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Abstract

In this paper theneutral valuationapproach is applied to American and game op-

tions in incomplete markets. Neutral prices occur if ingestare utility maximizers and
if derivative supply and demand are balanced. Game comtirgaims are derivative
contracts that can be terminated by both counterpartiesyatime before expiration.
They generalize American options where this right is limhite the buyer of the claim.
In turns out that as in the complete case, the price procegsmarican and game
contingent claims corresponds to a Snell envelope or to aheevof a Dynkin game,
respectively.
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1 Introduction

In recent years various suggestions have been made how®Huropean-type contingent
claims in incomplete markets. By contrast, there is only\Vitle corresponding literature
dealing with American options. Pricing the latter is cortogly more involved: In addi-
tion to the uncertainty caused by the underlyings, one h&askmthe seller’s ignorance of
the buyer’s exercise strategy into account. If we fix a stogpime as exercise time, then
the American option reduces to a European claim. It is ols/ibat the American option
should be worth at least as much as the most valuable of thgdeed European claims.
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In the financial literature the price of an American optionfiten justdefinedas the supre-
mum of all European style claims corresponding to arbitsiopping times of the buyer.
Consequently, the problem of pricing American options dued to the simpler problem
of pricing European contingent claims. However, this cghedready implies by definition
that an American option is not worth more than the highesigariof its implied European-
style derivatives, i.e. theght to choose the exercise time has no value in itself. To us, this
is not entirely obvious because in the American case therdaltes the disadvantage not to
know the preferred stopping time of the buyer.

In complete markets, arbitrage arguments suffice to derngue prices for American
contingent claims. Here, it turns out that the fair pricendged the supremum of the implied
European option values (cf. Bensoussan (1984) and Karit288)). Analogous results are
shown in varying degrees of generality for the superhedpiitg in incomplete markets (cf.
Karatzas and Kou (1998), Kramkov (1996), Foéllmer and Kabqt898), and Fdllmer and
Kramkov (1997)). This price denotes the smallest initighita that allows to construct
a portfolio which dominates the payoff process of the optiddthough superhedging is
an interesting concept from a theoretical point of view,igigs only trivial upper bounds
in many models of practical importance (cf. e.g. Eberleid dacod (1997), Frey and Sin
(1999), Cvitant et al. (1999)). This is somewhat unsatisfactory.

Utility-based indifference pricings a concept which has been applied explicitly to Amer-
ican options. Here, one takes the perspective of a particalanterparty and fixes the num-
ber of shares of the claim (say,for an option buyer or-1 for an option seller). The
indifference premiunms a price such that the optimal expected utility among aitfpbos
containing the prespecified number of options coincides Wie optimal expected utility
among all portfolios without option. Put differently, thevestor is indifferent to includ-
ing the option into the portfolio. Taking the perspectivetioé option buyer, it turns out
that the indifference price is indeed the supremum of thdferénce prices of the implied
European claims (cf. Davis and Zariphopoulou (1995)). S8sirgly, this is not true for
the option seller: Unless exponential utility is choserméy happen that a reasonable in-
difference premium for an American option exceeds the fatbhce price of all implied
European claims (cf. Kiihn (2002)).

In this paper we show that the conceptrafutral derivative pricing as suggested in
Kallsen (2001), can be adapted quite naturally to Amerigatioas. Neutral prices occur if
traders maximize their expected utility and if derivativgply and demand are balanced.
More precisely, a derivative price process is caledtralif the optimal portfolio contains
no contingent claim. We will see that the neutral price of amefican option coincides as in
the complete case with the supremum of the neutral pricel$ iofijglied European claims.

Both utility-based indifference pricing and neutral pnigirely on expected utility max-
imization and indifference to trading the option. Let usmiaut the differences between
the two concepts. Indifference pricing takes an asymmewiat of view. Moreover, it
depends decisively on the fixed number of claims under ceraiibn. As far as options
are concerned, intermediate trades are not allowed. Tieertois approach is particularly



well suited for over-the-counter trades: Suppose that tlyetbwants to purchase a specific
contingent claim. Then he has to pay the seller at least lugfiference price in order to
prompt her to enter the contract.

The concept of neutral pricing, on the other hand, takes arsstnc point of view.

It assumes that options are traded in arbitrary positive regghtive amounts. It tries to
mimic the economic reasoning in complete markets by suibistif utility maximizers for
arbitrage traders. Neutral prices are the unique pricdsthat neither buyer nor seller takes
advantage from trading the claim. For motivation of neutigtivative pricing, references,
and connections to other approaches in the literature vee tleé reader to Kallsen (2001).

As mentioned above, neutral pricing relies on utility matgation for portfolios con-
taining derivatives. This is a non-trivial issue in the gnese of American-type contingent
claims. The pointis that short positions in the claim maydardy be terminated if the buyer
exercises the option. Therefore, investment in Americamt corresponds to investment
under specific short-selling constraints (cf. Section 3).

In the present paper, American options are treated as $jpasies of game contingent
claims. The latter naturally generalize American contirigdaims by giving both coun-
terparties the right to cancel the contract prematurelyis Generalization requires some
mathematical but no additional conceptual efforts. By @stt it makes the neutral pricing
approach even more transparent.

A game contingent claim (GCCas introduced in Kifer (2000), is a contract between
a sellerA and a buyerB which can be terminated by and exercised by at any time
t € [0,7] up to a maturity datd” when the contract is terminated anyway. More precisely,
the contract may be specified in terms of stochastic pros€gs¢.cjo.r), (Uy)tcjo,r With
L, < Ufort € [0,T] and Ly = Uyr. If A terminates the contract at tintebefore it is
exercised byB, she has to pay the amountl;. If B exercises the option before it is
terminated byA, he is paidL,. For motivation and examples for this kind of derivatives we
refer the reader to Kifer (2000).

With American options the right to terminate the contraatestricted to the buyeB.
Formally, they can be interpreted as game contingent claynsettingU, := m for t €
[0,7), wherem € R U {co} exceeds the maximal payoff of the American option, e.g.
m = oo in the unbounded case. This allows us to consider both kifdgptons in a
common framework.

Similarly as American options correspond to optimal staggroblems, GCC's incor-
porate a Dynkin game: If sellet selects stopping time” as cancellation time and buyer
B chooses stopping time” as exercise time, then pledges to pay3 at timer” A 7V the
amount

R(TL, TU) =L 1{TLSTU} +U.v 1{TU<7_L}.

In complete markets with a unique equivalent martingalesuesP*, the random payoff
R(T%,7Y) has the unique fair valu&p.(R(7", 7)) at time 0. In analogy to American
options, the buyer may want to choose his stopping time so@akimizeE - (R(rL, 7))

whereas the seller tries to minimize the same value. Thigei@gely the situation of a zero-



sumDynkin stopping gamelt is well-known that such a game has a unique value in the
sense that
inf v sup, . Ep-(R(7F,7Y)) = sup, . inf,v Ep-(R(7L, 7Y)) (1.1)

(cf. Lepeltier and Maingueneau (1984)). Kifer (2000) shiaww$edging arguments that this
value is in fact the unique no-arbitrage price of the GCC.

In incomplete markets these arguments fail because peélatation is usually impos-
sible. But it turns out that the price process of a GCC cowoedp again to the value of a
Dynkin game if we apply the neutral pricing approach. Thegueiequivalent martingale
measure in Equation (1.1) is replaced with a properly choserral pricing measure

The paper is organized as follows. Section 2 summarizestatessome facts on utility
maximization. These are needed in the subsequent sectamttess the derivative pricing
problem for game contingent claims. The appendix contasmsesauxiliary results from
stochastic calculus.

Throughout, we use the notation of Jacod and Shiryaev (1@&nhceforth JS) and Ja-
cod (1979, 1980). The transposed of a veatds denoted ag ' and its components by
superscripts. Increasing processes are identified withdbeesponding Lebesgue-Stieltjes
measure. Stochastic integrals are written in dot notatieny ' - S, meansfot @l dSs.

2 Utility maximization

The derivative pricing approach in Section 3 relies on aggions concerning investors who
maximize their expected utility. Therefore, we discuss kivals of portfolio optimization
problems in this section, based on the classitility of terminal wealthand onlocal utility
as in Kallsen (1999), respectively.

Our mathematical framework for a frictionless market maslak follows: Fix a terminal
timeT" € R, and a filtered probability space), .7, (.%;).c0,17, P) in the sense of JS, 1.1.2.

In this section we consider tradsdcuritiesl, . . ., d whose price processes are expressed in
terms of multiples of amumerairesecurity0. Put differently, these securities are modelled
by their discountegrice processS := (S!,...,S5%). We assume thaf is a R?-valued

semimartingale.

2.1 Utility of terminal wealth

In this subsection we consider an investor who tries to mepanatility from terminal
wealth. Herinitial endowmenis denoted by € (0, 00). Trading strategiegre modelled
by R¢-valued, predictable stochastic procesges (1, ..., p?%) € L(S), wherey! denotes
the number of shares of securityn the investor’s portfolio at time. A strategyy belongs
to the setS of all admissiblestrategies if its discountedlealth proces$ (¢) :=e+¢' - S
is nonnegative (no debts allowed).

Trading constraintsare expressed in terms of subsets of the set of all tradiategies.
More specifically, we consider a proceswhose values are convex conesRf. The
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constrained sebf trading strategie$ (I') is the subset of admissible strategiesvhich
satisfy (o', ..., p%); € I'; pointwise onQ2 x [0,7]. Important examples arfé := R? (no
constraints) and := (R, )¢ (no short sales).

The investor’s preferences are modelled by a strictly cemaélity functionu : R, —
R U {—o0} which is continuously differentiable aif, oc) and satisfietim, _,, v'(x) = oo,
lim, o v/(x) = 0, andlim sup,_, ., I;”(g) < 1 (i.e. itis of reasonable asymptotic elasticity
in the sense of Kramkov and Schachermayer (1999), Defir@idn Her aim is to make the
best out of her money in the following sense:

Definition 2.1 We say thatp € &(I") is anoptimal strategy for terminal wealth under the
constraintd if it maximizesg — E(u(Vy(p))) over allp € &(I'). (By convention, we set
E(u(Vr(9))) := —ooif E(=u(Vr(9)) V0) = o0

Optimal portfolios are characterized by the following désiMany references to related
statements in the literature can be found in Kallsen (208&gtion 2.2 and Schachermayer
(2001).

Lemma 2.2 Letyp € &(I') with finite expected utility. Then we have equivalence batwe
1. o is optimal for terminal wealth under the constrairits

2. u'(Vr(p))((v — )" - Sy) is integrable and has non-positive expectation for any
S(T) with E(u(Vr(v))) > —oc.

PROOF. 2=-1: Lety € &(I") with E(u(Vr(¢))) > —oo. Sinceu is concave, we have

E(u(s+¢" - Sr)) E(u(s+¢" - Sr)) + E(W' (e +¢" - Sr)((¥ — )" - Sr))

<
< Blu(e +¢" - Sr)),

which yields the assertion.

1=2: Lety € () with E(u(Vr(1))) > —oo. Definey := ¢ + (¢ — ¢) and
YN =+ A\ — ) for A € [0, 1]. Since&(T') is convex and: is concave, we have that
¥ € &(I) andE(u(Vi(¢))) > —oo. From

—00 < E(ule+v"-Sp))
< Blu(e+¢"  Sp)+E@W(c+¢" - So) (¥ —9)" - Sr))

andE (u(Vr(p))) < ooitfollows thatE((u'(e+¢"-St)((v—p)"T-Sr))7) < co. Similarly,
—00 < E(u(e+v"-Sp))

< Blu(e+ 37 8) 4 LB+ 0TS0 - )T -57)

implies thatE((u/(e + ¢ - Sp) (¥ — ¢)T - S7))7) < .
Let A € (0, 1]. By optimality of o, we haved > E(u(e + ™" - Sr)) — E(u(s + ¢ -
Sr)), which equal\E(£M (1) — ¢) T - Sy)) for some random variablg with values in
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(W (e+¢ - Sp),u (e +17-Sp)or[u'(e+07 Sp),u'(e+¢ - Sr)], respectively. Note that
(EV((=p)T-Sr))~ < (W' (e+0T-Sr) (V=) +Sr)) +H(u'(e+y T-Sr) (=) T-Sr))~ €
LNQ, Z, P).

Sinceyy™:T. S — »T-Sp, we have thag®™ — /(s 4" -Sr) almost surely fon — 0.
Fatou's lemma yield® (v (e +¢ - S7) (v —¢) T-Sr)) < liminfy o E(EMN ((v—¢)T-S7)).
It follows that E(u/(s + ¢ - S7)((¢ — ) " - Sr)) < 0 as claimed. O

Suppose thap is an optimal strategy for terminal wealth without consttsi(i.e. for
[ = RY). If the probability space is finite, th ,(V (w))) is the density of some equivalent
martingale measure (EMMp* (cf. Kallsen (2001), Corollary 2.7). In addition, this mea-
sure solves some dual minimization problem (cf. Schachgem@001), Theorem 2.3). In
general markets, the density procesg¥fis replaced with a supermartingale which may
not be the density process of a probability measure, leteatonEMM (cf. Kramkov and
Schachermayer (1999), Section 5). Nevertheless, in mamelnof practical importance
the dual measureP* exists and it is at least a-martingale measutei.e. S*,..., S? are
o-martingales relative t@*. Since it plays a key role in the neutral pricing approach, we
call P* neutral pricing measure for terminal wealth

Definition 2.3 Suppose thap is an optimal strategy for terminal wealth without consitsi
i _ R ini ility,  (Vr(0) i

(i.,e. forI"' = R ) and, moreover, has finite expected utility. () |§ the density of
someco-martingale measur@*, we call P* dual measureor neutral pricing measure for
terminal wealth

In some cases the neutral pricing measure for terminal tveal be computed explic-

itly:
Example 2.4 Suppose thab', ..., S¢ are positive processes of the forsi = Si& (L)
fori = 1,...,d, whereL is aR¢-valued Lévy process with characteristic trip(étc, F)
relative to some truncation functign: R¢ — R? (i.e. a PIIS in the sense of JS, 11.4.1). In
the last couple of years, processes of this type have becoméay for securities models,
since they are mathematically tractable and provide a godal feal data (cf. Eberlein and
Keller (1995), Eberlein et al. (1998), Madan and Senata@),®arndorff-Nielsen (1998)).
Suppose that is of power or logarithmic type, i.e.(z) = % .

u(x) = log(z), which corresponds to the case- 1. Assume that there exists some R?
suchthatt'({z e R¢ : 1 + "2 <0}) =0, J e — @) |F(dr) < oo, and

b —pnyJr/ (% — h(:z:))F(dx) = 0.

1+~yTx)p
LetZ := &(—py"L¢+ (1 + 7 2)™? — 1) * (u* — v1)), whereL¢ denotes the continuous
martingale part of. andu”, v* the random measure of jumps bfand its compensator. In
the proof of Kallsen (2000), Theorem 3.2 it is shown thais the density process of the
dual measuré”*, which is even an equivalent martingale measure in this. daetative to
P*, Lis aLévy process with characteristic triplét, ¢, F*), where® " (z) = (1 +y"z)™?
andb* = — [(z — h(x))F*(dz).




Example 2.5 In the case of logarithmic utility.(z) = log(x), the neutral pricing measure
for terminal wealth can be calculated explicitly for a largamber of semimartingale models
(cf. Goll and Kallsen (2001), Section 6).

2.2 Local utility

Secondly, we turn to portfolio optimization based on locdity. We assume thaf is a
R?-valued special semimartingale. Denote(byc, F, A) differential characteristics o in
the sense of Definition A.1, but relative to the truncationdiioni(x) = . This choice of
truncation function is possible becausés special. It is typically straightforward to obtain
the differential characteristics from other local destoips of S e.g. in terms of stochastic
differential equations or one-step transition densitiethe discrete-time case.

In this subsection, the family of trading strategies unaersideration is the s&' of all
predictableR?-valued processes = (¢, ..., ¢?) satisfying the integrability condition

B( (10704 ¢Tew + [ (TaR AleTalFn)) - dr) < .

Similarly to above, we denote bg’'(") the set of all trading strategies &' meeting
the cone constraints. In order to avoid technical proofs, we assume that therst exi
polyhedral cones<, ..., K, C R? and predictable set®),, ..., D, such thatl';(w) =
Nficf1,...n}:wnen K for (w, t) € Q x [0,T]. Theutility functionu : R — R is assumed
to satisfy the following conditionsu is twice continuously differentiable, the derivatives
u',u" are bounded withim,, ., u'(x) = 0, moreover:(0) = 0, v'(0) = 1, «'(z) > 0 and
u"(x) < 0foranyx € R. Foranyy € R?, ¢t € R, the random variable

U”(O)

() == b + Tw%tw + / (u(yp " x) — " 2)Fy(dx)

is termedocal utility of ¢ in ¢.

Definition 2.6 We call a strategy € &'(T") locally optimal under the constrainisif

E(y(p) - Ar) > E(y(¥) - Ar)
foranyy € &'(T).

For motivation of local optimality we refer the reader to ksah (1999). Intuitively, a locally
optimal strategy maximizes the expected utility of the gaiwver infinitesimal time intervals,
or put differently, the expected utility of consumption amgaall strategies whose financial
gains are immediately consumed.

Locally optimal portfolios can be determined by pointwiséusion of equations ifR?:

Theorem 2.7 A trading strategyy € &'(T') is locally optimal under the constraints if
and only if

by + u"(0)cypr + /x(u'(gpjx) —1)Fy(dz) € T} (2.1)
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(P ® A)-almost everywhere, whel®& := {y € R? : #"y < 0 for anyx € I';} denotes the
polar cone ofl’;.

PROOF In view of Farkas’ lemma (cf. Rockafellar and Wets (1998)ima 6.45), Theorem
2.7 follows from Kallsen (1999), Theorem 3.5. Strictly skieg, Kallsen (1999) considers
a narrower set-up wheré andI” are deterministic. As is pointed out in Kallsen (2002), the
statements in Kallsen (1999) remain valid fére .«7}.. Moreover, a careful inspection of

the proofs of Proposition 3.10 and Theorem 3.5 in that pagpezals that these results hold
for random constraints of the above type as well. O

Neutral pricing of European contingent claims is discusselallsen (2002) in the
context of local utility. A key role is played by the correswling neutral pricing measure,
which is defined as follows:

Definition 2.8 Suppose that there exists a locally optimal strategy &' without con-
straints (i.e. fol" = R?). Moreover, assume that the local marting&le= & (u"(0)¢" -
S+ % * (p® — 7)) is a martingale, wherg®, v° are the random measure of jumps
of S and its compensatov; := [(u' (¢, ) — 1)v°({t} x dz) for ¢t € [0, 7], andS* denotes
the continuous local martingale part®f Then the probability measure* ~ P defined by

4 = Zris calledneutral pricing measure for local utility

Since the determination of the optimal strateggeduces to solving Equation (2.1) with
I’y = {0}, the neutral pricing measure for local utility is often easio obtain than the
neutral pricing measure for terminal wealth. For concretengples cf. Kallsen (2002),
Section 5.

3 Neutral pricing

In this section we turn to the valuation of game contingeaings. Let us briefly review the
idea of neutral pricing. For references and connectionsrides approaches in the literature
we refer the reader to Kallsen (2001).

In complete models there exist unique arbitrage-free dévie values. The assertion
that real market prices have to coincide with these valueeaeasily justified. It suffices
to assume the existence of traders (from now on calkxtative speculatojsvho exploit
favourable market conditions once they detect them. Thret@xte of derivative speculators
explains why the market price cannot deviate too stronglgnfthe right value: If it did, the
huge demand for (resp. supply of) the mispriced securityldvpush its price immediately
closer to the rational value. The only assumption on thegpeeices of the speculators is that
they do not reject riskless profits — which most people magagn. The elegance of this
approach comes at a price. It only works in complete modelsare exactly, for attainable
claims.



We extend this reasoning to incomplete markets by impodimypger assumptions on
the preferences of derivative speculators. We supposdhtyatrade by maximizing a spe-
cific kind of utility. The role of the unique arbitrage-freeige will now be played by the
neutralderivative value. This is the unique price such that the siagars’ optimal portfolio
contains no contingent claim. Similarly as in the completsecwe argue that the specula-
tors’ presence should prevent the market price from dexgato strongly from the neutral
value.

The general setting is as in the previous section. We digisngwo kinds of securities:
underlyingsl, . .., m andderivativesn + 1, ..., m + n. We assume that the derivatives are
game contingent claims with discounterercise procesé’ and discountedancellation
processU*, whereL! andU* are semimartingales with’ < U* as well asL! < U’ on
[0,7] and L. = U% fori = m + 1,...,m + n. European and American options are
treated as special cases of game contingent claims as ipiaiead in Remark 2 below.
We call semimartingale§™*t!, ... S™*" derivative price processés L' < S* < U* for
i=m+1,...,m+ n. As noted above, we are interested in derivative price msEethat
have a neutral effect on the market in the sense that they tdoanse supply of or demand
for contingent claims by derivative speculators.

Speculators may not be able to hold arbitrary amounts of gaonéngent claims be-
cause these contracts can be cancelled. If the market pmeaches the upper cancel-
lation valueU?, it may happen that all options vanish from the market bezdhsy are
terminated by the sellers. So a long position in the optiaroitonger feasible. Conversely,
all derivative contracts may be exercised by the claim hslddehe market price coincides
with the exercise valué®. This terminates short positions in the claim. Howeverpag las
the derivative price stays above the exercise value, noldtigxercise the option because
selling it on the market yields a higher reward. Similarhere is no danger that the seller
of a GCC cancels the contract as long as the cancellatior wdceeds the market price.
Summing up, the derivative speculators are facing tradomgtaintd” given by

I, = {z€R™™: Fori=m+1,...,m+nwehaver' >0if S| = L!_
andz’ <0if Sj_ = U;_}.

In the following subsections, we treat neutral pricing sapey for utility of terminal
wealth and for local utility, respectively.

3.1 Terminal wealth

We start by assuming that derivative speculators are iclntivestors trying to maximize
expected utility from terminal wealth. Moreover, we supptisat the neutral pricing mea-
sure for terminal wealtt®* in the sense of Definition 2.3 exists for the underlyings’ kear
St ...,S™. As explained above, we look for neutral derivative priceghie following
sense:



Definition 3.1 We call derivative price processég*! ... S™*" neutral for terminal
wealthif there exists a stratedy in the extended market!, . . ., S™™ which is optimal for
terminal wealth under the constraidt@nd satisfieg™ ™ = ... =™ = (.

The following main result of this paper treats existence@amdueness of neutral deriva-
tive price processes. Moreover, it shows that they are exeovas the value of a Dynkin
game relative to the neutral pricing measite

Theorem 3.2 Suppose that™*!, ... L™t andU™*!, ... U™ are bounded. Then there
exist unique neutral derivative price processes. Thesgiaen by

Sf = essinfucy esssup,rc g Epr (Ri(TL; TU)|yt)

= essSup,rcg, ess infuc gy Ep (R (7", 7V)|.%) (3.1)

fort € [0,7],7 = m+1,...,m + n, where.7, denotes the set o¢f, 7']-valued stopping

times and . L
~ L if 7 <r
Ri(t%,7Y) .= Tk -
(" 77) { Uly otherwise.

Moreover, the extended markgt, . . ., S™" satisfies condition NFLVR in the sense of

Definition 3.3 We say that the market = (S, ..., S™"") satisfies the conditiono free
lunch with vanishing risk (NFLVR)O is the only non-negative element of the? (2, .7, P)-
closure of the set’ := {f € L>(Q2, #,P) : f < - Sy for somey € &(I')}. (Note that
this is a straightforward extension of the usual NFLVR ctindiin Delbaen and Schacher-
mayer (1994), Definition 2.8 to markets containing gameiogeint claims.)

PROOF OFTHEOREM 3.2. Step 1:By Lepeltier and Maingueneau (1984), Théoreme 9 and
Corollaire 12, there exist right-continuous adapted pssesS™*"!,..., S™*" satisfying
Equation (3.1). Fixi € {m + 1,...,m + n}. Define stopping time§”* := inf{t €

Ry : S} > Uj — ¢} foranyk € N andT; := sup,.y If. By Lepeltier and Maingueneau
(1984), Théoréme 11 and Dellacherie and Meyer (1982), Emdr1.3, (57" is a P*-
supermartingale for any € N. Obviously,(S}l,c)keN converges folk — oo P*-almost
surely toR := Ur, 1y, qri—1} + Ur—1n, rr<ry- Define an adpated right-continuous

processS’ by
. St ift<Tiort=0

S, =X Up_ if0#t>T andTf < T, foranyk € N
Up, if 0#t>T, andT¥ =T, for somek € N,

6.5 = Y (S 1 ypue gy + R, osripye (With the conventio 7y, 79] := [T7]).
Lets,t € [0,T] with s < t. If s € (Upen]0, TF])C, thenS’ = R = S, and hence

Ep.(S)|#,) = S.. Now, lets €]T* !, TF] for somek € N. ThenS. = (Si)sTll >

Ep*((Si)tTﬂﬁs) = Ep- (?;{ML%) for | > k. Moreover, dominated convergence yields
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that Ep. (Spi, | #s) — Ep+(S)|.7,) in measure foi — oco. HenceS, > Ep.(S,|.%,).
Altogether, it follows thatS” is a P*-supermartingale. Hencés?)™: is a semimartingale.

Forl € N\ {0,1} definel; := supyey I} whereT} := inf{t > T,_; : S} < Li + 1}
forl =2,4,6,...andT} := inf{t > T,_, : S} > U; — +} fori = 3,5,7,... Similarly to
above, one shows by induction tHat')”! is a semimartingale for anlye N.

Step 2:We keep the notation from the previous step. Fi®k N. Fort, € [0,7] and
k € N define stopping times, j, := inf{t > ¢, : (5%)/' < (L)} + 1} AT. From Lepeltier
and Maingueneau (1984), Théoreme 11 it follows that,, ,;-(S*)" is aP*-submartingale
foranyt, € [0,7], k € N. In particular, we have

ookl

b+ /(a: — h(z))F*(dz) > 0 (3.2)

(P ® A)-almost everywhere offt,, 7, 1] (cf. Lemma A.2), whergb*, ¢*, F*, A) denote
P*-differential characteristics of the semimartingé#)’: in the sense of Definition A.1.
Since{ (L) < (SH)™}N]0,T] = Ussecqnio,r]Uren]to, Trox], it follows that Equation (3.2)
holds(P © A)-almost everywhere ofi(L)"" < (5°)"'}. Thereforel, s _ gm, - (5)"

is a P*-o-submartingale (cf. Kallsen and Shiryaev (2001), Lemmaah& Lemma A.2).
Analogously, it follows thaﬂ{(si)@qm@} - (89T is a P*-o-supermartingale, and hence
Lo iy sty cquiy™y - (59" is a P*-o-martingale.

Step 3: We keep the notation from the previous steps. Let := lim;_,,, 7;. Since
L', U are P*-special semimartingales with integralilg, U¢, they are locally in class#!
in the sense of Definition A.3 and relative B (cf. Dellacherie and Meyer (1982), VI1.99).
Denote by(ox)ren @ corresponding localizing sequence. Eix N. By Proposition A.5,
applied to(L)Ti"ox, (S%)Tiror and (U*)TiA*, it follows thatsup,cy [|(S*) 17 || 41 < oo,
which in turn implies thatS?)T="* is a semimartingale (cf. Proposition A.6). Therefore,
(S%)T= is a local semimartingale and hence a semimartingale. ticpkar, it has left-hand
limits at7,,. SinceL! < U! fort < T, this is only possible if,, = T'. Consequentlys*

Is a semimartingale.

Step 4:Let Z denote the density process Bf and an optimal strategy for terminal
wealth in the markes!, ..., S™. We want to show that th&™""-valued proces® :=
(p,0) € &(I') is an optimal strategy for terminal wealth under the comstsd’, now
referring to the extended markét := (S',...,S™"). SinceZE(u'(Vr(y))) coincides
with the optimal solutioﬂ7(y) to the dual problem in Kramkov and Schachermayer (1999),
Theorem 2.2, we have th@p™ - (S%,...,S™))Z is a martingale. This implies that’ - S =
e (S ..., S™)is aP*-martingale (cf. JS, 111.3.8).

Consider a strategy € &(I') in the extended market. Denote by, ¢*, F*, A) P*-
differential characteristics df in the sense of Definition A.1. The same argument as in Step
2 shows that** + [(z' — h'(z))F*(dz) > 0 (P ® A)-almost everywhere ofiL" < S*}
and< 0on{S’ <U!'}fori=m+1,...,m+mn. SinceSt, ..., S™ are P*-o-martingales,
we haveh*’ + [(z* — h(z))F*(dz) = 0fori =1,..., m. From the form of the constraints
[ it follows that!(b*" + [(2* — h'(x))F*(dz)) < 0fori = m+1,...,m + n, which
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yields thaty) " (b* + [(z — h(z))F*(dz)) < 0 (P ® A)-almost everywhere. In view of
Kallsen and Shiryaev (2001), Lemma 2.5 and Lemma A.2, thigdies thaty " - S is a
P*-o-supermartingale. By Goll and Kallsen (2001), Proposifidh this process and hence
also(y — )" - S is even aP*-supermartingale. In particular, we hakéu' (Vr(@))((v —
?)"-9)) = EW(Vr(9))Ep-((¢p — )" - S) < 0. Due to Lemma 2.2 is an optimal
strategy for terminal wealth under the constraiftsHence,S™"!, ..., S™™ are neutral
price processes for terminal wealth.

Step 5:For the uniqueness part assume tf?fat” §m+” are neutral derivative price
processes correspondlng to some optlmal straﬁegy (@Y ...,9™,0,...,0) in the ex-
tended markef := (S!,...,S™, Sm*t . Smtn) Sinced does not contain any deriva-
tive, we have tha{g!,...,¢™) is an optimal strategy for the small markst, ..., S™
with the same expected utility. Similarly, the expecteditytiof ¢ in the small market
and ofg = (¢,0) in the extended markef tally. Sincey is optimal in the small mar-
ket S',...,S™, it follows thatpy € &'(T) is optimal in the extended markstunder the
constraintd". Hence we may w.l.0.g. assume that 3.

Fix i € {m+1,...,m + n}. Firstly, we show that, - 5 is a P*-o-submartingale
for any predictable subsdp of {L' < Si}. SinceS’ is bounded, we have thag, - S
is locally bounded. Hence, there exists an increasing segué} )<y Of stopping times
with P*(T, = T) — 1 andsup,cro; |(1p - S)7*| < k. Fixk € N, s,t € [0,T] with
s < t,andF € .Z,. Define an admissible strategy € S&(I') in the marketS :=
(Sl, oo, 8™ Sm+1, ceey Sm—l—n) b}/v wj = 0 for j #* 1 and T/JZ = _ﬁlDﬂﬂo,Tkﬂﬂ(Fx}s,t}).
Lemma 2.2 and the fact that’ - S = ¢ - (S!,...,S™) is aP*-martingale yield that

—Ee ((1p- S = (1p - SHT)1p)

= Ep(¢—%)" - Sr) + Ep- (3" - S1)

= (BW(Vr(@)) B (Ve(@)( ~P)" - Sr)
< 0.

Therefore,(1p - §i)Tk is a P*-submartingale, which implies that, - S° is a local P*-
submartingale. Similarly, it follows thaty- S’ is aP*-g-supermartingale for any predictable
subsetD of {S? < U’ }.

Define stopping times,,  := inf{t > t, : S} < S + £} foranyt, € [0,T], k € N,
Note that{S? > 5% 1n]0,7] = Utoeanio,r]Uken]to, e k] FiX to € [0, T] k € N. Since
{Li < S }n{S. < UL} > {S. > 5.}, we have thatly, -, ,] - St and hence also
((SH) “Vieto,) IS @ P*-o-submartingale. By Goll and Kallsen (2001), Propositio8, 7.
this process is even &*- submartlngale Slmllarly, it follows that 5);" ’“)te[to 7] 1S aP*-
supermartingale. Sincg5?);** < (570" + 1, we have tha(S?),>" < (590" + 1

P-almost surely for any: € N. ConsequeNntIySt0 < SlO P-almost surely Since this holds
for anyt, € QM [0, 7], we have that® < S* by right-continuity. Similarly, it is shown that
{5t < S’} is evanescent, which yields the uniqueness of neutral priseesses for terminal
wealth.
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Step 6: The NFLVR property of the price processis shown in the usual way: Let
1 € &(T). In Step 4 itis shown that " - S is a P*-supermartingale and henég.. (f) < 0
forany f € C. SinceP* ~ P, this is also true for any in the L>°(Q2, .7, P)-closure ofC'.
Thereforef = 0 P-almost surely for any sucfiwith f > 0. O

Remarks.

1. If sup,epo 4y |Li| @ndsup,c 4 [U7| are P*-integrable instead of bounded foe m +
1,...,m + n, we still have the existence of neutral derivative pricestéyminal
wealth. As Kifer (2000) points out, the results of Lepeléad Maingueneau (1984)
hold also if L, U* satisfy the above integrability conditions. The existefallows
now from Steps 1-4 in the proof of Theorem 3.2.

2. European options with bounded discounted terminal ayoét time 7’ may be con-
sidered as special cases of game contingent claims bygettin

Li— essinf R' —1 ift<T
LR if t =T

and .
i ':{ esssup R' +1 ift <T
b R if t =T.
If we assume the absence of arbitrage, the price of the Earopkim will never
leave the intervakss inf R’, ess sup R']. Therefore, the additional right to cancel the
contract prematurely is worthless. Equation (3.1) redtces

St = Ep«(R'|.%)

for European options.

American options with bounded exercise procésand final payoffL:. are treated
similarly by defining

i | esssup (supiepor Lj) +1 ift <T
L 2 ift =T.

The neutral price proces¥ in Equation (3.1) now has the form of a Snell envelope:
S} = ess sup, ¢z Ep+ (LL|.F).

Moreover, an inspection of the proof reveals that we carh#ligveaken the condi-
tions onL? in the American option case. It is enough to assume khas a cadlag,
adapted process instead of a semimartingale.

3. In general, neutral derivative prices for terminal wieaépend on the utility function
u, the time horizorl’, the initial endowment, and the numeraire. In the setting of
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Example 2.4, the density processiofdoes not depend dhands. Therefore, neutral
prices do not depend on the time horizon and the initial emdemt of derivative
speculators in this case.

Logarithmic utility is even more agreeable in this respé:it is discussed in Goll
and Kallsen (2001), Section 6, the neutral prices relatve*tdepend neither of, ¢,
nor on the chosen numeraire. Moreover, the density prodeBs can be calculated
explicitly even in very complex models.

3.2 Local utility

In this subsection, we suppose that derivative speculataxsmize their local utility. Simi-
larly to above, we assume that the neutral pricing measurdedal utility P* exists for the
underlyings’ markes!, ... S™ (cf. Definition 2.8).

Definition 3.4 We call derivative price process&s' !, ..., S™*" neutral for local utility
if there exists a strategy in the extended market!, ..., S™*" which is locally optimal
under the constrainfs and satisfieg™ ™ = ... = ™" = (.

The following result corresponds to Theorem 3.2 in the |lod#ity setting.

Theorem 3.5 Suppose thal’, U’ are special semimartingales and thaip, ., ;1 |Z;| and
sup,c o, |Uf| are P*-integrable fori = m 4 1,...,m + n. Then there exist unique neutral
derivative price processes. These are given by

S} = essinf,ucy esssup,icg Ep-(R(r", 7V)|.%)
= esSSUp,rcg ess infucy Ep(R'(T", 7V)|.%) (3.3)
fort e Ry,i =m+1,...,m+ n, where.Z; and R(7", ) are defined as in Theorem

3.2. Moreover, the extended markgt . . ., S™*" satisfies condition NFLVR in the sense of
Definition 3.3.

PROOF. Steps 1-3 and 6 are shown literally as in the proof of The®@&m Only Steps 4
and 5 have to be modified slightly.

Step 4:Since L’ < S* < U*, we have thatS’ is a special semimartingale for =
m—+1,...,m+ n (cf. Kallsen (2002), Proposition 3.7). Similarly as in Stepf the proof
of Theorem 3.2 we want to show that:= (¢, 0) € &'(I") is a locally optimal strategy for
S = (S%,...,S™"), wherep denotes an optimal strategy in the small markt. . ., S™.
Denote by(b, ¢, F, A) the P-differential characteristics dof relative toh(xz) = z. In view
of Theorem 2.7 we have to show that

b+ u"(0)cp + /x(u'(@T:U) —1)F(dx) e I°. (3.4)

Note thatl’y = {y € {0} x R* : Fori =m +1,...,m +nwe havey’ > 0if L! < S!
andy’ < 0if S} < U} }. From the Girsanov-Jacod-Mémin theorem it follows that the
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P*-differential characteristicé)*, ¢*, F*, A) of S relative to some truncation functidn :
R™t" — R™*" satisfy the equation

b+ / («* — hi(2))Ef (do) = b} + u"(0)ci, + / xi(“'@ 7)

1+V;
<bi +u"(0)cl' B, + /xz(u'(@:x) - l)Ft(dl‘)) (3.5)

. 1>Ft(d:r)

fori=1,...,m+n,whereV, is defined as in Definition 2.8 (cf. Kallsen (2002), Steps 3 and
4 on page 122 for the arguments in detail). Sipde optimal in the small market, Theorem
2.7 yields that expression (3.5) equals Ofet 1,...,m. The same argument as in Step 2
of the proof of Theorem 3.2 shows that the left-hand side afdfigQn (3.5) is non-negative
on{Li < S! } (resp. non-positive 0hS: < U })fori =1,...,m + n. Together, it

follows that Condition (3.4) holds. Thereforg™*! ... S™" are neutral price processes
for local utility.

Step 5:For the unigueness part assume tff?fafl, ce Sm+n are neutral derivative price
processes corresponding to some locally optimal strafegy(2!, ..., 2™,0,...,0) in the

extended markef := (S',...,S™, 5™ . Smin) Asin Step 5 of the proof of Theorem
3.2 we may w.l.0.g. assume that= 3.

In this step, we denote bgp, ¢, F, A) the P-differential characteristics of relative
to h(x) = x. Sincep is an optimal strategy, Theorem 2.7 yields that Conditiod)3
holds (P ® A)-almost everywhere. As in the previous step, we expressctimslition
in terms of theP*-differential characteristic&*, ¢*, F*, A) of S relative to some trunca-
tion functionn : R™™" — R™™. Fixi € {m +1,...,m + n}. Then theP*-drift
b + [(aF — hi(x))F*(dx) of S7 it is non-negative o{Li < Si } resp. non-positive
on{Si < U }. Due to Kallsen and Shiryaev (2001), Lemma 2.5 and LemmatAig,
means thal , - S is a P*-o-submartingale for any predictable subgeof {Li_ < Si_}
and1, - S’ is a P*-o-supermartingale for any predictable subBeof {Si_ < U:_}. The
uniqueness of neutral price processes follows now as ingbernsl half of Step 5 in the
proof of Theorem 3.2. O

Remark 2 following Theorem 3.2 holds accordingly in thidiagt

A Appendix

In this appendix we state some auxiliary results from stetib&alculus. Firstly, we con-
sider theo-supermartingale property in terms of semimartingale atteristics. Secondly,
we turn to thes!-norm of semimartingales.

Definition A.1 Let X be aR?-valued semimartingale with characteristiés C, v) relative
to some truncation function : R¢ — R?. By JS, 11.2.9 there exists some predictable
processA € 4, some predictabl&?*¢-valued process whose values are non-negative,

oc!
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symmetric matrices, and some transition kerAdirom (2 x R, , 2?) into (R¢, %) such
that
B=b-A C=c-A v=AQF.

We call (b, ¢, F, A) differential characteristicof X.

One should observe that the differential characteristiesiat unique: E.g(2b, 2¢, 2F, $ A)
yields another version. Typical choices fdrare A, := ¢ (e.g. for Lévy processes, diffu-
sions, It6 processes etc.) adg:= > _, 1w (0} (s) (discrete-time processes). Especially for
A, = t, one can interpré, or ratherb, + [ (x — h(z))F;(dx) as a drift rateg; as a diffusion
coefficient, andF; as a local jump measure. As the following result shows, apusitive

or vanishing drift corresponds tocasupermartingale ar-martingale, respectively. These
processes play an important role in the context of fundaatéhéorems of asset pricing
(cf. Delbaen and Schachermayer (1998), Kabanov (1997)in@hend Shiryaev (2001)).
For background om-localization and the related classes of processes wettef@eader to
Goll and Kallsen (2001).

Lemma A.2 Let X be a semimartingale iir? with differential characteristic$b, ¢, F, A).
Fixi e {1,...,d}. ThenX'is ac-supermartingale if and only if |«* — h*(z)|F(dz) < oo
and

an /(wi (@) F(dz) < 0

(P ® A)-almost everywhere. If we replage 0 with = 0 or > 0, we obtain corresponding
statements fos-martingales andr-submartingales, respectively.

PROOF We use the notation of Goll and Kallsen (2001), Section h¢béorth GK).

= This is shown in the first part of the proof of GK, Propositios.

<: From JS, 11.2.29, 11.2.13, 1.3.10 it follows that is a local supermartingale if we
have, in addition[ |z* — hi(z)|F(dz) € L(A), i.e.if X € P.. SinceX € P, (cf. GK,
Lemma 7.6),X belongs to ther-localized class of the set of local supermartingales, whic
coincides with the set af-supermartingales (cf. GK, Lemma 7.4). O

In the proof of Theorem 3.2 we make use of tH€'-norm in the sense of Emery (1978),
Protter (1977, 1978, 1992), Dellacherie and Meyer (1982)eNhat we treat the valug,
differently from e.g. Dellacherie and Meyer (1982) becansaise the conventions of JS as
far as starting values ¢X, X], AX etc. are concerned.

Definition A.3 For any real-valued semimartingalewe define
X[ = inf{E<|X0| + Var(A) o + /M, M]oo> :
X =Xo+ M+ Awith M € My, A € "//},

whereVar(A) denotes the variation process 4f By .7#' we denote the set of all real-
valued semimartingale¥ with || X || »: < oc.
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Proposition A.4 Let X be a non-negative semimartingale. ThgR_—q) - X € ¥ .

PROOF This is shown by applying the 1t6-Meyer formulalo™ = — (X A0). Indeed, since
X~ =0, Jacod (1979), (5.49) yields that= —11x__o1 - X +3L°+ > ,. 31v_—op AXy,
whereL? denotes the local time of in 0 in the sense of Jacod (1979), (5.47). Sififds
increasing and\ X > 0 on{X_ = 0}, it follows thatl;yx__q) - X is increasing as well.C]

Proposition A.5 Let L, X, U be real-valued semimartingales with< X < U and such
thatl;, .x_y- X is ao-submartingale and;x_-y_, - X is ao-supermartingale. Then
| X |t < c(||L]| ser + ||U]| #2) for somec € R, which is independent df, X, U.

PROOF In this proof, we writeY}, := sup,p, |Y;| for any semimartingal@” andVar(Y")
for the variation process of any € 7.

Step 1:W.l.o.g. L, U are special because otherwigk|| ,»» = oo or ||U|| 1 = oo (cf.
JS, 1.4.23). By Kallsen (2002), Proposition 3.X,is special as well. Denote hy{ =
Xo+MX+AX U =Uy+MY+AY, L = Ly+ M" + AL the canonical decompositions of
the special semimartingalé§ L, U into a local martingale and a process of finite variation,
respectively.

Step 2:By JS, 1.3.13, there exist predictable procesges H”, HYV such thatd* =
HY A AV = HY. A, AU = HY . A, whereA := Var(AX) + Var(AY) + Var(AY) € 7*is
predictable. Since;;,_.x_1-X = 1{L_<X_}-MX+(1{L_<X_}HX)-A is ac-submartingale,
we have thati* > 0 (P ® A)-almost everywhere ofi. . < X _}. Similarly, it follows
that H* < 0 (P ® A)-almost everywhere ofiX_ < U_}. Proposition A.4 yields that
Li_=x_y- (MX — ML) + (1{L7:X7}(HX — HL)) A= Lip =x_y - (X —L) e v*.
From JS, I1.3.17 and the uniqueness of the special semimgaktimlecomposition it follows
that (1,__x_y(H* — H")) - A € ¥, which implies thatH* > H" (P @ A)-almost
everywhere o L_ = X _}. Similarly, we haveH* < HY (P ® A)-almost everywhere on
{X_ = U_}. Altogether, it follows thatH*| < |HL| + |HY| (P ® A)-almost everywhere.
Consequently, we havéar(AX) = |[HX|- A < |HL|- A+|HY|- A = Var(AL) + Var(AY).

Step 3:SinceMX = X —AX — Xy > L—-AX — Xy =Ly — Xy + A — AX + M and
MY < Uy—Xo+AY — AY + MY, we have thatM ™| < |Lo|+ |Up|+|A% |+ |AY |+ ]A* |+
|ME|+|MY] and hencé/S* < |Lo|+ |Up| +2Var(A*), +2Var(AY) o + ML* + ML+ by
Step 2. By the Burkhdolder-Davis-Gundy inequality (cf. Jh¢b979), (2.34)), it follows that
there exists some constant> 2 such thatt(ML*) < ¢ E(y/[M%, M"],,) and likewise
for U. By Dellacherie and Meyer (1982), VI1.98, there exists saropstanic, > 1 such
that E(|Ly| + Var(AL) o + /[ML, ME],) < e||L|| and likewise forU. Together, it
follows thatE (M%) < cico(|| Ll et + [|U]]e1)-

Step 4: From Step 2 we conclude thaX,| + Var(AX) < |Lo| + Var(AL) + |Us| +
Var(AY), which implies thatE (| Xy| + Var(4%)y) < e(||L]|er + [|U]l1). By the
Burkhdlder-Davis-Gundy inequality (cf. Jacod (1979).3@), there exists some constant
c3 > 1 such thatE(y/[MX, MX],) < 3 E(MZ*) . Altogether, it follows that| X ||, <
E(|Xo| + Var(A™Y) oo + /[MX, M¥X]) < (co + crcoc3) (|| Ll + ||U]| 1) O
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Proposition A.6 Let X be an adapted real-valued process afidl ),,cy an increasing se-
quence of stopping times such thaf- is a semimartingale for any € N. If we have
sup,ey || X1 ]| 1 < 0o, thenX ™™ is a semimartingale, wherg,, := sup,,. T7,.

PROOF It is easy to see thdt\ "),y is a Cauchy sequence i#’!. Due to completeness
(cf. Dellacherie and Meyer (1982), VI1.98) there is a limit#’* which coincides withX
on the sef0, T, [. O
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