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tionIn today's �nan
ial world, Value-at-Risk has be
ome the ben
hmark risk measure. Following theBasle A

ord on Market Risk (1988,1995,1996) every bank in more than 100 
ountries aroundthe world has to 
al
ulate its risk exposure for every individual trading desk. The standardmethod pres
ribes: estimate the p-quantile of the pro�t/loss distribution for the next 10 daysand p = 1% (or p = 5%) based on observations of at least 1 year (220 trading days). Standardmodel is the normal model. Finally, multiply the estimated quantile by 3. This number isnegative and its modulus is 
alled Value-at-Risk (VaR). The fa
tor 3 is supposed to a

ountfor 
ertain observed e�e
ts, also due to the model risk; it is based on ba
ktesting pro
eduresand 
an be in
reased by the regulatory authorities, if the ba
ktesting proves the fa
tor 3 to beinsuÆ
ient. The importan
e of VaR is undebated sin
e regulators a

ept this model as a basisfor setting 
apital requirements for market risk exposure. A textbook treatment of VaR is givenin Joriot [50℄. Interesting arti
les on risk management are 
olle
ted in Embre
hts [32℄.There were always dis
ussions about the 
lassi
al risk measure, whi
h has traditionally beenthe varian
e, and alternatives have been suggested. They are typi
ally based on the notion ofdownside risk 
on
epts su
h as lower partial moments. The lower partial moment of order n isde�ned as LPMn(x) = Z x�1(x� r)ndF (r) ; x 2 R ;where F is the distribution fun
tion of the portfolio return. Examples 
an be found in Fish-burn [39℄ or Harlow [47℄ in
luding the shortfall probability (n = 0), whi
h is nothing else butthe VaR. An axiomati
 approa
h to risk measures 
an be found in Artzner et al. [1℄; 
f. Em-bre
hts [31℄. For some dis
ussion see also Rootz�en and Kl�uppelberg [77℄.Standard model in the Basle a

ount is the normal distribution whi
h has the property that itis sum stable, i.e. for a dynami
 model we obtainVaR(10 days) = p10VaR(1 day) ;1



and for a multivariate model; i.e. a portfolio with weights wi for asset i and 
orrelation �ijbetween assets i and j, i; j = 1; : : : ; q,VaR(portfolio) =vuut qXi;j=1�ijwiwjVaRiVaRj :However, the obvious disadvantage of the normal model is that it is wrong and 
an dangerouslyunderestimate the risk. This is even visible in Figures 1.1 and 1.2.This is the starting point of the present paper. Taking also extreme 
u
tuations of �nan
ialdata into a

ount we want to answer the following questions:{ How does one estimate VaR from �nan
ial time series under realisti
 model assumptions?{ What is the 
onsequen
e of VaR as a risk measure based on a low quantile for portfoliooptimization?Statisti
al estimation of risk and portfolio optimization are two important issues in risk manage-ment, in
uen
ed by the 
hoi
e of risk measure. Pri
ing of derivatives and hedging of portfoliosare other important issues and the VaR has found its way also to the hedging problem. Inin
omplete markets, whi
h is the setup for all \realisti
" pri
ing models, the traditional "hedgewithout risk" (perfe
t hedge) has been repla
ed by a "hedge with small remaining risk" (so-
alled quantile-hedging); see F�ollmer and Leukert [40℄ and Cvitani
 and Karatzas [24℄. This is,however, not a topi
 for this paper.We �rst turn to the risk estimation problem.In the simplest 
ase, it is assumed that the only sour
e of risk is the pri
e of the portfolioitself, i.e. the risk is modelled in terms of pri
e 
hanges, whi
h are independent and identiallydistributed (iid), the underlying planning horizon is �t = 1 (1 day), and we estimate just thequantile (without multiplying by 3).
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losing pri
es during 29/8/95{26/8/96 (250 data points in total). The 
or-responding di�eren
es, whi
h are the daily pri
e 
hanges (returns), are plotted in the right-handgraph. It is obvious that the returns are not symmetri
 and that there are more and mu
h morepronoun
ed peaks (in parti
ular negative ones) than one would expe
t from Gaussian data.Generally speaking, estimation of a small quantile is not an easy task, as one wants to makeinferen
e about the extremal behaviour of a portfolio, i.e. in an area of the sample where thereis only a very small amount of data. Furthermore (and this is important to note), extrapolation2
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Figure 1.2. Histogram of the daily pri
e 
hanges of the DAX 
losing pri
es with �tted normaldistribution. Also �tted is a GPD distribution to the left hand tail. The 
orresponding quantilesare estimated by the normal quantile, the GPD quantile and the empiri
al quantile.even beyond the range of the data might be wanted, i.e. statements about an area where thereare no observations at all.Under the a
ronym let the tails speak for themselves, statisti
al methods have been developedwhi
h are based only on that part of the sample whi
h 
arries the information about the extremalbehaviour, i.e. only the smallest or largest sample values. This method is not solely based onthe data but in
ludes a probabilisti
 argument 
on
erning the behaviour of the extreme samplevalues. This leads to a 
lass of semiparametri
 distributions whi
h 
an be regarded as plausible.As a basi
 referen
e to modelling and quantifying of extreme events we refer to Embre
hts,Kl�uppelberg and Mikos
h [33℄, hen
eforth abbreviated by EKM. The DAX data example, whi
hwe analyse in Se
tion 2 
an be found in greater detail in Emmer, Kl�uppelberg and Tr�ustedt [36℄.Unfortunately, most �nan
ial time series are not independent, but exhibit some very deli
atetemporal dependen
e stru
ture, whi
h is often 
aptured by Markovian volatility models. Conse-quently, over the last de
ades a variety of sto
hasti
 models have been suggested as appropriatemodels for �nan
ial produ
ts.In a 
ontinuous time setting the dynami
s of a pri
e or an interest rate pro
ess is often modelledas a di�usion pro
ess given by a sto
hasti
 di�erential equation (SDE)dXt = �(Xt)dt+ �(Xt)dWt ; t > 0 ; X0 = x ; (1.1)where W is standard Brownian motion, � 2 R is the drift term and � > 0 is the di�usion
oeÆ
ient or volatility. Two standard models in �nan
e are of the above form:(i) The Bla
k-S
holes model: (Xt)t�0 models the pri
e pro
ess of an asset, here �(x) = �x for� 2 R and the volatility �(x) = �x for � > 0. The resulting model for the pri
e pro
ess isgeometri
 Brownian motion.(ii) The Vasi
ek model: the pro
ess (Xt)t�0 models an interest rate, the drift term � is linearand the volatility � > 0 is some 
onstant.Both models 
an be 
onsidered in the framework of Gaussian models, however, as indi
atedalready, �nan
ial data exhibit in general 
u
tuations whi
h 
annot be modelled by Gaussian3



pro
esses or simple transformations as in the two standard models above. In prin
iple there aretwo di�erent remedies for the problem.A �rst 
on
ept sti
ks to Brownian motion as the driving dynami
 of the pro
ess, but introdu
esa path-dependent, time-dependent or even sto
hasti
 volatility into the model. These modelsare 
ommonly referred to as volatility models, and in
lude di�usions given by the SDE (1.1).We investigate their extremal behaviour in Se
tion 3.The se
ond 
on
ept repla
es the Gaussian driving pro
ess in the Bla
k-S
holes or Vasi
ek model(or any other traditional model) by a pro
ess with heavy-tailed marginals as for instan
e a L�evypro
ess with non-normal noise. We 
onsider this approa
h in Se
tion 5 in the 
ontext of portfoliooptimization.A dis
rete time 
ounterpart to (1.1) is the following model.Xn = �(Xn�1) + �(Xn�1) "n ; n 2 N ; (1.2)where � is the 
onditional mean, � the 
onditional volatility and ("n)n2N are iid rvs with mean0 and varian
e 1. Examples, also Markovian models of higher order, in
lude for instan
e ARCHand GARCH models, whi
h have been su

essfully applied in e
onometri
s.There is one stylized fa
t in �nan
ial data whi
h models of the form (1.2) 
an 
apture in 
ontrastto linear di�usion models of the form (1.1). This is the property of persisten
e in volatility. Formany �nan
ial time series with high sampling frequen
y large 
hanges tend to be followed bylarge 
hanges, settling down after some time to a more normal behaviour. This observation haslead to models of the form Xn = �n "n ; n 2 N ; (1.3)where the innovations "n are iid rvs with mean zero, and the volatility �n des
ribes the 
hangeof (
onditional) varian
e.The autoregressive 
onditionally heteros
edasti
 (ARCH) models are one of the spe
i�
ations of(1.3). In this 
ase the 
onditional varian
e �2n is a linear fun
tion of the squared past observations.ARCH(p) models introdu
ed by Engle [37℄ are de�ned by�2n = �0 + pXj=1 �jX2n�j ; �0 > 0 ; �1; : : : ; �p�1 � 0; �p > 0 ; n 2 N ; (1.4)where p is the order of the ARCH pro
ess.There are two natural extensions of this model. Bollerslev [12℄ proposed the so-
alled generalizedARCH (GARCH) pro
esses. The 
onditional varian
e �2n is now a linear fun
tion of past valuesof the pro
ess X2n�j , j = 1; : : : ; p, and past values of the volatility �2n�j, j = 1; : : : ; q. Aninteresting review arti
le is Bollerslev, Chou and Kroner [13℄, a ni
e 
olle
tion of some of themost in
uential arti
les on ARCH models is Engle [38℄.The 
lass of autoregressive (AR) models with ARCH errors introdu
ed by Weiss [89℄ are anotherextension; these models are also 
alled SETAR-ARCH models (self-ex
iting autoregressive).They are de�ned by Xn = f(Xn�1; :::;Xn�k) + �n "n; n 2 N ; (1.5)where f is again a linear fun
tion in its arguments and �n is given by (1.4). This model 
ombinesthe advantages of an AR model, whi
h targets more on the 
onditional mean of Xn (given the4



past), and of an ARCH model, whi
h 
on
entrates on the 
onditional varian
e of Xn (given thepast).The 
lass of models de�ned by (1.5) embodies various non-linear models. In this paper we fo
uson the AR(1) pro
ess with ARCH(1) errors, i.e.Xn = �Xn�1 +q� + �X2n�1"n ; n 2 N ;where � 2 R; �; � > 0, ("n)n2N are iid symmetri
 rvs with varian
e 1 and X0 is independent of("n)n2N . This Markovian model is analyti
ally tra
table and may serve as a prototype for thelarger 
lass of models (1.5). Note also that this model is of the form (1.2).Two early monographs on extreme value theory for sto
hasti
 pro
esses are Leadbetter, Lindgrenand Rootz�en [62℄, hen
eforth abbreviated as LLR, and Berman [9℄. They 
ontain all basi
 resultson this topi
, and it is this sour
e from whi
h all spe
i�
 results are derived.The only models of the form (1.2), whose extremal behaviour has been analysed in detail arethe ARCH(1) (by de Haan, Resni
k, Rootz�en and de Vries [46℄; see also EKM [33℄, Se
tion 8.4),the GARCH(1,1) (by Mikos
h and Stari
a [69℄), and the AR(1) model with ARCH(1)-errors(by Borkove
 and Kl�uppelberg [18℄ and Borkove
 [15, 16℄). The interesting feature of all thesemodels is that they are able to model heavy-tailedness as well as volatility 
lustering on a highlevel.In Se
tion 5 we turn to the se
ond question posed at the beginning. We 
onsider a portfoliooptimization problem based on the VaR as a risk measure. Traditional portfolio sele
tion asintrodu
ed by Markowitz [65℄ and Sharpe [82℄ has been based on the varian
e as risk measure. In
ontrast to the varian
e, the VaR 
aptures the extreme risk. Consequently, it is to be expe
tedthat it rea
ts sensitive to large 
u
tuations in the data. This is what we investigate here.We 
on
entrate on the Capital-at-Risk (CaR) as a repla
ement of the varian
e in portfoliosele
tion problems. We think of the CaR as the 
apital reserve in equity to set aside for futurerisk. The CaR of a portfolio is 
ommonly de�ned as the di�eren
e between the mean of thepro�t-loss distribution and the VaR. We de�ne the CaR as the di�eren
e between the meanwealth of the market (given by the riskless investment) and the VaR of our present portfolio;i.e. we 
onsider the ex
ess loss over the riskless investment.We aim at 
losed form solutions and an e
onomi
 interpretation of our results. This is why westart in a Gaussian world, represented by a Bla
k-S
holes market, where the mean-CaR sele
tionpro
edure leads to rather expli
it solutions for the optimal portfolio. As a �rst di�eren
e to themean-varian
e optimization, this approa
h indeed supports the 
ommonly re
ommended marketstrategy that one should always invest in sto
ks for long-term investment.As prototypes of models to allow for larger 
u
tuations than pure Gaussian models, we studyL�evy pro
esses, whi
h still have independent and stationary in
rements, but these in
rements areno longer normally distributed. Su
h models have been used as more realisti
 models for pri
epro
esses by Barndor�-Nielsen and Shephard [8℄, Eberlein and his group (see [27℄ and referen
estherein) and Madan and Seneta [64℄; they are meanwhile well understood. The 
lass of normalmixture models supports the observation that volatility 
hanges in time. This is in parti
ularmodeled by the normal inverse Gaussian model and the varian
e gamma model, whi
h have alsobeen re
ognised and applied in the �nan
ial industry. However, as soon as we move away fromthe Gaussian world, the optimization problem be
omes analyti
ally untra
table and numeri
alsolutions are 
alled for. We present solutions for the normal mixture models mentioned above.5



The data analyses, simulations and �gures presented have been 
reated with the software S-Plus.Most routines for extreme value analysis are 
ontained in the software EVIS written by AlexM
Neil and 
an be downloaded from http://www.math.ethz.
h/�nan
e/.2 Starting-kit for extreme value analysisLet X;X1; : : : ;Xn be independent and identi
ally distributed (iid) random variables (rvs), rep-resenting �nan
ial losses, with distribution fun
tion (df) F (we write X d= F ).The 
lassi
al 
entral limit theorem states that for iid rvs su
h that EX = � and varX = �2 <1the partial sums Sn = X1 + � � �+Xn, n 2 N, satisfylimn!1P �(Sn � n�)=pn�2 � x� = N(x) ; x 2 R ;where N is the standard normal df. This result, whi
h holds in a mu
h wider 
ontext than justiid data, supports the normal law for data whi
h 
an be interpreted as sum or mean of manysmall e�e
ts, whose varian
e 
ontributions are asymptoti
ally neglible.Consequently, the normal model is 
ertainly questionable, whenever extreme risk has to bequanti�ed. Empiri
al investigations of �nan
ial data show quite 
learly that the large values, inparti
ular the large negative values, are mu
h more pronoun
ed than 
ould be explained by anormal model.In the following we present the basi
 notions and ideas of extreme value theory for iid data. Allthis and mu
h more 
an be found in EKM [33℄; for more details on the DAX example we referto Emmer, Kl�uppelberg and Tr�ustedt [36℄.2.1 Sample maximaThe simplest extreme obje
t of a sample is the sample maximum. De�neM1 = X1 ; Mn = max(X1; : : : ;Xn) ; n > 1 :Then P (Mn � x) = F n(x) ; x 2 R ;and Mn " xF as n!1 almost surely, where xF = supfx 2 R : F (x) < 1g � 1 is the rightendpoint of F .In most 
ases Mn 
an be normalized su
h that it 
onverges to a limit rv, whi
h together withthe normalizing 
onstants determines the asymptoti
 behaviour of the sample maxima. Thefollowing is the analogue of the CLT for maxima.Theorem 2.1. [Fisher-Tippett theorem℄Suppose we 
an �nd sequen
es of real numbers an > 0 and bn 2 R su
h thatlimn!1P ((Mn � bn)=an � x) = limn!1F n(anx+ bn � x) = H(x) ; x 2 R ; (2.1)for some non-degenerate df Q (we write F 2 MDA(Q)). Then Q is one of the following threeextreme value dfs: 6



� Fre
h�et ��(x) = � 0; x � 0;exp (�x��) ; x > 0; for � > 0:� Gumbel �(x) = exp (�e�x) ; x 2 R :� Weibull 	�(x) = � exp (� (�x)�) ; x � 0;1; x > 0; for � > 0 :The limit distribution Q is unique up to aÆne transformations; we say it is of the type of Q.All 
ommonly en
ountered 
ontinuous df are in MDA(Q) for some extreme value df Q; seeEKM [33℄, pp. 153-157. Here are three examples.Example 2.2. (a) Exponential distribution: F (x) = 1 � exp(��x) ; x � 0 ; � > 0, is inMDA(�) with 
n = 1=�, dn = lnn=�.(b) Pareto distribution: F (x) = 1 � ( ��+x)� ; x � 0 ; �� > 0, is in MDA(��) with 
n =(n=�)1=�, dn = 0.(
) Uniform distribution: F (x) = x ; x 2 (0; 1), is in MDA(	1) with 
n = 1=n, dn = xF = 1.Taking logarithms and invoking a Taylor expansion in (2.1) we obtainF 2 MDA(H) () limn!1nF (
nx+ dn) = � lnH(x) =: �(x) ; x 2 R : (2.2)This MDA 
ondition is a version of Poisson's limit theorem. It 
an be embedded in the moregeneral theory of point pro
esses as follows.For iid rvs X;X1; : : : ;Xn and threshold un we have
ardfi : Xi > un; i = 1; : : : ; ng d= Bin(n; P (X > un)) :De�ne for n 2 N Nn(B) = nXi=1 "i=n (B) IfXi > ung ; B 2 B(0; 1℄ ;where B(0; 1℄ denotes the Borel �-algebra on (0; 1℄ and " the Dira
 measure; i.e. "i=n(B) = 1 ifi=n 2 B and 0 else. Then Nn is the time normalized point pro
ess of ex
eedan
es.The above equivalen
e (2.2) extends to the following result.Proposition 2.3. Suppose that (Xn)n2N is a sequen
e of iid rvs with 
ommon df F . Let (un)n2Nbe threshold values tending to xF as n!1. Thenlimn!1nP (X > un) = � 2 (0;1) () Nn d! N Poisson pro
ess(�) ; n!1 :From this follows the asymptoti
 behaviour of all upper order statisti
s, for instan
e,P (Mn � un) = P (Nn((0; 1℄) = 0)! P (N((0; 1℄) = 0) = e�� ; n!1 :
7



2.2 Generalized Extreme Value Distribution (GEV)For statisti
al purposes all three extreme value distributions are summarized.De�nition 2.4. [Jenkinson-von Mises representation℄H�;�(x) = ( exp��(1 + �x)�1=�	 if � 6= 0;exp f�e�xg if � = 0;where 1 + �x > 0 and � is the shape parameter.The GEV represents all three extremal types:� � > 0 Fr�e
het Q�((x� 1)=�) = �1=�(x),� � = 0 Gumbel Q0(x) = �(x) ;� � < 0 Weibull Q�(�(x+ 1)=�) = 	�1=�(x).Additionally, we introdu
e lo
ation and s
ale parameters � 2 R and  > 0 and de�neQ�;�; (x) =Q�(x� �)= . Note that Q�;�; is of the type of Q�.This representation is useful for any statisti
al method whi
h 
an be based on iid maxima.These are then modelled by the GEV and the parameters are �tted leading to tail and quantileestimates; see EKM [33℄, Se
tion 6.3. The method has its limitations, in parti
ular, if thedependen
e stru
ture 
annot be embedded in an iid maxima model. Moreover, as for instan
ethe method of annual maxima, it 
an also be a waste of data material, sin
e it may only useannual maxima, but ignore all other large values of the sample. An ex
ellent remedy, also fornon iid data originates in the hydrology literature and has been developed and very su

essfullyapplied by Ri
hard Smith and his 
ollaborators for the last de
ades; see Smith [84℄ and referen
estherein.2.3 The POT{method (\Peaks Over Threshold")We explain the POT-method and show it at work for the DAX 
losing pri
es of Figure 1.1. Asuper�
ial glimpse at the data shows already some of the so-
alled stylized fa
ts of �nan
ial data.There are more peaks than 
an be explained by a normal model and, in parti
ular, the negativepeaks are more pronoun
ed than the positive ones. On the other hand, the data are simple intheir dependen
e stru
ture; an analysis of the auto
orrelations of the data, their absolute valuesand their squares gave no indi
ation of dependen
e. Consequently, we assume that the dataare iid. We want to remark, however, that many �nan
ial data are not iid, but exhibit a verydeli
ate dependen
e stru
ture; see Se
tions 3 and 4.We pro
eed with a simple exploratory data analysis, whi
h should stand at the beginning ofevery risk analysis. In a QQ-plot, empiri
al quantiles are plotted against the theoreti
al quantilesof a given distribution. If the 
hosen model is 
orre
t, nearly all data points will (if the samplesize is large enough) lie on the 45-degree line. If the 
hosen distribution is 
orre
t up to its s
aleand lo
ation parameter, the plotted points will still be on a straight line, however with di�erentslope and interse
t. Linear regression gives rough estimates for the s
ale and lo
ation parameter,and these are often used as starting values for more sophisti
ated estimation methods. Figure 2.58
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Figure 2.5. Normal QQ-plot of the daily pri
e 
hanges of the DAX 
losing pri
es. The �t isin parti
ular in the region of interest at the left end very bad.shows a normal QQ-plot of the data. The left end of the plot shows 
learly that the left tail ofthe underlying distribution is mu
h fatter than the left tail of a normal distribution.Taking the modulus of the negative values of the given sample enables us to apply extreme valuetheory as introdu
ed above to the left tail of the distribution of daily pri
e 
hanges. This is asample of size n = 108 and will be the basis for the estimation of VaR.One of the main ingredients of the POT-method is the following result.Theorem 2.6. [Balkema and de Haan [3℄/Pi
kands [71℄℄F 2 MDA(H�) () limu%xF F (u+ x�(u))F (u) = � (1 + �x)�1=� if � 6= 0;e�x if � = 0;where 1 + �x > 0, for some (positive measurable) fun
tion �(u).Interpretation. For a rv X with df F 2 MDA(H�) we havelimu"xF P �X � u�(u) > x���X > u� = � (1 + �x)�1=� if � 6= 0;e�x if � = 0;i.e. given X ex
eeds u, the s
aled ex
ess 
onverges in distribution.De�nition 2.7. [Ex
ess distribution fun
tion, mean ex
ess fun
tion (MEF)℄Let X d= F be a rv with xF � 1. For �xed u < xF we 
allFu(x) = P (X � u � x j X > u) ; x+ u � xF ;the ex
ess df of X or F over the threshold u. The fun
tione(u) = E [X � u j X > u℄ = Z xFu F (t)F (x)dt ; u < xF ; (2.3)is 
alled mean ex
ess fun
tion of X or F . 9



It is easy to 
al
ulate the mean ex
ess fun
tion of an exponential distribution, whi
h is a 
onstant,equal to its parameter. The mean ex
ess fun
tion of a distribution with a tail lighter than thetail of an exponential distribution tends to zero as u tends to in�nity; for a distribution withtail heavier than exponential, the mean ex
ess fun
tion tends to in�nity; see Figure 6.2.4 ofEKM [33℄.Now let X1; : : : ;Xn denote the sample variables. As usual, z+ = max(z; 0) denotes the positivepart of z and 
ardA is the 
ardinality of the set A. The empiri
al fun
tionen(u) = 1
ardfi : Xi > u; i = 1; : : : ; ng nXi=1(Xi � u)+ ; u � 0 ;estimates the mean ex
ess fun
tion e(u).The right-hand side of Figure 2.8 shows the empiri
al mean ex
ess fun
tion of the DAX data
orresponding to the left tail. At �rst, the fun
tion is de
reasing, but further to the right, ithas an upward trend. This shows that in a neighbourhood of zero, the data might possibly bemodelled by a normal distribution, but this is 
ertainly not the 
ase in the left tail; there, thedistribution turns out to have a tail that is 
learly heavier than an exponential tail.
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Figure 2.8. The absolute negative pri
e 
hanges (left-hand side) and the 
orresponding empiri
almean ex
ess fun
tion (right-hand side) of the DAX values.Theorem 2.6 motivates the following de�nition.De�nition 2.9. [Generalized Pareto distribution (GPD)℄G�;�(x) = � 1� (1 + �x=�)�1=� if � 6= 0;1� e�x=� if � = 0;for 1 + �x > 0. � 2 R is the shape parameter and � > 0 is the s
ale parameter.The GPD represents three di�erent limit ex
ess dfs:� � > 0 Pareto with support x � 0 ,� � = 0 exponential with support x � 0 , 10



� � < 0 Pareto with support 0 � x � ��=�.These results are applied to model data above a high threshold u as follows:(1) the point pro
ess of ex
eedan
es by a Poissonpro
ess(�),(2) the 
onditional ex
esses by a GPD(�; �),(3) the sto
hasti
 quantities of (1) and (2) are independent.2.4 Estimate tails and quantiles by the POT-methodAssume that (Xn)n2N are iid and Xn d= X d= F . For a high threshold u de�neNu = 
ardfi : Xi > u; i = 1; : : : ; ng :De�ne F (u) = 1� F (u) = P (Xi > u), thenF u(y) = P (X � u > y j X > u) = F (u+ y)F (u) ; y � 0 ;equivalently, F (u+ y) = F (u)F u(y) ; y � 0 : (2.4)Estimate F (u) and F u(y) by the POT-method:[F (u) = 1n nXi=1 I(Xi > u) = Nun :Approximate F u(y) � �1 + � y���1=� ; y 2 R ;and estimate � and � by b� and b� (see below). This results in the following tail and quantileestimates:� Tail estimate \F (u+ y) = Nun �1 + b� yb���1=b� ; y � 0 : (2.5)� Quantile estimatebxp = u+ b�b�  � nNu (1� p)��b� � 1! ; p 2 (0; 1) : (2.6)A standard method to estimate the parameters � and � is maximum likelihood (ML) estimation.It is based on numeri
ally maximising the likehood fun
tion for the given data, whi
h are theex
esses over a threshold u. However, one should bear in mind that the estimation pro
edureoften relies on a very small data set as only the ex
esses will enter the estimation pro
edure.For this reason one 
annot always rely on the asymptoti
 optimality properties of the ML-estimators and should therefore possibly use other estimation methods for 
omparison. For11



example, the 
lassi
 Hill estimator 
ould be used as an alternative approa
h. For a derivationand representation of the Hill estimator as well as a 
omparison to other tail estimators, see e.g.EKM [33℄, Chapter 6.As already mentioned, the ML estimation is based on ex
ess data, hen
e making it ne
essaryto 
hoose a threshold parameter u. A useful tool here is the plot of the empiri
al mean ex
essfun
tion in Figure 2.8. Re
all that for heavy-tailed distributions the mean ex
ess fun
tion in (2.3)tends to in�nity. Furthermore it 
an be shown that for the generalised Pareto distribution, themean ex
ess fun
tion is a linear fun
tion (in
reasing if and only if the parameter � is positive).Hen
e, a possible 
hoi
e of u is given by the value, above whi
h the empiri
al mean ex
essfun
tion is approximately linear. Figure 2.8 indi
ates a reasonable 
hoi
e of u = 10, with
orresponding Nu = 56. This indi
ates that the generalised Pareto distribution is not only agood model for the extreme negative daily pri
e 
hanges, but already for about half of them.The ML-estimators are then found to beb� = 0:186 ; b� = 11:120 ;whi
h enable us to estimate the lower 5%{quantile of the daily pri
e 
hanges.
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Figure 2.10. Extreme value analysis of the data. The upper left-hand plot shows the estimatedshape parameter b� with pointwise 
on�den
e intervals based on the normal asymptoti
s of theestimator, depending on di�erent threshold values u. The upper right-hand plot shows the �t ofthe 
onditional df, and the lower left-hand plot the tail-�t of the DAX daily pri
e 
hanges: theplotted data points are the 56 largest absolute pri
e 
hanges; the solid 
urves show the estimateddf and tail based on these data. In the lower left-hand plot, the verti
al line marks the estimated95%{quantile, the 
urve above is the 
orresponding pro�le likelihood. The lower right-hand plotshows the estimated 95%-quantile with pointwise 
on�den
e bounds depending on the thresholdvalues. 12



This estimator leads for the DAX data of Figure 1.1 to the following table.empiri
al normal GPDVaR(1day, p = 0:05) -30.654 -29.823 -42.856As is obvious from this Table and Figure 2.10 estimation of the quantile by means of extremevalue theory results in a mu
h larger risk estimate as for the empiri
al and normal method.The estimates �t the given data quite ni
ely, even in the far end tail. This 
on�rms thatthe assumption of an underlying heavy tailed distribution is well in line with the data. Inthis 
ontext, the 
orresponding estimate of the lower 5%{quantile of the VaR seems far moreplausible than those obtained under the assumption of a normal distribution.Con�den
e intervals for the estimated quantile 
an easily be obtained from the plotted pro�lelikelihood. The 95%{
on�den
e interval 
an be read o� the horizontal line. It is the interval[34:37; 60:51℄, i.e. with probability 0.95 the 95%{quantile will lie in the interval [34:37; 60:51℄.Not surprisingly, the 
on�den
e interval is rather wide, in parti
ular to the right, where very fewdata are to be found. For the de�nition and mathemati
al properties of the pro�le likelihoodwe refer to Barndor�-Nielsen and Cox [6℄.3 Continuous-time di�usion modelsIn this se
tion, whi
h is based on Borkove
 and Kl�uppelberg [17℄, we study the extremal be-haviour of di�usion pro
esses de�ned by the SDEdXt = �(Xt)dt+ �(Xt)dWt ; t > 0 ; X0 = x ; (3.1)where W is standard Brownian motion, � 2 R is the drift term and � > 0 is the di�usion
oeÆ
ient or volatility.The stationary distributions of the pro
esses under investigation are often well-known and onemight expe
t that they in
uen
e the extremal behaviour of the pro
ess in some way. This ishowever not the 
ase: for any pre-determined stationary distribution the pro
ess 
an exhibitquite di�erent behaviour in its extremes.Extremal behaviour of a sto
hasti
 pro
ess (Xt)t�0 is as a �rst step manifested in the asymptoti
behaviour of the running maximaMt = max0�s�tXs ; t > 0 :The asymptoti
 distribution ofMt for t!1 has been studied by various authors, see Davis [25℄for detailed referen
es.It is remarkable that under quite natural 
onditions running maxima and minima of (Xt)t�0given by (3.1) are asymptoti
ally independent and have the same behaviour as the extremes ofiid rvs. We restri
t ourselves to the investigation of maxima, the mathemati
al treatment forminima being similar.The di�usion (Xt)t�0 given by the SDE (3.1) has state spa
e (l; r) � R. We only 
onsiderthe 
ase when the boundaries l and r are ina

essible and (Xt)t�0 is re
urrent. We requirefurthermore that �2(x) > 0 for all x 2 (l; r) and that there exists some " > 0 su
h that13



R x+"x�" (1 + j�(t)j)=�2(t)dt <1. These two 
onditions guarantee in parti
ular that the SDE (3.1)has a weak solution whi
h is unique in probability; see Karatzas and Shreve [52℄, Chapter 5.5.C.Asso
iated with the di�usion is the s
ale fun
tion s and the speed measurem. The s
ale fun
tionis de�ned as s(x) = Z xz exp��2Z yz �(t)�2(t)dt� dy ; x 2 (l; r) ; (3.2)where z is any interior point of (l; r) whose 
hoi
e, by the 
onvergen
e to types theorem, doesnot a�e
t the extremal behaviour. For the speed measure m we know that m(I) > 0 for everynon-empty open subinterval I of the interior of (l; r). We only 
onsider di�usions with �nitespeed measure m and denote its total mass by jmj = m((l; r)). The speed measure of model(3.1) is absolutely 
ontinuous with Lebesgue densitym0(x) = 2�2(x)s0(x) ; x 2 (l; r) ;where s0 is the Lebesgue density of s. In this situation (Xt)t�0 is ergodi
 and its stationarydistribution is absolutely 
ontinuous with Lebesgue densityh(x) = m0(x)=jmj ; x 2 (l; r) : (3.3)Noti
e that the 
onne
tion between stationary distribution, speed measure, s
ale fun
tion, driftterm and di�usion 
oeÆ
ient (given by (3.2)-(3.3)) allows us to 
onstru
t di�usions with arbi-trary stationary distribution (see Examples 3.6 and Theorems 3.4 and 3.5).Throughout this se
tion, we assume that the di�usion pro
ess (Xt)t�0 de�ned in (3.1) satis�esthe usual 
onditions, whi
h guarantee that (Xt)t�0 is ergodi
 with stationary density (3.3):s(r) = �s(l) =1 and jmj <1 : (3.4)For proofs of the above relations and further results on di�usions we refer to the monographsKaratzas and Shreve [52℄, Revuz and Yor [76℄, Rogers and Williams [78℄, or any other advan
edtextbook on sto
hasti
 pro
esses.The following formulation 
an be found in Davis [25℄.Proposition 3.1. Let (Xt)t�0 satisfy the usual 
onditions (3.4). Then for any initial valueX0 = y 2 (l; r) and any ut " r,limt!1 jP y(Mt � ut)� F t(ut)j = 0 ;where F is a df, de�ned for any z 2 (l; r) byF (x) = exp�� 1jmjs(x)� ; x 2 (z; r) : (3.5)The fun
tion s and the quantity jmj also depend on the 
hoi
e of z. �Various proofs of this result exist and we refer to Davis [25℄ for further referen
es. Davis' proofis based on a representation of su
h a di�usion as an Ornstein-Uhlenbe
k pro
ess after a randomtime-
hange. Standard te
hniques for extremes of Gaussian pro
esses apply leading to the aboveresult. (The idea is explained in the proof of Theorem 3.8).14



As already noted the s
ale and speed measure of a di�usion (Xt)t�0 depend on the 
hoi
e ofz and hen
e, are not unique. Di�erent s
ale and speed measures (and therefore di�erent z)lead to di�erent df's F in Proposition 3.1. They are, however, all tail-equivalent. This followsimmediately by a Taylor expansion from (3.5) and the fa
t that s(x)!1 as x " r.Corollary 3.2. Under the 
onditions of Proposition 3.1 the tail of the df F in (3.5 ) satis�esF (x) � �jmjZ xz s0(y)dy��1 � (jmjs(x))�1 ; x " r :The extremal behaviour (in parti
ular the behaviour of the maximum) of an iid sequen
e with
ommon df F is determined by the far end of the right tail F . In our situation the asymptoti
behaviour of the maxima Mt is determined by the tail of F as in (3.5): if F 2 MDA(Q) withnorming 
onstants at > 0 and bt 2 R, thena�1t (Mt � bt) d! Q ; t!1 : (3.6)The notion of regular variation is 
entral in extreme value theory and we refer to Bingham,Goldie and Teugels [11℄, whi
h we hen
eforth abbreviate by BGT.De�nition 3.3. [Regular variation℄A positive measurable fun
tion f on (0;1) is regularly varying at 1 with index � (we writef 2 R(�)) if limx!1 f(tx)f(x) = t� ; t > 0 :The following results des
ribe the di�erent behaviour of di�usions (3.1) with stationary densityh by the df F whi
h governs the extreme behaviour.Theorem 3.4. Assume that the usual 
onditions (3.4) hold.(a) If � � 0, then S = (�1;1) and F (x) � 
x�1 as x!1 for some 
 > 0 :(b) Let � and � be di�erentiable fun
tions in some left neighbourhood of r su
h thatlimx!r ddx �2(x)�(x) = 0 and limx!r �2(x)�(x) exp��2Z xz �(t)�2(t)dt� = �1 ;then F (x) � j�(x)jh(x) ; x " r :Theorem 3.5. Assume that the usual 
onditions (3.4) hold and r =1.(a) If �2(x) � x1�Æ`(x)=h(x) as x!1 for some Æ > 0 and ` 2 R(0), thenF (x) � Æ2x�Æ`(x) ; x!1 :(b) If �2(x) � 
xÆ�1e��x�=h(x) as x!1 for some Æ 2 R and �; �; 
 > 0, thenF (x) � 12
��xÆ+��2 exp(��x�) ; x!1 :15



The following example des
ribes the simplest way to 
onstru
t a di�usion pro
ess with pres
ribedstationary density h.Example 3.6. De�ne dXt = �(Xt)dWt, t > 0, and X0 = x 2 (l; r) and �2(x) = �2=h(x) for� > 0 and some density h. Then �(x) = 0, s0(x) = 1 and (Xt)t�0 has stationary density h. Asa 
onsequen
e of Theorem 3.4(a) this example has a very spe
ial extremal behaviour, whi
h is{ independent of h { the same for all h.Next we investigate an analogue of the Poisson pro
ess approximation for iid data; see Proposi-tion 2.3. Sin
e (Xt)t�0 has sample paths with in�nite variation, we introdu
e a dis
rete skeletonin terms of a point pro
ess of so-
alled "-up
rossings of a high threshold u by (Xt)t�0. For �xed" > 0 the pro
ess has an "-up
rossing at t if it has remained below u on the interval (t � "; t)and is equal to u at t. Under weak 
onditions, the point pro
ess of "-up
rossings, properlys
aled in time and spa
e, 
onverges in distribution to a homogeneous Poisson pro
ess, i.e. itbehaves again like ex
eedan
es of iid rvs, 
oming however not from the stationary distributionof (Xt)t�0, but from the df F whi
h des
ribes the growths of the running maxima Mt, t > 0(see Proposition 3.1).De�nition 3.7. Let (Xt)t�0 be a di�usion satisfying the usual 
onditions (3.4). Take " > 0.(a) The pro
ess (Xt)t�0 is said to have an "{up
rossing of the level u at t0 > 0 ifXt < u for t 2 (t0 � �; t0) and Xt0 = u :(b) For t > 0 let N";u(t) denote the number of "-up
rossings of u by (Xs)0�s�t. ThenN�t (B) = N";ut(tB) = 
ardf"-up
rossings of ut by (Xs)0�s�t : st 2 Bg ; B 2 B(0; 1℄is the time{normalised point pro
ess of "-up
rossings on the Borel sets B(0; 1℄. �Immediately from the de�nition "{up
rossings of a 
ontinuous time pro
ess 
orrespond to ex-
eedan
es of a dis
rete time sequen
e. As we known from Proposition 2.3 the point pro
ess ofex
eedan
es of iid data 
onverge weakly to a homogeneous Poisson pro
ess. Su
h results alsohold for more general sequen
es provided the dependen
e stru
ture is ni
e enough to prevent
lustering of the extremes in the limit.For di�usions (3.1) the dependen
e stru
ture of the extremes is su
h that the point pro
esses of "-up
rossings 
onverge to a homogeneous Poisson pro
ess, however, the intensity is not determinedby the stationary df H, but by the df F from Proposition 3.1. This means that the "-up
rossingsof (Xt)t�0 are likely to behave as the ex
eedan
es of iid rvs with df F . The extra 
ondition (3.7)of the following theorem relates the s
ale fun
tion s and speed measure m of (Xt)t�0 to the
orresponding quantities sou and mou of the standard Ornstein-Uhlenbe
k pro
ess, de�ned bysou(x) = p2� Z x0 et2=2dt and m0ou(x) = 1=s0ou(x) ; x 2 R :Theorem 3.8. Let (Xt)t�0 satisfy the usual 
onditions (3.4) and ut " r su
h thatlimt!1 tF (ut) = limt!1 tjmjs(ut) = � 2 (0;1) :16



Assume there exists some positive 
onstant 
 su
h thatm0ou(s�1ou (s(z)))s0ou(s�1ou (s(z))) s0(z)m0(z) � 
 ; 8z 2 (l; r) : (3.7)Then for all starting points y 2 (l; r) of (Xt)t�0 and " > 0 the time-normalised point pro
essesN�t of "-up
rossings of the levels ut 
onverge in distribution to N as t " 1, where N is ahomogeneous Poisson pro
ess with intensity � on (0; 1℄.Proof. The proof invokes a random time 
hange argument. An appli
ation of Theorem 12.4.2of LLL [62℄ shows that the theorem holds for the standard Ornstein-Uhlenbe
k (Ot)t�0 pro
ess.Denote by Zt = sou(Ot) ; t � 0 ; and Yt = s(Xt) ; t � 0 ;the Ornstein-Uhlenbe
k pro
ess and our di�usion, both in natural s
ale. (Yt)t�0 
an then be
onsidered as a random time 
hange of the pro
ess (Zt)t�0; i.e. for all t � 0,Yt = Z�t a:s:for some sto
hasti
 pro
ess (�t)t�0. The random time �t has a representation via the lo
al timeof the pro
ess (Yt)t�0. This is a 
onsequen
e of the Dambis-Dubins-S
hwarz Theorem (Revuzand Yor [76℄, Theorem 1.6, p. 170), Theorem 47.1 of Rogers and Williams [78℄, p. 277 andExer
ise 2.28 of [76℄, p. 230. For z 2 (l; r) denote by Lt(z) the lo
al time of (Ys)0�s�t in z. Thenby the o

upation time formula (
f. Revuz and Yor [76℄, p. 209)�t = Z 1�1Lt(z)dmou(s�1ou (z)) = Z t0 m0ou(s�1ou (s(Xs)))s0ou(s�1ou (s(Xs))) s0(Xs)m0(Xs)ds ; t � 0 :Noti
e also that �t is 
ontinuous and stri
tly in
reasing in t; i.e. it de�nes a random time. Under
ondition (3.7) we obtain �t � �t�" � 
" ; t � 0 :Moreover, Itô and M
Kean [49℄, p. 228 proved the following ergodi
 theorem�tt a:s:! 1jmj :The following approximations 
an be made pre
ise and implies Proposition 3.1.P �max0�s�t Xs > ut� = P �max0�s�t Ys > s(ut)�= P � max0�s��t Zs > s(ut)� � P � max0�s�t=jmj Zs > s(ut)�� P �Zs > s(ut)t=jmj� � �exp�� 1s(ut)��t=jmj= exp�� ts(ut)jmj� ; t!1; ut " r :For the point pro
ess 
onvergen
e we use Theorem 4.7 of Kallenberg [51℄ and prove that for anyy 2 (l; r) limt!1P y(NX";ut(tU) = 0) = P (N(U) = 0) ;17



where U is an arbitrary union of semi-open intervals. �Theorem 3.8 des
ribes the asymptoti
 behaviour of the number of "-up
rossings of a suitablyin
reasing level. In parti
ular, on average there are � "-up
rossings of ut by (Xs)0�s�t for larget. Noti
e furthermore, that we get a Poisson pro
ess in the limit whi
h is independent of the
hoi
e of " > 0.The next lemma provides simple suÆ
ient 
onditions, only on s
ale fun
tion and speed measureof (Xt)t�0, for (3.7). Noti
e that by positivity and 
ontinuity, (3.7) holds automati
ally on
ompa
t intervals. It remains to 
he
k this 
ondition for z in a neighbourhood of r and l.Lemma 3.9. Assume that for 
1; 
2 2 (01℄1ln(js(z)j)s(z) � s00(z)s0(z)m0(z) � m00(z)(m0(z))2� �! 
1 z " r ;
2 z # l ; (3.8)or (Grigelionis [45℄) that for d1; d2 2 (0;1℄s2(z)h(z) ln(js(z)j)s0(z) �! d1 z " r ;d2 z # l ; (3.9)then (3.7) holds.In the following we investigate some examples whi
h have been prominent in the interest ratemodelling. All examples have a linear drift term�(x) = 
� dx ; x 2 (l; r) ; for 
 2 R ; d > 0 ;whi
h implies that the stationary version of (Xt)t�0 has mean 
=d, provided it exists, and ismean reverting with for
e d. For �nan
ial ba
kground we refer to Lamberton and Lapeyre [61℄or Merton [66℄.Furthermore, (Xt)t�0 has state spa
e R or R+ , hen
e F 2 MDA(��) for some � > 0 or F 2MDA(�). Note that (3.6) implies thatMtat d! �� if F 2 MDA(��) (3.10)and Mt � btat d! � and Mtbt P! 1 if F 2 MDA(�) : (3.11)Figures 3.11, 3.13, 3.15 and 3.16 show simulated sample paths of the di�erent models. Forsimulation methods of solutions of SDEs see Kloeden and Platen [56℄. The solid line indi
atesthose norming 
onstants whi
h des
ribe the in
rease of Mt for large t, i.e. in MDA(��) we plotat (see (3.10)) and in MDA(�) we plot bt (see (3.11)).Furthermore, all models in this se
tion ex
ept the generalised Cox-Ingersoll-Ross model with
 = 1 satisfy 
ondition (3.8) of Lemma 3.9, hen
e the Poisson approximation of the "{up
rossingsis also expli
itly given for ut = atx+ bt and � = � lnQ(x), where Q is either �� or �.Example 3.10. [The Vasi
ek model (Vasi
ek [87℄)℄In this model the di�usion 
oeÆ
ient is �(x) � � > 0. The solution of the SDE (3.1) withX0 = x is given by Xt = 
d + (x� 
d)e�dt + � Z t0 e�d(t�s)dWs ; t � 0 :18
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Figure 3.11. Simulated sample path of the Vasi
ek model (with parameters 
 = d = � = 1) and
orresponding normalising 
onstants bt.(Xt)t�0 has state spa
e R ; mean value and varian
e fun
tionEXt = 
d + (x� 
d)e�dt ! 
d and varXt = �22d �1� e�2dt�! �22d ; t!1 :It is well-known and easy to 
al
ulate from (3.2)-(3.3) that (Xt)t�0 has a normal stationarydistribution, more pre
isely, it is N( 
d ; �22d ), where N(a; b) denotes the normal distribution withmean a and varian
e b. The assumptions of Theorem 3.4(b) are satis�ed givingF (x) � 2d2�2 �x� 
d�2 H(x) ; x!1 ;where H(x) is the tail of the stationary normal distribution; hen
e F has heavier tail than H.It 
an be shown that F 2 MDA(�) with norming 
onstantsat = �2pd ln t and bt = �pdpln t+ 
d + �4pd ln ln t+ ln(�2d=2�)pln t :Example 3.12. [The Cox-Ingersoll-Ross model (Cox, Ingersoll and Ross [23℄)℄In this model �(x) = �px for � > 0 and 2
 � �2. It has state spa
e (0;1), for X0 = x it hasmean value fun
tion EXt = 
d + �x� 
d� e�dt ! 
d ; t!1and varian
e fun
tionvarXt = 
�22d2 �1��1 + �x� 
d� 2d
 � e�2dt + �x� 
d� 2d
 e�3dt� ! 
�22d2 ; t!1 :From (3.2)-(3.3) we obtain that the stationary distribution H is �( 2
�2 ; 2d�2 ). Theorem 3.4(b)applies giving F (x) � 2
d�2 G(x) � AxH(x) ; x!1 :19



where A > 0 and G(x) is the tail of the �( 2
�2 + 1; 2d�2 ) distribution. The gamma distributionsare in MDA(�) and the norming 
onstants for F areat = �22d and bt = �22d �ln t+ 2
�2 ln ln t+ ln� d�(2
=�2)�� :
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Figure 3.13. Simulated sample path of the Cox-Ingersoll-Ross model with �(x) = 
 � dx,
 2 R ; d > 0 and �(x) = px. (The 
hosen parameters are 
 = d = � = 1). The stationarydistribution is a gamma distribution. The solid line shows the 
orresponding norming 
onstantsbt.Example 3.14. [The Generalised Cox-Ingersoll-Ross model℄In this model �(x) = �x
 for 
 2 [12 ;1). The pro
ess is ergodi
 with state spa
e (0;1).We distinguish the following four 
ases:
 = 1=2 : 2
 � �2 ; d > 0 (see Example 3.12)1=2 < 
 < 1 : 
 > 0 ; d � 0
 = 1 : 
 > 0 ; d > ��2=2
 > 1 : 
 > 0 ; d 2 R or 
 = 0 ; d < 0 : (3.12)For 12 � 
 � 1 the mean value fun
tion of (Xt)t�0 is given byEXt = 8>>><>>>: 
d + �x� 
d� e�dt ! 
d if d > 0
d + �x� 
d� e�dt !1 if d < 0x+ 
t !1 if d = 0as t!1 where X0 = x. The la
k of a �rst moment indi
ates already that for 
ertain parametervalues the model 
an 
apture very large 
u
tuations in data, whi
h will re
e
t also in thebehaviour of the maxima.� 12 < 
 < 1The stationary density, whi
h 
an be 
al
ulated by (3.2)-(3.3), is for some norming 
onstantA > 0 h(x) = 2A�2x�2
 exp�� 2�2 � 
2
 � 1x�(2
�1) + d2� 2
 x2�2
�� ; x > 0 :20



The assumptions of Theorem 3.4(b) are satis�ed and hen
eF (x) � dxh(x) � Bx2(1�
)H(x) ; x!1 ;for some B > 0. Then F 2 MDA(�) with norming 
onstantsat = �22d ��2(1� 
)d ln t� 2
�12�2

bt = ��2(1� 
)d ln t� 12�2
 0�1� 2
 � 1(2� 2
)2 ln��2(1�
)d ln t�ln t 1A+ at ln� 2dA�2� :� 
 = 1In this 
ase the solution of the SDE (3.1) with X0 = x is expli
itly given byXt = e�(d+�22 )t+�Wt �x+ 
Z t0 e(d+�22 )s��Wsds� ; t � 0 :We obtain from (3.2){(3.3) that the stationary density is inverse gamma:h(x) = ��22
�� 2d�2�1���2d�2 + 1���1 x�2d=�2�2 exp�� 2
�2x�1� ; x > 0 :Noti
e that h 2 R(�2d=�2�2) and hen
e by Karamata's theorem (Theorem 1.5.11 of BGT [11℄)the tail H of the stationary distribution is also regularly varying. This implies that 
ertainmoments are in�nite:limt!1EXÆt = 8>><>>: � 2
�2�Æ � � 2d�2 + 1� Æ�� � 2d�2 + 1� if Æ < 2d�2 + 1 ;1 if Æ � 2d�2 + 1 :In parti
ular, limt!1varXt =8><>: 2
2d(2d� �2) <1 if 2d�2 > 1 ;1 if �1 < 2d�2 � 1 :For the tail of F we obtain by Theorem 3.4(b)F (x) � Bx�2d=�2�1 ; x!1 ;for some B > 0. Hen
e F 2 B(�1 � 2d=�2), equivalently, F 2 MDA(�1+2d=�2), with norming
onstants at � C t1=(1+2d=�2) ; t!1 ;for some C > 0. 21
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Figure 3.15. Simulated sample path of the generalised Cox-Ingersoll-Ross model with �(x) =
 � dx, 
 2 R; d > 0 and �(x) = x
 for 
 = 1. (The 
hosen parameters are 
 = d = � = 1).The solid line shows the 
orresponding norming 
onstants bt. We 
an 
al
ulate F (x) � CH(x)as x!1 for some C > 0.� 
 > 1Noti
e �rst that h is of the same form as in the 
ase 12 < 
 < 1, in parti
ular H 2 R(�2
 + 1)with 1� 2
 < �1)). We apply Theorem 3.5(a) and obtain for some A > 0F (x) � (Ax)�1 ; x!1 :Hen
e F 2 MDA(�1) with norming 
onstants at � t=A. Noti
e that the order of in
rease of atis always linear. The 
onstant A, whi
h depends on the parameters, de
ides about the slope.
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Figure 3.16. Simulated sample path of the generalised Cox-Ingersoll-Ross model for 
 = 1:5(with parameters 
 = d = � = 1) and the 
orresponding norming 
onstants at.
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Figure 4.1. A realisation of the sequen
es (Yn)n2N (top) and (Xn)n2N (bottom) with F standardexponential as dis
ussed in Example 4.2.4 The AR(1) model with ARCH(1) errorsIn this se
tion we study the extremal behaviour of dis
rete time volatility models of the formXn = �(Xn�1) + �(Xn�1) "n ; n 2 N ;where � is the 
onditional mean, � the 
onditional volatility and ("n)n2N are iid symmetri
 rvswith varian
e 1.As a prototype model, whi
h 
an be analyti
ally analysed we fo
us on the AR(1) pro
ess withARCH(1) errors, i.e. Xn = �Xn�1 +q� + �X2n�1 "n ; n 2 N ; (4.1)where � 2 R; �; � > 0, ("n)n2N are iid symmetri
 rvs with varian
e 1 and X0 is independent of("n)n2N . This se
tion is based on Borkove
 and Kl�uppelberg [18℄ and Borkove
 [15℄; see also [16℄.Before we analyse model (4.1) we explain the in
uen
e of volatility 
lusters on a high level withinthe 
ontext of extreme value theory. We also show its 
onsequen
es for risk management whenestimating a high or low quantile.We start with an introdu
tory example, whi
h we have found useful before.Example 4.2. [EKM [33℄, Se
tions 4.4, 5.5 and 8.1℄Let Y; Y1; Y2; : : : be iid Y d= pF and de�ne Xn = max(Yn; Yn+1) for n 2 N. ThenP (Xn � x) = (P (Yn � x))2 = F (x) ; x 2 R :23



Choose un su
h that nP (X1 > un)! � as n!1, then nP (Y1 > un)! �=2 andP (max(X1; : : : ;Xn) � un) = P (max(Y1; : : : ; Yn+1) � un)= P (max(Y1; : : : ; Yn) � un)F (un) ! e��=2 ; n!1 :De�nition 4.3. [Extremal index℄Let (Xn)n2N be stri
tly stationary and de�ne as beforeM1 = X1 ; Mn = max(X1; : : : ;Xn) ; n > 1 :Assume that for every � > 0 there exists a sequen
e (un)n2N su
h thatlimn!1nP (X1 > un) = �limn!1P (Mn � un) = e���Then � 2 [0; 1℄ is 
alled the extremal index of (Xn)n2N .The extremal index in Example 4.2 is � = 1=2. This indi
ates already the most intuitiveinterpretation of the extremal index: 1=� 
an be interpreted as the mean 
lustersize.In the 
ontext of risk management we give an intuitive example.Example 4.4. We want to 
al
ulate the VaR=VaR(10 days, p = 0:05) of a portfolio; i.e. fordaily losses Xi, i = 1; : : : ; 10, we want to estimate P (max(X1; : : : ;X10) � VaR) = 0:95. Assumethat we know VaR(1 day, p = 0:01)=10 Mio and VaR(1day, p = 0:005)=11 Mio.For the loss rv X this means that P (X � 10) = 0:99 and P (X � 11) = 0:995. Denote byZ = max(X1; : : : ;X10). If the Xi are iid, thenP (Z � 11) = P (X � 11)10 � 0:95 ;whereas for dependent Xi with extremal index � = 0:5 we obtainP (Z � 10) = P (X � 10)10=2 � 0:95 :This means that for iid data the 10-day VaR(10 days, p = 0:05) is higher than for dependentdata.Using the blo
k maxima method it is easy to 
ompare VaR estimation for independent anddependent stationary �nan
ial time series. The data are divided into, say, N blo
ks, su
h thatthe 
orresponding blo
k maxima 
an be 
onsidered as independent. Moreover, if the samplevariables are in MDA(Q) for some extreme value distribution Q, then the blo
k maxima, we 
allthem Z1; : : : ; ZN , 
an be viewed as an iid sample of rvs with df Q. Consequently, we assumethat Z1; : : : ; ZN are iid GEV distributed; i.e. introdu
ing a lo
ation parameter � 2 R and as
ale parameter  > 0,P (Z � VaR(p)) � exp ��1 + �VaR(p)� � ��1=�! : (4.2)24



De�ning for given p 2 (0; 1) the VaR(p) by 1� p = P (Z � �VaR(p)), we obtain by inversionVaR(p) = �+  � �(� ln(1� p))�� � 1� :By De�nition 4.3 dependen
e introdu
es an additional fa
tor � in the exponent of (4.2) givingVaR(p) = �+  � �(�1� ln(1� p))�� � 1� :In the 
ontext of risk management we expe
t � � 0 and for � = 0 we take the limitVaR(p) = ��  ln(�1� ln(1� p)) :A di�erent method is a dependent version of the POT-method; i.e. the quantile estimate (2.6).Starting again with (2.4), the estimation of the tail in (2.5) 
hanges, when F (u) is estimated.The empiri
al estimator Nu=n for iid data is repla
ed by N bu=(nb�u), where N bu is the number ofblo
k maxima ex
eeding u and b�u is the estimated extremal index; see EKM [33℄, Se
tion 8.1and referen
es therein. For the quantile estimate (2.6) this means thatbxp = u+ b�b� 0� nb�uN bu (1� p)!�b� � 11A ; p 2 (0; 1) :4.1 Stationarity and tail behaviourIn this se
tion we present an extreme value analysis of the AR(1) pro
ess with ARCH(1) errors asgiven by (4.1). As a prerequisite we �rst need to know whether we are dealing with a stationarymodel and what the tail of the stationary distribution looks like.For � = 0 the pro
ess is an AR(1) pro
ess whose stationary distribution is determined by theinnovations ("n)n2N and stationarity is guaranteed for j�j < 1. In the ARCH(1) 
ase (the
ase when � = 0) the pro
ess is geometri
 ergodi
 provided that � > 0 and 0 < � < 2e
 ,where 
 is Euler's 
onstant. The tail of the stationary distribution is known to be Pareto-like(see e.g. Goldie [41℄ or EKM [33℄, Se
tion 8.4). This result was obtained by 
onsidering thesquare ARCH(1) pro
ess leading to a sto
hasti
 re
urren
e equation whi
h �ts in the settingof Kesten [53, 54℄ and Vervaat [88℄; see also Dia
onis and Freedman [26℄ for an interestingoverview and Brandt, Franken and Lisek [19℄. Goldie and Maller [42℄ give ne
essary and suÆ
ient
onditions for stationarity of sto
hasti
 pro
esses, whi
h are solutions of sto
hasti
 re
urren
eequations.For the general 
ase we follow the standard pro
edure as for instan
e in the 
ase � = 0 to�nd the parameter region of stationarity of the pro
ess. For the tail behaviour, however, weapply a te
hnique, whi
h di�ers 
ompletely from Kesten's renewal type arguments, by invokingthe Drasin-Shea Tauberian theorem. This approa
h has the drawba
k that it ensures regularvariation of the stationary tail, but gives no information on the slowly varying fun
tion. However,the method does apply to pro
esses whi
h do not �t into the framework of Kesten [53℄. Moreover,the Tauberian approa
h does not depend on additional assumptions whi
h are often very hardto 
he
k (as e.g. the existen
e of 
ertain moments of the stationary distribution). Combiningthe Tauberian method with results in Goldie [41℄, we �nally spe
ify the slowly varying fun
tionas a 
onstant. 25



We shall need the following assumptions on the noise variables. Denote by " a generi
 rv withthe same df G as "1. Throughout this se
tion the following general 
onditions are in for
e:� " is symmetri
 with varian
e 1 ,� " is absolutely 
ontinuous with respe
t to Lebesgue measure with density g,whi
h is positive on the whole of R and de
reasing on R+ . (4.3)We summarize in Theorem 4.7 some properties of the pro
ess (Xn)n2N . In parti
ular, geo-metri
 ergodi
ity guarantees the existen
e and uniqueness of a stationary distribution. For anintrodu
tion to Markov 
hain terminology we refer to Tweedie [86℄ or Meyn and Tweedie [67℄.The next proposition follows easily from well-known properties of moment generating fun
tions(one 
an follow the proof of the 
ase � = 0; see e.g. Lemma 8.4.6 of EKM [33℄).Proposition 4.5. Let " be a rv with probability density g satisfying the general 
onditions (4.3).De�ne h�;� : [0;1) ! [0;1℄ for � 2 R and � > 0 byh�;�(u) := E[j�+p� "ju℄ ; u � 0 : (4.4)(a) The fun
tion h�;�(�) is stri
tly 
onvex in [0; T ), whereT := inffu � 0 jE[jp� "ju℄ =1g :(b) If furthermore the parameters � and � are 
hosen su
h thath0�;�(0) = E[ln j�+p� "j℄ < 0 ; (4.5)then there exists a unique solution � = �(�; �) > 0 to the equation h�;�(u) = 1. Moreover, underh0�;�(0) < 0 , �(�; �)8>><>>: > 2 ; if �2 + �E["2℄ < 1 ;= 2 ; if �2 + �E["2℄ = 1 ;< 2 ; if �2 + �E["2℄ > 1 :Remark 4.6. (a) By Jensen's inequality �2 + �E["2℄ < 1 implies h0�;�(0) < 0.(b) Proposition 4.5 holds in parti
ular for a standard normal rv ". In this 
ase T =1.(
) In general, it is not possible to determine expli
itly whi
h parameters � and � satisfy (4.5).If � = 0 (i.e. in the ARCH(1)-
ase) and " d= N(0; 1) (4.5) is satis�ed if and only if � 2 (0; 2e
),where 
 is Euler's 
onstant (see e.g. EKM [33℄, Se
tion 8.4).For � 6= 0, Tables 4.14-4.16 show numeri
al domains of � and �; see Kiefersbe
k [55℄ for moreexamples.(d) Note that � is a fun
tion of � and �. Sin
e " is symmetri
 � does not depend on the signof �. For " d= N(0; 1) we 
an show that for �xed � the fun
tion � is de
reasing in j�j. See alsoTable 4.14. �Theorem 4.7. Consider the pro
ess (Xn)n2N in (4.1) with ("n)n2N satisfying the general 
on-ditions (4.3) and with parameters � and � satisfying (4.5). Then the following assertions hold:26



(a) Let � be the normalized Lebesgue-measure on the interval [�M;M ℄ � R; i.e. �(�) := �(� \[�M;M ℄)=�([�M;M ℄). Then (Xn)n2N is an aperiodi
 positive �-re
urrent Harris 
hain withregeneration set [�M;M ℄ for M large enough.(b) (Xn)n2N is geometri
 ergodi
. In parti
ular, (Xn)n2N has a unique stationary distributionand satis�es the strong mixing 
ondition with geometri
 rate of 
onvergen
e. The stationarydistribution is 
ontinuous and symmetri
.Remark 4.8. When we study the stationary distribution of (Xn)n2N we may w.l.o.g. assumethat � � 0. For a justi�
ation, 
onsider the pro
ess ( eXn)n2N = ((�1)nXn)n2N whi
h solves thesto
hasti
 di�eren
e equationeXn = �� eXn�1 +q� + � eX2n�1 "n ; n 2 N ;where ("n)n2N are the same rvs as in (4.1) and eX0 = X0. If � < 0, be
ause of the symmetry ofthe stationary distribution, we may hen
e study the new pro
ess ( eXn)n2N : �In order to determine the tail of the stationary distribution F we need some additional te
hni
alassumptions on g and G = 1�G, the density and the distribution tail of ":D1 The lower and upper Matuszewska indi
es of H are equal and satisfy in parti
ular�1 � 
 := lim�!1 ln lim supx!1H(�x)=H(x)ln �= lim�!1 ln lim infx!1H(�x)=H(x)ln � � 0 :D2 If 
 = �1 then for all Æ > 0 there exist 
onstants q 2 (0; 1) and x0 > 0 su
h that for allx > x0 and t > xq g�x� �tp�t2 � � (1� Æ) g x� �tp� + �t2! : (4.6)If 
 > �1 then for all Æ > 0 there exist 
onstants x0 > 0 and T > 0 su
h that for all x > x0and t > T the inequality (4.6) holds anyway.The de�nition of the lower and upper Matuszewska indi
es 
an be found e.g. in BGT [11℄,p. 68; for the above representation we used Theorem 2.1.5 and Corollary 2.1.6. The 
ase 
 =�1 
orresponds to a tail whi
h is exponentially de
reasing. For 
 2 (�1; 0℄ 
ondition D1 isequivalent to the existen
e of 
onstants 0 � 
 � C < 1 su
h that for all � > 1, uniformly in� 2 [1;�℄, 
(1 + o(1))�
 � G(�x)G(x) � C(1 + o(1))�
 ; x!1 : (4.7)In parti
ular, a distribution with a regularly varying tail satis�es D1; the value 
 is then thetail index. Due to the equality of the Matuszewska indi
es and the monotoni
ity of g we obtaineasily some asymptoti
 properties of G and of g, respe
tively.27



Proposition 4.9. Suppose the general 
onditions (4.3) and D1 �D2 hold. Then the followingholds:(a) limx!1 xmG(x) = 0 and E[j"jm℄ <1 for all m < �
.(b) limx!1 xmG(x) =1 and E[j"jm℄ =1 for all m > �
.(
) limx!1 xm+1g(x) = 0 for all m < �
.(d) If 
 > �1, there exist 
onstants 0 < 
 � C <1 su
h that
 � lim infx!1 x g(x)G(x) � lim supx!1 x g(x)G(x) � C :Moreover, there exist 
onstants 0 � d � D <1 su
h that for all � > 1, uniformly in � 2 [1;�℄,d(1 + o(1))�
�1 � g(�x)g(x) � D(1 + o(1))�
�1 ; x!1 : (4.8)Furthermore, in this 
ase (4.8) is equivalent to (4.7) or D1.The general 
onditions (4.3) are fairly simple and 
an be 
he
ked easily, whereas D1 and inparti
ular D2 seem to be quite te
hni
al and intra
table. Nevertheless, numerous densitiessatisfy these assumptions.Example 4.10. The following two families of densities satisfy the general 
onditions (4.3) andD1 �D2.(a) g�;�(x) / exp(���1jxj�), x 2 R, for �; � > 0.Note that this family in
ludes the Lapla
e (double exponential for � = 1) and the normal densitywith mean 0 (� = 2).(b) ga;�;�(x) / (1+x2=�)�(�+1)=2(1+a sin(2� ln(1+x2=�))), x 2 R, for parameters � > 2, � > 0and a 2 �0; (�+ 1)=(� + 1 + 4�)).This family in
ludes e.g. the Student-t distribution with parameter � (set a = 0 and � = �).The following modi�
ation of the Drasin-Shea Theorem (BGT [11℄, Theorem 5.2.3, p. 273) isthe key to our result.Theorem 4.11. Let k : [0;1)! [0;1) be an integrable fun
tion and let (a; b) be the maximalopen interval (where a < 0) su
h thatbk(z) = Z(0;1) t�zk(t)dtt <1 ; for z 2 (a; b) :If a > �1, assume limÆ#0 bk(a+ Æ) =1, if b <1, assume limÆ#0 bk(b� Æ) =1. Let H be a dfon R+ with tail H. If limx!1Z(0;1) k �xt � H(t)H(x) dtt = 
 > 0 ;then 
 = bk(�) for some � 2 (a; b) and H(x) � x�l(x) ; x!1 ;where l 2 R(0). 28



The following is the main theorem of this se
tion.Theorem 4.12. Suppose (Xn)n2N is given by equation (4.1) with ("n)n2N satisfying the general
onditions (4.3) and D1�D2 and with parameters � and � satisfying (4.5). Let F (x) = P (X >x); x � 0; be the right tail of the stationary distribution. ThenF (x) � 
 x�� ; x!1 ; (4.9)where 
 = 12� E h����jXj+p� + �X2"���� � ���(�+p�")jXj����iE hj�+p�"j� ln j�+p�"jiand � is given as the unique positive solution toE[j�+p�"j�℄ = 1 : (4.10)Remark 4.13. (a) Let E[j�+p�"j�℄ = h�;�(�) be as in Lemma 4.5. Re
all that for " d= N(0; 1)and �xed �, the exponent � is de
reasing in j�j. This means that the distribution of X getsheavier tails. In parti
ular, the AR(1) pro
ess with ARCH(1) errors has for � 6= 0 heavier tailsthan the ARCH(1) pro
ess (see also Table 4.14).(b) Theorem 4.12 together with Proposition 4.5 implies that the se
ond moment of the station-ary distribution exists if and only if �2 + �E["2℄ < 1. �Idea of Proof. Re
all that P (" > x) = G(x) with density g.F (x) = Z 1�1 P �� t+p� + � t2 " > x� dF (t)= Z 10  G x+ � tp� + � t2!+G x� � tp� + � t2!! dF (t)� Z 10  g  x+ � tp� + � t2!+ g x� � tp� + � t2!! xF (t)dtt= Z 10 k �xt �F (t) dtt ;where k(x) = x(g (x+ �p� ) + g (x� �p� )) ; x > 0 ;then limx!1 1F (x) Z 10 k �xt �F (t) dtt = 1 : (4.11)De�ne the transformk̂(z) = Z 10 t�zk(t)dtt = Z 10 t�z �g� t+ �p� �+ g� t� �p� �� dt= E[j� +p�" j�z ℄ <1 ; z 2 (�1; 1)29



�j�j 0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.50.0 12.89 6.09 3.82 2.68 2.00 1.21 0.77 0.49 0.29 0.14 0.03 0.010.2 11.00 5.50 3.54 2.52 1.89 1.16 0.74 0.47 0.28 0.13 0.02 -0.4 8.14 4.30 2.88 2.11 1.61 1.00 0.64 0.40 0.23 0.10 - -0.6 5.45 3.03 2.12 1.60 1.24 0.79 0.50 0.30 0.15 0.04 - -0.8 3.02 1.85 1.37 1.07 0.85 0.55 0.33 0.18 0.06 - - -1.0 0.96 0.83 0.70 0.57 0.47 0.29 0.15 0.04 - - - -1.1 0.12 0.39 0.40 0.35 0.29 0.17 0.07 - - - - -1.2 - 0.01 0.12 0.14 0.12 0.05 - - - - - -Table 4.14. Range of stationarity of the AR(1)+ARCH(1) model with parameters � and �.The matrix 
omponents 
ontain the estimated tail index � for standard normal noise. There isno estimate given if the estimated � is less than 10�2 or (4.5) is not satis�ed.Sin
e (4.11) holds, the 
onditions of the the Drasin-Shea Tauberian theorem are satis�ed. Hen
ethere exists some � 2 (�1; 1) su
h that bk(z) = 1 andF (x) � x�`(x) ; x!1 :But bk(z) = E[j�+p�"j�z℄ = 1 for � = �� and hen
eF (x) � x��`(x); x!1 : (4.12)We apply now Corollary 2.4 of Goldie [41℄ to the pro
ess (Yn)n2N) given by the sto
hasti
re
urren
e equationYn = �����Yn�1 +q� + �Y 2n�1���� ; n 2 N ; and Y0 = jX0j a:s: ;whi
h satis�es (Yn) d= (jXnj). By (4.12) EY ��1 <1 and hen
e the moment 
onditionE ���(j�Y +p� + �Y 2"j)� � (j� +p�"jY )���� <1requested in Goldie [41℄ is satis�ed. By symmetry of X we 
on
lude �nally`(x) = 
 = E h����jXj +p� + �X2" j��j (�+p�")jXj����i2�E hj�+p�"j� ln j�+p�"ji : �4.2 Extreme value analysisTheorems 4.7 and 4.12 are 
ru
ial for investigating the extremal behaviour of (Xn)n2N . Thestrong mixing property implies automati
ally that the sequen
e (Xn)n2N satis�es the 
onditionsD(un) and �(un). These 
onditions are frequently used mixing 
onditions in extreme valuetheory, whi
h, as we do not need them expli
itly, we will not de�ne; instead we refer to Hsing,30



�j�j 0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.2 2.6 2.80.0 4.00 2.76 2.00 1.50 1.14 0.69 0.41 0.21 0.07 0.020.2 3.93 2.68 1.92 1.44 1.10 0.66 0.39 0.20 0.06 0.010.4 3.70 2.41 1.70 1.27 0.97 0.58 0.32 0.15 0.03 -0.6 3.14 1.93 1.36 1.01 0.77 0.44 0.23 0.08 - -0.8 2.10 1.29 0.92 0.68 0.51 0.28 0.11 - - -1.0 0.78 0.60 0.45 0.34 0.24 0.09 - - - -1.1 0.19 0.27 0.22 0.16 0.10 - - - - -1.2 - - 0.02 0.01 - - - - - -Table 4.15. Range of stationarity of the AR(1)+ARCH(1) model with parameters � and �.The matrix 
omponents 
ontain the estimated tail index � for student-t noise with 5 degrees offreedom. The range of stationarity has shrunk 
ompared to the normal noise. Moreover, the
orresponding tails are heavier than for normal noise (
f. Table 4.14).�j�j 0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.2 2.40.0 2.43 1.80 1.35 1.02 0.78 0.45 0.23 0.08 0.010.2 2.41 1.76 1.31 0.99 0.75 0.43 0.21 0.06 0.010.4 2.31 1.62 1.18 0.88 0.66 0.36 0.16 0.02 -0.6 2.06 1.35 0.96 0.70 0.51 0.26 0.09 - -0.8 1.50 0.93 0.64 0.45 0.32 0.12 - - -1.0 0.59 0.41 0.28 0.18 0.10 - - - -1.1 0.13 0.15 0.10 0.04 - - - - -Table 4.16. Range of stationarity of the AR(1)+ARCH(1) model with parameters � and �.The matrix 
omponents 
ontain the estimated and tail index for student-t noise with 3 degreesof freedom. The range of stationarity has further de
reased and the tails have be
ome very heavyindeed; a third moment does not exist (
f. Tables 4.14 and 4.15).H�usler and Leadbetter [48℄ or Perfekt [70℄ for pre
ise de�nitions. Loosly speaking, D(un) and�(un) give the \degree of independen
e" of extremes situated far apart from ea
h other. Thisproperty together with (4.9) implies that the maximum of the pro
ess (Xn)n2N belongs to thedomain of attra
tion of a Fr�e
het distribution ��, where � is given as solution to (4.10).In the following denote by P � the probability law for (Xn)n2N when X0 starts with distribution� and � is the stationary distribution.Theorem 4.17. [Borkove
 [15℄℄Let (Xn)n2N be the AR(1) pro
ess with ARCH(1) errors (4.1) with noise satisfying the usual
onditions and D1 �D2. Let X0 d= �, thenlimn!1P �(n�1=� max1�j�nXj � x) = exp(�
�x��) ; x � 0 ;where � solves the equation (4.10), 
 is the 
onstant in the tail of the stationary distribution31



(4.9) and � = � Z 11 P  supn2N nYi=1(�+p�"i) � y�1! y���1dy :For x 2 R and n 2 N let Nn be the point pro
ess of ex
eedan
es of the threshold un = n1=�x byX1; :::;Xn. Then Nn d! N; n!1 ;where N is a 
ompound Poisson pro
ess with intensity 
�x�� and 
luster probabilities�k = �k � �k+1� ; k 2 N ;with �k = � Z 11 P  
ard(n 2 N : nYi=1(�+p�"i) > y�1) = k � 1! y���1dy :In parti
ular, �1 = �.We want to explain the idea of the proof:Re
all �rst from Theorem 4.7 that (Xn)n2N is Harris re
urrent with regeneration set [�ea=2; ea=2℄for a large enough. Thus there exists a renewal point pro
ess (Tn)n�0 (e.g. the su

essiveentran
e times in [�ea=2; ea=2℄), whi
h des
ribes the regenerative stru
ture of (Xn)n2N . Thispro
ess (Tn)n�0 is aperiodi
 and has �nite mean re
urren
e times.Hen
e we 
an apply a 
oupling argument giving for any probability measure �, the stationarydistribution � and any sequen
e (un)n2N���P �� max1�k�nXk � un�� P �� max1�k�nXk � un����! 0 ; n!1 :Consequently, we suppose in the follwing that (Xn)n2N is stationary.On a high level, the pro
ess (Xn)n2N 
an be linked to some random walk as follows. De�neS0 = 0 ; Sn = nXi=1 ln(�+p�"i) ; n 2 N :Although it is not as natural as for pure volatility models we 
onsider besides (Xn)n2N also(X2n)n2N . De�ne the auxiliary pro
ess (Zn)n2N := (ln(X2n))n2N , whi
h satis�es the sto
hasti
di�eren
e equationZn = Zn�1 + ln�(�+p� e�Zn�1 + � "n)2� ; n 2 N ; Z0 = ln(X20 ) a:s: :Note that, sin
e strong mixing is a property of the underlying �-algebra of the pro
ess, (X2n)n2Nand (Zn)n2N are also strong mixing. Sin
e " is symmetri
 the pro
ess (Zn)n2N is independentof the sign of the parameter �. Hen
e we may wlog in the following assume that � � 0.We show that (Zn)n2N 
an be bounded by two random walks (Sl;an )n2N and (Su;an )n2N from below32



and above, respe
tively. For the 
onstru
tion of the two random walks (Sl;an )n2N and (Su;an )n2Nwe de�ne with the same notation as beforeAa := ( ��p� e�a + ��p� e�a=2 � " � ��p� e�a + �+p� e�a=2) ;p(a; ") := ln�(�+p� e�a + �")2�q(a; ") := ln�1� 2�p�e�a=2"(�+p� e�a + � ")2 1f"<0g� ;r(a; ") := ln�1� �"2e�a(�+p� e�a + � ")2 1f"<0g� :Note that q(a) and r(a) both 
onverge to 0 a.s. as a!1. De�ne the lower and upper randomwalks Sl;an := nXj=1 Uaj and Su;an := nXj=1 V aj ; n 2 N ; (4.13)where for ea
h j = 1; : : : ; nUaj := �1 � 1Aa + (p(a; "j) + r(a; "j))1A
a\f"j<0g ln(�+p�")2) 1f"j�0g (4.14)V aj := p(a; "j) + q(a; "j) : (4.15)The following lemma summarizes some properties of the random walks de�ned in (4.13)-(4.15).Lemma 4.18. Let a be large enough, Z0 > a and Na := inffj � 1 jZj � ag. Then(a) Z0 + Sl;ak � Zk � Z0 + Su;ak for all k � Na a.s.(b) (Su;an )n2N and (Sl;an )n2N are random walks with negative drift.(
) De�ne S0 = 0 and Sk =Pkj=1 ln((� +p�"j)2) for k 2 N. ThenSl;ak P! Sk and Su;ak a:s:! Sk ; a " 1 :(d) supk�1 Sl;ak d! supk�1 Sk and supk�1 Su;ak a:s:! supk�1 Sk as a " 1.Lemma 4.18 
hara
terizes the behaviour of the pro
ess (Zn)n2N above a high treshold a andhen
e also the behaviour of (X2n)n2N . This is the key to what follows: the pro
ess (Sn)n2N will
ompletely determine the extremal behaviour of (X2n)n2N .We �rst need the following lemma.Lemma 4.19. Let 
 be the mixing fun
tion of (Xn)n2N and (pn)n2N an in
reasing sequen
esu
h that pnn ! 0 and n
(ppn)pn ! 0 as n!1 : (4.16)Then for un = n2=�x, x > 0,limp!1 lim supn!1 P ( maxp�j�pnX2j > un jX20 > un) = 0 ; (4.17)33



and for un = n1=�x, x > 0,limp!1 lim supn!1 P ( maxp�j�pnXj > un jX0 > un) = 0 : (4.18)Proof. The proof of (4.17) is very te
hni
al and we refer to Borkove
 [15℄ for details. It is,however, easy to see that (4.17) implies (4.18):P ( maxp�j�pnX2j > u2n jX20 > u2n) = P (maxp�j�pnX2j > u2n; X20 > u2n)P (X20 > u2n)� P (maxp�j�pnXj > un; X0 > un)P (X0 > un) + P (X0 < �un) = 12P ( maxp�j�pnXj > un jX0 > un) : �Remark 4.20. (a) Sin
e (Xn)n2N is geometri
 ergodi
, the mixing fun
tion 
 de
reases expo-nentially fast, hen
e it is not diÆ
ult to �nd a sequen
e (pn)n2N to satisfy (4.16).(b) As mentioned already, the strong mixing 
ondition is a property of the underlying ���eldof a pro
ess. Hen
e 
 is also the mixing fun
tion of (X2n)n2N and (Zn)n2N and we may work forall these pro
esses with the same sequen
e (pn)n2N .(
) In the 
ase of a strong mixing pro
ess, 
onditions (4.16) are suÆ
ient to guarantee that(pn)n2N is a �(un)-separating sequen
e. It des
ribes somehow the interval length needed to a
-
omplish asymptoti
 independen
e of extremal events over a high level un in separate intervals.For a de�nition see Perfekt [70℄. Note that (pn)n2N is in the 
ase of a strong mixing pro
essindependent of (un)n2N . �The following Theorem is an extension of Theorem 3.2 of Perfekt [70℄, p. 543 adapted to oursituation.Theorem 4.21. Suppose (Xn)n2N is a strongly mixing stationary Markov 
hain whose station-ary df F is symmetri
 with tail F 2 R(��) on R+ . Suppose furthermore thatlimu!1P (X1 � xu jX0 = u) = H(x) ; x 2 R ;for some df H. Let (An)n2N be an iid sequen
e with df H and de�ne Yn = AnYn�1 for n 2 Nwith Y0 independent of (An)n2N and Y0 d= � given by �(dx) := ��1x�1=��1dx, for x > 1. Forevery � > 0 let (un(�))n2N be a sequen
e satisfyinglimn!1nF (un(�)) = � :Then (Xn)n2N has extremal index � given by� = P �(
ardfn 2 N : Yn > 1g = 0) :Moreover, for n 2 N the time normalized point pro
ess of ex
eedan
esN �n(B) := nXi=1 "i=n(�)IfXk > un(�)g d! N(B) ; B 2 B(0; 1℄ ;34



where N is a 
ompound Poisson pro
ess with intensity �� and jump probabilities (�k)k2N givenby �k = �k � �k+1� ; k 2 N ;where �k = P �(
ardfn 2 N : Yn > 1g = k � 1) ; k 2 N :Proof of Theorem 4.17. The proof is an appli
ation of Theorem 4.21. As stated already wemay assume w.l.o.g. that (Xn)n2N is stationary. Let x 2 R be arbitrary. Note that by (4.9)limu!1P (X1 � ux jX0 = u) = P (�+p� " � x) ; x 2 R :(Xn)n2N satis�es all assumptions of Theorem 4.21 and we have the extremal index� = Z 11 P  
ardfn 2 N : � nYi=1(�+p� "i)�Y0 > 1g = 0 jY0 = y! � y���1dy= �Z 11 P  supn�1 � nYi=1(�+p� "i� � y�1! y���1dy :The 
luster probabilities 
an be determined in the same way and hen
e the statement follows.�Remark 4.22. (i) Noti
e that for the squared pro
ess the extremal index and the 
lusterprobabilities 
an be des
ribed by the random walk (Sn)n2N , namely�(2)k = �2 Z 10 P (
ardfn 2 N jSn > �xg = k � 1) e��2 x dx ; k 2 N :The des
ription of the extremal behaviour of (X2n)n2N by the random walk (Sn)n2N is to be ex-pe
ted sin
e by Lemma 4.18 the pro
ess (Zn)n2N = (ln(X2n))n2N behaves above a high thresholdasymptoti
ally like (Sn)n2N . Unfortunately, this link fails for (Xn)n2N .(ii) Analogous to de Haan et al. [46℄ we may 
onstru
t \estimators" for the extremal indi
es�(2) and �(2)k of (X2n)n2N , respe
tively, byb�(2) = 1N NXi=1 1f sup1�j�mS(i)j � �E(i)� gand b�(2)k = 1N NXi=1 1f mXj=1 1fS(i)j > �E(i)� g = k � 1g ; for k 2 N ;where N denotes the number of independent simulated sample paths of (Sn)n2N , E(i)� are i.i.d.exponential rvs with rate �, and m is 
hosen large enough. These estimators 
an be studied asin the 
ase � = 0 and " d= N(0; 1) in de Haan et al. [46℄. In parti
ular,pN �(2) � b�(2)(�(2)(1� �(2)))1=2 d! N(0; 1) ; N;m!1 :35



(iii) The approa
h 
hosen in (ii) is not possible for (Xn)n2N , be
ause Qjl=1(� +p� "l) may benegative. In a similar spirit we 
hoose as \estimators" for � and �k for (Xn)n2Nb� = 1N NXi=1 1f sup1�j�m jYl=1(�+p� "l) � 1=P (i)� gand b�k = 1N NXi=1 1f mXj=1 1f jYl=1(�+p� "l) > 1=P (i)� g = k � 1g ; for k 2 N ;where N denotes the number of simulated paths of (Qnl=1(�+p� "l))n2N , P (i)� are iid Pareto rvswith shape parameter �, i.e. with distribution fun
tion G(x) = 1 � x��, x � 1, and m is largeenough. These are suggestive estimators sin
e Qnl=1(� +p� "l) ! 0 a.s. as n ! 1 be
ause ofassumption (4.4).(iv) Note that the extremal index � of (Xn)n2N is not symmetri
 in � (see Table 4.23). Thisis not surprising sin
e the 
lustering is for � > 0 stronger by the autoregressive part than for� < 0. �� � 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0 2.5 3.0 3.5�1:2 - 0.001 0.001 0.003 0.004 0.001 0.000 - - - -�1 0.15 0.19 0.19 0.16 0.13 0.09 0.05 0.01 - - -�0:8 0.56 0.47 0.41 0.34 0.26 0.21 0.13 0.05 0.01 - -�0:6 0.86 0.71 0.61 0.50 0.41 0.33 0.22 0.10 0.03 0.00 -�0:4 0.96 0.85 0.71 0.60 0.50 0.40 0.30 0.14 0.06 0.01 -�0:2 0.98 0.89 0.77 0.65 0.56 0.47 0.33 0.18 0.07 0.02 0.000 0.98 0.89 0.78 0.65 0.55 0.45 0.33 0.18 0.08 0.02 0.000:2 0.94 0.82 0.72 0.61 0.52 0.43 0.32 0.18 0.07 0.02 0.000:4 0.85 0.72 0.63 0.53 0.45 0.37 0.28 0.13 0.06 0.01 -0:6 0.68 0.55 0.48 0.41 0.35 0.29 0.21 0.10 0.03 0.00 -0:8 0.39 0.34 0.32 0.27 0.22 0.19 0.12 0.05 0.01 - -1:0 0.09 0.14 0.13 0.13 0.11 0.08 0.04 0.01 - - -1:2 - 0.000 0.001 0.003 0.004 0.001 0.000 - - - -Table 4.23. \Estimated" extremal index � of (Xn)n2N in the 
ase " d= N(0; 1). We 
hoseN = m = 2000. Note that the extremal index de
reases as j�j in
reases and that we have nosymmetry in �.Remark 4.24. (i) Model (4.1) has a natural extension to higher order: the autoregres-sive model of order q with ARCH(q)-errors has been investigated in Kl�uppelberg and Perga-men
ht
hikov [58, 59℄. It is also shown there that for Gaussian error variables this model is indistribution equivalent to a random 
oeÆ
ient model.(ii) Su
h models also lead to interesting statisti
al theory, some 
an be found in e
onomet-ri
 textbooks; see e.g. Campbell, Lo and Ma
Kinley [21℄, Gouri�eroux [44℄, Shephard [83℄, orTaylor [85℄. In Kl�uppelberg et al. [57℄ tests for models in
luding (4.1) are suggested. A pseudo-likelihood ratio test for the hypotheses that the model redu
es to random walk or iid data isinvestigated and the distributional limit of the test statisti
 is derived. �36
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Figure 4.25. Simulated sample path of (Xn)n2N with parameters (�; �; �) = (0:8; 1; 0:2) (top,left), of (X2n)n2N with the same parameters (top, right), of (Xn)n2N with parameters (�; �; �) =(�0:8; 1; 0:2) (middle, left), of (X2n)n2N with the same parameters (middle, right), of (Xn)n2Nwith parameters (�; �; �) = (0; 1; 0:2) (bottom, left) and of (X2n)n2N with the same parameters(bottom,right) in the 
ase " d= N(0; 1). All simulations are based on the same simulated noisesequen
e ("n)n2N.
37



� � � �1 �2 �3 �4 �5 �60 0.2 0.974 0.973 0.027 0.000 0.000 0.000 0.0000 0.6 0.781 0.799 0.147 0.036 0.012 0.005 0.0010 1 0.549 0.607 0.188 0.107 0.036 0.034 0.017-0.4 0.2 0.962 0.962 0.037 0.001 0.000 0.000 0.0000.4 0.2 0.853 0.867 0.103 0.026 0.002 0.002 0.000-0.4 0.6 0.715 0.747 0.168 0.048 0.026 0.006 0.0020.4 0.6 0.624 0.676 0.182 0.066 0.040 0.019 0.012-0.4 1 0.497 0.540 0.210 0.115 0.075 0.040 0.0040.4 1 0.445 0.533 0.185 0.080 0.109 0.032 0.017-0.8 0.2 0.572 0.626 0.185 0.111 0.026 0.033 0.0010.8 0.2 0.386 0.470 0.172 0.148 0.062 0.068 0.006-0.8 0.6 0.414 0.520 0.159 0.134 0.072 0.043 0.0160.8 0.6 0.314 0.443 0.156 0.110 0.087 0.073 0.041-0.8 1 0.273 0.429 0.137 0.126 0.106 0.016 0.0120.8 1 0.224 0.346 0.132 0.114 0.129 0.045 0.004Table 4.26. \Estimated" extremal index � and 
luster probabilities (�k)1�k�6 of (Xn)n2N de-pendent on � and � in the 
ase " d= N(0; 1). We 
hose N = m = 2000. Note that the extremalindex for � > 0 is mu
h larger than for � < 0.5 Optimal portfolios with bounded VaRIn this se
tion we investigate the in
uen
e of large 
u
tuations and the Value-at-Risk as a riskmeasure, whi
h is sensitive to su
h pri
e behaviour to portfolio optimisation. It is based onEmmer, Kl�uppelberg and Korn [35℄ and Emmer and Kl�uppelberg [34℄Starting with the traditional Bla
k-S
holes model, where sto
k pri
es follow a geometri
 Brow-nian motion we �rst study the di�eren
e between the 
lassi
al risk measure, i.e. the varian
e,and the VaR.Sin
e the varian
e of Brownian motion in
reases linearly, the use of the varian
e as a risk measureof an investment leads to a de
reasing proportion of risky assets in a portfolio, when the planninghorizon in
reases. This is not true for the Capital-at-Risk whi
h - as a fun
tion of the planninghorizon { in
reases �rst, but de
reases, when the planning horizon be
omes larger. We show forthe CaR that, as seems to be 
ommon wisdom in asset management, long term sto
k investmentleads to an almost sure gain over lo
ally riskless bond investments. In the long run sto
k indi
esare growing faster than riskless rates, despite the repeated o

urren
e of sto
k market de
lines.The VaR therefore supports the portfolio manager's advi
e that the more distant the planninghorizon, the greater should be one's wealth in risky assets. Interestingly, the VaR as risk measuresupports the empiri
al observation above and hen
e resolves the 
ontradi
tion between theoryand empiri
al fa
ts.Then we study the optimal portfolio problem for more realisti
 pri
e pro
esses, i.e. L�evy pro-
esses whi
h model also large 
u
tuations. Here, as is to be expe
ted, the VaR rea
ts to exa
tlythose and 
onsequently, the CaR. We investigate, in parti
ular, the normal inverse Gaussian andvarian
e gamma L�evy pro
esses. 38



5.1 The Bla
k-S
holes modelIn this se
tion, we 
onsider a standard Bla
k-S
holes type market 
onsisting of one riskless bondand several risky sto
ks. Their respe
tive pri
es (P0(t))t�0 and (Pi(t))t�0 for i = 1; : : : ; d evolvea

ording to the equationsP0(t) = ert and Pi(t) = pi exp �(bi � 12 dXj=1 �2ij)t+ dXj=1 �ijWj(t)� ; t � 0 :Here W (t) = (W1(t); : : : ;Wd(t))0 is a standard d-dimensional Brownian motion, r 2 R is theriskless interest rate, b = (b1; : : : ; bd)0 the ve
tor of sto
k-appre
iation rates and � = (�ij)1�i;j�dis the matrix of sto
k-volatilities. For simpli
ity, we assume that � is invertible and that bi � rfor i = 1; : : : ; d. Sin
e the assets are traded on the same market, they show some 
orrelationstru
ture whi
h we model by a linear 
ombination of the same Brownian motions W1; : : : ;Wdfor ea
h traded asset. Throughout this paper we denote by Rd the d-dimensional Eu
lideanspa
e. Its elements are 
olumn ve
tors and for x 2 Rd we denote by x0 the transposed ve
tor;analogously, for a matrix � we denote by �0 its transposed matrix. We further denote byjxj = (Pdi=1 x2i )1=2 the Eu
lidean norm of x 2 Rd .We need the SDE 
orresponding to the pri
e pro
esses above.dP0(t) = P0(t)rdt ; P0(0) = 1 ;dPi(t) = Pi(t)�bidt+Pdj=1 �ijdWj(t)� ; Pi(0) = pi ; i = 1; : : : ; d : (5.1)Let �(t) = (�1(t); : : : ; �d(t))0 2 Rd be an admissible portfolio pro
ess, i.e. �i(t) is the fra
tion ofthe wealth X�(t), whi
h is invested in asset i (see Korn [60℄, Se
tion 2.1 for relevant de�nitions).Denoting by (X�(t))t�0 the wealth pro
ess, it follows the dynami
dX�(t) = X�(t)�((1� �(t)01)r + �(t)0b)dt+ �(t)0�dW (t)	 ; X�(0) = x ;where x 2 R denotes the initial 
apital of the investor and 1 = (1; : : : ; 1)0 denotes the ve
tor(of appropriate dimension) having unit 
omponents. The fra
tion of the investment in thebond is �0(t) = 1 � �(t)01. Throughout the paper, we restri
t ourselves to 
onstant portfolios�(t) = � = (�1; : : : ; �d) for all t 2 [0; T ℄. This means that the fra
tions in the di�erent sto
ksand the bond remain 
onstant on [0; T ℄. The advantage of this is two-fold: �rst we obtain, atleast in a Gaussian setting, expli
it results; and, furthermore, the e
onomi
 interpretation ofthe mathemati
al results is 
omparably easy. It is also important to point out that following a
onstant portfolio pro
ess does not mean that there is no trading. As the sto
k pri
es evolverandomly one has to trade at every time instant to keep the fra
tions of wealth invested in thedi�erent se
urities 
onstant. Thus, following a 
onstant portfolio pro
ess still means one mustfollow a dynami
 trading strategy.Standard Itô integration and the fa
t that EesW (1) = es2=2; s 2 R , yield the following expli
itformulae for the wealth pro
ess for all t 2 [0; T ℄.X�(t) = x exp �(�0(b� r1) + r � j�0�j2=2)t + �0�W (t)� ; (5.2)E[X�(t)℄ = x exp �(�0(b� r1) + r)t� ; (5.3)var(X�(t)) = x2 exp �2(�0(b� r1) + r)t� �exp(j�0�j2t)� 1� : (5.4)39



De�nition 5.1. [Capital-at-Risk℄Let x be the initial 
apital and T a given planning horizon. Let z� be the �-quantile of thestandard normal distribution. For some portfolio � 2 Rd and the 
orresponding terminal wealthX�(T ), the VaR of X�(T ) is given byVaR(x; �; T ) = inffz 2 R : P (X�(T ) � z) � �g= x exp�(�0(b� r1) + r � j�0�j2=2)T + z�j�0�jpT� :Then we de�neCaR(x; �; T ) = x exp(rT )�VaR(x; �; T )= x exp(rT )��1� exp((�0(b� r1)� j�0�j2=2)T + z�j�0�jpT )� (5.5)the Capital-at-Risk of the portfolio � (with initial 
apital x and planning horizon T ). �To avoid (non-relevant) sub
ases in some of the following results we always assume � < 0:5whi
h leads to z� < 0.Remark 5.2. (i) Our de�nition of the Capital-at-Risk limits the possibility of ex
ess losses overthe riskless investment.(ii) We typi
ally want to have a positive CaR (although it 
an be negative in our de�nitionas the examples below will show) as the upper bound for the \likely losses" (in the sense that(1��)� 100% of o

urring \losses" are smaller than CaR(x; �; T )) 
ompared to the pure bondinvestment. Further, we 
on
entrate on the a
tual amount of losses appearing at the planninghorizon T . This is in line with the mean-varian
e sele
tion pro
edure enabling us to dire
tly
ompare the results of the two approa
hes; see below. �In the following it will be 
onvenient to introdu
e the fun
tion f(�) for the exponent in (5.5),that is f(�) := z�j�0�jpT � j�0�j2T=2 + �0(b� r1)T ; � 2 Rd : (5.6)By the obvious fa
t that f(�) ! �1 as j�0�j ! 1 we have the natural upper boundsup�2Rd CaR(x; �; T ) = x exp(rT ); i.e., the use of extremely risky strategies (in the sense ofa high norm j�0�j) 
an lead to a CaR whi
h is 
lose to the total 
apital. The 
omputation ofthe minimal CaR is done in the following proposition.Proposition 5.3. Let � = j��1(b� r1)j.(a) If bi = r for all i = 1; : : : ; d, then f(�) attains its maximum for �� = 0 leading to a minimumCapital-at-Risk of CaR(x; ��; T ) = 0.(b) If bi 6= r for some i 2 f1; : : : ; dg and �pT < jz�j, then again the minimal CaR equals zeroand is only attained for the pure bond strategy �� = 0.(
) If bi 6= r for some i 2 f1; : : : ; dg and �pT � jz�j, then the minimal CaR is attained for�� = �� � jz�jpT � (��)�1(b� r1)j��1(b� r1)j (5.7)with CaR(x; ��; T ) = x exp(rT )�1� exp�12(pT� � jz�j)2�� < 0: (5.8)40



Proof. (a) follows dire
tly from the expli
it form of f(�) under the assumption of bi = r for alli = 1; : : : ; d and the fa
t that � is invertible.(b),(
) Consider the problem of maximizing f(�) over all � whi
h satisfyj�0�j = " (5.9)for a �xed positive ". Over the (boundary of the) ellipsoid de�ned by (5.9) f(�) equalsf(�) = z�"pT � "2T=2 + �0(b� r1)T :Thus, the problem is redu
ed to maximizing a linear fun
tion (in �) over the boundary of anellipsoid. Su
h a problem has the expli
it solution��" = "(��0)�1(b� r1)j��1(b� r1)j (5.10)with f(��") = �"2T=2 + "� �T � jz�jpT� : (5.11)As every � 2 Rd satis�es relation (5.9) with a suitable value of " (due to the fa
t that � isregular), we obtain the minimum CaR strategy �� by maximizing f(��") over all non-negative". Due to the form of f(��") the optimal " is positive if and only if the multiplier of " inrepresentation (5.11) is positive. Thus, in the situation of Proposition 5.3(b) the assertionholds. In the situation of Proposition 5.3(
) the optimal " is given as" = � � jz�jpT :Inserting this into equations (5.10) and (5.11) yields the assertions (5.7) and (5.8) (with the helpof equations (5.5) and (5.6)). �Remark 5.4. (i) Part (a) of Proposition 5.3 states that in a risk-neutral market the CaR ofevery strategy 
ontaining sto
k investment is bigger than the CaR of the pure bond strategy.(ii) Part (
) states the (at �rst sight surprising) fa
t that the existen
e of at least one sto
kwith a mean rate of return di�erent from the riskless rate implies the existen
e of a sto
k andbond strategy with a negative CaR as soon as the planning horizon T is large. Thus, even ifthe CaR would be the only 
riterion to judge an investment strategy the pure bond investmentwould not be optimal if the planning horizon is far away. On one hand this fa
t is in linewith empiri
al results on sto
k and bond markets. On the other hand this shows a remarkabledi�eren
e between the behaviour of the CaR and the varian
e as risk measures. Independent ofthe planning horizon and the market 
oeÆ
ients, pure bond investment would always be optimalwith respe
t to the varian
e of the 
orresponding wealth pro
ess. �We now turn to a Markowitz mean-varian
e type optimization problem where we repla
e thevarian
e 
onstraint by a 
onstraint on the CaR of the terminal wealth. More pre
isely, we solvethe following problem:max�2Rd E[X�(T )℄ subje
t to CaR(x; �; T ) � C ; (5.12)where C is a given 
onstant of whi
h we assume that it satis�es C � x exp(rT ).Due to the expli
it representations (5.4), (5.5) and a variant of the de
omposition method asapplied in the proof of Proposition 5.3 we 
an solve problem (5.12) expli
itly.41



Proposition 5.5. Let � = j��1(b� r1)j and assume that bi 6= r for at least one i 2 f1; : : : ; dg.Assume furthermore that C satis�es 0 � C � x exp(rT ) if �pT < jz�j; (5.13)x exp(rT )� 1� exp� 12(pT� � jz�j)2�� � C � x exp(rT ) if �pT � jz�j : (5.14)Then problem (5.12) has solution �� = "� (��0)�1(b� r1)j��1(b� r1)jwith "� = (� + z�=pT ) +q(� + z�=pT )2 � 2
=T ;where 
 = ln �1� Cx exp(�rT )�. The 
orresponding maximal expe
ted terminal wealth under theCaR 
onstraint equals E[X��(T )℄ = x exp ��r + "�j��1(b� r1)j�T � : (5.15)Proof. The requirements (5.13) and (5.14) on C ensure that the CaR 
onstraint in problem(5.12) 
annot be ignored: in both 
ases C lies between the minimum and the maximum valuethat CaR 
an attain (see also Proposition 5.3). Every admissible � for problem (5.12) withj�0�j = " satis�es the relation(b� r1)0�T � 
+ 12"2T � z�"pT (5.16)whi
h is in this 
ase equivalent to the CaR 
onstraint in (5.12). But again, on the set given byj�0�j = " the linear fun
tion (b� r1)0�T is maximized by�" = "(��0)�1(b� r1)j��1(b� r1)j : (5.17)Hen
e, if there is an admissible � for problem (5.12) with j�0�j = " then �" must also beadmissible. Further, due to the expli
it form (5.3) of the expe
ted terminal wealth, �" alsomaximizes the expe
ted terminal wealth over the ellipsoid. Consequently, to obtain � for problem(5.12) it suÆ
es to 
onsider all ve
tors of the form �" for all positive " su
h that requirement(5.16) is satis�ed. Inserting (5.17) into the left-hand side of inequality (5.16) results in(b� r1)0�"T = "j��1(b� r1)jT ; (5.18)whi
h is an in
reasing linear fun
tion in " equalling zero in " = 0. Therefore, we obtain thesolution of problem (5.12) by determining the biggest positive " su
h that (5.16) is still valid.But the right-hand side of (5.18) stays above the right-hand side of (5.16) until their largestpositive point of interse
tion whi
h is given by"� = (� + z�=pT ) +q(� + z�=pT )2 � 2
=T ;The remaining assertion (5.15) 
an be veri�ed by inserting �� into equation (5.3). �42
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Figure 5.7. CaR(1 000; 1; T ) of the pure sto
k portfolio (one risky asset only) for di�erentappre
iation rates as a fun
tion of the planning horizon T ; 0 < T � 20. The volatility is� = 0:2. The riskless rate is r = 0:05.Remark 5.6. Note that the optimal expe
ted value only depends on the sto
ks via the normj��1(b� r1)j. There is no expli
it dependen
e on the number of di�erent sto
ks. We thereforeinterpret Proposition 5.3 as a kind of mutual fund theorem as there is no di�eren
e betweeninvestment in our multi-sto
k market and a market 
onsisting of the bond and just one sto
kwith appropriate market 
oeÆ
ients b and �. �Example 5.8. Figure 5.7 shows the dependen
e of CaR on the planning horizon T illustratedby CaR(1 000,1,T). Note that the CaR �rst in
reases and then de
reases with time, a behaviourwhi
h was already indi
ated by Proposition 5.3. It di�ers substantially from the behaviour of thevarian
e of the pure sto
k strategy, whi
h in
reases with T . Figure 5.9 illustrates the behaviourof the optimal expe
ted terminal wealth with varying planning horizon 
orresponding to thepure bond strategy and the pure sto
k strategy as fun
tions of the planning horizon T . Theexpe
ted terminal wealth of the optimal portfolio even ex
eeds the pure sto
k investment. Thereason for this be
omes 
lear if we look at the 
orresponding portfolios. The optimal portfolioalways 
ontains a short position in the bond as long as this is tolerated by the CaR 
onstraint.This is shown in Figure 5.10 where we have plotted the optimal portfolio together with the puresto
k portfolio as fun
tion of the planning horizon. For b = 0:15 the optimal portfolio always
ontains a short position in the bond. For b = 0:1 and T > 5 the optimal portfolio (with thesame CaR 
onstraint as in Figures 5.9) again 
ontains a long position in both bond and sto
k(with de
reasing tenden
y of � as time in
reases!). This is an immediate 
onsequen
e of thein
reasing CaR of the sto
k pri
e. For the smaller appre
iation rate of the sto
k it is simply notattra
tive enough to take the risk of a large sto
k investment. Figure 5.10 shows the mean-CaReÆ
ient frontier for the above parameters with b = 0:1 and �xed planning horizon T = 5. Asexpe
ted it has a similar form as a typi
al mean-varian
e eÆ
ient frontier.We 
ompare now the behaviour of the optimal portfolios for the mean-CaR with solutions of a
orresponding mean-varian
e problem. To this end we 
onsider the following simpler optimiza-tion problem: max�2Rd E[X�(T )℄ subje
t to var(X�(T )) � C : (5.19)Proposition 5.11. If bi 6= r for at least one i 2 f1; : : : ; dg, then the optimal solution of the43
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Figure 5.9. Expe
ted terminal wealth of di�erent investment strategies depending on the plan-ning horizon T , 0 � T � 20. The parameters are d = 1, r = 0:05, b = 0:1, � = 0:2, and� = 0:05. As the upper bound C of the CaR we used CaR(1 000; 1; 5), the CaR of the pure sto
kstrategy with planning horizon T = 5. On the right border we have plotted the density fun
tionof the wealth for the optimal portfolio.mean-varian
e problem (5.19) is given byb� = b" (��0)�1(b� r1)j��1(b� r1)j ;where b" is the unique positive solution of the non-linear equationrT + j��1(b� r1)j"T � 12 ln�Cx2�+ 12 ln �exp("2T )� 1� = 0 :The 
orresponding maximal expe
ted terminal wealth under the varian
e 
onstraint equalsE[Xb�(T )℄ = x exp �(r + b" j��1(b� r1)j)T � : �Proof. By using the expli
it form (5.4) of the varian
e of the terminal wealth, we 
an rewritethe varian
e 
onstraint in problem (5.19) as(b� r1)0�T � 12 ln� Cx2�� 12 ln �exp("2T )� 1)�� rT =: h("); j�0�j = " (5.20)for " > 0. More pre
isely, if � 2 Rd satis�es the 
onstraints in (5.20) for one " > 0 then it alsosatis�es the varian
e 
onstraint in (5.19) and vi
e versa. Noting that h(") is stri
tly de
reasingin " > 0 with lim"#0 h(") =1 and lim"!1h(") = �1we see that the left-hand side of (5.20) must be smaller than the right-hand side for small valuesof " > 0 if we plug in �" as given by equation (5.17). Re
all that this was the portfolio withthe highest expe
ted terminal wealth of all portfolios � satisfying j�0�j = ". It even maximizes(b� r1)0�T over the set given by j�0�j � ". If we have equality(b� r1)0�b"T = h(b") (5.21)44
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Figure 5.10. For di�erent appre
iation rates the leftt-hand �gure shows the optimal portfolioand the pure sto
k portfolio. The right-hand �gure shows the mean-CaR eÆ
ient frontier withthe mean on the horizontal axis and the CaR on the verti
al axis. The parameters are the sameas in Figure 5.9.for the �rst time with in
reasing " > 0, then this determines the optimal b" > 0. To see this,note that we have E[X�(T )℄ � E[X�b"(T )℄ for all � with j�0�j � b" ;and for all admissible � with " = j�0�j > b" we obtain(b� r1)0�T � h(") < h(b") = (b� r1)0�b"T :By solving the non-linear equation (5.21) for b" we have thus 
ompletely determined the solutionof problem (5.19) �Example 5.12. Figure 5.13 
ompares the behaviour of b" and "� as fun
tions of the planninghorizon T . We have used the same data as in Example 5.8. To make the solutions of problems(5.12) and (5.19) 
omparable we have 
hosen C di�erently for the varian
e and the CaR riskmeasures in su
h a way that b" and "� 
on
ide for T = 5. Noti
e that C for the varian
e problemis roughly the square of C for the CaR problem taking into a

ount that the varian
e measuresan L2-distan
e, whereas CaR measures an L1-distan
e. The (of 
ourse expe
ted) bottom line ofFigure 5.13 is that with in
reasing time the varian
e 
onstraint demands a smaller fra
tion ofrisky se
urities in the portfolio. This is also true for the CaR 
onstraint for small time horizons.For larger planning horizon T (T � 20) "� in
reases again due to the fa
t that the CaR de
reases.In 
ontrast to that, b" de
reases to 0, sin
e the varian
e in
reases. �5.2 The exponential L�evy modelAs in Se
tion 5.1 we 
onsider a standard Bla
k-S
holes type market 
onsisting of a risklessbond and several risky sto
ks, however, we assume now that their pri
es follow exponential L�evypro
esses. This is a large 
lass of models, in
luding besides the geometri
 Brownian motion alsomu
h more realisti
 pri
e models. The respe
tive pri
es (P0(t))t�0 and (Pi(t))t�0 for i = 1; : : : ; d45
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Figure 5.13. b" and "� as fun
tions of the planning horizon; 0 < T � 20. The parameters arethe same as in Figure 5.9.evolve a

ording to the equationsP0(t) = ert and Pi(t) = pi exp�bit+ dXj=1 �ijLj(t)� ; t � 0 : (5.22)Here r 2 R is the riskless interest rate, b 2 Rd and � = (�ij)1�i;j�d is an invertible matrix.(L(t))t�0 = (L1(t); : : : ; Ld(t))t�0 is a d-dimensional L�evy pro
ess with independent 
omponents.Hen
e we assume that ea
h (Li(t))t�0 for i = 1; : : : ; d has stationary independent in
rementswith 
adlag sample paths. We de�ne this model analogously to the Bla
k-S
holes model inSe
tion 5.1, but repla
e the Brownian motion by a general L�evy pro
ess L.Before we spe
ify this model further we summarize some results on L�evy pro
esses. For relevantba
kground we refer to Bertoin [10℄, Protter [73℄ and, in parti
ular, Sato [81℄. A very interesting
olle
tion of resear
h arti
les is Barndor�-Nielsen, Mikos
h and Resni
k [7℄.Ea
h in�nitely divisible df F on Rd generates a L�evy pro
ess L by 
hoosing F as df of thed-dimensional ve
tor L(1). This 
an be seen immediately, sin
e the 
hara
teristi
 fun
tion is forea
h t > 0 given by E exp(is0L(t)) = exp(t	(s)) ; s 2 Rd ;where 	 has L�evy-Khint
hine representation	(s) = is0a� s0�0�s2 + ZRd(eis0x � 1� is0xI(jxj � 1))�(dx) ; s 2 Rd : (5.23)Here a 2 Rd , �0� is a non-negative de�nite symmetri
 d� d-matrix, and � is a measure on Rdsatisfying �(f0g) = 0 and RRd(jxj2 ^ 1)�(dx) < 1, 
alled the L�evy measure of the pro
ess L.The term 
orresponding to xI(jxj � 1) represents a 
entering, without whi
h the integral (5.23)may not 
onverge. The 
hara
teristi
 triplet (a; �0�; �) 
hara
terizes the L�evy pro
ess L.A

ording to Sato [81℄, Chapter 4 (see Theorem 19.2), the following holds. For ea
h ! in theprobability spa
e, de�ne �L(t; !) = (�L1(t; !); : : : ;�Ld(t; !)) with �Lj(t; !) = Lj(t; !) �Lj(t�; !) for j = 1; : : : ; d. For ea
h Borel set B � [0;1) � Rd� (Rd� = Rd n f0g) setM(B;!) = 
ardft � 0 : (t;�L(t; !)) 2 Bg :46



L�evy's theory says that M is a Poisson random measure with intensitym(dt; dx) = dt�(dx) ;where � is the L�evy measure of the pro
ess L. Noti
e that m is �-�nite and M(B; �) = 1 a.s.when m(B) =1.With this notation, the L�evy-Khint
hine representation (5.23) 
orresponds to the representationL(t) = at+ �W (t) + X0<s�t�L(s)I(j�L(s)j > 1) + Z t0 Zjxj�1 x(M(dx; ds) � �(dx)ds) ; t � 0 :(5.24)This means that L(t) has a Brownian 
omponent �W (t) and a pure jump part with L�evy measure�, having the interpretation that a jump of size x o

urs at rate �(dx). To ensure �niteness ofthe integral (5.23), the small jumps are 
ompensated by their expe
tation. This representationredu
es in the �nite variation 
ase toL(t) = 
t+ �W (t) + X0<s�t�L(s) ; t � 0 ; (5.25)where 
 = a � Rjxj�1 x�(dx); i.e. L(t) is the independent sum of a drift term, a Brownian
omponent and a pure jump part.We return to model (5.22) with L having 
hara
teristi
 triplet (a; �0�; �), where a is a d-dimensional ve
tor, � = diag(�1; : : : ; �d) is a d-dimensional diagonal matrix and � is the L�evymeasure, whi
h 
orresponds to the produ
t measure of the independent 
omponents of L onRd . This means that e.g. for d = 2 and a re
tangle A = (a; b℄ � (
; d℄ � R2 the L�evy measure�(A) = �1((a; b℄) + �2((
; d℄), where �i is the L�evy measure of Li for i = 1; 2. The diagonalmatrix � means that the d-dimensional Wiener pro
ess W has independent 
omponents withdi�erent varian
es possible. This allows for di�erent s
aling fa
tors in the Wiener pro
esses andthe non-Gaussian 
omponents; moreover, if some �i = 0 the model allows for L�evy pro
esseswithout Gaussian 
omponent as asset pri
e models.In order to derive the wealth pro
ess of a portfolio we need the 
orresponding SDE. By Itô'sformula (see e.g. Protter [73℄, Pi, i = 1; : : : ; d, is the solution to the SDEdPi(t) = Pi(t�)(bidt+ dbLi(t))= Pi(t�)0��bi + 12 dXj=1(�ij�j)2�dt+ dXj=1 �ij(dLj(t)��Lj(t)) (5.26)+ exp� dXj=1 �ij�Lj(t)�� 11A ; t > 0 ; Pi(0) = pi :Remark 5.14. (i) Note the similarity but also the di�eren
e to the geometri
 Brownian motionmodel (5.1). Again the Wiener pro
ess introdu
es an Itô term in the drift 
omponent of theSDE. However, there is a main 
hange in the jumps of the L�evy pro
esses. First note that,be
ause of the independen
e, jumps of the di�erent pro
esses L1; : : : ; Ld o

ur at di�erent times(see Sato [81℄, Exer
ise E12.10 on p. 67). Then every jump of one of the original pro
esses isrepla
ed: a jump of size Pdj=1 �ij�Lj is repla
ed by a jump of size exp(Pdj=1 �ij�Lj)� 1.47



(ii) Note also that bLi is su
h thatexp� dXj=1 �ijLj� = E(bLi) ; i = 1; : : : ; d ;where E denotes the sto
hasti
 exponential of a pro
ess. �We shall use the following lemma whi
h relates the 
hara
teristi
 triplet of an exponential L�evypro
ess and its sto
hasti
 exponential in R .Lemma 5.15. (Goll and Kallsen [43℄)If L is a real-valued L�evy pro
ess with 
hara
teristi
 triplet (a; �; �), then also bL de�ned byeL = E(bL) is a L�evy pro
ess with 
hara
teristi
 triplet (ba; b�; b�) given byba� a = 12�2 + Z �(ex � 1)1f(jex�1j<1g � x1fjxj<1g��(dx)b� = �b�(�) = �(fx 2 R : ex � 1 2 �g) for any Borel set � � R� .As in the Bla
k-S
holes model before, we restri
t ourselves to 
onstant portfolios; i.e. �(t) = �,t 2 [0; T ℄, for some �xed planning horizon T . In order to avoid negative wealth we require that� 2 [0; 1℄d and �01 � 1. Denoting by (X�(t))t�0 the wealth pro
ess, it follows the dynami
dX�(t) = X�(t�)�((1 � �01)r + �0b)dt+ �0dbL(t)� ; t > 0 ; X�(0) = x ;where x 2 R denotes the initial 
apital of the investor.Using Itô's formula, this SDE has solutionX�(t) = x exp((r + �0(b� r1))t)E(�0bL(t)) ; t � 0 : (5.27)One important 
onsequen
e of this represenation is the fa
t that a jump �L(t) is transformedinto a jump �X�(t) = ln(1 + �0(e��L(t) � 1)) > ln(1 � �01) and hen
e we also require for theportfolio that �01 � 1.From (5.26) it is 
lear that (X�(t))t�0 
annot have a ni
e and simple representation as in the
ase of geometri
 Brownian motion; see (5.2). In any 
ase, (X�(t))t�0 is again an exponentialL�evy pro
ess and we 
al
ulate the 
hara
teristi
 triplet of its logarithm.Lemma 5.16. Consider model (5.22) with L�evy pro
ess L and 
hara
teristi
 triplet (a; �; �).De�ne for the d� d-matrix �� the ve
tor [��℄2 with 
omponents[��℄2i = dXj=1(�ij�j)2 ; i = 1; : : : ; d :The pro
ess (lnX�(t))t�0 is a L�evy pro
ess with triplet (aX ; �X ; �X) given byaX = r + �0(b� r1 + [��℄2=2 + �a)� j�0��j2=2+ZRd � ln(1 + �0(e�x � 1))1fj ln(1+�0(e�x�1))j�1g � �0�x1fjxj�1g��(dx) ;�X = j�0��j ;�X(A) = �(fx 2 Rd : ln(1 + �0(e�x � 1)) 2 Ag) for any Borel set A � R� :48



In the �nite variation 
ase we obtainlnE(�0bL(t)) = 
Xt+ �0��W (t) + X0<s�t ln�1 + dXi=1 �i�bLi(s)�= 
Xt+ �0��W (t) + X0<s�t ln �1 + dXi=1 �i� exp( dXj=1 �ij�Lj(s))� 1�� ; t � 0 ;where 
X = �0(�
 + [��℄2=2) � j�0��j2=2 ;and 
 = a� Rjxj�1 x�(dx) as in (5.25).By Lemma 5.16 lnX�(t) has 
hara
teristi
 fun
tion E exp(is lnX�(t)) = exp(t X(s)), s 2 R.If it 
an be analyti
ally extended around s = 0 in C , then by Theorem 25.17 in Sato [81℄ weobtain for all k 2 N E[(X�(t))k℄ = exp(t	X(�ik)) ; t � 0 : (5.28)In parti
ular, E exp(s lnX�(t)) = E[(X�(t))s℄ < 1 for one and hen
e all t > 0 if and only ifRjxj>1 esx�X(dx) <1.Proposition 5.17. Let L = (L1; : : : ; Ld) be a L�evy pro
ess with independent 
omponents andassume that for all j = 1; : : : ; d the rv Lj(1) has �nite moment generating fun
tion bfj su
h thatbfj(�ij) = E exp(�ijLj(1)) <1 for i; j = 1; : : : ; d. Denotebf(�) := E exp(�L(1)) = �E exp� dXj=1 �1jLj(1)�; : : : ; E exp� dXj=1 �djLj(1)�� : (5.29)Let X�(t) be as in equation (5.27). ThenE [X�(t)℄ = x exp�t�r + �0�b� r1 + ln bf(�)��� ;var(X�(t)) = x2 exp�2t�r + �0�b� r1 + ln bf(�)��� �exp(t�0A�)� 1�where A is a d� d-matrix with 
omponentsAij = E exp dXl=1(�il + �jl)Ll(1)!�E exp dXl=1 �ilLl(1)!�E exp dXl=1 �jlLl(1)! ; 1 � i; j � d :Proof. Formula (5.28) redu
es for k = 1 and k = 2 somewhat, giving together with theexpression of �X in terms of � of Lemma 5.16,E [X�(t)℄ = x exp�t�r + �0�b� r1 + 12 [��℄2 + �a+ZRd(e�x � 1� �x1fjxj<1g)�(dx)��� ;var (X�(t)) = x2 exp�2t�r + �0�b� r1 + 12[��℄2 + �a+ ZRd(e�x � 1� �x1fjxj<1g)�(dx)�����exp�t�j�0��j2 + ZRd(�0(e�x � 1))2�(dx)��� 1� :49



For i = 1; : : : ; d denote by ei the i-th unit ve
tor in Rd . Then the i-th 
omponent of (5.29) isobtained byE exp( dXl=1 �ilLl(1)) = exp((�a+ [��℄2=2 + Z (e�x � 1� �x1fjxj<1g)�(dx))i) :whi
h 
orresponds to the i-th 
omponent of ln(E exp(�L(1))). The formula for the varian
e isobtained analogously.Remark 5.18. Note that for l = 1; : : : ; d (i = p�1)ln(E exp( dXj=1 �ljLj(1))) = dXj=1 ln bfj(�lj) = lnE[E(bLl)(1)℄ = dXj=1	(�i�lj) :This implies in parti
ular EE(�0bL(t)) = (Qdl=1(E[E(bLl(t))℄)�l), �5.3 Portfolio optimizationWe 
onsider now the portfolio optimization problem using the Capital-at-Risk as risk measurein the more general setting of L�evy pro
esses. The de�nition of the CaR from De�nition 5.1adapted to the more general situation reads as follows.De�nition 5.19. [Capital-at-Risk℄Let x be the initial 
apital and T a given planning horizon. Let z� be the �-quantile of E(�0bL(T ))for some portfolio � 2 Rd and X�(T ) the 
orresponding terminal wealth. Then the VaR of X�(T )is given by VaR(x; �; T ) = inffz 2 R : P (X�(T ) � z) � �g= xz� exp((�0(b� r1) + r)T )and we de�ne CaR(x; �; T ) = x exp(rT )�VaR(x; �; T )= x exp(rT )(1� z� exp(�0(b� r1)T ))the Capital-at-Risk of the portfolio � (with initial 
apital x and planning horizon T ). �We 
onsider now the following optimization problem.max�2[0;1℄d ; �01�1 E[X�(T )℄ subje
t to CaR(x; �; T ) � C :In general, quantiles of L�evy pro
esses 
annot be 
al
ulated expli
itly. Usually, the df of X�(T )is not known expli
itly. At �rst sight there are various possibilities for approximations and wedis
uss their appli
ability for quantile estimation below.For simpli
ity we restri
t ourselves to d = 1, i.e. the portfolio 
onsists of the bond and one riskyasset, whi
h is modelled by the exponential L�evy pro
essP (t) = p exp(bt+ L(t)) t � 0 ;50



where L has 
hara
teristi
 fun
tion EeisL(t) = et	(s), s 2 R. We set �1 = � and X�(t) redu
esto X�(t) = x exp((r + �(b� r))t)E(�bL(t)) ; t � 0 ; X�(t) = x ;where (lnE(�bL(t)))t�0 is a L�evy pro
ess with 
hara
teristi
 triplet (aX ; �X ; �X) given byaX = �(a� 12(1� �)�2) + Z � ln(1 + �(ex � 1))1(j ln(1 + �(ex � 1))j � 1)� �x1(jxj � 1)��(dx) ;�X = �� ;�X(A) = �(fx 2 R : ln(1 + �(ex � 1)) 2 Ag) for any Borel set A � R� :Setting 	(�si) = lnEesL(1) for s 2 R su
h that the moment generating fun
tion is �nite, alsothe existing moments redu
e for t � 0 toE[X�(t)℄ = x exp(t(r + �(b� r +	(�i)))var(X�(t)) = x exp(2t((r + �(b� r +	(�i))) �exp(�2t(	(�2i)� 2	(�i))) � 1�We obtain in the 
ase of a jump part of �nite variation for t � 0,E [X�(t)℄ = x exp((r + �(b� r + 12�2 + 
 + b�))t) ; (5.30)var (X�(t)) = x2 exp�2t�r + �(b� r + 
 + b�+ 12�2��� �exp ��2t(�2 + b�2 � 2b�)�� 1� ; (5.31)where b� = R (ex � 1)�(dx), b�2 = R (e2x � 1)�(dx), and 
 = a� Rjxj<1 x�(dx) .In the following we dis
uss some estimation methods for the CaR, whi
h means that we have toestimate a small quantile of E(�0bL(T )); see De�nition 5.19.Simulation methods of L�evy pro
esses are often based on in�nite series representations; seeRosinski [79℄ and referen
es therein. In prin
iple, su
h methods 
an be applied here to simulateindependent 
opies of X�(T ) and estimate the quantile by its empiri
al 
ounterpart. Su
h meth-ods are based on the L�evy measure �X , whi
h we derived in Lemma 5.16. There are, however,two serious drawba
ks. The �rst is that low and high quantiles are even in straightforwardmodels not well estimated by their empiri
al 
ounterparts; the se
ond is that the in�nite serieshas to be trun
ated, whi
h obviously is another sour
e of ina

ura
y.We invoke instead an idea used for instan
e by Bondesson [14℄ and Rydberg [80℄ for simulationpurposes and made mathemati
ally pre
ise by Asmussen and Rosinski [2℄. Before we apply theirresult to approximate a low quantile as the VaR above we explain �rst the idea. The intuitionbehind is that small jumps (< ") may be approximated by Brownian motion, whereas large ones(� ") 
onstitute a 
ompound Poisson pro
ess N ". This normal approximation works for various,but not for all models. In parti
ular, it fails for the exponential varian
e-gamma model, whi
hhas be
ome an important model also in pra
ti
e. We formulate therefore a more general result.For a L�evy pro
ess with representation (5.24) we write for small " > 0,L(t) = �(")t+ �W (t) +N "(t) + Z t0 Zjxj<" x(M(ds; dx) � ds�(dx))� �(")t+ �W (t) +N "(t) + �(")V (t) ; t � 0 ; (5.32)51



where V is some (hopefully simple) L�evy pro
ess and�2(") = Zjxj<" x2�(dx) ; (5.33)�(") = a� Z"�jxj�1 x�(dx) ; (5.34)N "(t) = Xs�t �L(s)1fj�L(s)j�"g : (5.35)The approximation (5.32) 
an be made pre
ise. It is a 
onsequen
e of a fun
tional 
entral limittheorem, provided that for "! 0�(")�1 Z t0 Zjxj<" x(M(ds; dx) � ds�(dx)) = �(")�1(L(t)� L"(t)) d! W 0(t) ; t � 0 ; (5.36)where L"(t) = �(")t+ �W (t) +N"(t) ; t � 0 : (5.37)We denote by d! weak 
onvergen
e in D[0;1) with the supremum norm uniformly on 
ompa
ta;see Pollard [72℄.Sin
e the Brownian 
omponent and the jump 
omponent of a L�evy pro
ess are independent,(5.36) justi�es approximation in distribution (5.32).We want to invoke this result to approximate quantiles of E(�0bL(T )). We do this in two steps:�rstly, we approximate E(�0bL(T )), se
ondly, we use that 
onvergen
e of dfs implies also 
onver-gen
e of their generalized inverses. This gives the approximation of the quantiles.Theorem 5.20. [Emmer and Kl�uppelberg [34℄℄Let Y be any L�evy pro
ess with L�evy measure �. Let E (exp(Y (�)) = Z(�) be su
h that EZ(�) =expY (�) with 
hara
teristi
 triplets given in Lemma 5.15. Let furthermore, �(�) be de�ned as in(5.33), and Y" and Z" as L" in (5.37), respe
tively.Let V be a L�evy pro
ess. Equivalent are for "! 0�(")�1(Y (t)� Y"(t)) d! V (t) ; t � 0 ; (5.38)(��("))�1 (lnE(�Z(t))� lnE(�Z"(t))) d! V (t) ; t � 0 : (5.39)For the proof we need the following theorem.Theorem 5.21. Let Z"; " > 0, be L�evy pro
esses without Brownian 
omponent and Y " =lnE(Z") their logarithmi
 sto
hasti
 exponentials with 
hara
teristi
 triplets (aZ ; �Z ; �Z) and(aY ; �Y ; �Y ) as de�ned in Lemma 5.15. Let g : R ! R+ with g(") ! 0 as " ! 0 and V someL�evy pro
ess. Then equivalent are as "! 0,Z"(t)g(") d! V (t) ; t � 0 ;Y "(t)g(") d! V (t) ; t � 0 :52



Proof of (5.38) , (5.39). Setting g(") := �(") and Y " := Y � Y" in Theorem 5.21 we obtainthat (5.38) holds if and only if�(")�1E (exp(Y (t)� Y"(t))) d! W (t); t � 0 : (5.40)Applying Theorem 5.21 to g(") := ��(") and Z" := �E (exp(Y (t)� Y"(t))) leads to the equiv-alen
e of (5.40) and(��("))�1 lnE(�E (exp(Y (t)� Y"(t)))) d! W (t); t � 0:The identitylnE(�E (exp(Y (t)� Y"(t)))) = lnE(�E (exp(Y (t)))) � lnE(�E (exp Y"(t)))); t � 0 ;(5.41)whi
h 
an be proven by 
al
ulating all three logarithmi
 exponentials by Itô's formula (see Em-mer and Kl�uppelberg [34℄), leads to the equivalen
e with (5.39). �In the �nite variation 
ase (5.36), i.e. (5.38) 
an be rewritten to�(")�10� X0<s�t�L(s)I(j�L(s)j < ")�E 24 X0<s�t�L(s)I(j�L(s)j < ")351A d! V (t) ; t � 0 ;whi
h shows immediately the 
onne
tion to the 
lassi
al 
entral limit theorem.We apply (5.39) and (5.41) to approximate lnE(�bL) for � 2 (0; 1℄ as follows.lnE(�E (exp(L(t)))) � lnE(�E (L"(t)))) + ��(")V (t) ; t � 0 ;and hen
e we obtainlnE(�E (exp(L(t)))) � 
"�t+ ��W (t) +M "�(t) + ��(")V (t) ; t � 0 ;where 
"� = �(�(") + (1� �)�2=2) ;M "�(t) = Xs�t ln(1 + �(exp(�L(s)1fj�L(s)j>"g)� 1)) ;i.e. M "� is a 
ompound Poisson pro
ess with jump measure�M"�(�) = �L(fx : ln(1 + �(ex � 1)) 2 �gn(�"; "))for any Borel set � � R� :By Proposition 0.1 of Resni
k [75℄ we obtain the 
orresponding approximation for the �-quantilez� of E(�bL(T ).Proposition 5.22. With the quantities as de�ned above we obtainz� � z"�(�) = inffz 2 R : P (
"�T + ��W (T ) +M "�(T ) + ��L(")V (T ) � ln z) � �g ;giving the following approximationsVaR(x; �; T ) � xz"�(�) exp((�(b� r) + r)T ) ;CaR(x; �; T ) � xerT �1� z"�(�)e�(b�r)T� :53



The following 
orollary 
hara
terises the normal approximation.Corollary 5.23. [Asmussen and Rosinski [2℄℄(a) V is standard Brownian motion if and only if�(h�(") ^ ") � �(") for ea
h h > 0 : (5.42)(b) Condition (5.42) holds if lim"#0 �(")=" =1 :(
) If the L�evy measure has no atoms in a neighbourhood of 0, then 
ondition (5.42) is equiv-alent to lim"#0 �(")=" =1 :Provided the above 
ondition is satis�ed we have redu
ed the problem of estimating a quantile ofa 
ompli
ated L�evy pro
ess to the estimation of a quantile of the sum of the 
ompound Poissonrv M "�(T ) and the normal rv fW (T ) := �0(�2 + �2L("))1=2W (T ). We 
al
ulate the density ofM "�(T ) +fW (T ) using the Fast Fourier Transform method, hen
eforth abbreviated as FFT. Byindependen
e, we have for the 
hara
teristi
 fun
tion of M "�(T ) +fW (T )�(u) = �M"�(T )(u)�fW (T )(u) ; u 2 R : (5.43)Denote by hM"� the L�evy density of M "�, whi
h we assume to exist, then we obtain�M"�(T )(u) = exp(T�M"�(R)(�Y (u)� 1)) ; u 2 R ;where �Y (u) = 1�M"�(R) Z eiuxhM"�(x)dx ; u 2 R : (5.44)Furthermore, by normality,�fW (T )(u) = exp(�Tu2�2(�2 + �2L("))) ; u 2 R :We approximate the integral in (5.44) by the trapezoid rule, 
hoosing a number n (a power of 2)of intervals and a step size �x. Set g = hM"�=�M"� (R). We trun
ate the integral �Y and obtainZ 1�1 eiuxg(x)dx � Z (n=2�1)�x�(n=2)�x eiuxg(x)dx� n=2�1)Xk=�(n=2) eiuk�xg((k�x)�x= n�1Xk=0 eiu(k�n=2)�xg((k � n=2)�x)�x= �xe�iun�x=2 n�1Xk=0 eiuk�xg((k � n=2)�x) :For gk := g((k � n=2)�x), k = 0; : : : ; n � 1, the sum is the dis
rete Fourier transform ofthe 
omplex numbers gk and 
an be 
al
ulated by the FFT algorithm for uk = 2�k=(n�x),k = 0; : : : ; n � 1, simultaneously (see e.g. Brigham [20℄, Chapter 10). This results in anapproximation for � in (5.43). By the inverse FFT we obtain the density of M "�(T ) +fW (T ).54



Example 5.24. [Exponential Brownian motion with jumps℄Here the L�evy pro
ess is the sum of a Brownian motion with drift (�W (t) + 
t)t�0, and a
ompound Poisson pro
ess (L(t))t�0, with Poisson intensity 
 and p as distribution of the jumpheights (Yi)i2N . For illustratrive purpose we restri
t this example to one 
ompound Poissonpro
ess, we 
ould as well take several di�erent ones, see e.g. [35℄. The drift 
 = �12�2 � b� is
hosen su
h that it 
ompensates the jumps. The L�evy measure is �(dx) = 
p(dx) and hen
eb� = 
(bg(1) � 1) and b�2 = 
(bg(2) � 1), where g is the moment generating fun
tion of Y1, whi
hwe assume to exist at the required points. By (5.30) and (5.31) we obtain for t � 0X�(t) = x exp�t�r + �(b� r)� �b�� 12�2�2�+ ��W (t)�N(t)Yi=1 (1 + �(eYi � 1)) ;E[X�(t)℄ = x exp(t(r + �(b� r))) ;var(X�(t)) = x2 exp(2t(r + �(b� r))) �exp(�2t(�2 + 
(bg(2)� 2bg(1) + 1))) � 1� :Note that for 
 = 0 the model redu
es to exponential Brownian motion; i.e.X�(t) = x exp�t�r + �(b� r)� 12�2�2�+ ��W (t)� :On the other hand, if � = 0 the model redu
es to exponential 
ompound Poisson pro
ess; i.e.X�(t) = x exp �t�r + �(b� r)� �b���N(t)Yi=1 (1 + �(eYi � 1)) :Example 5.25. [Exponential normal inverse Gaussian (NIG) L�evy pro
ess℄This normal mixture model has been suggested by Barndor�-Nielsen [5, 4℄; see also Eberleinand 
ollaborators [28, 29, 30℄ It has the representationL(t) = �t+ ��2(t) + �(t)" ; t � 0 ;where �; � 2 R, " is a standardnormal rv and (�2(t))t�0 has inverse Gaussian in
rements. Thepro
ess (L(t))t�0 is uniquely determined by the distribution of the in
rement L(1) whi
h is NIG(see Barndor�-Nielsen [5℄). This means that L(1) d= N(� + �Z;Z), where N(a; b) denotes anormal rv with mean a and varian
e b and Z is inverse Gauss distributed; more pre
isely, thedensity of L(1) is given bynig(x; �; �; �; Æ) := �� exp�Æp�2 � �2 + �(x� �)� K1(Æ�g(x � �))g(x� �) ; x 2 R ;where � � j�j � 0, Æ > 0, � 2 R, g(x) = pÆ2 + x2 andK1(s) = 12 Z 10 exp�� 12s(x+ x�1)�dxis the modi�ed Bessel fun
tion of the third kind. The parameter � is a steepness parameter,i.e. for larger � we get less large and small jumps and more jumps of middle height, Æ is a s
aleparameter, � is a symmetry parameter and � a lo
ation parameter. For � = � = 0 (symmetryaround 0) the 
hara
teristi
 triplet of a NIG L�evy pro
ess is given by (0; 0; �) with�(dx) = Æ�� jxj�1K1(�jxj)dx ; x 2 R� :55



We 
an 
al
ulate b� and b�2 via the moment generating fun
tion of L(1), whi
h is for the NIGdistribution given by E exp(sL(1)) = exp(Æ(� �p�2 � s2)) ; jsj < � ;(see e.g. Raible [74℄, Example 1.6) and hen
e be
ause of symmetry,b� = Æ(� �p�2 � 1) ;b�2 = Æ(� �p�2 � 4) :Plugging these results into (5.30) and (5.31), and 
hoosing bnig = bBS � Æ(� � p�2 � 1) (bBSis the quantity b from Example 5.24, su
h that the expe
tation of an asset in the NIG model isthe same as for the exponential Brownian motion, we obtain for t � 0,X�(t) = x exp(t(r + �(bBS � r � Æ(� �p�2 � 1)))) Y0<s�t �1 + �(e�L(s) � 1)� ;E [X�(t)℄ = x exp(t(r + �(bBS � r)) ;var (X�(t)) = x2 exp(2t(�(bBS � r)) + r))�exp�Æ�2t(2p�2 � 1� ��p�2 � 4)�� 1� :By Corollary 5.23, for the exponential normal inverse Gaussian L�evy pro
ess the normal ap-proximation for small jumps is allowed sin
e �2(") � (2Æ=�)" as "! 0For an estimate of the �-quantile we invoke Proposition 5.22 and use FFT.Figures 5.26 show sample paths a geometri
 NIG-L�evy pro
ess with 
ertain parameter values.
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Figure 5.26. Ten sample paths of the exponential NIG L�evy pro
ess with � = 8 and Æ = 0:32(left) and with � = 2 and Æ = 0:08 (right), its expe
tation E(L(T )) and expe
tation�standarddeviation for x = 1000, b = 0:1, and r = 0:05.Example 5.27. [Exponential varian
e gamma (VG) model℄This normal mixture model has been suggested by Madan and Seneta [64℄, its non-symmetri
version 
an be found in Madan, Carr and Chang [63℄. An interesting empiri
al investigation hasbeen 
ondu
ted by Carr et al. [22℄. The non-symmetri
 model is de�ned as follows.L(t) = �t+ ��2(t) + �(t)" ; t � 0 ;56



where �; � 2 R, " is a standardnormal rv and (�2(t))t�0 has gamma in
rements, more pre
isely,�2(s) d= �(�s; �) for parameters � > 0 and � > 0; i.e. it has densityh(x) = x�s�1�(�s)��s e�x=� ; x > 0 :The 
hara
teristi
 fun
tion of L(1) is given byE exp(isL(1)) = exp(is�t)(1� is��+ s2�=2)�t s 2 R :The L�evy pro
ess L is a pure jump pro
ess with L�evy density�(dx) = �jxj exp �r2� + �2 jxj+ �x! dx ; x 2 R� :We obtain as beforeX�(t) = x exp(t(r + �(b� r + �)))Ys�t(1 + �(e�L(s) � 1)�E[X�(t)℄ = x(1� ��� �=2)���t exp(t(r + �(b� r + �)))var(X�(t)) = x2(1� ��� �=2)�2��t exp(2t(r + �(b� r + �)))� �(1� ��� �=2)21� 2��� 2� ���2t � 1! :For our �gures we 
hoose � = � ln(1 + ��� �=2) and b = bBS su
h that E[X�(t)℄ = x exp((r +�(bBS�r))t). In order to �nd an approximation for the VaR we 
al
ulate �2(") � �"2 as "! 0.Sin
e its L�evy measure has no atoms in a neighbourhood of 0, by Corollary 5.23, the normalapproximation for small jumps is not allowed.However, there is another limit pro
ess to allow for approximation of the small jumps: for "! 0�(")�1(L(t)� L"(t)) d! V (t) ; t � 0 ;where V is a L�evy pro
ess with 
hara
teristi
 triplet (0; 0; �V ) where the L�evy measure �V hasdensity �V (dv) = (�=v)1(�1=p�;1=p�)(v)dv. This means that the following approximation isvalid z� � z"�(�) = inffz 2 R : P (
"�T +M "� + ��(")V (T ) � ln z) � �g ;giving again approximations as in Proposition 5.22.Remark 5.30. When we want to perform a portfolio optimization for the di�erent exponentialL�evy models as pri
e pro
esses, then 
ertain stru
tures 
an be exploited. Note e.g. that theexpe
ted wealth pro
ess is in
reasing in �; hen
e the optimal portfolio is always the largest �su
h that the risk bound is satis�ed. For L�evy pro
esses additionally � � 1 has to be satis�ed.Su
h � 
an always easily be found by a simple numeri
al iteration pro
edure.Next note that to make results 
omparable we have 
hosen all mean portfolio pro
esses equal.(a) Mean-varian
e optimization: Sin
e NIG and VG models have so many parameters we 
analways 
hoose them so that all varian
es are equal in the di�erent examples. Then, of 
ourse,57
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Figure 5.28. Density of L(1) for the NIG model with parameters � = 2, Æ = 0:08, � = � = 0,x = 1000, b = 0:1 and r = 0:05. The normal density with the same varian
e 0.04 is plotted for
omparison. Moreover, the respe
tive 1% quantiles (left verti
al lines) and 5%-quantiles (ri
htverti
al lines) are plotted. All solid lines 
orrespond to the NIG model, all dotted ones to thenormal model.
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Figure 5.29. Ten sample paths of the exponential VG L�evy pro
ess with � = 0:1, Æ = 0, � = 0:35and � = �0:019 (left) and with � = 0:2, Æ = 0, � = 0:2 and � = �0:022 (right), its expe
tationE[L(T )℄ and expe
tation�standard deviation for x = 1000, b = 0:1, and r = 0:05.the mean-varian
e optimization problem always leads to the same result.(
) Mean-CaR optimization: Here the shape of the distribution in the left tail enters; see Fig-ure 5.28. The heavier the tail at the 
orresponding �-quantile, the higher the risk, i.e. the more
autious the investment � into the risky sto
k.For more details see Emmer and Kl�uppelberg [34℄Referen
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