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Abstract

With the df F' of the rv X we associate the natural exponential family of df’s F)
where

dFy(z) = e\dF (z)/ EeM*

for A\ € A := {A € R| EeM < co}. Assume Ay, = sup A < oo does not lie in A. Let
A T Ao, then non-degenerate limit laws for the normalised distributions F(a)z+by)
are the normal and gamma distributions. Their domains of attractions are deter-
mined. Applications to saddlepoint and gamma approximations are considered.
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1 Introduction.

A one-dimensional exponential family may sometimes be normalised by trans-
lation and scaling to yield a non-degenerate limit law in which case the only
possible limit laws are the normal distribution and the gamma distributions on
(0,00) and on (—o00,0). See Balkema, Kliippelberg and Resnick [2], hereafter
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abbreviated to BKR99. These are exactly the distributions which generate ex-
ponential families which are stable under a continuous one-parameter group
of positive affine transformations (Bar-Lev and Casalis [4,5]). In the present
paper we describe the domains of attraction of these limit distributions and
give a new characterisation of a stable exponential family.

With the (random variable) rv X with distribution function (df) F', we asso-
ciate the natural exponential family consisting of rv’s X* with df’s dF\(z) =
eMdF(x)/K()). The constant K (\) = [ e dF(x) is the moment generating
function (mgf) of X evaluated at A\. The domain of K is the interval

A={AeR|K(\) = BeM < o0}

containing the origin. The mgf A\ — K(\) is continuous and strictly positive
on A. The important cumulant generating function (cgf) k = log K is a convex
analytic function on the interior of A. We study the asymptotic behaviour of
the df’s F\ for A = A :=sup A, where A — A means that A € A and A
converges to A, from below.

If \.o € A, then F) | F)\_ pointwise. In the more interesting case that Ao, ¢ A,
we have Fy(z) | 0 for every x < z, where zo, =sup{F < 1} is the upper
endpoint of the df F'. Then X* — ., in probability and it may be possible to
normalize the rv’s X* by changing location and scale so that for some ay > 0
and b, € R
A
AyX* = Amh oy A = Ao (1.1)

ax

Here = denotes convergence in law to a non-degenerate rv. The upper endpoint
Aoo Of A always satisfies Ao, > 0 and we are interested in the case Ao, ¢ A and
hence A\ > 0.

Theorem 3.5 of BKR99 [2] characterizes possible non-degenerate limits in (1.1)
and Section 2 gives the necessary background. If V' is a non-degenerate limit
variable in (1.1), then there exist centering by € R and scaling a) > 0 so that
V' is a standard normal variable, or so that V' or —V" has a gamma distribution
on (0,00). Thus, the class of limit distributions, the extended gamma family,
(BKR99 [2], Example 2.9) can be written (see Section 2) as a continuous three
parameter family, indexed by shape, location and scale.

When (1.1) holds, the rv X or df F' generating the exponential family X*
lies in the domain of attraction of the limit rv V or of its df G and we write
X € D(V) or F € D(G). The aim of this paper is to characterize the domains
of attraction of the limit distributions.

Weak convergence of the normalised rv’s in the exponential family to a non-



degenerate limit implies convergence of the mgf’s (BKR99 [2], Theorem 3.6)
and this implies convergence of all moments. In Section 3 we show that asymp-
totic normality is equivalent to convergence to zero of the third moment of
X* standardized to mean 0 and variance 1. The normal domain is also char-
acterized in terms of the cgf x, and the limit in (1.1) is normal if and only if
its cgf « satisfies that 1/v/k" is self-neglecting; that is

for all z € R. The domains of attraction of the gamma distributions are the
subject of Section 4. For F' to be in the domain of a gamma with positive shape
parameter requires A\, < oo and then a necessary and sufficient condition is

lim (Ao — A&/ (A) = ¢ > 0.

A= Aoo

An equivalent condition is that E((Ay — A)X?) converges to the first mo-
ment of the gamma distribution. Criteria for a negative shape parameter are
comparable and also discussed in Section 4.

Domain of attraction conditions can be expressed either in terms of the df
F or in terms of the cgf x and hence the results developed here have appli-
cations to the asymptotic theory of transforms and their inversion, and for
saddlepoint approximations. In the latter case, distributions in the domain
of attraction of the normal law have the property that the saddlepoint ap-
proximation of the density becomes exact in the limit; see Barndorff-Nielsen
and Kliippelberg [6,7]. This is further discussed in Section 5. The theory of
this paper sheds new light on the subject of regular variation and on a class
of distribution functions with very thin tails. Anticipated investigations of
the boundary behaviour of multivariate Laplace transforms will require good
understanding of the asymptotics of univariate exponential families.

Whether one develops results about exponential families in terms of measures,
df’s or rv’s, is largely a matter of taste and habit. Many of our results are
expressed in terms of the rv's X*, which we have injected into the exposition
as a convenience.



2 Background.
2.1 The class of limit distributions.

To aid understanding of the limit distributions, we introduce the cgf’s:

25(6) :{—leog(l—ﬁﬁ)—ﬁ/ﬁ ifp#£0, B <1
h £2/2 if 8=0.

The functions ¢z depend continuously on the parameter 5 as one sees either
by using I'Hospital’s rule or by noting that ¢3(0) = ¢}(0) = 0 and

1
wp(&) = 1= pep BE < L.

A gamma distributed rv Z with parameter « has density 2* ‘e */I'(«) for z >
0 and cgf A — —alog(l— ) on (—o0,1). Set « = 1/% Then Y3 = 372 — 1/
has cgf g for B # 0. For 8 — 0 the variable Y3 converges in distribution to
the standard normal rv Yy with density e‘y2/2/\/ﬁ for y € R. The extended
gamma family is the set of the probability distributions of the variables aYz+0
with @ > 0 and 8,0 € R. This is a continuous three parameter family. It is
also the set of possible non-degenerate limit laws in (1.1).

If we think of X — X* as a transformation, the next result shows that the
extended gamma family is the set of fixed points.

Theorem 2.1 Let Y*, X\ € A, be the exponential family generated by Y. The
exponential family is stable in the sense that the standardised variables
Y)\ — U / A 2 n A
Vi = , p=rk'"(N)=EY" o°=k"(\) = Var(Y"), AEA

o

all have the same distribution if and only if there is a non-empty open inter-
val J C A so that EV3 does not depend on \ for X € J. Furthermore, the
only stable exponential families are those generated by the rv’s in the extended
gamma family.

Proof The condition is obviously necessary. We may assume that J contains
the origin and that FY = 0 and EY? = 1. Then V; = Y? =Y. Let x) be the
cgf of Y. The cgf of Vy is

log Eet01/7 = ki, (£/0) — Eufo = k(A + /o) — K(A) — Epfo.
If V4 £ YV it has cgf k and hence

KA +E/0) = K(A) + K(8) + /o (2.1)



Taking the second derivative with respect to & we obtain
o*(A+¢fo)/o* =), a=0o(N). (2.2)

Write 7 = 1/0 to get 7(A + 7€) /7 = 7(€) and differentiate this expression to
find

(A +7&) =7'(). (2.3)

Setting £ = 0 we see that 7/(\) is constant in A. Note that

7"()\) = (1/0()\))/ _ _,Lg”’()\) _ —EE(Y —

203 2 o

)3 (2.4)

If EV} is constant, then (2.4) (2.3),(2.2),(2.1) all hold and Vy £ Y.

If 7/(A\) = EV® = —f8 does not depend on A then from (2.4) 7(\) = 1 — A,
(since 0(0) = 1) and £”(\) = 1/(1—A)? on J. Hence, by analytic continuation
k(A) = @g(A) for BA < 1. O

2.2 Tail equivalence.

The description of the domains of attraction of the limit laws relates the
behaviour of the df F' in the neighbourhood of z,, with the behaviour of the
mgf K and of the exponential family F) in the neighbourhood of A,. When
considering such asymptotic behavior, the notion of tail equivalence provides
an invariance classifier. Two df’s F' and G are tail equivalent if they have the
same upper endpoint z,, = sup{F < 1} = sup{G < 1}, if they are continuous
in the upper endpoint, F(2,—) = G(2s—) = 1, and if

1-G(x) ~1—F(x) T = Too (2.5)
in the sense that the quotient tends to 1. Again we mean by z — &, that x
converges to &, from below.

Theorem 2.2 Let X have df F' which is continuous in its upper endpoint
Too = sup{F < 1} and mgf K with domain A with e ¢ A. Suppose Y is
another rv with df G and mgf M and that F and G are tail equivalent. Then

1) K and M have the same upper endpoint Ao, and M(X) ~ K(X) for A — A

2) G\(z) — Fx(x) — 0 uniformly in x € R for A — A\



3) (1 —Gx(x))/(1 = Fx(z)) = 1 uniformly in v < T for X = M.

Furthermore, if X* and Y* are the associated exponential families, then for
any sequence A\, — Ao and any rv V'

XM b, YA — b,

=V = — =T
(07 Qn,

Proof Note that A\oo(G) = Aoo(F) since for A > 0 the integral [e (1 —
G(z))dz = M(X)/X converges if and only if this holds for the corresponding
integral for the df F. Since 3) implies 2) it remains to prove the asymptotic
equivalences in 1) and 3).

Now first assume that G = F on an interval [z, 2 ). Then

zq»a—ﬂmpz'/eWm@:Jﬂma—Gmm 2o < T < Too.(2.6)

(2,00)

For fixed x < x the central term grows without bound for A — A\ since
K(X\) Tooif Ao &€ A. Hence M () 1 oo and G(z) — 0 for x < x4 by the first
sentence of the proof. Since this also holds for F(z) we see that M(\) ~ K(\)
for A = M. This in turn implies 3) by (2.6) for zp < < T

Now let £ > 0. There exists a constant xy < x4 so that
|log(1 — G(x)) —log(l — F(z))| < e T € [T0, Too)-

Let F* = Flj;,,) and define G* similarly. The inequality

/umw%n<f/h@wﬂ@

holds for all indicator functions h = 1}, ). Hence it holds for all non-negative
increasing functions. Take h(t) = e* with A € (0,)\y) to conclude that
M*(\) < e*K*(A) and take h(t) = €M1, o0)() to conclude that M*(\)(1 —
Gi(z)) < eeK*(A\)(1 — Fy(z)) for A € (0, \) and all z. By symmetry the in-
equalities hold if we interchange F' and G (and K and M). Hence we conclude
that |log M*(\) —log K*(\)| < € for A € (0, A\») and | log(1—G5(x)) —log(l—
Fy(x))] < 2e for A € (0, A\) and all x < x.

Since F* = F and G* = G on [xy, ) we know that K*(\) ~ K()\) and
M*(X\) ~ M(X). Thus |log M(\) —log K(A\)] < 2¢ for A € (A1, Aso). Similarly
|log(1 — F)\(z)) —log(l — Gx(x))] < 3¢ for A € (A2, Ao) and all z < . Since
e is arbitrary this proves the asymptotics in 1) and 3).

By 2) weak convergence G, (a,x + b,) — H(x) holds if and only if F), (a,x +
b,) converges weakly to H(x). O



2.3 Convergence preservation.

Assume (1.1), so that a limit law exists and define the notational convenience,
called the Esscher transform, by

E*X =X*  Ae€A. (2.7)

The semi-group property holds: E*E? = EtF if a, B and o + f3 lie in A.

Theorem 2.3 Suppose as in (1.1) Vy := AxX* =V as A\ = Ao, with V non-
constant. Then for all v € R for which Ee" is finite, we have E'V\ = E'V
and Ee""» — Ee?V as A — A\,

Proof Convergence of the mgf’s is proved in BKR99 [2], Theorem 3.6. Observe
that theset I' = {y € R | Ee”V < oo} is open if V' is normal or if V or —V has
a gamma distribution. Hence convergence of the mgf’s implies for any v € I’

/cp(x)e"’mdm(x) — /cp(x)e"’mdw(x) A — Ao

for all continuous bounded functions ¢ on R. Here 7 is the distribution of V'
and 7y the distribution of V). This gives the asserted weak convergence of the
exponential families. O

2.4 Densities.

Suppose X has density f and set fy(z) = e’ f(x)/K()\) for the density of X*.
Assume

ax(c) = axfalaxc+by) = g(c) >0 A — Ao (2.8)

in some point ¢. Write ¢y = ayc+ by. This yields an asymptotic expression for
the mgf:

K(\) ~ axf(ex)e*/g(c) A= Ao (2.9)

The seminal work by Feigin and Yashchin [14] discusses this asymptotic rela-
tion. They considered the exponential family of rv’s Y* generated by the mea-
sure with density f*(y) = 1—F(y). The density f} of YA is e (1 — F(y))/K*(\)
where K*()\) = [e*(1 — F(y)dy = K()\)/\ by partial integration. Theorem 1
of [14] gives the Tauberian relation

1—F(cy) ~ K(\)e *2g*(e)/(Ma}) N — Ao (2.10)



provided that a} f; (atc + b)) — g*(c).

Since weak convergence of rv’s Y, properly normalised, is assumed in their
results, the theory developed in BKR99 [2] shows that only the normal and
the gamma densities can occur as limit in these asymptotic relations.

3 The domain of attraction of the normal law.

Let U = Ny, denote a standard normal random variable with probability
distribution 7, and density go; (u) = (1/v/27) exp(—u?/2), u € R. A sequence
of rv’s X,,, n € N, is asymptotically normal (AN) if there exist a, > 0 and
b, € R so that (X, — b,)/a, = U. Asymptotic normality of X, does not
imply that the second moments exist, and if these exist this does not imply

that U,, := (X,, — E(X,))/y/Var(X,,) = U.

Set U, = (X, — pn)/0n, where p, = E(X,) and o2 = Var(X,,), assuming
these moments exist. Set x,, = log K,, for the cgf of the standardised rv U,.
With this notation, consider the following statements, whose equivalence is
not apriori obvious.

AN1) (X, — b,)/a, = U;
AN2) U, = U;

AN3) BU? - 0;

AN4) EUF — EU* for k € N;

AN5) £k, (7) = 72/2 uniformly on bounded intervals.

The limit relation AN5) implies that Eh(U,) — Eh(U) for all continuous
functions of exponential growth and will be called strong asymptotic normal-
ity. We investigate the equivalence of these statements applied to exponential

families by replacing X,, by X* and U, by U, = (X* — E(X?))/y/Var(X*).

Theorem 3.1 For the exponential family X* the limit relations AN1)-AN5)
are equivalent.

Since convergence of mgf’s implies weak convergence and convergence of mo-
ments, it suffices to prove AN1)=-AN5) and AN3)=-AN1). For the implication
AN1)=-ANS5), use Theorem 2.3 and the fact that pointwise convergence of mgfs
implies uniform convergence on bounded sets. The proof that AN3)=-ANI)
will be supplied after a discussion of asymptotically parabolic functions.



If X has cgf x then the cgf of X* satisfies

Fa(€) = KA+ €) — K(A). (3.1)

For each \ € (0, A\y) the cgf k) exists on a neighbourhood of the origin. We
may compute the moments of X* by differentiating the cgf:

pN) = EX =k o*(\)=Var(Xy) =x"()) 0< A< Ao (3.2)

In particular, if F'is non-degenerate then so is F), , and we see that the function
k then has a strictly positive second derivative. The following result is implicit
in the proof of Corollary 1 in Feigin and Yashchin [14]. See also Balkema,
Kliippelberg and Resnick [1], henceforth abbreviated as BKR93.

Proposition 3.2 Let X have cgf k with upper endpoint \oy. If the function
o in (3.2) satisfies the relation

o(A+z/o(N)/o(A) =1 A= Ao (3.3)

for each v € R, then the family X* is strongly asymptotically normal; i.e.
ANS) holds.

Proof Since the cgf k of X is a convex analytic function so is the cgf 7, of the
normalized variable U given by (3.8). Relation (3.1) gives

M) =ral€/o (V) — Eu(A) /(M)
= k(A +E/0(A) = K(A) = Ep(A) /o (). (3.4)

Note that we have normalized the convex function & to make v,(0) = 0, 74(0) =
0, v"A(0) = 1. The condition (3.3) is assumed to hold pointwise. By continuity
of the function ¢ it will hold uniformly on bounded sets by Bloom’s theorem
(see Bingham, Goldie and Teugels (henceforth BGT) [9], Section 2.11. It thus
implies that the second derivative of v, will be close to 1 uniformly on any
bounded interval around the origin, and hence v,(£) — £2/2 uniformly on
bounded intervals, which implies AN5).

If A # R one has to check that 7,(§) is well-defined in the sense that for any
¢ the point A + £/0()) lies in A eventually. Note that 0?(\) — oo if Ay < 00
since Ao & A then implies k(A) — co. Below we shall see that (3.3) implies
that 1/0(X) = o(A) if Ay = 00 and 1/0(A) = 0o(Ax — A) if Ax < oco. This
ensures that A +&/o(A\) € A eventually. O

To prove the converse of Proposition 3.2, we need the following concept: A pos-
itive function s is self-neglecting at t,, < oo if it is defined on a left neighbour-



hood of ¢, and if

s(t+xs(t))/s(t) — 1, t— too, (3.5)

uniformly on bounded z-intervals. If t,, < oo we also require that s(t) — 0
for ¢t = t.

If t., = oo and the first derivative of s exists and vanishes at oo then the
function s is self-neglecting. If ¢, < oo then s is self-neglecting if both s
and s’ vanish at .. Any self-neglecting function is asymptotic to such a
function. Hence if s is self-neglecting , then s(¢) = o(t) if to, = oo and s(t) =
0(too — t) if oo < 00. A function which is asymptotic to a self-neglecting
function is self-neglecting. For a continuous function s it suffices to assume
pointwise convergence in (3.5) by Bloom’s theorem (BGT [9], Section 2.11).
The condition in Proposition 3.2 is formulated as: The function s(\) = 1/0(\)
should be self-neglecting for A — .

A function v is asymptotically parabolic at t,, < oo if it is defined, convex
and C? on a left neighbourhood of ¢, with 9" > 0 and if s = 1//4" is
self-neglecting at ¢, (cf. BKR93 [1]).

By the above arguments any asymptotically parabolic function v satisfies

Yt + s(t)) = (t) +as(t)y' (t) + 22 /2 + o(1) t— to (3.6)

uniformly on bounded z-intervals. For asymptotic normality of the exponential
family X* it thus suffices that the cgf x be asymptotically parabolic at \s.
Condition (3.6) on the cgf implies that the cgf’s v, () of the standardised rv’s
Uy converge to the standard normal cgf £2/2 as A — .

Consider the following list of statements for A — A:

AP1) k is asymptotically parabolic at Au;
AP2) s = 1/v/k" is self-neglecting at As;

AP3) the derivative of s(\) = 1/o()\) vanishes at Ay, and so does s(\) if
Ao < 00.

We arrive at another central result of this section.
Theorem 3.3 Let X have cgf k with upper endpoint \oy. The exponential

family X* is asymptotically normal if and only if k is asymptotically parabolic
at Aoo. Moreover, the statements AP1)-AP3) are equivalent.

10



Proof The implications AP3) = AP2) = AP1) hold from the discussion af-
ter (3.5). Now assume that X* is asymptotically normal. Then the family is
strongly asymptotically normal (Theorem 3.1) and hence all moments con-
verge and, in particular,

EU -0 A= A (3.7)

holds. Also A\ ¢ A. So k(A) — oo and 1/0(A) vanishes for A — A if
Aoo < 00. Furthermore, by Theorem 5.4 of BKR93 [1] it follows from relation
AP3) that k(M) = o0 if Ay < 00 as an asymptotically parabolic function.
Since £"(A) = E(X* — u()\))? and (1/0(N)) = —£"(N)/(26%())), AP3) is
equivalent to the condition that k(Ax) = 00 if Ay < 00 and (3.7). O

Relation AP1) implies strong asymptotic normality of the exponential family
(Proposition 3.2). Hence in the context of exponential families, AN3) = AN1)
and the proof of Theorem 3.1 is complete.

3.1  Complements.

3.1.1 Higher derivatives; asymptotic equivalence.

The condition that a function is asymptotically parabolic is a condition on
the second derivative. For cgf’s this condition also determines the asymptotic
behaviour of the higher derivatives.

Proposition 3.4 Suppose the cgf k is asymptotically parabolic at \. Define
g(A) = /K"(X) as in (3.2). Then for all integers n > 2:

KM /oA =0 A = .

Proof Strong asymptotic normality of the associated exponential family im-
plies EU} — EU" for all n > 1. Hence the cgf v, of U, has the property
~™(0) = 4™ (0) where (&) = £2/2. (The relation also follows directly from
the normal convergence of analytic functions.) O

Cumulant generating functions are C'*° and convex. Given an asymptotically
parabolic function ¢ it is not hard to construct a convex C'*° function which
is asymptotic to ¢ but which itself is not asymptotically parabolic. For cgf’s
this is not possible.

Proposition 3.5 Let the rv X have mgf K = e* with upper endpoint \.
Suppose K(X\) ~ ¥ for X\ — Ny, where 1 is asymptotically parabolic at \y.
Then

11



1) K"(A) ~"(A) for X = Ao

2) K is asymptotically parabolic at .
Proof Set b(\) = ¢'(\) and a(A\) = 1/¢" (). Then 1/a(N) is self-neglecting and

k(A +¢/a(d) — k(A) = bN)E/a(N) = &/2 z€R
since this holds for ¢, and the difference x(\) — ¢(A\) = o(1).

It follows that (X* — b(\))/a(A) = U. So 2) holds by Theorem 3.2. One
even has strong asymptotic normality, which implies convergence in law of the
standardised rv’s Uy = (X* — pu()))/o()). Khinchine’s convergence of types
theorem (see Feller [15], Lemma VIIL.2.1) then gives (A) ~ a(A) which is 1).
([

3.1.2 Densities and the domain of attraction of the normal law.

If the exponential family is generated by a rv X with a continuous density
f then each rv X* of the exponential family has a continuous density fy.
Asymptotic normality of the exponential family does not imply convergence
of the densities. Let g, denote the density of the standardised rv

U = (X = u(N) /o) (3-8)

with p and o the mean and variance of X*; see (3.2). Consider the following
statements about convergence of the densities for A — A:

D1) gy — go1 in L
D2) gx — go1 uniformly on R;

D3) for all M > 1

sup eMl|gy(u) — gor(u)] = 0 A = Ao (3.9)
[S

We shall prove the following: If X has a density f, which is strongly unimodal,
ie. f = e % with ¢ convex, then asymptotic normality of the exponential
family is equivalent with D1)-D3).

We previously characterised the domain of attraction of the normal law for
exponential families in terms of transforms and also gave conditions on the
upper tail of F' or the density f which guarantees that the associated expo-
nential family is asymptotically normal. Here we collate some results about
such conditions.

12



Theorem 3.6 Suppose X has a bounded density f with upper endpoint x,
positive on a left neighbourhood of x«. Then the following hold:

1) If f(z) ~ e7¥@ for x — x4, where 1 is asymptotically parabolic, then the
exponential family X* is asymptotically normal and D3) holds.

2) If f is C? on a left neighbourhood of the upper endpoint T, f(x) — 0 as
T = T and the function = —log f satisfies )" > 0 and w"’(x)/(w”(x))3/2 —
0 as * — T, then D3) holds.

Proof 1) First assume f = e~%. Let 7y < 2. Then A\ = ¢/(zy) is the slope of
the convex function ¢ in xy. Set ag = 1/1/¢"(xo). Then (3.6) gives

Ua(u) == (xy + apu) — P(x0) — Aagu — u*/2 Ty — Too- (3.10)

The density hy of (X* — zg)/ag is coe ™) for some normalising constant
co = ¢(A) > 0. Thus hy — go1 by (3.10) and convexity of 1. The convexity
also gives (3.9). See BKR93 [1], Theorem 6.4 for further details.

2) The conditions imply that 1 is asymptotically parabolic. O

In Balkema, Kliippelberg and Stadtmiiller [3] a number of Tauberian con-
ditions were formulated which ensure that the rv X with asymptotically
parabolic cgf « has a density f with Gaussian tail. This means that the up-
per endpoint z, is infinite and f ~ e~ ¥ for some asymptotically parabolic
function . The results of that paper were formulated in the framework of
densities with upper endpoint z,, = oo but the theorem below remains valid
in the case where x,, < co. For the proof of this theorem we refer to Section 2
in [3].

Theorem 3.7 Let X have a strongly unimodal density f.
1) The conditions D1) — D3) are equivalent.

2) If the exponential family X* is asymptotically normal, then f is bounded
and f(x) ~ e V@ for x — xo where 1 is asymptotically parabolic.

For the last statement, note that the weakest condition D1) implies asymp-
totic normality. Hence by Theorem 3.7 f(z) ~ e %@ for x — x,, with
asymptotically parabolic and D3) holds by Theorem 3.6.

3.1.3 Distributions and the domain of attraction of the normal law.

Comparable results to those stated in the previous subsection are valid in
terms of the upper tail of the df F'. We first note the following fact, which is

13



an immediate consequence of the definition.
If ¢ is asymptotically parabolic at t,, > 0, then so is ¢ (t) + logt.

Theorem 3.8 Suppose the df F has upper endpoint o, and tail 1 — F(x) ~
e VY@ for & — xo where 1 is asymptotically parabolic at xo. Then the asso-
ciated exponential family is asymptotically normal.

Proof Define the bounded density f*(x) = e*(1—F(z))/c. Then f*(x) ~ e=%®)
where ¢(z) = ¥(z) — x + logc is asymptotically parabolic since ¢” = ¢". So
from Theorem 3.6, the exponential family generated by f* is asymptotically
normal. Let K be the mgf of F'. We then have from Theorem 3.3 that

K)

log/e’\wf*(a:)da: _ log/e(AJrl)w(l — F(z))dz/c = log( A+ 0)c

is asymptotically parabolic. This implies that log K (1 4+ \) is asymptotically
parabolic and hence so is log K. O

The converse is false. Asymptotic normality of an exponential family does not
imply that the underlying df has a tail 1—F(x) ~ e~%®) with ¢ asymptotically
parabolic. The tail need not even be asymptotically continuous.

Example 3.9 The Poisson distributions form an exponential family which is
well known to be asymptotically normal. The tail of a Poisson distribution with
expectation 1 is very irregular: (1 — F(n—))/(1 — F(n)) ~n 4 1 for n — oc.
a

One can introduce measures with increasingly smooth densities by setting
fi =1—F and f,11(z) = [° fu(t)dt. The cgf’s corresponding to f, are
k(A) —nlog A, and these are asymptotically parabolical if and only if x is. If
F is the Poisson distribution with expectation 1 then none of the densities f,
is of the form f, ~ e %" with 1, asymptotically parabolic, even though they
all generate exponential families which are asymptotically normal.

3.1.4 Asymptotically parabolic functions.

Here are some examples of asymptotically parabolic functions. We seek func-
tions which are convex and unbounded at their upper endpoint. The function
22 is asymptotically parabolic at infinity, and so are the functions z® for o > 1,
x —z* for o € (0,1) and €™ for o > 0. Positive linear combinations of such
functions are again asymptotically parabolic. The functions 1/(c — x)* with
a > 0 and |log(c — z)|? for B > 1 are asymptotically parabolic at the point c.

Not every asymptotically parabolic function is the cgf of a probability measure.
Cgf’s are very special convex functions. A mgfis totally positive, its derivatives
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are all strictly positive on A, and it extends to an analytic function on the
vertical strip {fz € A}. So one may ask which of the functions in the example
above is asymptotic to a cumulant generating function. The final result of the
section addresses this question.

We shall make use of a beautiful result which links the asymptotic behaviour of
a density and its mgf. This result is based on the conjugate Legendre transform
©* of a convex function ¢ with domain D

*(t) = sup{zt — ¢(x) | x € D}. (3.11)

If f =e ¥ is a strongly unimodal density and 1 is asymptotically parabolic,
then (2.9) with ¢ = 0 gives

K(X\) ~V2mayf(by)e* ~V2ra(M)e? N X = A (3.12)

if we choose by so that ¢'(by) = A, thus maximising Az — ¢(z) in (3.11). In
that case ay ~ o(A). One can get rid of the factor v/2mwo () in (3.12) since
this function is practically constant (flat) on intervals of length o(\).

Theorem 3.10 Let ¢ be asymptotically parabolic in Ao. Then there exists a
rv X with mgf K so that K(\) ~ e?Y for A — A\y. We may choose X to
have a strongly unimodal density.

Proof We may assume that ¢ is convex and that ¢” is continuous and strictly
positive. Let to, = sup{p'(\) | A < A} and let ¢(t) = ¢*(t) be the conjugate
Legendre transform of p(\). The function v is defined on a left neighbourhood
of to, and is asymptotically parabolic in ¢, by Theorem 5.3 in BKR93 [1] with
scale function a(t) = 1/4/9"(t). Now apply Theorem 6.6 in [1] with a bounded
density f ~ ye™" where y(t) = 1/(v/2ra(t)). The function v is flat (see [1],
p.580) for a since a is self-neglecting. This implies that we may choose f

strongly unimodal. Note that ¢¥* = ¢** = . Hence the mgt K of f satifies
K(\) ~ e?W by relation (6.6) in [1]. O

4 Domains of attraction for the gamma limits.

For the domains of attraction of the gamma limits there is a simple and
complete description in terms of regular variation. In fact the limit theory for
exponential families with a gamma limit leads to a novel approach to regular
variation. We shall obtain a new derivation of Karamata’s Tauberian theorem.
It will also be seen that smoothly varying functions occur naturally in the limit
theory of exponential families.
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For the definition and properties of regular variation we refer to BGT [9],
Feller [15], Embrechts, Kliippelberg, and Mikosch [13], Geluk and de Haan [16]
or Resnick [18];

Let 7, for a > 0 denote the probability distribution on (0,00) with density

galy) =y* e /T(a)  y>0. (4.1)

The mgf K(A\) = 1/(1 — A)® of the distribution 7, is finite on (—o0,1). The
gamma variable V' with density (4.1) satisfies a stability relation. For a normal
rv the Esscher transform has the effect of a translation, for a gamma rv the
Esscher transform has the effect of a multiplication:

v

Ev=vtd
1-¢

£<1. (4.2)

We are interested in rv’s in the domain of attraction of V and of the rv V'
with probability distribution 7,, mgf K (\) = 1/(1+\)*, A > —1, and density

9.(y) = (—y)*'e/T()  y<O. (4.3)

The following is a first important result of this section.
Proposition 4.1 1) If X € D(7,), then Ay < 00 and

Mo = NX =V A= A, (4.4)

2) If X € D(7,), then o, < oo and

MX —2,) =V A—00. (4.5)

Proof We make use of the following fact (see (2.2) in BKR99 [2]):
If Av =ax +bfora>0,b€ R, and A € A, then

AEMX = EMNeAX. (4.6)
1) There exist (BKR99 [2], Lemma 2.8) positive affine transformations A,
depending continuously on the parameter A, so that as A — Ay
Uy = A/\X)‘ = V.

Let £ = 1/2. For some \g < Ao, £ is finite for X € [Ag, Ao ). Use (4.6) to see
that it is possible to choose A\g < A\; < --- and positive affine transformations
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Bnx = (v — b,)/a, so that the variables Z,, = U, satisfy B, 1FE¢Z, = Z,1
and Zy = ByE* X. Then B,x — Q = x/2 by (4.2). This means that a,, — 2
and b, — 0. Observe that from repeated use of (4.6),

Zpir = By E*B,E*-- - B|E*A\ E™X =: D, E*" X

with

in:)\0+§/a0+"'+€/(a0"'a’n)Tfoo <00
since a, — 2, and D, = B, 0o---0 By. Set D,x = ¢,z + d,. Then ¢, =
1/(ag+--a,) — 0 and hence ||D,]|| := /(log¢,)? + d2 — oo and therefore, by
BKR99 [2], Proposition 2.10, £ = Ao & A. Since a,, — 2, we have

Ao =&~ Ef(ag - an) ~ cp/2.
The relation D,z = ¢,z + d, gives d,, = D,,(0) = B,(D,,_1(0)) = By(d,_1) =
(dp—1 — by)/ay. Due to b, — 0 and a, — 2, we get d, — 0 and
(Moo — ER)ES" X = V.

Finally write A = &,+0, (Ao —&,) for A € [£,,&,41). Then 0,, = 6,,(\) € [0,2/3]
eventually, Vi £ B Z, with Qg, B’ — id uniformly in 6, € [0,2/3]. This
implies

Mo = NX = (1-0,) Ao — E)EUN, = (1 = 0,)E™Z, =V

which is the desired relation (4.4).

2) The proof is similar. Take £ = 1. Then B,z — 2z and D,z = c¢,(z + 0,)
with ¢, as above and
d, d, 1—0b by,

n
571 = — = - = 57171 -
Cn GpnCp Cn—1

— 0o < 00.

We thus find &, ~ 2&/(ag+ - an_1) ~ ¢y ~ A\, and D, E X =V gives
)‘n(X)\n — xoo) = V

Assume 7o, = 0 for simplicity. Set Z, = A\, X,,. Then Z, = V implies
0E°Z, = V uniformly in @ € [1, 3]. Hence writing A = 0, A, for A\, < A < A\,y1
we find

MXA=0,E"7, = V.
For general ., one obtains (4.5). O

4.1  Regular variation

By Proposition 4.1,1), if F' € D(y,) then Ay is finite. The measure du(y) =
e*<YdF(y) has infinite total mass, since Ao, € A implies K(\) — oo for
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A — M. Note however that

zwﬂ:/awmw:K@m+n<m T0<T<0 (4.7)

for some 7y < 0.

The exponential family generated by the Radon measure p consists of rv’s Y7
with distribution

dG.(y) = e™du(y)/M(r) 15 <7 <O0.

This is also the exponential family generated by the df F' up to a shift in the
parametrization: G, = F) for A = A\ + 7.

The df M(y) = p((—o0,y]) of the measure u plays a key role in the description
of D(7,). Consider the following examples.

Example 4.2 (i) Let pu be a Radon measure on R with density m which
vanishes off [0, 00). Suppose m(z) — 1 for x — oco. Let Y7, 7 < 7, = 0, be the
exponential family generated by . The rv Y7 has density e™m(y)/M (7). Set
¢ = —7. The normalized rv V; = €Y7 has density e ¥m(y/&)/(§M(7)) which
converges to the standard exponential density for £ | 0 since m(y/§) — 1.
Note that M(7) ~ 1/¢ for 71 0 and M(y) = pu((—o0,y]) ~ y for y — co.

(ii) More generally, start with a measure g on R with distribution function
M(y) = p((—o0,y|) which varies regularly at oo with exponent & > 0. Assume
that [e*¥du(y) is finite for some \g < 0. The corresponding exponential
family Y, Ay < X < 0, with distribution

dma(y) = Mdp(y) M) M) = [ eMduly) Mo <A <0

satisfies V) = (Moo — A)X? = V with A, = 0.

Proof Regular variation with exponent « implies for 8 > « that M (y) = o(y”)
for y — oo. Hence e?du(y) is a finite measure for \y < A < 0. For & > 0
define the measure pe with df pe((—oo,y]) = p((—o0,y/&]) = M(y/€). Let
A&) = M((1/&T(a+1). Then

M(y/§) Y
A€) Tlat1)

weakly on R for £ | 0.

Note that for y <0,
My/§) _ M)
M(1/&) = M(1/¢€)

as £ 10, since M(1/€) — oo as a consequence of regular variation. The finite

— 0,
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measures dve(y) = e Ydue(y)/A(E), £ > 0, satisfy

dve(y) = e Yy tdy/T(a) €10

vaguely on [—00,00) and even weakly since v¢(R) — [e YdyS/I'(a+1) =1
because of the relation M (y) = o(y”) for # > o mentioned above. We conclude
that A(&) ~ M(=€) = [e ¥du(y) for € | 0 and hence for A = —¢ the
probability measure e*yd,ug(y)/]\?()\) of €Y tends to 7, weakly for A1 0. O

The ideas of these examples suggest the general results of the next setion.
4.2 Domain of attraction of the positive gamma law.

Suppose A — A\, < oo. Let the limit variable V' > 0 have distribution v,. As
in the case of a normal limit distribution a number of limit relations turn out
to be equivalent for a gamma limit:

Theorem 4.3 Let V' have probability distribution v, on [0,00) for some pa-
rameter o« > 0. Let the rv X with df F have mgf K with upper endpoint
Ao < 00. Let

M(y) = pl(—oo,y)) = [ ~"dF ()
(—OO,y]
Then the following statements are equivalent for X — M.

Gl Vi= (Moo — XA =V

G2) EVy = (Ao — M) EX* = EV = q;

G3) EV» — EV™ forn € N;

G4) Ky(7) = Ee™ — 1/(1 = 7)% for 7 < 1.
Gb5) M waries reqularly at oo with exponent «;

G6) K wvaries reqularly at Ay with exponent —«; that is

K —
lim 7()\00 ta)

27 1>0.
W KO-t © 7

G7) the df M and the mgf K are asymptotically related for € = Ao — X | 0:

M(y/§) ye
KOw—6) Tla+1)

weakly on R. (4.8)
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Proof We proceed in six steps. Set £ = Ao — A | 0.
G6) <= G4) since the mgf of V) is 7 — K (Ao — &+ 7€)/ K (Ao — &).
G4) = G1) Convergence of mgf’s implies weak convergence.

G1) = G7) The rv V has distribution drf(y) = e ¥dpue(y)/K()), where again
p1e((—00, y]) = p((—o0,y/€]). Then

dri(y) — e Yy*dy/T(a) €10 (4.9)
Multiply by e and integrate over (—oo,y|. Since e has df M(y/&) we ob-
tain (4.8).

G7) = Gb) is obvious.
G7) = G6) by symmetry: K (A —n&)/M(1/€) — I'(a+1)/n* on (0, 00).
G5) = G1) is proved in the Example 4.2 (ii) above.

So we have established G1) = G7) = G5) = G1) and G1) = G7) = G6) =
G4) = G1); i.e. the equivalence of G1) and G4) — G7). Note that G4) implies
G2) and G3), full equivalence is established in Theorem 4.6. O

Remark 4.4 (a) Note that we have proven Karamata’s celebrated Tauberian
theorem G6) = Gb5).

(b) We have also proven that weak convergence implies convergence of the
mgf’s for exponential families with limit distribution ~,; cf. Theorem 2.3. O

Proposition 4.5 If F' € D(v,), then the mgf K varies smoothly at Ao, < 00
with ezponent —ay; i.e. K'(\) = —a and K™ (\) = 0 for all n. > 2.

Proof Let k = log K denote the cgf in the theorem above and set
p(t) = (Ao — 7).

Then regular variation of K with exponent —« in Ay, just means that for

t— 00

K()\oo _ e—(t-}-a:))
KA —e7t)

o(t+x) —@(t) = log ( ) — log(e™) = ax (4.10)

uniformly on bounded z-intervals in R. The function ¢ is analytic and hence
¢'(t) — a and ¢™(t) — 0 for n > 2. This means that the mgf K varies
smoothly at As. See BGT [9], Section 1.8. O
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Theorem 4.6 Suppose X is a rv with cgf k with upper endpoint Aoy < 00.
Then X € D(va) if and only if (Moo — NEX* = a for A — Ay.

Proof Necessity of the condition has been proved above: G1) = G2). For suf-
ficiency we use Proposition 4.5 and note that the condition can be formulated
in terms of the function M(7) = K (A + 7) for 7 < 0 (see (4.7)) as

7| M (1) /M (T) = —a T 10,

This is the well-known von Mises sufficient condition for regular variation with
exponent —a, giving that K is regularly varying; i.e. G6). See BGT [9]. O

4.8  Domain of attraction of the negative gamma law.

The theory for the domain of attraction is, in this case, even simpler.

Let X have df ' € D(7,) and mgf K. By Proposition 4.1,2), the upper
endpoint x., of F' is finite and we may assume z,, = 0. Since F' is continuous
at its upper endpoint the mgf K(\) vanishes for A — oo. The probability
measure 7 of —X has df H(y) = 1 — F(—y—). The positive rv —AX* has
probability distribution

e Yd(n)(y)/K(N)

and 7, has df H(-/\). The following two weak limit relations for A — oo are
equivalent:

e Ydm)(y)/K(A) — e Yy* ldy/T(a)
H(y/\)/K\) — y*/T(a+1).

Theorem 4.7 Let V' have probability distribution %, on (—oc,0] for some
a > 0. Let X have df F' with xo, < 0o and mgf K with Ao = o0. The
following statements are equivalent:

Gl) Vy=AX*—1y) =V for A — oo;
G2) EVy =AM —EX") = EV=a  \—o00;

G3) EVy — EV" forn € N;

G4) K\(§) = BEef"™ — for € > —1 for A\ — oo,

1
(148

Gb) 1 — F waries regularly with exponent o in Too;

G6) e K (\) varies regularly in oo with exponent —a;
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GT) the tail 1 — F and the mgf K are asymptotically related: for x > 0

1 — F(ze —x/N) x®

A= o0,
=K\ (et 1) o

The proof is similar to that of Theorem 4.3 and therefore omitted.
Similarly setting ¢(t) = k(e’) we find p(t + x) — p(t) — —ax which proves

Proposition 4.8 Let F € D(7,) with mgf K, then K wvaries smoothly in oo
with exponent —q.

5 Applications

We show that limit laws for exponential families can be applied to prove tail-
accuracy of certain approximating densities. For densities in in the domain of
attraction of the normal law results of this kind and some statistical examples
are in Barndorff-Nielsen and Kliippelberg [6]; first multivariate results can be
found in [7].

5.1  Conwolution closure properties.

Consider the convolution of df’s and densities from the domains of attraction
giving emphasis to convolving the positive gamma and the normal distribu-
tion; the negative gamma distribution can be treated analogously to the pos-
itive one. The parameter o appears in the domain of attraction of a gamma
distribution (4.1), and we denote the corresponding domain of attraction by
D(«) for a > 0. The normal distribution as a member of the extended gamma

family corresponds to o = oo; hence we denote its domain of attraction by
D(0).

Proposition 5.1 Suppose both F' and G € D(o0) and assume their mgf’s
have the same upper endpoint. Then F x G € D(00).

Proof Notice that the cgf of F' x G is the sum k = kg + kg of the factors, and
the variances add. Hence o > op,06. If 1/op and 1/0g are self-neglecting,
then so is 1/0. The result follows then by Theorem 3.3. a

In BKR93 [1] a slightly more general class of densities than in Section 2.4 has
been introduced aiming at convolution closure.
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Proposition 5.2 (BKR93 [1])
Let f;(t) = v(t)e ™V, t < ti, for i = 1,2, where 1; are asymptotically

parabolic with self-neglecting functions s; = 1/\/¢} and
Vit +xsi(t)/7vi(t) = 1 = tico.

Denote

F(6) = fix £20) = [ Filt = ) falw)dy,

then f(t) ~ v(t)e %" and v and 1) have the same properties. Furthermore,
they can be expressed in terms of the ~; and 1;; see BKR93 [1] for details.

We now turn to D(«) for finite o and start with a convolution result, which
may be compared to Cline [11], Theorem 3.4.

Proposition 5.3 Suppose F' € D(ay), G € D(ag) for ay,as < co. If the
mgf’s have the same upper endpoint Ay, then F x G € D(ay + az).

Proof The mgf of F' * G is the product of the mgf of F' and the mgf of G,
hence it varies regularly in A, with exponent —(a; + ay). Here we use G6) of
Theorem 4.4. O

5.2 On the tail accuracy of the saddlepoint and gamma approximation

Let f be a density, defined and positive on an interval I that is unbounded
above. The (unnormalised) saddlepoint approzimation to f(x) may be ex-
pressed as

Fo) — 1 —(Az—r(N) 5.1
fi(x) o) (5.1)

where k denotes the cgf and A is the saddlepoint, i.e. it satisfies £'(A\) = x. The
ratio f(x)/f(x) expresses the relative accuracy of the saddlepoint approxi-
mation and we obtain immediately from (3.12) that fT(z) ~ f(z) as © — oo
and hence for the relative error

RE'(2) = ‘log (fT(a:)/f(x))‘ — 0 T — 00.

Now assume that f(z) ~e *z* 1 {(x), x — oo, for « >0 and £ € SV (i.e.
limy o ¢(xt)/€(x) = 1 for all ¢ > 0). Then Ao = 1 and F' € D(«) by Theo-
rem 4.3. Indeed, it has been shown already in Theorem 7.1 of Daniels [12] that
the associated exponential family is asymptotically gamma. By an immediate
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consequence of smooth regular variation (cf. Proposition 4.8) we obtain for
the derivatives of the mgf and the cgf

. L'(b+ j) 1 .
@ (\) ~
KY(N) (1—)\)a+jé<1—)\> jeNy,

(1= Ay

KD (N) ~ j €N.

Furthermore, since f(z)/F(z) — 1 as x — oo, (5.2) implies that

11—\ TI(a) 1 v
J1(a) ~ V2ra (1 —A)e g(l—A) ‘

and for A satisfying x'(A) = 15 (1 +o(1)) = v as A — 1 (see Theorem 4.6), we
obtain

Fi(a) ~ ['(«) <£>a—1 £<£> o~ (7—a)(1+o(1))

2T \«

(o)

2T«

:M x) T — 0.

V21 o !

Hence RE'(x) is bounded and independent of z.

On the other hand, for densities in the domain of attraction of a gamma dis-
tribution, a gamma approximation as e.g. suggested by Bower is more appro-
priate [cf. Beard, Pentikdinen and Pesonen [8], see also Jensen [17], equation
(3.7)]. The gamma approximation is defined as follows.

fiy = B0 (0;'”((/\;)) > (- w(N) (5.2)

where vy(u) = v*~'e™*/T'(u) and \ is such that «'(\) = z. We use Theorem 4.6
which gives £'(\) =z ~ /(1 — \) and hence A =1 —a/x (14 o(1)), which
implies that

(@)~ (1 A) (@) e® oo (11“_(02)& 0 <1 i /\>
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—x a a—1 a
~e (1—)\> 6(1—A>
~e Tt (x)

= f(x), T — 00.

Hence

RE™(z) = ‘log (f”(x)/f(a:))‘ —0 asz — o0,

i.e. the gamma approximation becomes exact in the tail.
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