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Abstract We develop an abstract notion of regression which allows for
a non-parametric formulation of unbiasedness. We prove then that least
quantile regression is unbiased in this sense even in the heteroscedastic case
if the error distribution has a continuous, symmetric, and uni-modal density.
An example shows that unbiasedness may break down even for smooth and
symmetric but not uni-modal error distributions. We compare these results
to those for least MAD and least squares regression.

Key words Least Quantile – Regression – Unbiasedness – Fisher consis-
tency – Quantile Derivative – Lord’s paradox

1 Introduction

Least median of squares (LMS) regression was introduced in [8] as a regres-
sion methodology which leads to a high breakdown point and hence is quite
robust with respect to outliers in the data. Later on, in [9], this notion was
generalized to that of least quantile of squares regression. In the present
paper, we shall examine how robust the methodology is with respect to
unbiasedness when the distribution of the errors varies.

By unbiasedness, we understand here that a disturbed input function
will be recovered by means of the regression or is at least among the mini-
mizers of the decision function (cf. Definition 2). Essentially, this is a weak
form of Fisher consistency. Our main result (Theorem 1) states that least
quantile regression is unbiased even in the heteroscedastic case if the er-
ror distribution has a continuous, symmetric, and uni-modal density. In the
special case of LMS regression, Theorem 1 extends a result from [2] on the
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Fisher consistency of S-estimators to the heteroscedastic case. The unbi-
asedness property may be lost if the error distribution is asymmetric or
not uni-modal (Example 4). This is in contrast to the situation for least
squares regression (Proposition 1) or least MAD regression (Proposition 2)
which are both much more robust concerning unbiasedness. The paper con-
cludes with some annotations on the connection between unbiasedness of
least mean absolute deviation (MAD) regression and the so-called Lord’s
paradox (cf. [4]).

The discussion on p. 126 in [9] reveals that taking the square in the
original definition of least quantile regression has a certain importance when
dealing with sample data. However, we drop the “squares” in this paper
since with our approach results will not depend on taking the square or
not.

We choose here an unusual formulation of regression problems which
involves σ-algebras instead of finite-dimensional random vectors. We do this
mainly because it represents a convenient and quite general way to include
possible dependence of the heteroscedasticity factor and the explanatory
variables into the model.

2 An abstract view on regression analysis

Fix a measurable space (Ω,F), a sub-σ-algebraA ⊂ F , and an F-measurable
real random variable Y . The σ-algebra F is the class of all possible events,
A is the σ-algebra of the explanatory events, and Y is the response variable.
The goal in the regression problem is to explain Y the best possible way by
some A-measurable real function Ẑ. In other words: we want to determine
the part of Y which is influenced by events in A.

A natural interpretation of “best possible” would be to fix a decision
criterion and to search for Ẑ under all A-measurable real functions. In
general, this problem might be too difficult. Thus, in the sequel we allow
to restrict the search on strict subclasses of the class of all A-measurable
functions. As the title of the paper suggests, we shall focus on the “least
quantile” decision criterion. Nevertheless, we give a general definition of the
term “decision function” in order to make the results comparable.

Definition 1 Let (Ω,F) be a measurable space and A ⊂ F a sub-σ-algebra
of F . Consider two classes MF and MA of F- and A-measurable real func-
tions.

(i) Any function d : MF × MA → [0,∞) is a decision function for the
regressions of the elements of MF on MA.

(ii) Fix Y ∈ MF . Then Ẑ ∈ MA is a solution for the regression of Y on
MA according to the decision function d if

d(Y, Ẑ) = min{d(Y,Z) : Z ∈ MA} . ut
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Evidently, reasonable choices for d should somehow measure the differ-
ence between the response variable Y and the elements of MA. We illustrate
this by three examples. For any real random variable ξ on a probability space
(Ω,F ,P) and any confidence level α ∈ (0, 1), define the α-quantile of ξ by

qα(ξ) = inf{z ∈ R : P[ξ ≤ z] ≥ α} . (1)

Example 1 (Least Quantile Regression, [9])
Let (Ω,F ,P) be a probability space and A be a sub-σ-algebra of F . Let
MF = L0(F) be the class of all F-measurable real random variables and
MA be a class of A-measurable real random variables. Fix some α ∈ (0, 1).
Then

dα(Y, Z) = qα(|Y − Z|), Y ∈ L0(F), Z ∈ MA, (2)

is the least quantile decision function. ut

Example 2 (Least MAD Regression)
Let (Ω,F ,P) be a probability space and A be a sub-σ-algebra of F . Let
MF = L1(F) be the class of all integrable real random variables on (Ω,F ,P)
and MA be a class of integrable real random variables. Then

dMAD(Y, Z) = E[|Y − Z|], Y ∈ L1(F), Z ∈ MA, (3)

is the least mean absolute deviation (MAD) decision function. ut

Example 3 (Least Squares Regression)
Let (Ω,F ,P) be a probability space and A be a sub-σ-algebra of F . Let
MF = L2(F) be the class of all square integrable real random variables
on (Ω,F ,P) and MA be a class of square integrable real random variables.
Then

dSQ(Y, Z) = E[(Y − Z)2], Y ∈ L2(F), Z ∈ MA, (4)

is the least squares decision function. ut

Common choices for MA in Examples 1, 2, and 3 are

MA = Li(A), i = 0, 1, 2, and
MA = span(1, X1, . . . , Xk)

(5)

for some random variables X1, . . . , Xk ∈ Li(A), i = 0, 1, 2. The second case
is called linear regression.

Note that in Example 3 when MA = L2(A) and MA = span(1, . . . , Xk)
with X1, . . . , Xk ∈ L2(A), the solutions to the regression problems are well-
known. Since

dSQ(Y,E[Y |A]) = min{dSQ(Y, Z) : Z ∈ L2(A)} , (6)
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for any Y ∈ L2(F), the solution is the conditional expectation in the first
case. For the second case, an explicit solution formula is known (see, e.g.,
[12], Proposition A.1). For the case MA = L1(A) from Example 2 the
solution for the regression problem is known to be the conditional median
of Y given A.

For the classes MA = span(1, X1, . . . , Xk) from Example 2 and MA =
L0(A), MA = span(1, X1, . . . , Xk) from Example 1 no fully general explicit
solution formulae for the regression problems are known. It is just this
aspect which makes the question of unbiasedness interesting in least quantile
regression.

We will conclude this section by a general, non-parametric definition
of unbiasedness for regression problems. Still before, it might be useful to
comment on the relation between the abstract notion of regression from
Definition 1 and the more common sample based, fixed or random design
regression problems.

Remark 1
The usual setting for a (uni-variate) regression problem is a sample of
data points (x11, . . . , x1k, y1), . . . , (xn1, . . . , xnk, yn). Here, the yi are always
considered realizations of some random variables Y1, . . . , Yn whereas the
(xi1, . . . , xik) may be realizations of random vectors (Xi1, . . . , Xik) (ran-
dom design) or deterministic (fixed design).
Random design. In Definition 1, each element Z of MA may be a function
Z = fZ(X1, . . . , Xk) of some random vector (X1, . . . , Xk). In particular, this
is the case in linear regression when f is an affine function Rk → R. The
(Xi1, . . . , Xik) are then copies of (X1, . . . , Xk). The Yi are regarded to be
copies of some Y ∈ MF . In practice, then d(Y,Z) = d(Y, fZ(X1, . . . , Xk))
will be replaced by an estimation based on the sample. How to do this, is
obvious in Examples 1, 2, and 3.
Fixed design. Suppose that Y1, . . . , Yn are copies of a random variable Y on a
probability space (Ω,F ,P). We interpret then the sample (x11, . . . , x1k, y1),
. . . , (xn1, . . . , xnk, yn) as a purely random sample from a random vector
(X1, . . . , Xk, Y ) on an enlarged probability space (Ω′,F ′,P′) with Ω′ =
{1, . . . , n}×Ω, F ′ = P({1, . . . , n})⊗F and P′ such that the distribution of
(X1, . . . , Xk) is the empirical distribution corresponding to (x11, . . . , x1k),
. . . , (xn1, . . . , xnk) and the distribution of Y remains the same as under P,
i.e.

P′[(X1, . . . , Xk) ∈ A] = n−1
n∑

i=1

δ(xi1,...,xik)(A) and

P′[Y ∈ B] = P[Y ∈ B]

(7)

for any Borel-measurable sets A ⊂ Rk and B ⊂ R. Thus, we are again
in a random design situation. Obviously, the specification of the marginal
distributions in (7) does not determine uniquely the probability P′. But if
Y is – as usual – some function of (X1, . . . , Xk) plus an independent error
with given distribution, P′ becomes unique. ut
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Definition 2 Let (Ω,F) be a measurable space and A be a sub-σ-algebra
of F . Let MA be a class of A-measurable real functions on Ω. Let an F-
measurable function η (error) and an A-measurable function H (hetero-
scedasticity factor) be given. Assume that MF is a class of F-measurable
real functions on Ω that contains the (η, H)-perturbation of class MA, i.e.

MF ⊃ {Z + H η : Z ∈ MA} . (8)

We say that the decision function d : MF ×MA is unbiased with respect to
(η, H) if every Z ∈ MA is a solution for the regression of Z + η H on MA
in the sense of Definition 1 (ii).

Of course, Definition 2 is adapted to the most common regression models
with the regressand regarded as function of the regressors plus some addi-
tive, perhaps heteroscedastic error. Definition 2 then could be figured out
as the property that the regression procedure is verifiable in the sense of the
question: “Is it possible to recover a known input variable Y ?” By revisiting
Examples 1, 2, and 3, we will see below that the crucial point in Definition
2 is the question for which error distributions the required solution property
holds.

3 Least Quantile Regression

We shall examine on which kind of error distributions Definition 2 applies.
Concerning the positive part of our results, we need the following lemma
on differentiability of quantiles. It is a modification of Theorem 3.3 in [11],
adapted for the purpose of the paper at hand. Recall the definition of the
α-quantile qα in (1).

Lemma 1 Let Z,H, and η be real random variables on a probability space
(Ω,F ,P). Assume that (Z,H) and η are independent, that H is positive
P-a.s., and that H−1 and Z/H are integrable. Assume further that η has a
positive and continuous density f . Fix α ∈ (0, 1). Then the function

Qα : t 7→ qα(|t Z + H η|), R → R (9)

is continuously differentiable on R with

Q′
α(t) =

E
[

Z
H

(
f

(
Qα(t)−t Z

H

)
− f

(
−Qα(t)−t Z

H

))]
E

[
1
H

(
f

(
Qα(t)−t Z

H

)
+ f

(
−Qα(t)−t Z

H

))] . (10)

Proof Define
F (z, h, t, x) = P[|t z + h η| ≤ x] (11)

and note that by independence of (Z,H) and η

P[|t Z + H η| ≤ x] = E[F (Z,H, t, x)] . (12)
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From the representations (for x, h > 0, t, z ∈ R)

F (z, h, t, x) = h−1

∫ x

0

f

(
u− t z

h

)
+ f

(
−u− t z

h

)
du (13)

=
∫ x−t z

h

−x−t z
h

f(u) du,

we see that F has partial derivatives in x > 0 and t ∈ R which are jointly
continuous in (x, t):

∂F

∂x
(z, h, t, x) = h−1

(
f

(
x−t z

h

)
+ f

(−x−t z
h

))
,

∂F

∂t
(z, h, t, x) = − z

h

(
f

(
x−t z

h

)
− f

(−x−t z
h

))
.

(14)

By evoking now an appropriate result on differentiation under the integral
(e.g. Theorem A.(9.1) of [3]), we obtain from (12) and (14) that also P[|t Z+
H η| ≤ x] has partial derivatives in x > 0 and t ∈ R which are jointly
continuous in (x, t):

∂

∂x
P[|t Z + H η| ≤ x] = E

[
H−1

(
f

(
x−t Z

H

)
+ f

(−x−t Z
H

))]
,

∂

∂t
P[|t Z + H η| ≤ x] = −E

[
Z
H

(
f

(
x−t Z

H

)
− f

(−x−t Z
H

))]
.

(15)

Since by (12) and (13) the distribution of |t Z +H η| is continuous for every
t ∈ R, we have

α = P[|t Z + H η| ≤ Qα(t)], t ∈ R. (16)

Observe that the partial derivative in (15) is positive because f is positive.
Hence, by the implicit function theorem, (10) follows from (15) and (16).
ut

With Lemma 1, we are in a position to derive the main result of the
paper:

Theorem 1 Let Z,H, and η be real random variables on a probability space
(Ω,F ,P). Assume that (Z,H) and η are independent, that H is positive
P-a.s., and that H−1 and Z/H are integrable. Assume further that η has
a continuous and symmetric density f which is non-increasing on (0,∞).
Then for any α ∈ (0, 1) we have

qα(|Z + H η|) ≥ qα(H |η|). (17)

Remark 2

(i) Theorem 1 implies that the least quantile decision function dα from Ex-
ample 1 is unbiased with respect to (η, H), in the sense of Definition 2, if
the conditions of Theorem 1 hold for η and H, A and η are independent,
and for each Z ∈ MA the ratio Z/H is integrable.
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Note that in case of constant H this result follows also from Theorem
4.6 in [2] on the Fisher consistency of S-estimates (introduced first in
[10]). However, there is no obvious way to generalize the proof from [2]
for the case of non-constant H.

(ii) If the density f of η in Theorem 1 is strictly decreasing on (0,∞), then
qα(|Z + H η|) = qα(H |η|) only if Z = 0 P-a.s. ut

Proof of Theorem 1 We distinguish two cases:

1. The density f is positive on R.
2. There is a number r > 0 such that f is positive on (−r, r) and 0 on

R\(−r, r).

The proof for case 1 is short. From the mean value theorem and Lemma 1,
and by symmetry of f , we obtain the existence of a number t ∈ (0, 1) with

qα(|Z+H η|)−qα(H |η|) =
E

[
Z
H

(
f

(
Qα(t)−t Z

H

)
− f

(
Qα(t)+t Z

H

))]
E

[
1
H

(
f

(
Qα(t)−t Z

H

)
+ f

(
Qα(t)+t Z

H

))] . (18)

Observe that by symmetry and monotonicity of f we have for all a ≥ 0 and
b ∈ R

b
(
f(a− b)− f(a + b)

)
≥ 0 . (19)

This implies the assertion in case 1. The assertion for case 2 is a conclu-
sion from that of case 1. To see this, introduce a standard normal random
variable ξ that is independent of (Z,H, η) and define

ηh = η + h ξ, h > 0. (20)

Obviously, Z + H ηh → Z + H η in distribution as h → 0. The first step in
order to prove (17) in case 2 is to show that case 1 may be applied to ηh.

Lemma 2 The density gh of ηh is continuous, symmetric, and non-increasing
on (0,∞).

Proof of Lemma 2 Denote by φ(t) = (2π)−1 e−1/2 t2 the standard normal
density. The density gh of ηh can be written as

gh(x) =
1
h

∫ ∞

−∞
φ
( t

h

)
f(x− t) d t . (21)
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By assumption on f , (21) immediately yields continuity and gh > 0. Sym-
metry is obvious from (21), too. Concerning monotonicity, fix non-negative
numbers x1 < x2. Then

gh(x2)− gh(x1) =
1
h

∫ ∞

−∞
φ
( t

h

)
(f(x2 − t)− f(x1 − t)) d t

=
1
h

∫ ∞

0

(
φ

( x1+x2
2 + t

h

)
− φ

( x1+x2
2 − t

h

))
×

(
f

(
x2 − x1

2
− t

)
− f

(
x2 − x1

2
+ t

))
d t .

Inequality (19) implies for all positive t

φ

( x1+x2
2 + t

h

)
− φ

( x1+x2
2 − t

h

)
≤ 0 and

f

(
x2 − x1

2
− t

)
− f

(
x2 − x1

2
+ t

)
≥ 0 .

Hence we have obtained gh(x2)− gh(x1) ≤ 0. ut

Continuing the proof for case 2 of Theorem 1, we have by Lemma 2

qα(|Z + H ηh|) ≥ qα(H |ηh|), h > 0. (22)

We will use the following well-known fact on the convergence of quantiles
(see, e.g. [7], Proposition 0.1):

Lemma 3 Let (µn)n≥0 be a sequence of probability measures on R such
that µn → µ0 weakly for n → ∞. Denote by qα(µn) = inf{x ∈ R :
µn((−∞, x]) ≥ α} for n ≥ 0 and α ∈ (0, 1) the α-quantile of µn. Then
for any α ∈ (0, 1) with

|{x ∈ R : µ0((−∞, x]) = α}| ≤ 1 (23)

the limit limn→∞ qα(µn) exists and is equal to qα(µ0).

Observe that (23) holds for arbitrary α ∈ (0, 1) when µ0 is the dis-
tribution of H |η| and for all α in a dense subset of (0, 1) when µ0 is the
distribution of |Z +H η|. Hence, by left-continuity of α 7→ qα(|Z +H η|) and
Lemma 3 we obtain (17) from (22). This completes the proof of Theorem
1. ut

We conclude this section with an example which shows that symmetry
and uni-modality of the error density are crucial for Theorem 1.

Example 4
Symmetry. Let η be a random variable as in Remark 2 (ii). Then we have

qα( | η − 1 | ) > qα( | η | ) .
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By inspection of η′ = η− 1 this shows that (17) may fail if the distribution
of the error is not symmetric.
Uni-modality. For ε ∈ [0, 1/4), define the density fε by

fε(x) =
{

ε + (1/3− 4/3 ε) |x| , |x| ≤ 1
1/3 (1− ε) e−(|x|−1) , |x| > 1 .

For each fixed ε ∈ [0, 1/4) the function fε is a bimodal continuous symmetric
density which is positive for ε > 0.

Denote by η a random variable with density fε and let α = P[|η| ≤ 1] =
1/3 + 2/3 ε. We then compute

P[|η − 1| ≤ 1] = 1/6 + 1/3 (1− e−1) + 1/3 ε e−1 ,

which shows in contrast to (17) that here

qα(|η|) = 1 > qα(|η − 1|) (24)

for some small positive ε since 1 − e−1 > 1/2. Observe that by continuity
(24) remains true for all confidence levels in some interval containing α. ut

4 Least MAD and Least Squares Regression

By Theorem 1 least quantile regression is unbiased if the error distribution
has a continuous, symmetric and uni-modal density. Example 4 shows that
symmetry and uni-modality are crucial for unbiasedness. In this section we
show that in contrast unbiasedness holds for least MAD and least squares
regression under much weaker conditions. For least squares regression even
independence of the error may be replaced by an appropriate kind of or-
thogonality. For reasons of comparability, here we consider only the case of
independence.

Proposition 1 Let Z,H, and η be square integrable real random variables
on a probability space (Ω,F ,P). Assume that (Z,H) and η are independent
and that E[η] = 0. Then

E[(Z + H η)2] ≥ E[H2] E[η2] (25)

with equality if and only if Z = 0 P-a.s.

Proof Immediate from E[(Z + H η)2] = E[Z2] + 2 E[Z H η] + E[H2 η2]. ut

Proposition 1 just states that the decision function dSQ from Example 3
is unbiased as long as the error distribution is square integrable with mean
0. Hence, we observe a certain trade-off between robustness with respect
to very heavy tails of the errors in case of least quantile regression and
robustness with respect to “ugly” shapes of the error distributions in case
of least squares regression. This impression is strengthened by a result in
case of least MAD regression. Proposition 2 generalizes Lemma 3, ch. 2, of
[1].
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Proposition 2 Let Z,H, and η be integrable real random variables on a
probability space (Ω,F ,P). Assume that (Z,H) and η are independent, that
H > 0 P-a.s. and that P[η < 0] ≤ 1/2 ≤ P[η ≤ 0]. Then

E[|Z + H η|] ≥ E[H] E[|η|] (26)

with equality if and only if q1/2(η) ≤ Z ≤ sup{s ∈ R : P[η < s] ≤ 1/2}
P-a.s.

Proof Recall the following well-known characterization of quantiles (cf. Prob-
lem 25.9 of [5]):
Define x+ = max(x, 0) and x− = max(−x, 0). If ξ is an integrable real
random variable and α ∈ (0, 1) is fixed, then

min
s∈R

(
α E[(ξ−s)+]+(1−α) E[(ξ−s)−]

)
= α E[(ξ−s∗)+]+(1−α) E[(ξ−s∗)−]

(27)
for any

s∗ ∈
[
qα(ξ), sup{s ∈ R : P[ξ < s] ≤ α}

]
. (28)

Concerning (26), we obtain from (27) and by P[η < 0] ≤ 1/2 ≤ P[η ≤ 0]
that

E[|Z + H η|] = E
[
H E

[
| zh + η|

]∣∣∣
(z,h)=(Z,H)

]
≥ E[H] E[|η|].

The rest of the assertion follows from (28). ut

Proposition 2 states that the decision function dMAD from Example 2 is
unbiased as soon as the error distribution is integrable with median 0. In
contrast to Proposition 1 we have not obtained strict unbiasedness, because
for error distributions with non-unique medians there might be more than
one Ẑ yielding the minimum in Definition 1 (ii).

Proposition 2 is also a new formulation of Lord’s paradox ([6], [4], [13]).
This paradox stems from the fact that (in the words of [4]) “adding an
additional, independent source of randomness need not increase variability,
as measured by MAD”. The interesting point with this paradox is the ex-
act sufficient and necessary conditions for equality in (26) (with H = 1).
Proposition 2 implies both the theorem in [4] and Remark 1 of [13]. Note
that Example 4 shows that adding a constant may even decrease variability
when it is measured by a quantile.
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