
REGULAR VARIATION IN THE MEAN AND STABLE LIMITS FORPOISSON SHOT NOISECLAUDIA KL�UPPELBERG, THOMAS MIKOSCH, AND ANETTE SCH�ARFAbstra
t. Poisson shot noise is a natural generalization of a 
ompound Poisson pro
esswhen the summands are sto
hasti
 pro
esses starting at the points of the underlying Poissonpro
ess. We study the limiting behavior of Poisson shot noise when the limits are in�nitevarian
e stable pro
esses. In this 
ontext a suÆ
ient 
ondition for this 
onvergen
e turnsup whi
h is 
losely related to multivariate regular variation. We 
all it regular variation inthe mean. We also show that the latter 
ondition is ne
essary and suÆ
ient for the weak
onvergen
e of the point pro
esses 
onstru
ted from the normalized noise sequen
e and alsofor the weak 
onvergen
e of its extremes.1. Introdu
tionIn various applied probability 
ontexts the 
ompound Poisson pro
essS(t) = N(t)Xi=1 Xi ; t � 0 ;(1.1)o

urs. Here (Xi) is a sequen
e of iid random variables, independent of the homogeneousPoisson pro
ess N with points 0 < T1 < T2 < � � � . In what follows, we also assume withoutloss of generality that N is unit rate. For example, S(t) is a natural model for the totalamount of 
laims in an insuran
e portfolio whi
h have been a

umulated in [0; t℄. However,the model (1.1) implies that 
laims are paid at the same time when they o

ur. This isan assumption whi
h is hardly realisti
, and therefore the following generalization is verynatural.1991 Mathemati
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2 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARFLet (Xi) be a sequen
e of iid sto
hasti
 pro
esses on R su
h that Xi(t) = 0 for negative t.The pro
ess S(t) = N(t)Xi=1 Xi(t� Ti) ; t � 0 ;is 
alled a Poisson shot noise pro
ess. In an insuran
e 
ontext, for example, Xi would be apro
ess with non-de
reasing sample paths representing the pay-o� for the ith 
laim in theportfolio in the period [0; t℄. Having this appli
ation in mind, we studied the weak limitbehavior with Gaussian limits in [15, 16℄. Traditionally, the shot noise pro
ess has been
onsidered with sample paths de
reasing to zero, possibly allowing for a stationary versionof S (see for example Bondesson [3, 4℄ and Parzen [28℄). Shot noise pro
esses were used formodeling bun
hing in traÆ
 (Bartlett [1℄, 
omputer failure times (Lewis [23℄) and earthquakeaftersho
ks (Vere{Jones [40℄). But shot noise pro
esses have re
ently also been used in other
ontexts, in
luding appli
ations to workload input models and teletraÆ
 (Konstantopoulosand Lin [17℄, Kurtz [19℄, Maulik, Resni
k and Rootz�en [24℄ and Maulik and Resni
k [25℄),�nan
e (Samorodnitsky [36℄), physi
s (Giraitis et al. [8℄). The 
ontinuing interest in the �eldis also shown by an unsophisti
ated sear
h of the keyword \shot noise" in Mathemati
alReviews resulting in 71 publi
ations. Their majority has been published over the last 15years.It is the aim of this paper to 
ontinue the investigations started in Kl�uppelberg andMikos
h [15, 16℄ whi
h are in line with other work on the asymptoti
 behavior of shot noisepro
esses su
h as the papers by Lane [20, 21℄ or Heinri
h and S
hmidt [11℄. Motivated byinsuran
e appli
ations, we are mainly interested in the asymptoti
 behavior of shot noisepro
esses in the \explosive" 
ase, i.e. when the noise pro
esses do not die out suÆ
ientlyfast so that no stationary version of the shot noise pro
ess exists, in parti
ular when thenoise pro
esses have \very heavy tails". Sin
e the \tail" of su
h a pro
ess needs to bede�ned we borrow from the notion of multivariate regular variation of random ve
tors whi
ho

urs as ne
essary and suÆ
ient domain 
ondition for, among others, sums of iid randomve
tors with in�nite varian
e stable limits (Rva�
eva [33℄) and 
omponentwise maxima for iidrandom ve
tors (see Resni
k [35℄, Chapter 5); see Remark 2.4 below for more information.The resulting 
ondition is of the following form:� Z 10 P ((X1(�(z + s1)); : : : ; X1(�(z + sk)))=�(�) 2 A(r; S)) dz ! �(A(r; S))(1.2)



REGULAR VARIATION IN THE MEAN AND STABLE LIMITS FOR POISSON SHOT NOISE 3for all 
ontinuity sets A(r; S) = fx : jxj > r ;x=jxj 2 Sg of the limiting measure �, where r isany positive number, S is a subset of the k-dimensional unit sphere, si are any non-negativenumbers and �(�) is a normalizing fun
tion and, most importantly, the measure � has tosatisfy the homogeneity 
ondition�(A(r; S)) = r�� �(A(1; S)) ; r > 0 ;for some � > 0. If the ve
tor in (1.2) does not depend on z the 
ondition degenerates tostandard multivariate regular variation. We 
all the 
ondition (1:2) regular variation in themean. Under the natural 
ondition that � is regularly varying, (1.2) turns out to be the
ru
ial 
ondition for Poisson shot noise to 
onverge weakly to an in�nite varian
e stablepro
esses. At the end of the paper this 
ondition again o

urs as ne
essary and suÆ
ient
ondition for the weak 
onvergen
e of the maxima of the noise pro
esses towards a Fr�e
hetdistribution.For � < 2 
ondition (1.2) 
an be 
onsidered as a domain of attra
tion 
ondition for anin�nite varian
e stable limiting pro
ess. The various examples in Se
tion 3 show that thosedomains are quite ri
h. In 
ontrast to the 
ompound Poisson pro
ess (1.1) where 
onvergen
eto a stable pro
ess is possible only if X1 has a distribution with regularly varying tails oforder �, the stable domains of attra
tion for Poisson shot noise 
ontain large 
lasses ofsto
hasti
 pro
esses (\noise pro
esses") whi
h in
lude 
ompound Poisson pro
esses, variousstable pro
esses, pro
esses with \long-range dependen
e" and many more. In this sense,shot noise is a 
lass of pro
esses whi
h, from a modeling perspe
tive, is mu
h more 
exiblethan 
ompound Poisson pro
esses.Our paper is organized as follows. In Se
tion 2 we give ne
essary and suÆ
ient 
onditionsfor the normalized and 
entered shot noise pro
ess to 
onverge weakly to an in�nite varian
estable pro
ess. This supplements our results for the Gaussian 
ase; see [15, 16℄. As in thelatter 
ase, the limit is an unfamiliar self-similar pro
ess. Before this result appears, weexplain the dependen
e stru
ture of Poisson shot noise (Se
tion 2.1), 
onsider the aspe
ts ofin�nite divisibility of S(t) (Se
tion 2.2) and weak limits of in�nitely divisible distributions(Se
tion 2.3). Multivariate stable distributions and stable pro
esses appear in Se
tion 2.4.Finally, in Se
tion 2.5 ne
essary and suÆ
ient 
onditions for the 
onvergen
e of normalizedand 
entered shot noise to an in�nite varian
e stable distribution are given (Corollary 2.7),where the regular variation 
ondition in the mean will play a major role. In Se
tion 3 weapply Corollary 2.7 in di�erent situations:



4 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARF� X1 degenerates on the positive real line to a positive regularly varying random variablewith index �, i.e. S is a 
ompound Poisson pro
ess.� X1 is an �-stable L�evy motion.� Multipli
ative noise pro
esses of the form Xi(t) = Yif(t), where Yi are iid regularlyvarying random variables with index � 2 (0; 2) and f is a regularly varying deter-ministi
 fun
tion with positive index.� Shots are of the form Xi(t) = YiBH(t), where Yi are iid regularly varying randomvariables with index � 2 (0; 2) and BH is an H-fra
tional Brownian motion.� X1 is a 
ompound Poisson pro
ess with in�nite varian
e summands.� We 
onsider a heavy-tailed workload pro
ess as used for modeling in teletraÆ
.� We 
onsider a shot noise pro
ess with a slowly varying normalizing fun
tion.� Finally, in Se
tion 3.8 we study point pro
ess 
onvergen
e of the normalized noisepro
esses Xi(t�Ti) whi
h turns out to be equivalent to regular variation in the meanas mentioned above.These examples, in parti
ular, show that the domains of attra
tion of �-stable pro
esses forshot noise are quite ri
h and 
ontain various interesting noise pro
esses whi
h also deserveattention in appli
ations, for example in insuran
e and in tele
ommuni
ations. Moreover, weintend to 
onvin
e the reader that our approa
h to the weak 
onvergen
e of shot noise pro-
esses via the 
onvergen
e of the underlying triplets (see Se
tions 2.2 and 2.3) 
hara
terizingin�nitely divisible pro
esses is a relatively simple way for 
he
king the 
onvergen
e of the�nite-dimensional distributions in the 
ase of �-stable limits. In this sense, our paper 
an beunderstood as one whi
h tries to explain the methodology of 
onvergen
e rather than provid-ing spe
ta
ular new limit results. Although possible in some 
ases, we refrain from provingfun
tional 
entral limit theorems whi
h would lead to 
he
king the usual tightness 
onditionsand would make the paper more te
hni
al. Finally, we mention that the methodology of thispaper 
ould be used to verify the weak 
onvergen
e of Poisson shot noise pro
esses towardsmore general L�evy or in�nitely divisible pro
esses.2. Ne
essary and suffi
ient 
onditions for 
onvergen
e to a stable law2.1. Preliminaries on the shot noise pro
ess. Consider the Poisson shot noise pro
essS(t) = N(t)Xn=1Xn(t� Tn) ; t � 0 ;



REGULAR VARIATION IN THE MEAN AND STABLE LIMITS FOR POISSON SHOT NOISE 5where (Xn) are iid sto
hasti
 pro
esses on R with 
�adl�a sample paths and su
h that Xn(s) =0, s � 0, independent of the homogeneous Poisson pro
ess N on [0;1) with points Tn andintensity 1. (The restri
tion to unit rate is without loss of generality.)We intend to �nd 
onditions under whi
h the �nite-dimensional distributions of the pro
essS (provided the pro
ess is properly normalized and 
entered) 
onverge to an in�nite varian
estable pro
ess.In this 
ontext the following simple de
omposition of the pro
ess S at the instants of time0 � t1 < � � � < tk is 
ru
ial:S(t1) = N(t1)Xn=1 Xn(t1 � Tn) ;S(t2) = N(t1)Xn=1 Xn(t2 � Tn) + N(t2)Xn=N(t1)+1Xn(t2 � Tn) ; : : : ;S(tk) = N(t1)Xn=1 Xn(tk � Tn) + N(t2)Xn=N(t1)+1Xn(tk � Tn) + � � �+ N(tk)Xn=N(tk�1)+1Xn(tk � Tn) :In the above de
omposition, by virtue of the regenerative property of the Poisson pro
essand the iid property of the pro
esses Xn, the terms in di�erent 
olumns of the display areindependent. Hen
e, the following identity in law holds:0BBBBBB� S(t1)S(t2)...S(tk)
1CCCCCCA d= 0BBBBBBBBBB�

PN(1)(t1)n=1 X(1)n (t1 � T (1)n )PN(1)(t1)n=1 X(1)n (t2 � T (1)n ) +PN(2)(t2�t1)n=1 X(2)n ((t2 � t1)� T (2)n )... ...PN(1)(t1)n=1 X(1)n (tk � T (1)n ) +PN(2)(t2�t1)n=1 X(2)n ((tk � t1)� T (2)n ) + � � �+PN(k)(tk�tk�1)n=1 X(k)n ((tk � tk�1)� T (k)n )
1CCCCCCCCCCA ;

where the pro
esses N (i) are iid 
opies of N with 
orresponding points T (i)n , independent ofthe iid pro
esses X(j)n with the same distribution as X1. By virtue of the order statisti
sproperty of the Poisson pro
ess, we immediately obtain for the latter relation the following



6 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARFidentity in law:(S(t1); S(t2); : : : ; S(tk))0
d= 0BBBBBBBBBB�

PN(1)(t1)n=1 X(1)n (t1U (1)n )PN(1)(t1)n=1 X(1)n ((t2 � t1) + t1U (1)n ) +PN(2)(t2�t1)n=1 X(2)n ((t2 � t1)U (2)n )... ...PN(1)(t1)n=1 X(1)n ((tk � t1) + t1U (1)n ) +PN(2)(t2�t1)n=1 X(2)n ((tk � t2) + (t2 � t1)U (2)n ) + � � �+PN(k)(tk�tk�1)n=1 X(k)n ((tk � tk�1)U (k)n )
1CCCCCCCCCCA ;

where (U (i)n ) are iid 
opies of a sequen
e (Un) of iid uniform on (0; 1) random variables.Noti
e that the terms in di�erent 
olumns of the above display are mutually independent,and therefore it suÆ
es to study the 
onvergen
e of the �nite-dimensional distributions ofthe (normalized and 
entered) pro
esseseS(�t; �s) = N(�t)Xn=1 Xn(�tUn + �s) ; s � 0 ;as � ! 1, for every �xed t > 0. Moreover, we will assume that the normalizing 
onstants�(�) > 0 for su
h a 
onvergen
e result are regularly varying with a non-negative index, i.e.there exists � � 0 su
h that lim�!1 �(
�)�(�) = 
� ; for all 
 > 0.Then noti
e that, for appropriate 
entering 
onstants b(�t; �s),heS(�t; �s)� b(�t; �s)i =�(�) � t� heS(e�; e�s=t)� b(e�; e�s=t)i =�(e�) ;where e� = �t. The limits of the pro
esses eS(�t; ��)� b(�t; ��) then only di�er by a power oft, and therefore it suÆ
es to study the 
ase t = 1. For ease of presentation, we writeeS(�s) = eS(�; �s) ; s � 0 :2.2. In�nite divisibility of the shot noise pro
ess. The distribution of eS(�s) is in�nitelydivisible. This follows from the fa
t that eS(�s) is a 
ompound Poisson sum. The same appliesto any linear 
ombination of the eS(�si), s0 = 0 < s1 < � � � < sk, k � 1. (In what follows,s = (s0; s1; : : : ; sk) is a �xed multi-index and therefore we suppress the dependen
e on s in



REGULAR VARIATION IN THE MEAN AND STABLE LIMITS FOR POISSON SHOT NOISE 7the notation wherever possible.) This 
an be seen from the form of the logarithm of the
hara
teristi
 fun
tion of the ve
toreSk(�) = �eS(�s0); : : : ; eS(�sk)�0given bylogE expn(�; eSk(�))o = � Z 10 (E exp fi(�;Xk(�; �z))g � 1) dz ; � 2 Rk+1 ;(2.1)where Xk(�; �z) = (X1(�z); X1(�(z + s1)); : : : ; X1(�(z + sk)))0 :After re-normalizing eSk(�) with positive 
onstants �(�) (to be determined later), we 
anre-write the right hand expression in (2.1) as follows:ZRk+1 �ei(�;x) � 1� i(�;x)1 + jxj2��(�; dx) + i(�;
(�))(2.2) = �12 Q(�; �) + ZRk+1nf0g�ei(�;x) � 1� i(�;x)1 + jxj2��(�; dx) + i(�;
(�)) ;where �(�; �) = � Z 10 P (Xk(�; �z)=�(�) 2 �) dzis a measure on Rk+1 , 
(�) = ZRk+1 x1 + jxj2 �(�; dx) ;and Q(�; �) = lim�#0 Zjxj<�(�;x)2 �(�; dx)(2.3)whi
h limit exists and is �nite.More generally, if we repla
e in relation (2.2) the triple (�(�; �);
(�); Q(�; �)) by the triple(�(�);
; Q), where 
 is a 
onstant ve
tor in Rd , � is a measure on Rd satisfyingZRd jxj21 + jxj2 �(dx) <1 ;(2.4)and Q is de�ned analogously to (2.3), then we obtain the so-
alled L�evy representation of thelogarithm of the 
hara
teristi
 fun
tion of an in�nitely divisible distribution. A measure withthe property (2.4) is 
alled a L�evy measure. The distribution of any in�nitely divisible ve
tor



8 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARFis uniquely determined by the triple (�;
; Q). See Sato [38℄ for an en
y
lopedi
 treatmentof in�nitely divisible distributions and pro
esses.2.3. Weak limits of in�nitely divisible distributions. It is well known that the weaklimits of in�nitely divisible distributions are in�nitely divisible. Hen
e the weak limits of the�nite-dimensional distributions of a Poisson shot noise pro
ess must be in�nitely divisible.A

ording to Rva�
eva [33℄, Theorem 1.2,heSk(�)� b(�)i =�(�) ) Zkfor some in�nitely divisible ve
tor Zk with triple (�;
; Q) in the L�evy representation andappropriate normalizing 
onstants �(�) > 0 and 
entering 
onstants b(�) if and only if thefollowing three relations holds(1) �(�; A(r; S))! �(A(r; S)) for all 
ontinuity sets A(r; S) of � of the formA(r; S) = fx : jxj > r ; ex 2 Sg ;(2.5) where ex = x=jxj ; x 6= 0 ;and S is any Borel subset of the unit sphere Sk of Rk+1 .(2) 
(�)� b(�)=�(�)! 
.(3) lim�#0 lim�!1 Rjxj<�(�;x)2 �(�; dx) = Q(�) for all � 2 Rk+1 .In what follows, we use both symbols ex and x� for x=jxj.2.4. Multivariate stable distributions. Multivariate stable distributions are parti
ularin�nitely divisible distributions; see Sato [38℄ for the general 
ase of in�nitely divisible dis-tributions and Samorodnitsky and Taqqu [37℄ for an en
y
lopedi
 treatment of stable distri-butions and pro
esses. The 
hara
teristi
 fun
tion of a stable random ve
tor X with valuesin Rd and index � 2 (0; 2℄ is 
hara
terized by the triple (�;
; Q) in the L�evy representation:(1) � = 2: � is the null measure on Rk+1nf0g and Q is a non-negative de�nite quadrati
form with non-null 
oeÆ
ient matrix. In this 
ase, X has a multivariate Gaussiandistribution.(2) � 2 (0; 2): Q � 0 and � is homogeneous of order ��, i.e. for any set A(r; S) givenin (2.5), �(A(r; S)) = r���(A(1; S)) ; r > 0 :(2.6)



REGULAR VARIATION IN THE MEAN AND STABLE LIMITS FOR POISSON SHOT NOISE 9Remark 2.1. The L�evy representation of an in�nite varian
e stable distribution, i.e. if � <2, 
an be given in a more appealing form, involving the index � and a uniquely determinedspe
tral measure on the unit sphere Sd�1whi
h, up to a 
onstant multiple, is the spheri
al partof the measure �; 
f. Samorodnitsky and Taqqu [37℄, Theorem 2.3.1, for this representation,see Kuelbs [18℄ for a proof of this representation whi
h, in 
ombination with Gnedenko andKolmogorov [9℄, Chapter 7, proves that the spe
tral measure and the spheri
al part of � areidenti
al up to a 
onstant multiple. See also Remark 3 on p. 66 in [37℄.Finally, we say that a sto
hasti
 pro
ess (�(t); t � 0) is �-stable if all its �nite-dimensionaldistributions are �-stable in the sense de�ned above. A parti
ular 
ase is �-stable L�evymotion. It is de�ned as a pro
ess with stationary independent �-stable in
rements and
�adl�ag sample paths. Independent �-stable L�evy motions will 
onstitute the noise pro
essesin Se
tion 3.2.2.5. Convergen
e of the �nite-dimensional distributions of the shot noise to anin�nite varian
e stable distribution. The following is our main result on 
onvergen
eof the �nite-dimensional distributions of a Poisson shot noise pro
ess to an in�nite varian
estable distribution. (Do not forget that all random ve
tors depend on the multi-index s.)Theorem 2.2. Consider the Poisson shot noise pro
ess as introdu
ed in Se
tion 2.1. Assume� 2 (0; 2).There exists a normalizing fun
tion �(�) > 0 and a 
entering fun
tion b(�) su
h thatheSk(�)� b(�)i =�(�) ) Zk(2.7)for some �-stable random ve
tor Zk with values in Rk+1 whi
h is 
hara
terized by the triple(�;
; 0) in the L�evy representation if and only if(1) �(�; A(r; S)) = � Z 10 P (Xk(�; �z)=�(�) 2 A(r; S)) dz ! �(A(r; S))(2.8) for all 
ontinuity sets A(r; S) of a measure � satisfying the homogeneity 
ondition(2:6).(2) 
(�)� b(�)=�(�)! 
.(3) lim�#0 lim sup�!1 Rjxj<�(�;x)2 d�(�;x) = 0 for all � 2 Rk+1 .Proof. The proof follows from Rva�
eva's result (Se
tion 2.3) and the de�nition of a multi-variate stable distribution (Se
tion 2.4) by observing that Q � 0 for � < 2. �



10 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARFRemark 2.3. Observe that for any Æ > 0,
(�)� Zjxj�Æ x �(�; dx) = Zjxj>Æ x1 + jxj2 �(�; dx)� Zjxj�Æ x jxj21 + jxj2 �(�; dx) :(2.9)The integrands on the right hand side are bounded 
ontinuous fun
tions in their domains.Therefore, sin
e �(�; �) 
onverges vaguely to �(�) on Rk+1nf0g and �(fx : jxj = Æg) = 0 forevery positive Æ, the right hand expression of (2.9) 
onverges toZjxj>Æ x1 + jxj2 �(dx)� Zjxj�Æ x jxj21 + jxj2 �(dx) ;and the limits are �nite. Therefore possible 
entering 
onstants in (2.7) (the 
onstant 
 hasto be suitably 
hosen) are given byb(�) = �(�) Zjxj�Æ x �(�; dx)(2.10)for any 
hoi
e of Æ > 0.Remark 2.4. Re
all for example from Resni
k [34℄ or [35℄, Chapter 5, that the randomve
tor X with values in Rd is regularly varying with index � � 0 and spe
tral (probability)distribution Ps on the unit sphere Sd�1 of Rd if there exist positive 
onstants 
 and �n > 0su
h that �n(A(r; S)) = n P (��1n X 2 A(r; S))! �(A(r; S)) = 
 r�� Ps(S)(2.11)for all 
ontinuity sets S of Sd�1. Equivalently, �n v! �, where v! denotes vague 
onvergen
eon the Borel �-�eld of R dnf0g. (The measures �n and � are well de�ned on all Borel setsthrough their values on the sets A(r; S).) Multivariate regular variation for some � 2 (0; 2)is ne
essary and suÆ
ient for the distribution of X to belong to the domain of attra
tion ofa stable distribution with index �; see Rva�
eva [33℄. This means that for iid 
opies Xi ofthe ve
tor X and suitable 
entering 
onstants bn the relation(X1 + � � �+Xn � bn) =�n ) Zholds, where Z is a d-dimensional �-stable random ve
tor whose spe
tral measure, up to a
onstant multiple, is the spheri
al part of �.In this sense, the assumption (2.8) 
an be understood as a multivariate regular variation
ondition in the mean. In parti
ular, if (X1(t); t � 0) degenerates to a random ve
tor X1then (2.8) is nothing but the regular variation 
ondition (2.11).
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ase of random ve
tors mentioned in Remark 2.4 it follows from thede�nition of regular variation that a possible 
hoi
e for the normalizing 
onstants �n is givenby the asymptoti
 relation P (jXj > �n) � n�1(2.12)or one 
an 
hoose �n as the (1�n�1)-quantile of the distribution of jXj. Sin
e jXj is regularlyvarying in R with index � and, if � > 0, the sequen
e �n is then regularly varying with index1=�, i.e. �[n
℄=�n ! 
1=� for every 
 > 0. By 
hoosing A(1; S) with S = Sk, we 
on
ludefrom (2.8) that the normalizing 
onstants �(�) satisfy the 
onditionZ 10 P (jXk(�; �z)j > �(�) r) dz � ��1 r�� �(A(1;Sk))(2.13)for any r > 0, whi
h is similar to (2.12) and, again, 
an be interpreted as a regular variation
ondition in the mean; 
f. Remark 2.4.We �nally mention that the 
ondition 3. in Theorem 2.2 follows from 1. if the sto
hasti
pro
ess X1 degenerates to a random ve
tor; see Rva�
eva [33℄.Remark 2.6. In some 
ases of interest (see Se
tions 3.2 and 3.3) a possible 
hoi
e of thenormalizing 
onstants �(�) is given byP (jX1(�)j > �(�)) � ��1 :(2.14)This is similar to the 
ase when the pro
ess X1(t) � X1 for t � 0. In general, su
h a simplerelation for �(�) 
annot be expe
ted, i.e. 
ondition (2.13), whi
h is ne
essary for 
onvergen
eof the 
entered and normalized shot noise pro
ess to a stable limit, is not equivalent to (2.14).In Theorem 2.2 we suppressed the dependen
e of �(�; �), �, Xk, et
., on the 
hoi
e of theindex s = (s0; : : : ; sk) with 0 = s0 < � � � < sk. See Se
tion 2.2 for details. In what follows,we indi
ate this dependen
e by adding the 
orresponding subs
ripts to the symbols, forexample �s(�; �), �s, et
. As a matter of fa
t the normalizing 
onstants �(�) would alsodepend on s. However, sin
e we 
hoose �(�) to be regularly varying, the 
orrespondingnormalizing 
onstants would only di�er by positive 
onstants. This explains the appearan
eof the fa
tors ��ij in part B of Corollary 2.7.The following result summarizes our �ndings about the 
onvergen
e of the �nite-dimensi-onal distributions of the Poisson shot noise pro
ess to a stable pro
ess (see Se
tion 2.4 forits de�nition).



12 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARFCorollary 2.7. (A) Assume there exists a regularly varying normalizing fun
tion �(�) > 0with index � � 0 su
h that �(�)!1 as � !1, a 
entering fun
tion b(�) and an �-stablepro
ess � on [0;1) su
h that for every 
hoi
e of indi
es t1 < � � � < tk,[S(�t1)� b(�t1); : : : ; S(�tk)� b(�tk)℄ =�(�) ) (�(t1); : : : ; �(tk)) :(2.15)Then the relations 1:{3: of Theorem 2.2 hold for any 
hoi
e of indi
es s:1. � Z 10 P (Xk;s(�; �z)=�(�) 2 A(r; S)) dz ! �s(A(r; S))(2.16) for all 
ontinuity sets A(r; S) of a measure �s satisfying the homogeneity 
ondition�s(A(r; S)) = r���s(A(1; S)) for r > 0:2. 
s(�) � bs(�)=�(�) ! 
s where bs(�) is de�ned in (2:10) with Æ = 1 and �(�; �)repla
ed by �s(�; �).3. lim�#0 lim sup�!1 Zjxj<�(�;x)2 d�s(�;x) = 0(2.17) for all � 2 Rk+1 .(B) Under the assumptions of (A), the limiting ve
tor in (2:15) 
an be written as follows(�(t1); �(t2); �(t3); : : : ; �(tk))0 d=0BBBBBBBBB�
��1;0�(1)(0)��1;0�(1)(�2;1=�1;0) + ��2;1�(2)(0)��1;0�(1)(�3;1=�1;0) + ��2;1�(2)(�3;2=�2;1) + ��3;2�(3)(0)... ... ...��1;0�(1)(�k;1=�1;0) + ��2;1�(2)(�k;2=�2;1) + ��3;2�(3)(�k;3=�3;2) + � � �+��k;k�1�(k)(0)

1CCCCCCCCCA ;
where �i;j = tj � ti and t0 = 0, the pro
esses �(i) on [0;1) are iid �-stable whose �nite-di-mensional distributions are determined via the pairs (�s;
s) in 1: and 2: of part (B).(C) If 1:{3: of (A) hold then (2:15) is valid for appropriate normalizing and 
entering
onstants and an �-stable limit ve
tor. Moreover, if �(�) is regularly varying with a positiveindex, then the stru
ture of the limit pro
ess is given by part (B).



REGULAR VARIATION IN THE MEAN AND STABLE LIMITS FOR POISSON SHOT NOISE 13Proof. The proofs of parts (A) and (C) follow from Theorem 2.2 taking the remarks beforethe 
orollary into a

ount. The stru
ture of the limiting pro
ess (part (B)) is a 
onsequen
eof the dependen
e stru
ture of the Poisson shot noise as explained in Se
tion 2.1 and theregular variation of �(�). �Remark 2.8. If relation (2.15) holds for all 
hoi
es of index sets (t1; : : : ; tn), the normalizingfun
tion �(�) is ne
essarily regularly varying. Indeed, then we have for t; s � 0,S(t s �)� b(t s �)�(�) ) �(ts) and S(t s �)� b(t s �)�(t�) ) �(s) ;and the 
onvergen
e to types theorem (e.g. Embre
hts et al. [7℄, p. 554) implies that thelimit lim�!1 �(t�)=�(�) exists and is positive for every t > 0, i.e., �(�) is regularly varying.In 
ontrast to the degenerate 
ase when X1 is a regularly varying ve
tor with index � 2 (0; 2)and �(�) is ne
essarily regularly varying with index 1=�, in the 
ase of shot noise su
h arelationship is in general not true; see the examples 
onsidered below. In parti
ular, �(�)
an be a slowly varying fun
tion, see Se
tion 3.7.Remark 2.9. Under the 
onditions of part (C) with � > 0, the limiting pro
ess in (B)satis�es the s
aling property(�(st))t�0 d= s�(�(t))t�0 for any s > 0,where d= stands for identity of the �nite-dimensional distributions. This means that thelimiting pro
ess is a �-self-similar �-stable pro
ess.Remark 2.10. The stru
ture of the limiting pro
ess given in part (B) might lead one tothe 
on
lusion that � has independent in
rements. This is not 
orre
t sin
e the pro
esses�(i) have in general dependent in
rements. An ex
eption is the 
ompound Poisson pro
ess,see Se
tion 3.1 below. 3. Appli
ationsWe 
onsider various examples in order to illustrate di�erent stable limiting behavior ofPoisson shot noise. We fo
us on the veri�
ation of 
ondition (2.16) whi
h 
hara
terizes the�nite-dimensional distributions of the �-stable limit pro
ess up to 
entering. Only in oneexample (Se
tion 3.2) we show expli
itly that (2.17) is satis�ed. The other 
ases are similarand boil down to standard 
al
ulations.



14 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARF3.1. Degenerate noise. We start with the simplest example when the noise pro
esses aregiven by Xn(t) = YnI[0;1) ; t 2 R ;where (Yn) is an iid sequen
e. This means that S(t) is a 
ompound Poisson pro
ess. Weassume that the distribution of Y1 is in the domain of attra
tion of an �-stable law for some� 2 (0; 2). This means in parti
ular that Y1 is regularly varying with index �, i.e. there exist
onstants p; q � 0 and a slowly varying fun
tion L su
h thatP (Y1 > x) � p L(x)x� and P (Y1 � �x) � q L(x)x� ; x!1 :(3.1)In this 
ase it is well known (see for example Gut [10℄ or Ja
od and Shiryaev [13℄) that(S(��)� b(��))=�(�) ) � ;(3.2)where P (jY1j > �(�)) � ��1, b is an appropriate 
entering fun
tion and � is an �-stableL�evy motion. The 
onvergen
e in (3.2) is understood as 
onvergen
e of the underlying �-nite-dimensional distributions and 
an be strengthened to distributional 
onvergen
e in theSkorokhod spa
e D [0;1) equipped with the J1-topology.For illustrational purposes we investigate 
ondition (2.16) whi
h 
hara
terizes the �nite-dimensional distributions of �. In this 
ase, the integrand does not depend on z and the
ondition turns into� P �pk + 1 jY1j > r �(�) ; (pk + 1)�1(sign(Y1); : : : ; sign(Y1)) 2 S)� ! r�� �s(A(1; S)) :It is not diÆ
ult to see that the latter 
ondition is equivalent to the regular variation
ondition (3.1). The measure �s is 
on
entrated at the atoms (pk + 1)�1(1; : : : ; 1) and(pk + 1)�1(�1; : : : ;�1) with 
orresponding probabilities p and q. This kind of measure
hara
terizes an �-stable random ve
tor whose 
omponents are identi
al, and from part (B)of Corollary 2.7 one may 
on
lude that the limiting pro
ess � has independent and stationaryin
rements.3.2. L�evy motion as noise. Assume that the noise pro
esses are given by a stri
tly �-stable L�evy motion with index � < 2, skewness parameter � 2 [�1; 1℄ and s
ale parameter
 > 0, i.e. the log-
hara
teristi
 fun
tion of X1(1) has form�f(x) = 8<: �
 jxj�(1� i � sign(x) tan(��=2)) if � 6= 1,�
 jxj(1 + � log(jxj) 2� sign(x)) if � = 1.(3.3)
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t stability implies that � = 0, i.e. X1(1) is symmetri
 in this 
ase. Choose�(�) = �2=� :By stri
t stability the left hand side of (2.16) turns into� Z 10 P �j(X1(�z); X1(�(z + s1)); : : : ; X1(�(z + sk)))j > �2=�r ;(X1(�z); X1(�(z + s1)); : : : ; X1(�(z + sk)))e 2 S� dz= � Z 10 P �j(X1(z); X1(z + s1); : : : ; X1(z + sk))j > �1=�r ;(X1(z); X1(z + s1); : : : ; X1(z + sk))e 2 S� dz :(3.4)For �xed z 2 [0; 1℄ the limit of� P �j(X1(z); X1(z + s1); : : : ; X1(z + sk))j > �1=�r ; (X1(z); X1(z + s1); : : : ; X1(z + sk))e 2 S�is, up to a multiple 
 r��, the spe
tral measure of the stable pro
ess X1. The latter 
an beread o� from the 
hara
teristi
 fun
tion of the L�evy motion. This follows, for example, by anappli
ation of Rva�
eva's results for sums of iid random ve
tors in the domain of attra
tionof a stable distribution; see [33℄. Using the independent stationary in
rements of this stablepro
ess, we see that(�; (X1(z); X1(z + s1); : : : ; X1(z + sk))0)d= X1(z) (�1 + � � �+ �k+1) +X2(s1) (�2 + � � �+ �k+1) + � � �+Xk+1(sk � sk�1) �k+1= z1=�X1(1) (�1 + � � �+ �k+1) + s1=�1 X2(1) (�2 + � � �+ �k+1) + � � �+ (sk � sk�1)1=�Xk+1(1) �k+1 :Swit
hing to 
hara
teristi
 fun
tions (see (3.3)), we see thatE exp fi(�; (X1(z); X1(z + s1); : : : ; X1(z + sk))0)g= exp f�[z f(�1 + � � �+ �k+1) + s1 f(�2 + � � �+ �k+1) + � � �+ (sk � sk�1) f(�k+1)℄g= exp�� ZRk+1 f((�;x)) �z "(1;:::;1) + s1 "(0;1;:::;1) + � � �+ (sk � sk�1) "(0;:::;0;1)� (dx)�= exp�� ZSk f1((�; ex)) �z;s1;:::;sk(dex)�



16 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARFwhere "x denotes Dira
 measure at x, f1 is the 
hara
teristi
 fun
tion (3.3) with � = 1 for� 6= 1 and � = 0 for � = 1, and the spe
tral measure �z;s1;:::;sk on Sk is the superposition ofthe two measures1 + �2 hz (pk + 1)�"(1;:::;1)=pk+1 + s1 (pk)�"(0;1;:::;1)=pk + � � �+ (sk � sk�1) "(0;:::;0;1)iand1� �2 hz (pk + 1)�"�(1;:::;1)=pk+1 + s1 (pk)�"�(0;1;:::;1)=pk + � � �+ (sk � sk�1) "�(0;:::;0;1)i :Noti
e that for every T > 0,lim sup�!1 � P � sup0�t�T jX1(t)j > �1=�� <1 :This follows from stri
t stability and a maximal inequality of L�evy-Skorokhod-Ottavianitype; see for example Petrov [29℄, Theorem 2.3. Hen
e a domination argument (Pratt'slemma [32℄, 
f. Resni
k [35℄, p. 289) yields that the limiting measure in (3.4), up to a
onstant multiple, is given byr�� Z 10 �z;s1;:::;sk(S) dz =r��1 + �2 �0:5 (pk + 1)�"(1;:::;1)=pk+1 + s1 (pk)�"(0;1;:::;1)=pk + � � �+ (sk � sk�1) "(0;:::;0;1)� (S)+r��1� �2 �0:5 (pk + 1)�"�(1;:::;1)=pk+1 + s1 (pk)�"�(0;1;:::;1)=pk + � � �+(sk � sk�1) "�(0;:::;0;1)� (S) :where A(r; S) is any 
ontinuity set of the limiting measure. Thus the �nite-dimensionaldistributions of the Poisson shot noise pro
ess are �-stable.It remains to 
he
k the 
ondition (2.17). We indi
ate this in the 
ase k = 1 and writes = (0; s) for some s = s1 > 0. WriteY(z; s) = (X1(�z); X1(�(z + s))) :



REGULAR VARIATION IN THE MEAN AND STABLE LIMITS FOR POISSON SHOT NOISE 17We have for large �,Zjxj��(�;x)2 �s(�; dx) = � Zjxj��(�;x)2 Z 10 P (Y(z; s)=�(�) 2 dx) dz� 
 � Zjxj�� jxj2 Z 10 P (Y(z; s)=�(�) 2 dx) dz� 
 � Z 10 Xk���(�)+1 k2 P (k � 1 < jY(z; s)j � k) dz� 
 � Z 10 Xk���(�) k P (jY(z; s)j > k) dz� 
 Zx�� x �� Z 10 P (jY(z; s)j > x�(�))� dz dx :Now one 
an pro
eed in a similar way as in the �rst part of the proof, using Pratt's lemma,to 
on
lude that the right hand side 
onverges as � !1 toZx�� x�s(A(x;S1)) dx = �s(A(1;S1)) Zx�� x1�� dx = 
 �2��! 0 as �! 0.This 
on
ludes the proof.3.3. Multipli
ative noise. Another simple example is given by the noise pro
essesXn(t) = Yn f(t) ;where (Yn) is an iid sequen
e of a.s. positive random variables, regularly varying with index� 2 (0; 2) (see (3.1)), and f is a deterministi
 fun
tion on R with f(t) = 0 for t < 0. Wealso assume that f is bounded on 
ompa
t intervals, positive for t > 0 and regularly varyingat in�nity with index � > 0. Finally, we assume one of the following 
onditions: Yn has onlypositive or negative values or Yn is symmetri
. In both 
ases we know that sign(Yn) and jYnjare independent.We 
hoose �(�) = a� f(�) ;where P (jY1j > a�) � ��1. Then a� is regularly varying with index 1=� and �(�) with index� + 1=�.



18 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARFThe left hand side of (2.16) turns into� Z 10 P (jY1j j(f(�z); f(�(z + s1)); : : : ; f(�(z + sk))j > a� f(�) r)(3.5) P (sign(Y1) (f(�z); f(�(z + s1)); : : : ; f(�(z + sk)))� 2 S) dz :Sin
e f is regularly varying with positive index, the uniform 
onvergen
e theorem (Binghamet al. [2℄, Theorem 1.5.2) yieldsj(f(�z); f(�(z + s1)); : : : ; f(�(z + sk)))jf(�) ! j(jzj�; jz + s1j�; : : : ; jz + skj�)j(3.6) (f(�z); f(�(z + s1)); : : : ; f(�(z + sk)))� ! (jzj�; jz + s1j�; : : : ; jz + skj�)�(3.7)uniformly for z 2 (0; 1). By the same theorem and (3.6), (3.5) is asymptoti
ally equivalentto � r�� Z 10 ���jzj�; jz + s1j�; : : : ; jz + skj�����P (sign(Y1) (f(�z); f(�(z + s1)); : : : ; f(�(z + sk)))� 2 S) dz� r�� Z 10 ���jzj�; jz + s1j�; : : : ; jz + skj�����P �sign(Y1) �jzj�; jz + s1j�; : : : ; jz + skj��� 2 S� dzIn the last step we used (3.7) and Pratt's lemma [32℄. The 
onvergen
e holds for everyS � Sk. Thus the limit of the shot noise pro
ess is again an �-stable pro
ess. The veri�
ationof 
ondition (2.17) is analogous to the previous example and therefore omitted.Remark 3.1. In the above 
al
ulations the uniform 
onvergen
e in (3.6) and (3.7) forz 2 (0; 1℄ was 
ru
ial. For slowly varying f , i.e. � = 0, uniform 
onvergen
e 
an be a
hievedonly on 
ompa
t sets bounded away from zero. For uniformity of (3.6) and (3.7) one wouldhave to assume a slow variation 
ondition with remainder term. Then the above 
al
ulationsgo through with � = 0. Noti
e that the spheri
al part of the limiting measure is 
on
entratedat the two points (1; : : : ; 1)=pk + 1 and �(1; : : : ; 1)=pk + 1. This means that the limiting�-stable ve
tor has identi
al 
omponents. This is analogous to the 
ompound Poisson 
ase
onsidered in Se
tion 3.1.
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esses. In this se
tion we assume that the iid noise pro
esses aregiven by Xn(t) = YnBH(t) ; t � 0 ;(3.8)where BH is standard H-fra
tional Brownian motion for some H 2 (0; 1) and (Yn) is aniid sequen
e, independent of BH . We also assume that Y1 is regularly varying with index� 2 (0; 2).Re
all for example from Chapter 7 of Samorodnitsky and Taqqu [37℄ that standard H-fra
tional Brownian motion is a pro
ess with a.s. 
ontinuous sample paths, stationary mean-zero in
rements and 
ovarian
e stru
ture
ov(BH(t); BH(s)) = 0:5 �jtj2H + jsj2H � jt� sj2H� :ForH = 0:5, BH is standard Brownian motion. In 
ontrast to the 
aseH � 0:5, for fra
tionalBrownian motion with H 2 (0:5; 1) the stationary noise sequen
e (BH(n) � BH(n � 1))has a non-summable auto
ovarian
e fun
tion. The latter fa
t is referred to as long-rangedependen
e. Moreover, BH is H-self-similar, i.e. (BH(
t)) d= 
H (BH(t)), where d= refers toidentity of the �nite-dimensional distributions.In order to ensure the \heavy-tailedness" of the noise, we also assume that Y1 is regularlyvarying with index � 2 (0; 2); see Se
tion 3.3.Samorodnitsky and Taqqu [37℄, Se
tion 3.7, 
all a pro
ess X sub-Gaussian if it 
an bewritten in the form X(t) = A1=2G(t), where G is a Gaussian pro
ess and A is a positive 
=2-stable random variable for some 
 < 2, independent of G. The resulting pro
ess X is then
-stable. On the one hand, the noise pro
ess (3.8) is more general sin
e the multipliers Yn donot ne
essarily have the stru
ture mentioned above. On the other hand, we do not allow forgeneral Gaussian pro
esses G. Nevertheless, we 
all the noise pro
ess (3.8) sub-Gaussian.Write �(�) = �H a� ;where P (jY1j > a�) � ��1. We only 
he
k 
ondition (2.16) in order to get a des
ription ofthe dependen
e in the limiting �-stable pro
ess. WriteZs = (BH(z); BH(z + s1); : : : ; BH(z + sk)) :



20 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARFUsing the self-similarity of BH , the left hand side of (2.16) turns into� Z 10 P �jY1j j(BH(�z); BH(�(z + s1)); : : : ; BH(�(z + sk)))j > �H a� r ;sign(Y1) (BH(�z); BH(�(z + s1)); : : : ; BH(�(z + sk)))e 2 S� dz= � Z 10 P �jY1j jZsj > a� r ; sign(Y1) eZs 2 S� dz= � Z 10 P �jY1j jZsj > a� r ; eZs 2 S� dz :(3.9)In the last step we used the fa
t that BH is a symmetri
 random element with values inthe spa
e of 
ontinuous fun
tions. Hen
e (jY1j; sign(Y1)BH) and (jY1j; BH) have the samedistribution. A result of Breiman [5℄ and the independen
e of jY1j and BH ensure that� P �jY1j jZsj > a�r ; eZs 2 S� � P (jY1j > a� r)EjZsj�IS �eZs�� r��EjZsj�IS �eZs� :In the last step we used the de�nition of a�. The right hand side determines the radialand spheri
al parts of the L�evy measure of an �-stable distribution. Moreover, one 
aninter
hange the integral and the limit in (3.9) yielding the desired L�evy measure of the limitof the shot noise pro
ess. Indeed, this inter
hange is again justi�ed by an appli
ation ofPratt's lemma whi
h is based on the relationlim sup�!1 � P �jY1j sup0�t�T jBH(t)j > a�� <1 ;for every T > 0. The latter fa
t follows by another appli
ation of Breiman's result.3.5. Compound Poisson noise. In this se
tion we assume that the noise pro
esses havea 
ompound Poisson stru
ture, i.e., the iid noise pro
esses are of the formXn(t) = Nn(t)Xi=1 Yni ;where Nn are iid homogeneous Poisson pro
esses on (0;1) with (without loss of generality)unit rate and Yni; i; n = 1; 2; : : : are iid random variables. For 
onvenien
e we write Yi = Y1i.



REGULAR VARIATION IN THE MEAN AND STABLE LIMITS FOR POISSON SHOT NOISE 21We also assume that the Yi are stri
tly �-stable, i.e., for every k � 1 and non-negative 
i,
1Y1 + � � �+ 
kYk d=  kXi=1 j
ij�!1=� Y1 :We only give the veri�
ation of (2.16) in order to 
hara
terize the limiting stable pro
ess,and for ease of presentation we fo
us on the 
ase k = 1, the general 
ase being analogous.Observe that(X1(�z); X1(�(z + s))) d= �[N(�z)℄1=�Y1; [N(�z)℄1=�Y1 + [N(�s)℄1=�Y2� :(3.10)Conditionally on N , this ve
tor is �-stable. Then 
ondition (2.16) with k = 1 (we set s1 = s)turns into� Z 10 P ����[N(�z)℄1=�Y1; [N(�z)℄1=�Y1 + [N(�s)℄1=�Y2��� > �(�) r ;�[N(�z)℄1=�Y1; [N(�z)℄1=�Y1 + [N(�s)℄1=�Y2�� 2 S� dz ! �s(A(r; S)) :By the law of large numbers, N(�)=� a:s:! 1. Therefore the left hand expression be
omes� Z 10 P ����z1=�Y1; z1=�Y1 + s1=�Y2��� > [1 + o(1)℄ ��1=� �(�) r ;�z1=�Y1; z1=�Y1 + s1=�Y2�� [1 + o(1)℄ 2 S� dz :Choose �(�) = �2=�. Conditionally on N , as � !1 with probability 1,� P ����z1=�Y1; z1=�Y1 + s1=�Y2��� > [1 + o(1)℄ �1=� r ;(3.11) �z1=�Y1; z1=�Y1 + s1=�Y2�� [1 + o(1)℄ 2 S �� N� dz! �s(A(r; S)) ;(3.12)where the limit is the same as in Se
tion 3.2, i.e. for noise pro
esses whi
h are �-stableL�evy motions with X1(1) d= Y1. Hen
e the limiting measure in (2.16) is exa
tly the sameas in Se
tion 3.2 provided we 
an show that the inter
hange of limit and integration isjusti�ed. For an appli
ation of Pratt's lemma it suÆ
es to show that the terms in (3.11) aredominated by some fun
tions whi
h are integrable and whose integrals 
onverge to a �nitenumber. Indeed, we 
an dominate (3.11) by� P �2 [N(�)℄1=�jY1j+ [N(�s)℄1=�jY2j > �(�) r ��N�(3.13)
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e this expression is independent of z, it suÆ
es to show that the expe
tation with respe
tto N 
an be dominated by a fun
tion whi
h 
onverges as � !1. This 
an be seen as follows.First interse
t the event in (3.13) withA = fjN(�)� �j � � ; jN(�s)� �sj � �g :and use the fa
t the P (jY1j > x) � 
x��. Then� P ��2 [N(�)℄1=�jY1j+ [N(�s)℄1=�jY2j > �(�) r	 \ A�� � P �
onst [jY1j+ jY2j℄ > �1=� r�! 
for some positive 
onstant. Moreover,� P �2 [N(�)℄1=�jY1j+ [N(�s)℄1=�jY2j > �(�) r \ A
� � � P (A
) ;but P (A
) de
ays exponentially fast in �. This proves that Pratt's lemma is appli
able and�nishes the proof.Remark 3.2. Although desirable it is more diÆ
ult to repla
e the Yni's by random variablesin the domain of attra
tion of an �-stable distribution. In this 
ase, exa
t s
aling as in (3.10)is not valid, and so one would depend on a large deviation argument in higher dimensionswhi
h does not seem to be available at the moment.3.6. A teletraÆ
 model. In this se
tion we 
onsider a model introdu
ed by Konstantopou-los and Lin [17℄ for heavy-tailed teletraÆ
. The Ti's are interpreted as the times when anew ON-period of an individual sour
e in a 
omputer network starts. The iid lengths (Xi)of the ON-periods are independent of the Poisson points (Ti), and X1 is a positive regularlyvarying random variable of index � 2 (1; 2). During an ON-period the sour
e sends a signalat unit rate. At time t the number of a
tive 
omputers in the network is given by the shotnoise pro
ess Q(t) = 1Xi=1 I(Ti;Ti+Xi℄(t) :(3.14)The 
orresponding workload pro
ess in [0; t℄ is then given as the integrated Q-pro
ess:S(t) = Z t0 Q(s) ds = N(t)Xi=1 min(Xi; t� Ti) I(0;1)(t� Ti) :(3.15)Thus the workload pro
ess is a shot noise pro
ess. If Ti + Xi � t, then the full periodXi 
ontributes to the workload. Otherwise, only the length of the un�nished ON-periodt � Ti is taken into a

ount. Konstantopoulos and Lin [17℄ also allowed for more general
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ondition of the noise. First we
onsider the simple model (3.15) but more general ones 
an be 
onsidered as well, in
ludingreward pro
esses, where the indi
ators in (3.14) are multiplied by random variables Yi, beingindependent of (Ti) and (Xi); see the dis
ussion below. Models of this type, but in the slightlydi�erent 
ontext of ON-OFF models, were 
onsidered in Levy and Taqqu [22℄, Pipiras andTaqqu [30℄ and Pipiras et al. [31℄. All the mentioned papers showed 
onvergen
e of S(t)to some in�nite varian
e stable limits under various additional assumptions. Sin
e the limitresults are known we do not intend to give a 
omplete proof but rather want to show thatCorollary 2.7 gives the 
onvergen
e of the �nite-dimensional distributions without too manye�orts. We again restri
t ourselves to 
he
k relation (2.16) whi
h will 
hara
terize the �-stable limit. From the veri�
ation of (2.16) it will be
ome transparent why � 2 (1; 2) is ane
essary requirement.We 
hoose �(�) as P (X1 > �(�)) � ��1. For the shot noise pro
ess (3.15) the left handside of the relation (2.16) with k = 1 and s = s1 (the general 
ase k � 1 is analogous) readsas follows� Z 10 P (j(min(X1; �z);min(X1; �(z + s))j > r �(�) ; (min(X1; �z);min(X1; �(z + s)))� 2 S) dz= � Z 10 P (j(z; z + s)j > r �(�)=�; (z; z + s)� 2 S ;X1 > �(z + s)) dz+� Z 10 P (j(�z;X1)j > r �(�); (�z;X1)� 2 S ; �z < X1 � �(z + s)) dz+� Z 10 P (j(X1; X1)j > r �(�); (X1; X1)� 2 S ;X1 � �z) dz= I1 + I2 + I3 :We will show that I1 and I2 do not 
ontribute to the limit, and the term I3 yields the samelimiting measure as for a 
ompound Poisson pro
ess des
ribed in Se
tion 3.1. Hen
e �-stableL�evy motion is the limit of the shot noise pro
ess. A 
omparison with Se
tion 3.1 showsthat it remains to remove the event fX1 � �zg. However, by de�nition of �(�),� Z 10 P (j(X1; X1)j > r �(�); (X1; X1)� 2 S ;X1 > �z) dz(3.16) � � P (j(X1; X1)j > r �(�))! 
onst :



24 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARFOn the other hand, �P (X1 > �z) ! 0 for every z. An appli
ation of Pratt's lemma showsthat (3.16) 
onverges to zero. It is easily seen thatI1 � � P (X1 > �s)! 0 ;I2 � � Z 10 P (j(X1; X1)j > r �(�); (�z;X1)� 2 S ;X1 > �z) dz ! 0 ;where the latter 
onvergen
e follows in the same way as for (3.16). Analogous argumentsshow the 
onvergen
e for the general 
ase in (2.16); the limiting measure 
hara
terizes thelimit as an �-stable L�evy motion. Noti
e that the 
ondition � 2 (1; 2) was 
ru
ial sin
e weneeded that �(�)=� ! 0. This is 
learly satis�ed sin
e (�(�)) is regularly varying with index1=�.We now 
onsider a reward pro
ess in the spirit of Levy and Taqqu [22℄, Pipiras and Taqqu[30℄ and Pipiras et al. [31℄. Consider the analogue to (3.14):eQ(t) = 1Xi=1 Yi I(Ti;Ti+Xi℄(t) ;where (Yi) is an iid pro
ess of rewards, independent of (Xi). The reward pro
ess is then theintegrated version of eQ:S(t) = Z t0 eQ(s) ds = N(t)Xi=1 Yi min(Xi; t� Ti) I(0;1)(t� Ti) :The left hand side of 
ondition (2.16) turns into� Z 10 P (jY1j j(min(X1; �z);min(X1; �(z + s))j > r �(�) ;sign(Y1) (min(X1; �z);min(X1; �(z + s)))� 2 S) dz= � Z 10 P (jY1j j(z; z + s)j > r �(�)=�; sign(Y1) (z; z + s)� 2 S ;X1 > �(z + s)) dz+� Z 10 P (jY1j j(�z;X1)j > r �(�); sign(Y1) (�z;X1)� 2 S ; �z < X1 � �(z + s)) dz+� Z 10 P (jY1j j(X1; X1)j > r �(�); sign(Y1) (X1; X1)� 2 S ;X1 � �z) dz= J1 + J2 + J3 :
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h that EjY1j�+� <1 for some � > 0. Sin
e X1 is positive and regularlyvarying with index � it follows from Breiman's result [5℄ thatP (Y1X1 > x) � E[Y +1 ℄� P (X1 > x) and P (Y1X1 � �x) � E[Y �1 ℄� P (X1 > x) ;i.e. Y1X1 is regularly varying with index �. Choose �(�) su
h that� P (jX1Y1j > �(�)) � 1 :(3.17)Now one 
an follow the lines of the proof above to 
on
lude that J1 and J2 are asymptoti
allynegligible, whereasJ3 � � P (j(Y1X1; Y1X1)j > r �(�); (sign(Y1X1); sign(Y1X1))� 2 S) :(3.18)Hen
e the limiting �nite-dimensional distributions are those of an �-stable L�evy motion.The pi
ture 
hanges if Y1 is a positive regularly varying random variable of index � and� < �. Choosing (�(�)) as for (3.17), the same arguments as above show that J1 and J2 areasymptoti
ally negligible, but the limits J3 now 
hara
terize a �-stable L�evy motion. Indeed,Y1X1 is regularly varying with index �, as follows again from an appli
ation of Breiman'sresult:P (Y1X1 > x) � EX�1 P (Y1 > x) and P (Y1X1 � �x) � EX�1 P (Y1 � �x) :One 
an follow the lines above to 
on
lude that (3.18) remains valid. Hen
e the limiting�nite-dimensional distributions are those of a �-stable L�evy motion. The 
ase � = � 
an betreated as well but requires more information about the slowly varying fun
tions in the tailsof X1 and Y1.In Mikos
h et al. [26℄ the model (3.15) was 
onsidered under the assumption that theintensity �(�) of the Poisson pro
ess N� is a fun
tion of � and in
reases to in�nity. The latterassumption ensures that, in any �nite interval of time, there is an in
rease of the numberof sour
es feeding the network at unit rate. It was proved in [26℄ that the normalized and
entered workload pro
ess S(t) in (3.15) 
onverges to an �-stable L�evy motion provided theslow growth 
ondition F (1� [��(�)℄�1)=� ! 0(3.19)holds, where F (t) = inffx : F (x) � tg, t 2 (0; 1), denotes the generalized inverse of thedistribution fun
tion F of X1. In 
ontrast to the latter, it turns out that weak limits of S(t)are fra
tional Brownian motions if the fast growth 
onditionF (1� [��(�)℄�1)=� !1



26 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARFholds. Now assume that the slow growth 
ondition (3.19) holds and �(�) ! 1. Then thesame 
al
ulations that led to (2.16) give the 
orresponding 
ondition for 
onvergen
e to an�-stable pro
ess: ��(�) Z 10 P (Xk;s(z) 2 A(r; S)) dz ! r���(A(1; S)) :(3.20)Now one 
an follow the lines of the proof for 
onstant �. Choose �(�) su
h that� �(�)P (X1 > �(�))! 1 :This means that �(�) 
an be 
hosen as�(�) = F (1� [��(�)℄�1) ;and the slow growth 
ondition than turns into �(�)=� ! 0. The left hand side of (3.20) fork = 1 then reads as follows:� �(�) Z 10 P (j(z; z + s)j > r �(�)=�; (z; z + s)� 2 S ;X1 > �(z + s)) dz+� �(�) Z 10 P (j(�z;X1)j > r �(�); (�z;X1)� 2 S ; �z < X1 � �(z + s)) dz+� �(�) Z 10 P (j(X1; X1)j > r �(�); (X1; X1)� 2 S ;X1 � �z) dz= K1 +K2 +K3 :Then, sin
e �(�)=� ! 0 and by the 
hoi
e of �(�),K1 � � �(�)P (X1 > �s) = [� �(�)P (X1 > �(�))℄ P (X1 > �s)P (X1 > �(�)) = o(1) :A similar argument, together with an appli
ation of Pratt's lemma, shows that K2 ! 0 andthat K3 � � �(�)P (j(X1; X1)j > r �(�); (X1; X1)� 2 S) :Similar 
al
ulations in the general 
ase k � 1 show that the limit of (3.20) 
hara
terizes �-stable L�evy motion. Moreover, similar 
al
ulations are possible for the 
orresponding rewardpro
esses with 
hanging intensity.The rationale for the validity of this limit result is the slow growth 
ondition �(�)=� ! 0and the fa
t that � 2 (1; 2). These 
onditions ensure that there is enough \spa
e" for noisepro
esses min(Xi; t� Ti) with values in the interval [�; �(�)℄. However, if the intensity �(�)
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e between � and �(�) and therefore the left hand side of (3.20)
onverges to zero. The limiting Gaussian pro
ess then exhibits an extremely strong kindof dependen
e. From an extreme value theory point of view, this behavior is des
ribed inStegeman [39℄.We �nally mention that, more re
ently, Maulik, Resni
k and Rootz�en [24℄ and Maulik andResni
k [25℄ showed weak 
onvergen
e to �-stable L�evy motion for the a

umulated workloadin the framework of the in�nite sour
e Poisson model. Their model is again a Poisson shotnoise pro
ess and the 
onvergen
e of the �nite-dimensional distributions 
ould be derived byusing the approa
h advo
ated in this paper.3.7. An example where the normalizing fun
tion 
an be slowly varying. In thisse
tion we want to illustrate that the normalizing fun
tion �(�) for the weak 
onvergen
eto an in�nite varian
e stable limit 
an be slowly varying. This is very mu
h in 
ontrast to
lassi
al limit theory for iid ve
tors and 
ompound Poisson pro
esses.We 
onsider the Poisson shot noise pro
essS(t) = 1Xi=1 Yi I[0;Xi)(t� Ti) = 1Xi=1 Yi I[Ti;Ti+Xi)(t) ; t � 0 ;where (Ti), (Xi) and (Yi) are independent, Xi are iid positive random variables and Yi are iidpositive random variables. This model looks similar to the shot noise pro
ess of the previousse
tion but, in 
ontrast to the latter, the indi
ator fun
tions I[Ti;Ti+Xi)(t) are not integrated.In order to a
hieve weak 
onvergen
e to an �-stable limit for some � < 2 and to identify thelimiting L�evy measure we need to verify that the limitsI = Z �0 P (Y1 j(I[0;X1)(z) ; I[0;X1)(z + �s1) ; : : : ; I[0;X1)(z + �sk))j > r �(�) ;(I[0;X1)(z) ; I[0;X1)(z + �s1) ; : : : ; I[0;X1)(z + �sk))� 2 S) dz(3.21)for 0 = s0 < � � � < sk exist. In the event that the ve
tor (I[0;X1)(z) ; I[0;X1)(z+�s1) ; : : : ; I[0;X1)(z+sk)) 
ontains only zero 
omponents, we interpret the 
orresponding probabilities as zeros.



28 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARFObviously,I = P (Y1pk + 1 > r �(�)) Z �0 P (z + �sk < X1) dz I(1;1;:::;1)=pk+1(S)+P (Y1pk > r �(�)) Z �0 P (z + �sk�1 < X1 < z + �sk) dz I(0;1;:::;1)=pk(S) + � � �+P (Y1 > r �(�)) Z �0 P (z < X1 < z + �s1) dz I(0;:::;0;1)(S) :Assume that P (Y1 > x) � 
x�� for some � 2 (0; 2). Then, if �(�)!1,I � 
 r���(�)��h(k + 1)��=2 I(1;1;:::;1)=pk+1(S) Z �(1+sk)�sk P (X1 > z) dz+k��=2 I(0;1;:::;1)=pk(S)� Z �(1+sk�1)�sk�1 P (X1 > z) dz � Z �(1+sk)�sk P (X1 > z) dz�+ � � �+ I(0;:::;0;1)(S)� Z �0 P (X1 > z) dz � Z �(1+s1)�s1 P (X1 > z) dz�i :Regular variation of �(�) with some non-negative index and �(�) ! 1 are ne
essary 
on-ditions for weak 
onvergen
e of the shot noise pro
ess to a stable limit. Thus, in order toensure that I = I� has a limit as � !1 one needs to assume that 
�(�)�� R y�0 P (X1 > z) dzhas a limit for every y > 0 and that �(�) ! 1. This means we have to assume thatR �0 P (X1 > z)dz is regularly varying with some index � � 0 and, for � = 0, it is not equiv-alent to a 
onstant. The 
ondition �(�) ! 1 is then only possible if EX1 = 1. Themonotone density theorem for regularly varying fun
tions (
f. Embre
hts et al. [7℄, p. 568)implies that P (X1 > x) is regularly varying with index � � 1. Hen
e � � 1 is a ne
essary
ondition. We 
on
lude that we 
an 
hoose
�(�)�� Z �0 P (X1 > z) dz � 1 ;i.e., �(�) is regularly varying with index �=�. Then we haveI � r��h(k + 1)��=2 I(1;1;:::;1)=pk+1(S)[(sk + 1)� � s�k ℄+k��=2I(0;1;:::;1)=pk(S)[(sk�1 + 1)� � s�k�1 � (sk + 1)� + s�k ℄ + � � �+I(0;0;:::;1)(S)[1� (s1 + 1)� + s�1 ℄i :We omit the veri�
ation of the other assumptions of Corollary 2.7.
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onsider some spe
ial 
ases. Assume �rst that � = 0, i.e., R �0 P (X1 > z)dz is a slowlyvarying fun
tion, equivalently P (X1 > x) is regularly varying with index �1 and EX1 =1.Then �(�) is a slowly varying fun
tion and I � r��I(0;0;:::;1)(S). The latter 
orresponds to astable degenerate ve
tor where all 
omponents are zero with the ex
eption of the last one.Another spe
ial 
ase 
orresponds to � = 1, i.e., P (X1 > x) is slowly varying. Then �(�)is regularly varying with index 1=� and I � r��(k + 1)��=2 I(1;1;:::;1)=pk+1(S). The latter
orresponds to the 
ase of a stable ve
tor whose 
omponents are identi
al. The same limito

urs for the 
ompound Poisson pro
ess; 
f. Se
tion 3.1.3.8. Regular variation and 
onvergen
e of point pro
esses. It is well known from
lassi
al extreme value theory that regular variation with index �� < 0 of the right tail ofthe distribution of the iid random variables Xi is equivalent to the weak 
onvergen
e of thepoint pro
esses nXi=1 "Xi=�(n) ) PRM(�) ;(3.22)where �n is the (1 � n�1)-quantile of the distribution of X1 and the limiting pro
ess is aPoisson random measure with mean measure � of the interval (a; b℄ given by a���b��. Here) denotes weak 
onvergen
e in the spa
e of point measures on (0;1) equipped with thevague topology; see Kallenberg [14℄ or Resni
k [35℄. The 
onvergen
e in (3.22) is equivalentto the weak 
onvergen
e of the maxima Mn = max(X1; : : : ; Xn), i.e.Mn=�n ) Y ;where Y has the Fr�e
het distribution P (Y � x) = expf�x��g = ��(x), x > 0.Analogous results hold for the extremes and point pro
esses 
onstru
ted from the Poissonshot noise. To be pre
ise, introdu
e the point pro
essesR� = N(�)Xn=1 "Xn(��Tn)=�(�) ;where �(�) is supposed to satisfy the following relation:� Z 10 P (�(�)x < X1(�u)) du � x�� for every x > 0.(3.23)Using the order statisti
s property of the Poisson pro
ess, it is not diÆ
ult to see thatP � maxi=1;:::;N(�)Xi(� � Ti) � x� = P � maxi=1;:::;N(�)Xi(�Ui) � x� ;



30 C. KL�UPPELBERG, T. MIKOSCH, AND A. SCH�ARFwhere N , the iid uniform on (0; 1) sequen
e (Ui) and (Xi) are independent. A 
onditioningargument gives for x > 0,P �[�(�)℄�1 maxi=1;:::;N(�)Xi(� � Ti) � x� = exp��� Z 10 P (X1(�u) > x�(�)) du� :(3.24)Hen
e the right hand side 
onverges to ��(x) if and only if the regular variation 
ondition(3.23) holds.Proposition 3.3. The relation R� ) PRM(�) with mean measure �(a; b℄ = a�� � b��,0 < a < b, holds if and only if (3:23) is satis�ed.Proof. We 
ommen
e by assuming that (3.23) holds. A

ording to Kallenberg's theorem(see Resni
k [35℄, p. 157), one has to show that for any 0 < a < b,ER�((a; b℄)! �(a; b℄(3.25)and for B = (
1; d1℄ [ � � � [ (
k; dk℄, 0 < 
1 < d1 < � � � 
k < dk,P (R�(B) = 0)! e��(B) :(3.26)We have by the order statisti
s property of the Poisson pro
ess,ER�((a; b℄) = E0�N(�)Xn=1 I(a;b℄(Xn(� � Tn)=�(�))1A= E0�N(�)Xn=1 I(a;b℄(Xn(�Un)=�(�))1A ;where (Tn), (Xn) and the uniform on (0; 1) iid sequen
e (Un) are independent. Hen
e, usingassumption (3.23), ER�((a; b℄) = � P (�(�)a < X1(�U1) � �(�)b)= Z �0 P (�(�)a < X1(u) � �(�)b) du� a�� � b�� = �(a; b℄ :This proves (3.25). Now we turn to the proof of (3.26). Noti
e thatP (R�(B) = 0) = P (Q�(B) = 0) = E[P (Q�(B) = 0 jN)℄ ;



REGULAR VARIATION IN THE MEAN AND STABLE LIMITS FOR POISSON SHOT NOISE 31where the random variable Q�(B) = N(�)Xn=1 IB(Xn(�Un)=�(�))is 
onditionally Bin(N(�); P (X1(�U1)=�(�) 2 B)) distributed. By the law of large numbers,N(�)=� a:s:! 1. Therefore and by virtue of (3.23) it follows that, with probability 1 as � !1,N(�)P (X1(�U1)=�(�) 2 B)! �(B) :This and Poisson's limit theorem imply that Q�(B) ) Poi(�(B)), 
onditionally on N .This together with a dominated 
onvergen
e argument yieldsE[P (Q� = 0 jN)℄! e��(B) :This proves the suÆ
ien
y part.Now assume that R� ) PRM(�). Then (3.24) ne
essarily has a Fr�e
het limit sin
e forx > 0,P �[�(�)℄�1 maxi=1;:::;N(�)Xi(� � Ti) � x� = P (R�((x;1)) = 0)! e��(x;1) = ��(x) :and the argument before the proposition then yields that (3.23) holds. This 
on
ludes theproof. �Remark 3.4. The extremal behavior of the shot noise pro
ess, not the noise pro
essesthemselves, has been intensively investigated in the 
ase when a stationary version of Sexists. We refer to Doney and O'Brien [6℄, Hsing and Teugels [12℄, M
Cormi
k [27℄ and thereferen
es therein.A
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