
Risk Management with Extreme Value TheoryClaudia Kl�uppelbergCenter of Mathematial SienesMunih University of TehnologyD-80290 MunihGermanyemail: klu�mathematik.tu-muenhen.dehttp://www.ma.tum.de/stat/Marh 27, 20021 IntrodutionIn today's �nanial world, Value-at-Risk has beome the benhmark risk measure. Following theBasle Aord on Market Risk (1988,1995,1996) every bank in more than 100 ountries aroundthe world has to alulate its risk exposure for every individual trading desk. The standardmethod presribes: estimate the p-quantile of the pro�t/loss distribution for the next 10 daysand p = 1% (or p = 5%) based on observations of at least 1 year (220 trading days). Standardmodel is the normal model. Finally, multiply the estimated quantile by 3. This number isnegative and its modulus is alled Value-at-Risk (VaR). The fator 3 is supposed to aountfor ertain observed e�ets, also due to the model risk; it is based on baktesting proeduresand an be inreased by the regulatory authorities, if the baktesting proves the fator 3 to beinsuÆient. The importane of VaR is undebated sine regulators aept this model as a basisfor setting apital requirements for market risk exposure. A textbook treatment of VaR is givenin Joriot [50℄. Interesting artiles on risk management are olleted in Embrehts [32℄.There were always disussions about the lassial risk measure, whih has traditionally beenthe variane, and alternatives have been suggested. They are typially based on the notion ofdownside risk onepts suh as lower partial moments. The lower partial moment of order n isde�ned as LPMn(x) = Z x�1(x� r)ndF (r) ; x 2 R ;where F is the distribution funtion of the portfolio return. Examples an be found in Fish-burn [39℄ or Harlow [47℄ inluding the shortfall probability (n = 0), whih is nothing else butthe VaR. An axiomati approah to risk measures an be found in Artzner et al. [1℄; f. Em-brehts [31℄. For some disussion see also Rootz�en and Kl�uppelberg [77℄.Standard model in the Basle aount is the normal distribution whih has the property that itis sum stable, i.e. for a dynami model we obtainVaR(10 days) = p10VaR(1 day) ;1



and for a multivariate model; i.e. a portfolio with weights wi for asset i and orrelation �ijbetween assets i and j, i; j = 1; : : : ; q,VaR(portfolio) =vuut qXi;j=1�ijwiwjVaRiVaRj :However, the obvious disadvantage of the normal model is that it is wrong and an dangerouslyunderestimate the risk. This is even visible in Figures 1.1 and 1.2.This is the starting point of the present paper. Taking also extreme utuations of �nanialdata into aount we want to answer the following questions:{ How does one estimate VaR from �nanial time series under realisti model assumptions?{ What is the onsequene of VaR as a risk measure based on a low quantile for portfoliooptimization?Statistial estimation of risk and portfolio optimization are two important issues in risk manage-ment, inuened by the hoie of risk measure. Priing of derivatives and hedging of portfoliosare other important issues and the VaR has found its way also to the hedging problem. Ininomplete markets, whih is the setup for all \realisti" priing models, the traditional "hedgewithout risk" (perfet hedge) has been replaed by a "hedge with small remaining risk" (so-alled quantile-hedging); see F�ollmer and Leukert [40℄ and Cvitani and Karatzas [24℄. This is,however, not a topi for this paper.We �rst turn to the risk estimation problem.In the simplest ase, it is assumed that the only soure of risk is the prie of the portfolioitself, i.e. the risk is modelled in terms of prie hanges, whih are independent and identiallydistributed (iid), the underlying planning horizon is �t = 1 (1 day), and we estimate just thequantile (without multiplying by 3).
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30/08/95 30/12/95 30/04/96Figure 1.1. DAX losing pries during 29/8/95{26/8/96 (250 data points in total). The or-responding di�erenes, whih are the daily prie hanges (returns), are plotted in the right-handgraph. It is obvious that the returns are not symmetri and that there are more and muh morepronouned peaks (in partiular negative ones) than one would expet from Gaussian data.Generally speaking, estimation of a small quantile is not an easy task, as one wants to makeinferene about the extremal behaviour of a portfolio, i.e. in an area of the sample where thereis only a very small amount of data. Furthermore (and this is important to note), extrapolation2
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Figure 1.2. Histogram of the daily prie hanges of the DAX losing pries with �tted normaldistribution. Also �tted is a GPD distribution to the left hand tail. The orresponding quantilesare estimated by the normal quantile, the GPD quantile and the empirial quantile.even beyond the range of the data might be wanted, i.e. statements about an area where thereare no observations at all.Under the aronym let the tails speak for themselves, statistial methods have been developedwhih are based only on that part of the sample whih arries the information about the extremalbehaviour, i.e. only the smallest or largest sample values. This method is not solely based onthe data but inludes a probabilisti argument onerning the behaviour of the extreme samplevalues. This leads to a lass of semiparametri distributions whih an be regarded as plausible.As a basi referene to modelling and quantifying of extreme events we refer to Embrehts,Kl�uppelberg and Mikosh [33℄, heneforth abbreviated by EKM. The DAX data example, whihwe analyse in Setion 2 an be found in greater detail in Emmer, Kl�uppelberg and Tr�ustedt [36℄.Unfortunately, most �nanial time series are not independent, but exhibit some very deliatetemporal dependene struture, whih is often aptured by Markovian volatility models. Conse-quently, over the last deades a variety of stohasti models have been suggested as appropriatemodels for �nanial produts.In a ontinuous time setting the dynamis of a prie or an interest rate proess is often modelledas a di�usion proess given by a stohasti di�erential equation (SDE)dXt = �(Xt)dt+ �(Xt)dWt ; t > 0 ; X0 = x ; (1.1)where W is standard Brownian motion, � 2 R is the drift term and � > 0 is the di�usionoeÆient or volatility. Two standard models in �nane are of the above form:(i) The Blak-Sholes model: (Xt)t�0 models the prie proess of an asset, here �(x) = �x for� 2 R and the volatility �(x) = �x for � > 0. The resulting model for the prie proess isgeometri Brownian motion.(ii) The Vasiek model: the proess (Xt)t�0 models an interest rate, the drift term � is linearand the volatility � > 0 is some onstant.Both models an be onsidered in the framework of Gaussian models, however, as indiatedalready, �nanial data exhibit in general utuations whih annot be modelled by Gaussian3



proesses or simple transformations as in the two standard models above. In priniple there aretwo di�erent remedies for the problem.A �rst onept stiks to Brownian motion as the driving dynami of the proess, but introduesa path-dependent, time-dependent or even stohasti volatility into the model. These modelsare ommonly referred to as volatility models, and inlude di�usions given by the SDE (1.1).We investigate their extremal behaviour in Setion 3.The seond onept replaes the Gaussian driving proess in the Blak-Sholes or Vasiek model(or any other traditional model) by a proess with heavy-tailed marginals as for instane a L�evyproess with non-normal noise. We onsider this approah in Setion 5 in the ontext of portfoliooptimization.A disrete time ounterpart to (1.1) is the following model.Xn = �(Xn�1) + �(Xn�1) "n ; n 2 N ; (1.2)where � is the onditional mean, � the onditional volatility and ("n)n2N are iid rvs with mean0 and variane 1. Examples, also Markovian models of higher order, inlude for instane ARCHand GARCH models, whih have been suessfully applied in eonometris.There is one stylized fat in �nanial data whih models of the form (1.2) an apture in ontrastto linear di�usion models of the form (1.1). This is the property of persistene in volatility. Formany �nanial time series with high sampling frequeny large hanges tend to be followed bylarge hanges, settling down after some time to a more normal behaviour. This observation haslead to models of the form Xn = �n "n ; n 2 N ; (1.3)where the innovations "n are iid rvs with mean zero, and the volatility �n desribes the hangeof (onditional) variane.The autoregressive onditionally heterosedasti (ARCH) models are one of the spei�ations of(1.3). In this ase the onditional variane �2n is a linear funtion of the squared past observations.ARCH(p) models introdued by Engle [37℄ are de�ned by�2n = �0 + pXj=1 �jX2n�j ; �0 > 0 ; �1; : : : ; �p�1 � 0; �p > 0 ; n 2 N ; (1.4)where p is the order of the ARCH proess.There are two natural extensions of this model. Bollerslev [12℄ proposed the so-alled generalizedARCH (GARCH) proesses. The onditional variane �2n is now a linear funtion of past valuesof the proess X2n�j , j = 1; : : : ; p, and past values of the volatility �2n�j, j = 1; : : : ; q. Aninteresting review artile is Bollerslev, Chou and Kroner [13℄, a nie olletion of some of themost inuential artiles on ARCH models is Engle [38℄.The lass of autoregressive (AR) models with ARCH errors introdued by Weiss [89℄ are anotherextension; these models are also alled SETAR-ARCH models (self-exiting autoregressive).They are de�ned by Xn = f(Xn�1; :::;Xn�k) + �n "n; n 2 N ; (1.5)where f is again a linear funtion in its arguments and �n is given by (1.4). This model ombinesthe advantages of an AR model, whih targets more on the onditional mean of Xn (given the4



past), and of an ARCH model, whih onentrates on the onditional variane of Xn (given thepast).The lass of models de�ned by (1.5) embodies various non-linear models. In this paper we fouson the AR(1) proess with ARCH(1) errors, i.e.Xn = �Xn�1 +q� + �X2n�1"n ; n 2 N ;where � 2 R; �; � > 0, ("n)n2N are iid symmetri rvs with variane 1 and X0 is independent of("n)n2N . This Markovian model is analytially tratable and may serve as a prototype for thelarger lass of models (1.5). Note also that this model is of the form (1.2).Two early monographs on extreme value theory for stohasti proesses are Leadbetter, Lindgrenand Rootz�en [62℄, heneforth abbreviated as LLR, and Berman [9℄. They ontain all basi resultson this topi, and it is this soure from whih all spei� results are derived.The only models of the form (1.2), whose extremal behaviour has been analysed in detail arethe ARCH(1) (by de Haan, Resnik, Rootz�en and de Vries [46℄; see also EKM [33℄, Setion 8.4),the GARCH(1,1) (by Mikosh and Staria [69℄), and the AR(1) model with ARCH(1)-errors(by Borkove and Kl�uppelberg [18℄ and Borkove [15, 16℄). The interesting feature of all thesemodels is that they are able to model heavy-tailedness as well as volatility lustering on a highlevel.In Setion 5 we turn to the seond question posed at the beginning. We onsider a portfoliooptimization problem based on the VaR as a risk measure. Traditional portfolio seletion asintrodued by Markowitz [65℄ and Sharpe [82℄ has been based on the variane as risk measure. Inontrast to the variane, the VaR aptures the extreme risk. Consequently, it is to be expetedthat it reats sensitive to large utuations in the data. This is what we investigate here.We onentrate on the Capital-at-Risk (CaR) as a replaement of the variane in portfolioseletion problems. We think of the CaR as the apital reserve in equity to set aside for futurerisk. The CaR of a portfolio is ommonly de�ned as the di�erene between the mean of thepro�t-loss distribution and the VaR. We de�ne the CaR as the di�erene between the meanwealth of the market (given by the riskless investment) and the VaR of our present portfolio;i.e. we onsider the exess loss over the riskless investment.We aim at losed form solutions and an eonomi interpretation of our results. This is why westart in a Gaussian world, represented by a Blak-Sholes market, where the mean-CaR seletionproedure leads to rather expliit solutions for the optimal portfolio. As a �rst di�erene to themean-variane optimization, this approah indeed supports the ommonly reommended marketstrategy that one should always invest in stoks for long-term investment.As prototypes of models to allow for larger utuations than pure Gaussian models, we studyL�evy proesses, whih still have independent and stationary inrements, but these inrements areno longer normally distributed. Suh models have been used as more realisti models for prieproesses by Barndor�-Nielsen and Shephard [8℄, Eberlein and his group (see [27℄ and referenestherein) and Madan and Seneta [64℄; they are meanwhile well understood. The lass of normalmixture models supports the observation that volatility hanges in time. This is in partiularmodeled by the normal inverse Gaussian model and the variane gamma model, whih have alsobeen reognised and applied in the �nanial industry. However, as soon as we move away fromthe Gaussian world, the optimization problem beomes analytially untratable and numerialsolutions are alled for. We present solutions for the normal mixture models mentioned above.5



The data analyses, simulations and �gures presented have been reated with the software S-Plus.Most routines for extreme value analysis are ontained in the software EVIS written by AlexMNeil and an be downloaded from http://www.math.ethz.h/�nane/.2 Starting-kit for extreme value analysisLet X;X1; : : : ;Xn be independent and identially distributed (iid) random variables (rvs), rep-resenting �nanial losses, with distribution funtion (df) F (we write X d= F ).The lassial entral limit theorem states that for iid rvs suh that EX = � and varX = �2 <1the partial sums Sn = X1 + � � �+Xn, n 2 N, satisfylimn!1P �(Sn � n�)=pn�2 � x� = N(x) ; x 2 R ;where N is the standard normal df. This result, whih holds in a muh wider ontext than justiid data, supports the normal law for data whih an be interpreted as sum or mean of manysmall e�ets, whose variane ontributions are asymptotially neglible.Consequently, the normal model is ertainly questionable, whenever extreme risk has to bequanti�ed. Empirial investigations of �nanial data show quite learly that the large values, inpartiular the large negative values, are muh more pronouned than ould be explained by anormal model.In the following we present the basi notions and ideas of extreme value theory for iid data. Allthis and muh more an be found in EKM [33℄; for more details on the DAX example we referto Emmer, Kl�uppelberg and Tr�ustedt [36℄.2.1 Sample maximaThe simplest extreme objet of a sample is the sample maximum. De�neM1 = X1 ; Mn = max(X1; : : : ;Xn) ; n > 1 :Then P (Mn � x) = F n(x) ; x 2 R ;and Mn " xF as n!1 almost surely, where xF = supfx 2 R : F (x) < 1g � 1 is the rightendpoint of F .In most ases Mn an be normalized suh that it onverges to a limit rv, whih together withthe normalizing onstants determines the asymptoti behaviour of the sample maxima. Thefollowing is the analogue of the CLT for maxima.Theorem 2.1. [Fisher-Tippett theorem℄Suppose we an �nd sequenes of real numbers an > 0 and bn 2 R suh thatlimn!1P ((Mn � bn)=an � x) = limn!1F n(anx+ bn � x) = H(x) ; x 2 R ; (2.1)for some non-degenerate df Q (we write F 2 MDA(Q)). Then Q is one of the following threeextreme value dfs: 6



� Freh�et ��(x) = � 0; x � 0;exp (�x��) ; x > 0; for � > 0:� Gumbel �(x) = exp (�e�x) ; x 2 R :� Weibull 	�(x) = � exp (� (�x)�) ; x � 0;1; x > 0; for � > 0 :The limit distribution Q is unique up to aÆne transformations; we say it is of the type of Q.All ommonly enountered ontinuous df are in MDA(Q) for some extreme value df Q; seeEKM [33℄, pp. 153-157. Here are three examples.Example 2.2. (a) Exponential distribution: F (x) = 1 � exp(��x) ; x � 0 ; � > 0, is inMDA(�) with n = 1=�, dn = lnn=�.(b) Pareto distribution: F (x) = 1 � ( ��+x)� ; x � 0 ; �� > 0, is in MDA(��) with n =(n=�)1=�, dn = 0.() Uniform distribution: F (x) = x ; x 2 (0; 1), is in MDA(	1) with n = 1=n, dn = xF = 1.Taking logarithms and invoking a Taylor expansion in (2.1) we obtainF 2 MDA(H) () limn!1nF (nx+ dn) = � lnH(x) =: �(x) ; x 2 R : (2.2)This MDA ondition is a version of Poisson's limit theorem. It an be embedded in the moregeneral theory of point proesses as follows.For iid rvs X;X1; : : : ;Xn and threshold un we haveardfi : Xi > un; i = 1; : : : ; ng d= Bin(n; P (X > un)) :De�ne for n 2 N Nn(B) = nXi=1 "i=n (B) IfXi > ung ; B 2 B(0; 1℄ ;where B(0; 1℄ denotes the Borel �-algebra on (0; 1℄ and " the Dira measure; i.e. "i=n(B) = 1 ifi=n 2 B and 0 else. Then Nn is the time normalized point proess of exeedanes.The above equivalene (2.2) extends to the following result.Proposition 2.3. Suppose that (Xn)n2N is a sequene of iid rvs with ommon df F . Let (un)n2Nbe threshold values tending to xF as n!1. Thenlimn!1nP (X > un) = � 2 (0;1) () Nn d! N Poisson proess(�) ; n!1 :From this follows the asymptoti behaviour of all upper order statistis, for instane,P (Mn � un) = P (Nn((0; 1℄) = 0)! P (N((0; 1℄) = 0) = e�� ; n!1 :
7



2.2 Generalized Extreme Value Distribution (GEV)For statistial purposes all three extreme value distributions are summarized.De�nition 2.4. [Jenkinson-von Mises representation℄H�;�(x) = ( exp��(1 + �x)�1=�	 if � 6= 0;exp f�e�xg if � = 0;where 1 + �x > 0 and � is the shape parameter.The GEV represents all three extremal types:� � > 0 Fr�ehet Q�((x� 1)=�) = �1=�(x),� � = 0 Gumbel Q0(x) = �(x) ;� � < 0 Weibull Q�(�(x+ 1)=�) = 	�1=�(x).Additionally, we introdue loation and sale parameters � 2 R and  > 0 and de�neQ�;�; (x) =Q�(x� �)= . Note that Q�;�; is of the type of Q�.This representation is useful for any statistial method whih an be based on iid maxima.These are then modelled by the GEV and the parameters are �tted leading to tail and quantileestimates; see EKM [33℄, Setion 6.3. The method has its limitations, in partiular, if thedependene struture annot be embedded in an iid maxima model. Moreover, as for instanethe method of annual maxima, it an also be a waste of data material, sine it may only useannual maxima, but ignore all other large values of the sample. An exellent remedy, also fornon iid data originates in the hydrology literature and has been developed and very suessfullyapplied by Rihard Smith and his ollaborators for the last deades; see Smith [84℄ and referenestherein.2.3 The POT{method (\Peaks Over Threshold")We explain the POT-method and show it at work for the DAX losing pries of Figure 1.1. Asuper�ial glimpse at the data shows already some of the so-alled stylized fats of �nanial data.There are more peaks than an be explained by a normal model and, in partiular, the negativepeaks are more pronouned than the positive ones. On the other hand, the data are simple intheir dependene struture; an analysis of the autoorrelations of the data, their absolute valuesand their squares gave no indiation of dependene. Consequently, we assume that the dataare iid. We want to remark, however, that many �nanial data are not iid, but exhibit a verydeliate dependene struture; see Setions 3 and 4.We proeed with a simple exploratory data analysis, whih should stand at the beginning ofevery risk analysis. In a QQ-plot, empirial quantiles are plotted against the theoretial quantilesof a given distribution. If the hosen model is orret, nearly all data points will (if the samplesize is large enough) lie on the 45-degree line. If the hosen distribution is orret up to its saleand loation parameter, the plotted points will still be on a straight line, however with di�erentslope and interset. Linear regression gives rough estimates for the sale and loation parameter,and these are often used as starting values for more sophistiated estimation methods. Figure 2.58
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Figure 2.5. Normal QQ-plot of the daily prie hanges of the DAX losing pries. The �t isin partiular in the region of interest at the left end very bad.shows a normal QQ-plot of the data. The left end of the plot shows learly that the left tail ofthe underlying distribution is muh fatter than the left tail of a normal distribution.Taking the modulus of the negative values of the given sample enables us to apply extreme valuetheory as introdued above to the left tail of the distribution of daily prie hanges. This is asample of size n = 108 and will be the basis for the estimation of VaR.One of the main ingredients of the POT-method is the following result.Theorem 2.6. [Balkema and de Haan [3℄/Pikands [71℄℄F 2 MDA(H�) () limu%xF F (u+ x�(u))F (u) = � (1 + �x)�1=� if � 6= 0;e�x if � = 0;where 1 + �x > 0, for some (positive measurable) funtion �(u).Interpretation. For a rv X with df F 2 MDA(H�) we havelimu"xF P �X � u�(u) > x���X > u� = � (1 + �x)�1=� if � 6= 0;e�x if � = 0;i.e. given X exeeds u, the saled exess onverges in distribution.De�nition 2.7. [Exess distribution funtion, mean exess funtion (MEF)℄Let X d= F be a rv with xF � 1. For �xed u < xF we allFu(x) = P (X � u � x j X > u) ; x+ u � xF ;the exess df of X or F over the threshold u. The funtione(u) = E [X � u j X > u℄ = Z xFu F (t)F (x)dt ; u < xF ; (2.3)is alled mean exess funtion of X or F . 9



It is easy to alulate the mean exess funtion of an exponential distribution, whih is a onstant,equal to its parameter. The mean exess funtion of a distribution with a tail lighter than thetail of an exponential distribution tends to zero as u tends to in�nity; for a distribution withtail heavier than exponential, the mean exess funtion tends to in�nity; see Figure 6.2.4 ofEKM [33℄.Now let X1; : : : ;Xn denote the sample variables. As usual, z+ = max(z; 0) denotes the positivepart of z and ardA is the ardinality of the set A. The empirial funtionen(u) = 1ardfi : Xi > u; i = 1; : : : ; ng nXi=1(Xi � u)+ ; u � 0 ;estimates the mean exess funtion e(u).The right-hand side of Figure 2.8 shows the empirial mean exess funtion of the DAX dataorresponding to the left tail. At �rst, the funtion is dereasing, but further to the right, ithas an upward trend. This shows that in a neighbourhood of zero, the data might possibly bemodelled by a normal distribution, but this is ertainly not the ase in the left tail; there, thedistribution turns out to have a tail that is learly heavier than an exponential tail.
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Figure 2.8. The absolute negative prie hanges (left-hand side) and the orresponding empirialmean exess funtion (right-hand side) of the DAX values.Theorem 2.6 motivates the following de�nition.De�nition 2.9. [Generalized Pareto distribution (GPD)℄G�;�(x) = � 1� (1 + �x=�)�1=� if � 6= 0;1� e�x=� if � = 0;for 1 + �x > 0. � 2 R is the shape parameter and � > 0 is the sale parameter.The GPD represents three di�erent limit exess dfs:� � > 0 Pareto with support x � 0 ,� � = 0 exponential with support x � 0 , 10



� � < 0 Pareto with support 0 � x � ��=�.These results are applied to model data above a high threshold u as follows:(1) the point proess of exeedanes by a Poissonproess(�),(2) the onditional exesses by a GPD(�; �),(3) the stohasti quantities of (1) and (2) are independent.2.4 Estimate tails and quantiles by the POT-methodAssume that (Xn)n2N are iid and Xn d= X d= F . For a high threshold u de�neNu = ardfi : Xi > u; i = 1; : : : ; ng :De�ne F (u) = 1� F (u) = P (Xi > u), thenF u(y) = P (X � u > y j X > u) = F (u+ y)F (u) ; y � 0 ;equivalently, F (u+ y) = F (u)F u(y) ; y � 0 : (2.4)Estimate F (u) and F u(y) by the POT-method:[F (u) = 1n nXi=1 I(Xi > u) = Nun :Approximate F u(y) � �1 + � y���1=� ; y 2 R ;and estimate � and � by b� and b� (see below). This results in the following tail and quantileestimates:� Tail estimate \F (u+ y) = Nun �1 + b� yb���1=b� ; y � 0 : (2.5)� Quantile estimatebxp = u+ b�b�  � nNu (1� p)��b� � 1! ; p 2 (0; 1) : (2.6)A standard method to estimate the parameters � and � is maximum likelihood (ML) estimation.It is based on numerially maximising the likehood funtion for the given data, whih are theexesses over a threshold u. However, one should bear in mind that the estimation proedureoften relies on a very small data set as only the exesses will enter the estimation proedure.For this reason one annot always rely on the asymptoti optimality properties of the ML-estimators and should therefore possibly use other estimation methods for omparison. For11



example, the lassi Hill estimator ould be used as an alternative approah. For a derivationand representation of the Hill estimator as well as a omparison to other tail estimators, see e.g.EKM [33℄, Chapter 6.As already mentioned, the ML estimation is based on exess data, hene making it neessaryto hoose a threshold parameter u. A useful tool here is the plot of the empirial mean exessfuntion in Figure 2.8. Reall that for heavy-tailed distributions the mean exess funtion in (2.3)tends to in�nity. Furthermore it an be shown that for the generalised Pareto distribution, themean exess funtion is a linear funtion (inreasing if and only if the parameter � is positive).Hene, a possible hoie of u is given by the value, above whih the empirial mean exessfuntion is approximately linear. Figure 2.8 indiates a reasonable hoie of u = 10, withorresponding Nu = 56. This indiates that the generalised Pareto distribution is not only agood model for the extreme negative daily prie hanges, but already for about half of them.The ML-estimators are then found to beb� = 0:186 ; b� = 11:120 ;whih enable us to estimate the lower 5%{quantile of the daily prie hanges.
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Figure 2.10. Extreme value analysis of the data. The upper left-hand plot shows the estimatedshape parameter b� with pointwise on�dene intervals based on the normal asymptotis of theestimator, depending on di�erent threshold values u. The upper right-hand plot shows the �t ofthe onditional df, and the lower left-hand plot the tail-�t of the DAX daily prie hanges: theplotted data points are the 56 largest absolute prie hanges; the solid urves show the estimateddf and tail based on these data. In the lower left-hand plot, the vertial line marks the estimated95%{quantile, the urve above is the orresponding pro�le likelihood. The lower right-hand plotshows the estimated 95%-quantile with pointwise on�dene bounds depending on the thresholdvalues. 12



This estimator leads for the DAX data of Figure 1.1 to the following table.empirial normal GPDVaR(1day, p = 0:05) -30.654 -29.823 -42.856As is obvious from this Table and Figure 2.10 estimation of the quantile by means of extremevalue theory results in a muh larger risk estimate as for the empirial and normal method.The estimates �t the given data quite niely, even in the far end tail. This on�rms thatthe assumption of an underlying heavy tailed distribution is well in line with the data. Inthis ontext, the orresponding estimate of the lower 5%{quantile of the VaR seems far moreplausible than those obtained under the assumption of a normal distribution.Con�dene intervals for the estimated quantile an easily be obtained from the plotted pro�lelikelihood. The 95%{on�dene interval an be read o� the horizontal line. It is the interval[34:37; 60:51℄, i.e. with probability 0.95 the 95%{quantile will lie in the interval [34:37; 60:51℄.Not surprisingly, the on�dene interval is rather wide, in partiular to the right, where very fewdata are to be found. For the de�nition and mathematial properties of the pro�le likelihoodwe refer to Barndor�-Nielsen and Cox [6℄.3 Continuous-time di�usion modelsIn this setion, whih is based on Borkove and Kl�uppelberg [17℄, we study the extremal be-haviour of di�usion proesses de�ned by the SDEdXt = �(Xt)dt+ �(Xt)dWt ; t > 0 ; X0 = x ; (3.1)where W is standard Brownian motion, � 2 R is the drift term and � > 0 is the di�usionoeÆient or volatility.The stationary distributions of the proesses under investigation are often well-known and onemight expet that they inuene the extremal behaviour of the proess in some way. This ishowever not the ase: for any pre-determined stationary distribution the proess an exhibitquite di�erent behaviour in its extremes.Extremal behaviour of a stohasti proess (Xt)t�0 is as a �rst step manifested in the asymptotibehaviour of the running maximaMt = max0�s�tXs ; t > 0 :The asymptoti distribution ofMt for t!1 has been studied by various authors, see Davis [25℄for detailed referenes.It is remarkable that under quite natural onditions running maxima and minima of (Xt)t�0given by (3.1) are asymptotially independent and have the same behaviour as the extremes ofiid rvs. We restrit ourselves to the investigation of maxima, the mathematial treatment forminima being similar.The di�usion (Xt)t�0 given by the SDE (3.1) has state spae (l; r) � R. We only onsiderthe ase when the boundaries l and r are inaessible and (Xt)t�0 is reurrent. We requirefurthermore that �2(x) > 0 for all x 2 (l; r) and that there exists some " > 0 suh that13



R x+"x�" (1 + j�(t)j)=�2(t)dt <1. These two onditions guarantee in partiular that the SDE (3.1)has a weak solution whih is unique in probability; see Karatzas and Shreve [52℄, Chapter 5.5.C.Assoiated with the di�usion is the sale funtion s and the speed measurem. The sale funtionis de�ned as s(x) = Z xz exp��2Z yz �(t)�2(t)dt� dy ; x 2 (l; r) ; (3.2)where z is any interior point of (l; r) whose hoie, by the onvergene to types theorem, doesnot a�et the extremal behaviour. For the speed measure m we know that m(I) > 0 for everynon-empty open subinterval I of the interior of (l; r). We only onsider di�usions with �nitespeed measure m and denote its total mass by jmj = m((l; r)). The speed measure of model(3.1) is absolutely ontinuous with Lebesgue densitym0(x) = 2�2(x)s0(x) ; x 2 (l; r) ;where s0 is the Lebesgue density of s. In this situation (Xt)t�0 is ergodi and its stationarydistribution is absolutely ontinuous with Lebesgue densityh(x) = m0(x)=jmj ; x 2 (l; r) : (3.3)Notie that the onnetion between stationary distribution, speed measure, sale funtion, driftterm and di�usion oeÆient (given by (3.2)-(3.3)) allows us to onstrut di�usions with arbi-trary stationary distribution (see Examples 3.6 and Theorems 3.4 and 3.5).Throughout this setion, we assume that the di�usion proess (Xt)t�0 de�ned in (3.1) satis�esthe usual onditions, whih guarantee that (Xt)t�0 is ergodi with stationary density (3.3):s(r) = �s(l) =1 and jmj <1 : (3.4)For proofs of the above relations and further results on di�usions we refer to the monographsKaratzas and Shreve [52℄, Revuz and Yor [76℄, Rogers and Williams [78℄, or any other advanedtextbook on stohasti proesses.The following formulation an be found in Davis [25℄.Proposition 3.1. Let (Xt)t�0 satisfy the usual onditions (3.4). Then for any initial valueX0 = y 2 (l; r) and any ut " r,limt!1 jP y(Mt � ut)� F t(ut)j = 0 ;where F is a df, de�ned for any z 2 (l; r) byF (x) = exp�� 1jmjs(x)� ; x 2 (z; r) : (3.5)The funtion s and the quantity jmj also depend on the hoie of z. �Various proofs of this result exist and we refer to Davis [25℄ for further referenes. Davis' proofis based on a representation of suh a di�usion as an Ornstein-Uhlenbek proess after a randomtime-hange. Standard tehniques for extremes of Gaussian proesses apply leading to the aboveresult. (The idea is explained in the proof of Theorem 3.8).14



As already noted the sale and speed measure of a di�usion (Xt)t�0 depend on the hoie ofz and hene, are not unique. Di�erent sale and speed measures (and therefore di�erent z)lead to di�erent df's F in Proposition 3.1. They are, however, all tail-equivalent. This followsimmediately by a Taylor expansion from (3.5) and the fat that s(x)!1 as x " r.Corollary 3.2. Under the onditions of Proposition 3.1 the tail of the df F in (3.5 ) satis�esF (x) � �jmjZ xz s0(y)dy��1 � (jmjs(x))�1 ; x " r :The extremal behaviour (in partiular the behaviour of the maximum) of an iid sequene withommon df F is determined by the far end of the right tail F . In our situation the asymptotibehaviour of the maxima Mt is determined by the tail of F as in (3.5): if F 2 MDA(Q) withnorming onstants at > 0 and bt 2 R, thena�1t (Mt � bt) d! Q ; t!1 : (3.6)The notion of regular variation is entral in extreme value theory and we refer to Bingham,Goldie and Teugels [11℄, whih we heneforth abbreviate by BGT.De�nition 3.3. [Regular variation℄A positive measurable funtion f on (0;1) is regularly varying at 1 with index � (we writef 2 R(�)) if limx!1 f(tx)f(x) = t� ; t > 0 :The following results desribe the di�erent behaviour of di�usions (3.1) with stationary densityh by the df F whih governs the extreme behaviour.Theorem 3.4. Assume that the usual onditions (3.4) hold.(a) If � � 0, then S = (�1;1) and F (x) � x�1 as x!1 for some  > 0 :(b) Let � and � be di�erentiable funtions in some left neighbourhood of r suh thatlimx!r ddx �2(x)�(x) = 0 and limx!r �2(x)�(x) exp��2Z xz �(t)�2(t)dt� = �1 ;then F (x) � j�(x)jh(x) ; x " r :Theorem 3.5. Assume that the usual onditions (3.4) hold and r =1.(a) If �2(x) � x1�Æ`(x)=h(x) as x!1 for some Æ > 0 and ` 2 R(0), thenF (x) � Æ2x�Æ`(x) ; x!1 :(b) If �2(x) � xÆ�1e��x�=h(x) as x!1 for some Æ 2 R and �; �;  > 0, thenF (x) � 12��xÆ+��2 exp(��x�) ; x!1 :15



The following example desribes the simplest way to onstrut a di�usion proess with presribedstationary density h.Example 3.6. De�ne dXt = �(Xt)dWt, t > 0, and X0 = x 2 (l; r) and �2(x) = �2=h(x) for� > 0 and some density h. Then �(x) = 0, s0(x) = 1 and (Xt)t�0 has stationary density h. Asa onsequene of Theorem 3.4(a) this example has a very speial extremal behaviour, whih is{ independent of h { the same for all h.Next we investigate an analogue of the Poisson proess approximation for iid data; see Proposi-tion 2.3. Sine (Xt)t�0 has sample paths with in�nite variation, we introdue a disrete skeletonin terms of a point proess of so-alled "-uprossings of a high threshold u by (Xt)t�0. For �xed" > 0 the proess has an "-uprossing at t if it has remained below u on the interval (t � "; t)and is equal to u at t. Under weak onditions, the point proess of "-uprossings, properlysaled in time and spae, onverges in distribution to a homogeneous Poisson proess, i.e. itbehaves again like exeedanes of iid rvs, oming however not from the stationary distributionof (Xt)t�0, but from the df F whih desribes the growths of the running maxima Mt, t > 0(see Proposition 3.1).De�nition 3.7. Let (Xt)t�0 be a di�usion satisfying the usual onditions (3.4). Take " > 0.(a) The proess (Xt)t�0 is said to have an "{uprossing of the level u at t0 > 0 ifXt < u for t 2 (t0 � �; t0) and Xt0 = u :(b) For t > 0 let N";u(t) denote the number of "-uprossings of u by (Xs)0�s�t. ThenN�t (B) = N";ut(tB) = ardf"-uprossings of ut by (Xs)0�s�t : st 2 Bg ; B 2 B(0; 1℄is the time{normalised point proess of "-uprossings on the Borel sets B(0; 1℄. �Immediately from the de�nition "{uprossings of a ontinuous time proess orrespond to ex-eedanes of a disrete time sequene. As we known from Proposition 2.3 the point proess ofexeedanes of iid data onverge weakly to a homogeneous Poisson proess. Suh results alsohold for more general sequenes provided the dependene struture is nie enough to preventlustering of the extremes in the limit.For di�usions (3.1) the dependene struture of the extremes is suh that the point proesses of "-uprossings onverge to a homogeneous Poisson proess, however, the intensity is not determinedby the stationary df H, but by the df F from Proposition 3.1. This means that the "-uprossingsof (Xt)t�0 are likely to behave as the exeedanes of iid rvs with df F . The extra ondition (3.7)of the following theorem relates the sale funtion s and speed measure m of (Xt)t�0 to theorresponding quantities sou and mou of the standard Ornstein-Uhlenbek proess, de�ned bysou(x) = p2� Z x0 et2=2dt and m0ou(x) = 1=s0ou(x) ; x 2 R :Theorem 3.8. Let (Xt)t�0 satisfy the usual onditions (3.4) and ut " r suh thatlimt!1 tF (ut) = limt!1 tjmjs(ut) = � 2 (0;1) :16



Assume there exists some positive onstant  suh thatm0ou(s�1ou (s(z)))s0ou(s�1ou (s(z))) s0(z)m0(z) �  ; 8z 2 (l; r) : (3.7)Then for all starting points y 2 (l; r) of (Xt)t�0 and " > 0 the time-normalised point proessesN�t of "-uprossings of the levels ut onverge in distribution to N as t " 1, where N is ahomogeneous Poisson proess with intensity � on (0; 1℄.Proof. The proof invokes a random time hange argument. An appliation of Theorem 12.4.2of LLL [62℄ shows that the theorem holds for the standard Ornstein-Uhlenbek (Ot)t�0 proess.Denote by Zt = sou(Ot) ; t � 0 ; and Yt = s(Xt) ; t � 0 ;the Ornstein-Uhlenbek proess and our di�usion, both in natural sale. (Yt)t�0 an then beonsidered as a random time hange of the proess (Zt)t�0; i.e. for all t � 0,Yt = Z�t a:s:for some stohasti proess (�t)t�0. The random time �t has a representation via the loal timeof the proess (Yt)t�0. This is a onsequene of the Dambis-Dubins-Shwarz Theorem (Revuzand Yor [76℄, Theorem 1.6, p. 170), Theorem 47.1 of Rogers and Williams [78℄, p. 277 andExerise 2.28 of [76℄, p. 230. For z 2 (l; r) denote by Lt(z) the loal time of (Ys)0�s�t in z. Thenby the oupation time formula (f. Revuz and Yor [76℄, p. 209)�t = Z 1�1Lt(z)dmou(s�1ou (z)) = Z t0 m0ou(s�1ou (s(Xs)))s0ou(s�1ou (s(Xs))) s0(Xs)m0(Xs)ds ; t � 0 :Notie also that �t is ontinuous and stritly inreasing in t; i.e. it de�nes a random time. Underondition (3.7) we obtain �t � �t�" � " ; t � 0 :Moreover, Itô and MKean [49℄, p. 228 proved the following ergodi theorem�tt a:s:! 1jmj :The following approximations an be made preise and implies Proposition 3.1.P �max0�s�t Xs > ut� = P �max0�s�t Ys > s(ut)�= P � max0�s��t Zs > s(ut)� � P � max0�s�t=jmj Zs > s(ut)�� P �Zs > s(ut)t=jmj� � �exp�� 1s(ut)��t=jmj= exp�� ts(ut)jmj� ; t!1; ut " r :For the point proess onvergene we use Theorem 4.7 of Kallenberg [51℄ and prove that for anyy 2 (l; r) limt!1P y(NX";ut(tU) = 0) = P (N(U) = 0) ;17



where U is an arbitrary union of semi-open intervals. �Theorem 3.8 desribes the asymptoti behaviour of the number of "-uprossings of a suitablyinreasing level. In partiular, on average there are � "-uprossings of ut by (Xs)0�s�t for larget. Notie furthermore, that we get a Poisson proess in the limit whih is independent of thehoie of " > 0.The next lemma provides simple suÆient onditions, only on sale funtion and speed measureof (Xt)t�0, for (3.7). Notie that by positivity and ontinuity, (3.7) holds automatially onompat intervals. It remains to hek this ondition for z in a neighbourhood of r and l.Lemma 3.9. Assume that for 1; 2 2 (01℄1ln(js(z)j)s(z) � s00(z)s0(z)m0(z) � m00(z)(m0(z))2� �! 1 z " r ;2 z # l ; (3.8)or (Grigelionis [45℄) that for d1; d2 2 (0;1℄s2(z)h(z) ln(js(z)j)s0(z) �! d1 z " r ;d2 z # l ; (3.9)then (3.7) holds.In the following we investigate some examples whih have been prominent in the interest ratemodelling. All examples have a linear drift term�(x) = � dx ; x 2 (l; r) ; for  2 R ; d > 0 ;whih implies that the stationary version of (Xt)t�0 has mean =d, provided it exists, and ismean reverting with fore d. For �nanial bakground we refer to Lamberton and Lapeyre [61℄or Merton [66℄.Furthermore, (Xt)t�0 has state spae R or R+ , hene F 2 MDA(��) for some � > 0 or F 2MDA(�). Note that (3.6) implies thatMtat d! �� if F 2 MDA(��) (3.10)and Mt � btat d! � and Mtbt P! 1 if F 2 MDA(�) : (3.11)Figures 3.11, 3.13, 3.15 and 3.16 show simulated sample paths of the di�erent models. Forsimulation methods of solutions of SDEs see Kloeden and Platen [56℄. The solid line indiatesthose norming onstants whih desribe the inrease of Mt for large t, i.e. in MDA(��) we plotat (see (3.10)) and in MDA(�) we plot bt (see (3.11)).Furthermore, all models in this setion exept the generalised Cox-Ingersoll-Ross model with = 1 satisfy ondition (3.8) of Lemma 3.9, hene the Poisson approximation of the "{uprossingsis also expliitly given for ut = atx+ bt and � = � lnQ(x), where Q is either �� or �.Example 3.10. [The Vasiek model (Vasiek [87℄)℄In this model the di�usion oeÆient is �(x) � � > 0. The solution of the SDE (3.1) withX0 = x is given by Xt = d + (x� d)e�dt + � Z t0 e�d(t�s)dWs ; t � 0 :18



0 200 400 600 800 1000

-2
-1

0
1

2
3

4

Figure 3.11. Simulated sample path of the Vasiek model (with parameters  = d = � = 1) andorresponding normalising onstants bt.(Xt)t�0 has state spae R ; mean value and variane funtionEXt = d + (x� d)e�dt ! d and varXt = �22d �1� e�2dt�! �22d ; t!1 :It is well-known and easy to alulate from (3.2)-(3.3) that (Xt)t�0 has a normal stationarydistribution, more preisely, it is N( d ; �22d ), where N(a; b) denotes the normal distribution withmean a and variane b. The assumptions of Theorem 3.4(b) are satis�ed givingF (x) � 2d2�2 �x� d�2 H(x) ; x!1 ;where H(x) is the tail of the stationary normal distribution; hene F has heavier tail than H.It an be shown that F 2 MDA(�) with norming onstantsat = �2pd ln t and bt = �pdpln t+ d + �4pd ln ln t+ ln(�2d=2�)pln t :Example 3.12. [The Cox-Ingersoll-Ross model (Cox, Ingersoll and Ross [23℄)℄In this model �(x) = �px for � > 0 and 2 � �2. It has state spae (0;1), for X0 = x it hasmean value funtion EXt = d + �x� d� e�dt ! d ; t!1and variane funtionvarXt = �22d2 �1��1 + �x� d� 2d � e�2dt + �x� d� 2d e�3dt� ! �22d2 ; t!1 :From (3.2)-(3.3) we obtain that the stationary distribution H is �( 2�2 ; 2d�2 ). Theorem 3.4(b)applies giving F (x) � 2d�2 G(x) � AxH(x) ; x!1 :19



where A > 0 and G(x) is the tail of the �( 2�2 + 1; 2d�2 ) distribution. The gamma distributionsare in MDA(�) and the norming onstants for F areat = �22d and bt = �22d �ln t+ 2�2 ln ln t+ ln� d�(2=�2)�� :
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Figure 3.13. Simulated sample path of the Cox-Ingersoll-Ross model with �(x) =  � dx, 2 R ; d > 0 and �(x) = px. (The hosen parameters are  = d = � = 1). The stationarydistribution is a gamma distribution. The solid line shows the orresponding norming onstantsbt.Example 3.14. [The Generalised Cox-Ingersoll-Ross model℄In this model �(x) = �x for  2 [12 ;1). The proess is ergodi with state spae (0;1).We distinguish the following four ases: = 1=2 : 2 � �2 ; d > 0 (see Example 3.12)1=2 <  < 1 :  > 0 ; d � 0 = 1 :  > 0 ; d > ��2=2 > 1 :  > 0 ; d 2 R or  = 0 ; d < 0 : (3.12)For 12 �  � 1 the mean value funtion of (Xt)t�0 is given byEXt = 8>>><>>>: d + �x� d� e�dt ! d if d > 0d + �x� d� e�dt !1 if d < 0x+ t !1 if d = 0as t!1 where X0 = x. The lak of a �rst moment indiates already that for ertain parametervalues the model an apture very large utuations in data, whih will reet also in thebehaviour of the maxima.� 12 <  < 1The stationary density, whih an be alulated by (3.2)-(3.3), is for some norming onstantA > 0 h(x) = 2A�2x�2 exp�� 2�2 � 2 � 1x�(2�1) + d2� 2 x2�2�� ; x > 0 :20



The assumptions of Theorem 3.4(b) are satis�ed and heneF (x) � dxh(x) � Bx2(1�)H(x) ; x!1 ;for some B > 0. Then F 2 MDA(�) with norming onstantsat = �22d ��2(1� )d ln t� 2�12�2
bt = ��2(1� )d ln t� 12�2 0�1� 2 � 1(2� 2)2 ln��2(1�)d ln t�ln t 1A+ at ln� 2dA�2� :�  = 1In this ase the solution of the SDE (3.1) with X0 = x is expliitly given byXt = e�(d+�22 )t+�Wt �x+ Z t0 e(d+�22 )s��Wsds� ; t � 0 :We obtain from (3.2){(3.3) that the stationary density is inverse gamma:h(x) = ��22�� 2d�2�1���2d�2 + 1���1 x�2d=�2�2 exp�� 2�2x�1� ; x > 0 :Notie that h 2 R(�2d=�2�2) and hene by Karamata's theorem (Theorem 1.5.11 of BGT [11℄)the tail H of the stationary distribution is also regularly varying. This implies that ertainmoments are in�nite:limt!1EXÆt = 8>><>>: � 2�2�Æ � � 2d�2 + 1� Æ�� � 2d�2 + 1� if Æ < 2d�2 + 1 ;1 if Æ � 2d�2 + 1 :In partiular, limt!1varXt =8><>: 22d(2d� �2) <1 if 2d�2 > 1 ;1 if �1 < 2d�2 � 1 :For the tail of F we obtain by Theorem 3.4(b)F (x) � Bx�2d=�2�1 ; x!1 ;for some B > 0. Hene F 2 B(�1 � 2d=�2), equivalently, F 2 MDA(�1+2d=�2), with normingonstants at � C t1=(1+2d=�2) ; t!1 ;for some C > 0. 21
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Figure 3.15. Simulated sample path of the generalised Cox-Ingersoll-Ross model with �(x) = � dx,  2 R; d > 0 and �(x) = x for  = 1. (The hosen parameters are  = d = � = 1).The solid line shows the orresponding norming onstants bt. We an alulate F (x) � CH(x)as x!1 for some C > 0.�  > 1Notie �rst that h is of the same form as in the ase 12 <  < 1, in partiular H 2 R(�2 + 1)with 1� 2 < �1)). We apply Theorem 3.5(a) and obtain for some A > 0F (x) � (Ax)�1 ; x!1 :Hene F 2 MDA(�1) with norming onstants at � t=A. Notie that the order of inrease of atis always linear. The onstant A, whih depends on the parameters, deides about the slope.
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Figure 3.16. Simulated sample path of the generalised Cox-Ingersoll-Ross model for  = 1:5(with parameters  = d = � = 1) and the orresponding norming onstants at.
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Figure 4.1. A realisation of the sequenes (Yn)n2N (top) and (Xn)n2N (bottom) with F standardexponential as disussed in Example 4.2.4 The AR(1) model with ARCH(1) errorsIn this setion we study the extremal behaviour of disrete time volatility models of the formXn = �(Xn�1) + �(Xn�1) "n ; n 2 N ;where � is the onditional mean, � the onditional volatility and ("n)n2N are iid symmetri rvswith variane 1.As a prototype model, whih an be analytially analysed we fous on the AR(1) proess withARCH(1) errors, i.e. Xn = �Xn�1 +q� + �X2n�1 "n ; n 2 N ; (4.1)where � 2 R; �; � > 0, ("n)n2N are iid symmetri rvs with variane 1 and X0 is independent of("n)n2N . This setion is based on Borkove and Kl�uppelberg [18℄ and Borkove [15℄; see also [16℄.Before we analyse model (4.1) we explain the inuene of volatility lusters on a high level withinthe ontext of extreme value theory. We also show its onsequenes for risk management whenestimating a high or low quantile.We start with an introdutory example, whih we have found useful before.Example 4.2. [EKM [33℄, Setions 4.4, 5.5 and 8.1℄Let Y; Y1; Y2; : : : be iid Y d= pF and de�ne Xn = max(Yn; Yn+1) for n 2 N. ThenP (Xn � x) = (P (Yn � x))2 = F (x) ; x 2 R :23



Choose un suh that nP (X1 > un)! � as n!1, then nP (Y1 > un)! �=2 andP (max(X1; : : : ;Xn) � un) = P (max(Y1; : : : ; Yn+1) � un)= P (max(Y1; : : : ; Yn) � un)F (un) ! e��=2 ; n!1 :De�nition 4.3. [Extremal index℄Let (Xn)n2N be stritly stationary and de�ne as beforeM1 = X1 ; Mn = max(X1; : : : ;Xn) ; n > 1 :Assume that for every � > 0 there exists a sequene (un)n2N suh thatlimn!1nP (X1 > un) = �limn!1P (Mn � un) = e���Then � 2 [0; 1℄ is alled the extremal index of (Xn)n2N .The extremal index in Example 4.2 is � = 1=2. This indiates already the most intuitiveinterpretation of the extremal index: 1=� an be interpreted as the mean lustersize.In the ontext of risk management we give an intuitive example.Example 4.4. We want to alulate the VaR=VaR(10 days, p = 0:05) of a portfolio; i.e. fordaily losses Xi, i = 1; : : : ; 10, we want to estimate P (max(X1; : : : ;X10) � VaR) = 0:95. Assumethat we know VaR(1 day, p = 0:01)=10 Mio and VaR(1day, p = 0:005)=11 Mio.For the loss rv X this means that P (X � 10) = 0:99 and P (X � 11) = 0:995. Denote byZ = max(X1; : : : ;X10). If the Xi are iid, thenP (Z � 11) = P (X � 11)10 � 0:95 ;whereas for dependent Xi with extremal index � = 0:5 we obtainP (Z � 10) = P (X � 10)10=2 � 0:95 :This means that for iid data the 10-day VaR(10 days, p = 0:05) is higher than for dependentdata.Using the blok maxima method it is easy to ompare VaR estimation for independent anddependent stationary �nanial time series. The data are divided into, say, N bloks, suh thatthe orresponding blok maxima an be onsidered as independent. Moreover, if the samplevariables are in MDA(Q) for some extreme value distribution Q, then the blok maxima, we allthem Z1; : : : ; ZN , an be viewed as an iid sample of rvs with df Q. Consequently, we assumethat Z1; : : : ; ZN are iid GEV distributed; i.e. introduing a loation parameter � 2 R and asale parameter  > 0,P (Z � VaR(p)) � exp ��1 + �VaR(p)� � ��1=�! : (4.2)24



De�ning for given p 2 (0; 1) the VaR(p) by 1� p = P (Z � �VaR(p)), we obtain by inversionVaR(p) = �+  � �(� ln(1� p))�� � 1� :By De�nition 4.3 dependene introdues an additional fator � in the exponent of (4.2) givingVaR(p) = �+  � �(�1� ln(1� p))�� � 1� :In the ontext of risk management we expet � � 0 and for � = 0 we take the limitVaR(p) = ��  ln(�1� ln(1� p)) :A di�erent method is a dependent version of the POT-method; i.e. the quantile estimate (2.6).Starting again with (2.4), the estimation of the tail in (2.5) hanges, when F (u) is estimated.The empirial estimator Nu=n for iid data is replaed by N bu=(nb�u), where N bu is the number ofblok maxima exeeding u and b�u is the estimated extremal index; see EKM [33℄, Setion 8.1and referenes therein. For the quantile estimate (2.6) this means thatbxp = u+ b�b� 0� nb�uN bu (1� p)!�b� � 11A ; p 2 (0; 1) :4.1 Stationarity and tail behaviourIn this setion we present an extreme value analysis of the AR(1) proess with ARCH(1) errors asgiven by (4.1). As a prerequisite we �rst need to know whether we are dealing with a stationarymodel and what the tail of the stationary distribution looks like.For � = 0 the proess is an AR(1) proess whose stationary distribution is determined by theinnovations ("n)n2N and stationarity is guaranteed for j�j < 1. In the ARCH(1) ase (thease when � = 0) the proess is geometri ergodi provided that � > 0 and 0 < � < 2e ,where  is Euler's onstant. The tail of the stationary distribution is known to be Pareto-like(see e.g. Goldie [41℄ or EKM [33℄, Setion 8.4). This result was obtained by onsidering thesquare ARCH(1) proess leading to a stohasti reurrene equation whih �ts in the settingof Kesten [53, 54℄ and Vervaat [88℄; see also Diaonis and Freedman [26℄ for an interestingoverview and Brandt, Franken and Lisek [19℄. Goldie and Maller [42℄ give neessary and suÆientonditions for stationarity of stohasti proesses, whih are solutions of stohasti reurreneequations.For the general ase we follow the standard proedure as for instane in the ase � = 0 to�nd the parameter region of stationarity of the proess. For the tail behaviour, however, weapply a tehnique, whih di�ers ompletely from Kesten's renewal type arguments, by invokingthe Drasin-Shea Tauberian theorem. This approah has the drawbak that it ensures regularvariation of the stationary tail, but gives no information on the slowly varying funtion. However,the method does apply to proesses whih do not �t into the framework of Kesten [53℄. Moreover,the Tauberian approah does not depend on additional assumptions whih are often very hardto hek (as e.g. the existene of ertain moments of the stationary distribution). Combiningthe Tauberian method with results in Goldie [41℄, we �nally speify the slowly varying funtionas a onstant. 25



We shall need the following assumptions on the noise variables. Denote by " a generi rv withthe same df G as "1. Throughout this setion the following general onditions are in fore:� " is symmetri with variane 1 ,� " is absolutely ontinuous with respet to Lebesgue measure with density g,whih is positive on the whole of R and dereasing on R+ . (4.3)We summarize in Theorem 4.7 some properties of the proess (Xn)n2N . In partiular, geo-metri ergodiity guarantees the existene and uniqueness of a stationary distribution. For anintrodution to Markov hain terminology we refer to Tweedie [86℄ or Meyn and Tweedie [67℄.The next proposition follows easily from well-known properties of moment generating funtions(one an follow the proof of the ase � = 0; see e.g. Lemma 8.4.6 of EKM [33℄).Proposition 4.5. Let " be a rv with probability density g satisfying the general onditions (4.3).De�ne h�;� : [0;1) ! [0;1℄ for � 2 R and � > 0 byh�;�(u) := E[j�+p� "ju℄ ; u � 0 : (4.4)(a) The funtion h�;�(�) is stritly onvex in [0; T ), whereT := inffu � 0 jE[jp� "ju℄ =1g :(b) If furthermore the parameters � and � are hosen suh thath0�;�(0) = E[ln j�+p� "j℄ < 0 ; (4.5)then there exists a unique solution � = �(�; �) > 0 to the equation h�;�(u) = 1. Moreover, underh0�;�(0) < 0 , �(�; �)8>><>>: > 2 ; if �2 + �E["2℄ < 1 ;= 2 ; if �2 + �E["2℄ = 1 ;< 2 ; if �2 + �E["2℄ > 1 :Remark 4.6. (a) By Jensen's inequality �2 + �E["2℄ < 1 implies h0�;�(0) < 0.(b) Proposition 4.5 holds in partiular for a standard normal rv ". In this ase T =1.() In general, it is not possible to determine expliitly whih parameters � and � satisfy (4.5).If � = 0 (i.e. in the ARCH(1)-ase) and " d= N(0; 1) (4.5) is satis�ed if and only if � 2 (0; 2e),where  is Euler's onstant (see e.g. EKM [33℄, Setion 8.4).For � 6= 0, Tables 4.14-4.16 show numerial domains of � and �; see Kiefersbek [55℄ for moreexamples.(d) Note that � is a funtion of � and �. Sine " is symmetri � does not depend on the signof �. For " d= N(0; 1) we an show that for �xed � the funtion � is dereasing in j�j. See alsoTable 4.14. �Theorem 4.7. Consider the proess (Xn)n2N in (4.1) with ("n)n2N satisfying the general on-ditions (4.3) and with parameters � and � satisfying (4.5). Then the following assertions hold:26



(a) Let � be the normalized Lebesgue-measure on the interval [�M;M ℄ � R; i.e. �(�) := �(� \[�M;M ℄)=�([�M;M ℄). Then (Xn)n2N is an aperiodi positive �-reurrent Harris hain withregeneration set [�M;M ℄ for M large enough.(b) (Xn)n2N is geometri ergodi. In partiular, (Xn)n2N has a unique stationary distributionand satis�es the strong mixing ondition with geometri rate of onvergene. The stationarydistribution is ontinuous and symmetri.Remark 4.8. When we study the stationary distribution of (Xn)n2N we may w.l.o.g. assumethat � � 0. For a justi�ation, onsider the proess ( eXn)n2N = ((�1)nXn)n2N whih solves thestohasti di�erene equationeXn = �� eXn�1 +q� + � eX2n�1 "n ; n 2 N ;where ("n)n2N are the same rvs as in (4.1) and eX0 = X0. If � < 0, beause of the symmetry ofthe stationary distribution, we may hene study the new proess ( eXn)n2N : �In order to determine the tail of the stationary distribution F we need some additional tehnialassumptions on g and G = 1�G, the density and the distribution tail of ":D1 The lower and upper Matuszewska indies of H are equal and satisfy in partiular�1 �  := lim�!1 ln lim supx!1H(�x)=H(x)ln �= lim�!1 ln lim infx!1H(�x)=H(x)ln � � 0 :D2 If  = �1 then for all Æ > 0 there exist onstants q 2 (0; 1) and x0 > 0 suh that for allx > x0 and t > xq g�x� �tp�t2 � � (1� Æ) g x� �tp� + �t2! : (4.6)If  > �1 then for all Æ > 0 there exist onstants x0 > 0 and T > 0 suh that for all x > x0and t > T the inequality (4.6) holds anyway.The de�nition of the lower and upper Matuszewska indies an be found e.g. in BGT [11℄,p. 68; for the above representation we used Theorem 2.1.5 and Corollary 2.1.6. The ase  =�1 orresponds to a tail whih is exponentially dereasing. For  2 (�1; 0℄ ondition D1 isequivalent to the existene of onstants 0 �  � C < 1 suh that for all � > 1, uniformly in� 2 [1;�℄, (1 + o(1))� � G(�x)G(x) � C(1 + o(1))� ; x!1 : (4.7)In partiular, a distribution with a regularly varying tail satis�es D1; the value  is then thetail index. Due to the equality of the Matuszewska indies and the monotoniity of g we obtaineasily some asymptoti properties of G and of g, respetively.27



Proposition 4.9. Suppose the general onditions (4.3) and D1 �D2 hold. Then the followingholds:(a) limx!1 xmG(x) = 0 and E[j"jm℄ <1 for all m < �.(b) limx!1 xmG(x) =1 and E[j"jm℄ =1 for all m > �.() limx!1 xm+1g(x) = 0 for all m < �.(d) If  > �1, there exist onstants 0 <  � C <1 suh that � lim infx!1 x g(x)G(x) � lim supx!1 x g(x)G(x) � C :Moreover, there exist onstants 0 � d � D <1 suh that for all � > 1, uniformly in � 2 [1;�℄,d(1 + o(1))��1 � g(�x)g(x) � D(1 + o(1))��1 ; x!1 : (4.8)Furthermore, in this ase (4.8) is equivalent to (4.7) or D1.The general onditions (4.3) are fairly simple and an be heked easily, whereas D1 and inpartiular D2 seem to be quite tehnial and intratable. Nevertheless, numerous densitiessatisfy these assumptions.Example 4.10. The following two families of densities satisfy the general onditions (4.3) andD1 �D2.(a) g�;�(x) / exp(���1jxj�), x 2 R, for �; � > 0.Note that this family inludes the Laplae (double exponential for � = 1) and the normal densitywith mean 0 (� = 2).(b) ga;�;�(x) / (1+x2=�)�(�+1)=2(1+a sin(2� ln(1+x2=�))), x 2 R, for parameters � > 2, � > 0and a 2 �0; (�+ 1)=(� + 1 + 4�)).This family inludes e.g. the Student-t distribution with parameter � (set a = 0 and � = �).The following modi�ation of the Drasin-Shea Theorem (BGT [11℄, Theorem 5.2.3, p. 273) isthe key to our result.Theorem 4.11. Let k : [0;1)! [0;1) be an integrable funtion and let (a; b) be the maximalopen interval (where a < 0) suh thatbk(z) = Z(0;1) t�zk(t)dtt <1 ; for z 2 (a; b) :If a > �1, assume limÆ#0 bk(a+ Æ) =1, if b <1, assume limÆ#0 bk(b� Æ) =1. Let H be a dfon R+ with tail H. If limx!1Z(0;1) k �xt � H(t)H(x) dtt =  > 0 ;then  = bk(�) for some � 2 (a; b) and H(x) � x�l(x) ; x!1 ;where l 2 R(0). 28



The following is the main theorem of this setion.Theorem 4.12. Suppose (Xn)n2N is given by equation (4.1) with ("n)n2N satisfying the generalonditions (4.3) and D1�D2 and with parameters � and � satisfying (4.5). Let F (x) = P (X >x); x � 0; be the right tail of the stationary distribution. ThenF (x) �  x�� ; x!1 ; (4.9)where  = 12� E h����jXj+p� + �X2"���� � ���(�+p�")jXj����iE hj�+p�"j� ln j�+p�"jiand � is given as the unique positive solution toE[j�+p�"j�℄ = 1 : (4.10)Remark 4.13. (a) Let E[j�+p�"j�℄ = h�;�(�) be as in Lemma 4.5. Reall that for " d= N(0; 1)and �xed �, the exponent � is dereasing in j�j. This means that the distribution of X getsheavier tails. In partiular, the AR(1) proess with ARCH(1) errors has for � 6= 0 heavier tailsthan the ARCH(1) proess (see also Table 4.14).(b) Theorem 4.12 together with Proposition 4.5 implies that the seond moment of the station-ary distribution exists if and only if �2 + �E["2℄ < 1. �Idea of Proof. Reall that P (" > x) = G(x) with density g.F (x) = Z 1�1 P �� t+p� + � t2 " > x� dF (t)= Z 10  G x+ � tp� + � t2!+G x� � tp� + � t2!! dF (t)� Z 10  g  x+ � tp� + � t2!+ g x� � tp� + � t2!! xF (t)dtt= Z 10 k �xt �F (t) dtt ;where k(x) = x(g (x+ �p� ) + g (x� �p� )) ; x > 0 ;then limx!1 1F (x) Z 10 k �xt �F (t) dtt = 1 : (4.11)De�ne the transformk̂(z) = Z 10 t�zk(t)dtt = Z 10 t�z �g� t+ �p� �+ g� t� �p� �� dt= E[j� +p�" j�z ℄ <1 ; z 2 (�1; 1)29



�j�j 0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.50.0 12.89 6.09 3.82 2.68 2.00 1.21 0.77 0.49 0.29 0.14 0.03 0.010.2 11.00 5.50 3.54 2.52 1.89 1.16 0.74 0.47 0.28 0.13 0.02 -0.4 8.14 4.30 2.88 2.11 1.61 1.00 0.64 0.40 0.23 0.10 - -0.6 5.45 3.03 2.12 1.60 1.24 0.79 0.50 0.30 0.15 0.04 - -0.8 3.02 1.85 1.37 1.07 0.85 0.55 0.33 0.18 0.06 - - -1.0 0.96 0.83 0.70 0.57 0.47 0.29 0.15 0.04 - - - -1.1 0.12 0.39 0.40 0.35 0.29 0.17 0.07 - - - - -1.2 - 0.01 0.12 0.14 0.12 0.05 - - - - - -Table 4.14. Range of stationarity of the AR(1)+ARCH(1) model with parameters � and �.The matrix omponents ontain the estimated tail index � for standard normal noise. There isno estimate given if the estimated � is less than 10�2 or (4.5) is not satis�ed.Sine (4.11) holds, the onditions of the the Drasin-Shea Tauberian theorem are satis�ed. Henethere exists some � 2 (�1; 1) suh that bk(z) = 1 andF (x) � x�`(x) ; x!1 :But bk(z) = E[j�+p�"j�z℄ = 1 for � = �� and heneF (x) � x��`(x); x!1 : (4.12)We apply now Corollary 2.4 of Goldie [41℄ to the proess (Yn)n2N) given by the stohastireurrene equationYn = �����Yn�1 +q� + �Y 2n�1���� ; n 2 N ; and Y0 = jX0j a:s: ;whih satis�es (Yn) d= (jXnj). By (4.12) EY ��1 <1 and hene the moment onditionE ���(j�Y +p� + �Y 2"j)� � (j� +p�"jY )���� <1requested in Goldie [41℄ is satis�ed. By symmetry of X we onlude �nally`(x) =  = E h����jXj +p� + �X2" j��j (�+p�")jXj����i2�E hj�+p�"j� ln j�+p�"ji : �4.2 Extreme value analysisTheorems 4.7 and 4.12 are ruial for investigating the extremal behaviour of (Xn)n2N . Thestrong mixing property implies automatially that the sequene (Xn)n2N satis�es the onditionsD(un) and �(un). These onditions are frequently used mixing onditions in extreme valuetheory, whih, as we do not need them expliitly, we will not de�ne; instead we refer to Hsing,30



�j�j 0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.2 2.6 2.80.0 4.00 2.76 2.00 1.50 1.14 0.69 0.41 0.21 0.07 0.020.2 3.93 2.68 1.92 1.44 1.10 0.66 0.39 0.20 0.06 0.010.4 3.70 2.41 1.70 1.27 0.97 0.58 0.32 0.15 0.03 -0.6 3.14 1.93 1.36 1.01 0.77 0.44 0.23 0.08 - -0.8 2.10 1.29 0.92 0.68 0.51 0.28 0.11 - - -1.0 0.78 0.60 0.45 0.34 0.24 0.09 - - - -1.1 0.19 0.27 0.22 0.16 0.10 - - - - -1.2 - - 0.02 0.01 - - - - - -Table 4.15. Range of stationarity of the AR(1)+ARCH(1) model with parameters � and �.The matrix omponents ontain the estimated tail index � for student-t noise with 5 degrees offreedom. The range of stationarity has shrunk ompared to the normal noise. Moreover, theorresponding tails are heavier than for normal noise (f. Table 4.14).�j�j 0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.2 2.40.0 2.43 1.80 1.35 1.02 0.78 0.45 0.23 0.08 0.010.2 2.41 1.76 1.31 0.99 0.75 0.43 0.21 0.06 0.010.4 2.31 1.62 1.18 0.88 0.66 0.36 0.16 0.02 -0.6 2.06 1.35 0.96 0.70 0.51 0.26 0.09 - -0.8 1.50 0.93 0.64 0.45 0.32 0.12 - - -1.0 0.59 0.41 0.28 0.18 0.10 - - - -1.1 0.13 0.15 0.10 0.04 - - - - -Table 4.16. Range of stationarity of the AR(1)+ARCH(1) model with parameters � and �.The matrix omponents ontain the estimated and tail index for student-t noise with 3 degreesof freedom. The range of stationarity has further dereased and the tails have beome very heavyindeed; a third moment does not exist (f. Tables 4.14 and 4.15).H�usler and Leadbetter [48℄ or Perfekt [70℄ for preise de�nitions. Loosly speaking, D(un) and�(un) give the \degree of independene" of extremes situated far apart from eah other. Thisproperty together with (4.9) implies that the maximum of the proess (Xn)n2N belongs to thedomain of attration of a Fr�ehet distribution ��, where � is given as solution to (4.10).In the following denote by P � the probability law for (Xn)n2N when X0 starts with distribution� and � is the stationary distribution.Theorem 4.17. [Borkove [15℄℄Let (Xn)n2N be the AR(1) proess with ARCH(1) errors (4.1) with noise satisfying the usualonditions and D1 �D2. Let X0 d= �, thenlimn!1P �(n�1=� max1�j�nXj � x) = exp(��x��) ; x � 0 ;where � solves the equation (4.10),  is the onstant in the tail of the stationary distribution31



(4.9) and � = � Z 11 P  supn2N nYi=1(�+p�"i) � y�1! y���1dy :For x 2 R and n 2 N let Nn be the point proess of exeedanes of the threshold un = n1=�x byX1; :::;Xn. Then Nn d! N; n!1 ;where N is a ompound Poisson proess with intensity �x�� and luster probabilities�k = �k � �k+1� ; k 2 N ;with �k = � Z 11 P  ard(n 2 N : nYi=1(�+p�"i) > y�1) = k � 1! y���1dy :In partiular, �1 = �.We want to explain the idea of the proof:Reall �rst from Theorem 4.7 that (Xn)n2N is Harris reurrent with regeneration set [�ea=2; ea=2℄for a large enough. Thus there exists a renewal point proess (Tn)n�0 (e.g. the suessiveentrane times in [�ea=2; ea=2℄), whih desribes the regenerative struture of (Xn)n2N . Thisproess (Tn)n�0 is aperiodi and has �nite mean reurrene times.Hene we an apply a oupling argument giving for any probability measure �, the stationarydistribution � and any sequene (un)n2N���P �� max1�k�nXk � un�� P �� max1�k�nXk � un����! 0 ; n!1 :Consequently, we suppose in the follwing that (Xn)n2N is stationary.On a high level, the proess (Xn)n2N an be linked to some random walk as follows. De�neS0 = 0 ; Sn = nXi=1 ln(�+p�"i) ; n 2 N :Although it is not as natural as for pure volatility models we onsider besides (Xn)n2N also(X2n)n2N . De�ne the auxiliary proess (Zn)n2N := (ln(X2n))n2N , whih satis�es the stohastidi�erene equationZn = Zn�1 + ln�(�+p� e�Zn�1 + � "n)2� ; n 2 N ; Z0 = ln(X20 ) a:s: :Note that, sine strong mixing is a property of the underlying �-algebra of the proess, (X2n)n2Nand (Zn)n2N are also strong mixing. Sine " is symmetri the proess (Zn)n2N is independentof the sign of the parameter �. Hene we may wlog in the following assume that � � 0.We show that (Zn)n2N an be bounded by two random walks (Sl;an )n2N and (Su;an )n2N from below32



and above, respetively. For the onstrution of the two random walks (Sl;an )n2N and (Su;an )n2Nwe de�ne with the same notation as beforeAa := ( ��p� e�a + ��p� e�a=2 � " � ��p� e�a + �+p� e�a=2) ;p(a; ") := ln�(�+p� e�a + �")2�q(a; ") := ln�1� 2�p�e�a=2"(�+p� e�a + � ")2 1f"<0g� ;r(a; ") := ln�1� �"2e�a(�+p� e�a + � ")2 1f"<0g� :Note that q(a) and r(a) both onverge to 0 a.s. as a!1. De�ne the lower and upper randomwalks Sl;an := nXj=1 Uaj and Su;an := nXj=1 V aj ; n 2 N ; (4.13)where for eah j = 1; : : : ; nUaj := �1 � 1Aa + (p(a; "j) + r(a; "j))1Aa\f"j<0g ln(�+p�")2) 1f"j�0g (4.14)V aj := p(a; "j) + q(a; "j) : (4.15)The following lemma summarizes some properties of the random walks de�ned in (4.13)-(4.15).Lemma 4.18. Let a be large enough, Z0 > a and Na := inffj � 1 jZj � ag. Then(a) Z0 + Sl;ak � Zk � Z0 + Su;ak for all k � Na a.s.(b) (Su;an )n2N and (Sl;an )n2N are random walks with negative drift.() De�ne S0 = 0 and Sk =Pkj=1 ln((� +p�"j)2) for k 2 N. ThenSl;ak P! Sk and Su;ak a:s:! Sk ; a " 1 :(d) supk�1 Sl;ak d! supk�1 Sk and supk�1 Su;ak a:s:! supk�1 Sk as a " 1.Lemma 4.18 haraterizes the behaviour of the proess (Zn)n2N above a high treshold a andhene also the behaviour of (X2n)n2N . This is the key to what follows: the proess (Sn)n2N willompletely determine the extremal behaviour of (X2n)n2N .We �rst need the following lemma.Lemma 4.19. Let  be the mixing funtion of (Xn)n2N and (pn)n2N an inreasing sequenesuh that pnn ! 0 and n(ppn)pn ! 0 as n!1 : (4.16)Then for un = n2=�x, x > 0,limp!1 lim supn!1 P ( maxp�j�pnX2j > un jX20 > un) = 0 ; (4.17)33



and for un = n1=�x, x > 0,limp!1 lim supn!1 P ( maxp�j�pnXj > un jX0 > un) = 0 : (4.18)Proof. The proof of (4.17) is very tehnial and we refer to Borkove [15℄ for details. It is,however, easy to see that (4.17) implies (4.18):P ( maxp�j�pnX2j > u2n jX20 > u2n) = P (maxp�j�pnX2j > u2n; X20 > u2n)P (X20 > u2n)� P (maxp�j�pnXj > un; X0 > un)P (X0 > un) + P (X0 < �un) = 12P ( maxp�j�pnXj > un jX0 > un) : �Remark 4.20. (a) Sine (Xn)n2N is geometri ergodi, the mixing funtion  dereases expo-nentially fast, hene it is not diÆult to �nd a sequene (pn)n2N to satisfy (4.16).(b) As mentioned already, the strong mixing ondition is a property of the underlying ���eldof a proess. Hene  is also the mixing funtion of (X2n)n2N and (Zn)n2N and we may work forall these proesses with the same sequene (pn)n2N .() In the ase of a strong mixing proess, onditions (4.16) are suÆient to guarantee that(pn)n2N is a �(un)-separating sequene. It desribes somehow the interval length needed to a-omplish asymptoti independene of extremal events over a high level un in separate intervals.For a de�nition see Perfekt [70℄. Note that (pn)n2N is in the ase of a strong mixing proessindependent of (un)n2N . �The following Theorem is an extension of Theorem 3.2 of Perfekt [70℄, p. 543 adapted to oursituation.Theorem 4.21. Suppose (Xn)n2N is a strongly mixing stationary Markov hain whose station-ary df F is symmetri with tail F 2 R(��) on R+ . Suppose furthermore thatlimu!1P (X1 � xu jX0 = u) = H(x) ; x 2 R ;for some df H. Let (An)n2N be an iid sequene with df H and de�ne Yn = AnYn�1 for n 2 Nwith Y0 independent of (An)n2N and Y0 d= � given by �(dx) := ��1x�1=��1dx, for x > 1. Forevery � > 0 let (un(�))n2N be a sequene satisfyinglimn!1nF (un(�)) = � :Then (Xn)n2N has extremal index � given by� = P �(ardfn 2 N : Yn > 1g = 0) :Moreover, for n 2 N the time normalized point proess of exeedanesN �n(B) := nXi=1 "i=n(�)IfXk > un(�)g d! N(B) ; B 2 B(0; 1℄ ;34



where N is a ompound Poisson proess with intensity �� and jump probabilities (�k)k2N givenby �k = �k � �k+1� ; k 2 N ;where �k = P �(ardfn 2 N : Yn > 1g = k � 1) ; k 2 N :Proof of Theorem 4.17. The proof is an appliation of Theorem 4.21. As stated already wemay assume w.l.o.g. that (Xn)n2N is stationary. Let x 2 R be arbitrary. Note that by (4.9)limu!1P (X1 � ux jX0 = u) = P (�+p� " � x) ; x 2 R :(Xn)n2N satis�es all assumptions of Theorem 4.21 and we have the extremal index� = Z 11 P  ardfn 2 N : � nYi=1(�+p� "i)�Y0 > 1g = 0 jY0 = y! � y���1dy= �Z 11 P  supn�1 � nYi=1(�+p� "i� � y�1! y���1dy :The luster probabilities an be determined in the same way and hene the statement follows.�Remark 4.22. (i) Notie that for the squared proess the extremal index and the lusterprobabilities an be desribed by the random walk (Sn)n2N , namely�(2)k = �2 Z 10 P (ardfn 2 N jSn > �xg = k � 1) e��2 x dx ; k 2 N :The desription of the extremal behaviour of (X2n)n2N by the random walk (Sn)n2N is to be ex-peted sine by Lemma 4.18 the proess (Zn)n2N = (ln(X2n))n2N behaves above a high thresholdasymptotially like (Sn)n2N . Unfortunately, this link fails for (Xn)n2N .(ii) Analogous to de Haan et al. [46℄ we may onstrut \estimators" for the extremal indies�(2) and �(2)k of (X2n)n2N , respetively, byb�(2) = 1N NXi=1 1f sup1�j�mS(i)j � �E(i)� gand b�(2)k = 1N NXi=1 1f mXj=1 1fS(i)j > �E(i)� g = k � 1g ; for k 2 N ;where N denotes the number of independent simulated sample paths of (Sn)n2N , E(i)� are i.i.d.exponential rvs with rate �, and m is hosen large enough. These estimators an be studied asin the ase � = 0 and " d= N(0; 1) in de Haan et al. [46℄. In partiular,pN �(2) � b�(2)(�(2)(1� �(2)))1=2 d! N(0; 1) ; N;m!1 :35



(iii) The approah hosen in (ii) is not possible for (Xn)n2N , beause Qjl=1(� +p� "l) may benegative. In a similar spirit we hoose as \estimators" for � and �k for (Xn)n2Nb� = 1N NXi=1 1f sup1�j�m jYl=1(�+p� "l) � 1=P (i)� gand b�k = 1N NXi=1 1f mXj=1 1f jYl=1(�+p� "l) > 1=P (i)� g = k � 1g ; for k 2 N ;where N denotes the number of simulated paths of (Qnl=1(�+p� "l))n2N , P (i)� are iid Pareto rvswith shape parameter �, i.e. with distribution funtion G(x) = 1 � x��, x � 1, and m is largeenough. These are suggestive estimators sine Qnl=1(� +p� "l) ! 0 a.s. as n ! 1 beause ofassumption (4.4).(iv) Note that the extremal index � of (Xn)n2N is not symmetri in � (see Table 4.23). Thisis not surprising sine the lustering is for � > 0 stronger by the autoregressive part than for� < 0. �� � 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0 2.5 3.0 3.5�1:2 - 0.001 0.001 0.003 0.004 0.001 0.000 - - - -�1 0.15 0.19 0.19 0.16 0.13 0.09 0.05 0.01 - - -�0:8 0.56 0.47 0.41 0.34 0.26 0.21 0.13 0.05 0.01 - -�0:6 0.86 0.71 0.61 0.50 0.41 0.33 0.22 0.10 0.03 0.00 -�0:4 0.96 0.85 0.71 0.60 0.50 0.40 0.30 0.14 0.06 0.01 -�0:2 0.98 0.89 0.77 0.65 0.56 0.47 0.33 0.18 0.07 0.02 0.000 0.98 0.89 0.78 0.65 0.55 0.45 0.33 0.18 0.08 0.02 0.000:2 0.94 0.82 0.72 0.61 0.52 0.43 0.32 0.18 0.07 0.02 0.000:4 0.85 0.72 0.63 0.53 0.45 0.37 0.28 0.13 0.06 0.01 -0:6 0.68 0.55 0.48 0.41 0.35 0.29 0.21 0.10 0.03 0.00 -0:8 0.39 0.34 0.32 0.27 0.22 0.19 0.12 0.05 0.01 - -1:0 0.09 0.14 0.13 0.13 0.11 0.08 0.04 0.01 - - -1:2 - 0.000 0.001 0.003 0.004 0.001 0.000 - - - -Table 4.23. \Estimated" extremal index � of (Xn)n2N in the ase " d= N(0; 1). We hoseN = m = 2000. Note that the extremal index dereases as j�j inreases and that we have nosymmetry in �.Remark 4.24. (i) Model (4.1) has a natural extension to higher order: the autoregres-sive model of order q with ARCH(q)-errors has been investigated in Kl�uppelberg and Perga-menhthikov [58, 59℄. It is also shown there that for Gaussian error variables this model is indistribution equivalent to a random oeÆient model.(ii) Suh models also lead to interesting statistial theory, some an be found in eonomet-ri textbooks; see e.g. Campbell, Lo and MaKinley [21℄, Gouri�eroux [44℄, Shephard [83℄, orTaylor [85℄. In Kl�uppelberg et al. [57℄ tests for models inluding (4.1) are suggested. A pseudo-likelihood ratio test for the hypotheses that the model redues to random walk or iid data isinvestigated and the distributional limit of the test statisti is derived. �36
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Figure 4.25. Simulated sample path of (Xn)n2N with parameters (�; �; �) = (0:8; 1; 0:2) (top,left), of (X2n)n2N with the same parameters (top, right), of (Xn)n2N with parameters (�; �; �) =(�0:8; 1; 0:2) (middle, left), of (X2n)n2N with the same parameters (middle, right), of (Xn)n2Nwith parameters (�; �; �) = (0; 1; 0:2) (bottom, left) and of (X2n)n2N with the same parameters(bottom,right) in the ase " d= N(0; 1). All simulations are based on the same simulated noisesequene ("n)n2N.
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� � � �1 �2 �3 �4 �5 �60 0.2 0.974 0.973 0.027 0.000 0.000 0.000 0.0000 0.6 0.781 0.799 0.147 0.036 0.012 0.005 0.0010 1 0.549 0.607 0.188 0.107 0.036 0.034 0.017-0.4 0.2 0.962 0.962 0.037 0.001 0.000 0.000 0.0000.4 0.2 0.853 0.867 0.103 0.026 0.002 0.002 0.000-0.4 0.6 0.715 0.747 0.168 0.048 0.026 0.006 0.0020.4 0.6 0.624 0.676 0.182 0.066 0.040 0.019 0.012-0.4 1 0.497 0.540 0.210 0.115 0.075 0.040 0.0040.4 1 0.445 0.533 0.185 0.080 0.109 0.032 0.017-0.8 0.2 0.572 0.626 0.185 0.111 0.026 0.033 0.0010.8 0.2 0.386 0.470 0.172 0.148 0.062 0.068 0.006-0.8 0.6 0.414 0.520 0.159 0.134 0.072 0.043 0.0160.8 0.6 0.314 0.443 0.156 0.110 0.087 0.073 0.041-0.8 1 0.273 0.429 0.137 0.126 0.106 0.016 0.0120.8 1 0.224 0.346 0.132 0.114 0.129 0.045 0.004Table 4.26. \Estimated" extremal index � and luster probabilities (�k)1�k�6 of (Xn)n2N de-pendent on � and � in the ase " d= N(0; 1). We hose N = m = 2000. Note that the extremalindex for � > 0 is muh larger than for � < 0.5 Optimal portfolios with bounded VaRIn this setion we investigate the inuene of large utuations and the Value-at-Risk as a riskmeasure, whih is sensitive to suh prie behaviour to portfolio optimisation. It is based onEmmer, Kl�uppelberg and Korn [35℄ and Emmer and Kl�uppelberg [34℄Starting with the traditional Blak-Sholes model, where stok pries follow a geometri Brow-nian motion we �rst study the di�erene between the lassial risk measure, i.e. the variane,and the VaR.Sine the variane of Brownian motion inreases linearly, the use of the variane as a risk measureof an investment leads to a dereasing proportion of risky assets in a portfolio, when the planninghorizon inreases. This is not true for the Capital-at-Risk whih - as a funtion of the planninghorizon { inreases �rst, but dereases, when the planning horizon beomes larger. We show forthe CaR that, as seems to be ommon wisdom in asset management, long term stok investmentleads to an almost sure gain over loally riskless bond investments. In the long run stok indiesare growing faster than riskless rates, despite the repeated ourrene of stok market delines.The VaR therefore supports the portfolio manager's advie that the more distant the planninghorizon, the greater should be one's wealth in risky assets. Interestingly, the VaR as risk measuresupports the empirial observation above and hene resolves the ontradition between theoryand empirial fats.Then we study the optimal portfolio problem for more realisti prie proesses, i.e. L�evy pro-esses whih model also large utuations. Here, as is to be expeted, the VaR reats to exatlythose and onsequently, the CaR. We investigate, in partiular, the normal inverse Gaussian andvariane gamma L�evy proesses. 38



5.1 The Blak-Sholes modelIn this setion, we onsider a standard Blak-Sholes type market onsisting of one riskless bondand several risky stoks. Their respetive pries (P0(t))t�0 and (Pi(t))t�0 for i = 1; : : : ; d evolveaording to the equationsP0(t) = ert and Pi(t) = pi exp �(bi � 12 dXj=1 �2ij)t+ dXj=1 �ijWj(t)� ; t � 0 :Here W (t) = (W1(t); : : : ;Wd(t))0 is a standard d-dimensional Brownian motion, r 2 R is theriskless interest rate, b = (b1; : : : ; bd)0 the vetor of stok-appreiation rates and � = (�ij)1�i;j�dis the matrix of stok-volatilities. For simpliity, we assume that � is invertible and that bi � rfor i = 1; : : : ; d. Sine the assets are traded on the same market, they show some orrelationstruture whih we model by a linear ombination of the same Brownian motions W1; : : : ;Wdfor eah traded asset. Throughout this paper we denote by Rd the d-dimensional Eulideanspae. Its elements are olumn vetors and for x 2 Rd we denote by x0 the transposed vetor;analogously, for a matrix � we denote by �0 its transposed matrix. We further denote byjxj = (Pdi=1 x2i )1=2 the Eulidean norm of x 2 Rd .We need the SDE orresponding to the prie proesses above.dP0(t) = P0(t)rdt ; P0(0) = 1 ;dPi(t) = Pi(t)�bidt+Pdj=1 �ijdWj(t)� ; Pi(0) = pi ; i = 1; : : : ; d : (5.1)Let �(t) = (�1(t); : : : ; �d(t))0 2 Rd be an admissible portfolio proess, i.e. �i(t) is the fration ofthe wealth X�(t), whih is invested in asset i (see Korn [60℄, Setion 2.1 for relevant de�nitions).Denoting by (X�(t))t�0 the wealth proess, it follows the dynamidX�(t) = X�(t)�((1� �(t)01)r + �(t)0b)dt+ �(t)0�dW (t)	 ; X�(0) = x ;where x 2 R denotes the initial apital of the investor and 1 = (1; : : : ; 1)0 denotes the vetor(of appropriate dimension) having unit omponents. The fration of the investment in thebond is �0(t) = 1 � �(t)01. Throughout the paper, we restrit ourselves to onstant portfolios�(t) = � = (�1; : : : ; �d) for all t 2 [0; T ℄. This means that the frations in the di�erent stoksand the bond remain onstant on [0; T ℄. The advantage of this is two-fold: �rst we obtain, atleast in a Gaussian setting, expliit results; and, furthermore, the eonomi interpretation ofthe mathematial results is omparably easy. It is also important to point out that following aonstant portfolio proess does not mean that there is no trading. As the stok pries evolverandomly one has to trade at every time instant to keep the frations of wealth invested in thedi�erent seurities onstant. Thus, following a onstant portfolio proess still means one mustfollow a dynami trading strategy.Standard Itô integration and the fat that EesW (1) = es2=2; s 2 R , yield the following expliitformulae for the wealth proess for all t 2 [0; T ℄.X�(t) = x exp �(�0(b� r1) + r � j�0�j2=2)t + �0�W (t)� ; (5.2)E[X�(t)℄ = x exp �(�0(b� r1) + r)t� ; (5.3)var(X�(t)) = x2 exp �2(�0(b� r1) + r)t� �exp(j�0�j2t)� 1� : (5.4)39



De�nition 5.1. [Capital-at-Risk℄Let x be the initial apital and T a given planning horizon. Let z� be the �-quantile of thestandard normal distribution. For some portfolio � 2 Rd and the orresponding terminal wealthX�(T ), the VaR of X�(T ) is given byVaR(x; �; T ) = inffz 2 R : P (X�(T ) � z) � �g= x exp�(�0(b� r1) + r � j�0�j2=2)T + z�j�0�jpT� :Then we de�neCaR(x; �; T ) = x exp(rT )�VaR(x; �; T )= x exp(rT )��1� exp((�0(b� r1)� j�0�j2=2)T + z�j�0�jpT )� (5.5)the Capital-at-Risk of the portfolio � (with initial apital x and planning horizon T ). �To avoid (non-relevant) subases in some of the following results we always assume � < 0:5whih leads to z� < 0.Remark 5.2. (i) Our de�nition of the Capital-at-Risk limits the possibility of exess losses overthe riskless investment.(ii) We typially want to have a positive CaR (although it an be negative in our de�nitionas the examples below will show) as the upper bound for the \likely losses" (in the sense that(1��)� 100% of ourring \losses" are smaller than CaR(x; �; T )) ompared to the pure bondinvestment. Further, we onentrate on the atual amount of losses appearing at the planninghorizon T . This is in line with the mean-variane seletion proedure enabling us to diretlyompare the results of the two approahes; see below. �In the following it will be onvenient to introdue the funtion f(�) for the exponent in (5.5),that is f(�) := z�j�0�jpT � j�0�j2T=2 + �0(b� r1)T ; � 2 Rd : (5.6)By the obvious fat that f(�) ! �1 as j�0�j ! 1 we have the natural upper boundsup�2Rd CaR(x; �; T ) = x exp(rT ); i.e., the use of extremely risky strategies (in the sense ofa high norm j�0�j) an lead to a CaR whih is lose to the total apital. The omputation ofthe minimal CaR is done in the following proposition.Proposition 5.3. Let � = j��1(b� r1)j.(a) If bi = r for all i = 1; : : : ; d, then f(�) attains its maximum for �� = 0 leading to a minimumCapital-at-Risk of CaR(x; ��; T ) = 0.(b) If bi 6= r for some i 2 f1; : : : ; dg and �pT < jz�j, then again the minimal CaR equals zeroand is only attained for the pure bond strategy �� = 0.() If bi 6= r for some i 2 f1; : : : ; dg and �pT � jz�j, then the minimal CaR is attained for�� = �� � jz�jpT � (��)�1(b� r1)j��1(b� r1)j (5.7)with CaR(x; ��; T ) = x exp(rT )�1� exp�12(pT� � jz�j)2�� < 0: (5.8)40



Proof. (a) follows diretly from the expliit form of f(�) under the assumption of bi = r for alli = 1; : : : ; d and the fat that � is invertible.(b),() Consider the problem of maximizing f(�) over all � whih satisfyj�0�j = " (5.9)for a �xed positive ". Over the (boundary of the) ellipsoid de�ned by (5.9) f(�) equalsf(�) = z�"pT � "2T=2 + �0(b� r1)T :Thus, the problem is redued to maximizing a linear funtion (in �) over the boundary of anellipsoid. Suh a problem has the expliit solution��" = "(��0)�1(b� r1)j��1(b� r1)j (5.10)with f(��") = �"2T=2 + "� �T � jz�jpT� : (5.11)As every � 2 Rd satis�es relation (5.9) with a suitable value of " (due to the fat that � isregular), we obtain the minimum CaR strategy �� by maximizing f(��") over all non-negative". Due to the form of f(��") the optimal " is positive if and only if the multiplier of " inrepresentation (5.11) is positive. Thus, in the situation of Proposition 5.3(b) the assertionholds. In the situation of Proposition 5.3() the optimal " is given as" = � � jz�jpT :Inserting this into equations (5.10) and (5.11) yields the assertions (5.7) and (5.8) (with the helpof equations (5.5) and (5.6)). �Remark 5.4. (i) Part (a) of Proposition 5.3 states that in a risk-neutral market the CaR ofevery strategy ontaining stok investment is bigger than the CaR of the pure bond strategy.(ii) Part () states the (at �rst sight surprising) fat that the existene of at least one stokwith a mean rate of return di�erent from the riskless rate implies the existene of a stok andbond strategy with a negative CaR as soon as the planning horizon T is large. Thus, even ifthe CaR would be the only riterion to judge an investment strategy the pure bond investmentwould not be optimal if the planning horizon is far away. On one hand this fat is in linewith empirial results on stok and bond markets. On the other hand this shows a remarkabledi�erene between the behaviour of the CaR and the variane as risk measures. Independent ofthe planning horizon and the market oeÆients, pure bond investment would always be optimalwith respet to the variane of the orresponding wealth proess. �We now turn to a Markowitz mean-variane type optimization problem where we replae thevariane onstraint by a onstraint on the CaR of the terminal wealth. More preisely, we solvethe following problem:max�2Rd E[X�(T )℄ subjet to CaR(x; �; T ) � C ; (5.12)where C is a given onstant of whih we assume that it satis�es C � x exp(rT ).Due to the expliit representations (5.4), (5.5) and a variant of the deomposition method asapplied in the proof of Proposition 5.3 we an solve problem (5.12) expliitly.41



Proposition 5.5. Let � = j��1(b� r1)j and assume that bi 6= r for at least one i 2 f1; : : : ; dg.Assume furthermore that C satis�es 0 � C � x exp(rT ) if �pT < jz�j; (5.13)x exp(rT )� 1� exp� 12(pT� � jz�j)2�� � C � x exp(rT ) if �pT � jz�j : (5.14)Then problem (5.12) has solution �� = "� (��0)�1(b� r1)j��1(b� r1)jwith "� = (� + z�=pT ) +q(� + z�=pT )2 � 2=T ;where  = ln �1� Cx exp(�rT )�. The orresponding maximal expeted terminal wealth under theCaR onstraint equals E[X��(T )℄ = x exp ��r + "�j��1(b� r1)j�T � : (5.15)Proof. The requirements (5.13) and (5.14) on C ensure that the CaR onstraint in problem(5.12) annot be ignored: in both ases C lies between the minimum and the maximum valuethat CaR an attain (see also Proposition 5.3). Every admissible � for problem (5.12) withj�0�j = " satis�es the relation(b� r1)0�T � + 12"2T � z�"pT (5.16)whih is in this ase equivalent to the CaR onstraint in (5.12). But again, on the set given byj�0�j = " the linear funtion (b� r1)0�T is maximized by�" = "(��0)�1(b� r1)j��1(b� r1)j : (5.17)Hene, if there is an admissible � for problem (5.12) with j�0�j = " then �" must also beadmissible. Further, due to the expliit form (5.3) of the expeted terminal wealth, �" alsomaximizes the expeted terminal wealth over the ellipsoid. Consequently, to obtain � for problem(5.12) it suÆes to onsider all vetors of the form �" for all positive " suh that requirement(5.16) is satis�ed. Inserting (5.17) into the left-hand side of inequality (5.16) results in(b� r1)0�"T = "j��1(b� r1)jT ; (5.18)whih is an inreasing linear funtion in " equalling zero in " = 0. Therefore, we obtain thesolution of problem (5.12) by determining the biggest positive " suh that (5.16) is still valid.But the right-hand side of (5.18) stays above the right-hand side of (5.16) until their largestpositive point of intersetion whih is given by"� = (� + z�=pT ) +q(� + z�=pT )2 � 2=T ;The remaining assertion (5.15) an be veri�ed by inserting �� into equation (5.3). �42
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Figure 5.7. CaR(1 000; 1; T ) of the pure stok portfolio (one risky asset only) for di�erentappreiation rates as a funtion of the planning horizon T ; 0 < T � 20. The volatility is� = 0:2. The riskless rate is r = 0:05.Remark 5.6. Note that the optimal expeted value only depends on the stoks via the normj��1(b� r1)j. There is no expliit dependene on the number of di�erent stoks. We thereforeinterpret Proposition 5.3 as a kind of mutual fund theorem as there is no di�erene betweeninvestment in our multi-stok market and a market onsisting of the bond and just one stokwith appropriate market oeÆients b and �. �Example 5.8. Figure 5.7 shows the dependene of CaR on the planning horizon T illustratedby CaR(1 000,1,T). Note that the CaR �rst inreases and then dereases with time, a behaviourwhih was already indiated by Proposition 5.3. It di�ers substantially from the behaviour of thevariane of the pure stok strategy, whih inreases with T . Figure 5.9 illustrates the behaviourof the optimal expeted terminal wealth with varying planning horizon orresponding to thepure bond strategy and the pure stok strategy as funtions of the planning horizon T . Theexpeted terminal wealth of the optimal portfolio even exeeds the pure stok investment. Thereason for this beomes lear if we look at the orresponding portfolios. The optimal portfolioalways ontains a short position in the bond as long as this is tolerated by the CaR onstraint.This is shown in Figure 5.10 where we have plotted the optimal portfolio together with the purestok portfolio as funtion of the planning horizon. For b = 0:15 the optimal portfolio alwaysontains a short position in the bond. For b = 0:1 and T > 5 the optimal portfolio (with thesame CaR onstraint as in Figures 5.9) again ontains a long position in both bond and stok(with dereasing tendeny of � as time inreases!). This is an immediate onsequene of theinreasing CaR of the stok prie. For the smaller appreiation rate of the stok it is simply notattrative enough to take the risk of a large stok investment. Figure 5.10 shows the mean-CaReÆient frontier for the above parameters with b = 0:1 and �xed planning horizon T = 5. Asexpeted it has a similar form as a typial mean-variane eÆient frontier.We ompare now the behaviour of the optimal portfolios for the mean-CaR with solutions of aorresponding mean-variane problem. To this end we onsider the following simpler optimiza-tion problem: max�2Rd E[X�(T )℄ subjet to var(X�(T )) � C : (5.19)Proposition 5.11. If bi 6= r for at least one i 2 f1; : : : ; dg, then the optimal solution of the43
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Figure 5.9. Expeted terminal wealth of di�erent investment strategies depending on the plan-ning horizon T , 0 � T � 20. The parameters are d = 1, r = 0:05, b = 0:1, � = 0:2, and� = 0:05. As the upper bound C of the CaR we used CaR(1 000; 1; 5), the CaR of the pure stokstrategy with planning horizon T = 5. On the right border we have plotted the density funtionof the wealth for the optimal portfolio.mean-variane problem (5.19) is given byb� = b" (��0)�1(b� r1)j��1(b� r1)j ;where b" is the unique positive solution of the non-linear equationrT + j��1(b� r1)j"T � 12 ln�Cx2�+ 12 ln �exp("2T )� 1� = 0 :The orresponding maximal expeted terminal wealth under the variane onstraint equalsE[Xb�(T )℄ = x exp �(r + b" j��1(b� r1)j)T � : �Proof. By using the expliit form (5.4) of the variane of the terminal wealth, we an rewritethe variane onstraint in problem (5.19) as(b� r1)0�T � 12 ln� Cx2�� 12 ln �exp("2T )� 1)�� rT =: h("); j�0�j = " (5.20)for " > 0. More preisely, if � 2 Rd satis�es the onstraints in (5.20) for one " > 0 then it alsosatis�es the variane onstraint in (5.19) and vie versa. Noting that h(") is stritly dereasingin " > 0 with lim"#0 h(") =1 and lim"!1h(") = �1we see that the left-hand side of (5.20) must be smaller than the right-hand side for small valuesof " > 0 if we plug in �" as given by equation (5.17). Reall that this was the portfolio withthe highest expeted terminal wealth of all portfolios � satisfying j�0�j = ". It even maximizes(b� r1)0�T over the set given by j�0�j � ". If we have equality(b� r1)0�b"T = h(b") (5.21)44
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Figure 5.10. For di�erent appreiation rates the leftt-hand �gure shows the optimal portfolioand the pure stok portfolio. The right-hand �gure shows the mean-CaR eÆient frontier withthe mean on the horizontal axis and the CaR on the vertial axis. The parameters are the sameas in Figure 5.9.for the �rst time with inreasing " > 0, then this determines the optimal b" > 0. To see this,note that we have E[X�(T )℄ � E[X�b"(T )℄ for all � with j�0�j � b" ;and for all admissible � with " = j�0�j > b" we obtain(b� r1)0�T � h(") < h(b") = (b� r1)0�b"T :By solving the non-linear equation (5.21) for b" we have thus ompletely determined the solutionof problem (5.19) �Example 5.12. Figure 5.13 ompares the behaviour of b" and "� as funtions of the planninghorizon T . We have used the same data as in Example 5.8. To make the solutions of problems(5.12) and (5.19) omparable we have hosen C di�erently for the variane and the CaR riskmeasures in suh a way that b" and "� onide for T = 5. Notie that C for the variane problemis roughly the square of C for the CaR problem taking into aount that the variane measuresan L2-distane, whereas CaR measures an L1-distane. The (of ourse expeted) bottom line ofFigure 5.13 is that with inreasing time the variane onstraint demands a smaller fration ofrisky seurities in the portfolio. This is also true for the CaR onstraint for small time horizons.For larger planning horizon T (T � 20) "� inreases again due to the fat that the CaR dereases.In ontrast to that, b" dereases to 0, sine the variane inreases. �5.2 The exponential L�evy modelAs in Setion 5.1 we onsider a standard Blak-Sholes type market onsisting of a risklessbond and several risky stoks, however, we assume now that their pries follow exponential L�evyproesses. This is a large lass of models, inluding besides the geometri Brownian motion alsomuh more realisti prie models. The respetive pries (P0(t))t�0 and (Pi(t))t�0 for i = 1; : : : ; d45
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Figure 5.13. b" and "� as funtions of the planning horizon; 0 < T � 20. The parameters arethe same as in Figure 5.9.evolve aording to the equationsP0(t) = ert and Pi(t) = pi exp�bit+ dXj=1 �ijLj(t)� ; t � 0 : (5.22)Here r 2 R is the riskless interest rate, b 2 Rd and � = (�ij)1�i;j�d is an invertible matrix.(L(t))t�0 = (L1(t); : : : ; Ld(t))t�0 is a d-dimensional L�evy proess with independent omponents.Hene we assume that eah (Li(t))t�0 for i = 1; : : : ; d has stationary independent inrementswith adlag sample paths. We de�ne this model analogously to the Blak-Sholes model inSetion 5.1, but replae the Brownian motion by a general L�evy proess L.Before we speify this model further we summarize some results on L�evy proesses. For relevantbakground we refer to Bertoin [10℄, Protter [73℄ and, in partiular, Sato [81℄. A very interestingolletion of researh artiles is Barndor�-Nielsen, Mikosh and Resnik [7℄.Eah in�nitely divisible df F on Rd generates a L�evy proess L by hoosing F as df of thed-dimensional vetor L(1). This an be seen immediately, sine the harateristi funtion is foreah t > 0 given by E exp(is0L(t)) = exp(t	(s)) ; s 2 Rd ;where 	 has L�evy-Khinthine representation	(s) = is0a� s0�0�s2 + ZRd(eis0x � 1� is0xI(jxj � 1))�(dx) ; s 2 Rd : (5.23)Here a 2 Rd , �0� is a non-negative de�nite symmetri d� d-matrix, and � is a measure on Rdsatisfying �(f0g) = 0 and RRd(jxj2 ^ 1)�(dx) < 1, alled the L�evy measure of the proess L.The term orresponding to xI(jxj � 1) represents a entering, without whih the integral (5.23)may not onverge. The harateristi triplet (a; �0�; �) haraterizes the L�evy proess L.Aording to Sato [81℄, Chapter 4 (see Theorem 19.2), the following holds. For eah ! in theprobability spae, de�ne �L(t; !) = (�L1(t; !); : : : ;�Ld(t; !)) with �Lj(t; !) = Lj(t; !) �Lj(t�; !) for j = 1; : : : ; d. For eah Borel set B � [0;1) � Rd� (Rd� = Rd n f0g) setM(B;!) = ardft � 0 : (t;�L(t; !)) 2 Bg :46



L�evy's theory says that M is a Poisson random measure with intensitym(dt; dx) = dt�(dx) ;where � is the L�evy measure of the proess L. Notie that m is �-�nite and M(B; �) = 1 a.s.when m(B) =1.With this notation, the L�evy-Khinthine representation (5.23) orresponds to the representationL(t) = at+ �W (t) + X0<s�t�L(s)I(j�L(s)j > 1) + Z t0 Zjxj�1 x(M(dx; ds) � �(dx)ds) ; t � 0 :(5.24)This means that L(t) has a Brownian omponent �W (t) and a pure jump part with L�evy measure�, having the interpretation that a jump of size x ours at rate �(dx). To ensure �niteness ofthe integral (5.23), the small jumps are ompensated by their expetation. This representationredues in the �nite variation ase toL(t) = t+ �W (t) + X0<s�t�L(s) ; t � 0 ; (5.25)where  = a � Rjxj�1 x�(dx); i.e. L(t) is the independent sum of a drift term, a Brownianomponent and a pure jump part.We return to model (5.22) with L having harateristi triplet (a; �0�; �), where a is a d-dimensional vetor, � = diag(�1; : : : ; �d) is a d-dimensional diagonal matrix and � is the L�evymeasure, whih orresponds to the produt measure of the independent omponents of L onRd . This means that e.g. for d = 2 and a retangle A = (a; b℄ � (; d℄ � R2 the L�evy measure�(A) = �1((a; b℄) + �2((; d℄), where �i is the L�evy measure of Li for i = 1; 2. The diagonalmatrix � means that the d-dimensional Wiener proess W has independent omponents withdi�erent varianes possible. This allows for di�erent saling fators in the Wiener proesses andthe non-Gaussian omponents; moreover, if some �i = 0 the model allows for L�evy proesseswithout Gaussian omponent as asset prie models.In order to derive the wealth proess of a portfolio we need the orresponding SDE. By Itô'sformula (see e.g. Protter [73℄, Pi, i = 1; : : : ; d, is the solution to the SDEdPi(t) = Pi(t�)(bidt+ dbLi(t))= Pi(t�)0��bi + 12 dXj=1(�ij�j)2�dt+ dXj=1 �ij(dLj(t)��Lj(t)) (5.26)+ exp� dXj=1 �ij�Lj(t)�� 11A ; t > 0 ; Pi(0) = pi :Remark 5.14. (i) Note the similarity but also the di�erene to the geometri Brownian motionmodel (5.1). Again the Wiener proess introdues an Itô term in the drift omponent of theSDE. However, there is a main hange in the jumps of the L�evy proesses. First note that,beause of the independene, jumps of the di�erent proesses L1; : : : ; Ld our at di�erent times(see Sato [81℄, Exerise E12.10 on p. 67). Then every jump of one of the original proesses isreplaed: a jump of size Pdj=1 �ij�Lj is replaed by a jump of size exp(Pdj=1 �ij�Lj)� 1.47



(ii) Note also that bLi is suh thatexp� dXj=1 �ijLj� = E(bLi) ; i = 1; : : : ; d ;where E denotes the stohasti exponential of a proess. �We shall use the following lemma whih relates the harateristi triplet of an exponential L�evyproess and its stohasti exponential in R .Lemma 5.15. (Goll and Kallsen [43℄)If L is a real-valued L�evy proess with harateristi triplet (a; �; �), then also bL de�ned byeL = E(bL) is a L�evy proess with harateristi triplet (ba; b�; b�) given byba� a = 12�2 + Z �(ex � 1)1f(jex�1j<1g � x1fjxj<1g��(dx)b� = �b�(�) = �(fx 2 R : ex � 1 2 �g) for any Borel set � � R� .As in the Blak-Sholes model before, we restrit ourselves to onstant portfolios; i.e. �(t) = �,t 2 [0; T ℄, for some �xed planning horizon T . In order to avoid negative wealth we require that� 2 [0; 1℄d and �01 � 1. Denoting by (X�(t))t�0 the wealth proess, it follows the dynamidX�(t) = X�(t�)�((1 � �01)r + �0b)dt+ �0dbL(t)� ; t > 0 ; X�(0) = x ;where x 2 R denotes the initial apital of the investor.Using Itô's formula, this SDE has solutionX�(t) = x exp((r + �0(b� r1))t)E(�0bL(t)) ; t � 0 : (5.27)One important onsequene of this represenation is the fat that a jump �L(t) is transformedinto a jump �X�(t) = ln(1 + �0(e��L(t) � 1)) > ln(1 � �01) and hene we also require for theportfolio that �01 � 1.From (5.26) it is lear that (X�(t))t�0 annot have a nie and simple representation as in thease of geometri Brownian motion; see (5.2). In any ase, (X�(t))t�0 is again an exponentialL�evy proess and we alulate the harateristi triplet of its logarithm.Lemma 5.16. Consider model (5.22) with L�evy proess L and harateristi triplet (a; �; �).De�ne for the d� d-matrix �� the vetor [��℄2 with omponents[��℄2i = dXj=1(�ij�j)2 ; i = 1; : : : ; d :The proess (lnX�(t))t�0 is a L�evy proess with triplet (aX ; �X ; �X) given byaX = r + �0(b� r1 + [��℄2=2 + �a)� j�0��j2=2+ZRd � ln(1 + �0(e�x � 1))1fj ln(1+�0(e�x�1))j�1g � �0�x1fjxj�1g��(dx) ;�X = j�0��j ;�X(A) = �(fx 2 Rd : ln(1 + �0(e�x � 1)) 2 Ag) for any Borel set A � R� :48



In the �nite variation ase we obtainlnE(�0bL(t)) = Xt+ �0��W (t) + X0<s�t ln�1 + dXi=1 �i�bLi(s)�= Xt+ �0��W (t) + X0<s�t ln �1 + dXi=1 �i� exp( dXj=1 �ij�Lj(s))� 1�� ; t � 0 ;where X = �0(� + [��℄2=2) � j�0��j2=2 ;and  = a� Rjxj�1 x�(dx) as in (5.25).By Lemma 5.16 lnX�(t) has harateristi funtion E exp(is lnX�(t)) = exp(t X(s)), s 2 R.If it an be analytially extended around s = 0 in C , then by Theorem 25.17 in Sato [81℄ weobtain for all k 2 N E[(X�(t))k℄ = exp(t	X(�ik)) ; t � 0 : (5.28)In partiular, E exp(s lnX�(t)) = E[(X�(t))s℄ < 1 for one and hene all t > 0 if and only ifRjxj>1 esx�X(dx) <1.Proposition 5.17. Let L = (L1; : : : ; Ld) be a L�evy proess with independent omponents andassume that for all j = 1; : : : ; d the rv Lj(1) has �nite moment generating funtion bfj suh thatbfj(�ij) = E exp(�ijLj(1)) <1 for i; j = 1; : : : ; d. Denotebf(�) := E exp(�L(1)) = �E exp� dXj=1 �1jLj(1)�; : : : ; E exp� dXj=1 �djLj(1)�� : (5.29)Let X�(t) be as in equation (5.27). ThenE [X�(t)℄ = x exp�t�r + �0�b� r1 + ln bf(�)��� ;var(X�(t)) = x2 exp�2t�r + �0�b� r1 + ln bf(�)��� �exp(t�0A�)� 1�where A is a d� d-matrix with omponentsAij = E exp dXl=1(�il + �jl)Ll(1)!�E exp dXl=1 �ilLl(1)!�E exp dXl=1 �jlLl(1)! ; 1 � i; j � d :Proof. Formula (5.28) redues for k = 1 and k = 2 somewhat, giving together with theexpression of �X in terms of � of Lemma 5.16,E [X�(t)℄ = x exp�t�r + �0�b� r1 + 12 [��℄2 + �a+ZRd(e�x � 1� �x1fjxj<1g)�(dx)��� ;var (X�(t)) = x2 exp�2t�r + �0�b� r1 + 12[��℄2 + �a+ ZRd(e�x � 1� �x1fjxj<1g)�(dx)�����exp�t�j�0��j2 + ZRd(�0(e�x � 1))2�(dx)��� 1� :49



For i = 1; : : : ; d denote by ei the i-th unit vetor in Rd . Then the i-th omponent of (5.29) isobtained byE exp( dXl=1 �ilLl(1)) = exp((�a+ [��℄2=2 + Z (e�x � 1� �x1fjxj<1g)�(dx))i) :whih orresponds to the i-th omponent of ln(E exp(�L(1))). The formula for the variane isobtained analogously.Remark 5.18. Note that for l = 1; : : : ; d (i = p�1)ln(E exp( dXj=1 �ljLj(1))) = dXj=1 ln bfj(�lj) = lnE[E(bLl)(1)℄ = dXj=1	(�i�lj) :This implies in partiular EE(�0bL(t)) = (Qdl=1(E[E(bLl(t))℄)�l), �5.3 Portfolio optimizationWe onsider now the portfolio optimization problem using the Capital-at-Risk as risk measurein the more general setting of L�evy proesses. The de�nition of the CaR from De�nition 5.1adapted to the more general situation reads as follows.De�nition 5.19. [Capital-at-Risk℄Let x be the initial apital and T a given planning horizon. Let z� be the �-quantile of E(�0bL(T ))for some portfolio � 2 Rd and X�(T ) the orresponding terminal wealth. Then the VaR of X�(T )is given by VaR(x; �; T ) = inffz 2 R : P (X�(T ) � z) � �g= xz� exp((�0(b� r1) + r)T )and we de�ne CaR(x; �; T ) = x exp(rT )�VaR(x; �; T )= x exp(rT )(1� z� exp(�0(b� r1)T ))the Capital-at-Risk of the portfolio � (with initial apital x and planning horizon T ). �We onsider now the following optimization problem.max�2[0;1℄d ; �01�1 E[X�(T )℄ subjet to CaR(x; �; T ) � C :In general, quantiles of L�evy proesses annot be alulated expliitly. Usually, the df of X�(T )is not known expliitly. At �rst sight there are various possibilities for approximations and wedisuss their appliability for quantile estimation below.For simpliity we restrit ourselves to d = 1, i.e. the portfolio onsists of the bond and one riskyasset, whih is modelled by the exponential L�evy proessP (t) = p exp(bt+ L(t)) t � 0 ;50



where L has harateristi funtion EeisL(t) = et	(s), s 2 R. We set �1 = � and X�(t) reduesto X�(t) = x exp((r + �(b� r))t)E(�bL(t)) ; t � 0 ; X�(t) = x ;where (lnE(�bL(t)))t�0 is a L�evy proess with harateristi triplet (aX ; �X ; �X) given byaX = �(a� 12(1� �)�2) + Z � ln(1 + �(ex � 1))1(j ln(1 + �(ex � 1))j � 1)� �x1(jxj � 1)��(dx) ;�X = �� ;�X(A) = �(fx 2 R : ln(1 + �(ex � 1)) 2 Ag) for any Borel set A � R� :Setting 	(�si) = lnEesL(1) for s 2 R suh that the moment generating funtion is �nite, alsothe existing moments redue for t � 0 toE[X�(t)℄ = x exp(t(r + �(b� r +	(�i)))var(X�(t)) = x exp(2t((r + �(b� r +	(�i))) �exp(�2t(	(�2i)� 2	(�i))) � 1�We obtain in the ase of a jump part of �nite variation for t � 0,E [X�(t)℄ = x exp((r + �(b� r + 12�2 +  + b�))t) ; (5.30)var (X�(t)) = x2 exp�2t�r + �(b� r +  + b�+ 12�2��� �exp ��2t(�2 + b�2 � 2b�)�� 1� ; (5.31)where b� = R (ex � 1)�(dx), b�2 = R (e2x � 1)�(dx), and  = a� Rjxj<1 x�(dx) .In the following we disuss some estimation methods for the CaR, whih means that we have toestimate a small quantile of E(�0bL(T )); see De�nition 5.19.Simulation methods of L�evy proesses are often based on in�nite series representations; seeRosinski [79℄ and referenes therein. In priniple, suh methods an be applied here to simulateindependent opies of X�(T ) and estimate the quantile by its empirial ounterpart. Suh meth-ods are based on the L�evy measure �X , whih we derived in Lemma 5.16. There are, however,two serious drawbaks. The �rst is that low and high quantiles are even in straightforwardmodels not well estimated by their empirial ounterparts; the seond is that the in�nite serieshas to be trunated, whih obviously is another soure of inauray.We invoke instead an idea used for instane by Bondesson [14℄ and Rydberg [80℄ for simulationpurposes and made mathematially preise by Asmussen and Rosinski [2℄. Before we apply theirresult to approximate a low quantile as the VaR above we explain �rst the idea. The intuitionbehind is that small jumps (< ") may be approximated by Brownian motion, whereas large ones(� ") onstitute a ompound Poisson proess N ". This normal approximation works for various,but not for all models. In partiular, it fails for the exponential variane-gamma model, whihhas beome an important model also in pratie. We formulate therefore a more general result.For a L�evy proess with representation (5.24) we write for small " > 0,L(t) = �(")t+ �W (t) +N "(t) + Z t0 Zjxj<" x(M(ds; dx) � ds�(dx))� �(")t+ �W (t) +N "(t) + �(")V (t) ; t � 0 ; (5.32)51



where V is some (hopefully simple) L�evy proess and�2(") = Zjxj<" x2�(dx) ; (5.33)�(") = a� Z"�jxj�1 x�(dx) ; (5.34)N "(t) = Xs�t �L(s)1fj�L(s)j�"g : (5.35)The approximation (5.32) an be made preise. It is a onsequene of a funtional entral limittheorem, provided that for "! 0�(")�1 Z t0 Zjxj<" x(M(ds; dx) � ds�(dx)) = �(")�1(L(t)� L"(t)) d! W 0(t) ; t � 0 ; (5.36)where L"(t) = �(")t+ �W (t) +N"(t) ; t � 0 : (5.37)We denote by d! weak onvergene in D[0;1) with the supremum norm uniformly on ompata;see Pollard [72℄.Sine the Brownian omponent and the jump omponent of a L�evy proess are independent,(5.36) justi�es approximation in distribution (5.32).We want to invoke this result to approximate quantiles of E(�0bL(T )). We do this in two steps:�rstly, we approximate E(�0bL(T )), seondly, we use that onvergene of dfs implies also onver-gene of their generalized inverses. This gives the approximation of the quantiles.Theorem 5.20. [Emmer and Kl�uppelberg [34℄℄Let Y be any L�evy proess with L�evy measure �. Let E (exp(Y (�)) = Z(�) be suh that EZ(�) =expY (�) with harateristi triplets given in Lemma 5.15. Let furthermore, �(�) be de�ned as in(5.33), and Y" and Z" as L" in (5.37), respetively.Let V be a L�evy proess. Equivalent are for "! 0�(")�1(Y (t)� Y"(t)) d! V (t) ; t � 0 ; (5.38)(��("))�1 (lnE(�Z(t))� lnE(�Z"(t))) d! V (t) ; t � 0 : (5.39)For the proof we need the following theorem.Theorem 5.21. Let Z"; " > 0, be L�evy proesses without Brownian omponent and Y " =lnE(Z") their logarithmi stohasti exponentials with harateristi triplets (aZ ; �Z ; �Z) and(aY ; �Y ; �Y ) as de�ned in Lemma 5.15. Let g : R ! R+ with g(") ! 0 as " ! 0 and V someL�evy proess. Then equivalent are as "! 0,Z"(t)g(") d! V (t) ; t � 0 ;Y "(t)g(") d! V (t) ; t � 0 :52



Proof of (5.38) , (5.39). Setting g(") := �(") and Y " := Y � Y" in Theorem 5.21 we obtainthat (5.38) holds if and only if�(")�1E (exp(Y (t)� Y"(t))) d! W (t); t � 0 : (5.40)Applying Theorem 5.21 to g(") := ��(") and Z" := �E (exp(Y (t)� Y"(t))) leads to the equiv-alene of (5.40) and(��("))�1 lnE(�E (exp(Y (t)� Y"(t)))) d! W (t); t � 0:The identitylnE(�E (exp(Y (t)� Y"(t)))) = lnE(�E (exp(Y (t)))) � lnE(�E (exp Y"(t)))); t � 0 ;(5.41)whih an be proven by alulating all three logarithmi exponentials by Itô's formula (see Em-mer and Kl�uppelberg [34℄), leads to the equivalene with (5.39). �In the �nite variation ase (5.36), i.e. (5.38) an be rewritten to�(")�10� X0<s�t�L(s)I(j�L(s)j < ")�E 24 X0<s�t�L(s)I(j�L(s)j < ")351A d! V (t) ; t � 0 ;whih shows immediately the onnetion to the lassial entral limit theorem.We apply (5.39) and (5.41) to approximate lnE(�bL) for � 2 (0; 1℄ as follows.lnE(�E (exp(L(t)))) � lnE(�E (L"(t)))) + ��(")V (t) ; t � 0 ;and hene we obtainlnE(�E (exp(L(t)))) � "�t+ ��W (t) +M "�(t) + ��(")V (t) ; t � 0 ;where "� = �(�(") + (1� �)�2=2) ;M "�(t) = Xs�t ln(1 + �(exp(�L(s)1fj�L(s)j>"g)� 1)) ;i.e. M "� is a ompound Poisson proess with jump measure�M"�(�) = �L(fx : ln(1 + �(ex � 1)) 2 �gn(�"; "))for any Borel set � � R� :By Proposition 0.1 of Resnik [75℄ we obtain the orresponding approximation for the �-quantilez� of E(�bL(T ).Proposition 5.22. With the quantities as de�ned above we obtainz� � z"�(�) = inffz 2 R : P ("�T + ��W (T ) +M "�(T ) + ��L(")V (T ) � ln z) � �g ;giving the following approximationsVaR(x; �; T ) � xz"�(�) exp((�(b� r) + r)T ) ;CaR(x; �; T ) � xerT �1� z"�(�)e�(b�r)T� :53



The following orollary haraterises the normal approximation.Corollary 5.23. [Asmussen and Rosinski [2℄℄(a) V is standard Brownian motion if and only if�(h�(") ^ ") � �(") for eah h > 0 : (5.42)(b) Condition (5.42) holds if lim"#0 �(")=" =1 :() If the L�evy measure has no atoms in a neighbourhood of 0, then ondition (5.42) is equiv-alent to lim"#0 �(")=" =1 :Provided the above ondition is satis�ed we have redued the problem of estimating a quantile ofa ompliated L�evy proess to the estimation of a quantile of the sum of the ompound Poissonrv M "�(T ) and the normal rv fW (T ) := �0(�2 + �2L("))1=2W (T ). We alulate the density ofM "�(T ) +fW (T ) using the Fast Fourier Transform method, heneforth abbreviated as FFT. Byindependene, we have for the harateristi funtion of M "�(T ) +fW (T )�(u) = �M"�(T )(u)�fW (T )(u) ; u 2 R : (5.43)Denote by hM"� the L�evy density of M "�, whih we assume to exist, then we obtain�M"�(T )(u) = exp(T�M"�(R)(�Y (u)� 1)) ; u 2 R ;where �Y (u) = 1�M"�(R) Z eiuxhM"�(x)dx ; u 2 R : (5.44)Furthermore, by normality,�fW (T )(u) = exp(�Tu2�2(�2 + �2L("))) ; u 2 R :We approximate the integral in (5.44) by the trapezoid rule, hoosing a number n (a power of 2)of intervals and a step size �x. Set g = hM"�=�M"� (R). We trunate the integral �Y and obtainZ 1�1 eiuxg(x)dx � Z (n=2�1)�x�(n=2)�x eiuxg(x)dx� n=2�1)Xk=�(n=2) eiuk�xg((k�x)�x= n�1Xk=0 eiu(k�n=2)�xg((k � n=2)�x)�x= �xe�iun�x=2 n�1Xk=0 eiuk�xg((k � n=2)�x) :For gk := g((k � n=2)�x), k = 0; : : : ; n � 1, the sum is the disrete Fourier transform ofthe omplex numbers gk and an be alulated by the FFT algorithm for uk = 2�k=(n�x),k = 0; : : : ; n � 1, simultaneously (see e.g. Brigham [20℄, Chapter 10). This results in anapproximation for � in (5.43). By the inverse FFT we obtain the density of M "�(T ) +fW (T ).54



Example 5.24. [Exponential Brownian motion with jumps℄Here the L�evy proess is the sum of a Brownian motion with drift (�W (t) + t)t�0, and aompound Poisson proess (L(t))t�0, with Poisson intensity  and p as distribution of the jumpheights (Yi)i2N . For illustratrive purpose we restrit this example to one ompound Poissonproess, we ould as well take several di�erent ones, see e.g. [35℄. The drift  = �12�2 � b� ishosen suh that it ompensates the jumps. The L�evy measure is �(dx) = p(dx) and heneb� = (bg(1) � 1) and b�2 = (bg(2) � 1), where g is the moment generating funtion of Y1, whihwe assume to exist at the required points. By (5.30) and (5.31) we obtain for t � 0X�(t) = x exp�t�r + �(b� r)� �b�� 12�2�2�+ ��W (t)�N(t)Yi=1 (1 + �(eYi � 1)) ;E[X�(t)℄ = x exp(t(r + �(b� r))) ;var(X�(t)) = x2 exp(2t(r + �(b� r))) �exp(�2t(�2 + (bg(2)� 2bg(1) + 1))) � 1� :Note that for  = 0 the model redues to exponential Brownian motion; i.e.X�(t) = x exp�t�r + �(b� r)� 12�2�2�+ ��W (t)� :On the other hand, if � = 0 the model redues to exponential ompound Poisson proess; i.e.X�(t) = x exp �t�r + �(b� r)� �b���N(t)Yi=1 (1 + �(eYi � 1)) :Example 5.25. [Exponential normal inverse Gaussian (NIG) L�evy proess℄This normal mixture model has been suggested by Barndor�-Nielsen [5, 4℄; see also Eberleinand ollaborators [28, 29, 30℄ It has the representationL(t) = �t+ ��2(t) + �(t)" ; t � 0 ;where �; � 2 R, " is a standardnormal rv and (�2(t))t�0 has inverse Gaussian inrements. Theproess (L(t))t�0 is uniquely determined by the distribution of the inrement L(1) whih is NIG(see Barndor�-Nielsen [5℄). This means that L(1) d= N(� + �Z;Z), where N(a; b) denotes anormal rv with mean a and variane b and Z is inverse Gauss distributed; more preisely, thedensity of L(1) is given bynig(x; �; �; �; Æ) := �� exp�Æp�2 � �2 + �(x� �)� K1(Æ�g(x � �))g(x� �) ; x 2 R ;where � � j�j � 0, Æ > 0, � 2 R, g(x) = pÆ2 + x2 andK1(s) = 12 Z 10 exp�� 12s(x+ x�1)�dxis the modi�ed Bessel funtion of the third kind. The parameter � is a steepness parameter,i.e. for larger � we get less large and small jumps and more jumps of middle height, Æ is a saleparameter, � is a symmetry parameter and � a loation parameter. For � = � = 0 (symmetryaround 0) the harateristi triplet of a NIG L�evy proess is given by (0; 0; �) with�(dx) = Æ�� jxj�1K1(�jxj)dx ; x 2 R� :55



We an alulate b� and b�2 via the moment generating funtion of L(1), whih is for the NIGdistribution given by E exp(sL(1)) = exp(Æ(� �p�2 � s2)) ; jsj < � ;(see e.g. Raible [74℄, Example 1.6) and hene beause of symmetry,b� = Æ(� �p�2 � 1) ;b�2 = Æ(� �p�2 � 4) :Plugging these results into (5.30) and (5.31), and hoosing bnig = bBS � Æ(� � p�2 � 1) (bBSis the quantity b from Example 5.24, suh that the expetation of an asset in the NIG model isthe same as for the exponential Brownian motion, we obtain for t � 0,X�(t) = x exp(t(r + �(bBS � r � Æ(� �p�2 � 1)))) Y0<s�t �1 + �(e�L(s) � 1)� ;E [X�(t)℄ = x exp(t(r + �(bBS � r)) ;var (X�(t)) = x2 exp(2t(�(bBS � r)) + r))�exp�Æ�2t(2p�2 � 1� ��p�2 � 4)�� 1� :By Corollary 5.23, for the exponential normal inverse Gaussian L�evy proess the normal ap-proximation for small jumps is allowed sine �2(") � (2Æ=�)" as "! 0For an estimate of the �-quantile we invoke Proposition 5.22 and use FFT.Figures 5.26 show sample paths a geometri NIG-L�evy proess with ertain parameter values.
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Figure 5.26. Ten sample paths of the exponential NIG L�evy proess with � = 8 and Æ = 0:32(left) and with � = 2 and Æ = 0:08 (right), its expetation E(L(T )) and expetation�standarddeviation for x = 1000, b = 0:1, and r = 0:05.Example 5.27. [Exponential variane gamma (VG) model℄This normal mixture model has been suggested by Madan and Seneta [64℄, its non-symmetriversion an be found in Madan, Carr and Chang [63℄. An interesting empirial investigation hasbeen onduted by Carr et al. [22℄. The non-symmetri model is de�ned as follows.L(t) = �t+ ��2(t) + �(t)" ; t � 0 ;56



where �; � 2 R, " is a standardnormal rv and (�2(t))t�0 has gamma inrements, more preisely,�2(s) d= �(�s; �) for parameters � > 0 and � > 0; i.e. it has densityh(x) = x�s�1�(�s)��s e�x=� ; x > 0 :The harateristi funtion of L(1) is given byE exp(isL(1)) = exp(is�t)(1� is��+ s2�=2)�t s 2 R :The L�evy proess L is a pure jump proess with L�evy density�(dx) = �jxj exp �r2� + �2 jxj+ �x! dx ; x 2 R� :We obtain as beforeX�(t) = x exp(t(r + �(b� r + �)))Ys�t(1 + �(e�L(s) � 1)�E[X�(t)℄ = x(1� ��� �=2)���t exp(t(r + �(b� r + �)))var(X�(t)) = x2(1� ��� �=2)�2��t exp(2t(r + �(b� r + �)))� �(1� ��� �=2)21� 2��� 2� ���2t � 1! :For our �gures we hoose � = � ln(1 + ��� �=2) and b = bBS suh that E[X�(t)℄ = x exp((r +�(bBS�r))t). In order to �nd an approximation for the VaR we alulate �2(") � �"2 as "! 0.Sine its L�evy measure has no atoms in a neighbourhood of 0, by Corollary 5.23, the normalapproximation for small jumps is not allowed.However, there is another limit proess to allow for approximation of the small jumps: for "! 0�(")�1(L(t)� L"(t)) d! V (t) ; t � 0 ;where V is a L�evy proess with harateristi triplet (0; 0; �V ) where the L�evy measure �V hasdensity �V (dv) = (�=v)1(�1=p�;1=p�)(v)dv. This means that the following approximation isvalid z� � z"�(�) = inffz 2 R : P ("�T +M "� + ��(")V (T ) � ln z) � �g ;giving again approximations as in Proposition 5.22.Remark 5.30. When we want to perform a portfolio optimization for the di�erent exponentialL�evy models as prie proesses, then ertain strutures an be exploited. Note e.g. that theexpeted wealth proess is inreasing in �; hene the optimal portfolio is always the largest �suh that the risk bound is satis�ed. For L�evy proesses additionally � � 1 has to be satis�ed.Suh � an always easily be found by a simple numerial iteration proedure.Next note that to make results omparable we have hosen all mean portfolio proesses equal.(a) Mean-variane optimization: Sine NIG and VG models have so many parameters we analways hoose them so that all varianes are equal in the di�erent examples. Then, of ourse,57
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Figure 5.28. Density of L(1) for the NIG model with parameters � = 2, Æ = 0:08, � = � = 0,x = 1000, b = 0:1 and r = 0:05. The normal density with the same variane 0.04 is plotted foromparison. Moreover, the respetive 1% quantiles (left vertial lines) and 5%-quantiles (rihtvertial lines) are plotted. All solid lines orrespond to the NIG model, all dotted ones to thenormal model.
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