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1 Introduction

It is well-known that the normal distribution does not describe the behaviour
of asset returns in a very realistic way. One reason for this is that the distribu-
tion of real data is often leptokurtic, i.e. it exhibits more small values than a
normal law and has often semi-heavy tails, in other words its curtosis is higher
than the curtosis of the normal distribution. Eberlein and Keller [6] show for
instance the fit of the generalized hyperbolic distribution to financial data in a
very convincing way. Normal mixture models like the normal inverse Gaussian
and the variance gamma model play an increasing role also in the financial in-
dustry. Consequently, to replace in the classical geometric Brownian motion the
Wiener process by some general Lévy process is an important generalization of
the traditional Black-Scholes model.



This paper can be viewed as a continuation of Emmer, Kliippelberg, and
Korn [8], where a portfolio optimization problem was solved based on the Value-
at-Risk as risk measure. Now we investigate portfolio optimization problems,
when the price processes are governed by general exponential Lévy processes,
comparing the optimal solutions with variance and Value-at-Risk as risk mea-
sures, respectively. We explain some basic theory of Lévy processes and refer to
Protter [17] and, in particular, Sato [20] for relevant background.

The characteristic function of L(¢) is for each ¢ > 0 given by

Eexp(isL(t)) = exp(t¥(s)), s&R?,

where ¥ has Lévy-Khintchine representation
. 1 . .
\IJ(S) = m'Ls — 53’/825113 + /Rd(ew T _ 11— ZS’$1{|x|Sl})VL(dw) 7

with a;, € R?, 8 3., is a non-negative definite symmetric d x d-matrix, and v,
is a measure on R? satisfying v({0}) = 0 and [,.(|z]* A1)v(dz) < co. The term
corresponding to xlf, <1} represents a centering without which the integral
may not converge. The characteristic triplet (ar, 37 0r,vr) characterizes the
Lévy process. We often write (a, 3’3, v) instead of (ar, B 8r,vr), if it is clear
which Lévy process is concerned. Throughout this paper we denote by R? the
d-dimensional Euclidean space. Its elements are column vectors and for = € R?
we denote by ' the transposed vector; analogously, for a matrix 8 we denote by
A" its transposed matrix. We further denote by |z| = (3%, #2)!/2 the Euclidean
norm of z € RY.

According to Sato [20], Chapter 4, the following holds. For each w in the
probability space define AL(t,w) = L(t,w) — L(t—,w). For each Borel set B C
[0,00) x R¥* (R™* = R< \ {0}) set

M(B,w) = #{(t,AL(t,w)) € B}.
Lévy’s theory says that M is a Poisson random measure with intensity
m(dt,dz) = dtv(dz),

where v is the Lévy measure of the process L.
For B = [t1,t2] x A for 0 < t; < t2 < oo and a Borel set A in R?*

M(B,w) = #{(t,AL(t,w)) : t1 <t < ty,AL(t,w) € A}

counts jumps of size in A which happen in the time interval (¢;,¢2]. According
to the above, this is a Poisson random variable with mean (¢ — t1)v(A).

With this notation, the Lévy-Khintchine representation corresponds to the
representation

L(t) = at+BW(t)+ Z AL(S)I{\AL(s)\>1}

0<s<t

+/0 /xglx(M(ds,dx) —dsv(dz)), t>0. (1.1)



This means that L(t) has a Gaussian component SW (t) and a pure jump part
with Lévy measure v, having the interpretation that a jump of size x occurs at
rate v(dz). To ensure the finiteness of the integral on the rhs, the small jumps
are compensated by their expectation. This representation reduces in the finite
variation case to

L(t)=~t+BW(t)+ > AL(s), t>0,
0<s<t

where v = a — f\w\<1 zv(dz); i.e. L(t) is the independent sum of a drift term, a
Gaussian component and a pure jump part.

The paper is organized as follows. In Section 2 we introduce a multivariate
Lévy Black-Scholes model and calculate the terminal wealth of a portfolio and
its moments provided they exist. In Section 3 we use these results for a port-
folio optimization that consists of maximizing the expected terminal wealth of
a portfolio within a well-defined set of strategies under some constraint on the
variance. In Section 4 we introduce the Capital-at-Risk (CaR), which is defined
via a low quantile (Value-at-Risk) of the wealth process, and discuss for the one-
dimensional case methods for its calculation and approximation. In Section 5
we optimize portfolios, where we replace the variance by the CaR. We work out
real life examples as the normal inverse Gaussian and variance gamma model.
Here we do not obtain closed form analytic solutions, but solve the optimization
problem by an approximation and numerical algorithms. Section 6 is devoted to
the proof of the weak limit theorem which we need for the approximation of the
quantile of the wealth process. It involves some new results on the stochastic
exponential of a Lévy process.

2 The market model

We consider a standard Black-Scholes type market consisting of a riskless bond
and several risky stocks, which follow exponential Lévy processes. Their re-
spective prices (Py(t))t>0 and (P;(t))¢>0, 4 = 1,...,d, evolve according to the
equations

d
Po(t) = e’"t and P,'(t) = D; exp(b,-t + Z O'iij (t)) y t Z 0. (21)

Jj=1

Here (L(t))i>0 = (L1(t),...,La(t))t>0 is a d-dimensional Lévy process (sta-
tionary independent increments with cadlag sample paths). We assume the
L;,i=1,...,d, to be independent. L has characteristic triplet (a, 8’3, v), where
a € R?, 8 is an arbitrary d-dimensional diagonal matrix. We introduce /3 as
a diagonal matrix into the model to allow for some extra flexibility apart from
o = (04j)1<i,j<a- This also includes the possibility of a pure jump process (for
Bii = 0). Since the components of W are independent Wiener processes with
different variances possible, we allow for different scaling factors for the Wiener



process and the non-Gaussian components. By the independence of the com-
ponents we obtain for the Lévy measure v of L and a d-dimensional rectangle
A =x%L (a;,b;] C R? that v(A) = 2?21 vi(a;, b;], where v; is the Lévy measure
of L; for i = 1,...,d; i.e. the Lévy measure is supported on the union of the
coordinate axes (see Sato [20], E12.10, p. 67). Thus the probability that two
components have a jump at the same time point is zero; i.e. jumps of different
components occur a.s. at different times.

The quantity r € R is the riskless interest rate and o = (045)1<s j<a is an
invertible matrix, b € R? can be chosen such that each stock has the desired
appreciation rate. Since the assets are on the same market, they show some
dependence structure which we model by a linear combination of the same Lévy
processes L, ..., Ly for each asset price. This means the dependence structure
of the market is the same as that of the Black-Scholes market in Emmer et al. [8].

We need the corresponding SDE in order to derive the wealth process. By
It6’s formula, P; is the solution to the SDE

dPi(t) = Py(t—)(bdt + dLi(t)) (2.2)
1 d d
= PZ( bz"‘ 52 Ut]ﬁj] dt—f—ZaijdLj(t) (23)
j=1 Jj=1
d
+exp() 03 AL (t) —1—Z%AL ,t>0,P(0) =p;,
j=1

i.e. L; is such that exp(zj 105 L;(t)) = S(Ei), where £ denotes the stochastic
exponential of a process (see Protter [17] for background on stochastic analysis).
From this representation we see that jumps of E,- occur at the same time as those
of (¢L); = Z?:l oi;Lj, but a jump of size Zd 1 0i;ALj is replaced by one of size
exp(Z?:1 0i;ALj)—1 leading to the term exp(Ej L0 ALj)— 1—2?:1 oijAL;
in formula (2.2), whereas the Brownian component remains the same as in (o L);.

Remark 2.1. It is not difficult to start with a general d-dimensional Lévy
process with arbitrary characteristic triplet and calculate the moments of X™;
i.e. corresponding results of Proposition 2.6. Also the portfolio optimization
problem (3.1) can be solved in this general case. This has been pointed out by
Jan Kallsen. We prefer, however, to work with a linear dependence structure,
since it allows for nice formulae and can also be interpreted easily. The general
case can be found in Emmer [7].

The following Lemma describes the relation between the characteristic
triplets of a Lévy process and its stochastic exponential, which we need in the
sequel.

Lemma 2.2. (Goll and Kallsen [9])
If L is a real-valued Lévy process with characteristic triplet (a,3?,v), then also

L defined by e = 5(2) is a Lévy process with characteristic triplet (a, B\Q,ﬁ)



given by

~ 1 e

a—a = §ﬂ2 + / ((e — 1)1{(‘8m,1|<1} — xl{‘mKl})I/(ddj)
g o= p

v(A) = v({z e Rle® —1¢€ A}) for any Borel set A C R* .

In the following Lemma the relation between the characteristic triplets of
a d-dimensional Lévy process L and its linear transformation #'L is given for
7 € RL.

Lemma 2.3. (Sato [20], Prop. 11.10)
If L is a d-dimensional Lévy process with characteristic triplet (a,5'3,v), then
n'L is for 1 € R? a one-dimensional Lévy process with characteristic triplet

(ax, B3, vx) given by

Ar = m'a + /WI$(1{|7r’w|<1} — 1{|w|<1})l/(d$)
gy = I8P
ve(A) = v({z € Rr'z € A}) for any Borel set A C R* .

Let m(t) = (m(t) ... ma(t)) € R? be an admissible portfolio process, i.e. m(t)
is the fraction of the wealth X™(¢), which is invested in asset i (see Korn [11],
Section 2.1 for relevant definitions). The fraction of the investment in the bond
is mo(t) = 1 — w(t)'1, where 1 = (1,...,1)" denotes the vector (of appropriate
dimension) having unit components. Throughout the paper, we restrict ourselves
to constant portfolios; i.e. w(t) = m, t € [0,T], for some fixed planning horizon
T. This means that the fractions in the different stocks and the bond remain
constant on [0,7]. The advantages of this restriction are discussed in Emmer et
al. [8] and Sections 3.3 and 3.4 of Korn [11]. In order to avoid negative wealth
we require that 7 € [0,1]%, hence shortselling is not allowed in this model. We
also require 7’1 < 1; see Remark 2.4 below. This means that borrowing money
is not permitted.

Denoting by (X7 (t))¢>0 the wealth process, it follows the dynamic

AX™(t) = X™(t—) (((1 — ' D)r + 7'b)dt + n'di(t)) L t>0, X"(0)=uz,

where z € R denotes the initial capital of the investor. Using It6’s formula, this
SDE has solution

X (t)

zexp(t(r + 7' (b — r1)))E(x L(t)) (2.4)
= zexplaxt+a'ofW(E)X"(t), t>0, (2.5)

where ax is as in Lemma 2.5 below and, setting £(x) := In(1 + 7' (e?® — 1)),
t
lnXﬂ(t) = / /d£($)1{|l(z)|>1}ML(d5:d$)
0o Jr

t
+/ / €($)1{|g(w)|31}(ML(dS,diL“) —dsvy(dx)), t>0.
0 JR4



Remark 2.4. Note that a jump AL(t) of L leads to a jump Aln X7 (¢) of In X™
of size In(1+7'(e?2L®) —1)) and thus Aln X7 (t) > In(1—7'1), hence we require
'l < 1.

The wealth process is again an exponential Lévy process. We calculate the
characteristic triplet of its logarithm by means of Lemmas 2.2 and 2.3.

Lemma 2.5. Consider model (2.1) with Lévy process L and characteristic triplet
(a,8'8,v). Define for the d x d-matriz o3 the vector [o]* with components

d

[Uﬁ]? = Z(Uz’jﬁj]’)Z, 1=1,...,d.

j=1

The process In(X™/x) is a Lévy process with characteristic triplet (ax, %, vx)
given by (again we set {(x) :=In(1 + 7'(e”* — 1)))

ax = r+7'(b+[op)?/2—rl+oa) - |7'aB?/2
+/Rd (@)L (je@)i<1y = 70wl gja1 <1y v(da),
Bx = "o,
vx(4) = v({x € RY|{(x) € A}) for any Borel set A C R* .

For the calculation of moments of the wealth process we need the existence of
the moment generating function in some neighbourhood of 0. This corresponds
to an analytic extension of the characteristic function. If this extension is possible
(see Theorem 25.17 of Sato [20] for conditions), for all k € N, such that the k-th
moment exists,

E[(X™(t)*] = a*exp((kax +K*B% /2O E[X™(1)F], t>0,
and
BIXT ()] = expliint), t>0, (2.6)
where

fik = /Rd (L7 (e = 1)) — 1= kl(x)Ljg(a) <1y) v(dx)

and v is the Lévy measure of L. In particular,

EB[X™(t)] = exp <t /Rd (7'(e”® = 1) — E(:c)l{g@)gl})u(dx)) ,t>0.

Proposition 2.6. Assume in the situation of equation (2.1) that L(1) has
moment generating function f(s) = Eexp(s'L(1)) such that f(ejo) < oo for
i=1,...,d, where e; is the i-th d-dimensional unit vector. Let X7 (t) be as in

equation (2.4). Then fort >0

~

zexp(t(r + '(b—rl +1n f(0)))), (2.7)
22 exp(2t(r + 7' (b — r1 + In f(0)))) (exp(tr' Ar) — 1),(2.8)

E[X™(1)]
var (X7 (t))



~ ~ ~

where In f(o) = (In f(elo),...,In f(e,0))" and A = (Aij)1<ij<a with

~ ~ ~

Aij =Inf((ei +e;)'0) —In f(ejo) —In f(ejo), 1<i,j<d.

Proof. Recall that (a, 8’8, v) is the characteristic triplet of L. By equation (2.6)
and Lemma 2.5 we obtain for ¢t > 0:

EIX"(1) = (2.9)
rexp (t (470 =1+ 3lo8P +oa+ [ -1~ awl{za})u(dw)))) ,

2 1 Lo o
var (X™(t)) = =z°exp <2t (r+a'(b—rl+ i[aﬁ] +oa (2.10)

+ /Rd(e” -1- ax1{$<1})u(dm)))>
X <exp (t(In'oB) + /Rd(ﬂ"(e” —1))’v(dz))) — 1) :

On the other hand we calculate

~

flejo) = Eexp(e;oL(1))
= exp ((aa + 0B /2 + /Rd(e‘”” —-1- ax1{$<1})u(d:c))i>
and
' Ar = |r'oB|? + /Rd(ﬂ"(e‘”” —1))%v(dx)).
Plugging this into (2.9) and (2.10) we obtain (2.7) and (2.8). O
Remark 2.7. Note that for [ = 1,...,d (i = /1)
d

d
In f(ejo) = lnEeXp(Z o;;L;i(1)) = Zlnf;(alj)
j=1

= InE[E(L)()] = Z‘I’j(—i%’)
j=1

by the independence of L, ..., Ly. This implies in particular

Remark 2.8. For d = 1 our portfolio consists of one bond and one stock only.
(a) Formula (2.8) reduces to

var(X™(t)) = a2exp(2t(r + n(b—r +In f(0)))) (2.11)
x (exp(ﬂ'2t(ln(f(2a)) —2In f(0))) — 1) .



Moreover, we can set w.l.o.g. o = 1. In this case the Lévy density fx of the
process In(X7™/z) can be calculated from the Lévy density f;, of vy, as

e’ -1 e’
fx(ZU) = fL <ln < . + 1>> ml{w>1n(1_ﬂ.)}, zeR

(b) In the case of a jump part of finite variation we obtain for ¢ > 0,

E[X7(t)] zexp(t(r+n(b—7r+ %ﬂ2 +v+0)), (2.12)

var (X™(t)) 2% exp <2t(r+ﬂ(b—r+7+ﬁ+%ﬂ2))>

x (exp (7°t(B% + fio — 20)) — 1) , (2.13)

for i = [(e® — Vv (dz), fiz = [(e** — 1)v(dz), and v = a — f\w\<1 rv(dz) .

3 Optimal portfolios under variance constraints

In this section we consider the following optimization problem using the variance
as risk measure

{ﬂe[O,Ilr]ldai}fr’lgl} E[X™(T)] subjectto var(X™(T))<C, (3.1)

where T is some given planning horizon and C' is a given bound for the risk.

Theorem 3.1. Let L be a Lévy process with representation (1.1). Then the
optimal solution of problem (3.1) is given by

™ =e* A" (b—rl+1nf(0))/Va,, (3.2)
where R .
a=(0b-rl+Inf(o))A b —-7rl+1nf(0))

(provided 7 € [0,1]¢ and 7*'1 < 1), where In F(o) and the matriz A are defined
in Proposition 2.6 and €* is the unique positive solution of

rT+VaeT + %ln (w—; (exp(Te?) — 1)) =0. (3.3)

Remark 3.2. If the solution to (3.3) does not satisfy 7* € [0,1]¢ and 7*1 < 1,
then the problem can be solved by the Lagrange method using some numerical
optimization algorithm, for example the SQP method (sequential quadratic pro-
gramming) (see e.g. Nocedal and Wright [15]). If for d = 1 the solution of (3.3)
leads to 7* > 1, the optimal portfolio is 7* = 1.



Proof of Theorem 3.1. Following the proof of Proposition 2.9 of Emmer et al. [§],
where the same optimization problem has been solved for geometric Brownian
motion, we obtain (3.2) as the portfolio with the largest terminal wealth over
all portfolios satisfying 7' Ar = &2. Plugging (3.2) into the explicit form (2.10)
of the variance of the terminal wealth the constraint has the same form as in
Proposition 2.9 of Emmer et al. [8]. Hence the result follows from a comparison of
constants. The only difference to the optimization problem in [8] is the constraint
7* €[0,1]¢ and 7*1 < 1, which we took care of. O

Remark 3.3. In the finite variation case and for d = 1 where we choose w.l.o.g.
o =1, the rhs of (3.3) can be rewritten as

1 1 2
rT+7r<b—r+’y+/7+§ﬂ2>T+§ln (% (exp(ﬂ'2 (B2+ﬁ2—2ﬁ)T)—1)>

with 71, fi2 and « as in Remark 2.8(b).

In the following we consider some examples in order to understand the influ-
ence of the jumps on the choice of the optimal portfolio. For simplicity we take
d =1 in these examples and hence we choose w.l.o.g. ¢ = 1. For some figures
and discussions of the examples we refer to Emmer [7].

Example 3.4. (Ezponential Brownian motion with jumps)
Let Y1,Y3,... be iid random variables with distribution p on R* and (N (%)):>0
a Poisson process with intensity ¢ > 0, independent of the Y;. Then L(t) :=

Zﬁi(f) Yi, t > 0, defines a compound Poisson process with Lévy measure v(dz) =
cp(dz). The Lévy process (L(t))¢>o0 is taken as the sum of a Brownian motion

with drift (6W (t) + vt):>0 and the compound Poisson process (L(t)):>o0-
If g(s) = Ee®Y < oo, then

f(s) = Eexp(sL(1)) = exp(c(@(s) — 1))
If g(1) or g(2) exists, then by Remark 2.8(b),

fi=c(@(1)— 1) and i = (32— 1).

The drift v = —% (3% — i is chosen such that the asset price has the same expec-
tation as in the Black-Scholes model in Emmer et al. [8], Section 2. By (2.5),
(2.12) and (2.13) we obtain for ¢ > 0 (for ease of notation we set r = 0)

N()

X7(t) = wexp <t(7r(b—ﬁ) - %) —l—7rBW(t)> H(l—l—w(eYi -1)),
E[X™(t)] = =xexp(tnd),
var(X™(t)) = a”exp(2tmb) (exp(n’t(8* + c(g(2) — 2g(1) + 1)) — 1).

The exponential compound Poisson process (8 = 0) and the exponential Brown-
ian motion (c = 0) are special cases of this example as well as the jump diffusion
in Emmer et al. [8], where the Y; were deterministic.



Example 3.5. (Ezponential normal inverse Gaussian (NIG) Lévy process)
The NIG Lévy process has been introduced by Barndorff-Nielsen [3] and [4] and
investigated further in Barndorff-Nielsen and Shephard [5]. It belongs to the
class of generalized hyperbolic Lévy processes. The NIG Lévy model is a normal
variance-mean mixture model such that

L(t) = pt+ A3 +W(E(1),

where, (2(t) ~ IG(t%6%,£% — X\?), W is standard Brownian motion and £ > |A| >
0,6 > 0, p € R. This process is uniquely determined by the distribution of the
increment L(1) whose density is given by

nig(z; &, A, p,9d) .——exp(&/fl A2+ Az )%, z € R,

where g(z) = V02 + 22 and K (z) = % [ ¥ exp(—z(y +y~1)/2)dy, x > 0, is the
modified Bessel function of the third kind of order one. Note that for s > 0 the
density of L(t +s) — L(t), t > 0, is given by nig(z, &, A, sp, sd). The parameter £
is a steepness parameter, i.e. for larger £ we get less large and small jumps and
more jumps of middle size, § is a scale parameter, \ is a symmetry parameter and
p a location parameter. For p = A = 0 (symmetry around 0) the characteristic
triplet (0,0, v) of a NIG Lévy process is given by

v(dz) = %|x|71K1(§|az|)d$, zeR".

Since flw|<1 |z|v(dz) = oo, the sample paths of L are a.s. of infinite variation

in any finite interval. The moment generating function of L(1) is for the NIG
distribution given by

f(s) = Bexp(sL(1)) = exp(d(§ — /€ — 57))
(see e.g. Raible [18], Example 1.6) We use (2.4), (2.7) and (2.11) to obtain for
t > 0 (again we set r = 0),
X7(t) = zexp(twb)E(xL(t)),
E[X™(t)] = wzexpt(r(db+0(§—E—
var (X™(t)) = a?exp(2t(n(b+ (& — \/52
x (exp (57r t2VE —1—¢€— \/52 - 4)) - 1) .

Example 3.6. (Ezponential variance gamma (VG) Lévy process)

This normal-mean mixture model is of the same structure as the NIG model and

has been suggested by Madan and Seneta [13]. Its non-symmetric version can
be found in Madan, Carr and Chang [12]:

L(t) = pt — 0C*(t) + W(CP(t)

10



where p,6 € R, W is standard Brownian motion and (?(t) is a I—Lévy process,
ie. C2(t+s)— (3(t) ~T(&s,0) for parameters £,60 > 0; i.e. (2(1) has density

-1

&
x
h(z;€,6) = r(g)eseﬂ/g’ z>0.

By conditioning on (?(t) we obtain the characteristic function

Eexp(isL(t)) = exp(isut)E[exp(—(isd — s%/2)¢?(t)]
exp(isut) B o)
(1 —ishé + s20/2)s e t>0,

where ¥(s) = ius — EIn(1 —is06 + s20/2). Thus u =, 3 = 0, hence L is a pure
jump process with Lévy density

2

v(dz) = ﬁexp (— ] + 62 |z] —&v) de, xz€R".
T

Since flw|<1 |z|v(dz) < oo, the sample paths of L are a.s. of finite variation in

any finite interval; furthermore, those jumps are dense in [0, 00), since v(R) = oo;

see Sato [20].

In order to calculate the wealth process and its mean and variance we use (2.4)
and Remark 2.8(b). We observe that Eexp(isL(1)) = e¥(®) is analytic around
0, hence

Inf(l) = ¥(—i)=p—EIn(l—65—6/2) < oo,
Inf(2) = W(—2)=2u—¢En(l—2605 —26) < 0.
Next we calculate
a = y+¢& / iexp - g-i—(52|:1:|—(5:1: dz
] 4
le|<1

_ _ €2 cr _ ¢pCl e
= u 595+§02e 5026 ,

2 2
01:—<\/5+52+5> and 02:—<\/5—52+5> i

We obtain for ¢ > 0 (again we set r = 0)

where

X™(t) = zexp(tn(b+p)) H(l + (AP - 1))
s<t
E[X™(t)] = 2z(1—-60—60/2) exp(tn(b+ p)))
var(X™(t)) = 2*(1 -6 —6/2) %™ exp(2tn(b + p))

% <<(11_—6259(;—0/2%0)2>5W2t N 1) '

11



Remark 3.7. Since Examples 3.5 and 3.6 have so many parameters, we can
always attain the same expectation and variance for all three examples. But the
shape of the distributions differs. Expectation and standard deviation are always
increasing with the planning horizon 7', which leads to a decreasing optimal
portfolio. Note that the optimal portfolio is the same for all Lévy processes with
the same mean and variance.

4 The Capital-at-Risk - calculation and approx-
imation

In the portfolio problem of the last section, we replace now the variance by the
Capital-at-Risk (CaR). Before we pose and solve the mean-CaR optimization
problem, we define the CaR and indicate some properties. We further show how
it can be determined (approximated) for a general Lévy process.

Definition 4.1. Let x be the initial capital and T a given planning horizon.
Let furthermore z, be the a-quantile of the distribution of E(nL(T)) for some
portfolio = € [0,1]%, 7'l < 1, and X™(T) the corresponding terminal wealth.
Then the Value-at-Risk (VaR) is given by

VaR(z,m,T) =inf{z € R: P(X™(T) < 2) > a} = zzoexp((7'(b—rl) +r)T).
We define
CaR(z,m,T) =z’ — VaR(z,n,T) = ze"" (1 — 2z exp(n’ (b — r1)T)) (4.1)

the Capital-at-Risk (CaR) of the portfolio m (with initial capital x and time
horizon T').

The calculation of the CaR involves the quantile z, of £(xL(T)), which is
quite a complicated object as we have seen in Lemma 2.5. To calculate its
distribution explicitly is certainly not possible for Examples 3.5 and 3.6. One
possibility would be to calculate the characteristic function of £(wL(T")) using
its characteristic triplet as given in Lemma 2.2. From this then one could ap-
proximate its density using the inverse Fast Fourier transform method. However,
the complicated expressions of its characteristic triplet in combination with the
complicated integral in the Lévy-Khinchine formula seems to advise a different
approach. As an alternative method we suggest an approximation method based
on a weak limit theorem.

For simplicity we restrict ourselves to d = 1 and invoke a result by Asmussen
and Rosinski [2]. The intuition behind is to approximate small jumps of absolute
size smaller than ¢ by a simpler stochastic process, often by Brownian motion,
such that the stochastic part of the Lévy process is approximated by an inde-
pendent sum of a Brownian motion and a compound Poisson process. Before
we study the applicability of such results to approximate quantiles of the wealth
process, we explain the idea.

12



In a first step the small jumps with absolute size smaller than some € > 0
are replaced by their expectation. This leads to the process

L.(t) = p(e)t + BW () + N°(t), >0, (4.2)

ue) =a— / wv(de) and  N°(t) = ) AL(s)lgares)z-}-

e<lz|<1 sst

Furthermore,

/ / M(dz,ds) — v(dx)ds), t>0.

|z|<e

In a second step the contribution from the variation of small jumps is also
incorporated. To this end we use the following representation

L(t) = tu(e)+ pWI(t) + N°(t / / M (dz,ds) —v(dz)ds, t>0.

|z|<e
In order to replace the small jumps for instance by some Gaussian term, we need
that for e = 0 (¢t > 0)
1
o(e)

for some Brownian motion W', where

(L(t) = (u(e)t + BW (1) + N*(t))) = () " (L(t) — Lo(8) 5 W'(t), (4.3)

o?(e) = /JIQI/(dJJ), e>0. (4.4)

|z|<e

We denote by B weak convergence in D0, co) uniformly on compacta; see Pol-
lard [16]. In the finite variation case (4.3) can be rewritten as (¢ > 0)

L S areiarns) <o -E | Y ALSI(ALE) <o)| | 3W).

0(5) 0<s<t 0<s<t

This reminds us of the functional central limit theorem with Brownian motion
as limit process. Here we can see that the standardized processes of the small
jumps converge to Brownian motion as the jump size € tends to 0. In fact,
since Gaussian part and jump part are independent, the Brownian motion W'
is independent of W, and this justifies the approximation in distribution

L(t) ~ p(e)t + (B2 + 02(e)) W (t) + N°(t), t>0.

13



Proposition 4.2. [Asmussen and Rosinski [2]]
(a) A necessary and sufficient condition for (4.3) to hold is

lim o(ho(e) Ne)

lig TS =1 V>0, (4.5)

(b) lim.,0 o(¢)/e = oo implies (4.5). If the Lévy measure has no atoms in some
neighbourhood of 0, then condition (4.5) is equivalent to lim._,o o(g)/e = cc.

We want to invoke such results to approximate quantiles of £(7L(T')). We do
this in two steps: firstly, we approximate &(wL(T)), secondly, we use that con-
vergence of distribution functions implies also convergence of their generalized
inverses; see Proposition 0.1 of Resnick [19]. This gives us the approximation of
the quantiles.

Lemma 4.3. Recall model (2.1) and (2.2) ford =1 and o = 1; i.e. L =In&(L)

and L are Lévy processes with Lévy measures v and U respectively. Then for
O<exl1

o%(e) = / *v(dz) = / (In(1 + 2))*v(dz),

(—e,e) (eme—1,es—1)
o%(e) = / *v(dz) = / (e” —1)*v(dz),
(—e,e) (In(1—¢),In(1+¢))

Proof. The transformation from L to L only affects the jumps, which are related
by AL(s) =1In(1 + AL(s)) for s > 0. We calculate

o*(e) = E|> (AL(s)’1{ar(s)|<s}
s<1

= E Z(ln(l + AL(S)))Z]‘{e—f71<AE(S)<6571}
s<1

- / (In(1 + 2))25(dz) .

(e==—1,es—1)

The calculation of 52 is analogous. |

We formulate the following main result of this section. The proofis postponed
to Section 6.

Theorem 4.4. Let Z¢, ¢ > 0, be real-valued Lévy processes without Gaussian
component and Y¢ = InE(Z°) their logarithmic stochastic exponentials with
characteristic triplets (az,0,vz) and (ay,0,vy) as defined in Lemma 2.2; for

14



notational convenience we suppress €. Let g : R — RT with g(e) — 0 as e — 0.
Let V' be a Lévy process. Then equivalent are as e — 0,

Z5(t) D

e = Vi), t>0, (4.6)
Ye(t) D

e = V@), t>0

We apply this result to approximate In & (wi) for m € (0, 1] as follows:

Corollary 4.5. Let L be a Lévy process and L. the process given in (4.2). Let
furthermore £ (eX) = L be such that EL = e* with characteristic triplet given
in Lemma 2.2. Let L. and L. enjoy the same relationship as L and L. Then

o(e) ML) = La(t)) BV (), t>0, (4.7)
18 equivalent to
(ro(e)) " (InE(xL(t)) —InE(xL.(t))) B V(E), t>0.

For the proof of this corollary we need the following Lemma.

Lemma 4.6. Let L be a Lévy process and L. as defined in (4.2). Then
InE(rES (exp(L(t) — L.(t)))) = n&E(xL(t)) — n&(xL.(t)), t>0.
Proof. First note that
t
L(t) — L.(t) = / / x(M(dz,ds) —v(dz)ds), t>0,
0
|z|<e

Now calculate by Itd’s formula In&(r€¢ (exp(L(t) — L.(t)))), InE(wL(t)) and
In&(wL-(t)). In the latter case we obtain

&L (8) = nt(a- / o(dz) + %(1 _1)B?) + 7AW (1)
e<]z|<1
+ /t / In(1+ w(e® —1))M(dz,ds), t>0. (4.8)
lz|>e

Calculating the difference of the last two expressions leads to the assertion. O

Proof of Corollary 4.5. Setting g(¢) := o(¢) and Y¢ := L — L. in Theorem 4.4
we obtain that (4.7) holds if and only if

o(e) " e (exp(L(t) — L(t))) B V(t), ¢>0. (4.9)
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Applying Theorem 4.4 to g(e) := no(e) and Z. := 7€ (exp(L — L.)) leads to
the equivalence of (4.9) and

(ro(£)) " In ETES (exp(L(t) — L-(1)) B V(E), > 0.

Lemma 4.6 leads to the assertion of the Corollary. |

From this corollary and (4.8) we conclude the following approximation for
InE(wL), which is needed for the calculation of the CaR in Definition 4.1.
Proposition 4.7. With the same notation as above we have

mELE)) ~ In&(rL.(t)) +ro(e)V(t)
= it +7pW(t) + M (t) + no(e)V(t), t>0.

If V is a Brownian motion, then

nE(L(L) ~ Ait+ (B +0%E@) W) + ME(t), t>0,,
o= )+ 50 -m),
Mi(t) = > In(l+m(ettPtuareea — 1))

s<t
i.e. M: is a compound Poisson process with jump measure
vrs (A) = v ({e] In(1 + 7(e” - 1)) € AJ\(=z,¢))

for any Borel set A C R. Moreover, if the Lévy measure vy has a Lebesque
density fr, a density of the Lévy measure vy of the process M: is given by

e’ —1 e’
fu@) = fu <ln< — 1)) (1 =) Mo m-my (e /man)>e)

and thus M: has Poisson intensity fR fu(z)dx; the density of the jump sizes of
ME is given by far(x)/ [ fm(y)dy, z € R.

By Proposition 0.1 of Resnick [19] we obtain the corresponding approxima-
tion for the a-quantile z, of E(wL(T)), where T is some fixed planning horizon.

Proposition 4.8. With the quantities as defined in Proposition 4.7 we obtain

za R zg(m)=inf{z e R: P(y;T + MZ(T) + npW(T) + wor(e)V(T) <Ilnz) > a}.
Moreover, if V is a Brownian motion, then

Zo R 25 (1) = inf{z € R: P(y2T + ME(T) + w(B* + 02 (e))*W(T) < Inz) > a}.

We obtain

X

VaR(z,n,T) zz;, (m)exp((w(b —r) +7r)T),
CaR(z,m,T) =~ zexp(rT) (1 -z (m)exp(n(b—r)T)) .
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Provided we know the distribution of the Lévy process V, i.e. its character-
istic triplet, we have reduced the problem of the calculation of a low quantile
of InE(wL(T)) to the calculation of a low quantile of the sum of the compound
Poisson variable MZ(T'), the normal variable 7fW (T'), and the limit variable
wo(e)V(T). Here we see immediately two simplifications of the original problem
by this approximation. Firstly, the process V' is usually much simpler than the
original Lévy process and, secondly, 7 is now only a linear factor, which simpli-
fies numerical procedures considerably. Various examples have been investigated
in detail in Emmer [7] using the Fast Fourier Transform method.

5 Optimal portfolios under CaR constraints

We consider now the following optimization problem using the Capital-at-Risk
as risk measure.

m[%yi] E[X™(T)] subjectto CaR(z,n,T)<C, (5.1)
wel0,

where T is some given planning horizon and C' is a given bound for the risk.

Unfortunately, there is no analogue of Theorem 3.1. Due to the fact that,
immediately by (2.7), the mean wealth E[X™(T)] is increasing in =, the optimal
solution of (5.1) is the largest = € [0, 1] that satisfies the CaR constraint. This
portfolio can be found by simple numerical iteration. For relevant examples
we calculate the approximation of Proposition 4.8, which leads jointly with an
approximation of the Fast Fourier Transform and the numerical iteration to an
(approximate) optimal solution of the mean-CaR portfolio problem. For figures
and discussions we refer to Emmer [7].

Example 5.1. (Ezponential normal inverse Gaussian (NIG) Lévy process)
Recall the model as defined in Example 3.5, where we set again A = p = 0. For
the calculation of the CaR we use the approximation of Proposition 4.8. Setting
fo(x) = frig(x) = E0K1 (€|z|)/(m|z|), € R, the Lévy density of the NIG Lévy
process, the intensity of the compound Poisson process M: and the density of
its jump sizes can be calculated as explained in Proposition 4.7. Plugging fpi,
into definition (4.4) we obtain

02(5):%‘5 / (| K1 (¢al)dz, &> 0.

|z|<e

As shown in Asmussen and Rosinski [2] for the NIG Lévy process the normal
approximation for small jumps is allowed since o(g) ~ (25/7)/%e'/? as e — 0.
Since 8 = 0 the approximating Lévy process has a Gaussian component with
variance o2 (¢). Moreover, a = 0, hence
&
T

u(e) = / %Kl(ﬂxbdx, e>0.

=<[z|<1
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Such integrals can be evaluated by a polynomial approximation for the modified
Bessel function of the third kind (see Abramowitz and Stegun [1], pp. 378-379).

Example 5.2. (Ezponential variance gamma (VG) Lévy process)
(a) As mentioned in Asmussen and Rosinski [2], for the gamma process with
v(dr) = Ex~te */%dx, x > 0, with §,& > 0, the normal approximation for small
jumps fails. This is a consequence of Proposition 4.2, since
2 €
lim 7 (28) = lim % ze~ 0y = £ , (5.2)
e—=>0 € e—0 g 0 2

using for instance I’'Hospital’s rule. The limit relations of Theorem 4.4 hold,
however, with Lévy process V having characteristic triplet (ay,0,vy ), where

av = 61~ VA0 and vy (dy) = S1, /57 ()

Proposition 4.7 gives then the approximation for the small jumps.
We show that (4.7) holds. Set

D.(t) :=o(e) " (L(t) — L:(1)), t2>0,

By Pollard [16], Theorem V.19, (4.7) is equivalent to D.(1) 3 V(1), since D.
are Lévy processes. By Kallenberg [10], Theorem 13.14 we need to show for the
characteristic triplets (ap,0,vp) of the Lévy processes D,

lin}) vp([z,2]) = vy([z,z]) forany 0 <z <z (5.3)
E—r
lir% vrp(dy) = / y*vy (dy) for each K >0 (5.4)
e—
lyl<K lyl<K
gl_r% ap = ay (5.5)

First we prove (5.3). By the proof of Theorem 2.1 of Asmussen and Rosinski [2]
for the process D. we have

ap = ——5 / e_y/‘idy
o(e)
g(e)Ne<y<e
and Lévy measure vp(B) = v(o(e)BN(0,¢)) for any Borel set B C R*. Hence V
has Lévy measure vy (B) = lim._,o v(o(e)B N (0,¢)). For any interval [z, z], 0 <
x < z, we calculate

eno(e)z

i vo(le,2) = e [yt vy = en (%) = ([, 2)),

eNo(e)x

where we have used that e=¥/° — 1 as y — 0.

K2
Next we prove (5.4). For each K > 0 we calculate [ y?vy(dy) = fT Al

lyl<K
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giving with (5.2)

. 5 Al _
lim [ yepldy) =g ——F 05— =5 "L
ly|<K

Similarly we calculate

T T f —y/é _
av—;l_r)r(l)ap—hm—m e dy—f(l—\/2/§)1{1im<0}

e—0 )
a(e)Ne<y<e

which proves (5.5).

(b) For the exponential VG Lévy process the normal approximation for small
jumps is not possible either, since by Example 3.6 and e.g. I’'Hospital’s rule

G . & [T a? 2
;E}I}) 82 = ;E}I}) 5_2 . m exp(— 5 + 6Z|§U| — 6§U)d§l}'

= lim £ /6 z(exp(ciz) + exp(cez))dr = &,
0

e—0 g2

Whereclz—<ﬂ;+62+6> <Oand02:—<ﬂ;—l—62—6> < 0.

Asin part (a) we show (5.3)-(5.5) and obtain a limit process V' with characteristic
triplet (0,0, vy ), where

§
vy (dy) = ;1(_1/\/5, 1/ve) (W)dy -

In the same way as for the normal approximation one can calculate quantiles for
approximations of small jumps by the Lévy process V using the FFT method;
see Mauthner [14].

6 Proof of Theorem 4.4

We first derive some auxiliary results. As usual we write
al := {az|z € A}, e :={e®|z € A},and A — 1:= {z — 1|z € A}.

Lemma 6.1. Let Z¢ and Y° be Lévy processes with characteristic triplets as in
Theorem 4.4. Set
A Ye
E. = and D, :=
g(€) g(€)
Then E. is a Lévy process with characteristic triplet (ag,0,vg) and D. is a
Lévy process with characteristic triplet (ap,0,vp), which both depend one. They
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satisfy the following relations:

1
= — (ay - d
ag 96 (GZ vy 33));
g(e)<|z|<1
ve(A) = vz(g(e)A) = vy ({z|(e” —1)/g(e) € A}) for any Borel set A C R*,
1
= — (ay — d
ap o) (GY / Ty ( 33)) )
g(e)<Jz|<1
vp(A) = wvy(g(e)A) =vz(e?DN —1) for any Borel set A C R*,
1
w—ap = o /(ln(fﬂ + Dlm(e+1)|<g(e)} ~ Tl <g(e)})Vz (d).-
1
e /(fcl{\w\sg(sn — (€ = Dlfjes_1j<g(e)p)vv (do).

Proof. Since E. and D, have no Gaussian component, Sy = Bp = 0.
Using Lemmata 2.2 and 2.3 and setting 7 = 1/g(¢) we obtain for any Borel set
A C R,

ve(A) = vz(g(e)A) = vy ({z|(e” —1)/g(e) € A})

and analogously,

vp(A) = vy (9(e)A) = vz({z|In(z +1)/g(e) € A}).

Moreover,

1 1

ap = @afr@/x(l{\w\sa(s)} = Ljei<1p)vz(de)
- %(az - / wv7(dw)).
g(e)<|z|<1
In a similar way we prove
1
ap = @ (ay — / a:uy(d:n)).
g(e)<[z|<1

Using Lemma 2.2 we obtain

1

ap —ag = @(ay—azﬁ- / x(uz—uy)(d:v))
g(e)<|z|<1
= %/ (In(@ + D1 <o)y = Liei<g(e)y) v2(de).

20



Lemma 6.2. Let K : Rt — R" and g : Rt — R" be such that g(¢) — 0 as
e =+ 0. Then

. 1 2 _

gl_r% 76 / z*vyz(dz) = K(h) VYh>0 (6.1)
(=hg(e),hg(e))

if and only if

lim
m
=0 g°(e)

/ (In(z + 1))2vy(dz) = K(h) Vh>0,

ch

where A; p, := (exp(—hg(e)) — 1,exp(hg(e)) — 1) for each e,h > 0.

Proof. Set v =vz. Let h > 0. Since g(¢) — 0 as ¢ — 0, there exists some & > 0
such that ehg(e) < 1 for all 0 < € < €. By a Taylor expansion we have for some
6 € (0,1)

ehole) _ 1 = hg(s)e(*hg(s)

and hence
e thg(e) < hg(e) < ™) —1 < ehg(e)
and, analogously,
—ehg(e) < —hg(e) < e™™E) —1 < —e7thg(e).
This leads to
(—Ki19(e), K1g(e)) C Aep C (—K2g(e), Kag(e)) (6.2)

for K1 = e 'h and K5 = eh.

Assume that (6.1) holds. Then by a Taylor expansion around 0 we have for some
6 =6(z) € (0,1)

2

In(z+1) =2 — 0z 12
giving
]' 2
=} / (In(z + 1))2v(dz)
1 2 — "E3 viar $4 viaxr
- g?(s)A/ = v(do) g?(s)A/ G+ 12T g >A/ ORI
= ILi(e) — Ix(e) + I3(e) - (6.3)
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First note that with (6.1) and (6.2),
[I2(e) — I3(e)]

< 1 / Ly(dx) + / Lu(dw) (6.4)
= g%(e) 0z + 1) 4(0x + 1)* '
e,h Ae,h
1 z° xt
< ——\v(d d
e /ﬁ ‘Wx+n2”(”*' [ o
—Kag(e),K29(¢)) (—K2g(e),K29(c))
|z] x? > 1 / 9
< + v (dx
< ( &mmmwa+w We+17) ) 7O (d)
(—K29(g),K29(¢))
Kg(e) (Kag(e))” 1 2
< d
_<P&M * M- Kag@)') PE = v(de)
(—K2g(e),K29(¢))
- 0, €—0. (6.5)

Hence, setting Ce i (s,t) = (—hg(e) exp(shyg(€)), hg(e) exp(thg(e))),

1 2y (dz) = lim I :iml v (dr
[ Gate () = by o) QW@L(Mﬁ<w

lim
e—0 g

e,h
for some 6, 65 € (0,1) using a Taylor expansion. Thus,

1 1

lim —— 2v(dz) < lim I < i —/ *v(dr).

EI—)I% gz({—j)o (/1 ) z V( .’I,') — EI_)HB 1(5) El—)nég ( ) Con(l 1)3: V( ZU)
e,h {741,

Since g(e) — 0 as € — 0, we obtain for arbitrary €9 > 0 and all ¢ < €y an upper
bound for the right-hand side

lim
mo
=0 g%(e)
Jel<hg (=) exp(hg(=0))

*v(dz) = K (hexp(hg(eo))) -

Since g can be chosen arbitrarily small, we obtain under condition (6.1)

1

B 76
|z|<hg(e) exp(hg(e))

2?v(dr) = K (h). (6.6)

Similarly, we get a lower bound and hence

. 1 2 -
213%) 70 z*v(dz) = K(h)

|z|<hg(e) exp(—hg(e))
and thus also

lim I, () = K (h).

e—0
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For the converse first note that by (6.4)

[L2(e) = I3(e)]

|| z? 1 5
< (J’ (@ +4<0x+1>4>> 75 | @

Acn
exp(g(e)h) =1 (exp(g(e)h) —1)*

(Sotam * TeaCaomny ) 1O 00
and hence |Iz(g) — I3(e)| < T'(e)I1(e) for some positive T'(e) — 0 as € = 0. So
by (6.3)

1 2

B < - c) / (In(z + 1))2v(dz) + T(e) L1 (&)

and hence

1 2
LE1-T(E) € / (In(z + 1))2v(dz).

Acn
Taking limsup results in lim sup,_, I1 (€) < K (h). Then by (6.7) |I>(e)—1I5(e)| —
0 and by (6.3) we obtain lim._,¢ I;(¢) = K(h) for each h > 0. Using the same
argument as for (6.6),

1

_ . 2
K(h) = ;1_1)1(1)11(5) < lim 76 z v (dz)
|z|<hg(e) exp(hg(e))
1
= lim —— / z?v(dx
76 ()
|z|<hg(e)
1
= lim 22v(dx
76 ()
|z|<hg(c) exp(—hg(e))
< limhi(e) = K(h)
we obtain (6.1). O

The following Lemma can be considered as an inverse version to Lemma 6.2.
Its proof is indeed quite similar and we refer the interested reader to Emmer [7].

Lemma 6.3. Let K : R — Rt and g : Rt — R be such that g(e) — 0 as
e =+ 0. Then
/ *vy(dzr) = K(h) Vh >0

(—hg(e),hg(e))

LTS

if and only if
1

li /(&-1) vy (dz) = K(h) Yh>0,

Ben
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where Be p, := (In(1 — hg(e)),n(1 + hyg(e))) for each e,h > 0.

Now we can prove Theorem 4.4.

Proof of Theorem 4.4. Assume that (4.6) holds, i.e. E.(t) = Z°(t)/g(e) s
V(t),t > 0, as e — 0. Since E. are Lévy processes weak convergence of the
processes is equivalent to E¢(1) KRS V(1) (see e.g. Pollard [16], Theorem V.19).
Let now (ag,0,vg) be the characteristic triplets of the Lévy processes E. as
derived in Lemma 6.1 (recall that they depend on ¢). Since fg = 0, according

to Kallenberg [10], Theorem 13.14, E.(1) B V(1) if and only if

lir% 2?vgp(dr) = B% + / vy (de) Yh >0, (6.8)
e—
|z|<h |z|<h
lim ve({le > ) = w({lel >c}) Ve>0, (6.9)
gl_r%aE = ay. (6.10)

So we assume that (6.8)-(6.10) hold.
Moreover, setting D. = Y¢/g(e) with characteristic triplets (ap,0,vp), we have
to show

lin}) *vp(dr) = By + / z*vy(dr) Yh >0, (6.11)
E—r
|z|<h |z|<h
lim vo({lal > ¢}) = w({le|>eh) Ve>0, (6.12)
13
limap = ay. (6.13)
e—0

To prove (6.11) we consider

/x%p(dw) = E{Z(ADE(S))Q1{|ADE<s>|<h}J

lz|<h s<1

= E

> (1 +AZ:(9))* Liaz. (seacn)
s<1

= / (In(z + 1))?vz(dx), (6.14)

As.h

where A, = (e79)" — 1,e9(4)" — 1). By (6.8) and Lemma 6.2, setting
K(h) = B + f|x|<h$2yv(d$) the right-hand side of (6.14) converges to
B + f|x|<h 2?vy (dz) for each h > 0.
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Now we prove (6.12). By Lemma 6.1 we have
vo({le] > e}) = vz (@2 1)
= vg(e!OFED —10 {j2] > ecg(e)}) + (/DT — 10 {Ja] < eg(e)})

The first term converges to vy ({|z| > ¢}), since by (6.9)

vz({lz] 2 cg(e)}) = ve({lz| 2 ¢}) 2 vw({lz[ = c}), e—0.
Since for any Borel set A C R*
vz(A) mf(ln (z+1))° / (In(z + 1))*vz(dx)
A

holds, we get
vz (912t 11 f|z] < cg(e)})

= vz({|z| < cg(e)}\(e?@ Ik — 1))

1 -
(cg(e))? (In(1 +))*vz(dx)
{|z|<cg(e)}\ (e lzI<c} _1)

<

1 2
- =E7 / (In(1 + 2))?v (dz)
{lz|<cg(e)}

1

(cg(e))?
{lzl<eg(=)}n(este)lIzI<el 1)

- 0, —0,

(In(1 + z))?vz(dx)

since both terms in the second last line tend to K(c)/c?, where K(h) =
By + f‘x‘<haz2uv(d:v). This can be seen as follows. For the first term we use
Taylor’s theorem in the same way as in the proof of Lemma 6.2 replacing A, j,
by (—cg(e),cg(e)). The second term tends to K (c)/c? using the same Taylor
expansion and since by a Taylor expansion for e* — 1 around 0

{lz] < cg(e)} N (XTI —1) = (—eg(e)e™" ), eg(e))

for some 6, 6, € (0,1).

Now we prove (6.13). By (6.10) we know that ag — ay, hence we only need to
show
|aD — aE| — 0.

By Lemma 6.1 and the Taylor expansmn we use in (6.3) setting G. = {|In(z +
D <ge))y={e9 -1 <z <et® —1} = {esHI<} _ 1} we obtain for
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some 6 € (0,1)

ap—asl = —=| [ (nGe+1)16) voldo)
_ % /((;g_ ﬁ) 1o, —x1{z<g(5)}> vz (dz)
- % /(mlgs—x1{|w|<g(6)})l/z(dm)—/ﬁyz(dfv) .
Ge
From 1 1

—9(e) _ 1 e9(5) _
20z + 1) < 50=24(0) for ze€ (e l,e 1)

we conclude ‘
limL/Lu (dx)=0
—og(e) ] 200z +1)2 7 -

€

We obtain
limsup |ap — ag|?
e—0
2
= limsup —— x(lg., — liipl<o(en)Vz (dx
nsup / (e, = Lje|<g(e)p)vz(do)
2
= limsup —— zvz(dz) — zvz(dx
EAOPQQ(E) z(dz) / z(dz)
G \{lz[<g(e)} {lz]<g(e) \Ge
1 . 1
< limsup —— 2%v,(dz) + lim sup —— / 2%vy(dz) .
= E_)OPQQ(E) z(dz) 6_>0Pg2(8) z(dz)
G \{lz|<g(e)} {lz]<g(e) \Ge

Both terms converge to 0 as follows.

. 1 2 _
i‘_%gz—(g) /:c vz(dr) = K(1)

€

by the proof of Lemma 6.2,

: L 2 —
5113(1) 76 / zvy(dz) = K(1)
{lzl<g(e)}
by (6.8) for h =1, and
1

. 2 —
g%gz—(g) T VZ(d.’L') —K(l),

{lzl<g(e)}NGe
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where K (h) = 8%+ [ 2?vv(dz), since by a Taylor expansion of e* —1 around 0
|z|<h

{le] <g(E}nG. = (=g(e)e"® g(e))

for some 6 € (0,1) and using the same argumentation as in the proof of
Lemma 6.2.

The other direction can be proved analogously. [l
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