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1 Introduction

Certain time series models known as ARCH (autoregressive conditionally heteroscedastic)

and GARCH (Generalised ARCH) models are popular in financial econometrics where

they are designed to capture some of the distinctive features of asset price, exchange

rate, and other series. So-called stylised facts characterise financial returns data as heavy-

tailed, uncorrelated, but not independent, with time-varying volatility and a long range

dependence effect evident in volatility, this last also being manifest as a “persistence in

volatility”. Various attempts have been made to capture these features in a continuous

time model, a natural extension being given by diffusion approximations to the discrete

time GARCH as in Nelson [21] and Duan [10] or also in de Haan and Karandikar [8].

These lead to stochastic volatility models of the type

dYt = σtdB
(1)
t , dσ2

t = θ(γ − σ2
t )dt+ ρσ2

t dB
(2)
t , t > 0 , (1.1)

where B(1) and B(2) are independent Brownian motions. For a review paper on such

continuous time GARCH models we refer to Drost and Werker [9].

Various related models have been suggested and investigated, many generalisations

being based on Lévy processes replacing the Brownian motions and on relaxing the in-

dependence property. We refer here to Barndorff-Nielsen and Shephard [2, 3] and Anh,

Heyde and Leonenko [1] for quite sophisticated models.

The main difference between models like (1.1) and the original GARCH setup is the

fact that in the GARCH modelling one single source of randomness suffices; all stylized

features are then captured by the dependence structure of the model.

We adopt this idea of a single noise process and suggest a new continuous time GARCH

model, which captures all the stylized facts as the discrete time GARCH does. As noise

process, any Lévy process is possible, its increments replacing the innovations in the dis-

crete time GARCH model. The volatility process is modelled by a stochastic differential

equation, whose solution displays the “feedback” and “autoregressive” aspect of the re-

cursion formula for the discrete time GARCH model.

Our paper is organised as follows. We start in Section 2 with the basics, giving neces-

sary and sufficient conditions (NASC) for the existence of stable solutions to the discrete

time GARCH(1,1) model, assuming no a priori conditions whatsoever; in particular, no

moment or log-moment assumptions are made.

In Section 3, motivated by the structural results of the previous section, we suggest

a new continuous time GARCH(1,1) model taking a general Lévy process as the driving

process. The resulting volatility process satisfies a stochastic differential equation and

is stationary under analogous conditions as for the discrete time GARCH model. More-

over, it is Markovian. For the continuous time GARCH model a bivariate state space
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representation exists and is Markovian, again in analogy to the discrete time GARCH.

Section 4 is devoted to an investigation of the stylized facts for the volatility process as

mentioned above. The second order properties of the continous time GARCH match those

of the discrete time model, as calculated moments and autocorrelation functions reveal.

Moreover, the stationary volatility is heavy-tailed in the sense that not all moments exist

in a given parametrisation.

Finally, in Section 5 we summarize some moment properties of the GARCH process

itself, showing in particular that its squared increments are positively correlated under

some conditions.

2 Discrete time ARCH(1) and GARCH(1,1) processes

We write the discrete time GARCH(1,1) process in the form

Yn = εnσn, where σ2
n = β + λY 2

n−1 + δσ2
n−1 , n ∈ N . (2.1)

The random variable (rv) σn is the positive square root of σ2
n and the εn, n = 1, 2, . . ., are

independent and identically distributed (i.i.d.) non-degenerate rvs with P{ε1 = 0} = 0.

The parameters β, λ and δ satisfy β > 0, λ ≥ 0 and δ ≥ 0. When δ = 0 in (2.1),

GARCH(1,1) reduces to ARCH(1), and if δ = λ = 0, (Yn)n∈N is simply a sequence of

i.i.d. rvs, so we assume δ + λ > 0 to exclude this case. We assume some initial almost

surely (a.s.) finite (random, in general) values for ε0 and σ0, independent of each other

and independent of (εn)n≥1, and let Y0 = ε0σ0. For general background on ARCH we refer

to Engle [13], and for GARCH to Bollerslev, Engle and Nelson [6]; see also Shephard [29].

There have been many empirical and theoretical investigations into properties of the

models. Of major theoretical importance are conditions on the parameters in the model

under which a stationary version of the process exists. Define the rvs

πn = πn(λ, δ) :=
n∏
i=1

(δ + λε2
i ) , n ∈ N .

The next result will be used to motivate our continuous time model. Throughout, “
D→”

means “convergence in distribution”, “
P→” means “convergence in probability”, and “

D
=”

means “has the same distribution as”.

Theorem 2.1. (a) (GARCH(1,1)) Assume the above setup with δ > 0 and λ ≥ 0, but

no further restrictions. Suppose

E| log(δ + λε2
1)| <∞ and E log(δ + λε2

1) < 0. (2.2)
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Then we have stability of the mean and variance processes, that is, Yn
D→ Y and σn

D→ σ,

as n → ∞, for finite rvs Y and σ. Conversely, if (2.2) does not hold, then σn
P→ ∞ and

|Yn|
P→∞ as n→∞.

(b) (ARCH(1)) Suppose δ = 0 and λ > 0. Then we have stability of (Yn)n≥0 and (σn)n≥0

if (b1) (2.2) holds with δ = 0, or (b2)

E(log(λε2
1))− =∞ and

∫ ∞
0

x

(∫ x

0

P (log(λε2
1) < −y) dy

)−1

dP (log(λε2
1) ≤ x) <∞ .

(2.3)

Conversely, if (2.2) with δ = 0, and (2.3) both fail, then σn
P→ ∞ and |Yn|

P→ ∞ as

n→∞.

Proof. Take δ ≥ 0, λ ≥ 0. From (2.1) we have

σ2
n = β + λY 2

n−1 + δσ2
n−1 = β + (δ + λε2

n−1)σ2
n−1 , n ∈ N , (2.4)

where εn−1 is independent of σ2
n−1. Iterate this to get (cf. Goldie [16], Nelson [22] Eq. (6))

σ2
n = β

n−1∑
i=0

n−1∏
j=i+1

(δ + λε2
j) + σ2

0

n−1∏
j=0

(δ + λε2
j) , n ∈ N (2.5)

(take Πb
j=a = 1 when a > b). This relation shows that the distribution of σn has the form

of the distribution of a discrete time perpetuity, as in Goldie and Maller [17]. Setting

Mj = Mj(δ, λ) = δ + λε2
j , and Qi = 1 in their notation, we can apply their Theorem 2.1

to see that σ2
n

D→ σ2 for a finite rv σ, provided limn→∞ πn = 0 a.s. Assuming limn→∞ πn =

0 a.s., and taking limits in (2.4) shows that σ satisfies σ2 D
= β + (δ + λε2)σ2, with ε

and σ independent. From (2.1) we then get Yn
D→ Y , satisfying Y

D
= σε, with ε and σ

independent. If πn does not tend to 0 a.s., then Theorem 2.1 of [17] shows that σn
P→∞,

and then |Yn|
P→ ∞ because P{ε1 = 0} = 0. Thus, a NASC for stability of the discrete

ARCH(1) and GARCH(1,1) processes is πn → 0 a.s. as n→∞.

Now define

S0 = 0 , Sn =
n∑
i=1

Xi , n ∈ N , for Xi = − log(δ + λε2
i ) , i ∈ N .

Since P{εi 6= 0} = 1, the Xi and Sn are a.s. finite rvs for any δ ≥ 0, λ ≥ 0, δ + λ > 0.

Further, πn → 0 a.s. if and only if Sn → ∞ a.s. Let X = X1, X+ = max(0, X) and

X− = −X +X+. Then, by Kesten and Maller [18] and Erickson [14], a NASC for πn → 0

a.s., or, equivalently, Sn →∞ a.s., is:

E|X| <∞ and EX > 0 ; (2.6)
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or else

EX+ =∞ and

∫
[0,∞)

(
x

E(X+ ∧ x)

)
dP{X− ≤ x} <∞ . (2.7)

(a) Keep δ > 0, λ ≥ 0. Now (2.6) is exactly (2.2), so we only have to check that condition

(2.7) cannot occur in this case. We do this by showing EX+ <∞. Note that (2.2) implies

δ < 1, as does limn→∞ πn = 0 a.s. So we may keep 0 < δ < 1. Then for x > 0,

P (X > x) = P (− log(δ + λε2
1) > x) = P (log(δ + λε2

1) < −x) 1{x<− log δ} ,

so

EX+ =

∫ − log δ

0

P (log(δ + λε2
1) < −x) dx,

which is always finite, completing the proof of (a).

(b) Next, keep δ = 0, λ > 0. This time (2.7) can occur, the condition being equivalent to

(2.3). Alternatively, (2.6) is equivalent to (2.2) with δ = 0 in this case. This proves (b).

2

Remark 2.1. (i) Under the a priori assumption that the expectations of the positive and

negative parts of log(δ+λε2
1) are not both infinite, Nelson [22] gives a NASC for stability

of the ARCH(1) and GARCH(1,1) volatility processes as E log(δ + λε2
1) < 0 (see also

Sampson [26]). In the GARCH case, δ > 0 and λ ≥ 0, we always have E(log(δ+λε2
1))− <

∞, and so (2.2) recovers Nelson’s sufficient condition. Nelson claims that if (2.2) fails,

then σn →∞ a.s., but his proof is incorrect in the case E log(δ+λε2
1) = 0. Only the weak

divergences, that σn
P→∞ and |Yn|

P→∞ (n→∞) as stated in our Theorem 2.1, can be

claimed in general. This distinction is important in some applications.

In the ARCH case, δ = 0 and λ > 0, then it is easy to construct (εn)n∈N such that

E(log(λε2
1))− = E(log(λε2

1))+ = ∞, but (2.3) still holds. Thus Theorem 2.1 extends

Nelson’s result for the ARCH(1) case.

(ii) Condition (2.2) obviously implies δ < 1. Conversely, if δ > 0 and

δ + λE(ε2
1) < 1,

then (2.2) holds by an application of Jensen’s inequality. Under the finite variance condi-

tion E(ε2
1) <∞, Bougerol and Picard [7] give NASC for strict stationarity of GARCH(p,q)

models.

(iii) Note that limn→∞ πn(λ, δ) = 0 a.s. for λ > 0, δ > 0 implies limn→∞ πn(λ, 0) = 0 a.s.

for λ > 0. Thus, the GARCH(1,1) stability condition implies stability of ARCH(1). 2

Remark 2.2. When Y and σ exist in Theorem 2.1 they satisfy the random equations

Y
D
= σε, where σ2 D

= β + (δ + λε2)σ2,
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with ε
D
= ε1 independent of σ, as shown in the proof. Also, σ has an explicit representation

as an infinite (absolutely convergent) random series:

σ2 D
= β

∞∑
i=0

i∏
j=1

(δ + λε2
j). (2.8)

Equation (2.8) makes it clear why limn→∞ πn = 0 a.s. is necessary for the stability of

GARCH(1,1), but the sufficiency comes about using deeper properties of random walks,

as exploited in Goldie and Maller [17]. 2

For conditions guaranteeing various useful properties of a stationary solution (existence

of moments, tail behavior, extremal behavior, etc.) when it exists, Mikosch and Starica [20]

provide the most general investigation so far. Such results of course have great practical

importance as well. Connections between GARCH models and the random difference

equation literature have been noted by various authors, among them Goldie [16]; see

Embrechts et al. [12], Section 8.4 for further references. Rather than pursue these here,

we turn to a continuous time setting.

3 A continuous time GARCH process

Our aim now is to construct a kind of GARCH process in continuous time. We want to

preserve the essential features of (2.1), that innovations feed into the volatility process,

which has in addition an autoregressive aspect. We proceed from the representation (2.5).

The summation in (2.5) can be written as

β

∫ n

0

exp

 n−1∑
j=bsc+1

log(δ + λε2
j)

 ds, (3.1)

which suggests replacing the noise variables εj by increments of a Lévy process. Accord-

ingly, let L be a (càdlàg) Lévy process with jumps ∆Lt = Lt − Lt−, t ≥ 0, defined on a

probability space with appropriate filtration, satisfying the “usual conditions”. We recall

some of its properties. For each t ≥ 0 the characteristic function of Lt can be written in

the form

E(eiθLt) = exp

(
t

(
iγLθ − τ 2

L

θ2

2
+

∫
(−∞,∞)

(
eiθx − 1− iθx1{|x|≤1}

)
ΠL(dx)

))
, θ ∈ R ,

(3.2)

(Sato [27], Theorem 8.1, Bertoin [4], p. 13). The constants γL ∈ R, τ 2
L ≥ 0 and the

measure ΠL on R form the characteristic triplet of L; as usual, the Lévy measure ΠL is

required to satisfy
∫
R

min(1, x2)ΠL(dx) < ∞. If in addition
∫
R

min(1, |x|)ΠL(dx) < ∞,
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then γL,0 := γL −
∫

[−1,1]
xΠL(dx) is called the drift of L. We will only be interested in the

situation where ΠL is nonzero.

Keep 0 < δ < 1, λ ≥ 0, and, with (3.1) in mind, define a càdlàg process (Xt)t≥0 by

Xt = −t log δ −
∑

0<s≤t

log(1 + (λ/δ)(∆Ls)
2), t ≥ 0 . (3.3)

Then, with β > 0 and σ0 a finite rv, independent of (Lt)t≥0, define the left-continuous

volatility process analogously with (2.5) by

σ2
t =

(
β

∫ t

0

eXsds+ σ2
0

)
e−Xt− , t ≥ 0, (3.4)

and define the Integrated Continuous Time GARCH (“COGARCH”) Process (Gt)t≥0 as

the càdlàg process satisfying

dGt = σt dLt , t ≥ 0 , G0 = 0 . (3.5)

Thus G jumps at the same times as L does, and has jumps of size ∆Gt = σt∆Lt, t ≥ 0.

Here ∆Lt is to play the role of the innovation εn in the discrete time GARCH, and

the intention is that (Gt)t≥0 and (σ2
t )t≥0 display a kind of continuous time GARCH-like

behaviour. This indeed turns out to be the case.

We begin our analysis by first investigating the process (Xt)t≥0, which has a special

structure.

Proposition 3.1. (Xt)t≥0 is a spectrally negative Lévy process of bounded variation with

drift γX,0 = − log δ, Gaussian component τ 2
X = 0, and Lévy measure ΠX given by

ΠX([0,∞)) = 0 and ΠX((−∞,−x]) = ΠL({y ∈ R : |y| ≥
√

(ex − 1)δ/λ}) , x > 0 .

Proof. That (Xt)t≥0 is a Lévy process with no positive jumps is clear. The Lévy measure

of (Xt)t≥0 has negative component given by

ΠX{(−∞,−x]} = E
∑

0<s≤1

1{− log(1+(λ/δ)(∆Ls)2)≤−x}

= E
∑

0<s≤1

1{|∆Ls|≥
√

(ex−1)δ/λ}

= ΠL{y : |y| ≥
√

(ex − 1)δ/λ} , x > 0 .

This means that ΠX is the image measure of ΠL under the transformation T : R →
(−∞, 0], x 7→ − log(1 + (λ/δ)x2). This shows in particular that∫

[−1,1]

|x|ΠX(dx) =

∫
{|y|≤
√

(e−1)δ/λ}
log(1 + (λ/δ)y2) ΠL(dy)
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is finite, because
∫

[−1,1]
y2ΠL(dy) is finite. Thus (Xt)t≥0 is a Lévy process of bounded

variation (e.g., Sato [27], Theorem 21.9), having characteristic function

E(eiθXt) = exp

(
−itθ log δ + t

∫
(−∞,0)

(
eiθx − 1

)
ΠX(dx)

)
, θ ∈ R, (3.6)

(e.g. Sato [27], Theorem 19.3), showing that γX,0 = − log δ and τ 2
X = 0. (In fact (Xt)t≥0

is the negative of a subordinator together with a positive drift.) 2

We now proceed to investigate (Gt)t≥0 and (σ2
t )t≥0 given by (3.4) and (3.5).

Proposition 3.2. The process (σ2
t )t≥0 satisfies the stochastic differential equation

dσ2
t+ = βdt+ σ2

t e
Xt−d(e−Xt) , t > 0 , (3.7)

and we have

σ2
t = βt+ log δ

∫ t

0

σ2
sds+ (λ/δ)

∑
0<s<t

σ2
s(∆Ls)

2 + σ2
0, t ≥ 0. (3.8)

Proof. Set Kt := t log δ, St :=
∏

0<s≤t(1+(λ/δ)(∆Ls)
2) and f(k, s) := eks. Then use Itô’s

lemma in two variables (e.g., Protter [23], Theorem 33, p. 81) to get, from (3.3),

e−Xt = f(Kt, St)

= 1 + log δ

∫ t

0

e−Xsds+ (λ/δ)
∑

0<s≤t

e−Xs−(∆Ls)
2 , t ≥ 0 . (3.9)

Integration by parts gives

e−Xt
∫ t

0

eXsds =

∫ t

0+

e−Xs−d

(∫ s

0

eXydy

)
+

∫ t

0+

(∫ s

0

eXydy

)
d(e−Xs)+

[
e−X· ,

∫ ·
0

eXsds

]
t

,

wherein the quadratic covariation is, in view of (3.9),[
log δ

∫ ·
0

e−Xs−ds,

∫ ·
0

eXsds

]
t

=

∫ t

0

d[s log δ, s] = 0, t ≥ 0.

Thus

d

(
e−Xt

∫ t

0

eXsds

)
= dt+

(∫ t

0

eXsds

)
d(e−Xt), t ≥ 0,

by the associativity of the stochastic integral. So we obtain from (3.4) that (3.7) holds,

from which (3.8) follows after application of (3.9). 2

Equation (2.4) shows that the discrete GARCH(1,1) satisfies

σ2
n+1 − σ2

n = β − (1− δ)σ2
n + λσ2

nε
2
n, n ∈ N0,
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which by summation yields

σ2
n = βn− (1− δ)

n−1∑
i=0

σ2
i + λ

n−1∑
i=0

σ2
i ε

2
i + σ2

0, (3.10)

analogously to (3.8). (Note that we use (σ2
n)n∈N0 to denote the squared discrete time

GARCH volatility process, and (σ2
t )t≥0 to denote the continuous time process defined by

(3.4); these are quite different processes but this should cause no confusion.) Thus (3.8)

captures the “feedback” and “autoregressive” aspects of the GARCH volatility process

which are important features of its application.

By comparison with Theorem 2.1 we are now led to:

Theorem 3.1. Suppose ∫
R

log(1 + (λ/δ)y2) ΠL(dy) < − log δ (3.11)

(which, since δ > 0, incorporates the requirement that the integral be finite.) Then σ2
t

D→
σ2
∞, as t→∞, for a finite rv σ∞ satisfying

σ2
∞

D
= β

∫ ∞
0

e−Xtdt

(thus, the improper integral exists as a finite rv, a.s.). Conversely, if (3.11) does not hold,

then σ2
t

P→∞ as t→∞.

Proof. By a continuous time analogue to the Goldie and Maller [17] theorem, due to

Erickson and Maller [15],
∫∞

0
e−Xs ds converges a.s. to a finite rv if Xt → ∞ a.s., and

σ2
t

P→∞ as t→∞ otherwise. By the stationarity of the increments of (Xt)t≥0,

e−Xt
∫ t

0

eXsds
D
=

∫ t

0

e−Xsds , t ≥ 0.

Hence we only need to show that (3.11) is equivalent to Xt → ∞ a.s. as t → ∞. Since

ΠX{[0,∞)} = 0, EX1 always exists (possibly, EX1 = −∞) and Xt/t → EX1 a.s. as

t → ∞ (e.g., Sato [27], Theorem 36.3). If EX1 ≤ 0 then Xt → −∞ a.s. or (Xt)t≥0

oscillates, so we need to show that EX1 > 0 if and only if (3.11) holds. From (3.6) we get

EX1 = − log δ +

∫
(−∞,0)

xΠX(dx) = − log δ −
∫
R

log(1 + (λ/δ)y2) ΠL(dy),

implying the equivalence of EX1 > 0 and (3.11). 2

Next we show that (σ2
t )t≥0 is Markovian and further that, if the process is started at

σ2
0
D
= σ2

∞, then it is strictly stationary.
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Theorem 3.2. The squared volatility process (σ2
t )t≥0, as given by (3.4), is a time ho-

mogeneous Markov process. Moreover, if the limit variable σ2
∞ in Theorem 3.1 exists and

σ2
0
D
= σ2

∞, independent of (Lt)t≥0, then (σ2
t )t≥0 is strictly stationary.

Proof. Let (Ft)t≥0 be the filtration generated by (σ2
t )t≥0. Then for 0 ≤ y < t

σ2
t = β

∫ y

0

eXsds e−Xy− e−(Xt−−Xy−) + β

∫ t

y

eXsds e−Xt− + σ2
0e
−Xt−

= (σ2
y − σ2

0e
−Xy−)e−(Xt−−Xy−) + β

∫ t

y

eXsds e−Xt− + σ2
0e
−Xt−

= σ2
yAy,t +By,t, say, (3.12)

where

Ay,t := e−(Xt−−Xy−) and By,t := β

∫ t

y

e(Xs−Xy−)ds e−(Xt−−Xy−)

are independent of Fy. This means that, conditional on Fy, σ2
t depends only on σ2

y , from

which it follows easily that (σ2
t )t≥0 is a Markov process.

Next, let D[0,∞) be the space of cádlág functions on [0,∞) and define gy,t : D[0,∞)→
R

2, x 7→
(
e−(xt−−xy−) , β

∫ t
y
e−(xt−−xs) ds

)
. Since (Xt)t≥0 is a Lévy process, (Xs)s≥0

D
=

(Xs+h − Xh)s≥0 for any h > 0. Further, we have that (Ay,t, By,t) = gy,t((Xs)s≥0) and

(Ay+h,t+h, By+h,t+h) = gy,t((Xs+h − Xh)s≥0). This shows that the joint distribution of

(Ay,t, By,t) depends only on t − y. By independence of σ2
y and (Ay,t, By,t) the transition

functions are thus time homogeneous.

It remains to show that σ2
t
D
= σ2

∞ for all t > 0, provided σ2
0
D
= σ2

∞. For calculating the

distribution of

σ2
t+ = β

∫ t

0

eXs−−Xt ds+ e−Xtσ2
0,

we can take any version of σ2
0, independent of (Ls)0≤s≤t, and with the distribution of σ2

∞.

A suitable choice is σ2
0 := β

∫∞
0
e−(Xs+t−Xt) ds. Then

σ2
t+ = β

∫ t

0

e(X(t−s)−−Xt) ds+ e(X(t−t)−−Xt)β

∫ ∞
0

e−(Xs+t−Xt) ds.

By the time reversal property of Lévy processes (e.g. Bertoin [4], Lemma II.2, p. 45),

(X(t−s)− − Xt)0≤s≤t
D
= (−Xs)0≤s≤t and both processes are independent of σ2

0 as chosen.

Hence,

σ2
t+

D
= β

∫ t

0

e−Xs ds+ e−Xtβ

∫ ∞
0

e−(Xs+t−Xt) ds

= β

∫ t

0

e−Xs ds+ β

∫ ∞
t

e−Xs ds
D
= σ2

0.
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Since σ2
t+ = σ2

t a.s. (σ2
t has no fixed points of discontinuity, a.s.), σ2

t
D
= σ2

0 follows for all

t > 0. 2

For the process Gt =
∫ t

0
σs dLs, t ≥ 0, note that for any 0 ≤ y < t,

Gt = Gy +

∫ t

y+

σs dLs , t ≥ 0 .

Here, (σs)y<s≤t depends on the past until time y only through σy, and the integrator is

independent of this past. From Theorem 3.2 we thus obtain:

Corollary 3.1. The bivariate process (σt, Gt)t≥0 is Markovian. If (σ2
t )t≥0 is the stationary

version of the process with σ2
0
D
= σ2

∞, then (Gt)t≥0 is a process with stationary increments.

Remark 3.1. (i) The analogy between (3.8) and (3.10) is not exact, in that the param-

eterisation is slightly different; (1− δ) is replaced by − log δ in the continuous version.

(ii) The value λ = 0 is permissible in (3.3), in which case Xt = −t log δ, t ≥ 0, (0 < δ < 1),

and by (3.4) we have the trivial solution

σ2
t =

β(1− δt)
− log δ

+ σ2
0δ
t , t ≥ 0 .

For the discrete GARCH, from (2.5), when λ = 0,

σ2
n = β

n−1∑
i=0

δn−1−i + σ2
0δ
n =

β(1− δn)

1− δ
+ σ2

0δ
n , n ∈ N ,

again demonstrating the correspondence between the discrete and continuous time version.

(The same results if we take L ≡ 0.)

(iii) Only δ > 0 is allowed in (3.3) – (3.9). Thus our continuous time GARCH does not

contain a continuous time ARCH as a submodel. To accommodate the case δ = 0, which

is the ARCH situation, we have to go back to (3.1). Then Xt should be taken as

Xt = −t log λ−
∑

0<s≤t

log(∆Ls)
21{∆Ls 6=0}, t ≥ 0,

and this is only a well-defined (Lévy) process, if L is compound Poisson. 2

We treat this important example in the more general GARCH setup.

Example 3.1. (Compound Poisson COGARCH(1,1) model)

Let (Lt)t≥0 be a compound Poisson process, with jumps εn at the times Tn of an in-

dependent Poisson process (Nt)t≥0. Thus, Lt =
∑Nt

i=1 εi, with L0 = T0 = 0 and Nt =

max{n ≥ 1 : Tn ≤ t}, t ≥ 0. Suppose P{ε1 = 0} = 0. Evaluated at Tn, L has jumps

11



∆LTn = LTn − LTn− = εn, so ∆XTn = XTn − XTn−1 = (1 − ∆Tn) log δ − log(δ + λε2
n),

where the ∆Tn = Tn−Tn−1 are i.i.d. exponential rvs. This shows that the continuous time

GARCH process evaluated at the jump times differs from a discrete GARCH process, due

to the term (1−∆Tn) log δ, though it evidently has similar characteristics. A simulation

of such a process, driven by a compound Poisson process with rate 1 and standard nor-

mally distributed jump sizes, is given in Figure 1. The parameters were chosen as β = 1,

δ = 0.95 and λ = 0.045. For these values, a stationary distribution of (σ2
t )t≥0 exists and

has finite second, but not third, moment (by (4.12) below). The parameters were chosen

so the simulated series is close to non-stationarity, as is often observed for financial time

series. 2

Of course, the class of continuous time processes given by our model is much larger than

the compound Poissons. Examples currently of great interest in financial modelling are

the pure jump process generated by a normal inverse Gaussian or hyperbolic (Barndorff-

Nielsen and Shephard [2] and Eberlein [11]), a variance gamma (VG) process (Madan

and Seneta [19]), a Meixner process (e.g., Schoutens and Teugels [28]), or simply a stable

process (e.g., Samorodnitsky and Taqqu [25]). These processes are not compound Poisson

– they have infinitely many jumps, a.s., in finite time intervals – and have been successfully

used for financial modelling in various applications.

It is instructive to compare the process defined in (3.4) with the stochastic volatility

model of Barndorff-Nielsen and Shephard [2, 3], which specifies

dσ2
t = −λσ2

t dt+ dzλt, t ≥ 0 , (3.13)

(with λ > 0) for a subordinator (increasing Lévy process) (zt)t≥0. The solution to (3.13)

is the Ornstein-Uhlenbeck-type process

σ2
t = e−λt

∫ t

0

eλsdzλs + e−λtσ2
0 , t ≥ 0 . (3.14)

By comparison with (3.4), the Lévy process is in the integrator rather than in the in-

tegrand. A class of processes which includes both models is to let σ2
t have the same

distribution as

e−ξtσ2
0 +

∫ t

0

e−ξs−dηs, t ≥ 0, (3.15)

where (ξ, η) is a bivariate Lévy process. When (ηt)t≥0 is pure drift we get (3.4) and when

(ξt)t≥0 is pure drift (to ∞) we get an rv with the same distribution as the one in (3.14).

Conditions for convergence of (3.15) as t→∞ are in Erickson and Maller [15], but we do

not investigate further at this stage.

12



An alternative stochastic volatility model is introduced in Anh, Heyde and Leo-

nenko [1], Section 5, who propose as volatility the stationary process

σ(t) =

∫ t

−∞
M(t− s)dL(s) , t ≥ 0 ,

where M is a “memory” function and (Lt)t≥0 is a Lévy process such that L(1) is a rv

with positive support. In this paper, as well as in [2, 3], the logarithmic price process is

modelled by the SDE

dx∗(t) = (µ+ bσ2(t))dt+ σ(t)dW (t) , t > 0 ,

where µ and b are constants and (W (t))t≥0 is standard Brownian motion, independent of

the Lévy process (Lt)t≥0. The Itô solution of this SDE is given by

x∗(t) =

∫ t

0

σ(u)dW (u) + µt+ bσ2∗(t) , t ≥ 0 ,

where σ2∗(t) =
∫ t

0
σ2(u)du. For ∆ > 0 the rvs

yn = x∗(n∆)− x∗((n− 1)∆) , n ∈ N ,

model the logarithmic asset returns over time periods of length ∆.

4 Second order properties of the volatility process

In this section we derive moments and autocorrelation functions of the squared stochastic

volatility process (σ2
t )t≥0. It is obvious from equation (3.4) that moments of (σ2

t )t≥0 cor-

respond to certain exponential moments of (Xt)t≥0. To specify the relationships exactly,

we give Lemma 4.1.

Lemma 4.1. Keep c > 0 throughout.

(a) Let λ > 0. Then the Laplace transform Ee−cXt of Xt at c is finite for some t > 0, or,

equivalently, for all t > 0, if and only if EL2c
1 <∞.

(b) When Ee−cX1 <∞, define Ψ(c) = ΨX(c) = logEe−cX1. Then |Ψ(c)| <∞, Ee−cXt =

etΨ(c), and

Ψ(c) = c log δ +

∫
R

(
(1 + (λ/δ)y2)c − 1

)
ΠL(dy). (4.1)

(c) If EL2
1 < ∞ and Ψ(1) < 0, then (3.11) holds, and σ2

t converges in distribution to a

finite rv.

(d) If Ψ(c) < 0 for some c > 0, then Ψ(d) < 0 for all 0 < d < c.

13



Proof. (a) By Sato [27], Theorem 25.17, the Laplace transform Ee−cXt is finite for some

and hence all t ≥ 0 if and only if∫
{|x|>1}

e−cxΠX(dx) =

∫
(−∞,−1)

e−cxΠX(dx) =

∫
{|y|>
√

(e−1)δ/λ}
(1 + (λ/δ)y2)c ΠL(dy)

is finite, giving (a) (see e.g. Sato [27], Theorem 25.3).

(b) follows from Sato [27], Theorem 25.17, and (3.6).

(c) From (4.1) we see that Ψ(1) < 0 is equivalent to

(λ/δ)

∫
R

y2ΠL(dy) < − log δ.

Since log(1 + (λ/δ)y2) < (λ/δ)y2, this implies (3.11).

(d) Let Ψ(c) < 0. From (a) and (b) we conclude that Ψ(d) is definable for 0 < d ≤ c.

From (4.1) it then follows that Ψ(d) < 0 if and only if(
1

d

)∫
R

(
(1 +

(
λ

δ

)
y2)d − 1

)
ΠL(dy) < − log δ.

Since the function (0,∞)→ R, d 7→ (1/d)((1 + (λ/δ)y2)d − 1) is increasing for any fixed

y, the result follows. 2

The next result gives the first two moments and the autocovariance function of (σ2
t )t≥0

in terms of the function Ψ, showing in particular that the autocovariance function de-

creases exponentially fast with the lag.

Proposition 4.1. Let λ > 0, t > 0, h ≥ 0.

(a) Eσ2
t <∞ if and only if EL2

1 <∞ and Eσ2
0 <∞. If this is so, then

Eσ2
t =

β

−Ψ(1)
+

(
Eσ2

0 +
β

Ψ(1)

)
etΨ(1), (4.2)

where for Ψ(1) = 0 the righthand side has to be interpreted as its limit as Ψ(1)→ 0, i.e.

Eσ2
t = βt+ Eσ2

0.

(b) Eσ4
t <∞ if and only if EL4

1 <∞ and Eσ4
0 <∞. In that case, the following formulae

hold (with a suitable interpretation as a limit if some of the denominators are zero):

Eσ4
t =

2β2

Ψ(1)Ψ(2)
+

2β2

Ψ(2)−Ψ(1)

(
etΨ(2)

Ψ(2)
− etΨ(1)

Ψ(1)

)
+2βEσ2

0

(
etΨ(2) − etΨ(1)

Ψ(2)−Ψ(1)

)
+ Eσ4

0 e
tΨ(2); (4.3)

Cov(σ2
t , σ

2
t+h) = Var(σ2

t ) e
hΨ(1). (4.4)
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Proof. (a) We start with the calculation of Eσ2
t . Using Fubini’s Theorem and the fact

that σ2
0 is independent of all the other quantities, we conclude from equation (3.4) and

Lemma 4.1 that

Eσ2
t = βE

∫ t

0

eXs−Xt− ds+ Eσ2
0 Ee

−Xt− = β

∫ t

0

Ee−Xs ds+ Eσ2
0 Ee

−Xt

is finite if and only if EL2
1 <∞ and Eσ2

0 <∞. Then (4.2) follows from

Eσ2
t = β

∫ t

0

esΨ(1) ds+ Eσ2
0e
tΨ(1).

(b) Assume EL4
1 <∞ and Eσ4

0 <∞. We calculate Eσ4
t as follows:

Eσ4
t = β2E

(∫ t

0

eXs−Xt ds

)2

+ 2β Eσ2
0 E

∫ t

0

eXs−2Xt ds + Eσ4
0 Ee

−2Xt

=: β2EI1 + 2βEσ2
0 EI2 + Eσ4

0 e
tΨ(2) , say.

Using the stationarity of increments, we get(∫ t

0

eXs−Xt ds

)2
D
=

(∫ t

0

e−Xs ds

)2

=

∫ t

0

∫ t

0

e−Xs e−Xu du ds = 2

∫ t

0

∫ s

0

e−(Xs−Xu) e−2Xu du ds.

Then by the independence of increments,

EI1 = 2

∫ t

0

∫ s

0

(
Ee−(Xs−Xu)

) (
Ee−2Xu

)
du ds

= 2

∫ t

0

∫ s

0

e(s−u)Ψ(1) euΨ(2) du ds

=
2

Ψ(1)Ψ(2)
+

2

Ψ(2)−Ψ(1)

(
etΨ(2)

Ψ(2)
− etΨ(1)

Ψ(1)

)
.

By similar arguments,

EI2 = E

∫ t

0

eXs−2Xt ds = E

∫ t

0

e−2(Xt−Xs)e−Xs ds

=

∫ t

0

e(t−s)Ψ(2)esΨ(1) ds =
etΨ(2) − etΨ(1)

Ψ(2)−Ψ(1)
.

Putting all this together, we see that Eσ4
t <∞, and we obtain (4.3). The converse follows

similarly.

For the proof of (4.4), let (Ft)t≥0 be the filtration generated by (σ2
t )t≥0. Then it follows

from (3.12) and (4.2) that

E(σ2
t+h|Ft) = σ2

t e
hΨ(1) + β

∫ h

0

esΨ(1)ds

= (σ2
t − Eσ2

0)ehΨ(1) + Eσ2
h. (4.5)
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Then

E(σ2
t+hσ

2
t ) = E

(
σ2
t ((σ

2
t − Eσ2

0)ehΨ(1) + Eσ2
h)
)

=
(
Eσ4

t − Eσ2
t Eσ

2
0

)
ehΨ(1) + Eσ2

t Eσ
2
h. (4.6)

Calculations using (4.2) show that

Eσ2
t Eσ

2
h − Eσ2

t Eσ
2
t+h = (Eσ2

t Eσ
2
0 − (Eσ2

t )
2)ehΨ(1).

Then (4.4) follows immediately from (4.6). 2

The following results hold for the stationary version of the volatility process. Recall

from Theorem 3.2 that this is (σt)t≥0 for σ0
D
= σ∞, where σ∞ is the limit rv from Theo-

rem 3.1. Results related to the following proposition can be found in Bertoin and Yor [5],

see also the references therein.

Proposition 4.2. Let λ > 0. Then the k-th moment of σ2
∞ is finite if and only if EL2k

1 <

∞ and Ψ(k) < 0, k ∈ N. In this case,

Eσ2k
∞ = k! βk

k∏
l=1

1

−Ψ(l)
. (4.7)

Proof. Using Fubini’s Theorem and the independent and stationary increments property,

it follows from Theorem 3.1 that for k ∈ N

Eσ2k
∞ = βkE

(∫ ∞
0

e−Xt dt

)k
= βkE

∫ ∞
0

. . .

∫ ∞
0

e−Xt1 · · · e−Xtk dtk . . . dt1

= k! βkE

∫ ∞
0

∫ t1

0

. . .

∫ tk−1

0

e−(Xt1−Xt2 )e−2(Xt2−Xt3 ) · · · e−(k−1)(Xtk−1
−Xtk ) e−kXtk dtk . . . dt1

= k! βk
∫ ∞

0

∫ t1

0

. . .

∫ tk−1

0

et1Ψ(1)et2(Ψ(2)−Ψ(1)) · · · etk(Ψ(k)−Ψ(k−1)) dtk . . . dt1

= k! βk
k∏
l=1

1

−Ψ(l)
,

provided that Ψ(1), . . . ,Ψ(k) are all defined and negative. The last equality follows from

analytic calculations. If j ∈ {1, . . . , k} is the first index for which Ψ(j) ≥ 0, or Ee−jX1 =

∞, then the calculation shows that Eσ2j
∞ = ∞. Since Eσ2k

∞ < ∞ implies Eσ2j
∞ < ∞ for

j < k, it follows from Lemma 4.1 that Eσ2k
∞ < ∞ if and only if Ψ(k) is defined (i.e.

EL2k
1 <∞) and negative. 2

From this result we obtain the mean and second moment of σ2
∞; we also calculate the

autocovariance function of the stationary process (σ2
t )t≥0.
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Corollary 4.1. If (σ2
t )t≥0 is the stationary process with σ2

0
D
= σ2

∞, then

Eσ2
∞ =

β

−Ψ(1)
, (4.8)

Eσ4
∞ =

2β2

Ψ(1)Ψ(2)
, (4.9)

Cov(σ2
t , σ

2
t+h) = β2

(
2

Ψ(1)Ψ(2)
− 1

Ψ2(1)

)
ehΨ(1) , t, h ≥ 0 , (4.10)

provided EL2k
1 <∞ and Ψ(k) < 0, with k = 1 for (4.8), and k = 2 for (4.9), (4.10).

Proof. (4.8) and (4.9) are immediate from (4.7) for λ > 0, and (4.10) follows by inserting

(4.8) and (4.9) into (4.4). 2

Of course it is our goal to express the quantities ΨX in terms of the driving Lévy

process (Lt)t≥0. We obtain the following results for the existence of moments.

Theorem 4.1. Let k ∈ N, 0 < δ < 1, λ ≥ 0. Then the limit variable σ2
∞ exists and has

finite k-th moment if and only if(
1

k

)∫
R

(
(1 +

λ

δ
y2)k − 1

)
ΠL(dy) < − log δ. (4.11)

Proof. By Lemma 4.1, EL2k
1 < ∞ and Ψ(k) < 0 imply EL2

1 < ∞ and Ψ(1) < 0, which

implies the stability condition (3.11). Now the condition for Eσ2k
∞ <∞ is EL2k

1 <∞ and

Ψ(k) < 0, which is (4.11). 2

As for the discrete GARCH model, also the continuous time GARCH turns out to be

heavy-tailed. This is an implication of the fact that the volatility process never has mo-

ments of all orders.

Proposition 4.3. Let k ∈ N, 0 < δ < 1, λ ≥ 0.

(a) For any Lévy process (Lt)t≥0 with nonzero Lévy measure such that
∫
R

log(1+y2) ΠL(dy)

is finite, there exist parameters δ, λ ∈ (0, 1) for which σ2
∞ exists, but Eσ2

∞ =∞.

(b) For any Lévy process (Lt)t≥0 such that EL2k
1 < ∞ and for any δ ∈ (0, 1) there exists

λδ > 0 such that the limit variable σ2
∞ exists with Eσ2k

∞ < ∞ for any pair of parameters

(δ, λ) such that 0 ≤ λ ≤ λδ.

(c) Suppose 0 < δ < 1, λ > 0. Then for no Lévy process (Lt)t≥0 (with nonzero Lévy

measure) do the moments of all orders of σ2
∞ exist. In particular, the Laplace transform

of σ2
∞ does not exist for any negative argument.
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Proof. (a) Let δ0 := exp(−
∫
R

log(1 + y2)ΠL(dy)) and δ1 := exp(−
∫
R
y2ΠL(dy)). Then

0 ≤ δ1 < δ0 < 1, and for any λ = δ ∈ (δ1, δ0), (3.11) holds, but (4.11) does not.

(b) Let 0 < δ < 1 be fixed. Since EL2k
1 < ∞, the lefthand side of (4.11) is finite for any

λ > 0, and goes to zero as λ→ 0. Choosing λ sufficiently small then implies (4.11).

(c) Let η > 0 be such that q := ΠL({y : |y| ≥ η}) > 0. Then for k ∈ N,∫
R

(
(1 + (λ/δ)y2)k − 1

)
ΠL(dy) ≥ q

((
1 + (λ/δ)η2

)k − 1
)
.

If all moments of σ2
∞ existed, this would imply that(

1 +

(
λ

δ

)
η2

)k
− 1 < k

(
− log δ

q

)
∀ k ∈ N,

a contradiction. 2

Example 4.1. (Compound Poisson GARCH(1,1) model)

Let (Lt)t≥0 be a compound Poisson process with Poisson rate c > 0 and jump distribution

ϑ. Then ΠL = cϑ. Let Y be a random variable with distribution ϑ and set Z := λY 2/δ.

Then for k ∈ N, ∫
R

((1 + (λ/δ)y2)k − 1) ΠL(dy) = cE((1 + Z)k − 1),

and (σ2
t )t≥0 is a stationary Markov process whose stationary distribution has finite k-th

moment if and only if

E(1 + Z)k − 1 + (k/c) log δ < 0, (4.12)

which is equivalent to (4.11) in this case. 2

5 Second order properties of the GARCH process

In (3.5), the integrated GARCH process was defined to satisfy dGt = σtdLt, t > 0, i.e. G

jumps at the same time as L does and has jumps of size ∆Gt = σt∆Lt. This definition

implies that for any fixed timepoint t all moments of ∆Gt are zero. It makes sense, however,

to calculate moments for the increments of G in arbitrary time intervals. Consequently,

for r > 0 set

G
(r)
t := Gt+r −Gt =

∫ t+r

t+

σs dLs , t ≥ 0 .

We shall restrict ourselves to the case of stationary (σ2
t )t≥0. Recall from Corollary 3.1,

that this implies strict stationarity of (G
(r)
t )t≥0.
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Proposition 5.1. Suppose (Lt)t≥0 is a quadratic pure jump process (i.e. τ 2
L = 0 in (3.2))

with EL2
1 < ∞, EL1 = 0, and that Ψ(1) < 0. Let (σ2

t )t≥0 be the stationary volatility

process with σ2
0
D
= σ2

∞. Then for any t ≥ 0 and h ≥ r > 0,

EG
(r)
t = 0, (5.1)

E(G
(r)
t )2 =

βr

−Ψ(1)
EL2

1, (5.2)

Cov (G
(r)
t , G

(r)
t+h) = 0. (5.3)

Assume further that EL4
1 <∞ and Ψ(2) < 0. Then

Cov((G
(r)
t )2, (G

(r)
t+h)

2) =

(
e−rΨ(1) − 1

−Ψ(1)

)
EL2

1 Cov(G2
r, σ

2
r) e

hΨ(1). (5.4)

Assume further that λ > 0, that EL8
1 <∞, ψ(4) < 0, that

∫
[−1,1]

|x|ΠL(dx) <∞ and that∫
R
x3ΠL(dx) = 0. Then the righthand side of (5.4) is strictly positive.

Proof. Since (Lt)t≥0 is quadratic pure jump, its quadratic variation process is given by

[L]t =
∑

0<s≤t

(∆Ls)
2, t ≥ 0

(e.g. Protter [23], p. 71). Then, by the properties of the stochastic integral,

EG2
r = E

∫ r

0

σ2
s d[L]s = E

∑
0<s≤r

σ2
s(∆Ls)

2.

The last can be calculated from the compensation formula (e.g. Bertoin [4], p. 7) and

(4.8) as the righthand side of (5.2). This shows square integrability of Gr and (5.2) then

follows from stationarity of the increments of (Gt)t≥0.

From the Itô isometry for square integrable martingales as integrators (e.g. Rogers and

Williams [24], IV 27) follows

E(G
(r)
t G

(r)
t+h) = E

∫ t+h+r

0

σ2
s 1(t,t+r](s) 1(t+h,t+h+r](s) d[L]s = 0

for h ≥ r. By the martingale property of (Lt)t≥0 we have (5.1), and hence also (5.3)

follows.

For the proof of (5.4), assume further that EL4
1 < ∞ and Ψ(2) < 0, and let Er denote

conditional expectation given Fr, the σ–algebra generated by (σ2
s)0≤s≤r. Integration by
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parts, the compensation formula and the use of (3.12) and (4.5) give

Er
(
G

(r)
h

)2
= Er

(
2

∫ h+r

h+

Gs−dGs + [G]h+r
h

)
= Er

(
2

∫ h+r

h+

Gs−σsdLs

)
+ Er

∫ h+r

h+

σ2
sd[L]s

= 0 + Er
∑

h<s≤h+r

(
σ2
rAr,s +Br,s

)
(∆Ls)

2

= EL2
1

∫ h+r

h

(
σ2
rEAr,s + EBr,s

)
ds

= EL2
1

∫ h+r

h

Er(σ
2
s) ds

= EL2
1

∫ h+r

h

[(σ2
r − Eσ2

0)e(s−r)Ψ(1) + Eσ2
s−r] ds

= (σ2
r − Eσ2

0)EL2
1

∫ r

0

e−sΨ(1) ds ehΨ(1) + Eσ2
0EL

2
1 r.

Conditioning on Fr gives

E
(
(G

(r)
0 )2(G

(r)
h )2

)
= E

(
G2
rEr(G

(r)
h )2

)
= EL2

1

(
e−rΨ(1) − 1

−Ψ(1)

)
E
(
G2
rσ

2
r −G2

rEσ
2
0

)
ehΨ(1) + Eσ2

0EL
2
1 r EG

2
r.

This shows

Cov(G2
r, (G

(r)
h )2) =

(
e−rΨ(1) − 1

−Ψ(1)

)
EL2

1 Cov(G2
r, σ

2
r) e

hΨ(1) + EG2
r

(
βr

−Ψ(1)
EL2

1 − EG2
r

)
.

Equation (5.4) then follows from (5.2).

Finally, assume thatEL8
1 <∞, Ψ(4) < 0 and that

∫
[−1,1]

|x|ΠL(dx) <∞ and
∫
R
x3ΠL(dx) =

0, and we prove that Cov(G2
t , σ

2
t ) > 0. First, we calculate E(G2

tσ
2
t ). Using integration by

parts,

G2
t = [G]t + 2

∫ t

0

Gs−dGs =
∑

0<s≤t

σ2
s(∆Ls)

2 + 2

∫ t

0

Gs−σsdLs.

Substituting from (3.8) gives

(λ/δ)G2
t = σ2

t+ − βt− log δ

∫ t

0

σ2
sds− σ2

0 + 2(λ/δ)

∫ t

0

Gs−σsdLs, (5.5)

which we will multiply through by σ2
t and take expectations. Since

∫
[−1,1]

|x|ΠL(dx) <∞,

(Lt)t≥0 is of bounded variation, and the last term in (5.5) gives rise via (3.12) to

σ2
t

∫ t

0

Gs−σsdLs =

∫ t

0+

Gs−σs
(
σ2
sAs,t +Bs,t

)
dLs, (5.6)
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wherein we substitute

As,t = eXs−−Xt− and Bs,t = β

∫ t

s

eXu−Xt−du.

Let It :=
∫ t

0+
eXs−Gs−σ

3
sdLs. Since Xt has no fixed points of discontinuity, a.s., to show

that the A-component in (5.6) has expectation 0 it will suffice to show that E(e−XtIt) = 0.

Integration by parts gives

e−XtIt =

∫ t

0+

e−Xs−dIs +

∫ t

0+

Is−d(e−Xs) + Ct, (5.7)

where Ct is the quadratic covariation. Since EL1 = 0 and ψ(4) < 0, It is a locally square

integrable zero-mean martingale and hence the first term on the righthand side of (5.7)

has expectation 0. Substituting

d(e−Xt) = etΨ(1)d(e−Xt−tΨ(1) − 1) + e−XtΨ(1)dt,

we can write the second term on the righthand side of (5.7) as an integral with re-

spect to a locally square integrable zero-mean martingal, hence having expectation 0,

plus Ψ(1)
∫ t

0
e−XsIsds. Since Lt is pure jump,

∆Ct = (∆e−Xt)(∆It) =

(
λ

δ

)
Gt−σ

3
t (∆Lt)

3

(using (3.9)). Letting Mt =
∑

0<s≤t(∆Ls)
3, the quadratic covariation is

Ct =

(
λ

δ

)∫ t

0+

Gs−σ
3
sdMs,

and since Mt is a locally square integrable martingale, with mean zero as a result of our

assumption that
∫
R
x3ΠL(dx) = 0, we see that Ct has expectation 0. Taking expectations

in (5.7) thus gives E(e−XtIt) = Ψ(1)
∫ t

0
E(e−XsIs)ds, implying E(e−XtIt) = 0.

Write the B-component in (5.6) as

β

(∫ t

0

eXu−Xt−du

)(∫ t

0+

Gs−σsdLs

)
− β

∫ t

0+

Gs−σs

(∫ s

0+

eXu−Xt−du

)
dLs.

After integration by parts this equals

β

∫ t

0

(∫ s

0+

Gu−σudLu

)
e−(Xt−−Xs)ds+ βC̃t, (5.8)

where

∆C̃t =

(
∆(e−Xt

∫ t

0

eXudu)

)
(Gt−σt∆Lt) =

(
λ

δ

)
e−Xt−

(∫ t

0

eXudu

)
Gt−σt(∆Lt)

3.
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Here C̃t has expectation 0 again as a result of
∫
R
x3ΠL(dx) = 0, so (5.8) has expectation

0. Thus the last term in (5.5) contributes 0 to the expectation.

To deal with the other integral in (5.5), use (4.6) to write

E(σ2
t σ

2
s) = Var(σ2

0)e(t−s)Ψ(1) + (E(σ2
0))2,

since we are using the stationary version. Thus, from (5.5),(
λ

δ

)
E(G2

tσ
2
t )

= Eσ4
0 − βtEσ2

0 − log δ

∫ t

0

(
Var(σ2

0)e(t−s)Ψ(1) + (E(σ2
0))2

)
ds− E(σ2

0σ
2
t ) + 0

= Var(σ2
0)(1− etΨ(1))− βtEσ2

0 − log δVar(σ2
0)

(
1− etΨ(1)

−Ψ(1)

)
− t log δ (Eσ2

0)2. (5.9)

Note that (λ/δ)EL2
1 = Ψ(1)− log δ (see (4.1)). Thus from (5.2)(

λ

δ

)
EG2

tEσ
2
t =

λβtEL2
1Eσ

2
0

−δΨ(1)
= −βtEσ2

0 −
βt log δ Eσ2

0

−Ψ(1)

= −βtEσ2
0 − t log δ (Eσ2

0)2

(using (4.8)). Subtracting this from (5.9) gives(
λ

δ

)
Cov(G2

t , σ
2
t ) = Var(σ2

0)

(
1− etΨ(1) − log δ

(
1− etΨ(1)

−Ψ(1)

))
,

which is positive. 2

In Figure 2 we show the simulated autocorrelation functions of σt and of the increment

G
(1)
t , and of their squares, for the same process simulated in Figure 1. A feature of the

σ and σ2 autocorrelations is their very slow decrease with increasing lag. As expected,

the sample autocorrelation functions of the increment G
(1)
t , and its square, are zero, and

positive, respectively, within sampling errors.
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gales, Volume 2. Itô Calculus, (2nd Ed.). Cambridge University Press. Cambridge.

[25] Samorodnitsky, G. and Taqqu, M.S. (1994) Stable Non-Gaussian Processes. Chapman

and Hall, London.

[26] Sampson, M. (1988) A stationarity condition for the GARCH(1,1) process. Depart-

ment of Economics, Concordia University (mimeo).
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Figure 1: Simulated compound Poisson process (Lt)0≤t≤10 000 with rate 1 and standard normally dis-
tributed jump sizes (first) with corresponding COGARCH process (Gt) (second), volatility process (σt)
(third) and differenced COGARCH process (G(1)

t ) of order 1, where G(1)
t = Gt+1−Gt (last). The param-

eters were: β = 1, δ = 0.95 and λ = 0.045. The starting value was chosen as σ0 = 10.
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Figure 2: Sample autocorrelation functions of σt (top left), σ2
t (top right), G(1)

t (bottom left) and (G(1)
t )2

(bottom right), for the process simulated in Figure 1. The dashed lines in the bottom graphs show the
confidence bounds ±1.96/

√
9999.
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