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Abstract

In this paper theneutral valuationapproach is applied to American and game op-
tions in incomplete markets. Neutral prices occur if investors are utility maximizers and
if derivative supply and demand are balanced. Game contingent claims are derivative
contracts that can be terminated by both counterparties at any time before expiration.
They generalize American options where this right is limited to the buyer of the claim.
In turns out that as in the complete case, the price process ofAmerican and game
contingent claims corresponds to a Snell envelope or to the value of a Dynkin game,
respectively.
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1 Introduction

In recent years various suggestions have been made how to price European-type contingent
claims in incomplete markets. By contrast, there is only very little corresponding literature
dealing with American options. Pricing the latter is conceptually more involved: In addi-
tion to the uncertainty caused by the underlyings, one has totake the seller’s ignorance of
the buyer’s exercise strategy into account. If we fix a stopping time as exercise time, then
the American option reduces to a European claim. It is obvious that the American option
should be worth at least as much as the most valuable of these implied European claims.�Institut für Mathematische Stochastik, Universität Freiburg, Eckerstraße 1, 79104 Freiburg i. Br., Ger-
many, (e-mail: kallsen@stochastik.uni-freiburg.de)yZentrum Mathematik, Technische Universität München, 80290 München, Germany, (e-mail:
kuehn@mathematik.tu-muenchen.de)
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In the financial literature the price of an American option isoften justdefinedas the supre-
mum of all European style claims corresponding to arbitrarystopping times of the buyer.
Consequently, the problem of pricing American options is reduced to the simpler problem
of pricing European contingent claims. However, this concept already implies by definition
that an American option is not worth more than the highest priced of its implied European-
style derivatives, i.e. theright to choose the exercise time has no value in itself. To us, this
is not entirely obvious because in the American case the seller faces the disadvantage not to
know the preferred stopping time of the buyer.

In complete markets, arbitrage arguments suffice to derive unique prices for American
contingent claims. Here, it turns out that the fair price is indeed the supremum of the implied
European option values (cf. Bensoussan (1984) and Karatzas(1988)). Analogous results are
shown in varying degrees of generality for the superhedgingprice in incomplete markets (cf.
Karatzas and Kou (1998), Kramkov (1996), Föllmer and Kabanov (1998), and Föllmer and
Kramkov (1997)). This price denotes the smallest initial capital that allows to construct
a portfolio which dominates the payoff process of the option. Although superhedging is
an interesting concept from a theoretical point of view, it yields only trivial upper bounds
in many models of practical importance (cf. e.g. Eberlein and Jacod (1997), Frey and Sin
(1999), Cvitaníc et al. (1999)). This is somewhat unsatisfactory.

Utility-based indifference pricingis a concept which has been applied explicitly to Amer-
ican options. Here, one takes the perspective of a particular counterparty and fixes the num-
ber of shares of the claim (say,1 for an option buyer or�1 for an option seller). The
indifference premiumis a price such that the optimal expected utility among all portfolios
containing the prespecified number of options coincides with the optimal expected utility
among all portfolios without option. Put differently, the investor is indifferent to includ-
ing the option into the portfolio. Taking the perspective ofthe option buyer, it turns out
that the indifference price is indeed the supremum of the indifference prices of the implied
European claims (cf. Davis and Zariphopoulou (1995)). Surprisingly, this is not true for
the option seller: Unless exponential utility is chosen, itmay happen that a reasonable in-
difference premium for an American option exceeds the indifference price of all implied
European claims (cf. Kühn (2002)).

In this paper we show that the concept ofneutral derivative pricing, as suggested in
Kallsen (2001), can be adapted quite naturally to American options. Neutral prices occur if
traders maximize their expected utility and if derivative supply and demand are balanced.
More precisely, a derivative price process is calledneutral if the optimal portfolio contains
no contingent claim. We will see that the neutral price of an American option coincides as in
the complete case with the supremum of the neutral prices of all implied European claims.

Both utility-based indifference pricing and neutral pricing rely on expected utility max-
imization and indifference to trading the option. Let us point out the differences between
the two concepts. Indifference pricing takes an asymmetricpoint of view. Moreover, it
depends decisively on the fixed number of claims under consideration. As far as options
are concerned, intermediate trades are not allowed. Therfore, this approach is particularly
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well suited for over-the-counter trades: Suppose that the buyer wants to purchase a specific
contingent claim. Then he has to pay the seller at least her indifference price in order to
prompt her to enter the contract.

The concept of neutral pricing, on the other hand, takes a symmetric point of view.
It assumes that options are traded in arbitrary positive andnegative amounts. It tries to
mimic the economic reasoning in complete markets by substituting utility maximizers for
arbitrage traders. Neutral prices are the unique prices such that neither buyer nor seller takes
advantage from trading the claim. For motivation of neutralderivative pricing, references,
and connections to other approaches in the literature we refer the reader to Kallsen (2001).

As mentioned above, neutral pricing relies on utility maximization for portfolios con-
taining derivatives. This is a non-trivial issue in the presence of American-type contingent
claims. The point is that short positions in the claim may suddenly be terminated if the buyer
exercises the option. Therefore, investment in American claims corresponds to investment
under specific short-selling constraints (cf. Section 3).

In the present paper, American options are treated as special cases of game contingent
claims. The latter naturally generalize American contingent claims by giving both coun-
terparties the right to cancel the contract prematurely. This generalization requires some
mathematical but no additional conceptual efforts. By contrast, it makes the neutral pricing
approach even more transparent.

A game contingent claim (GCC), as introduced in Kifer (2000), is a contract between
a sellerA and a buyerB which can be terminated byA and exercised byB at any timet 2 [0; T ℄ up to a maturity dateT when the contract is terminated anyway. More precisely,
the contract may be specified in terms of stochastic processes (Lt)t2[0;T ℄, (Ut)t2[0;T ℄ withLt � Ut for t 2 [0; T ℄ andLT = UT . If A terminates the contract at timet before it is
exercised byB, she has to payB the amountUt. If B exercises the option before it is
terminated byA, he is paidLt. For motivation and examples for this kind of derivatives we
refer the reader to Kifer (2000).

With American options the right to terminate the contract isrestricted to the buyerB.
Formally, they can be interpreted as game contingent claimsby settingUt := m for t 2[0; T ), wherem 2 R [ f1g exceeds the maximal payoff of the American option, e.g.m = 1 in the unbounded case. This allows us to consider both kinds of options in a
common framework.

Similarly as American options correspond to optimal stopping problems, GCC’s incor-
porate a Dynkin game: If sellerA selects stopping time�U as cancellation time and buyerB chooses stopping time�L as exercise time, thenA pledges to payB at time�L ^ �U the
amount R(�L; �U) = L�L1f�L��Ug + U�U1f�U<�Lg:
In complete markets with a unique equivalent martingale measureP ?, the random payoffR(�L; �U) has the unique fair valueEP ?(R(�L; �U )) at time 0. In analogy to American
options, the buyer may want to choose his stopping time so as to maximizeEP ?(R(�L; �U))
whereas the seller tries to minimize the same value. This is precisely the situation of a zero-
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sumDynkin stopping game. It is well-known that such a game has a unique value in the
sense that inf�U sup�L EP ?(R(�L; �U)) = sup�L inf�U EP ?(R(�L; �U)) (1.1)

(cf. Lepeltier and Maingueneau (1984)). Kifer (2000) showsby hedging arguments that this
value is in fact the unique no-arbitrage price of the GCC.

In incomplete markets these arguments fail because perfectreplication is usually impos-
sible. But it turns out that the price process of a GCC corresponds again to the value of a
Dynkin game if we apply the neutral pricing approach. The unique equivalent martingale
measure in Equation (1.1) is replaced with a properly chosenneutral pricing measure.

The paper is organized as follows. Section 2 summarizes and states some facts on utility
maximization. These are needed in the subsequent section toaddress the derivative pricing
problem for game contingent claims. The appendix contains some auxiliary results from
stochastic calculus.

Throughout, we use the notation of Jacod and Shiryaev (1987)(henceforth JS) and Ja-
cod (1979, 1980). The transposed of a vectorx is denoted asx> and its components by
superscripts. Increasing processes are identified with their corresponding Lebesgue-Stieltjes
measure. Stochastic integrals are written in dot notation,i.e.'> � St means

R t0 '>s dSs.
2 Utility maximization

The derivative pricing approach in Section 3 relies on assumptions concerning investors who
maximize their expected utility. Therefore, we discuss twokinds of portfolio optimization
problems in this section, based on the classicalutility of terminal wealthand onlocal utility
as in Kallsen (1999), respectively.

Our mathematical framework for a frictionless market modelis as follows: Fix a terminal
timeT 2 R+ and a filtered probability space(
;F ; (Ft)t2[0;T ℄; P ) in the sense of JS, I.1.2.
In this section we consider tradedsecurities1; : : : ; d whose price processes are expressed in
terms of multiples of anumerairesecurity0. Put differently, these securities are modelled
by their discountedprice processS := (S1; : : : ; Sd). We assume thatS is a Rd -valued
semimartingale.

2.1 Utility of terminal wealth

In this subsection we consider an investor who tries to maximize utility from terminal
wealth. Herinitial endowmentis denoted by" 2 (0;1). Trading strategiesare modelled
by Rd -valued, predictable stochastic processes' = ('1; : : : ; 'd) 2 L(S), where'it denotes
the number of shares of securityi in the investor’s portfolio at timet. A strategy' belongs
to the setS of all admissiblestrategies if its discountedwealth processV (') := "+ '> � S
is nonnegative (no debts allowed).

Trading constraintsare expressed in terms of subsets of the set of all trading strategies.
More specifically, we consider a process� whose values are convex cones inRd . The
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constrained setof trading strategiesS(�) is the subset of admissible strategies' which
satisfy('1; : : : ; 'd)t 2 �t pointwise on
 � [0; T ℄. Important examples are� := Rd (no
constraints) and� := (R+)d (no short sales).

The investor’s preferences are modelled by a strictly concave utility functionu : R+ !R [ f�1g which is continuously differentiable on(0;1) and satisfieslimx!0 u0(x) =1,limx!1 u0(x) = 0, andlim supx!1 xu0(x)u(x) < 1 (i.e. it is of reasonable asymptotic elasticity
in the sense of Kramkov and Schachermayer (1999), Definition2.2). Her aim is to make the
best out of her money in the following sense:

Definition 2.1 We say that' 2 S(�) is anoptimal strategy for terminal wealth under the
constraints� if it maximizese' 7! E(u(VT (e'))) over all e' 2 S(�). (By convention, we setE(u(VT (e'))) := �1 if E(�u(VT (e')) _ 0) =1.)

Optimal portfolios are characterized by the following result. Many references to related
statements in the literature can be found in Kallsen (2001),Section 2.2 and Schachermayer
(2001).

Lemma 2.2 Let' 2 S(�) with finite expected utility. Then we have equivalence between:

1. ' is optimal for terminal wealth under the constraints�.

2. u0(VT ('))(( � ')> � ST ) is integrable and has non-positive expectation for any 2S(�) withE(u(VT ( ))) > �1.

PROOF. 2)1: Let 2 S(�) with E(u(VT ( ))) > �1. Sinceu is concave, we haveE(u("+  > � ST )) � E(u("+ '> � ST )) + E(u0("+ '> � ST )(( � ')> � ST ))� E(u("+ '> � ST ));
which yields the assertion.

1)2: Let  2 S(�) with E(u(VT ( ))) > �1. Define e := ' + 12( � ') and (�) := ' + �( � ') for � 2 [0; 1℄. SinceS(�) is convex andu is concave, we have thate 2 S(�) andE(u(VT ( e ))) > �1. From�1 < E(u("+  > � ST ))� E(u("+ '> � ST )) + E(u0("+ '> � ST )(( � ')> � ST ))
andE(u(VT ('))) <1 it follows thatE((u0("+'> �ST )(( �')> �ST ))�) <1. Similarly,�1 < E(u("+  > � ST ))� E(u("+ e > � ST )) + 12E(u0("+ e > � ST )(( � ')> � ST ))
implies thatE((u0("+ e > � ST )(( � ')> � ST ))�) <1.

Let � 2 (0; 12 ℄. By optimality of', we have0 � E(u("+  (�);> � ST ))� E(u("+ '> �ST )), which equals�E(�(�)(( � ')> � ST )) for some random variable�(�) with values in
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[u0("+'> �ST ); u0("+ e > �ST )℄ or [u0("+ e > �ST ); u0("+'> �ST )℄, respectively. Note that(�(�)(( �')>�ST ))� � (u0("+'>�ST )(( �')>�ST ))�+(u0("+ e >�ST )(( �')>�ST ))� 2L1(
;F ; P ).
Since (�);> �ST ! '> �ST , we have that�(�) ! u0("+'> �ST ) almost surely for�! 0.

Fatou’s lemma yieldsE(u0("+'>�ST )(( �')>�ST )) � lim inf�!0E(�(�)(( �')>�ST )).
It follows thatE(u0("+ '> � ST )(( � ')> � ST )) � 0 as claimed. �

Suppose that' is an optimal strategy for terminal wealth without constraints (i.e. for� = Rd ). If the probability space is finite, thenu0(VT ('))E(u0(VT ('))) is the density of some equivalent
martingale measure (EMM)P ? (cf. Kallsen (2001), Corollary 2.7). In addition, this mea-
sure solves some dual minimization problem (cf. Schachermayer (2001), Theorem 2.3). In
general markets, the density process ofP ? is replaced with a supermartingale which may
not be the density process of a probability measure, let alone an EMM (cf. Kramkov and
Schachermayer (1999), Section 5). Nevertheless, in many models of practical importance
the dual measureP ? exists and it is at least a�-martingale measure, i.e. S1; : : : ; Sd are�-martingales relative toP ?. Since it plays a key role in the neutral pricing approach, we
call P ? neutral pricing measure for terminal wealth.

Definition 2.3 Suppose that' is an optimal strategy for terminal wealth without constraints
(i.e. for� = Rd ) and, moreover, has finite expected utility. Ifu0(VT ('))E(u0(VT ('))) is the density of
some�-martingale measureP ?, we callP ? dual measureor neutral pricing measure for
terminal wealth.

In some cases the neutral pricing measure for terminal wealth can be computed explic-
itly:

Example 2.4 Suppose thatS1; : : : ; Sd are positive processes of the formSi = Si0E (Li)
for i = 1; : : : ; d, whereL is aRd -valued Lévy process with characteristic triplet(b; 
; F )
relative to some truncation functionh : Rd ! Rd (i.e. a PIIS in the sense of JS, II.4.1). In
the last couple of years, processes of this type have become popular for securities models,
since they are mathematically tractable and provide a good fit to real data (cf. Eberlein and
Keller (1995), Eberlein et al. (1998), Madan and Senata (1990), Barndorff-Nielsen (1998)).
Suppose thatu is of power or logarithmic type, i.e.u(x) = x1�p1�p for somep 2 R+ nf0; 1g oru(x) = log(x), which corresponds to the casep = 1. Assume that there exists some
 2 Rd
such thatF (fx 2 Rd : 1 + 
>x � 0g) = 0,

R j x(1+
>x)p � h(x)jF (dx) <1, andb� p

 + Z � x(1 + 
>x)p � h(x)�F (dx) = 0:
LetZ := E (�p
>L
 + ((1 + 
>x)�p � 1) � (�L � �L)), whereL
 denotes the continuous
martingale part ofL and�L; �L the random measure of jumps ofL and its compensator. In
the proof of Kallsen (2000), Theorem 3.2 it is shown thatZ is the density process of the
dual measureP ?, which is even an equivalent martingale measure in this case. Relative toP ?, L is a Lévy process with characteristic triplet(b?; 
; F ?), wheredF ?dF (x) = (1 + 
>x)�p
andb? = � R (x� h(x))F ?(dx).
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Example 2.5 In the case of logarithmic utilityu(x) = log(x), the neutral pricing measure
for terminal wealth can be calculated explicitly for a largenumber of semimartingale models
(cf. Goll and Kallsen (2001), Section 6).

2.2 Local utility

Secondly, we turn to portfolio optimization based on local utility. We assume thatS is aRd -valued special semimartingale. Denote by(b; 
; F; A) differential characteristics ofS in
the sense of Definition A.1, but relative to the truncation functionh(x) = x. This choice of
truncation function is possible becauseS is special. It is typically straightforward to obtain
the differential characteristics from other local descriptions ofS e.g. in terms of stochastic
differential equations or one-step transition densities in the discrete-time case.

In this subsection, the family of trading strategies under consideration is the setS0 of all
predictableRd -valued processes' = ('1; : : : ; 'd) satisfying the integrability conditionE��j'>bj+ '>
'+ Z (('>x)2 ^ j'>xj)F (dx)� � AT� <1:
Similarly to above, we denote byS0(�) the set of all trading strategies inS0 meeting
the cone constraints�. In order to avoid technical proofs, we assume that there exist
polyhedral conesK1; : : : ; Kn � Rd and predictable setsD1; : : : ; Dn such that�t(!) =\fi2f1;:::;ng:(!;t)2DigKi for (!; t) 2 
 � [0; T ℄. Theutility functionu : R ! R is assumed
to satisfy the following conditions:u is twice continuously differentiable, the derivativesu0; u00 are bounded withlimx!1 u0(x) = 0, moreoveru(0) = 0, u0(0) = 1, u0(x) > 0 andu00(x) < 0 for anyx 2 R. For any 2 Rd , t 2 R+ the random variable
t( ) :=  >bt + u00(0)2  >
t + Z (u( >x)�  >x)Ft(dx)
is termedlocal utility of  in t.
Definition 2.6 We call a strategy' 2 S0(�) locally optimal under the constraints� ifE(
(') � AT ) � E(
( ) � AT )
for any 2 S0(�).
For motivation of local optimality we refer the reader to Kallsen (1999). Intuitively, a locally
optimal strategy maximizes the expected utility of the gains over infinitesimal time intervals,
or put differently, the expected utility of consumption among all strategies whose financial
gains are immediately consumed.

Locally optimal portfolios can be determined by pointwise solution of equations inRd :

Theorem 2.7 A trading strategy' 2 S0(�) is locally optimal under the constraints� if
and only if bt + u00(0)
t't + Z x(u0('>t x)� 1)Ft(dx) 2 �Æt (2.1)
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(P 
 A)-almost everywhere, where�Æt := fy 2 Rd : x>y � 0 for anyx 2 �tg denotes the
polar cone of�t.
PROOF. In view of Farkas’ lemma (cf. Rockafellar and Wets (1998), Lemma 6.45), Theorem
2.7 follows from Kallsen (1999), Theorem 3.5. Strictly speaking, Kallsen (1999) considers
a narrower set-up whereA and� are deterministic. As is pointed out in Kallsen (2002), the
statements in Kallsen (1999) remain valid forA 2 A +lo
. Moreover, a careful inspection of
the proofs of Proposition 3.10 and Theorem 3.5 in that paper reveals that these results hold
for random constraints of the above type as well. �

Neutral pricing of European contingent claims is discussedin Kallsen (2002) in the
context of local utility. A key role is played by the corresponding neutral pricing measure,
which is defined as follows:

Definition 2.8 Suppose that there exists a locally optimal strategy' 2 S0 without con-
straints (i.e. for� = Rd ). Moreover, assume that the local martingaleZ := E (u00(0)'> �S
+ u0('>x)�11+V � (�S � �S)) is a martingale, where�S; �S are the random measure of jumps
of S and its compensator,Vt := R (u0('>t x)� 1)�S(ftg� dx) for t 2 [0; T ℄, andS
 denotes
the continuous local martingale part ofS. Then the probability measureP ? � P defined bydP ?dP = ZT is calledneutral pricing measure for local utility.

Since the determination of the optimal strategy' reduces to solving Equation (2.1) with�Æt = f0g, the neutral pricing measure for local utility is often easier to obtain than the
neutral pricing measure for terminal wealth. For concrete examples cf. Kallsen (2002),
Section 5.

3 Neutral pricing

In this section we turn to the valuation of game contingent claims. Let us briefly review the
idea of neutral pricing. For references and connections to similar approaches in the literature
we refer the reader to Kallsen (2001).

In complete models there exist unique arbitrage-free derivative values. The assertion
that real market prices have to coincide with these values can be easily justified. It suffices
to assume the existence of traders (from now on calledderivative speculators) who exploit
favourable market conditions once they detect them. The existence of derivative speculators
explains why the market price cannot deviate too strongly from the right value: If it did, the
huge demand for (resp. supply of) the mispriced security would push its price immediately
closer to the rational value. The only assumption on the preferences of the speculators is that
they do not reject riskless profits – which most people may agree on. The elegance of this
approach comes at a price. It only works in complete models, or more exactly, for attainable
claims.
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We extend this reasoning to incomplete markets by imposing stronger assumptions on
the preferences of derivative speculators. We suppose thatthey trade by maximizing a spe-
cific kind of utility. The role of the unique arbitrage-free price will now be played by the
neutralderivative value. This is the unique price such that the speculators’ optimal portfolio
contains no contingent claim. Similarly as in the complete case we argue that the specula-
tors’ presence should prevent the market price from deviating too strongly from the neutral
value.

The general setting is as in the previous section. We distinguish two kinds of securities:
underlyings1; : : : ; m andderivativesm+1; : : : ; m+ n. We assume that the derivatives are
game contingent claims with discountedexercise processLi and discountedcancellation
processU i, whereLi andU i are semimartingales withLi < U i as well asLi� < U i� on[[0; T [[ andLiT = U iT for i = m + 1; : : : ; m + n. European and American options are
treated as special cases of game contingent claims as it is explained in Remark 2 below.
We call semimartingalesSm+1; : : : ; Sm+n derivative price processesif Li � Si � U i fori = m + 1; : : : ; m + n. As noted above, we are interested in derivative price processes that
have a neutral effect on the market in the sense that they do not cause supply of or demand
for contingent claims by derivative speculators.

Speculators may not be able to hold arbitrary amounts of gamecontingent claims be-
cause these contracts can be cancelled. If the market price approaches the upper cancel-
lation valueU i, it may happen that all options vanish from the market because they are
terminated by the sellers. So a long position in the option isno longer feasible. Conversely,
all derivative contracts may be exercised by the claim holders if the market price coincides
with the exercise valueLi. This terminates short positions in the claim. However, as long as
the derivative price stays above the exercise value, nobodywill exercise the option because
selling it on the market yields a higher reward. Similarly, there is no danger that the seller
of a GCC cancels the contract as long as the cancellation value exceeds the market price.
Summing up, the derivative speculators are facing trading constraints� given by�t := fx 2 Rm+n : For i = m+ 1; : : : ; m+ n we havexi � 0 if Sit� = Lit�

andxi � 0 if Sit� = U it�g:
In the following subsections, we treat neutral pricing separately for utility of terminal

wealth and for local utility, respectively.

3.1 Terminal wealth

We start by assuming that derivative speculators are identical investors trying to maximize
expected utility from terminal wealth. Moreover, we suppose that the neutral pricing mea-
sure for terminal wealthP ? in the sense of Definition 2.3 exists for the underlyings’ marketS1; : : : ; Sm. As explained above, we look for neutral derivative prices in the following
sense:
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Definition 3.1 We call derivative price processesSm+1; : : : ; Sm+n neutral for terminal
wealthif there exists a strategy' in the extended marketS1; : : : ; Sm+n which is optimal for
terminal wealth under the constraints� and satisfies'm+1 = : : : = 'm+n = 0.

The following main result of this paper treats existence anduniqueness of neutral deriva-
tive price processes. Moreover, it shows that they are recovered as the value of a Dynkin
game relative to the neutral pricing measureP ?.
Theorem 3.2 Suppose thatLm+1; : : : ; Lm+n andUm+1; : : : ; Um+n are bounded. Then there
exist unique neutral derivative price processes. These aregiven bySit = ess inf�U2Tt ess sup�L2Tt EP ?(Ri(�L; �U)jFt)= ess sup�L2Tt ess inf�U2Tt EP ?(Ri(�L; �U)jFt) (3.1)

for t 2 [0; T ℄, i = m + 1; : : : ; m + n, whereTt denotes the set of[t; T ℄-valued stopping
times and Ri(�L; �U ) := � Li�L if �L � �UU i�U otherwise.

Moreover, the extended marketS1; : : : ; Sm+n satisfies condition NFLVR in the sense of

Definition 3.3 We say that the marketS = (S1; : : : ; Sm+n) satisfies the conditionno free
lunch with vanishing risk (NFLVR)if 0 is the only non-negative element of theL1(
;F ; P )-
closure of the setC := ff 2 L1(
;F ; P ) : f �  � ST for some 2 S(�)g. (Note that
this is a straightforward extension of the usual NFLVR condition in Delbaen and Schacher-
mayer (1994), Definition 2.8 to markets containing game contingent claims.)

PROOF OFTHEOREM 3.2. Step 1:By Lepeltier and Maingueneau (1984), Théorème 9 and
Corollaire 12, there exist right-continuous adapted processesSm+1; : : : ; Sm+n satisfying
Equation (3.1). Fixi 2 fm + 1; : : : ; m + ng. Define stopping timesT k1 := infft 2R+ : Sit � U it � 1kg for anyk 2 N andT1 := supk2N T k1 . By Lepeltier and Maingueneau
(1984), Théorème 11 and Dellacherie and Meyer (1982), Theorem VI.3, (Si)T k1 is aP ?-
supermartingale for anyk 2 N . Obviously,(SiT k1 )k2N converges fork ! 1 P ?-almost
surely toR := UT11[k2NfT k1 =T1g + UT1�1\k2NfT k1 <T1g. Define an adpated right-continuous

processSi
by Sit := 8<: Sit if t < T1 or t = 0UT1� if 0 6= t � T1 andT k1 < T1 for anyk 2 NUT1 if 0 6= t � T1 andT k1 = T1 for somek 2 N ;

i.e.Si =Pk2N(Si)T k1 1℄℄T k�11 ;T k1 ℄℄ +R1([k2N[[0;T k1 ℄℄)C (with the convention℄℄T�11 ; T 01 ℄℄ := [[T 01 ℄℄).
Let s; t 2 [0; T ℄ with s � t. If s 2 ([k2N[[0; T k1 ℄℄)C , thenSis = R = Sit and henceEP ?(SitjFs) = Sis. Now, let s 2℄℄T k�11 ; T k1 ℄℄ for somek 2 N . ThenSis = (Si)T l1s �EP ?((Si)T l1t jFs) = EP ?(SiT l1^tjFs) for l � k. Moreover, dominated convergence yields
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thatEP ?(SiT l1^tjFs) ! EP ?(SitjFs) in measure forl ! 1. HenceSis � EP ?(SitjFs).
Altogether, it follows thatSi

is aP ?-supermartingale. Hence,(Si)T1 is a semimartingale.
For l 2 N n f0; 1g defineTl := supk2N T kl whereT kl := infft � Tl�1 : Sit � Lit + 1kg

for l = 2; 4; 6; : : : andT kl := infft � Tl�1 : Sit � U it � 1kg for l = 3; 5; 7; : : : Similarly to
above, one shows by induction that(Si)Tl is a semimartingale for anyl 2 N .

Step 2:We keep the notation from the previous step. Fixl 2 N . For t0 2 [0; T ℄ andk 2 N define stopping times�t0;k := infft � t0 : (Si)Tlt � (Li)Tlt + 1kg ^ T . From Lepeltier
and Maingueneau (1984), Théorème 11 it follows that1℄℄t0;�t0;k℄℄�(Si)Tl is aP ?-submartingale
for anyt0 2 [0; T ℄, k 2 N . In particular, we haveb? + Z (x� h(x))F ?(dx) � 0 (3.2)(P 
 A)-almost everywhere on℄℄t0; �t0;k℄℄ (cf. Lemma A.2), where(b?; 
?; F ?; A) denoteP ?-differential characteristics of the semimartingale(Si)Tl in the sense of Definition A.1.
Sincef(Li)Tl� < (Si)Tl�g\℄℄0; T ℄℄ = [t02Q\[0;T ℄[k2N℄℄t0; �t0;k℄℄, it follows that Equation (3.2)
holds(P 
 A)-almost everywhere onf(Li)Tl� < (Si)Tl�g. Therefore,1f(Li)Tl� <(Si)Tl� g � (Si)Tl
is aP ?-�-submartingale (cf. Kallsen and Shiryaev (2001), Lemma 2.5and Lemma A.2).
Analogously, it follows that1f(Si)Tl� <(U i)Tl� g � (Si)Tl is aP ?-�-supermartingale, and hence1f(Li)Tl� <(Si)Tl� <(U i)Tl� g � (Si)Tl is aP ?-�-martingale.

Step 3: We keep the notation from the previous steps. LetT1 := liml!1 Tl. SinceLi; U i areP ?-special semimartingales with integrableLi0; U i0, they are locally in classH 1
in the sense of Definition A.3 and relative toP ? (cf. Dellacherie and Meyer (1982), VII.99).
Denote by(�k)k2N a corresponding localizing sequence. Fixk 2 N. By Proposition A.5,
applied to(Li)Tl^�k , (Si)Tl^�k , and(U i)Tl^�k , it follows that supl2N k(Si)Tl^�kkH 1 < 1,
which in turn implies that(Si)T1^�k is a semimartingale (cf. Proposition A.6). Therefore,(Si)T1 is a local semimartingale and hence a semimartingale. In particular, it has left-hand
limits atT1. SinceLit� < U it� for t < T , this is only possible ifT1 = T . Consequently,Si
is a semimartingale.

Step 4:Let Z denote the density process ofP ? and' an optimal strategy for terminal
wealth in the marketS1; : : : ; Sm. We want to show that theRm+n -valued process' :=('; 0) 2 S(�) is an optimal strategy for terminal wealth under the constraints �, now
referring to the extended marketS := (S1; : : : ; Sm+n). SinceZE(u0(VT ('))) coincides
with the optimal solutionbY (y) to the dual problem in Kramkov and Schachermayer (1999),
Theorem 2.2, we have that('> � (S1; : : : ; Sm))Z is a martingale. This implies that'> �S ='> � (S1; : : : ; Sm) is aP ?-martingale (cf. JS, III.3.8).

Consider a strategy 2 S(�) in the extended market. Denote by(b?; 
?; F ?; A) P ?-
differential characteristics ofS in the sense of Definition A.1. The same argument as in Step
2 shows thatb?;i + R (xi � hi(x))F ?(dx) � 0 (P 
 A)-almost everywhere onfLi� < Si�g
and� 0 onfSi� < U i�g for i = m+1; : : : ; m+n. SinceS1; : : : ; Sm areP ?-�-martingales,
we haveb?;i+ R (xi� hi(x))F ?(dx) = 0 for i = 1; : : : ; m. From the form of the constraints� it follows that i(b?;i + R (xi � hi(x))F ?(dx)) � 0 for i = m + 1; : : : ; m + n, which
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yields that >(b? + R (x � h(x))F ?(dx)) � 0 (P 
 A)-almost everywhere. In view of
Kallsen and Shiryaev (2001), Lemma 2.5 and Lemma A.2, this implies that > � S is aP ?-�-supermartingale. By Goll and Kallsen (2001), Proposition7.9, this process and hence
also( � ')> � S is even aP ?-supermartingale. In particular, we haveE(u0(VT ('))(( �')> � S)) = E(u0(VT (')))EP ?(( � ')> � S) � 0. Due to Lemma 2.2,' is an optimal
strategy for terminal wealth under the constraints�. Hence,Sm+1; : : : ; Sm+n are neutral
price processes for terminal wealth.

Step 5:For the uniqueness part assume thateSm+1; : : : ; eSm+n are neutral derivative price
processes corresponding to some optimal strategye' = (e'1; : : : ; e'm; 0; : : : ; 0) in the ex-
tended marketeS := (S1; : : : ; Sm; eSm+1; : : : ; eSm+n). Sincee' does not contain any deriva-
tive, we have that(e'1; : : : ; e'm) is an optimal strategy for the small marketS1; : : : ; Sm
with the same expected utility. Similarly, the expected utility of ' in the small market
and of' = ('; 0) in the extended marketeS tally. Since' is optimal in the small mar-
ket S1; : : : ; Sm, it follows that' 2 S0(�) is optimal in the extended marketeS under the
constraints�. Hence we may w.l.o.g. assume thate' = '.

Fix i 2 fm + 1; : : : ; m + ng. Firstly, we show that1D � eSi is aP ?-�-submartingale
for any predictable subsetD of fLi� < eSi�g. Since eSi is bounded, we have that1D � eSi
is locally bounded. Hence, there exists an increasing sequence(Tk)k2N of stopping times
with P ?(Tk = T ) ! 1 and supt2[0;T ℄ j(1D � eSi)Tkt j � k. Fix k 2 N , s; t 2 [0; T ℄ withs � t, andF 2 Fs. Define an admissible strategy 2 S(�) in the marketeS :=(S1; : : : ; Sm; eSm+1; : : : ; eSm+n) by  j := 0 for j 6= i and i = � "4k1D\[[0;Tk℄℄\(F�℄s;t℄).
Lemma 2.2 and the fact that'> � eS = '> � (S1; : : : ; Sm) is aP ?-martingale yield that� "4kEP ?(((1D � eSi)Tkt � (1D � eSi)Tks )1F )= EP ?(( � ')> � eST ) + EP ?('> � eST )= (E(u0(VT ('))))�1E(u0(VT ('))(( � ')> � eST ))� 0:
Therefore,(1D � eSi)Tk is a P ?-submartingale, which implies that1D � eSi is a localP ?-
submartingale. Similarly, it follows that1D�eSi is aP ?-�-supermartingale for any predictable
subsetD of feSi� < U i�g.

Define stopping times�t0;k := infft � t0 : Sit � eSit + 1kg for any t0 2 [0; T ℄, k 2 N .
Note thatfSi� > eSi�g\℄℄0; T ℄℄ = [t02Q\[0;T ℄[k2N℄℄t0; �t0;k℄℄. Fix t0 2 [0; T ℄, k 2 N . SincefLi� < Si�g \ feSi� < U i�g � fSi� > eSi�g, we have that1℄℄t0;�t0;k℄℄ � Si and hence also((Si)�t0;kt )t2[t0;T ℄ is a P ?-�-submartingale. By Goll and Kallsen (2001), Proposition 7.9,
this process is even aP ?-submartingale. Similarly, it follows that((eSi)�t0;kt )t2[t0;T ℄ is aP ?-
supermartingale. Since(Si)�t0;kT � (eSi)�t0;kT + 1k , we have that(Si)�t0;kt0 � (eSi)�t0;kt0 + 1kP -almost surely for anyk 2 N . Consequently,Sit0 � eSit0 P -almost surely. Since this holds
for anyt0 2 Q \ [0; T ℄, we have thatSi � eSi by right-continuity. Similarly, it is shown thatfSi < eSig is evanescent, which yields the uniqueness of neutral priceprocesses for terminal
wealth.
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Step 6: The NFLVR property of the price processS is shown in the usual way: Let 2 S(�). In Step 4 it is shown that > � S is aP ?-supermartingale and henceEP ?(f) � 0
for anyf 2 C. SinceP ? � P , this is also true for anyf in theL1(
;F ; P )-closure ofC.
Thereforef = 0 P -almost surely for any suchf with f � 0. �
Remarks.

1. If supt2[0;T ℄ jLitj andsupt2[0;T ℄ jU it j areP ?-integrable instead of bounded fori = m +1; : : : ; m + n, we still have the existence of neutral derivative prices for terminal
wealth. As Kifer (2000) points out, the results of Lepeltierand Maingueneau (1984)
hold also ifLi; U i satisfy the above integrability conditions. The existencefollows
now from Steps 1–4 in the proof of Theorem 3.2.

2. European options with bounded discounted terminal payoff Ri at timeT may be con-
sidered as special cases of game contingent claims by lettingLit := � ess inf Ri � 1 if t < TRi if t = T
and U it := � ess sup Ri + 1 if t < TRi if t = T:
If we assume the absence of arbitrage, the price of the European claim will never
leave the interval[ess inf Ri; ess sup Ri℄. Therefore, the additional right to cancel the
contract prematurely is worthless. Equation (3.1) reducestoSit = EP ?(RijFt)
for European options.

American options with bounded exercise processLi and final payoffLiT are treated
similarly by definingU it := � ess sup (supt2[0;T ℄ Lit) + 1 if t < TLiT if t = T:
The neutral price processSi in Equation (3.1) now has the form of a Snell envelope:Sit = ess sup�2TtEP ?(Li� jFt):
Moreover, an inspection of the proof reveals that we can slightly weaken the condi-
tions onLi in the American option case. It is enough to assume thatLi is a càdlàg,
adapted process instead of a semimartingale.

3. In general, neutral derivative prices for terminal wealth depend on the utility functionu, the time horizonT , the initial endowment", and the numeraire. In the setting of
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Example 2.4, the density process ofP ? does not depend onT and". Therefore, neutral
prices do not depend on the time horizon and the initial endowment of derivative
speculators in this case.

Logarithmic utility is even more agreeable in this respect:As it is discussed in Goll
and Kallsen (2001), Section 6, the neutral prices relative toP ? depend neither onT , ",
nor on the chosen numeraire. Moreover, the density process of P ? can be calculated
explicitly even in very complex models.

3.2 Local utility

In this subsection, we suppose that derivative speculatorsmaximize their local utility. Simi-
larly to above, we assume that the neutral pricing measure for local utility P ? exists for the
underlyings’ marketS1; : : : Sm (cf. Definition 2.8).

Definition 3.4 We call derivative price processesSm+1; : : : ; Sm+n neutral for local utility
if there exists a strategy' in the extended marketS1; : : : ; Sm+n which is locally optimal
under the constraints� and satisfies'm+1 = : : : = 'm+n = 0.

The following result corresponds to Theorem 3.2 in the localutility setting.

Theorem 3.5 Suppose thatLi; U i are special semimartingales and thatsupt2[0;T ℄ jLitj andsupt2[0;T ℄ jU it j areP ?-integrable fori = m+ 1; : : : ; m+ n. Then there exist unique neutral
derivative price processes. These are given bySit = ess inf�U2Tt ess sup�L2Tt EP ?(Ri(�L; �U)jFt)= ess sup�L2Tt ess inf�U2Tt EP ?(Ri(�L; �U)jFt) (3.3)

for t 2 R+ , i = m + 1; : : : ; m + n, whereTt andRi(�L; �U) are defined as in Theorem
3.2. Moreover, the extended marketS1; : : : ; Sm+n satisfies condition NFLVR in the sense of
Definition 3.3.

PROOF. Steps 1–3 and 6 are shown literally as in the proof of Theorem3.2. Only Steps 4
and 5 have to be modified slightly.

Step 4: SinceLi � Si � U i, we have thatSi is a special semimartingale fori =m + 1; : : : ; m + n (cf. Kallsen (2002), Proposition 3.7). Similarly as in Step4 of the proof
of Theorem 3.2 we want to show that' := ('; 0) 2 S0(�) is a locally optimal strategy forS = (S1; : : : ; Sm+n), where' denotes an optimal strategy in the small marketS1; : : : ; Sm.
Denote by(b; 
; F; A) theP -differential characteristics ofS relative toh(x) = x. In view
of Theorem 2.7 we have to show thatb + u00(0)
'+ Z x(u0('>x)� 1)F (dx) 2 �Æ: (3.4)

Note that�Æt = fy 2 f0gm � Rn : For i = m + 1; : : : ; m + n we haveyi � 0 if Lit� < Sit�
andyi � 0 if Sit� < U it�g. From the Girsanov-Jacod-Mémin theorem it follows that the
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P ?-differential characteristics(b?; 
?; F ?; A) of S relative to some truncation functionh :Rm+n ! Rm+n satisfy the equationb?;it + Z (xi � hi(x))F ?t (dx) = bit + u00(0)
i�t 't + Z xi�u0('>t x)1 + Vt � 1�Ft(dx)= 11 + Vt�bit + u00(0)
i�t 't + Z xi(u0('>t x)� 1)Ft(dx)� (3.5)

for i = 1; : : : ; m+n, whereVt is defined as in Definition 2.8 (cf. Kallsen (2002), Steps 3 and
4 on page 122 for the arguments in detail). Since' is optimal in the small market, Theorem
2.7 yields that expression (3.5) equals 0 fori = 1; : : : ; m. The same argument as in Step 2
of the proof of Theorem 3.2 shows that the left-hand side of Equation (3.5) is non-negative
on fLit� < Sit�g (resp. non-positive onfSit� < U it�g) for i = 1; : : : ; m + n. Together, it
follows that Condition (3.4) holds. Therefore,Sm+1; : : : ; Sm+n are neutral price processes
for local utility.

Step 5:For the uniqueness part assume thateSm+1; : : : ; eSm+n are neutral derivative price
processes corresponding to some locally optimal strategye' = (e'1; : : : ; e'm; 0; : : : ; 0) in the
extended marketeS := (S1; : : : ; Sm; eSm+1; : : : ; eSm+n). As in Step 5 of the proof of Theorem
3.2 we may w.l.o.g. assume thate' = '.

In this step, we denote by(b; 
; F; A) the P -differential characteristics ofeS relative
to h(x) = x. Since' is an optimal strategy, Theorem 2.7 yields that Condition (3.4)
holds (P 
 A)-almost everywhere. As in the previous step, we express thiscondition
in terms of theP ?-differential characteristics(b?; 
?; F ?; A) of eS relative to some trunca-
tion functionh : Rm+n ! Rm+n . Fix i 2 fm + 1; : : : ; m + ng. Then theP ?-driftb?;i + R (xi � hi(x))F ?(dx) of eSi it is non-negative onfLit� < eSit�g resp. non-positive
on feSit� < U it�g. Due to Kallsen and Shiryaev (2001), Lemma 2.5 and Lemma A.2,this
means that1D � eSi is aP ?-�-submartingale for any predictable subsetD of fLit� < eSit�g
and1D � eSi is aP ?-�-supermartingale for any predictable subsetD of feSit� < U it�g. The
uniqueness of neutral price processes follows now as in the second half of Step 5 in the
proof of Theorem 3.2. �

Remark 2 following Theorem 3.2 holds accordingly in this setting.

A Appendix

In this appendix we state some auxiliary results from stochastic calculus. Firstly, we con-
sider the�-supermartingale property in terms of semimartingale characteristics. Secondly,
we turn to theH 1-norm of semimartingales.

Definition A.1 LetX be aRd -valued semimartingale with characteristics(B;C; �) relative
to some truncation functionh : Rd ! Rd . By JS, II.2.9 there exists some predictable
processA 2 A +lo
, some predictableRd�d -valued process
 whose values are non-negative,
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symmetric matrices, and some transition kernelF from (
 � R+ ;P) into (Rd ;Bd) such
that B = b �A; C = 
 � A; � = A
 F:
We call(b; 
; F; A) differential characteristicsof X.

One should observe that the differential characteristics are not unique: E.g.(2b; 2
; 2F; 12A)
yields another version. Typical choices forA areAt := t (e.g. for Lévy processes, diffu-
sions, Itô processes etc.) andAt :=Ps�t 1Nnf0g(s) (discrete-time processes). Especially forAt = t, one can interpretbt or ratherbt+ R (x� h(x))Ft(dx) as a drift rate,
t as a diffusion
coefficient, andFt as a local jump measure. As the following result shows, a non-positive
or vanishing drift corresponds to a�-supermartingale or�-martingale, respectively. These
processes play an important role in the context of fundamental theorems of asset pricing
(cf. Delbaen and Schachermayer (1998), Kabanov (1997), Cherny and Shiryaev (2001)).
For background on�-localization and the related classes of processes we referthe reader to
Goll and Kallsen (2001).

Lemma A.2 LetX be a semimartingale inRd with differential characteristics(b; 
; F; A).
Fix i 2 f1; : : : ; dg. ThenX i is a�-supermartingale if and only if

R jxi�hi(x)jF (dx) <1
and bi + Z (xi � hi(x))F (dx) � 0(P 
 A)-almost everywhere. If we replace� 0 with = 0 or � 0, we obtain corresponding
statements for�-martingales and�-submartingales, respectively.

PROOF. We use the notation of Goll and Kallsen (2001), Section 7 (henceforth GK).): This is shown in the first part of the proof of GK, Proposition7.9.(: From JS, II.2.29, II.2.13, I.3.10 it follows thatX is a local supermartingale if we
have, in addition,

R jxi � hi(x)jF (dx) 2 L(A), i.e. if X 2 Dlo
. SinceX 2 D� (cf. GK,
Lemma 7.6),X belongs to the�-localized class of the set of local supermartingales, which
coincides with the set of�-supermartingales (cf. GK, Lemma 7.4). �

In the proof of Theorem 3.2 we make use of theH 1-norm in the sense of Emery (1978),
Protter (1977, 1978, 1992), Dellacherie and Meyer (1982). Note that we treat the valueX0
differently from e.g. Dellacherie and Meyer (1982) becausewe use the conventions of JS as
far as starting values of[X;X℄, �X etc. are concerned.

Definition A.3 For any real-valued semimartingaleX we definekXkH 1 := inf nE�jX0j+Var(A)1 +p[M;M ℄1� :X = X0 +M + A with M 2Mlo
; A 2 V o;
whereVar(A) denotes the variation process ofA. By H 1 we denote the set of all real-
valued semimartingalesX with kXkH 1 <1.

16



Proposition A.4 LetX be a non-negative semimartingale. Then1fX�=0g �X 2 V +.

PROOF. This is shown by applying the Itô-Meyer formula toX� = �(X ^0). Indeed, sinceX� = 0, Jacod (1979), (5.49) yields that0 = �121fX�=0g �X + 12L0 +Pt�� 121fX�=0g�Xt,
whereL0 denotes the local time ofX in 0 in the sense of Jacod (1979), (5.47). SinceL0 is
increasing and�X � 0 onfX� = 0g, it follows that1fX�=0g �X is increasing as well.�
Proposition A.5 Let L;X; U be real-valued semimartingales withL � X � U and such
that 1fL�<X�g � X is a �-submartingale and1fX�<U�g � X is a �-supermartingale. ThenkXkH 1 � 
(kLkH 1 + kUkH 1) for some
 2 R+ which is independent ofL;X; U .

PROOF. In this proof, we writeY �1 := supt2R+ jYtj for any semimartingaleY andVar(Y )
for the variation process of anyY 2 V .

Step 1:W.l.o.g.L; U are special because otherwisekLkH 1 = 1 or kUkH 1 = 1 (cf.
JS, I.4.23). By Kallsen (2002), Proposition 3.7,X is special as well. Denote byX =X0+MX +AX , U = U0+MU +AU ,L = L0+ML+AL the canonical decompositions of
the special semimartingalesX;L; U into a local martingale and a process of finite variation,
respectively.

Step 2:By JS, I.3.13, there exist predictable processesHX; HL; HU such thatAX =HX �A,AL = HL �A,AU = HU �A, whereA := Var(AX)+Var(AL)+Var(AU) 2 V + is
predictable. Since1fL�<X�g�X = 1fL�<X�g�MX+(1fL�<X�gHX)�A is a�-submartingale,
we have thatHX � 0 (P 
 A)-almost everywhere onfL� < X�g. Similarly, it follows
thatHX � 0 (P 
 A)-almost everywhere onfX� < U�g. Proposition A.4 yields that1fL�=X�g � (MX � ML) + (1fL�=X�g(HX � HL)) � A = 1fL�=X�g � (X � L) 2 V +.
From JS, I.3.17 and the uniqueness of the special semimartingale decomposition it follows
that (1fL�=X�g(HX � HL)) � A 2 V +, which implies thatHX � HL (P 
 A)-almost
everywhere onfL� = X�g. Similarly, we haveHX � HU (P 
A)-almost everywhere onfX� = U�g. Altogether, it follows thatjHXj � jHLj+ jHU j (P 
 A)-almost everywhere.
Consequently, we haveVar(AX) = jHXj �A � jHLj �A+ jHUj �A = Var(AL)+Var(AU).

Step 3:SinceMX = X �AX �X0 � L�AX �X0 = L0�X0 +AL�AX +ML andMX � U0�X0+AU�AX+MU , we have thatjMX j � jL0j+ jU0j+ jALj+ jAU j+ jAX j+jMLj+ jMU j and henceMX;�1 � jL0j+ jU0j+2Var(AL)1+2Var(AU)1+ML;�1 +MU;�1 by
Step 2. By the Burkhölder-Davis-Gundy inequality (cf. Jacod (1979), (2.34)), it follows that
there exists some constant
1 � 2 such thatE(ML;�1 ) � 
1E(p[ML;ML℄1) and likewise
for U . By Dellacherie and Meyer (1982), VII.98, there exists someconstant
2 � 1 such
thatE(jL0j + Var(AL)1 +p[ML;ML℄1) � 
2kLkH 1 and likewise forU . Together, it
follows thatE(MX;�1 ) � 
1
2(kLkH 1 + kUkH 1).

Step 4: From Step 2 we conclude thatjX0j + Var(AX) � jL0j + Var(AL) + jU0j +Var(AU), which implies thatE(jX0j + Var(AX)1) � 
2(kLkH 1 + kUkH 1). By the
Burkhölder-Davis-Gundy inequality (cf. Jacod (1979), (2.34)), there exists some constant
3 � 1 such thatE(p[MX ;MX ℄1) � 
3E(MX;�1 ) . Altogether, it follows thatkXkH 1 �E(jX0j+Var(AX)1 +p[MX ;MX ℄1) � (
2 + 
1
2
3)(kLkH 1 + kUkH 1). �

17



Proposition A.6 LetX be an adapted real-valued process and(Tn)n2N an increasing se-
quence of stopping times such thatXTn is a semimartingale for anyn 2 N . If we havesupn2N kXTnkH 1 <1, thenXT1 is a semimartingale, whereT1 := supn2N Tn.

PROOF. It is easy to see that(XTn)n2N is a Cauchy sequence inH 1. Due to completeness
(cf. Dellacherie and Meyer (1982), VII.98) there is a limit inH 1 which coincides withX
on the set[[0; T1[[. �
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