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tionIt is well-known that the normal distribution does not des
ribe the behaviourof asset returns in a very realisti
 way. One reason for this is that the distribu-tion of real data is often leptokurti
, i.e. it exhibits more small values than anormal law and has often semi-heavy tails, in other words its 
urtosis is higherthan the 
urtosis of the normal distribution. Eberlein and Keller [6℄ show forinstan
e the �t of the generalized hyperboli
 distribution to �nan
ial data in avery 
onvin
ing way. Normal mixture models like the normal inverse Gaussianand the varian
e gamma model play an in
reasing role also in the �nan
ial in-dustry. Consequently, to repla
e in the 
lassi
al geometri
 Brownian motion theWiener pro
ess by some general L�evy pro
ess is an important generalization ofthe traditional Bla
k-S
holes model. 1



This paper 
an be viewed as a 
ontinuation of Emmer, Kl�uppelberg, andKorn [8℄, where a portfolio optimization problem was solved based on the Value-at-Risk as risk measure. Now we investigate portfolio optimization problems,when the pri
e pro
esses are governed by general exponential L�evy pro
esses,
omparing the optimal solutions with varian
e and Value-at-Risk as risk mea-sures, respe
tively. We explain some basi
 theory of L�evy pro
esses and refer toProtter [17℄ and, in parti
ular, Sato [20℄ for relevant ba
kground.The 
hara
teristi
 fun
tion of L(t) is for ea
h t > 0 given byE exp(isL(t)) = exp(t	(s)); s 2 Rd ;where 	 has L�evy-Khint
hine representation	(s) = ia0Ls� 12s0�0L�Ls+ ZRd(eis0x � 1� is0x1fjxj�1g)�L(dx) ;with aL 2 Rd , �0L�L is a non-negative de�nite symmetri
 d � d-matrix, and �Lis a measure on Rd satisfying �(f0g) = 0 and RRd(jxj2 ^ 1)�(dx) <1. The term
orresponding to xIfjxj�1g represents a 
entering without whi
h the integralmay not 
onverge. The 
hara
teristi
 triplet (aL; �0L�L; �L) 
hara
terizes theL�evy pro
ess. We often write (a; �0�; �) instead of (aL; �0L�L; �L), if it is 
learwhi
h L�evy pro
ess is 
on
erned. Throughout this paper we denote by Rd thed-dimensional Eu
lidean spa
e. Its elements are 
olumn ve
tors and for x 2 Rdwe denote by x0 the transposed ve
tor; analogously, for a matrix � we denote by�0 its transposed matrix. We further denote by jxj = (Pdi=1 x2i )1=2 the Eu
lideannorm of x 2 Rd .A

ording to Sato [20℄, Chapter 4, the following holds. For ea
h ! in theprobability spa
e de�ne �L(t; !) = L(t; !)� L(t�; !). For ea
h Borel set B �[0;1)� Rd� (Rd� = Rd n f0g) setM(B;!) = #f(t;�L(t; !)) 2 Bg :L�evy's theory says that M is a Poisson random measure with intensitym(dt; dx) = dt�(dx) ;where � is the L�evy measure of the pro
ess L.For B = [t1; t2℄�A for 0 � t1 < t2 <1 and a Borel set A in Rd�M(B;!) = #f(t;�L(t; !)) : t1 < t � t2;�L(t; !) 2 Ag
ounts jumps of size in A whi
h happen in the time interval (t1; t2℄. A

ordingto the above, this is a Poisson random variable with mean (t2 � t1)�(A).With this notation, the L�evy-Khint
hine representation 
orresponds to therepresentationL(t) = at+ �W (t) + X0<s�t�L(s)1fj�L(s)j>1g+ Z t0 Zjxj�1 x(M(ds; dx) � ds�(dx)) ; t � 0 : (1.1)2



This means that L(t) has a Gaussian 
omponent �W (t) and a pure jump partwith L�evy measure �, having the interpretation that a jump of size x o

urs atrate �(dx). To ensure the �niteness of the integral on the rhs, the small jumpsare 
ompensated by their expe
tation. This representation redu
es in the �nitevariation 
ase to L(t) = 
t+ �W (t) + X0<s�t�L(s) ; t � 0 ;where 
 = a� Rjxj�1 x�(dx); i.e. L(t) is the independent sum of a drift term, aGaussian 
omponent and a pure jump part.The paper is organized as follows. In Se
tion 2 we introdu
e a multivariateL�evy Bla
k-S
holes model and 
al
ulate the terminal wealth of a portfolio andits moments provided they exist. In Se
tion 3 we use these results for a port-folio optimization that 
onsists of maximizing the expe
ted terminal wealth ofa portfolio within a well-de�ned set of strategies under some 
onstraint on thevarian
e. In Se
tion 4 we introdu
e the Capital-at-Risk (CaR), whi
h is de�nedvia a low quantile (Value-at-Risk) of the wealth pro
ess, and dis
uss for the one-dimensional 
ase methods for its 
al
ulation and approximation. In Se
tion 5we optimize portfolios, where we repla
e the varian
e by the CaR. We work outreal life examples as the normal inverse Gaussian and varian
e gamma model.Here we do not obtain 
losed form analyti
 solutions, but solve the optimizationproblem by an approximation and numeri
al algorithms. Se
tion 6 is devoted tothe proof of the weak limit theorem whi
h we need for the approximation of thequantile of the wealth pro
ess. It involves some new results on the sto
hasti
exponential of a L�evy pro
ess.2 The market modelWe 
onsider a standard Bla
k-S
holes type market 
onsisting of a riskless bondand several risky sto
ks, whi
h follow exponential L�evy pro
esses. Their re-spe
tive pri
es (P0(t))t�0 and (Pi(t))t�0; i = 1; : : : ; d; evolve a

ording to theequationsP0(t) = ert and Pi(t) = pi exp(bit+ dXj=1 �ijLj(t)) ; t � 0 : (2.1)Here (L(t))t�0 = (L1(t); : : : ; Ld(t))t�0 is a d-dimensional L�evy pro
ess (sta-tionary independent in
rements with 
adlag sample paths). We assume theLi; i = 1; : : : ; d; to be independent. L has 
hara
teristi
 triplet (a; �0�; �), wherea 2 Rd , � is an arbitrary d-dimensional diagonal matrix. We introdu
e � asa diagonal matrix into the model to allow for some extra 
exibility apart from� = (�ij)1�i;j�d. This also in
ludes the possibility of a pure jump pro
ess (for�ii = 0). Sin
e the 
omponents of �W are independent Wiener pro
esses withdi�erent varian
es possible, we allow for di�erent s
aling fa
tors for the Wiener3



pro
ess and the non-Gaussian 
omponents. By the independen
e of the 
om-ponents we obtain for the L�evy measure � of L and a d-dimensional re
tangleA = �di=1(ai; bi℄ � Rd that �(A) =Pdi=1 �i(ai; bi℄, where �i is the L�evy measureof Li for i = 1; : : : ; d; i.e. the L�evy measure is supported on the union of the
oordinate axes (see Sato [20℄, E12.10, p. 67). Thus the probability that two
omponents have a jump at the same time point is zero; i.e. jumps of di�erent
omponents o

ur a.s. at di�erent times.The quantity r 2 R is the riskless interest rate and � = (�ij)1�i;j�d is aninvertible matrix, b 2 Rd 
an be 
hosen su
h that ea
h sto
k has the desiredappre
iation rate. Sin
e the assets are on the same market, they show somedependen
e stru
ture whi
h we model by a linear 
ombination of the same L�evypro
esses L1; : : : ; Ld for ea
h asset pri
e. This means the dependen
e stru
tureof the market is the same as that of the Bla
k-S
holes market in Emmer et al. [8℄.We need the 
orresponding SDE in order to derive the wealth pro
ess. ByItô's formula, Pi is the solution to the SDEdPi(t) = Pi(t�)(bidt+ dbLi(t)) (2.2)= Pi(t�)0��bi + 12 dXj=1(�ij�jj)2�dt+ dXj=1 �ijdLj(t) (2.3)+ exp( dXj=1 �ij�Lj(t))� 1� dXj=1 �ij�Lj(t)1A ; t > 0 ; Pi(0) = pi ;i.e. bLi is su
h that exp(Pdj=1 �ijLj(t)) = E(bLi), where E denotes the sto
hasti
exponential of a pro
ess (see Protter [17℄ for ba
kground on sto
hasti
 analysis).From this representation we see that jumps of bLi o

ur at the same time as thoseof (�L)i =Pdj=1 �ijLj , but a jump of sizePdj=1 �ij�Lj is repla
ed by one of sizeexp(Pdj=1 �ij�Lj)�1 leading to the term exp(Pdj=1 �ij�Lj)�1�Pdj=1 �ij�Ljin formula (2.2), whereas the Brownian 
omponent remains the same as in (�L)i:Remark 2.1. It is not diÆ
ult to start with a general d-dimensional L�evypro
ess with arbitrary 
hara
teristi
 triplet and 
al
ulate the moments of X�;i.e. 
orresponding results of Proposition 2.6. Also the portfolio optimizationproblem (3.1) 
an be solved in this general 
ase. This has been pointed out byJan Kallsen. We prefer, however, to work with a linear dependen
e stru
ture,sin
e it allows for ni
e formulae and 
an also be interpreted easily. The general
ase 
an be found in Emmer [7℄.The following Lemma des
ribes the relation between the 
hara
teristi
triplets of a L�evy pro
ess and its sto
hasti
 exponential, whi
h we need in thesequel.Lemma 2.2. (Goll and Kallsen [9℄)If L is a real-valued L�evy pro
ess with 
hara
teristi
 triplet (a; �2; �), then alsobL de�ned by eL = E(bL) is a L�evy pro
ess with 
hara
teristi
 triplet (ba; b�2; b�)4



given by ba� a = 12�2 + Z �(ex � 1)1f(jex�1j<1g � x1fjxj<1g��(dx)b�2 = �2b�(�) = �(fx 2 Rjex � 1 2 �g) for any Borel set � � R� .In the following Lemma the relation between the 
hara
teristi
 triplets ofa d-dimensional L�evy pro
ess L and its linear transformation �0L is given for� 2 Rd :Lemma 2.3. (Sato [20℄, Prop. 11.10)If L is a d-dimensional L�evy pro
ess with 
hara
teristi
 triplet (a; �0�; �), then�0L is for � 2 Rd a one-dimensional L�evy pro
ess with 
hara
teristi
 triplet(a�; �2�; ��) given bya� = �0a+ Z �0x(1fj�0xj<1g � 1fjxj<1g)�(dx)�2� = j�0�j2��(�) = �(fx 2 Rd j�0x 2 �g) for any Borel set � � R� .Let �(t) = (�1(t) : : : �d(t))0 2 Rd be an admissible portfolio pro
ess, i.e. �(t)is the fra
tion of the wealth X�(t), whi
h is invested in asset i (see Korn [11℄,Se
tion 2.1 for relevant de�nitions). The fra
tion of the investment in the bondis �0(t) = 1 � �(t)01, where 1 = (1; : : : ; 1)0 denotes the ve
tor (of appropriatedimension) having unit 
omponents. Throughout the paper, we restri
t ourselvesto 
onstant portfolios; i.e. �(t) = �, t 2 [0; T ℄, for some �xed planning horizonT . This means that the fra
tions in the di�erent sto
ks and the bond remain
onstant on [0; T ℄. The advantages of this restri
tion are dis
ussed in Emmer etal. [8℄ and Se
tions 3.3 and 3.4 of Korn [11℄. In order to avoid negative wealthwe require that � 2 [0; 1℄d, hen
e shortselling is not allowed in this model. Wealso require �01 � 1; see Remark 2.4 below. This means that borrowing moneyis not permitted.Denoting by (X�(t))t�0 the wealth pro
ess, it follows the dynami
dX�(t) = X�(t�)�((1� �01)r + �0b)dt+ �0dbL(t)� ; t > 0 ; X�(0) = x ;where x 2 R denotes the initial 
apital of the investor. Using Itô's formula, thisSDE has solutionX�(t) = x exp(t(r + �0(b� r1)))E(�0 bL(t)) (2.4)= x exp(aXt+ �0��W (t)) eX�(t) ; t � 0 ; (2.5)where aX is as in Lemma 2.5 below and, setting `(x) := ln(1 + �0(e�x � 1)),ln eX�(t) = Z t0 ZRd `(x)1fj`(x)j>1gML(ds; dx)+ Z t0 ZRd `(x)1fj`(x)j�1g(ML(ds; dx) � ds�L(dx)) ; t � 0 :5



Remark 2.4. Note that a jump �L(t) of L leads to a jump � lnX�(t) of lnX�of size ln(1+�0(e��L(t)�1)) and thus � lnX�(t) > ln(1��01), hen
e we require�01 � 1.The wealth pro
ess is again an exponential L�evy pro
ess. We 
al
ulate the
hara
teristi
 triplet of its logarithm by means of Lemmas 2.2 and 2.3.Lemma 2.5. Consider model (2.1) with L�evy pro
ess L and 
hara
teristi
 triplet(a; �0�; �). De�ne for the d� d-matrix �� the ve
tor [��℄2 with 
omponents[��℄2i = dXj=1(�ij�jj)2; i = 1; : : : ; d:The pro
ess ln(X�=x) is a L�evy pro
ess with 
hara
teristi
 triplet (aX ; �2X ; �X)given by (again we set `(x) := ln(1 + �0(e�x � 1)))aX = r + �0(b+ [��℄2=2� r1 + �a)� j�0��j2=2+ ZRd �`(x)1fj`(x)j�1g � �0�x1fjxj�1g��(dx) ;�2X = j�0��j2 ;�X(A) = �(fx 2 Rd j`(x) 2 Ag) for any Borel set A � R� :For the 
al
ulation of moments of the wealth pro
ess we need the existen
e ofthe moment generating fun
tion in some neighbourhood of 0. This 
orrespondsto an analyti
 extension of the 
hara
teristi
 fun
tion. If this extension is possible(see Theorem 25.17 of Sato [20℄ for 
onditions), for all k 2 N, su
h that the k-thmoment exists,E[(X�(t))k ℄ = xk exp((kaX + k2�2X=2)t)E[( eX�(t))k℄; t � 0 ;and E[( eX�(t))k ℄ = exp(e�kt) ; t � 0 ; (2.6)where e�k = ZRd �(1 + �0(e�x � 1))k � 1� k`(x)1fj`(x)j�1g� �(dx)and � is the L�evy measure of L. In parti
ular,E[ eX�(t)℄ = exp�t ZRd ��0(e�x � 1)� `(x)1fj`(x)j�1g��(dx)� ; t � 0 :Proposition 2.6. Assume in the situation of equation (2.1) that L(1) hasmoment generating fun
tion bf(s) = E exp(s0L(1)) su
h that bf(e0i�) < 1 fori = 1; : : : ; d, where ei is the i-th d-dimensional unit ve
tor. Let X�(t) be as inequation (2.4). Then for t � 0E [X�(t)℄ = x exp(t(r + �0(b� r1 + ln bf(�)))) ; (2.7)var (X�(t)) = x2 exp(2t(r + �0(b� r1 + ln bf(�))))(exp(t�0A�)� 1);(2.8)6



where ln bf(�) = (ln bf(e01�); : : : ; ln bf(e0d�))0 and A = (Aij)1�i;j�d withAij = ln bf((ei + ej)0�)� ln bf(e0i�)� ln bf(e0j�) ; 1 � i; j � d :Proof. Re
all that (a; �0�; �) is the 
hara
teristi
 triplet of L: By equation (2.6)and Lemma 2.5 we obtain for t � 0:E [X�(t)℄ = (2.9)x exp�t (r + �0(b� r1 + 12[��℄2 + �a+ ZRd(e�x � 1� �x1fjxj<1g)�(dx)))� ;var (X�(t)) = x2 exp�2t �r + �0(b� r1 + 12[��℄2 + �a (2.10)+ ZRd(e�x � 1� �x1fjxj<1g)�(dx))����exp �t �j�0��j2 + ZRd(�0(e�x � 1))2�(dx)��� 1� :On the other hand we 
al
ulatebf(e0i�) = E exp(e0i�L(1))= exp���a+ [��℄2=2 + ZRd(e�x � 1� �x1fjxj<1g)�(dx)�i�and �0A� = j�0��j2 + ZRd(�0(e�x � 1))2�(dx)):Plugging this into (2.9) and (2.10) we obtain (2.7) and (2.8).Remark 2.7. Note that for l = 1; : : : ; d (i = p�1)ln bf(e0l�) = lnE exp( dXj=1 �ljLj(1)) = dXj=1 ln bfj(�lj)= lnE[E(bLl)(1)℄ = dXj=1	j(�i�lj)by the independen
e of L1; : : : ; Ld: This implies in parti
ularEE(�0bL(t)) = dYl=1(E[E(bLl(t))℄)�l :Remark 2.8. For d = 1 our portfolio 
onsists of one bond and one sto
k only.(a) Formula (2.8) redu
es tovar(X�(t)) = x2 exp(2t(r + �(b� r + ln bf(�)))) (2.11)��exp(�2t(ln( bf(2�))� 2 ln bf(�))) � 1� :7



Moreover, we 
an set w.l.o.g. � = 1. In this 
ase the L�evy density fX of thepro
ess ln(X�=x) 
an be 
al
ulated from the L�evy density fL of �L asfX(x) = fL�ln�ex � 1� + 1�� exex � (1� �)1fx>ln(1��)g; x 2 R:(b) In the 
ase of a jump part of �nite variation we obtain for t � 0,E [X�(t)℄ = x exp(t(r + �(b� r + 12�2 + 
 + b�))) ; (2.12)var (X�(t)) = x2 exp�2t�r + �(b� r + 
 + b�+ 12�2)��� �exp ��2t(�2 + b�2 � 2b�)�� 1� ; (2.13)for b� = R (ex � 1)�(dx), b�2 = R (e2x � 1)�(dx), and 
 = a� Rjxj<1 x�(dx) .3 Optimal portfolios under varian
e 
onstraintsIn this se
tion we 
onsider the following optimization problem using the varian
eas risk measuremaxf�2[0;1℄d j�01�1g E[X�(T )℄ subje
t to var(X�(T )) � C ; (3.1)where T is some given planning horizon and C is a given bound for the risk.Theorem 3.1. Let L be a L�evy pro
ess with representation (1.1). Then theoptimal solution of problem (3.1) is given by�� = "�A�1(b� r1 + ln bf(�))=pea; ; (3.2)where ea = (b� r1 + ln bf(�))0A�1(b� r1 + ln bf(�))(provided �� 2 [0; 1℄d and ��01 � 1), where ln bf(�) and the matrix A are de�nedin Proposition 2.6 and "� is the unique positive solution ofrT +pea " T + 12 ln�x2C �exp(T"2)� 1�� = 0 : (3.3)Remark 3.2. If the solution to (3.3) does not satisfy �� 2 [0; 1℄d and ��1 � 1;then the problem 
an be solved by the Lagrange method using some numeri
aloptimization algorithm, for example the SQP method (sequential quadrati
 pro-gramming) (see e.g. No
edal and Wright [15℄). If for d = 1 the solution of (3.3)leads to �� > 1, the optimal portfolio is �� = 1.8



Proof of Theorem 3.1. Following the proof of Proposition 2.9 of Emmer et al. [8℄,where the same optimization problem has been solved for geometri
 Brownianmotion, we obtain (3.2) as the portfolio with the largest terminal wealth overall portfolios satisfying �0A� = "2. Plugging (3.2) into the expli
it form (2.10)of the varian
e of the terminal wealth the 
onstraint has the same form as inProposition 2.9 of Emmer et al. [8℄. Hen
e the result follows from a 
omparison of
onstants. The only di�eren
e to the optimization problem in [8℄ is the 
onstraint�� 2 [0; 1℄d and ��1 � 1, whi
h we took 
are of.Remark 3.3. In the �nite variation 
ase and for d = 1 where we 
hoose w.l.o.g.� = 1, the rhs of (3.3) 
an be rewritten asrT + ��b� r + 
 + b�+ 12�2�T + 12 ln�x2C �exp ��2 ��2 + b�2 � 2b��T �� 1��with b�; b�2 and 
 as in Remark 2.8(b).In the following we 
onsider some examples in order to understand the in
u-en
e of the jumps on the 
hoi
e of the optimal portfolio. For simpli
ity we taked = 1 in these examples and hen
e we 
hoose w.l.o.g. � = 1. For some �guresand dis
ussions of the examples we refer to Emmer [7℄.Example 3.4. (Exponential Brownian motion with jumps)Let Y1; Y2; : : : be iid random variables with distribution p on R� and (N(t))t�0a Poisson pro
ess with intensity 
 > 0, independent of the Yi. Then L(t) :=PN(t)i=1 Yi, t � 0, de�nes a 
ompound Poisson pro
ess with L�evy measure �(dx) =
p(dx). The L�evy pro
ess (L(t))t�0 is taken as the sum of a Brownian motionwith drift (�W (t) + 
t)t�0 and the 
ompound Poisson pro
ess (L(t))t�0.If bg(s) = EesY <1, thenbf(s) = E exp(sL(1)) = exp(
(bg(s)� 1)) :If bg(1) or bg(2) exists, then by Remark 2.8(b),b� = 
(bg(1)� 1) and b�2 = 
(bg(2)� 1) :The drift 
 = � 12�2 � b� is 
hosen su
h that the asset pri
e has the same expe
-tation as in the Bla
k-S
holes model in Emmer et al. [8℄, Se
tion 2. By (2.5),(2.12) and (2.13) we obtain for t � 0 (for ease of notation we set r = 0)X�(t) = x exp�t��(b� b�)� �2�22 �+ ��W (t)�N(t)Yi=1 (1 + �(eYi � 1)) ;E[X�(t)℄ = x exp(t�b) ;var(X�(t)) = x2 exp(2t�b) �exp(�2t(�2 + 
(bg(2)� 2bg(1) + 1)))� 1� :The exponential 
ompound Poisson pro
ess (� = 0) and the exponential Brown-ian motion (
 = 0) are spe
ial 
ases of this example as well as the jump di�usionin Emmer et al. [8℄, where the Yi were deterministi
.9



Example 3.5. (Exponential normal inverse Gaussian (NIG) L�evy pro
ess)The NIG L�evy pro
ess has been introdu
ed by Barndor�-Nielsen [3℄ and [4℄ andinvestigated further in Barndor�-Nielsen and Shephard [5℄. It belongs to the
lass of generalized hyperboli
 L�evy pro
esses. The NIG L�evy model is a normalvarian
e-mean mixture model su
h thatL(t) = �t+ ��2(t) +W (�2(t));where, �2(t) � IG(t2Æ2; �2��2), W is standard Brownian motion and � � j�j �0, Æ > 0, � 2 R: This pro
ess is uniquely determined by the distribution of thein
rement L(1) whose density is given bynig(x; �; �; �; Æ) := �� exp�Æp�2 � �2 + �(x � �)� K1(Æ�g(x� �))g(x� �) ; x 2 R ;where g(x) = pÆ2 + x2 and K1(x) = 12 R10 exp(�x(y + y�1)=2)dy; x > 0; is themodi�ed Bessel fun
tion of the third kind of order one. Note that for s > 0 thedensity of L(t+ s)�L(t); t � 0; is given by nig(x; �; �; s�; sÆ): The parameter �is a steepness parameter, i.e. for larger � we get less large and small jumps andmore jumps of middle size, Æ is a s
ale parameter, � is a symmetry parameter and� a lo
ation parameter. For � = � = 0 (symmetry around 0) the 
hara
teristi
triplet (0; 0; �) of a NIG L�evy pro
ess is given by�(dx) = Æ�� jxj�1K1(�jxj)dx ; x 2 R� :Sin
e Rjxj�1 jxj�(dx) = 1, the sample paths of L are a.s. of in�nite variationin any �nite interval. The moment generating fun
tion of L(1) is for the NIGdistribution given bybf(s) = E exp(sL(1)) = exp(Æ(� �p�2 � s2)) ;(see e.g. Raible [18℄, Example 1.6) We use (2.4), (2.7) and (2.11) to obtain fort � 0 (again we set r = 0),X�(t) = x exp(t � b)E(�bL(t)) ;E [X�(t)℄ = x exp(t(�(b+ Æ(� �p�2 � 1))) ;var (X�(t)) = x2 exp(2t (�(b+ Æ(� �p�2 � 1)))))��exp�Æ�2t (2p�2 � 1� � �p�2 � 4)�� 1� :Example 3.6. (Exponential varian
e gamma (VG) L�evy pro
ess)This normal-mean mixture model is of the same stru
ture as the NIG model andhas been suggested by Madan and Seneta [13℄. Its non-symmetri
 version 
anbe found in Madan, Carr and Chang [12℄:L(t) = �t� Æ�2(t) +W (�2(t)) ;10



where �; Æ 2 R, W is standard Brownian motion and �2(t) is a ��L�evy pro
ess,i.e. �2(t+ s)� �2(t) � �(�s; �) for parameters �; � > 0; i.e. �2(1) has densityh(x; �; �) = x��1�(�)�� e�x=� ; x > 0 :By 
onditioning on �2(t) we obtain the 
hara
teristi
 fun
tionE exp(isL(t)) = exp(is�t)E[exp(�(isÆ � s2=2)�2(t)℄= exp(is�t)(1� is�Æ + s2�=2)�t = et	(s) ; t � 0 ;where 	(s) = i�s� � ln(1� is�Æ+ s2�=2). Thus � = 
, � = 0, hen
e L is a purejump pro
ess with L�evy density�(dx) = �jxj exp �r2� + Æ2 jxj � Æx! dx ; x 2 R� :Sin
e Rjxj�1 jxj�(dx) < 1, the sample paths of L are a.s. of �nite variation inany �nite interval; furthermore, those jumps are dense in [0;1), sin
e �(R) =1;see Sato [20℄.In order to 
al
ulate the wealth pro
ess and its mean and varian
e we use (2.4)and Remark 2.8(b). We observe that E exp(isL(1)) = e	(s) is analyti
 around0, hen
e ln bf(1) = 	(�i) = �� � ln(1� �Æ � �=2) <1 ;ln bf(2) = 	(�2i) = 2�� � ln(1� 2�Æ � 2�) <1 :Next we 
al
ulatea = 
 + � Zjxj�1 xjxj exp �r2� + Æ2 jxj � Æx! dx= �� ��Æ + �� 
22 e
1 � �� 
12 e
2 ;where 
1 = � r2� + Æ2 + Æ! and 
2 = � r2� � Æ2 + Æ! :We obtain for t � 0 (again we set r = 0)X�(t) = x exp(t�(b+ �))Ys�t(1 + �(e�L(s) � 1)�E[X�(t)℄ = x(1� �Æ � �=2)���t exp(t�(b+ �)))var(X�(t)) = x2(1� �Æ � �=2)�2��t exp(2t�(b+ �))� � (1� �Æ � �=2)21� 2�Æ � 2� ���2t � 1! :11



Remark 3.7. Sin
e Examples 3.5 and 3.6 have so many parameters, we 
analways attain the same expe
tation and varian
e for all three examples. But theshape of the distributions di�ers. Expe
tation and standard deviation are alwaysin
reasing with the planning horizon T , whi
h leads to a de
reasing optimalportfolio. Note that the optimal portfolio is the same for all L�evy pro
esses withthe same mean and varian
e.4 The Capital-at-Risk - 
al
ulation and approx-imationIn the portfolio problem of the last se
tion, we repla
e now the varian
e by theCapital-at-Risk (CaR). Before we pose and solve the mean-CaR optimizationproblem, we de�ne the CaR and indi
ate some properties. We further show howit 
an be determined (approximated) for a general L�evy pro
ess.De�nition 4.1. Let x be the initial 
apital and T a given planning horizon.Let furthermore z� be the �-quantile of the distribution of E(�bL(T )) for someportfolio � 2 [0; 1℄d; �01 � 1, and X�(T ) the 
orresponding terminal wealth.Then the Value-at-Risk (VaR) is given byVaR(x; �; T ) = inffz 2 R : P (X�(T ) � z) � �g = xz� exp((�0(b� r1) + r)T ) :We de�neCaR(x; �; T ) = xerT �VaR(x; �; T ) = xerT (1� z� exp(�0(b� r1)T )) (4.1)the Capital-at-Risk (CaR) of the portfolio � (with initial 
apital x and timehorizon T ).The 
al
ulation of the CaR involves the quantile z� of E(�bL(T )), whi
h isquite a 
ompli
ated obje
t as we have seen in Lemma 2.5. To 
al
ulate itsdistribution expli
itly is 
ertainly not possible for Examples 3.5 and 3.6. Onepossibility would be to 
al
ulate the 
hara
teristi
 fun
tion of E(�bL(T )) usingits 
hara
teristi
 triplet as given in Lemma 2.2. From this then one 
ould ap-proximate its density using the inverse Fast Fourier transform method. However,the 
ompli
ated expressions of its 
hara
teristi
 triplet in 
ombination with the
ompli
ated integral in the L�evy-Khin
hine formula seems to advise a di�erentapproa
h. As an alternative method we suggest an approximation method basedon a weak limit theorem.For simpli
ity we restri
t ourselves to d = 1 and invoke a result by Asmussenand Rosinski [2℄. The intuition behind is to approximate small jumps of absolutesize smaller than " by a simpler sto
hasti
 pro
ess, often by Brownian motion,su
h that the sto
hasti
 part of the L�evy pro
ess is approximated by an inde-pendent sum of a Brownian motion and a 
ompound Poisson pro
ess. Beforewe study the appli
ability of su
h results to approximate quantiles of the wealthpro
ess, we explain the idea. 12



In a �rst step the small jumps with absolute size smaller than some " > 0are repla
ed by their expe
tation. This leads to the pro
essL"(t) = �(")t+ �W (t) +N"(t) ; t � 0; (4.2)where�(") = a� Z"�jxj�1 x�(dx) and N"(t) = Xs�t�L(s)1fj�L(s)j�"g :Furthermore,L(t)� L"(t) = Z t0 Zjxj<" x(M(dx; ds) � �(dx)ds) ; t � 0 :In a se
ond step the 
ontribution from the variation of small jumps is alsoin
orporated. To this end we use the following representationL(t) = t�(") + �W (t) +N"(t) + Z t0 Zjxj<" x(M(dx; ds) � �(dx)ds; t � 0:In order to repla
e the small jumps for instan
e by some Gaussian term, we needthat for "! 0 (t � 0)1�(") (L(t)� (�(")t+ �W (t) +N"(t))) = �(")�1(L(t)� L"(t)) D! W 0(t) ; (4.3)for some Brownian motion W 0, where�2(") = Zjxj<" x2�(dx); " > 0 : (4.4)We denote by D! weak 
onvergen
e in D[0;1) uniformly on 
ompa
ta; see Pol-lard [16℄. In the �nite variation 
ase (4.3) 
an be rewritten as (t � 0)1�(") 0� X0<s�t�L(s)I(j�L(s)j < ")�E 24 X0<s�t�L(s)I(j�L(s)j < ")351A D!W 0(t) :This reminds us of the fun
tional 
entral limit theorem with Brownian motionas limit pro
ess. Here we 
an see that the standardized pro
esses of the smalljumps 
onverge to Brownian motion as the jump size " tends to 0. In fa
t,sin
e Gaussian part and jump part are independent, the Brownian motion W 0is independent of W , and this justi�es the approximation in distributionL(t) � �(")t+ (�2 + �2(")) 12W (t) +N"(t) ; t � 0 :13



Proposition 4.2. [Asmussen and Rosinski [2℄℄(a) A ne
essary and suÆ
ient 
ondition for (4.3) to hold islim"!0 �(h�(") ^ ")�(") = 1 8h > 0 : (4.5)(b) lim"!0 �(")=" =1 implies (4.5). If the L�evy measure has no atoms in someneighbourhood of 0, then 
ondition (4.5) is equivalent to lim"!0 �(")=" =1:We want to invoke su
h results to approximate quantiles of E(�bL(T )). We dothis in two steps: �rstly, we approximate E(�bL(T )), se
ondly, we use that 
on-vergen
e of distribution fun
tions implies also 
onvergen
e of their generalizedinverses; see Proposition 0.1 of Resni
k [19℄. This gives us the approximation ofthe quantiles.Lemma 4.3. Re
all model (2.1) and (2.2) for d = 1 and � = 1; i.e. L = ln E(bL)and bL are L�evy pro
esses with L�evy measures � and b� respe
tively. Then for0 < " < 1�2(") = Z(�";") x2�(dx) = Z(e�"�1;e"�1) (ln(1 + x))2b�(dx) ;b�2(") = Z(�";") x2b�(dx) = Z(ln(1�");ln(1+")) (ex � 1)2�(dx) ;Proof. The transformation from L to bL only a�e
ts the jumps, whi
h are relatedby �L(s) = ln(1 +�bL(s)) for s � 0. We 
al
ulate�2(") = E 24Xs�1(�L(s))21fj�L(s)j<"g35= E 24Xs�1(ln(1 +�bL(s)))21fe�"�1<�bL(s)<e"�1g35= Z(e�"�1;e"�1) (ln(1 + x))2b�(dx) :The 
al
ulation of b�2 is analogous.We formulate the following main result of this se
tion. The proof is postponedto Se
tion 6.Theorem 4.4. Let Z"; " > 0, be real-valued L�evy pro
esses without Gaussian
omponent and Y " = ln E(Z") their logarithmi
 sto
hasti
 exponentials with
hara
teristi
 triplets (aZ ; 0; �Z) and (aY ; 0; �Y ) as de�ned in Lemma 2.2; for14



notational 
onvenien
e we suppress ". Let g : R ! R+ with g(") ! 0 as "! 0.Let V be a L�evy pro
ess. Then equivalent are as "! 0,Z"(t)g(") D! V (t) ; t � 0 ; (4.6)Y "(t)g(") D! V (t) ; t � 0 :We apply this result to approximate ln E(�bL) for � 2 (0; 1℄ as follows:Corollary 4.5. Let L be a L�evy pro
ess and L" the pro
ess given in (4.2). Letfurthermore E (eL) = bL be su
h that E bL = eL with 
hara
teristi
 triplet givenin Lemma 2.2. Let L" and bL" enjoy the same relationship as L and bL. Then�(")�1(L(t)� L"(t)) D! V (t) ; t � 0 ; (4.7)is equivalent to(��("))�1� ln E(�bL(t)) � ln E(�bL"(t))� D! V (t) ; t � 0:For the proof of this 
orollary we need the following Lemma.Lemma 4.6. Let L be a L�evy pro
ess and L" as de�ned in (4.2). Thenln E(�E (exp(L(t)� L"(t)))) = ln E(�bL(t))� ln E(�bL"(t)); t � 0:Proof. First note thatL(t)� L"(t) = Z t0 Zjxj<" x(M(dx; ds) � �(dx)ds) ; t � 0 ;Now 
al
ulate by Itô's formula ln E(�E (exp(L(t) � L"(t)))), ln E(�bL(t)) andln E(�bL"(t)). In the latter 
ase we obtainln E(�bL"(t)) = �t �a� Z"<jxj�1 x�(dx) + 12(1� �)�2�+ ��W (t)+ Z t0 Zjxj>" ln(1 + �(ex � 1))M(dx; ds) ; t � 0 : (4.8)Cal
ulating the di�eren
e of the last two expressions leads to the assertion.Proof of Corollary 4.5. Setting g(") := �(") and Y " := L � L" in Theorem 4.4we obtain that (4.7) holds if and only if�(")�1E (exp(L(t)� L"(t))) D! V (t) ; t � 0 : (4.9)15



Applying Theorem 4.4 to g(") := ��(") and Z" := �E (exp(L � L")) leads tothe equivalen
e of (4.9) and(��("))�1 ln E(�E (exp(L(t)� L"(t)))) D! V (t); t � 0:Lemma 4.6 leads to the assertion of the Corollary.From this 
orollary and (4.8) we 
on
lude the following approximation forln E(�bL), whi
h is needed for the 
al
ulation of the CaR in De�nition 4.1.Proposition 4.7. With the same notation as above we haveln E(�bL(t)) � ln E(�bL"(t)) + ��(")V (t)= 
"�t+ ��W (t) +M"�(t) + ��(")V (t) ; t � 0:If V is a Brownian motion, thenln E(�bL(t))) � 
"�t+ �(�2 + �2("))1=2W (t) +M"�(t) ; t � 0; ;
"� = �(�(") + 12�2(1� �)) ;M"�(t) = Xs�t ln(1 + �(e�L(s)1fj�L(s)j>"g � 1)) ;i.e. M"� is a 
ompound Poisson pro
ess with jump measure�M"� (�) = �L(fxj ln(1 + �(ex � 1)) 2 �gn(�"; "))for any Borel set � � R: Moreover, if the L�evy measure �L has a Lebesguedensity fL; a density of the L�evy measure �M of the pro
ess M"� is given byfM (x) = fL�ln�ex � 1� + 1�� exex � (1� �)1fx>ln(1��)g1fj ln((ex�1)=�+1)j>"gand thus M"� has Poisson intensity RR fM (x)dx; the density of the jump sizes ofM"� is given by fM (x)= R fM (y)dy, x 2 R.By Proposition 0.1 of Resni
k [19℄ we obtain the 
orresponding approxima-tion for the �-quantile z� of E(�bL(T )), where T is some �xed planning horizon.Proposition 4.8. With the quantities as de�ned in Proposition 4.7 we obtainz� � z"�(�) = inffz 2 R : P (
"�T +M"�(T ) + ��W (T ) + ��L(")V (T ) � ln z) � �g :Moreover, if V is a Brownian motion, thenz� � z"�(�) = inffz 2 R : P (
"�T +M"�(T ) + �(�2 + �2L("))1=2W (T ) � ln z) � �g :We obtain VaR(x; �; T ) � xz"�(�) exp((�(b� r) + r)T ) ;CaR(x; �; T ) � x exp(rT ) (1� z"�(�) exp(�(b� r)T )) :16



Provided we know the distribution of the L�evy pro
ess V , i.e. its 
hara
ter-isti
 triplet, we have redu
ed the problem of the 
al
ulation of a low quantileof ln E(�bL(T )) to the 
al
ulation of a low quantile of the sum of the 
ompoundPoisson variable M"�(T ); the normal variable ��W (T ); and the limit variable��(")V (T ): Here we see immediately two simpli�
ations of the original problemby this approximation. Firstly, the pro
ess V is usually mu
h simpler than theoriginal L�evy pro
ess and, se
ondly, � is now only a linear fa
tor, whi
h simpli-�es numeri
al pro
edures 
onsiderably. Various examples have been investigatedin detail in Emmer [7℄ using the Fast Fourier Transform method.5 Optimal portfolios under CaR 
onstraintsWe 
onsider now the following optimization problem using the Capital-at-Riskas risk measure.max�2[0;1℄ E[X�(T )℄ subje
t to CaR(x; �; T ) � C ; (5.1)where T is some given planning horizon and C is a given bound for the risk.Unfortunately, there is no analogue of Theorem 3.1. Due to the fa
t that,immediately by (2.7), the mean wealth E[X�(T )℄ is in
reasing in �, the optimalsolution of (5.1) is the largest � 2 [0; 1℄ that satis�es the CaR 
onstraint. Thisportfolio 
an be found by simple numeri
al iteration. For relevant exampleswe 
al
ulate the approximation of Proposition 4.8, whi
h leads jointly with anapproximation of the Fast Fourier Transform and the numeri
al iteration to an(approximate) optimal solution of the mean-CaR portfolio problem. For �guresand dis
ussions we refer to Emmer [7℄.Example 5.1. (Exponential normal inverse Gaussian (NIG) L�evy pro
ess)Re
all the model as de�ned in Example 3.5, where we set again � = � = 0. Forthe 
al
ulation of the CaR we use the approximation of Proposition 4.8. SettingfL(x) = fnig(x) = �ÆK1(�jxj)=(�jxj), x 2 R , the L�evy density of the NIG L�evypro
ess, the intensity of the 
ompound Poisson pro
ess M"� and the density ofits jump sizes 
an be 
al
ulated as explained in Proposition 4.7. Plugging fniginto de�nition (4.4) we obtain�2(") = �Æ� Zjxj<" jxjK1(�jxj)dx ; " > 0 :As shown in Asmussen and Rosinski [2℄ for the NIG L�evy pro
ess the normalapproximation for small jumps is allowed sin
e �(") � (2Æ=�)1=2"1=2 as " ! 0.Sin
e � = 0 the approximating L�evy pro
ess has a Gaussian 
omponent withvarian
e �2("). Moreover, a = 0, hen
e�(") = ��Æ� Z"�jxj�1 xjxjK1(�jxj)dx ; " > 0 :17



Su
h integrals 
an be evaluated by a polynomial approximation for the modi�edBessel fun
tion of the third kind (see Abramowitz and Stegun [1℄, pp. 378-379).Example 5.2. (Exponential varian
e gamma (VG) L�evy pro
ess)(a) As mentioned in Asmussen and Rosinski [2℄, for the gamma pro
ess with�(dx) = �x�1e�x=Ædx, x > 0, with Æ; � > 0, the normal approximation for smalljumps fails. This is a 
onsequen
e of Proposition 4.2, sin
elim"!0 �2(")"2 = lim"!0 �"2 Z "0 xe�x=Ædx = �2 ; (5.2)using for instan
e l'Hospital's rule. The limit relations of Theorem 4.4 hold,however, with L�evy pro
ess V having 
hara
teristi
 triplet (aV ; 0; �V ), whereaV = �(1�p2=�) ^ 0 and �V (dy) = �y 1(0;p2=�)(y)dy:Proposition 4.7 gives then the approximation for the small jumps.We show that (4.7) holds. SetD"(t) := �(")�1(L(t)� L"(t)) ; t � 0 ;By Pollard [16℄, Theorem V.19, (4.7) is equivalent to D"(1) D! V (1), sin
e D"are L�evy pro
esses. By Kallenberg [10℄, Theorem 13.14 we need to show for the
hara
teristi
 triplets (aD; 0; �D) of the L�evy pro
esses D"lim"!0 �D([x; z℄) = �V ([x; z℄) for any 0 < x < z (5.3)lim"!0 Zjyj<K y2�D(dy) = Zjyj<K y2�V (dy) for ea
h K > 0 (5.4)lim"!0 aD = aV (5.5)First we prove (5.3). By the proof of Theorem 2.1 of Asmussen and Rosinski [2℄for the pro
ess D" we haveaD = � ��(") Z�(")^"<y<" e�y=Ædyand L�evy measure �D(B) = �(�(")B\(0; ")) for any Borel set B � R� . Hen
e Vhas L�evy measure �V (B) = lim"!0 �(�(")B \ (0; ")): For any interval [x; z℄; 0 <x < z; we 
al
ulatelim"!0 �D([x; z℄) = lim"!0 � "^�(")zZ"^�(")x y�1e�y=Ædy = � ln z ^p2=�x ^p2=�! = �V ([x; z℄) ;where we have used that e�y=Æ ! 1 as y ! 0.Next we prove (5.4). For ea
h K > 0 we 
al
ulate Rjyj<K y2�V (dy) = �K22 ^ 118



giving with (5.2)lim"!0 Zjyj<K y2�D(dy) = lim"!0 �2(K�(") ^ ")�2(") = �K22 ^ 1 :Similarly we 
al
ulateaV = lim"!0 aD = lim"!0� ��(") Z�(")^"<y<" e�y=Ædy = �(1�p2=�)1f1�p2=�<0gwhi
h proves (5.5).(b) For the exponential VG L�evy pro
ess the normal approximation for smalljumps is not possible either, sin
e by Example 3.6 and e.g. l'Hospital's rulelim"!0 �2(")"2 = lim"!0 �"2 Z "�" x2jxj exp(�r2� + Æ2jxj � Æx)dx= lim"!0 �"2 Z "0 x(exp(
1x) + exp(
2x))dx = � ;where 
1 = � r2� + Æ2 + Æ! < 0 and 
2 = � r2� + Æ2 � Æ! < 0:As in part (a) we show (5.3)-(5.5) and obtain a limit pro
ess V with 
hara
teristi
triplet (0; 0; �V ); where �V (dy) = �y 1(�1=p�; 1=p�)(y)dy :In the same way as for the normal approximation one 
an 
al
ulate quantiles forapproximations of small jumps by the L�evy pro
ess V using the FFT method;see Mauthner [14℄.6 Proof of Theorem 4.4We �rst derive some auxiliary results. As usual we writea� := faxjx 2 �g; e� := fexjx 2 �g, and �� 1 := fx� 1jx 2 �g:Lemma 6.1. Let Z" and Y " be L�evy pro
esses with 
hara
teristi
 triplets as inTheorem 4.4. Set E" := Z"g(") and D" := Y "g(")Then E" is a L�evy pro
ess with 
hara
teristi
 triplet (aE ; 0; �E) and D" is aL�evy pro
ess with 
hara
teristi
 triplet (aD; 0; �D), whi
h both depend on ". They19



satisfy the following relations:aE = 1g(")�aZ � Zg(")<jxj�1 x�Z(dx)�;�E(�) = �Z(g(")�) = �Y (fxj(ex � 1)=g(") 2 �g) for any Borel set � � R� ,aD = 1g(")�aY � Zg(")<jxj�1 x�Y (dx)� ;�D(�) = �Y (g(")�) = �Z(eg(")� � 1) for any Borel set � � R� ,aD � aE = 1g(") Z (ln(x+ 1)1fj ln(x+1)j�g(")g � x1fjxj�g(")g)�Z(dx):= 1g(") Z (x1fjxj�g(")g � (ex � 1)1fjex�1j�g(")g)�Y (dx):Proof. Sin
e E" and D" have no Gaussian 
omponent, �E = �D = 0.Using Lemmata 2.2 and 2.3 and setting � = 1=g(") we obtain for any Borel set� � R� , �E(�) = �Z(g(")�) = �Y (fxj(ex � 1)=g(") 2 �g)and analogously,�D(�) = �Y (g(")�) = �Z(fxj ln(x+ 1)=g(") 2 �g):Moreover, aE = 1g(")aZ + 1g(") Z x(1fjxj�g(")g � 1fjxj�1g)�Z(dx)= 1g(")�aZ � Zg(")<jxj�1 x�Z(dx)�:In a similar way we proveaD = 1g(")�aY � Zg(")<jxj�1 x�Y (dx)�:Using Lemma 2.2 we obtainaD � aE = 1g(")�aY � aZ + Zg(")<jxj�1 x(�Z � �Y )(dx)�= 1g(") Z �ln(x+ 1)1fj ln(x+1)j<g(")g � x1fjxj<g(")g� �Z(dx):20



Lemma 6.2. Let K : R+ ! R+ and g : R+ ! R+ be su
h that g(") ! 0 as"! 0. Then lim"!0 1g2(") Z(�hg(");hg(")) x2�Z(dx) = K(h) 8h > 0 (6.1)if and only iflim"!0 1g2(") ZA";h (ln(x+ 1))2�Z(dx) = K(h) 8h > 0 ;where A";h := (exp(�hg("))� 1; exp(hg("))� 1) for ea
h "; h > 0.Proof. Set � = �Z . Let h > 0. Sin
e g(")! 0 as "! 0, there exists some ~" > 0su
h that ehg(") < 1 for all 0 < " < ~". By a Taylor expansion we have for some� 2 (0; 1) ehg(") � 1 = hg(")e�hg(")and hen
e e�1hg(") < hg(") < ehg(") � 1 < ehg(")and, analogously,�ehg(") < �hg(") < e�hg(") � 1 < �e�1hg(") :This leads to (�K1g(");K1g(")) � A";h � (�K2g(");K2g(")) (6.2)for K1 = e�1h and K2 = eh.Assume that (6.1) holds. Then by a Taylor expansion around 0 we have for some� = �(x) 2 (0; 1) ln(x + 1) = x� x22(�x+ 1)2giving1g2(") ZA";h (ln(x+ 1))2�(dx)= 1g2(") ZA";h x2�(dx) � 1g2(") ZA";h x3(�x + 1)2 �(dx) + 1g2(") ZA";h x44(�x+ 1)4 �(dx)= I1(")� I2(") + I3(") : (6.3)21



First note that with (6.1) and (6.2),jI2(")� I3(")j� 1g2(") 0B�������� ZA";h x3(�x + 1)2 �(dx)�������+ ZA";h x44(�x+ 1)4 �(dx)1CA (6.4)� 1g2(") 0B� Z(�K2g(");K2g(")) ���� x3(�x + 1)2 ���� �(dx) + Z(�K2g(");K2g(")) x44(�x+ 1)4 �(dx)1CA�  supx2(�K2g(");K2g("))� jxj(�x + 1)2 + x24(�x+ 1)4�! 1g2(") Z(�K2g(");K2g(")) x2�(dx)� � K2g(")(1�K2g("))2 + (K2g("))24(1�K2g("))4� 1g2(") Z(�K2g(");K2g(")) x2�(dx)! 0 ; "! 0 : (6.5)Hen
e, setting C";h(s; t) = (�hg(") exp(shg(")); hg(") exp(thg("))),lim"!0 1g2(") ZA";h (ln(x+ 1))2�(dx) = lim"!0 I1(") = lim"!0 1g2(") ZC";h(��1;�2) x2�(dx)for some �1; �2 2 (0; 1) using a Taylor expansion. Thus,lim"!0 1g2(") ZC";h(�1;�1) x2�(dx) � lim"!0 I1(") � lim"!0 1g2(") ZC";h(1;1) x2�(dx):Sin
e g(")! 0 as "! 0, we obtain for arbitrary "0 > 0 and all " < "0 an upperbound for the right-hand sidelim"!0 1g2(") Zjxj<hg(") exp(hg("0)) x2�(dx) = K(h exp(hg("0))) :Sin
e "0 
an be 
hosen arbitrarily small, we obtain under 
ondition (6.1)lim"!0 1g2(") Zjxj<hg(") exp(hg(")) x2�(dx) = K(h): (6.6)Similarly, we get a lower bound and hen
elim"!0 1g2(") Zjxj<hg(") exp(�hg(")) x2�(dx) = K(h)and thus also lim"!0 I1(") = K(h):22



For the 
onverse �rst note that by (6.4)jI2(")� I3(")j�  supx2A";h� jxj(�x+ 1)2 + x24(�x+ 1)4�! 1g2(") ZA";h x2�(dx)� �exp(g(")h)� 1exp(�2g(")h) + (exp(g(")h)� 1)24 exp(�4g(")h) � I1(") (6.7)and hen
e jI2(") � I3(")j � T (")I1(") for some positive T (") ! 0 as " ! 0. Soby (6.3) I1(") � 1g2(") ZA";h (ln(x + 1))2�(dx) + T (")I1(")and hen
e I1(")(1� T (")) � 1g2(") ZA";h (ln(x + 1))2�(dx):Taking limsup results in lim sup"!0 I1(") � K(h). Then by (6.7) jI2(")�I3(")j !0 and by (6.3) we obtain lim"!0 I1(") = K(h) for ea
h h > 0. Using the sameargument as for (6.6),K(h) = lim"!0 I1(") � lim 1g2(") Zjxj<hg(") exp(hg(")) x2�(dx)= lim 1g2(") Zjxj<hg(") x2�(dx)= lim 1g2(") Zjxj<hg(") exp(�hg(")) x2�(dx)� lim"!0 I1(") = K(h)we obtain (6.1).The following Lemma 
an be 
onsidered as an inverse version to Lemma 6.2.Its proof is indeed quite similar and we refer the interested reader to Emmer [7℄.Lemma 6.3. Let K : R+ ! R+ and g : R+ ! R+ be su
h that g(") ! 0 as"! 0. Then lim"!0 1g2(") Z(�hg(");hg(")) x2�Y (dx) = K(h) 8h > 0if and only if lim"!0 1g2(") ZB";h (ex � 1)2�Y (dx) = K(h) 8h > 0 ;23



where B";h := (ln(1� hg(")); ln(1 + hg("))) for ea
h "; h > 0.Now we 
an prove Theorem 4.4.Proof of Theorem 4.4. Assume that (4.6) holds, i.e. E"(t) = Z"(t)=g(") D!V (t); t � 0, as " ! 0: Sin
e E" are L�evy pro
esses weak 
onvergen
e of thepro
esses is equivalent to E"(1) D! V (1) (see e.g. Pollard [16℄, Theorem V.19).Let now (aE ; 0; �E) be the 
hara
teristi
 triplets of the L�evy pro
esses E" asderived in Lemma 6.1 (re
all that they depend on "). Sin
e �E = 0, a

ordingto Kallenberg [10℄, Theorem 13.14, E"(1) D! V (1) if and only iflim"!0 Zjxj<h x2�E(dx) = �2V + Zjxj<h x2�V (dx) 8h > 0 ; (6.8)lim"!0 �E(fjxj � 
g) = �V (fjxj � 
g) 8
 > 0 ; (6.9)lim"!0 aE = aV : (6.10)So we assume that (6.8)-(6.10) hold.Moreover, setting D" = Y "=g(") with 
hara
teristi
 triplets (aD ; 0; �D), we haveto show lim"!0 Zjxj<h x2�D(dx) = �2V + Zjxj<h x2�V (dx) 8h > 0 ; (6.11)lim"!0 �D(fjxj � 
g) = �V (fjxj � 
g) 8
 > 0 ; (6.12)lim"!0 aD = aV : (6.13)To prove (6.11) we 
onsiderZjxj<h x2�D(dx) = E 24Xs�1(�D"(s))21fj�D"(s)j<hg35= 1g2(")E 24Xs�1(ln(1 +�Z"(s)))21f�Z"(s)2A";hg35= 1g2(") ZA";h (ln(x+ 1))2�Z(dx) ; (6.14)where A";h = (e�g(")h � 1; eg(")h � 1). By (6.8) and Lemma 6.2, settingK(h) = �2V + Rjxj<h x2�V (dx) the right-hand side of (6.14) 
onverges to�2V + Rjxj<h x2�V (dx) for ea
h h > 0. 24



Now we prove (6.12). By Lemma 6.1 we have�D(fjxj � 
g) = �Z(eg(")fjxj�
g � 1)= �Z(eg(")fjxj�
g � 1 \ fjxj � 
g(")g) + �Z(eg(")fjxj�
g � 1 \ fjxj < 
g(")g)The �rst term 
onverges to �V (fjxj � 
g), sin
e by (6.9)�Z(fjxj � 
g(")g) = �E(fjxj � 
g)! �V (fjxj � 
g) ; "! 0 :Sin
e for any Borel set � � R��Z(�) infx2�(ln(x+ 1))2 � Z� (ln(x + 1))2�Z(dx)holds, we get�Z(eg(")fjxj�
g � 1 \ fjxj < 
g(")g)= �Z(fjxj < 
g(")gn(eg(")fjxj<
g � 1))� 1(
g("))2 Zfjxj<
g(")gn(eg(")fjxj<
g�1) (ln(1 + x))2�Z(dx)= 1(
g("))2 Zfjxj<
g(")g (ln(1 + x))2�Z(dx)� 1(
g("))2 Zfjxj<
g(")g\(eg(")fjxj<
g�1) (ln(1 + x))2�Z(dx)! 0; "! 0;sin
e both terms in the se
ond last line tend to K(
)=
2; where K(h) =�2V + Rjxj<h x2�V (dx). This 
an be seen as follows. For the �rst term we useTaylor's theorem in the same way as in the proof of Lemma 6.2 repla
ing A";hby (�
g("); 
g(")). The se
ond term tends to K(
)=
2 using the same Taylorexpansion and sin
e by a Taylor expansion for ex � 1 around 0fjxj < 
g(")g \ (eg(")fjxj<
g � 1) = (�
g(")e��1
g("); 
g("))for some �1; �2 2 (0; 1):Now we prove (6.13). By (6.10) we know that aE ! aV , hen
e we only need toshow jaD � aE j ! 0:By Lemma 6.1 and the Taylor expansion we use in (6.3) setting G" = fj ln(x +1)j < g(")g = fe�g(") � 1 < x < eg(") � 1g = feg(")fjxj<1g � 1g, we obtain for25



some � 2 (0; 1)jaD � aE j = 1g(") ����Z (ln(x+ 1)1G") �Z(dx)����= 1g(") ����Z ��x� x22(�x+ 1)2� 1G" � x1fjxj<g(")g� �Z(dx)����= 1g(") ������Z (x1G" � x1fjxj<g(")g)�Z(dx) � ZG" x22(�x+ 1)2 �Z(dx)������ :From 12(�x+ 1)2 < 12e�2g(") for x 2 (e�g(") � 1; eg(") � 1)we 
on
lude lim"!0 1g(") ZG" x22(�x+ 1)2 �Z(dx) = 0 :We obtainlim sup"!0 jaD � aE j2= lim sup"!0 1g2(") ����Z x(1G" � 1fjxj<g(")g)�Z(dx)����2= lim sup"!0 1g2(") ������� ZG"nfjxj<g(")g x�Z(dx) � Zfjxj<g(")gnG" x�Z(dx)�������2� lim sup"!0 1g2(") ZG"nfjxj<g(")g x2�Z(dx) + lim sup"!0 1g2(") Zfjxj<g(")gnG" x2�Z(dx) :Both terms 
onverge to 0 as follows.lim"!0 1g2(") ZG" x2�Z(dx) = K(1)by the proof of Lemma 6.2,lim"!0 1g2(") Zfjxj<g(")g x2�Z(dx) = K(1)by (6.8) for h = 1; andlim"!0 1g2(") Zfjxj<g(")g\G" x2�Z(dx) = K(1);26



whereK(h) = �2V + Rjxj<h x2�V (dx); sin
e by a Taylor expansion of ex�1 around 0fjxj < g(")g \G" = (�g(")e�g("); g("))for some � 2 (0; 1) and using the same argumentation as in the proof ofLemma 6.2.The other dire
tion 
an be proved analogously.A
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