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abbreviated to BKR99. These are exa
tly the distributions whi
h generate ex-ponential families whi
h are stable under a 
ontinuous one-parameter groupof positive aÆne transformations (Bar-Lev and Casalis [4,5℄). In the presentpaper we des
ribe the domains of attra
tion of these limit distributions andgive a new 
hara
terisation of a stable exponential family.With the (random variable) rv X with distribution fun
tion (df) F , we asso-
iate the natural exponential family 
onsisting of rv's X� with df's dF�(x) =e�xdF (x)=K(�). The 
onstant K(�) = R e�xdF (x) is the moment generatingfun
tion (mgf) of X evaluated at �. The domain of K is the interval� = f� 2 R j K(�) = Ee�X <1g
ontaining the origin. The mgf � 7! K(�) is 
ontinuous and stri
tly positiveon �. The important 
umulant generating fun
tion (
gf) � = logK is a 
onvexanalyti
 fun
tion on the interior of �. We study the asymptoti
 behaviour ofthe df's F� for �! �1 := sup�, where �! �1 means that � 2 � and �
onverges to �1 from below.If �1 2 �, then F� # F�1 pointwise. In the more interesting 
ase that �1 =2 �,we have F�(x) # 0 for every x < x1 where x1 = supfF < 1g is the upperendpoint of the df F . Then X� ! x1 in probability and it may be possible tonormalize the rv's X� by 
hanging lo
ation and s
ale so that for some a� > 0and b� 2 RA�X� := X� � b�a� ) V �! �1: (1.1)Here) denotes 
onvergen
e in law to a non-degenerate rv. The upper endpoint�1 of � always satis�es �1 � 0 and we are interested in the 
ase �1 =2 � andhen
e �1 > 0.Theorem 3.5 of BKR99 [2℄ 
hara
terizes possible non-degenerate limits in (1.1)and Se
tion 2 gives the ne
essary ba
kground. If V is a non-degenerate limitvariable in (1.1), then there exist 
entering b� 2 R and s
aling a� > 0 so thatV is a standard normal variable, or so that V or �V has a gamma distributionon (0;1). Thus, the 
lass of limit distributions, the extended gamma family,(BKR99 [2℄, Example 2.9) 
an be written (see Se
tion 2) as a 
ontinuous threeparameter family, indexed by shape, lo
ation and s
ale.When (1.1) holds, the rv X or df F generating the exponential family X�lies in the domain of attra
tion of the limit rv V or of its df G and we writeX 2 D(V ) or F 2 D(G). The aim of this paper is to 
hara
terize the domainsof attra
tion of the limit distributions.Weak 
onvergen
e of the normalised rv's in the exponential family to a non-2



degenerate limit implies 
onvergen
e of the mgf's (BKR99 [2℄, Theorem 3.6)and this implies 
onvergen
e of all moments. In Se
tion 3 we show that asymp-toti
 normality is equivalent to 
onvergen
e to zero of the third moment ofX� standardized to mean 0 and varian
e 1. The normal domain is also 
har-a
terized in terms of the 
gf �, and the limit in (1.1) is normal if and only ifits 
gf � satis�es that 1=p�00 is self-negle
ting ; that is
�00 0��+ xq�00(�)1A � �00(�) �! �1

for all x 2 R: The domains of attra
tion of the gamma distributions are thesubje
t of Se
tion 4. For F to be in the domain of a gamma with positive shapeparameter requires �1 <1 and then a ne
essary and suÆ
ient 
ondition islim�!�1(�1 � �)�0(�) = 
 > 0:An equivalent 
ondition is that E((�1 � �)X�) 
onverges to the �rst mo-ment of the gamma distribution. Criteria for a negative shape parameter are
omparable and also dis
ussed in Se
tion 4.Domain of attra
tion 
onditions 
an be expressed either in terms of the dfF or in terms of the 
gf � and hen
e the results developed here have appli-
ations to the asymptoti
 theory of transforms and their inversion, and forsaddlepoint approximations. In the latter 
ase, distributions in the domainof attra
tion of the normal law have the property that the saddlepoint ap-proximation of the density be
omes exa
t in the limit; see Barndor�-Nielsenand Kl�uppelberg [6,7℄. This is further dis
ussed in Se
tion 5. The theory ofthis paper sheds new light on the subje
t of regular variation and on a 
lassof distribution fun
tions with very thin tails. Anti
ipated investigations ofthe boundary behaviour of multivariate Lapla
e transforms will require goodunderstanding of the asymptoti
s of univariate exponential families.Whether one develops results about exponential families in terms of measures,df's or rv's, is largely a matter of taste and habit. Many of our results areexpressed in terms of the rv's X�, whi
h we have inje
ted into the expositionas a 
onvenien
e. 3



2 Ba
kground.2.1 The 
lass of limit distributions.To aid understanding of the limit distributions, we introdu
e the 
gf's:'�(�) = (���2 log(1� ��)� �=� if � 6= 0; �� < 1�2=2 if � = 0.The fun
tions '� depend 
ontinuously on the parameter � as one sees eitherby using l'Hospital's rule or by noting that '�(0) = '0�(0) = 0 and'00�(�) = 1(1� ��)2 �� < 1:A gamma distributed rv Z with parameter � has density z��1e�z=�(�) for z >0 and 
gf � 7! �� log(1� �) on (�1; 1). Set � = 1=�2. Then Y� = �Z � 1=�has 
gf '� for � 6= 0. For � ! 0 the variable Y� 
onverges in distribution tothe standard normal rv Y0 with density e�y2=2=p2� for y 2 R. The extendedgamma family is the set of the probability distributions of the variables aY�+bwith a > 0 and �; b 2 R. This is a 
ontinuous three parameter family. It isalso the set of possible non-degenerate limit laws in (1.1).If we think of X 7! X� as a transformation, the next result shows that theextended gamma family is the set of �xed points.Theorem 2.1 Let Y �, � 2 �, be the exponential family generated by Y . Theexponential family is stable in the sense that the standardised variablesV� = Y � � �� ; � = �0(�) = EY �; �2 = �00(�) = Var(Y �); � 2 �all have the same distribution if and only if there is a non-empty open inter-val J � � so that EV 3� does not depend on � for � 2 J . Furthermore, theonly stable exponential families are those generated by the rv's in the extendedgamma family.Proof The 
ondition is obviously ne
essary. We may assume that J 
ontainsthe origin and that EY = 0 and EY 2 = 1. Then V0 = Y 0 = Y . Let �� be the
gf of Y �. The 
gf of V� islogEe�(Y ���)=� = ��(�=�)� ��=� = �(�+ �=�)� �(�)� ��=�:If V� d= Y it has 
gf � and hen
e�(�+ �=�) = �(�) + �(�) + ��=�: (2.1)4



Taking the se
ond derivative with respe
t to � we obtain�2(�+ �=�)=�2 = �2(�); � = �(�): (2.2)Write � = 1=� to get �(� + ��)=� = �(�) and di�erentiate this expression to�nd � 0(�+ ��) = � 0(�): (2.3)Setting � = 0 we see that � 0(�) is 
onstant in �. Note that� 0(�) = (1=�(�))0 = ��000(�)2�3 = �12E(Y � � �� )3: (2.4)If EV 3� is 
onstant, then (2.4) (2.3),(2.2),(2.1) all hold and V� d= Y .If � 0(�) = EV 3� = �� does not depend on � then from (2.4) �(�) = 1 � ��,(sin
e �(0) = 1) and �00(�) = 1=(1���)2 on J . Hen
e, by analyti
 
ontinuation�(�) = '�(�) for �� < 1. 22.2 Tail equivalen
e.The des
ription of the domains of attra
tion of the limit laws relates thebehaviour of the df F in the neighbourhood of x1 with the behaviour of themgf K and of the exponential family F� in the neighbourhood of �1. When
onsidering su
h asymptoti
 behavior, the notion of tail equivalen
e providesan invarian
e 
lassi�er. Two df's F and G are tail equivalent if they have thesame upper endpoint x1 = supfF < 1g = supfG < 1g, if they are 
ontinuousin the upper endpoint, F (x1�) = G(x1�) = 1, and if1�G(x) � 1� F (x) x! x1 (2.5)in the sense that the quotient tends to 1. Again we mean by x ! �1 that x
onverges to x1 from below.Theorem 2.2 Let X have df F whi
h is 
ontinuous in its upper endpointx1 = supfF < 1g and mgf K with domain � with �1 =2 �. Suppose Y isanother rv with df G and mgf M and that F and G are tail equivalent. Then1) K andM have the same upper endpoint �1 andM(�) � K(�) for �! �1;2) G�(x)� F�(x)! 0 uniformly in x 2 R for �! �1;5



3) (1�G�(x))=(1� F�(x))! 1 uniformly in x < x1 for �! �1.Furthermore, if X� and Y � are the asso
iated exponential families, then forany sequen
e �n ! �1 and any rv VX�n � bnan ) V () Y �n � bnan ) V:Proof Note that �1(G) = �1(F ) sin
e for � > 0 the integral R e�x(1 �G(x))dx = M(�)=� 
onverges if and only if this holds for the 
orrespondingintegral for the df F . Sin
e 3) implies 2) it remains to prove the asymptoti
equivalen
es in 1) and 3).Now �rst assume that G � F on an interval [x0; x1). ThenK(�)(1� F�(x)) = Z(x;1) e�tdF (t) =M(�)(1�G�(x)) x0 � x < x1:(2.6)For �xed x < x1 the 
entral term grows without bound for � ! �1 sin
eK(�) " 1 if �1 62 �. Hen
eM(�) " 1 and G�(x)! 0 for x < x1 by the �rstsenten
e of the proof. Sin
e this also holds for F�(x) we see thatM(�) � K(�)for �! �1. This in turn implies 3) by (2.6) for x0 � x < x1.Now let " > 0. There exists a 
onstant x0 < x1 so thatj log(1�G(x))� log(1� F (x))j < " x 2 [x0; x1):Let F � = F1[x0;1) and de�ne G� similarly. The inequalityZ h(t)dG�(t) < e" Z h(t)dF �(t)holds for all indi
ator fun
tions h = 1[x;1). Hen
e it holds for all non-negativein
reasing fun
tions. Take h(t) = e�t with � 2 (0; �1) to 
on
lude thatM�(�) < e"K�(�) and take h(t) = e�t1[x;1)(t) to 
on
lude that M�(�)(1 �G��(x)) < e"K�(�)(1� F �� (x)) for � 2 (0; �1) and all x. By symmetry the in-equalities hold if we inter
hange F and G (and K andM). Hen
e we 
on
ludethat j logM�(�)� logK�(�)j < " for � 2 (0; �1) and j log(1�G��(x))� log(1�F �� (x))j < 2" for � 2 (0; �1) and all x < x1.Sin
e F � � F and G� � G on [x0; x1) we know that K�(�) � K(�) andM�(�) � M(�). Thus j logM(�) � logK(�)j < 2" for � 2 (�1; �1). Similarlyj log(1� F�(x))� log(1�G�(x))j < 3" for � 2 (�2; �1) and all x < x1. Sin
e" is arbitrary this proves the asymptoti
s in 1) and 3).By 2) weak 
onvergen
e G�n(anx+ bn)! H(x) holds if and only if F�n(anx+bn) 
onverges weakly to H(x). 26



2.3 Convergen
e preservation.Assume (1.1), so that a limit law exists and de�ne the notational 
onvenien
e,
alled the Ess
her transform, byE�X = X� � 2 �: (2.7)The semi-group property holds: E�E� = E�+� if �, � and � + � lie in �.Theorem 2.3 Suppose as in (1.1) V� := A�X� ) V as �! �1, with V non-
onstant. Then for all 
 2 R for whi
h Ee
V is �nite, we have E
V� ) E
Vand Ee
V� ! Ee
V as �! �1,Proof Convergen
e of the mgf's is proved in BKR99 [2℄, Theorem 3.6. Observethat the set � = f
 2 R j Ee
V <1g is open if V is normal or if V or �V hasa gamma distribution. Hen
e 
onvergen
e of the mgf's implies for any 
 2 �Z '(x)e
xd��(x)! Z '(x)e
xd�(x) �! �1for all 
ontinuous bounded fun
tions ' on R. Here � is the distribution of Vand �� the distribution of V�. This gives the asserted weak 
onvergen
e of theexponential families. 22.4 Densities.Suppose X has density f and set f�(x) = e�xf(x)=K(�) for the density of X�.Assumeg�(
) = a�f�(a�
+ b�)! g(
) > 0 �! �1 (2.8)in some point 
. Write 
� = a�
+ b�. This yields an asymptoti
 expression forthe mgf:K(�) � a�f(
�)e�
�=g(
) �! �1: (2.9)The seminal work by Feigin and Yash
hin [14℄ dis
usses this asymptoti
 rela-tion. They 
onsidered the exponential family of rv's Y � generated by the mea-sure with density f �(y) = 1�F (y). The density f �� of Y � is e�y(1� F (y))=K�(�)where K�(�) = R e�y(1�F (y)dy = K(�)=� by partial integration. Theorem 1of [14℄ gives the Tauberian relation1� F (
��) � K(�)e��
��g�(
)=(�a��) �! �1 (2.10)7



provided that a��f ��(a��
+ b��)! g�(
).Sin
e weak 
onvergen
e of rv's Y �, properly normalised, is assumed in theirresults, the theory developed in BKR99 [2℄ shows that only the normal andthe gamma densities 
an o

ur as limit in these asymptoti
 relations.3 The domain of attra
tion of the normal law.Let U = N01 denote a standard normal random variable with probabilitydistribution 
01 and density g01(u) = (1=p2�) exp(�u2=2), u 2 R. A sequen
eof rv's Xn, n 2 N , is asymptoti
ally normal (AN) if there exist an > 0 andbn 2 R so that (Xn � bn)=an ) U . Asymptoti
 normality of Xn does notimply that the se
ond moments exist, and if these exist this does not implythat Un := (Xn � E(Xn))=qVar(Xn)) U .Set Un = (Xn � �n)=�n, where �n = E(Xn) and �2n = Var(Xn), assumingthese moments exist. Set �n = logKn for the 
gf of the standardised rv Un.With this notation, 
onsider the following statements, whose equivalen
e isnot apriori obvious.AN1) (Xn � bn)=an ) U ;AN2) Un ) U ;AN3) EU3n ! 0;AN4) EUkn ! EUk for k 2 N ;AN5) �n(�)! � 2=2 uniformly on bounded intervals.The limit relation AN5) implies that Eh(Un) ! Eh(U) for all 
ontinuousfun
tions of exponential growth and will be 
alled strong asymptoti
 normal-ity. We investigate the equivalen
e of these statements applied to exponentialfamilies by repla
ing Xn by X� and Un by U� = (X� � E(X�))=qVar(X�).Theorem 3.1 For the exponential family X� the limit relations AN1){AN5)are equivalent.Sin
e 
onvergen
e of mgf's implies weak 
onvergen
e and 
onvergen
e of mo-ments, it suÆ
es to prove AN1))AN5) and AN3))AN1). For the impli
ationAN1))AN5), use Theorem 2.3 and the fa
t that pointwise 
onvergen
e of mgfsimplies uniform 
onvergen
e on bounded sets. The proof that AN3))AN1)will be supplied after a dis
ussion of asymptoti
ally paraboli
 fun
tions.8



If X has 
gf � then the 
gf of X� satis�es��(�) = �(�+ �)� �(�): (3.1)For ea
h � 2 (0; �1) the 
gf �� exists on a neighbourhood of the origin. Wemay 
ompute the moments of X� by di�erentiating the 
gf:�(�) = EX� = �0(�) �2(�) = Var(X�) = �00(�) 0 < � < �1: (3.2)In parti
ular, if F is non-degenerate then so is F� , and we see that the fun
tion� then has a stri
tly positive se
ond derivative. The following result is impli
itin the proof of Corollary 1 in Feigin and Yash
hin [14℄. See also Balkema,Kl�uppelberg and Resni
k [1℄, hen
eforth abbreviated as BKR93.Proposition 3.2 Let X have 
gf � with upper endpoint �1. If the fun
tion� in (3.2) satis�es the relation�(�+ x=�(�))=�(�)! 1 �! �1 (3.3)for ea
h x 2 R, then the family X� is strongly asymptoti
ally normal; i.e.AN5) holds.Proof Sin
e the 
gf � of X is a 
onvex analyti
 fun
tion so is the 
gf 
� of thenormalized variable U� given by (3.8). Relation (3.1) gives
�(�)=��(�=�(�))� ��(�)=�(�)=�(� + �=�(�))� �(�)� ��(�)=�(�): (3.4)Note that we have normalized the 
onvex fun
tion � to make 
�(0) = 0; 
0�(0) =0; 
00�(0) = 1: The 
ondition (3.3) is assumed to hold pointwise. By 
ontinuityof the fun
tion � it will hold uniformly on bounded sets by Bloom's theorem(see Bingham, Goldie and Teugels (hen
eforth BGT) [9℄, Se
tion 2.11. It thusimplies that the se
ond derivative of 
� will be 
lose to 1 uniformly on anybounded interval around the origin, and hen
e 
�(�) ! �2=2 uniformly onbounded intervals, whi
h implies AN5).If � 6= R one has to 
he
k that 
�(�) is well-de�ned in the sense that for any� the point �+ �=�(�) lies in � eventually. Note that �2(�)!1 if �1 <1sin
e �1 62 � then implies �(�) ! 1. Below we shall see that (3.3) impliesthat 1=�(�) = o(�) if �1 = 1 and 1=�(�) = o(�1 � �) if �1 < 1. Thisensures that �+ �=�(�) 2 � eventually. 2To prove the 
onverse of Proposition 3.2, we need the following 
on
ept: A pos-itive fun
tion s is self-negle
ting at t1 � 1 if it is de�ned on a left neighbour-9



hood of t1 and ifs(t+ xs(t))=s(t)! 1; t! t1; (3.5)uniformly on bounded x-intervals. If t1 < 1 we also require that s(t) ! 0for t! t1.If t1 = 1 and the �rst derivative of s exists and vanishes at 1 then thefun
tion s is self-negle
ting. If t1 < 1 then s is self-negle
ting if both sand s0 vanish at t1. Any self-negle
ting fun
tion is asymptoti
 to su
h afun
tion. Hen
e if s is self-negle
ting , then s(t) = o(t) if t1 =1 and s(t) =o(t1 � t) if t1 < 1. A fun
tion whi
h is asymptoti
 to a self-negle
tingfun
tion is self-negle
ting. For a 
ontinuous fun
tion s it suÆ
es to assumepointwise 
onvergen
e in (3.5) by Bloom's theorem (BGT [9℄, Se
tion 2.11).The 
ondition in Proposition 3.2 is formulated as: The fun
tion s(�) = 1=�(�)should be self-negle
ting for �! �1.A fun
tion  is asymptoti
ally paraboli
 at t1 � 1 if it is de�ned, 
onvexand C2 on a left neighbourhood of t1 with  00 > 0 and if s = 1=p 00 isself-negle
ting at t1 (
f. BKR93 [1℄).By the above arguments any asymptoti
ally paraboli
 fun
tion  satis�es (t+ xs(t)) =  (t) + xs(t) 0(t) + x2=2 + o(1) t! t1 (3.6)uniformly on bounded x-intervals. For asymptoti
 normality of the exponentialfamily X� it thus suÆ
es that the 
gf � be asymptoti
ally paraboli
 at �1.Condition (3.6) on the 
gf implies that the 
gf's 
�(�) of the standardised rv'sU� 
onverge to the standard normal 
gf �2=2 as �! �1.Consider the following list of statements for �! �1:AP1) � is asymptoti
ally paraboli
 at �1;AP2) s = 1=p�00 is self-negle
ting at �1;AP3) the derivative of s(�) = 1=�(�) vanishes at �1, and so does s(�) if�1 <1.We arrive at another 
entral result of this se
tion.Theorem 3.3 Let X have 
gf � with upper endpoint �1. The exponentialfamily X� is asymptoti
ally normal if and only if � is asymptoti
ally paraboli
at �1. Moreover, the statements AP1)-AP3) are equivalent.10



Proof The impli
ations AP3) ) AP2) ) AP1) hold from the dis
ussion af-ter (3.5). Now assume that X� is asymptoti
ally normal. Then the family isstrongly asymptoti
ally normal (Theorem 3.1) and hen
e all moments 
on-verge and, in parti
ular,EU3� ! 0 �! �1 (3.7)holds. Also �1 =2 �. So �(�) ! 1 and 1=�(�) vanishes for � ! �1 if�1 <1. Furthermore, by Theorem 5.4 of BKR93 [1℄ it follows from relationAP3) that �(�1) = 1 if �1 < 1 as an asymptoti
ally paraboli
 fun
tion.Sin
e �000(�) = E(X� � �(�))3 and (1=�(�))0 = ��000(�)=(2�3(�)), AP3) isequivalent to the 
ondition that �(�1) =1 if �1 <1 and (3.7). 2Relation AP1) implies strong asymptoti
 normality of the exponential family(Proposition 3.2). Hen
e in the 
ontext of exponential families, AN3)) AN1)and the proof of Theorem 3.1 is 
omplete.3.1 Complements.3.1.1 Higher derivatives; asymptoti
 equivalen
e.The 
ondition that a fun
tion is asymptoti
ally paraboli
 is a 
ondition onthe se
ond derivative. For 
gf's this 
ondition also determines the asymptoti
behaviour of the higher derivatives.Proposition 3.4 Suppose the 
gf � is asymptoti
ally paraboli
 at �1. De�ne�(�) = q�00(�) as in (3.2). Then for all integers n > 2:�(n)(�)=�n(�)! 0 �! �1:Proof Strong asymptoti
 normality of the asso
iated exponential family im-plies EUn� ! EUn for all n � 1. Hen
e the 
gf 
� of U� has the property
(n)� (0) ! 
(n)(0) where 
(�) = �2=2. (The relation also follows dire
tly fromthe normal 
onvergen
e of analyti
 fun
tions.) 2Cumulant generating fun
tions are C1 and 
onvex. Given an asymptoti
allyparaboli
 fun
tion  it is not hard to 
onstru
t a 
onvex C1 fun
tion whi
his asymptoti
 to  but whi
h itself is not asymptoti
ally paraboli
. For 
gf'sthis is not possible.Proposition 3.5 Let the rv X have mgf K = e� with upper endpoint �1.Suppose K(�) � e (�) for �! �1 where  is asymptoti
ally paraboli
 at �1.Then 11



1) �00(�) �  00(�) for �! �1;2) � is asymptoti
ally paraboli
 at �1.Proof Set b(�) =  0(�) and a(�) = q 00(�). Then 1=a(�) is self-negle
ting and�(�+ �=a(�))� �(�)� b(�)�=a(�)! �2=2 x 2 Rsin
e this holds for  , and the di�eren
e �(�)�  (�) = o(1).It follows that (X� � b(�))=a(�) ) U . So 2) holds by Theorem 3.2. Oneeven has strong asymptoti
 normality, whi
h implies 
onvergen
e in law of thestandardised rv's U� = (X� � �(�))=�(�). Khin
hine's 
onvergen
e of typestheorem (see Feller [15℄, Lemma VIII.2.1) then gives �(�) � a(�) whi
h is 1).23.1.2 Densities and the domain of attra
tion of the normal law.If the exponential family is generated by a rv X with a 
ontinuous densityf then ea
h rv X� of the exponential family has a 
ontinuous density f�.Asymptoti
 normality of the exponential family does not imply 
onvergen
eof the densities. Let g� denote the density of the standardised rvU� = (X� � �(�))=�(�) (3.8)with � and � the mean and varian
e of X�; see (3.2). Consider the followingstatements about 
onvergen
e of the densities for �! �1:D1) g� ! g01 in L1;D2) g� ! g01 uniformly on R;D3) for all M > 1supu2R eM jujjg�(u)� g01(u)j ! 0 �! �1: (3.9)We shall prove the following: If X has a density f , whi
h is strongly unimodal,i.e. f = e�' with ' 
onvex, then asymptoti
 normality of the exponentialfamily is equivalent with D1){D3).We previously 
hara
terised the domain of attra
tion of the normal law forexponential families in terms of transforms and also gave 
onditions on theupper tail of F or the density f whi
h guarantees that the asso
iated expo-nential family is asymptoti
ally normal. Here we 
ollate some results aboutsu
h 
onditions. 12



Theorem 3.6 Suppose X has a bounded density f with upper endpoint x1,positive on a left neighbourhood of x1. Then the following hold:1) If f(x) � e� (x) for x! x1, where  is asymptoti
ally paraboli
, then theexponential family X� is asymptoti
ally normal and D3) holds.2) If f is C3 on a left neighbourhood of the upper endpoint x1, f(x) ! 0 asx! x1 and the fun
tion  = � log f satis�es  00 > 0 and  000(x)=( 00(x))3=2 !0 as x! x1, then D3) holds.Proof 1) First assume f = e� . Let x0 < x1. Then � =  0(x0) is the slope ofthe 
onvex fun
tion  in x0. Set a0 = 1=q 00(x0). Then (3.6) gives �(u) :=  (x0 + a0u)�  (x0)� �a0u! u2=2 x0 ! x1: (3.10)The density h� of (X� � x0)=a0 is 
0e� �(u) for some normalising 
onstant
0 = 
(�) > 0. Thus h� ! g01 by (3.10) and 
onvexity of  �. The 
onvexityalso gives (3.9). See BKR93 [1℄, Theorem 6.4 for further details.2) The 
onditions imply that  is asymptoti
ally paraboli
. 2In Balkema, Kl�uppelberg and Stadtm�uller [3℄ a number of Tauberian 
on-ditions were formulated whi
h ensure that the rv X with asymptoti
allyparaboli
 
gf � has a density f with Gaussian tail. This means that the up-per endpoint x1 is in�nite and f � e� for some asymptoti
ally paraboli
fun
tion  . The results of that paper were formulated in the framework ofdensities with upper endpoint x1 =1 but the theorem below remains validin the 
ase where x1 <1. For the proof of this theorem we refer to Se
tion 2in [3℄.Theorem 3.7 Let X have a strongly unimodal density f .1) The 
onditions D1) { D3) are equivalent.2) If the exponential family X� is asymptoti
ally normal, then f is boundedand f(x) � e� (x) for x! x1 where  is asymptoti
ally paraboli
.For the last statement, note that the weakest 
ondition D1) implies asymp-toti
 normality. Hen
e by Theorem 3.7 f(x) � e� (x) for x ! x1 with  asymptoti
ally paraboli
 and D3) holds by Theorem 3.6.3.1.3 Distributions and the domain of attra
tion of the normal law.Comparable results to those stated in the previous subse
tion are valid interms of the upper tail of the df F . We �rst note the following fa
t, whi
h is13



an immediate 
onsequen
e of the de�nition.If  is asymptoti
ally paraboli
 at t1 > 0, then so is  (t) + log t:Theorem 3.8 Suppose the df F has upper endpoint x1 and tail 1� F (x) �e� (x) for x! x1 where  is asymptoti
ally paraboli
 at x1. Then the asso-
iated exponential family is asymptoti
ally normal.Proof De�ne the bounded density f �(x) = ex(1�F (x))=
. Then f �(x) � e��(x)where �(x) =  (x) � x + log 
 is asymptoti
ally paraboli
 sin
e �00 =  00. Sofrom Theorem 3.6, the exponential family generated by f � is asymptoti
allynormal. Let K be the mgf of F . We then have from Theorem 3.3 thatlog Z e�xf �(x)dx = log Z e(�+1)x(1� F (x))dx=
 = log K(1 + �)(1 + �)
 !is asymptoti
ally paraboli
. This implies that logK(1 + �) is asymptoti
allyparaboli
 and hen
e so is logK. 2The 
onverse is false. Asymptoti
 normality of an exponential family does notimply that the underlying df has a tail 1�F (x) � e� (x) with  asymptoti
allyparaboli
. The tail need not even be asymptoti
ally 
ontinuous.Example 3.9 The Poisson distributions form an exponential family whi
h iswell known to be asymptoti
ally normal. The tail of a Poisson distribution withexpe
tation 1 is very irregular: (1� F (n�))=(1� F (n)) � n 6! 1 for n!1.2One 
an introdu
e measures with in
reasingly smooth densities by settingf1 = 1 � F and fn+1(x) = R1x fn(t)dt. The 
gf's 
orresponding to fn are�(�)� n log�, and these are asymptoti
ally paraboli
al if and only if � is. IfF is the Poisson distribution with expe
tation 1 then none of the densities fnis of the form fn � e� n with  n asymptoti
ally paraboli
, even though theyall generate exponential families whi
h are asymptoti
ally normal.3.1.4 Asymptoti
ally paraboli
 fun
tions.Here are some examples of asymptoti
ally paraboli
 fun
tions. We seek fun
-tions whi
h are 
onvex and unbounded at their upper endpoint. The fun
tionx2 is asymptoti
ally paraboli
 at in�nity, and so are the fun
tions x� for � > 1,x � x� for � 2 (0; 1) and ex� for � > 0. Positive linear 
ombinations of su
hfun
tions are again asymptoti
ally paraboli
. The fun
tions 1=(
 � x)� with� > 0 and j log(
� x)j� for � > 1 are asymptoti
ally paraboli
 at the point 
.Not every asymptoti
ally paraboli
 fun
tion is the 
gf of a probability measure.Cgf's are very spe
ial 
onvex fun
tions. A mgf is totally positive, its derivatives14



are all stri
tly positive on �, and it extends to an analyti
 fun
tion on theverti
al strip f<z 2 �g. So one may ask whi
h of the fun
tions in the exampleabove is asymptoti
 to a 
umulant generating fun
tion. The �nal result of these
tion addresses this question.We shall make use of a beautiful result whi
h links the asymptoti
 behaviour ofa density and its mgf. This result is based on the 
onjugate Legendre transform � of a 
onvex fun
tion  with domain D �(t) = supfxt�  (x) j x 2 Dg: (3.11)If f = e� is a strongly unimodal density and  is asymptoti
ally paraboli
,then (2.9) with 
 = 0 givesK(�) � p2�a�f(b�)e�b� � p2��(�)e �(�) �! �1 (3.12)if we 
hoose b� so that  0(b�) = �, thus maximising �x �  (x) in (3.11). Inthat 
ase a� � �(�). One 
an get rid of the fa
tor p2��(�) in (3.12) sin
ethis fun
tion is pra
ti
ally 
onstant (
at) on intervals of length �(�).Theorem 3.10 Let ' be asymptoti
ally paraboli
 in �1. Then there exists arv X with mgf K so that K(�) � e'(�) for � ! �1. We may 
hoose X tohave a strongly unimodal density.Proof We may assume that ' is 
onvex and that '00 is 
ontinuous and stri
tlypositive. Let t1 = supf'0(�) j � < �1g and let  (t) = '�(t) be the 
onjugateLegendre transform of '(�). The fun
tion  is de�ned on a left neighbourhoodof t1 and is asymptoti
ally paraboli
 in t1 by Theorem 5.3 in BKR93 [1℄ withs
ale fun
tion a(t) = 1=q 00(t). Now apply Theorem 6.6 in [1℄ with a boundeddensity f � 
e� where 
(t) = 1=(p2�a(t)). The fun
tion 
 is 
at (see [1℄,p.580) for a sin
e a is self-negle
ting. This implies that we may 
hoose fstrongly unimodal. Note that  � = '�� = '. Hen
e the mgf K of f sati�esK(�) � e'(�) by relation (6.6) in [1℄. 24 Domains of attra
tion for the gamma limits.For the domains of attra
tion of the gamma limits there is a simple and
omplete des
ription in terms of regular variation. In fa
t the limit theory forexponential families with a gamma limit leads to a novel approa
h to regularvariation. We shall obtain a new derivation of Karamata's Tauberian theorem.It will also be seen that smoothly varying fun
tions o

ur naturally in the limittheory of exponential families. 15



For the de�nition and properties of regular variation we refer to BGT [9℄,Feller [15℄, Embre
hts, Kl�uppelberg, and Mikos
h [13℄, Geluk and de Haan [16℄or Resni
k [18℄;Let 
� for � > 0 denote the probability distribution on (0;1) with densityg�(y) = y��1e�y=�(�) y > 0: (4.1)The mgf K(�) = 1=(1 � �)� of the distribution 
� is �nite on (�1; 1). Thegamma variable V with density (4.1) satis�es a stability relation. For a normalrv the Ess
her transform has the e�e
t of a translation, for a gamma rv theEss
her transform has the e�e
t of a multipli
ation:E�V = V � d= V1� � � < 1: (4.2)We are interested in rv's in the domain of attra
tion of V and of the rv Vwith probability distribution 
�, mgf K(�) = 1=(1+�)�, � > �1, and densityg�(y) = (�y)��1ey=�(�) y < 0: (4.3)The following is a �rst important result of this se
tion.Proposition 4.1 1) If X 2 D(
�), then �1 <1 and(�1 � �)X� ) V �! �1 : (4.4)2) If X 2 D(
�), then x1 <1 and�(X� � x1)) V �!1 : (4.5)Proof We make use of the following fa
t (see (2.2) in BKR99 [2℄):If Ax = ax + b for a > 0; b 2 R, and � 2 �, thenAE�X = E�=aAX: (4.6)1) There exist (BKR99 [2℄, Lemma 2.8) positive aÆne transformations A�depending 
ontinuously on the parameter �, so that as �! �1U� := A�X� ) V:Let � = 1=2. For some �0 < �1, Ee�U� is �nite for � 2 [�0; �1). Use (4.6) to seethat it is possible to 
hoose �0 < �1 < � � � and positive aÆne transformations16



Bnx = (x � bn)=an so that the variables Zn = U�n satisfy Bn+1E�Zn = Zn+1and Z0 = B0E�0X. Then Bnx! Qx = x=2 by (4.2). This means that an ! 2and bn ! 0. Observe that from repeated use of (4.6),Zn+1 = Bn+1E�BnE� � � �B1E�A�0E�0X =: DnE�nXwith �n = �0 + �=a0 + � � �+ �=(a0 � � �an) " �1 <1sin
e an ! 2, and Dn = Bn Æ � � � Æ B0. Set Dnx = 
nx + dn. Then 
n =1=(a0 � � �an) ! 0 and hen
e kDnk := q(log 
n)2 + d2n !1 and therefore, byBKR99 [2℄, Proposition 2.10, �1 = �1 =2 �. Sin
e an ! 2, we have�1 � �n � �=(a0 � � �an) � 
n=2:The relation Dnx = 
nx + dn gives dn = Dn(0) = Bn(Dn�1(0)) = Bn(dn�1) =(dn�1 � bn)=an: Due to bn ! 0 and an ! 2, we get dn ! 0 and(�1 � �n)E�nX ) V:Finally write � = �n+�n(�1��n) for � 2 [�n; �n+1). Then �n = �n(�) 2 [0; 2=3℄eventually, V� d= B�nn Zn with Q�nB�nn ! id uniformly in �n 2 [0; 2=3℄. Thisimplies(�1 � �)X� = (1� �n)(�1 � �n)E�nU�n = (1� �n)E�nZn ) Vwhi
h is the desired relation (4.4).2) The proof is similar. Take � = 1. Then Bnx ! 2x and Dnx = 
n(x + Æn)with 
n as above andÆn = dn
n = dn�1 � bnan
n = Æn�1 � bn
n�1 ! Æ1 <1:We thus �nd �n � 2�=(a0 � � �an�1) � 
n � �n and DnE�nX ) V gives�n(X�n � x1)) V :Assume x1 = 0 for simpli
ity. Set Zn = �nX�n . Then Zn ) V implies�E�Zn ) V uniformly in � 2 [1; 3℄. Hen
e writing � = �n�n for �n � � < �n+1we �nd �X� = �nE�nZn ) V :For general x1 one obtains (4.5). 24.1 Regular variationBy Proposition 4.1,1), if F 2 D(
�) then �1 is �nite. The measure d�(y) =e�1ydF (y) has in�nite total mass, sin
e �1 62 � implies K(�) ! 1 for17



�! �1. Note however that
M(�) = Z e�yd�(y) = K(�1 + �) <1 �0 < � < 0 (4.7)for some �0 < 0.The exponential family generated by the Radon measure � 
onsists of rv's Y �with distribution dG�(y) = e�yd�(y)=
M(�) �0 < � < 0:This is also the exponential family generated by the df F up to a shift in theparametrization: G� = F� for � = �1 + � .The dfM(y) = �((�1; y℄) of the measure � plays a key role in the des
riptionof D(
�). Consider the following examples.Example 4.2 (i) Let � be a Radon measure on R with density m whi
hvanishes o� [0;1). Suppose m(x)! 1 for x!1. Let Y � , � < �1 = 0, be theexponential family generated by �. The rv Y � has density e�ym(y)=
M(�). Set� = �� . The normalized rv V� = �Y � has density e�ym(y=�)=(�
M(�)) whi
h
onverges to the standard exponential density for � # 0 sin
e m(y=�) ! 1.Note that 
M(�) � 1=� for � " 0 and M(y) = �((�1; y℄) � y for y !1.(ii) More generally, start with a measure � on R with distribution fun
tionM(y) = �((�1; y℄) whi
h varies regularly at1 with exponent � > 0. Assumethat R e�0yd�(y) is �nite for some �0 < 0. The 
orresponding exponentialfamily Y �, �0 � � < 0, with distributiond��(y) = e�yd�(y)=
M(�) 
M(�) = Z e�yd�(y) �0 � � < 0satis�es V� = (�1 � �)X� ) V with �1 = 0.Proof Regular variation with exponent � implies for � > � thatM(y) = o(y�)for y ! 1. Hen
e e�yd�(y) is a �nite measure for �0 � � < 0. For � > 0de�ne the measure �� with df ��((�1; y℄) = �((�1; y=�℄) = M(y=�). LetA(�) =M(1=�)�(�+ 1). ThenM(y=�)A(�) ! y�+�(�+ 1) weakly on R for � # 0:Note that for y � 0, M(y=�)M(1=�) � M(0)M(1=�) ! 0;as � # 0, sin
e M(1=�)!1 as a 
onsequen
e of regular variation. The �nite18



measures d��(y) = e�yd��(y)=A(�), � > 0, satisfyd��(y)! e�yy��1+ dy=�(�) � # 0vaguely on [�1;1) and even weakly sin
e ��(R) ! R e�ydy�+=�(� + 1) = 1be
ause of the relationM(y) = o(y�) for � > � mentioned above. We 
on
ludethat A(�) � 
M(��) = R e��yd�(y) for � # 0 and hen
e for � = �� theprobability measure e�yd��(y)=
M(�) of �Y � tends to 
� weakly for � " 0. 2The ideas of these examples suggest the general results of the next setion.4.2 Domain of attra
tion of the positive gamma law.Suppose �! �1 <1. Let the limit variable V > 0 have distribution 
a. Asin the 
ase of a normal limit distribution a number of limit relations turn outto be equivalent for a gamma limit:Theorem 4.3 Let V have probability distribution 
� on [0;1) for some pa-rameter � > 0. Let the rv X with df F have mgf K with upper endpoint�1 <1. Let M(y) = �((�1; y℄) = Z(�1;y℄ e�1xdF (x):Then the following statements are equivalent for �! �1.G1) V� = (�1 � �)X� ) V ;G2) EV� = (�1 � �)EX� ! EV = �;G3) EV n� ! EV n for n 2 N;G4) K�(�) = Ee�V� ! 1=(1� �)� for � < 1.G5) M varies regularly at 1 with exponent �;G6) K varies regularly at �1 with exponent ��; that islimt#0 K(�1 � tx)K(�1 � t) = x�� x > 0:G7) the df M and the mgf K are asymptoti
ally related for � = �1 � � # 0:M(y=�)K(�1 � �) ! y�+�(� + 1) weakly on R: (4.8)
19



Proof We pro
eed in six steps. Set � = �1 � � # 0.G6)() G4) sin
e the mgf of V� is � ! K(�1 � � + ��)=K(�1 � �).G4) ) G1) Convergen
e of mgf's implies weak 
onvergen
e.G1)) G7) The rv V� has distribution d��� (y) = e�yd��(y)=K(�), where again��((�1; y℄) = �((�1; y=�℄). Thend��� (y)! e�yy��1dy=�(�) � # 0: (4.9)Multiply by ey and integrate over (�1; y℄. Sin
e �� has df M(y=�) we ob-tain (4.8).G7) ) G5) is obvious.G7) ) G6) by symmetry: K(�1 � ��)=M(1=�)! �(�+ 1)=�� on (0;1).G5) ) G1) is proved in the Example 4.2 (ii) above.So we have established G1) ) G7)) G5) ) G1) and G1) ) G7)) G6) )G4)) G1); i.e. the equivalen
e of G1) and G4)�G7). Note that G4) impliesG2) and G3), full equivalen
e is established in Theorem 4.6. 2Remark 4.4 (a) Note that we have proven Karamata's 
elebrated Tauberiantheorem G6) ) G5).(b) We have also proven that weak 
onvergen
e implies 
onvergen
e of themgf's for exponential families with limit distribution 
�; 
f. Theorem 2.3. 2Proposition 4.5 If F 2 D(
�), then the mgf K varies smoothly at �1 <1with exponent ��; i.e. �0(�)! �� and �(n)(�)! 0 for all n � 2.Proof Let � = logK denote the 
gf in the theorem above and set'(t) = �(�1 � e�t):Then regular variation of K with exponent �� in �1 just means that fort!1'(t+ x)� '(t) = log K(�1 � e�(t+x))K(�1 � e�t) !! log(e�x) = �x (4.10)uniformly on bounded x-intervals in R. The fun
tion ' is analyti
 and hen
e'0(t) ! � and '(n)(t) ! 0 for n � 2. This means that the mgf K variessmoothly at �1. See BGT [9℄, Se
tion 1.8. 220



Theorem 4.6 Suppose X is a rv with 
gf � with upper endpoint �1 < 1.Then X 2 D(
�) if and only if (�1 � �)EX� ! � for �! �1.Proof Ne
essity of the 
ondition has been proved above: G1) ) G2). For suf-�
ien
y we use Proposition 4.5 and note that the 
ondition 
an be formulatedin terms of the fun
tion 
M(�) = K(�1 + �) for � < 0 (see (4.7)) asj� j
M 0(�)=
M(�)! �� � " 0:This is the well-known von Mises suÆ
ient 
ondition for regular variation withexponent ��, giving that K is regularly varying; i.e. G6). See BGT [9℄. 24.3 Domain of attra
tion of the negative gamma law.The theory for the domain of attra
tion is, in this 
ase, even simpler.Let X have df F 2 D(
�) and mgf K. By Proposition 4.1,2), the upperendpoint x1 of F is �nite and we may assume x1 = 0. Sin
e F is 
ontinuousat its upper endpoint the mgf K(�) vanishes for � ! 1. The probabilitymeasure � of �X has df H(y) = 1 � F (�y�). The positive rv ��X� hasprobability distribution e�yd(��)(y)=K(�)and �� has df H(�=�). The following two weak limit relations for � ! 1 areequivalent:e�yd(��)(y)=K(�) ! e�yy��1dy=�(�)H(y=�)=K(�) ! y�=�(�+ 1):Theorem 4.7 Let V have probability distribution 
� on (�1; 0℄ for some� > 0. Let X have df F with x1 < 1 and mgf K with �1 = 1. Thefollowing statements are equivalent:G1) V � = �(X� � x1)) V for �!1;G2) EV � = �(x1 � EX�)! EV = � �!1;G3) EV n� ! EV n for n 2 N;G4) K�(�) = Ee�V� ! 1(1 + �)� for � > �1 for �!1;G5) 1� F varies regularly with exponent � in x1;G6) e�x1�K(�) varies regularly in 1 with exponent ��;21



G7) the tail 1� F and the mgf K are asymptoti
ally related: for x > 01� F (x1 � x=�)e��x1K(�) ! x��(� + 1) �!1:The proof is similar to that of Theorem 4.3 and therefore omitted.Similarly setting '(t) = �(et) we �nd '(t+ x)� '(t)! ��x whi
h provesProposition 4.8 Let F 2 D(
�) with mgf K, then K varies smoothly in 1with exponent ��.5 Appli
ationsWe show that limit laws for exponential families 
an be applied to prove tail-a

ura
y of 
ertain approximating densities. For densities in in the domain ofattra
tion of the normal law results of this kind and some statisti
al examplesare in Barndor�-Nielsen and Kl�uppelberg [6℄; �rst multivariate results 
an befound in [7℄.5.1 Convolution 
losure properties.Consider the 
onvolution of df's and densities from the domains of attra
tiongiving emphasis to 
onvolving the positive gamma and the normal distribu-tion; the negative gamma distribution 
an be treated analogously to the pos-itive one. The parameter � appears in the domain of attra
tion of a gammadistribution (4.1), and we denote the 
orresponding domain of attra
tion byD(�) for � > 0. The normal distribution as a member of the extended gammafamily 
orresponds to � = 1; hen
e we denote its domain of attra
tion byD(1).Proposition 5.1 Suppose both F and G 2 D(1) and assume their mgf'shave the same upper endpoint. Then F �G 2 D(1).Proof Noti
e that the 
gf of F �G is the sum � = �F + �G of the fa
tors, andthe varian
es add. Hen
e � � �F ; �G. If 1=�F and 1=�G are self-negle
ting,then so is 1=�. The result follows then by Theorem 3.3. 2In BKR93 [1℄ a slightly more general 
lass of densities than in Se
tion 2.4 hasbeen introdu
ed aiming at 
onvolution 
losure.22



Proposition 5.2 (BKR93 [1℄)Let fi(t) = 
i(t)e� i(t), t � ti1, for i = 1; 2, where  i are asymptoti
allyparaboli
 with self-negle
ting fun
tions si = 1=q 00i and
i(t+ xsi(t))=
i(t)! 1 t! ti1:Denote f(t) = f1 � f2(t) = Z f1(t� y)f2(y)dy ;then f(t) � 
(t)e� (t) and 
 and  have the same properties. Furthermore,they 
an be expressed in terms of the 
i and  i; see BKR93 [1℄ for details.We now turn to D(�) for �nite � and start with a 
onvolution result, whi
hmay be 
ompared to Cline [11℄, Theorem 3.4.Proposition 5.3 Suppose F 2 D(�1), G 2 D(�2) for �1; �2 <1. If themgf's have the same upper endpoint �1 then F �G 2 D(�1 + �2).Proof The mgf of F � G is the produ
t of the mgf of F and the mgf of G,hen
e it varies regularly in �1 with exponent �(�1 +�2). Here we use G6) ofTheorem 4.4. 25.2 On the tail a

ura
y of the saddlepoint and gamma approximationLet f be a density, de�ned and positive on an interval I that is unboundedabove. The (unnormalised) saddlepoint approximation to f(x) may be ex-pressed asf y(x) = 1q2��00(�) e�(�x��(�)) (5.1)where � denotes the 
gf and � is the saddlepoint, i.e. it satis�es �0(�) = x. Theratio f y(x)=f(x) expresses the relative a

ura
y of the saddlepoint approxi-mation and we obtain immediately from (3.12) that f y(x) � f(x) as x !1and hen
e for the relative errorREy(x) = ���log �f y(x)=f(x)����! 0 x!1 :Now assume that f(x) � e�x x��1 `(x), x!1, for � > 0 and ` 2 SV (i.e.limx!1 `(xt)=`(x) = 1 for all t > 0). Then �1 = 1 and F 2 D(�) by Theo-rem 4.3. Indeed, it has been shown already in Theorem 7.1 of Daniels [12℄ thatthe asso
iated exponential family is asymptoti
ally gamma. By an immediate23




onsequen
e of smooth regular variation (
f. Proposition 4.8) we obtain forthe derivatives of the mgf and the 
gfK(j)(�)� �(b+ j)(1� �)�+j `� 11� �� j 2 N0 ;�(j)(�)� �(1� �)j j 2 N :Furthermore, sin
e f(x)=F (x)! 1 as x!1, (5.2) implies thatf y(x) � 1� �p2� � �(�)(1� �)� `� 11� �� e��xand for � satisfying �0(�) = �1��(1 + o(1)) = x as �! 1 (see Theorem 4.6), weobtainf y(x)� �(�)p2� � �x����1 `�x�� e�(x��)(1+o(1))� �(�)p2� � ��(��1) x��1 `(x) e�x e�= �(�) e�p2� � ���1 f(x) x!1 :Hen
e REy(x) is bounded and independent of x.On the other hand, for densities in the domain of attra
tion of a gamma dis-tribution, a gamma approximation as e.g. suggested by Bower is more appro-priate [
f. Beard, Pentik�ainen and Pesonen [8℄, see also Jensen [17℄, equation(3.7)℄. The gamma approximation is de�ned as follows.f yy(x) = �0(�)�00(�) 
  (�0(�))2�00(�) ! e�(�x��(�)) (5.2)where 
(u) = uu�1 e�u=�(u) and � is su
h that �0(�) = x. We use Theorem 4.6whi
h gives �0(�) = x � �=(1� �) and hen
e � = 1 � a=x (1 + o(1)), whi
himplies thatf yy(x)� (1� �) 
(�) e�x e�(1+o(1)) �(�)(1� �)� `� 11� ��24



� e�x � �1� ����1 `� �1� ��� e�x x��1 `(x)= f(x) ; x!1 :Hen
eREyy(x) = ���log �f yy(x)=f(x)����! 0 as x!1 ;i.e. the gamma approximation be
omes exa
t in the tail.Referen
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