving lower frame bounds for the subspaces spanned by finite sub-
sets.

Proposition 3.3 Let {fi}∞i=1 ⊆ H and let {In}∞n=1 be a family of finite sub-
sets of N such that

I1 ⊆ I2 ⊆ · · · ↑ N.

Denote by AoptIn
the optimal lower frame bound for {fi}i∈In in span{fi}i∈In.

Then {fi}∞i=1 is a Riesz-Fischer sequence if and only if it is (finitely) linearly
independent and infn∈NA

opt
In

> 0.

The proof for this follows the same lines as [3, Proposition 1.1], where this
was proved under the additional condition that {fi}∞i=1 was a frame for H.
Under this extra condition, the characterization was first proved by Kim and
Lim [4] as a consequence of a series of Theorems.

The Proposition below characterizes sequences satisfying the lower frame
condition in terms of an expansion property.

Proposition 3.4 Let {fi}∞i=1 ⊆ H. Then {fi}∞i=1 satisfies the lower frame
condition if and only if there exists a Bessel sequence {gi}∞i=1 ⊆ H such that

f =
∞∑
i=1

〈f, fi〉gi, ∀f ∈ D(U). (3.6)

Proof: Assume that {fi}∞i=1 satisfies the lower frame condition. Then U−1 :
R(U)→ H is bounded. Define a linear operator V : l2(N)→ H by V = U−1

on R(U), by V = 0 on R(U)⊥ and extending it linearly. Then V is bounded.
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Let {ei}∞i=1 be the canonical basis for `2(N) and let gi := V ei. Then {gi}∞i=1

is a Bessel sequence and by construction, for all f ∈ D(U) we have

f = V Uf =
∞∑
i=1

〈f, fi〉gi.

On the other hand, if {gi}∞i=1 is a Bessel sequence with bound B and (3.6) is
satisfied, then for all f ∈ D(U),

||f ||2 = ||
∞∑
i=1

〈f, fi〉gi||2 ≤ B

∞∑
i=1

|〈f, fi〉|2,

meaning that the lower frame condition is satisfied. �

Note that when {fi}∞i=1 satisfies the lower frame condition, the Bessel se-
quence {gi}∞i=1 constructed in the proof of Proposition 3.4 belongs to D(U).
Observe, that the equality (3.6) might hold for all f ∈ H without D(U) being
equal to H. For instance, if {ei}∞i=1 is an orthonormal basis and we define
fi := iei, i ∈ N, then

D(U) = {f =
∞∑
i=1

ciei |
∞∑
i=1

|ici|2 <∞}

which is only a subspace of H. Nevertheless,

f =
∞∑
i=1

〈f, fi〉
1

i
ei, ∀f ∈ H. (3.7)

Note that {iei}∞i=1 is a Riesz-Fischer sequence, but not a Riesz basis.
For several families of elements having a special structure, the Riesz-Fischer
property implies the upper Riesz basis condition; let us just mention families
of complex exponentials in L2(−π, π), cf. [7], [8], [5]. As far as we know,
no example of a norm-bounded family in a general Hilbert space satisfying
the Riesz-Fischer property but not the upper Riesz basis condition has been
known. Theorem 3.5 will provide such an example.

As we have seen in Proposition 3.4, the lower frame condition on {fi}∞i=1

is enough to obtain a Bessel sequence {gi}∞i=1 such that (3.6) holds. In (3.7)
we have seen that the representation (3.6) might hold for all f ∈ H, even
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if D(U) is a proper subspace of H; one could hope that the representation
always hold on H. Our next purpose is to prove that this is not the case.
We need to do some preparation before the proof, but we state the result
already now.

Theorem 3.5 In every separable, infinite dimensional Hilbert space H there
exists a norm-bounded Riesz-Fischer sequence {fi} for which

(1) {fi} has lower frame bound 1 and no finite upper frame bound.
(2) D(U) is dense in H, and {fi} ⊆ D(U) .
(3) {fi} is ω-independent.
(4) {fi} is not a (Schauder) basis for H.
(5) There is an f ∈ H so that there is no sequence of scalars {ai} for

which
f =

∑
i

aifi.

(6) There is no family of functions {gi} so that for every f ∈ H we have

f =
∑
i

〈f, fi〉gi.

Moreover, (4),(5) and (6) hold for all permutations of {fi}.

Our proof of Theorem 3.5 is constructive, and the result was used in the
proof of Theorem 3.2 to show that in general (iii) does not imply (i).

The idea in the construction proving Theorem 3.5 is to consider a Hilbert
space H which is a direct sum of subspaces of increasing order. Before we go
into details with the construction, we need some preliminary results. Given
n = 2, 3, . . . , let Hn be a Hilbert space of dimension n and let {ei}ni=1 be an
orthonormal basis of Hn. Let Pn be the orthogonal projection onto the unit
vector 1√

n

∑n
i=1 ei, i.e.,

Pn

(
n∑
i=1

aiei

)
=

∑n
i=1 ai
n

n∑
i=1

ei.

Let H1
n = (I − Pn)Hn. For all 1 ≤ j ≤ n− 1 let

fnj = ej − en.

Note that {fnj }n−1
j=1 is a linearly independent family which spans H1

n. Our
first lemma will identify the frame bounds and the dual frame for subfamilies
of {fnj }n−1

j=1 .
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Lemma 3.6 Given any n = 2, 3, ... and any I ⊂ {1, 2, · · · , n−1}, the family
{fnj }j∈I is a linearly independent frame for its span with lower frame bound

1 (which is optimal for |I| > 1) and upper frame bound at least |I|+3
2

. The
dual frame for {fnj }n−1

j=1 is given by

gj =
n− 1

n
ej −

1

n

∑
i6=j

ei, j = 1, 2, .., n− 1.

Proof: Given f ∈ span {fnj }j∈I , there are scalars {aj} so that

f =
∑
j∈I

ajf
n
j =

∑
j∈I

ajej −

(∑
i∈I

ai

)
en. (3.8)

Note that ||f ||2 =
∑

j∈I |aj|2 + |
∑

i∈I ai|2 and 〈f, fnj 〉 = aj +
∑

i∈I ai. Thus∑
j∈I

|〈f, fnj 〉|2 =
∑
j∈I

|aj +
∑
i∈I

ai|2

=
∑
j∈I

[
aj +

∑
i∈I

ai

][
aj +

∑
i∈I

ai

]

=
∑
j∈I

|aj|2 + 2
∑
j∈I

Re

aj[∑
i∈I

ai

]+ (|I|)|
∑
i∈I

ai|2.

Here we observe that

∑
j∈I

Re

aj[∑
i∈I

ai

] = Re
∑
j∈I

aj

[∑
i∈I

ai

]
= Re

(∑
j∈I

aj

)[∑
i∈I

ai

] = |
∑
i∈I

ai|2.

Thus∑
j∈I

|〈f, fnj 〉|2 =
∑
j∈I

|aj|2 + (|I|+ 2)|
∑
i∈I

ai|2 = ‖f‖2 + (|I|+ 1)|
∑
i∈I

ai|2.

So the choice A = 1 is a lower frame bound. If |I| > 1, we can choose
{ai}i∈I such that

∑
i∈I ai = 0, so the choice f =

∑
i∈I aifi with exactly those

coefficients shows that A = 1 is actually the optimal lower bound in this
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case. If |I| = 1, say, I = {j}, then the relation (3.8) between f and {ai}i∈I
gives that

(|I|+ 1)|
∑
i∈I

ai|2 = 2|aj|2 = 2
||f ||2

||fnj ||2
= ||f ||2,

so the optimal lower bound is A = 2 in this case.
Now we fix i ∈ I and compute

∑
j∈I

|〈ei − en, fnj 〉|2 = 4 + |I| − 1 = |I|+ 3 =
|I|+ 3

2
||ei − en||2.

It follows that the optimal upper bound is at least |I|+3
2

.
Since our family {fnj }n−1

j=1 is linearly independent, the dual frame {gj}n−1
j=1

is the family of dual functionals for the (Schauder) basis {fnj }n−1
j=1 . We will

now compute this family explicitly. Because of symmetry, it suffices to find
gn1 , which we now do. Write

gn1 =
n∑
i=1

aiei

and observe that gn1 is uniquely determined by the following 3 conditions:
(i) 1 = 〈gn1 , e1 − en〉 = a1 − an.
(ii) For all 2 ≤ i ≤ n− 1, 0 = 〈gn1 , fni 〉 = ai − an.
(iii) Since gn1 is in the orthogonal complement of the vector

∑n
i=1 ei, the

coefficients satisfy
n∑
i=1

ai = 0.

Now, by (i) and (ii) we have

gn1 = (1 + an)e1 + an

n∑
i=2

ei.

By (iii),
1 + an + (n− 1)an = 0.

Hence, 1 = −nan, and so an = −1/n. Finally,

a1 = 1 + an =
n− 1

n
. �
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Recall that the basis constant for a sequence {fi}∞i=1 in H is defined as

K := sup

{
||
∑m

i=1 cifi||
||
∑n

i=1 cifi||
: 1 ≤ m ≤ n <∞, c1, · · · , cn ∈ C,

n∑
i=1

cifi 6= 0

}

(for finite sequences {fi}Ni=1, we replace “n <∞” by ”n ≤ N”). To make the
calculations in the next Lemma easier, we will work with H1

2n+1.

Lemma 3.7 Let n = 2, 3, · · · and σ be a permutation of {1, 2, · · · , 2n}. Then
there is a sequence of scalars {ai}2n

i=1 so that

‖
n∑
i=1

aif
2n+1
σ(i) ‖

2 = n+ 1

while

‖
2n∑
i=1

aif
2n+1
σ(i) ‖

2 = 2.

In particular, the basis constant for {f 2n+1
σ(i) }2n

i=1 is at least
√

n+1
2

.

Proof: Let

ai =
1√
n

for 1 ≤ i ≤ n, ai = − 1√
n

for n+ 1 ≤ i ≤ 2n.

Then,

‖
n∑
i=1

aif
2n+1
σ(i) ‖

2 =
n∑
i=1

|ai|2 + |
n∑
i=1

ai|2 = 1 + n.

Also,
∑2n

i=1 ai = 0 implies

2n∑
i=1

aif
2n+1
σ(i) =

2n∑
i=1

aieσ(i).

Hence,

‖
2n∑
i=1

aif
2n+1
σ(i) ‖

2 =
2n∑
i=1

|ai|2 = 2. �

It is proved in [6] that {fi}∞i=1 can only be a basis if the basis constant is
finite. We are now ready for the proof of Theorem 3.5.
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Proof of Theorem 3.5: Using the notation above we consider the Hilbert
space

H =

(
∞∑
n=2

⊕H1
n

)
`2

.

We refer to [6] for details about such constructions. Let the sequence {fi}∞i=1

be any enumeration of {fnj }
n−1, ∞
j=1,n=2. Since {fnj }n−1

j=1 spans H1
n and is linearly

independent for each n = 2, 3, · · ·, (1) and (3) follow. (2) is clear.
We now prove that {fi}∞i=1 can not be a Schauder basis; since {fi}∞i=1 is

defined as an arbitrary enumeration of the elements in {fnj }
n−1, ∞
j=1,n=2, this will

prove (4). The basis constant for {fi}∞i=1 is larger than or equal to the basis
constant for any subsequence. But for each n ∈ N, a permutation of the
family {f 2n+1

j }2n
j=1 is a subsequence of {fi}∞i=1, and by Lemma 3.7 its basis

constant is at least
√

n+1
2

; thus the basis constant for {fi}∞i=1 is infinite, and

it can not be a basis. This proves (4).
We now prove (5). It clearly follows from (3) that whenever f ∈ H, if

there is a sequence of scalars {aj} so that f =
∑

j ajfj, then {aj} is unique;
since {fj} is not a Schauder basis, this gives (5).

For the proof of (6), we observe that corresponding to {fnj }
n−1, ∞
j=1,n=2, the

dual functionals {gnj }
n−1, ∞
j=1,n=2 are by Lemma 3.6 given by

gnj =
n− 1

n
ej −

1

n

∑
i6=j

ei, for 1 ≤ j ≤ n− 1, n = 2, 3, ....

This family is the only candidate to satisfy (6). In fact, suppose that a
sequence {hnj }

n−1, ∞
j=1,n=1 satisfies f =

∑
j,n〈f, fnj 〉hnj for all f ∈ H. Now, for all

n 6= m and all 1 ≤ i ≤ n− 1 we have that

〈gmj , fni 〉 = 0.

Also,

〈gmj , fmi 〉 = 0, for all 1 ≤ i 6= j ≤ m− 1, while 〈gmj , fmj 〉 = 1.

Putting this altogether,

gmj =
∑
i,n

〈gmj , fni 〉hni = 〈gmj , fmj 〉hmj = hmj .
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That is, hmj = gmj , for all 2 ≤ m ∈ N and all 1 ≤ j ≤ m − 1. Now
we observe that this family does not work for reconstruction. For n ∈ N,
{gnj }n−1

j=1 are the dual functionals to {fnj }n−1
j=1 . Since {fnj }

n−1, ∞
j=1,n=1 is not a basis,

we conclude that {gnj }
n−1, ∞
j=1,n=1 is not a basis. Since {gnj }

n−1, ∞
j=1,n=1 is clearly an

ω-independent family, this means that there exists f ∈ H which can not be
written f =

∑
j,n c

n
j g

n
j for any choice of coefficients {cnj }. This proves (6). �

To conclude the paper we observe that if every subfamily of {fi}i∈I satisfies
the lower frame condition with a common bound A, then there exists a
subfamily of {fi}i∈I which satisfies the lower Riesz basis condition. The
proof is similar to the proof of Theorem 3.2 in [2].

Proposition 3.8 Suppose that {fi}i∈I satisfies (1.1) and that every subfam-
ily {fi}i∈J , J ⊆ I satisfies

A||f ||2 ≤
∑
i∈J

|〈f, fi〉|2, ∀f ∈ span{fi}i∈J . (3.9)

Then {fi}i∈I contains a complete subfamily {fi}i∈J for which

A
∑
i∈J

|ci|2 ≤ ||
∑
i∈J

cifi||2 (3.10)

for all finite sequences {ci}i∈J .

In Proposition 3.8 the conclusion A
∑

i∈J |ci|2 ≤ ||
∑

i∈J cifi||2 actually holds
for all sequences {ci} ∈ `2 for which

∑
cifi is convergent.
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