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Abstract

This paper considers a stable GI/GI/1 queue with subexponential service time distribution.
Under natural assumptions we derive the tail behaviour of the busy period of this queue. We
extend the results known for the regular variation case under minimal conditions. Our method
of proof is based on a large deviations result for subexponential distributions.
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1. Introduction and the main result

This paper studies the tail behaviour of the distribution function (d.f.) Z of a generic
busy period random variable (r.v.) T̃ in a stable GI/GI/1 queue in the case that the
d.f. B of a generic service time r.v. X is subexponential. We assume throughout that
E[X ] =�E[Y ] for some 0¡�¡ 1, where Y denotes a generic inter-arrival time; let A
denote its d.f. Subject to certain other conditions on the d.f.s A and B, we prove that

+Z(t)
+B((1 − �)t)

:=
P(T̃ ¿ t)

P(X ¿ (1 − �)t)
→ eB

′
; t → ∞; (1.1)
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where

B′ =
∞∑
n=1

P(Sn ¿ 0)
n

(1.2)

and

Sn =
n∑
i=1

(Xi − Yi) =
n∑
i=1

Xi −
n∑
i=1

Yi := SXn − SYn ; (1.3)

where X; X1; X2; : : : and Y; Y1; Y2; : : : are two independent sequences of independent iden-
tically distributed (i.i.d.) r.v.s.

DeGne the number of customers served in the generic busy period by

Ñ = inf{n¿ 1: Sn6 0}; (1.4)

where, because �¡ 1, this r.v. Ñ is a proper r.v. on N. The busy period can then be
expressed as

T̃ = SXÑ : (1.5)

Note that

SXk ¿SYk for k = 1; : : : ; Ñ − 1 and SYÑ−1¡SXÑ = T̃6 SYÑ : (1.6)

The length of the busy period is of prime interest in any queueing system. A Grst
textbook account of busy periods for GI/GI/1 queues can be found in Prabhu (1965),
with emphasis on random walks and the Baxter–Spitzer identity (see also, e.g. Feller
(1971, Chapter XII.7), and, for the queueing setting, e.g. Asmussen (2003, Chapter
VIII).

The tail behaviour of the busy period in the M/GI/1 queue under CramMer-type as-
sumptions has been studied earlier in Abate and Whitt (1997). Our concern is with
heavy-tailed distributions. For these, De Meyer and Teugels (1980) gave the Grst re-
sults akin to (1.1), though they did not express them in that form: instead, assuming
(as they did) that the tail +B of the service time is a regularly varying function, they
used an Abelian theorem, relating the regular variation of +B to the regular variation
of its Laplace transform. The suggestion that the arguments of +B and +Z should be
related as shown in (1.1) is more recent, in Asmussen and Teugels (1996). Zwart
(2001) generalized De Meyer and Teugel’s result to +B satisfying an extended regular
variation condition (see Bingham et al., 1987), linking a large busy period to a large
maximum virtual waiting time during the busy period. In JelenkoviMc and MomQciloviMc
(2004) the asymptotic relationship (1.1) is shown under log-concavity of +B and some
further condition guaranteeing the existence of all moments.

We prove (1.1) under minimal conditions on the service and inter-arrival time d.f.s;
we formulate these conditions separately for clarity of presentation. Our method of
proof includes the heavy-tailed (regular variation) as well as the moderate-tailed regime,
establishing the result for all service time distributions with a tail heavier than e−

√
x;

this is a natural boundary as pointed out already in Asmussen et al. (1999) in the case
of Poisson arrivals; see also Foss and Korshunov (2000).
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Our methods are based on a more general result of Baltr+unas (2001), where he
proved (under a log-concavity condition) a large deviations theorem for a random
walk with negative drift, aiming at estimating the Gnite time ruin probability in the
insurance risk model. In the present paper, we use a similar approach to obtain results
on the busy period of a GI/GI/1 queue.

Condition A. The inter-arrival time d.f. A is such that for every increasing function
g(n) satisfying g(n)=n→ 0 and g(n)=

√
n→ ∞ as n→ ∞, there is a positive constant

cA and an integer ng such that for n¿ ng,

P(|SYn − nE[Y ]|¿g(n))6 exp(−cA[g(n)]2=n): (1.7)

We verify in Lemma 2.2 below that Condition A is satisGed when Y has any Gnite
exponential moment.

Conditions B. The service time d.f. B is absolutely continuous with density b so that
its hazard function Q = −log +B has a hazard rate q= Q′ = b= +B satisfying

(i) r := lim supt→∞ tq(t)=Q(t)¡ 1
2 :

(ii) � := lim inf t→∞ tq(t)¿

{
2 if r = 0;

cB=(1 − r) if 0¡r¡ 1 for some cB ¿ 2 +
√

2:

We show in Lemma 3.8 below that Conditions B(i)–(ii) imply the following:

(iii) limn→∞
√
n supt¿tn Q(t)=t = 0 for some sequence {tn} with limn→∞ tn = ∞.

Remark 1.1. (a) Condition (i) is satisGed for all d.f.s whose right tail is heavier than
a Weibull tail with exponent 1

2 , i.e. Q(t)=o(
√
t) as t → ∞. Lemma 3.6 below and (ii)

imply that lim inf t→∞Q(t)=log t¿ � and, hence, that (ii) is a moment condition on
the service time and limits the pathological cases, which have been prominent in the
subexponential area. In non-pathological cases (if e.g. limt→∞tq(t) exists), the case
r �= 0 corresponds to d.f.s with Gnite moments of all order, hence (ii) is satisGed,
whereas d.f.s with inGnite moments correspond to r = 0 and then (ii) requires a Gnite
second moment.

(b) Recently, Baltr+unas (2002) derived the second-order behaviour of the busy period
under the additional assumption that the hazard rate of the integrated service time
distribution satisGes some regular variation condition.

We shall ultimately prove the following result.

Theorem 1.2. Assume that the inter-arrival time d.f. A(t) = P(Y 6 t), t¿ 0, satis9es
Condition A, that the service time d.f. B(t) = P(X 6 t), t¿ 0, satis9es Conditions
B(i)–(ii), and that �= E[X ]=E[Y ]¡ 1. Then limit (1.1) holds.

Our paper is organized as follows. The necessary basic properties of the busy period
and renewal processes are collected in Section 2, and we state there a result that relates
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busy period, queue length and random walks. It is a key intermediate step in proving
Theorem 1.2. In Section 3, we summarize some results on subexponential distributions;
these results show that Conditions B above ensure that the service time distribution
has Gnite second moment and belongs to S∗. The essential large deviations property
is derived in Section 4. The main result, Theorem 1.2, is Gnally proved in Section 5.

2. Busy periods and renewal processes

Our analysis that leads to (1.1) is based on a simple observation that relates the
number Ñ of customers served in a busy period of duration T̃ via the renewal process
"Y generated by the inter-arrival times and deGned by

"Y (t) = max{k ∈N: SYk 6 t}; (2.1)

so "Y (t)=n if and only if SYn 6 t ¡SYn+1. Since, the busy period T̃ is determined by the
index where the Grst partial sum SXn 6 SYn (see (1.6)), namely SY

Ñ−1
¡SX

Ñ
= T̃6 SY

Ñ
,

we must have "Y (T̃ ) = Ñ − 1, i.e.

{"Y (T̃ ) = k} = {Ñ = k + 1}; k ∈N0: (2.2)

Forming the union over k¿ n gives

{Ñ¿ n+ 1} = {"Y (T̃ )¿ n} = {T̃¿ SYn } (2.3)

and thus

P(T̃¿ SYn ) = P(Ñ¿ n+ 1): (2.4)

Recall the Baxter–Spitzer identity for random walks {Sn} with negative mean incre-
ment, relating the probability of the Grst passage time event on the right-hand side
of (2.4) to terms of the sequence {sn}n∈N := {P(Sn ¿ 0)=n}n∈N; see Feller (1971,
Chapter XII.7). We present a new relationship in (2.5) below, when the r.v.s Sn are
such as to make the sequence {sn} subexponential (see DeGnitions 3.1 and 3.2). The
equality in (2.5) comes from (2.4); the rest is proved in Section 5 and also appeals
to Proposition 3.10 which quotes the appropriate result on the Baxter–Spitzer identity
for random walks with negative drift when the positive tail of the increments has a
subexponential distribution in S∗. The symbol ∼ means that the quotient of the right-
and left-hand sides converges to 1.

Theorem 2.1. In a stable GI/GI/1 queue in which the service time d.f. B has 9nite
mean and belongs to S∗, the busy period T̃ , the number of customers Ñ served in a
busy period, and the random walk {Sn} at (1.3) of partial sums of di;erences between
service and inter-arrival times, satisfy the relations

P(T̃¿ SYn ) = P(Ñ¿ n+ 1) ∼ eB
′ P(Sn ¿ 0)

n
; n→ ∞; (2.5)

where B′ =
∑∞

n=1 P(Sn ¿ 0)=n is as in (1.2).
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Using large deviations arguments as in Asmussen (2003, Chapter XIII), we give a
simple suRcient condition for Condition A to hold; obviously, Condition A holds for
exponentially distributed Y ; i.e. for a Poisson arrival stream.

Lemma 2.2. If E[e#Y ]¡∞ for some #¿ 0, then Condition A is satis9ed.

Proof. Let the d.f. A have mean 1=$. Then E["Y (t)] ∼ $t for large t. Now by deGnition,
for any g(t)¡$t, {"Y (t)¡ �$t − g(t)�} = {SY�$t−g(t)	¿ t}, so by Markov’s inequality,
for any % lying in (0; #) and t such that g(t)¡$t,

P("Y (t)¡ �$t − g(t)�) = P(SY�$t−g(t)	¿ t)6 e−%t(E[e%Y ])�$t−g(t)	: (2.6)

Write K(%) = logE[e%Y ], and let g(·) satisfy the constraints of Condition A. Then for
all suRciently large t, since K(%) is analytic in |%|¡#, there certainly exists a root
% := %(t) lying in (0; #) of K ′(%) = $−1 + $−2g(t)=t because K ′(0) = 1=$, and %(t) ∼
g(t)=[$2tK ′′(0)] → 0 for t → ∞. Then since K(%) = %($−1 + 1

2 %K
′′(0)) + O(% 3),

e−%t(expK(%))�$t−g(t)	 ∼ exp
(
− [g(t)]2=t

2$3K ′′(0)

)
; (2.7)

which with the inequality at (2.6) gives half of (1.7). The other half is proved similarly
using E[e−%Y ] and {"Y (t)¿ �$t + g(t)�} = {SY�$t+g(t)	6 t}.

3. Some subexponential properties

We start by recalling some deGnitions concerning subexponential d.f.s and subexpo-
nential sequences. Throughout this section, F denotes the d.f. of a non-negative r.v.
X , Q(x) := −log +F(x), x¿ 0, denotes its hazard function, and (where applicable) q
is the density of Q, i.e. the hazard rate, when F is absolutely continuous.

De$nition 3.1. (a) F is subexponential (F ∈S) if

lim
t→∞

F2∗(t)
+F(t)

= 2: (3.1)

(b) If F has Gnite mean, it is in the class S∗ if

lim
t→∞

∫ t

0

+F(t − u)
+F(t)

+F(u) du= 2
∫ ∞

0

+F(u) du: (3.2)

As shown in Kl1uppelberg (1988), when F ∈S∗ it follows that F ∈S and hence
F ∈L, i.e.

lim
x→∞

+F(x + y)
+F(x)

= 1 locally uniformly in y∈R: (3.3)

A discrete analogue of S∗ is the following class.
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De$nition 3.2 (Chover et al., 1973; Embrechts and Hawkes, 1982). The summable
non-negative sequence {hn}n∈N0 is in the class S∗

D if both

lim
n→∞ hn+1=hn = 1 (3.4)

and the terms h⊕2
n :=

∑n
i=0 hihn−i, n∈N, of its second convolution power satisfy

lim
n→∞h

⊕2
n =hn = 2

∞∑
i=0

hi ¡∞: (3.5)

Note that (3.4) is an analogue of (3.3), which in the discrete case does not hold
automatically.

Lemma 3.4 below states that approximating the right-continuous decreasing function
+F(x), x¿ 0, by any discrete skeleton { +F(cn)}n∈N for some c¿ 0, does not destroy
the subexponential property (3.2); the numerator and sum in (3.5) approximate, re-
spectively, the integrals on the left- and right-hand sides of (3.2).

As a prelude to the proof of Lemma 3.4 we rewrite the deGning property (3.2).

Lemma 3.3. F ∈S∗ if and only if for any a¿ 0∫ t−a

a

+F(t − u) +F(u) du ∼ 2 +F(t − a)
∫ ∞

a

+F(u) du; t → ∞: (3.6)

Proof. First note that if F ∈S∗, and hence F ∈L, (3.2) gives

2
∫ ∞

0

+F(u) du= lim
t→∞

( +F(t − a)
+F(t)

1
+F(t − a)

∫ t−a

a

+F(t − u) +F(u) du

+
2

+F(t)

∫ a

0

+F(t − u) +F(u) du
)

= lim
t→∞

1
+Fa(t − 2a)

∫ t−2a

0

+Fa(t − 2a− u) +Fa(u) du+ 2
∫ a

0

+F(u) du;

where +Fa(u) = +F(u+a), implying that (3.6) holds. But (3.6) is equivalent to Fa ∈S∗,
and hence Fa ∈L, equivalently F ∈L. Now reverse the algebra from (3.2) to (3.6).

Lemma 3.4. If the d.f. F ∈S∗; then for every c¿ 0 the sequence {fn} ≡
{ +F(cn)}∈S∗

D.

Proof. Since F ∈S∗ ⊂ L we have fn=fn+1 → 1 as n → ∞; i.e. (3.4) holds. We
must show that (3.5) holds for {fn}, i.e. that f⊕2

n ∼ 2fn(
∑r−1

i=0 fi +
∑∞

i=r fi) for any
positive integer r. First, since F ∈S∗, F has a Gnite Grst moment, so by monotonicity∑∞

i=0 fi ¡∞, and
∑∞

i=r fi → 0 for r → ∞. Next, for any Gxed integer r ¡ 1
2 n,

f⊕2
n =

n∑
i=0

fn−ifi = 2
r−1∑
i=0

fn−ifi +
n−r∑
i=r

fn−ifi; n∈N: (3.7)
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By choosing r suRciently large,
∑r−1

i=0 fi may be taken arbitrarily close to the cor-
responding inGnite sum, and since fn−i=fn¿ 1, twice this inGnite sum is certainly a
lower bound on the limit. For c¿ 0, by monotonicity,∫ (n+1)c−rc

rc

+F(nc − u+ c) +F(u) du

6 c
n−r∑
i=r

fn−ifi6
∫ (n+1)c−rc

rc

+F(nc − u) +F(u− c) du:

By (3.6) the left-hand integral is asymptotically equivalent for n → ∞ to 2 +F((n −
r)c)

∫∞
rc

+F(u) du, when the right-hand integral equals∫ (n−1)c−(r−1)c

(r−1)c

+F((n− 1)c − v) +F(v) dv ∼ 2 +F((n− 1 − r)c)
∫ ∞

(r−1)c

+F(u) du:

Hence the last sum in (3.7) is asymptotically equivalent to 2fn
∑∞

i=r fi within bounds
which are at most of order 2fn−rfr . Thus sum (3.5) can be attained within bounds of
order 2fr , which is arbitrarily small for r large enough. Hence f⊕2

n ∼ 2fn
∑∞

i=0 fi as
required.

Lemma 3.5. If F and G are d.f.s on the positive half-line of independent r.v.s X and
Y , say, and if F ∈S∗, then the d.f. H of U = X − Y , whose right-hand tail is given
by

+H (x) =
∫ ∞

0

+F(x + u) dG(u); x∈R;

satis9es

lim
x→∞

+H (x)
+F(x)

= 1; lim
x→∞

∫ x

0

+H (x − u)
+H (x)

+H (u) du= 2E[(X − Y )+]

and for the left-hand tail,

H (−x) = P(U6− x)6P(Y ¿ x):

Proof. The relation +F ∼ +H follows by using the fact that F ∈L together with the
dominated convergence theorem. The rest is all but trivial: for all x∈R, P(U6−x)=
P(Y ¿ x + X )6P(Y ¿ x) since X ¿ 0 a.s.

We now give some properties of tails of d.f.s that relate to Conditions B and lead up
to Lemma 3.8. These properties imply in particular that all service time distributions
satisfying Conditions B have Gnite second moment and are in S∗.

In relation to Condition B(ii), deGne the moment index

1 = sup{k: E[X k ]¡∞}: (3.8)
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Lemma 3.6. (a) 1 = lim inf t→∞Q(t)=log t =: 1̃.
(b) 1¿ lim inf t→∞ tq(t) = � as in Condition B(ii).
(c) [ +F(·)]v = exp(−vQ(·)) is integrable for all v¿ 1=1.

Proof. (a) From the deGnition of 1̃ it follows that for any # in (0; 1̃) there exists Gnite
t# ¿ 0 such that for all t ¿ t#, 1̃ − #¡Q(t)=log t, equivalently, that +F(t)¡ 1=t1̃−#, so
that ∫ ∞

t#
u1̃−2#−1 +F(u) du6

∫ ∞

t#
u−1−# du¡∞;

so E(X k)¡∞ for all k ¡ 1̃, and therefore 1¿ 1̃. Conversely, from the deGnition of 1,
for any 2 in (0; 1) we have +F(t)6E[X 1−2]=t1−2, equivalently, Q(t)¿− logE[X 1−2]+
(1 − 2)log t. Thus, for all t ¿ 1,

Q(t)
log t

¿ (1 − 2) − logE[X 1−2]
log t

;

so 1̃ = lim inf t→∞Q(t)=log t¿ 1. (a) is proved.
(b) Given # in (0; �), the deGnitions imply that q(t)¿ (�− #)=t := �#=t for t ¿ t′# for

some Gnite t′# ¿ 0. By integration, this inequality implies for t ¿ t′# that Q(t)¿Q(t′#)+
�#log(t=t′#), so for such t, we have Q(t)=log t ¿�# + [Q(t′#) − �#log t′#]=log t → �# as
t → ∞. Consequently, 1¿ �# and, since # is arbitrarily small, we have in fact that
1¿ �.

(c) Given any v¿ 1=1, there exists k ¡1 such that kv¿ 1. Since k ¡1, ∞¿E[X k ]
¿ tk +F(t) for all t ¿ 0, i.e. +F(t)¡E[X k ]t−k . Then for any u¿ 0,∫ ∞

u
[ +F(t)]v dt6 (E[X k ])v

∫ ∞

u
t−kv dt = (E[X k ])v

u1−kv

kv− 1
¡∞:

Versions of the following results can be found in Baltr+unas (2001) and Kl1uppelberg
(1987, 1989); see also Cline (1986) and Goldie and Kl1uppelberg (1998). We include
the proofs here, since (to our knowledge) they have not appeared in this generality
elsewhere; it also keeps the paper self-contained.

Proposition 3.7. Let �∈ (0; 1) and v¿ 1. Then the following are equivalent:

(a) Q(ty)6y�Q(t) for all t¿ v and y¿ 1.
(b) Q(t)=t� decreases on t¿ v.
(c) Q(t) is absolutely continuous on t¿ v with Lebesgue density q(t) → 0 as t → ∞,

and tq(t)=Q(t)6 � for all t¿ v.

Proof. (a) ⇔ (b): Set g(t) = t−�Q(t), t¿ v; then g(t)¿ g(ty) for y¿ 1 if and only
if (a) holds.

(a) ⇔ (c): From (a) we conclude

06
Q(t)
t
6
( t
v

)�−1 Q(v)
v
6
Q(v)
v
; t¿ v: (3.9)
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Then Q(t)=t decreases for t¿ v and we obtain

lim sup
t→∞

Q(t)
t
6
Q(v)
v

lim sup
t→∞

( t
v

)�−1
= 0:

For Gxed y¿ 0 and t¿ v we obtain from (3.9)
Q(t + y) − Q(t)

Q(t)
6
(

1 +
y
t

)�
− 16 �

y
t
; (3.10)

giving by (3.9)

06Q(t + y) − Q(t)6 �y
Q(t)
t
6y

Q(v)
v
:

Thus, Q is absolutely continuous (see e.g. Royden, 1968, pp.104–106), with density q
on [v;∞) satisfying 06 lim supt→∞ q(t)6 lim supt→∞ �Q(t)=t = 0, so (c) holds.

Conversely, (c) implies that for y¿ 1 and t¿ v,

log
Q(ty)
Q(t)

=
∫ ty

t

q(u)
Q(u)

du6
∫ ty

t

�
u

du= log y�;

so (a) holds.

In relation to Condition B(i), the parameter � in Proposition 3.7 must satisfy �¿ r.
Quite generally, given any d.f. F on (0;∞) for which a density f exists, the quantity
r := lim supt→∞ tq(t)=Q(t) is well deGned (though possibly inGnite); when r ¡∞, for
any #¿ 0 the index

t# := inf{t: uq(u)¡ (r + #)Q(u) (all u¿ t)} (3.11)

is well deGned and Gnite. In particular, if r ¡ 1, there exists positive # such that
r# := r + #¡ 1.

Lemma 3.8. (a) If r ¡ 1, then F ∈S.
(b) If also

∫∞
0 exp(−(2 − 2r)Q(u)) du¡∞, then F ∈S∗. In particular this inte-

grability condition is satis9ed if 1(2 − 2r)¿ 1, i.e. r ¡ [log(2 − 1−1)]=log 2.
(c) If Conditions B(i)–(ii) are satis9ed, then Condition B(iii) is met in particular

by tn = n1=[2(1−r)], for which limn→∞
√
nQ(tn)=tn = 0.

Proof. The proof is a consequence of Proposition 3.7, setting �= r# ¡ 1.
(a) From Proposition 3.7(a) we conclude that for t# ¡y6 1

2 t,

Q(t) − Q(t − y)6
(

1 −
(

1 − y
t

)r#)
Q(t)

6
(

1 −
(

1 − y
t

)r#)( t
y

)r#
Q(y)

=
[(

t
y

)r#
−
(
t
y
− 1
)r#]

Q(y)

6 (2r# − 1)Q(y); (3.12)
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the last inequality coming from xr + 16 (x − 1)r + 2r for x¿ 2 as follows from the
concavity of xr in x¿ 0 when r ∈ (0; 1). Moreover, by (3.12),

[ +F(t)]2

+F(2t)
= exp

(
−
(

2 − Q(2t)
Q(t)

)
Q(t)

)
6 exp(−(2 − 2r#)Q(t)) : (3.13)

Now, we use the following decomposition for t# ¡ v¡ 1
2 t:

F2∗(t)
+F(t)

= 2
∫ v

0

+F(t − y)
+F(t)

dF(y) + 2
∫ t=2

v

+F(t − y)
+F(t)

dF(y) +
[ +F( 1

2 t)]
2

+F(t)
:

Letting Grst t → ∞ and then v → ∞, and using F ∈L, the Grst integral tends to 1
and the last term vanishes by (3.13). The second integral can be bounded using (3.12):∫ t=2

v

+F(t − y)
+F(t)

dF(y)6
∫ t=2

v
[ +F(y)]−(2r#−1) dF(y) =

+F(v)2−2r# − +F( 1
2 t)

2−2r#

2 − 2r#
:

Letting Grst t → ∞ and then v→ ∞, we see that this term tends to 0.
(b) Writing for t¿ 2t#∫ t

0

+F(t − y)
+F(t)

+F(y) dy = 2
∫ t=2

0

+F(t − y)
+F(t)

+F(y) dy

and noting that

2
∫ ∞

t#
[ +F(y)]2−2r dy¡∞;

the integrability result now follows from the dominated convergence theorem. That 1
as stated suRces follows from Lemma 3.6(c).

(c) Proposition 3.7(b) implies that for some bound K ¿ 0, supt¿tn Q(t)=t6Q(tn)=tn
6K . This implies in particular that Condition B(iii) is met by tn as stated.

Remark 3.9. Conditions B imply that B∈S∗, since under those conditions we have
2 − 2r ¿ 1

2 ¿ 1=1, so the required integrability condition at (b) above is met.

The next result is the key to proving Theorem 2.1.

Proposition 3.10 (Chover et al., 1973). Let the probability distribution {"n}n∈N0 with
generating function "̂(z) =

∑∞
n=1 "nz

n (|z|6 1) satisfy the conditions

(i) limn→∞ "⊕2
n ="n = c exists and is 9nite,

(ii) limn→∞ "n+1="n = 1=R for some 16R¡∞, and
(iii) d= "̂(R) is 9nite.

Assume that the function 6(w) is analytic in a region containing the range of "̂(z)
for |z|6R. Then c = 2d and there exists a sequence 6" ≡ {(6")n} satisfying

6̂"(z) ≡
∞∑
n=0

(6")nzn =6("̂(z)); |z|6R (3.14)

and for which

lim
n→∞ (6")n="n =6′(d): (3.15)
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If in fact 6(w) =
∑∞

n=0 ckw
k for |w|6 1, where

∑∞
n=0 |ck |¡∞, then

6̂"(z) =
∞∑
n=0

( ∞∑
k=1

ck"⊕kn

)
zn: (3.16)

Remark 3.11. (a) Conditions (i) and (ii) with R= 1 imply that the sequence {"n}n∈N0

belongs to the class S∗
D as deGned in DeGnition 3.2.

(b) Notice that 6(w) is analytic in a region containing the range of "̂(z) for |z|6R
and that this range includes the origin because "̂(0)=0, so 6(w) is analytic at w="̂(R),
but this does not mean that 6(w) has a power series expansion about w = 0 valid
within the circle |w|6 "̂(R). However, if this condition (on 6 rather than on "̂(·)) is
satisGed, then

∑ |ck |(R+ #)k ¡∞ for suRciently small positive #. This would imply
that Kesten’s subexponential inequality (e.g. Embrechts et al., 1997, Lemma 1.3.5(c))
could be applied, and then Eq. (3.16) would be readily established for such 6.

4. A large deviations result

In this section, we establish a large deviations result for sums of i.i.d. r.v.s with mean
zero and subexponential right tail, because this enables us to estimate the quantity

P(Sn ¿ 0) = P(SXn ¿ SYn ) = P (Sn − nE[S1]¿ n|E[S1]|)
that appears in (2.5). Theorem 4.1 below is in the spirit of a result of Nagaev (1977);
the methods we use are similar to those in Pinelis (1985) (see also Baltr+unas, 1995).

We are interested in showing that, when the d.f.s A and B of inter-arrival and service
times satisfy Conditions A and B of Section 1, then

lim
n→∞

P(Sn ¿ 0)
nP(S1¿n|E[S1]|) = lim

n→∞
P(Sn − nE[S1]¿n|E[S1]|)

nP(S1¿n|E[S1]|) = 1:

DeGne

F(t) = P(X − Y 6 t) =
∫ ∞

0
B(t + u) dA(u); t ∈R; (4.1)

set

8 := E[S1] = E[X − Y ] = −(1 − �)EY ¡ 0; (4.2)

and deGne the centred r.v. U = X − Y − 8 with distribution tail

P(U ¿t) = +F(t + 8): (4.3)

Then

P(Sn ¿ 0) = P(Sn − 8n¿ |8|n) = P

(
n∑
k=1

Uk ¿ |8|n
)
: (4.4)

With this notation we can formulate the following result.
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Theorem 4.1 (Large deviations property for subexponential r.v.s.). Let U;U1; U2; : : :
be i.i.d. r.v.s with d.f. P(U6 t) = F(t + 8); t ∈R, as in (4.3) and assume that
Conditions B hold. Then for any sequence {tn} satisfying Condition B(iii), the sums
SUn =

∑n
i=1 Ui, n¿ 1, satisfy

lim
n→∞ sup

t¿tn

∣∣∣∣P(SUn ¿ t)
n +B(t)

− 1
∣∣∣∣= 0: (4.5)

Remark 4.2. (a) Note that we can rewrite (4.5) as

P(SUn ¿ t) ∼ n +B(t); t¿ tn; n→ ∞: (4.6)

(b) It follows from Lemma 3.4 that B∈S∗, and thus that the sequence { +B(|8|n)}
belongs to the class S∗

D. From this it follows that, under the assumptions of Theorem
4.1, the sequence {sn} = {P(Sn ¿ 0)=n} is a subexponential sequence in S∗

D and has
Gnite sum B′ as in (1.2). This result appears in Baltr+unas (2001) under three sets
of conditions: (i) his Proposition 2.1 has 1¿ 1 but the more stringent condition that
lim supt→∞ tq(t)¡∞, with a reference to Baltr+unas (1995) for proof; (ii) his Propo-
sition 2.2 has r ¡ 1

2 , 1¿ 2 and q eventually decreasing to 0, with proof similar to
Theorem 1 of Nagaev (1977); and (iii) his Proposition 2.3, which concludes that the
positive tail of F is in S∗, has q eventually decreasing to 0, r ¡ 1 and 1(1 − r)¿ 1.

Before proving Theorem 4.1, we establish some preliminary results.
The next lemma follows immediately from the deGnition of F in (4.1), monotonicity

and dominated convergence.

Lemma 4.3. (a) +F(t)6 +B(t); t¿ 0.
(b) If B∈L, then +F(t) ∼ +B(t) as t → ∞.

Lemma 4.4. Suppose that r := lim supt→∞ tq(t)=Q(t)¡ 1. Then for all su@ciently
large t and s= s(t) = Q(t)=t, there is a 9nite constant C such that∫ t

t=Q(t)
exp
(
Q(t)
t
u
)

dF(u) =
∫ t

1=s
esu dF(u)6C¡∞: (4.7)

Proof. Use integration by parts and Lemma 4.3 to write for 0¡ 1=s¡ t¡∞∫ t

1=s
esu dF(u) = −est +F(t) + e +F(1=s) + s

∫ t

1=s
esu +F(u) du

6 0 + e + s
∫ t

1=s
esu +B(u) du

= e + s
∫ t

1=s
exp(su− Q(u)) du

=: e + J (t):
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Choose r# ¡ 1 and t# as in (3.11). From (3.10) we conclude, setting �= r#, for u6 t

Q(t) − Q(u)6
(( t

u

)r#
− 1
)
Q(u)6 r#

( t
u
− 1
)
Q(u): (4.8)

Then for t such that 1=s= t=Q(t)¿t#, we have for u satisfying 1=s6 u6 t,

su− Q(u)6−(1 − r#)Q(u)
ut

u(t − u)

6−(1 − r#)Q(t)
t2

u(t − u); (4.9)

where in the last step we have used the fact that Q(v)=v is decreasing. From this, we
obtain for all t such that 1=s= t=Q(t)¿t#,

J (t)6 s
∫ t

1=s
exp(−(1 − r#)(s=t)u(t − u)) du

6 s
∫ t

0
exp(−(1 − r#)(s=t)u(t − u)) du

6 2s
∫ t=2

0
exp(− 1

2 (1 − r#)su) du

6
4

1 − r# ¡∞:

For t ¿ 1 deGne y∈ (0; t) (note that y depends on Q and t) by

y = sup
{
u¿ 1:

2 log u
Q(u)

6 (1 − r#) t − ut
}
: (4.10)

To see that y is indeed well deGned, observe that in the deGning inequality, the
right-hand side ↓ 0 as u → t while the left-hand side, which has lim sup as u → ∞
equal to 2=1, tends to 0 as u ↓ 1 and is positive for u¿ 1. Indeed, positivity and
continuity imply that we must in fact have

y
t

= 1 − 2 log y
(1 − r#)Q(y)

:

Lemma 4.5. Under Conditions B, there exists positive 2 such that y¿2t for all t
su@ciently large. For 9nite 1 we 9nd 0¡2¡ 1−2=cB, while if 1=∞ we can choose
2 in (0; 1) arbitrarily close to 1.

Proof. When

lim sup
u→∞

2 log u
Q(u)

=
2
1
¡ 1 − r# = lim

t→∞ (1 − r#)
(

1 − u
t

)
;

we must have
y
t
¿ 1 − 2

1(1 − r#) − #′
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for suRciently small positive #′ for all t suRciently large. If 1 = ∞ then y¿2t for
2∈ (0; 1) and all suRciently large t, while when 1¡∞ and Condition B(ii) holds, we
conclude by appealing to Lemma 3.6(b) that for any given 2 in (0; 1 − 2=cB), y=t ¿2
for all suRciently large t.

Proof of Theorem 4.1. For given y¿− 8¿ 0 let ; be the number of summands Uk
in
∑n

k=1 Uk := SUn such that Uk ¿y. Then ; is a binomial r.v. with parameters n and
+F(y + 8), and we can write

P(SUn ¿ t) = P(SUn ¿ t; ;= 0) + P(SUn ¿ t; ;= 1) + P(SUn ¿ t; ;¿ 2)

=: I0 + I1 + I2:

We show that there is a sequence {tn} for which, as n→ ∞, tn → ∞ and for t¿ tn,
I2 = o(n +B(t)) = I0 and I1 = n +B(t)[1 + o(1)].

First we estimate I2. Using Lemma 4.3(b) we obtain

I2 6 P(;¿ 2)

= O(1)[nP(U1¿y)]2

= O(1)[n +B(y)]2

= O(1)n +B(t)n exp(−2Q(y) + Q(t)):

To bound the exponential term here, apply the inequality at (4.8) for t#6y6 t together
with (4.10) to conclude that

Q(t) − 2Q(y)6− Q(y)
(

1 − r# t − yy
)

= −2 log y
1 − r#(t=y − 1)

(1 − r#)(1 − y=t) :

The coeRcient of −2 log y here exceeds 1 for all 0¡r#6 1
2 provided

1
r#
¿
(
t
y
− 1
)2

;

i.e. provided y=t ¿
√

2 − 1, which is certainly satisGed when cB ¿ 2 +
√

2 by Lemma
4.5. Moreover, by Lemma 4.5 −log y6− 2(log 2+ log t), i.e., thus, for such y and t
as above, and consequently, for t¿ tn with n=t2n → 0 as n→ ∞,

I26O(1)n +B(t)n=t2 = o(n +B(t)):

To estimate I0 deGne for given y¿− 8 the truncated r.v. V =UI{U¡y} with moment
generating function

f̃(s) =
∫ y

−∞
esv dP(V 6 v) = E[esU |U6y]P(U6y); s∈R:

Next, we introduce the Esscher transform

Fs(u) = P(V s6 u) =
1

f̃(s)

∫ u

−∞
esv dP(V 6 v); −∞¡u6y
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of V with parameter s (see e.g. Asmussen, 2003, Chapter XIII; Feller, 1971, Section
XVI.7). By introducing i.i.d. r.v.s V sk with d.f.s Fs and deGning partial sums SV

s

n =∑n
k=1 V

s
k , n∈N, we can write for every u¿ 0 (the integral vanishes for u¿ny),

I0 = P(SUn ¿u; ;= 0)

=
∫ ∞

u
dP(SUn 6 v; ;= 0)

=
∫ ∞

u
e−svesv dP(SUn 6 v | ;= 0)P(;= 0)

= [f̃(s)]n
∫ ∞

u
e−sv dP(SV

s

n 6 v):

The exponential function is monotone, so

I06 [f̃(s)]ne−suP

(
n∑
k=1

V sk ¿u

)
; u¿ 0: (4.11)

To bound f̃(s), recall that the r.v. U has zero mean and Gnite second moment, and
P(U6 u) = F(u+ 8). We have (for sy¿ 1 without loss of generality)

f̃(s) =
∫ y

−∞
esu dP(U6 u) =

(∫ 1=s

−∞
+
∫ y

1=s

)
esv dF(v+ 8) =: J0 + J1;

where by partial integration and the Grst inequality of Lemma 4.3(a), for 1=s¿− 8,

0¡J1 =
∫ y

1=s
esu dF(u+ 8) = −

∫ y

1=s
esud +F(u+ 8)

= e +F(1=s+ 8) − esy +F(y + 8) + s
∫ y

1=s
exp(sv− QF(v+ 8)) dv

6 s
∫ y

1=s
exp(sv− QB(v)) dv;

with QB = Q. The last inequality holds because esu +F(u + 8) increases on u¿ 1=s =
1=s(t) = t=Q(t) and t¿ t#.

A second-order Taylor expansion, together with Condition B(ii), which guarantees
the existence of a second moment, gives J0 = 1 + O(1)s2.

For J1, recall that J16 s
∫ y

1=s exp(su − Q(u)) du. Since su¿ 1 for 1=s¡u¡y, we
have

J1 6 s3
∫ y

1=s
u2 exp(su− Q(u)) du= s3

∫ y

1=s
exp(su− [Q(u) − 2log u]) du;

6 s2s1

∫ y

1=s1
exp(s1u− Q1(u)) du if s1¿ s; (4.12)

where for t¿ 1 we deGne

Q1(t) = Q(t) − 2log t; s1 = s1(y) =
Q1(y)
y

; q1(t) =
d
dt
Q1(t) = q(t) − 2

t
:
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Note immediately from the Grst inequality at (4.9) and the deGnition of y that

s1 − s= s1(y) − s(t) =
Q(y)
y

− Q(t)
t

− 2 log y
y

¿ 0;

as required for the second inequality at (4.12). By Condition B(ii), where �¿ 2, q1(t)
is ultimately positive, and therefore for suRciently large t, it can be regarded as the
hazard rate of a hazard function. In particular, if lim supt→∞ tq1(t)=Q1(t)¡ 1, then
the uniform boundedness property of Lemma 4.4 holds for the last integral at (4.12),
implying that

J1 = O(1)s2: (4.13)

Now
tq1(t)
Q1(t)

=
tq(t) − 2

Q(t) − 2 log t
=

[tq(t)=Q(t)] − 2=Q(t)
1 − 2=[Q(t)=log t]

for which for t → ∞, lim sup of the numerator equals r and lim inf of the denominator
equals 1− 2=1, so for (4.13) to hold it suRces that 1¿ 2=(1− r), which is true under
Condition B(ii) by Lemma 3.6(b).

Returning to (4.11), it now follows under our assumptions that for some c∗¿ 0

I06 exp(c∗ns2) exp(−su)P
(

n∑
k=1

V sk ¿ u

)
; u¿ 0: (4.14)

We have

E[(V s)2]6
1

f̃(s)

(∫ 1=s

−∞
u2esu dF(u) +

∫ y

1=s
u2esu dF(u)

)
:

Since F has Gnite second moment,∫ 1=s

−∞
u2esu dF(u)¡∞:

Next, we estimate∫ y

1=s
u2esu dF(u)6 s−2 +F(1=s) + s

∫ y

1=s
u2esu +F(u) du+ 2

∫ y

1=s
uesu +F(u) du

6 s−2 +F(1=s) + s
∫ y

1=s
u2esu +F(u) du+ 2s

∫ y

1=s
u2esu +F(u) du:

Using (4.12) and (4.13), we obtain∫ y

1=s
u2esu dF(u)¡∞:

Hence, E[(V s)2]¡∞.
Observe that

P

(
n∑
k=1

V sk ¿ t

)
6 (n=t2)E[(V s)2] = O(1)n=t2:
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Moreover, by Lemma 4.3(a), e−st = exp(−Q(t)) = +F(t)6 +B(t). Hence, for t satisfying
condition B(iii) so that ns2 → 0 for t¿ tn and n→ ∞,

I0 = O(1) exp(c∗ns2) exp(−st)n=t2 = O(1) exp(c∗ns2) +B(t)n=t2 = o(n +B(t)):

Finally, we estimate I1. For y¿ 1=s and arbitrary #¿ 0 we have

I1 = nP
(
SUn ¿ t; Un¿y; max

k6n−1
Uk ¡y

)

= nP(SUn ¿ t; t − #=s( 1
2 t)¿Un¿y; max

k6n−1
Uk ¡y)

+ nP(SUn ¿ t; Un¿ t − #=s( 1
2 t); max

k6n−1
Uk ¡y)

=: I11 + I12 say:

First,

I116 n
∫ t−#=s(t=2)

1=s
P
(
SUn−1¿ t − u; max

k6n−1
Uk ¡y

)
dF(u):

Using partial integration and (4.14) we obtain

I11 6O(1)n
∫ t−#=s(t=2)

1=s
P

(
n−1∑
i=1

V si ¿ t − u
)

e−s(t−u) dF(u)

6O(1)nP

(
n−1∑
i=1

V si ¿
#

s( 1
2 t)

)
e−st

∫ t−#=s(t=2)

1=s
esu dF(u)

6O(1)nn
s2( 1

2 t)
#2

+B(t)E[(V s)2]

= O(1)n2s2(t) +B(t) = o(n +B(t))

by Condition B(iii) (see Lemma 3.8(c)).
To estimate I12, start by noting that I12 is bounded by nP(X1¿ t − #=s( 1

2 t)). From
our assumptions we obtain for # small enough

P(X1¿ t − #=s( 1
2 t)) = +B(t) exp

(∫ t

t−#=s(t=2)
q(u) du

)
∼ +B(t); t → ∞:

On the other hand, we have

I12 = nP(SUn ¿ t; Un¿ t − #=s( 1
2 t); max

k6n−1
Uk ¡y)

= n
∫ ∞

−∞
P(Un¿max(t − u; t − #=s( 1

2 t))) dP
(
SUn−16 u; max

k6n−1
Uk ¡y

)
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¿ n
∫ ∞

−#=s(t=2)
P(Un¿max(t − u; t − #=s( 1

2 t))) dP
(
SUn−1¡u; max

k6n−1
Uk ¡y

)

¿ nP(Un¿ t + #=s( 1
2 t))P

(
max
k6n−1

Uk ¡y
)

− nP(Un¿ t)P
(
SUn−16− #=s( 1

2 t); max
k6n−1

Uk ¡y
)

=: I ′12 − I ′′12 say:

We Grst estimate

I ′′12 6 n +B(t)P
(
|SUn−1|¿ #=s( 1

2 t); max
k6n−1

Uk ¡y
)

6 n +B(t)E[SUn−1]2s2( 1
2 t)=#

2

= O(1)n +B(t)ns2( 1
2 t)

= o(n +B(t)):

To estimate I ′12 note that we have for each Gxed y, since the Uk are unbounded to the
right,

1¿ P
(

max
k6n−1

Uk6y
)

= exp((n− 1)log(1 − +F(y)))

¿ exp(−2n +F(y)) → 1; n→ ∞;
since y¿ 2t and n +F(y)6 n +F(2t) ∼ n +B(2t) = O(nt−1) → 0 as in the estimate of I2.
Using Lemma 4.3 we have that

I ′12 ∼ n +B(t + #=s( 1
2 t)) ∼ n +B(t); t → ∞:

This proves Theorem 4.1.

Corollary 4.6. Assume that Conditions B hold. Then

P(Sn ¿ 0)=n ∼ P(X1¿ |8|n); n→ ∞: (4.15)

Proof. By (4.4) we have

P(Sn ¿ 0) = P(SUn ¿ |8|n) ∼ n +B(|8|n); n→ ∞:
Set t = |8|n. Then by Condition B(i), we have Q(|8|n)=√|8|n→ 0 and hence, {tn} =
{|8|n} satisGes B(iii) of Theorem 4.1.

5. Proof of main results

We Grst describe the asymptotic behaviour of the tail P(Ñ¿ n) of the number of
customers served in a busy period as n → ∞ (the next result is an analogue of
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Theorem 3.2 in Baltr+unas (2001) with the same proof). This enables us to describe
the asymptotic behaviour of the tail P(T̃ ¿ t) of the length of a busy period.

Theorem 5.1. Assume that Conditions B hold. Then

P(Ñ ¿n) ∼ eB
′
P(Sn ¿ 0)=n ∼ eB

′
P(X ¿ |8|n); n→ ∞: (5.1)

Proof. By Remark 4.2(b) the sequence {sn} = {P(Sn ¿ 0)=n}n∈N belongs to the class
S∗
D. Apply Proposition 3.10 with the function 6(w) = ew: since B′ =

∑
n sn ¡∞ and

{sn}∈S∗
D, the Grst relation at (5.1) follows. Corollary 4.6 implies the second relation

at (5.1).

In using asymptotic properties of the renewal process it is convenient to rephrase
Condition A in a form that refers not to partial sums but to the counting function
"Y (t). Elementary manipulation shows that Condition A for non-negative i.i.d. r.v.s
{Yi} with Gnite Grst two moments can be expressed, equivalently, in terms of the
counting process "Y (t) based on Grst passage times of the partial sums SYn ; the idea of
the proof is presented in the proof of Lemma 2.2.

Condition A′. For any monotone function >(t) for which >(t)=
√
t → ∞ and >(t)=t → 0

as t → ∞, the counting function "Y (t) of a renewal process whose lifetimes have 9nite
9rst and second moments satis9es

P(|"Y (t) − $t|¿>(t))6 exp(−c̃A[>(t)]2=t) (5.2)

for some 9nite constant c̃A.

Finally, we prove our main result.

Proof of Theorem 1.2. Note Grst by (2.3), Theorem 5.1 and using B∈L, that

P(T̃¿ SYn ) = P(Ñ¿ n+ 1) ∼ eB
′ +B(|8|n); n→ ∞; (5.3)

equivalently,

zn :=
P(T̃¿ SYn )

eB′P(X ¿ |8|n) → 1; n→ ∞: (5.4)

Also, recall from the deGnition of "Y (t) at (2.1) that SY"Y (t)6 t ¡SY"Y (t)+1 a.s., so that

P(T̃¿ SY"Y (t)+1)6P(T̃¿ t)6P(T̃¿ SY"Y (t)): (5.5)

Since "Y (t)=($t) → 1 a.s. for t → ∞, Anscombe’s theorem (see e.g. Embrechts et al.,
1997, Lemma 2.5.8) can be applied to the random sequence {z"Y (t)} to conclude that
z"Y (t) → 1 a.s. or, equivalently,

P(T̃ ¿SY"Y (t)) ∼ eB
′
P(X ¿ |8|"Y (t)); t → ∞: (5.6)
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Since B∈S, applying Anscombe’s theorem again implies that P(T̃ ¿S"Y (t)) ∼ P(T̃ ¿
S"Y (t)+1). Using this property with the sandwich relation (5.5) together with (5.6) now
yields

P(T̃ ¿ t) ∼ eB
′
P(X ¿ |8|"Y (t)) = eB

′
∞∑
j=0

@(j)P("Y (t) = j); (5.7)

where @(j) = +B(|8|j), the last identity coming from the independence of X and "Y (t).
In the right-hand side of (5.7), "Y (t) satisGes a central limit theorem, whereas under

Conditions B the d.f. B is heavy-tailed, so it is plausible and also true that the weighted
sum should be approximately like @(E["Y (t)]). The usual approach is to partition the
range of summation into three parts [0; A0 − 1], [A0; A1 − 1] and [A1;∞] for suitably
chosen integers A0 and A1, i.e. to write

[1 + o(1)]e−B
′
P(T̃ ¿ t) =


A0−1∑

j=0

+
A1−1∑
j=A0

+
∞∑
j=A1


@(j)P("Y (t) = j)

=:D0 + D1 + D2 (5.8)

with the property that almost all mass of the distribution of "Y (t) is concentrated on
the second of these intervals and hope that D0 and D2 are negligeably small.

Consider Grst the choice A0 = �$(t − t(1=2)+2)�, A1 − 1 = �$(t + t(1=2)+2)� for some
positive 2 to be determined, so for the ratio of the largest element @(j) in D1 to
@(�$t�) we have

16
+B(|8|$(t − t(1=2)+2))

+B(|8|$t) ∼ exp(Q((1 − �)t) − Q((1 − �)(t − t(1=2)+2)))

6 exp(Ktr# [1 − (1 − t−(1=2)+2)r# ]) → 1; t → ∞;
where we have used Proposition 3.7(a) twice, and the limit holds provided that r# −
1
2 + 2¡ 0; similarly, under the same condition,

1¿
+B(|8|$(t + t(1=2)+2))

+B(|8|$t) ¿ exp(o(tr#)[1 − (1 + ct−(1=2)+2)−r# ]) → 1:

Moreover,

P(|"Y (t) − $t|6 t(1=2)+2)¿ 1 − exp(−c̃At22) → 1

by Condition A′, so since @(j) is decreasing in j, we have immediately that

D1 ∼ +B((1 − �)t) and D2 = o( +B((1 − �)t)): (5.9)

We also have D0 = o( +B((1 − �)t)) if exp(Q((1 − �)t) − c̃At22) → 0 for t → ∞; this
certainly holds, again by Proposition 3.7(a), if 22¿r#. Such 2 exists consistent also
with 2¡ 1

2 − r# only if r# ¡ 1
3 , but as the following argument shows, by using a Gner

partitioning of the interval [0; A0 − 1] it is enough to have 2¡ 1
2 − r# and r ¡ 1

2 (so
that there is positive # such that r# ¡ 1

2 ).
Suppose r ¡ 1

2 and deGne Bi= 1
2 +( 1

2 )i+1, i¿ 1, noting that there is a smallest Gnite
integer ir such that Bir ¡ 1−r. DeGne integers n0 =0 and ni=�$(t−tBi)� for i=1; : : : ; ir
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so that 2 := Bir − 1
2 ¡

1
2 − r satisGes the earlier constraint that ensures that both (5.9)

holds and +B((1 − �)(t − t(1=2)+2)) ∼ +B((1 − �)t). Identify A0 = nir , and for i = 1; : : : ; ir
deGne

D0i =
ni−1∑
j=ni−1

@(j)P("Y (t) = j)6@($t) =
@(ni−1)
@($t)

P("Y (t)¡ni):

Then using Proposition 3.7(a) and Condition A′ gives

D0i ¡@($t) exp(Ktr# tBi−1−1 − c̃At2Bi−1) = @($t)o(1)

when r# + Bi−1 − 1 = r# − 1
2 + ( 1

2 )i ¡ 2Bi − 1 = ( 1
2 )i, and this inequality holds by

assumption. Thus, D06
∑ir

i=1 D0i = o(@($t))o( +B((1 − �)t)).
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