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1 Introduction

Capital allocation is of special interest to (re-)insurers. As insurance policies are purchased
to protect against adverse �nancial contingencies, insolvency risk plays a special role in
the insurance industry. Risk capital is held to assure policyholders that claims can be
paid even if larger than expected. Insolvency of an insurer concerns the whole company -
bankruptcy is not de�ned on subportfolios of an insurer. Nevertheless, for certain types of
decisions as e.g. pricing and underwriting, but also for �nancial decisions concerning the
investment side of the insurer, it is useful to think of the risk capital as being allocated
to di�erent business units or subportfolios.

For an interesting conceptional overview to this topic we refer to Cummins [5]: \ Filling
in the details to enable insurers to move from the concepts to practical applications in
capital allocation provides a promising avenue for future research."

This paper is a contribution along these lines. We report the outcome of an empirical
study resting on theoretical investigations on capital allocation to di�erent positions of
an insurance portfolio based on various risk measures.

In Section 2, we introduce a minimum set of de�nitions and de�ne �ve risk measures and
�ve allocation methods, leading to 25 (not necessarily disjoint) allocation principles.

In Section 3 we show that some of these allocation methods generate equivalent outcomes.
Although the covariance allocation principle does not �t into the allocation principles as
de�ned in Section 2, we include it in our considerations, since it plays an important role in
practice. This section also contains the main theoretical result of this paper: we investigate
the equivalence of the covariance principle to the other allocation principles introduced
before.

Section 4 is devoted to the practical analysis of the results and shows the behaviour of the
considered allocation principles when they are applied to a small portfolio. With these
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considerations on the sample portfolio we can highlight the di�erent inherent character-
istics of the allocation principles. This underlines the importance of the choice of such a
principle for the practical application.

2 De�nitions and Methods

The claims for the next period (normally one year) of the di�erent positions of an in-
surance portfolio are given by random variables S1; : : : ; Sn. Under the assumption that
cost, commission and interest on risk capital (
uctuation loading) are paid in advance, the
premiums are understood to be equal to E[S1]; : : : ; E[Sn]. We receive the future income
for each claim by Xi = E[Si] � Si, i = 1; : : : ; n. Consequently, the future incomes of all
subportfolios have expectation 0.

Now an exogenously quanti�ed risk capital has to be allocated in a \fair" way (fair means
according to the risk involved) to the di�erent positions of the portfolio. The applied
method consists of two components:

(i) a risk measure and

(ii) an allocation method.

In this context a risk measure � is a mapping

� : L! R;

where L is the set of real-valued random variables. (All random quantities in this paper are
de�ned on a probability space (
;F ;P).) A risk measure � can be seen as the mathematical
version of a subjective risk concept, i.e. for two random variables X and Y with X more
risky than Y we should have �(X) > �(Y ). Already here we could think of �(X) as the
risk capital allocated to the risk X.

One axiomatic approach to select risk measures by properties should be mentioned here:
The concept of coherent risk measures was introduced by Artzner et al. [2]. They are
playing an increasingly important role in academic and practitioners' debates on risk
measurement and risk management. Albrecht [1] from the point of view of an insurer
investigates this concept as well as other existing concepts in the literature.

De�nition 2.1 A risk measure � is called coherent if it satis�es the following properties:

(i) Translation invariance: �(X + �) = �(X)� � for all X 2 L and � 2 R.

(ii) Subadditivity: �(X + Y ) � �(X) + �(Y ) for all X; Y 2 L.

(iii) Positive homogeneity: �(�X) = ��(X) for all X 2 L and all � � 0.
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(iv) Monotonicity: �(X) � �(Y ) for all X; Y 2 L with1 X � Y P-a.s.

We only work with centred random variables Xi, i.e. we restrict the space L to the space
L0, which consists of all real-valued centred random variables. In L0 translation invariance
is obsolete. Moreover, monotonicity is reduced to X = Y P-a.s.) �(Y ) = �(X), which is
for all risk measures considered in this paper always satis�ed. So in our context the check
up on subadditivity and positive homogeneity is already suÆcient to guarantee coherence
of a risk measure.

Risk measures should measure rare events, e.g. large claims (earthquake or storm losses)
causing high 
uctuations in the portfolio. Consequently, some risk measures are based on
quantiles. For a random variable X and � 2 (0; 1) we de�ne the upper �-quantil

Q�(X) = supfx 2 R j P[X � x] � �g :

For x 2 R we de�ne as usual x+ = max(x; 0) and x� = (�x)+.

De�nition 2.2 For X 2 L we de�ne the following risk measures, where we assume that
they exist �nitely.

(i) Variance: �var(X) = var[X] :

(ii) Standard deviation: �sd(X) = �[X] =
p
var[X] :

(iii) Semi-variance: �svar(X) = E[((X � EX)�)
2] :

(iv) Value-at-Risk (VaR) �VaR(�)(X) = �Q�(X) :

(v) Expected shortfall (ES):

�ES(�)(X) = � 1

�

�
E[X1fX�Q�(X)g] +Q�(X)

�
�� P[X � Q�(X)]

��
:

In the following we present some basic properties of these risk measures.

�var is the classical risk measure used for instance in statistics, but also in insurance pricing
as well as in the context of portfolio optimization. The di�erence between �sd and �var is
only a square root. However, �sd is coherent, but �var is not.

The simple but fundamental idea which leads to the semi-variance (as to other downward
risk measures) is that only events below a certain target value are considered as risky.
We have chosen for �svar the expectation as target value, which is in L0 equal to 0; i.e.
�svar(X) = E(X�)

2.

Although �svar and �var are not coherent, we include both in our study, since they are
classical risk measures in insurance. Applying the downside risk restriction to the standard
deviation leads to the semi-standard deviation, which is again coherent (see Fischer [9]).

1The applicable condition is X � Y in the case of result distributions and X � Y on loss distributions.
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The most common risk measure in the banking sector is �VaR(�), becoming even more
important with Basel II. It is also related to the insurance notions of ruin probability and
probable maximum loss, thus it measures only extreme events.

�ES(�) is the most prominent coherent risk measure. For a random variable with continuous
distribution function the second sum in the de�nition of �ES(�) is 0 and P[X � Q�(X)] =
�. In this case �ES(�) is the negative of the conditional expectation E[XjX � Q�(X)].
Tasche [16, 17] presents many important properties of �ES(�) in great detail.

Table 1 shows, which of the �ve risk measures satisfy subadditivity or positive homogene-
ity. This remains true even for all random variables in L. For centred random variables
this means that the corresponding risk measures are coherent.

Table 1: Properties of risk measures

Property variance standard
deviation

semi-
variance

Value at
Risk

Expected
Shortfall

�var �sd �svar �VaR(�) �ES(�)
Subadditivity

p p1) p
Positive
homogeneity

p p p

1) for jointly elliptically distributed random variables X;Y (see Embrechts et al. [8]).

From a naive point of view portfolio positions, where a small risk capital is allocated,
may be considered as less risky than those where a high risk capital is allocated. However,
this obviously depends on the size of the portfolio position. The size can for example be
determined by the premium volumes which can be seen as exogenous parameters. The
idea is now to scale each portfolio position by its size and hence allocate risk capital to
each portfolio position per unit premium.

The random vector X = (X1; : : : ; Xn)
0, which represents the future incomes of the

model points, can be scaled by the size of the model points � = (�1; : : : ; �n)
0, i.e.

X = (X1(�1); : : : ; Xn(�n))
0, and Z(�) = X1(�1) + � � � + Xn(�n). Then @�(Z(�))=@�i

stands for the partial derivative of the risk measure of the whole portfolio with respect to
�i. They have been calculated for various examples of risk measures by Kalkbrener [10],
Rodriguez [13] and Tasche [15]).

We now turn to the second component for the allocation of risk capital; i.e. an appropriate
capital allocation method. We denote by R the set of risk measures for centred random
variables. A capital allocation method � is a mapping

� : R� (L0)n ! R
n ; (�;X1; : : : ; Xn) 7!

0
B@
�1(�;X1; : : : ; Xn)

...
�n(�;X1; : : : ; Xn)

1
CA ;

with
Pn

i=1 �i = 1 and �i � 0 for i = 1; : : : ; n. For further use we abbreviate N =
f1; : : : ; ng
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With �i we identify the allocation coeÆcients; i.e. the proportions of risk capital K to be
allocated to model point i for i 2 N .

De�nition 2.3 Assume (X1; : : : ; Xn)
0 = (X1(�1); : : : ; Xn(�n))

0 is a random vector, which
stands for the future incomes corresponding to the model points, � = (�i; : : : ; �n)

0 repre-
sents the size of the model points. De�ne Z : Rn ! L0 with Z(�) =

Pn

i=1Xi(�i) and � a
risk measure whose partial derivatives with respect to �i exist for all i 2 N .

We de�ne the allocation coeÆcients for i 2 N for the di�erent capital allocation
methods by

(i) proportional

�p;�
i =

�(Xi)P
j2N

�(Xj)
;

(ii) Merton & Perold [11]

�MP;�
i =

�(Z)� �(Z �Xi)P
j2N

h
�(Z)� �(Z �Xj)

i ;

(iii) Myers & Read [12]

�MR;�
i =

@�
�
Z(�)

�
@�i

. nX
j=1

@�
�
Z(�)

�
@�j

;

(iv) Shapley [14]

�S;�
i =

1

�(Z)

X
S�N

(jSj � 1)!(n� jSj)!
n!

 
�
�X
j2S

Xj

�
� �
� X
j2Snfig

Xj

�!
and

(v) Aumann & Shapley [4]

�AS;�
i =

�i
�(Z(�))

Z 1

0

@�(Z(t�))

@�i
dt :

For a positively homogeneous risk measure � this simpli�es to

�AS;�
i =

1

�(Z(�))

@�
�
Z(�)

�
@�i

:

The allocation methods according to Merton & Perold [11] and to Myers & Read [12] are
based on the option pricing model of a �rm. This means that risk is measured by the price
of an insolvency put option. The insolvency put option refers to the loss of policyholders
given that the insurer defaults. For more details we refer to the original literature. Both
the allocation methods according to Shapley [14] and to Aumann & Shapley [4] are based
on the theory of co-operative games. Denault [6] gives a di�erent view of the connection
between the allocation principle according to Shapley and coherent risk measures.
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3 Equivalences of allocation principles

In the previous section we have formally introduced allocation principles based on com-
binations of risk measures and allocation methods. An important allocation principle
in practice, which does not �t into this framework, is the so-called covariance principle,
which we nevertheless want to include in our analysis.

De�nition 3.1 Suppose (X1; : : : ; Xn)
0 is a random vector, which stands for the future

income of the model points and Z =
Pn

i=1Xi.

Then we de�ne the allocation coeÆcients of the covariance principle by

�CP
i =

cov[Xi; Z]
nP
i=1

cov[Xi; Z]
=

cov[Xi; Z]

var[Z]
for i = 1; : : : ; n:

Since the covariance principle can not be considered in the framework of compositions
of a risk measures and allocation methods it is not consistent with the approach taken
formerly in this paper. But it is an ad hoc approach widely used in the insurance industry.
Therefore, it is of basic interest to investigate, which allocation principles are equivalent
to the covariance principle.

In the following we give a short overview about some statements on the equivalences of
allocation principles and the covariance principle.

Theorem 3.2 Suppose X = (X1(�1); : : : ; Xn(�n))
0 is a scalable random vector and Z :

R
n ! L is a mapping with Z(�) =

Pn

i=1Xi(�i) =
Pn

i=1 �i
~Xi = �0 ~X (linear scaling to be

assumed).

The following allocation principles of X are equivalent to the covariance principle, i.e.
the allocation coeÆcients of the following allocation methods coincide with the allocation
coeÆcients of the covariance principle (we assume that the risk measures exist �nitely):

(i) proportional allocation with �var, if the random variables Xi are pairwise uncorre-
lated;

(ii) proportional allocation with �sd, if the random variables Xi are pairwise completely
correlated

(iii) allocation according to Merton & Perold with �var, if the random variables Xi are
pairwise uncorrelated

(iv) allocation according to Myers & Read with �var and �sd;

(v) allocation according to Shapley with �var;

(vi) allocation according to Aumann & Shapley with �var and �sd;
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Proof The following results hold for all i 2 N .
(i): If all Xi are pairwise uncorrelated, then

�CP
i =

cov[Xi; Z]P
j2N

cov[Xj; Z]
=

var[Xi]P
j2N

var[Xj]
= �p;var

i :

(ii): If all Xi are pairwise completely correlated, then

�CP
i =

cov[Xi; Z]P
j2N

cov[Xi; Z]
=

P
j2N

cov[Xi; Xj]P
j;k2N

cov[Xj; Xk]
=

P
j2N

� �[Xi]�[Xj]P
j;k2N

� �[Xj]�[Xk]
=

�[Xi]P
j2N

�[Xj]
= �p;sd

i :

(iii): If all Xi are pairwise uncorrelated, then

�CP
i =

cov[Xi; Z]P
j2N

cov[Xj; Z]
=

var[Xi]P
j2N

var[Xj]
=

var[Z]� var[Z �Xi]P
j2N

�
var[Z]� var[Z �Xj]

� = �MP;var
i :

(iv): Since the derivative of the variance in direction of the model pointXi is
@var[Z(�)]

@�i
=

2 cov[Xi; Z], we have

�MR;var
i =

@var[Z(�)]

@�i

,
nX
j=1

@var[Z(�)]

@�j
=

cov[Xi; Z]
nP
j=1

cov[Xj; Z]
= �CP

i :

Analogously, since the derivative of the standard deviation in direction of the model point

Xi is
@�[Z(�)]

@�i
=

cov[Xi; Z]p
var[Z]

, the same arguments hold as before.
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(v): The numerator of �S;var
i is

X
S�N

(jSj � 1)!(n� jSj)!
n!

 
var
hX
j2S

Xj

i
� var

h X
j2Snfig

Xj

i!

=
X
S�N
i2S

(jSj � 1)!(n� jSj)!
n!

 
2 cov

h
Xi;

X
j2Snfig

Xj

i
+ var[Xi]

!

=
nX
s=1

X
jSj=s

i2S

(s� 1)!(n� s)!

n!

 
2
X

j2Snfig

cov
h
Xi; Xj

i
+ var[Xi]

!

=
nX
s=1

 
(s� 1)!(n� s)!

n!

�
n� 1

s� 1

� �
n� 2

s� 2

�,�
n� 1

s� 1

�!
2
X

j2Nnfig

cov[Xi; Xj]

!

+
nX
s=1

(s� 1)!(n� s)!

n!

�
n� 1

s� 1

�
var[Xi]

=
nX
s=1

 
2(s� 1)

n(n� 1)

X
j2Nnfig

cov[Xi; Xj] +
1

n
var[Xi]

!

= cov[Xi; Z]:

(vi):

Z 1

0

@var[t�0 ~X]

@�i
dt =

Z 1

0

t2
@var[�0 ~X]

@�i
dt = 2

Z 1

0

t2 cov[Xi; Z] dt =
2

3
cov[Xi; Z]:

Because of the homogeneity of �sd and the linear scaling the allocation according to Myers
& Read is identical to the allocation according to Aumann & Shapley (see Denault [6]
Lemma 1). The proof now follows from (v). 2

Remark (a) It should be stressed that the equivalences in (iv) and (vi) only hold because
of the linear scaling of the random variables concerning portfolio size.
(b) Theorem 3.2 shows that the proportional allocation with variance and standard devi-
ation are only compatible with the covariance principle for extreme dependency concepts.

A further statement concerning the relationship of the covariance principle towards the
proportional allocation and the allocation according to Merton & Perold is given in the
following theorem.

Theorem 3.3 Suppose (X1; : : : ; Xn)
0 is a random vector. Let i 2 N . Then one of the

cases (i)-(iii) holds.

(i) �p;var
i < �CP

i < �MP;var
i
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(ii) �p;var
i > �CP

i > �MP;var
i

(iii) �p;var
i = �CP

i = �MP;var
i .

If the random variable Xi is uncorrelated to X1; : : : ; Xi�1; Xi+1; : : : ; Xn, then either (ii)
or (iii) hold.

Proof Assume Z =
Pn

i=1Xi. Immediately by the de�nition,

�MP;var
i = �p;var

i +
2 y�

2 var[Z]�
nP
j=1

var[Xj]
� nP
j=1

var[Xj]
(1)

= �CP
i +

y�
2 var[Z]�

nP
j=1

var[Xj]
�
var[Z]

;

where

y = cov[Xi; Z]
nX
j=1

var[Xj]� var[Xi]var[Z]: (2)

Since the denominator of both ratios in (1) is always positive, it follows from (1) and (2)
that

�p;var
i > �CP

i , �MP;var
i < �CP

i , �MP;var
i < �p;var

i and

�p;var
i < �CP

i , �MP;var
i > �CP

i , �MP;var
i > �p;var

i :

From this (i) and (ii) follow immedately; for y = 0 (iii) is obvious. 2

4 The example portfolio

4.1 De�nition of the model

We consider a portfolio of seven di�erent claim distributions represented by the ran-
dom variables Si, i = 1; : : : ; 7, which will be speci�ed below. By the transformation
Xi = E[Si] � Si they are converted into future income distributions with expectations
0. The distributions, which we use for our model, are the Poisson, Pareto and lognormal
distribution. They are de�ned as follows.

De�nition 4.1 (i) A random variable N is Poisson distributed with parameter
� 2 (0;1), if it is concentrated on N0 and

P[N = n] =
�n

n!
e�� ; n 2 N0
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It has E[N ] = var[N ] = � .
(ii) A random variable X is Pareto distributed with form parameter 
 2 (0;1), scale
parameter b 2 (0;1) and shift parameter s 2 R, if it has density

fX(x) =



b

�x� s

b

��
�1
1[b+s;1)(x) :

It has E[X] = b2 



�1
and var[X] = b2

�




�2
�
�





�1

�2�
.

(iii) A random variable X is lognormally distributed with shift parameter �, if it has
density

fX(x) =
1p

2��2x2
exp

��(lnx� �)2

2�2

�
1(0;1)(x) :

It has E[X] = exp(�+�2=2) and standard deviation
p
var[X] =

p
exp(2�+ �2)(exp(�2)� 1).

The di�erent models for the Xi, i = 1; : : : ; 7 have been chosen by their importance in
practice based on long experience. Storms, earthquakes, major engineering and �re claims
happen rarely, but when they happen, they can be very large. Consequently, they are
modeled by a compound Poisson model with Pareto claim sizes. On the other hand, basic
losses in general liability, engineering and �re are not quite as rare and not quite as large;
hence a lognormal distribution �ts such data very well.

In our examples, for practical reasons, some additional transformations have been intro-
duced into the models. First, the Pareto distributions Fi are truncated at �i for i = 1; : : : ; 4.
The truncated distribution functions are then renormalized by 1 � Fi(�i). Furthermore,
one of the Pareto distribution is shifted; the amount is given by a shift parameter. Finally,
a scale parameter is additionally introduced into the lognormal model.

The di�erent parameters for the collective Poisson/Pareto models are given in Table 2, the
parameters for the lognormal distributions in Table 3. These are realistic �ts to business
data.

The major losses modeled via Poisson/Pareto can be assumed to be independent. Within
the basic losses one observes a certain dependency; this is modeled by a Gaussian copula
with a pairwise rank correlation coeÆcient of 0:14.

Table 2: Parameters for the Poisson/Pareto model

Name abbre- Poisson Pareto
viation � 
 b � s

Storm S 2:43 0:65 1 250 �1
Earthquake EQ 0:15 0:42 2 634 0
Engineering E(ML) 0:22 0:98 3 200 0
(major losses)
Fire F(ML) 1:57 1:3 4 200 0
(major losses)
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Table 3: Parameters for the lognormal model

Name abbre-
viation

mean standard
deviation

scale

General Liability GL(BL) 0:98 0:120 350
(basic losses)
Engineering E(BL) 0:98 0:105 60
(basic losses)
Fire (basic losses) F(BL) 0:90 0:085 350

4.2 The simulation study

4.2.1 The simulation method

The simulations and calculations were performed on a Intel Pentium III, 1GHz, 256MB
RAM machine invoking routines from the simulation software program @RiskTM in con-
nection with Microsoft ExcelTM.

For the computation of the �ve risk measures de�ned in De�nition 2.2 we simulated
k = 30 000 realisations of the random vector X = (X1; : : : ; X7) from the above marginal
models with the Gaussian dependency structure of the three basic losses.

Let X here stand for any of the components of (X1; : : : ; X7). The estimators for the risk
measures for observations xi, i = 1; : : : ; k, of the random variable X were then calculated
componentwise for the di�erent model points; �x = 1

k

Pk

i=1 xi.

(i) �̂var(X) = 1
k�1

kP
i=1

(xi � �xi)
2

(ii) �̂sd(X) =
p
�̂var(X)

(iii) �̂svar(X) = 1
k�1

kP
i=1

(xi � �xi)
2
�

For the sample (X1; : : : ; Xk) we denote by X(1) < � � � < X(k) its order statistics. By bxc
we denote the integer part of x 2 R.

(iv) �̂VaR(�)(X) = X(bk�c)

(v) �̂ES(�)(X) = 1
bk�c

bk�cP
i=1

X(i)

The estimators of �VaR(�) and �ES(�) given in (iv) and (v) make only sense if the quantile
can be computed by the empirical method; i.e. if it lies within the range of the data.
However, with a sample size of 30 000 this did not cause problems for the chosen quan-
tiles � 2 f0:1; 0:05; 0:01g. Alternatively to the empirical method, extreme value methods
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are available to compute extreme quantiles (see Embrechts et al. [7]). We also want to
remark that it is rather wasteful to simulate 30 000 data points and use only � percent for
the computation of �VaR(�) and �ES(�). Here special simulation methods like importance
sampling can be applied (see e.g. Asmussen [3]). Such considerations, however, are left for
further investigations.

With these computed risk measures we calculate now the coeÆcients of the allocation
methods as given in De�nition 2.3. The results are summarized in Tables 4-6.

The allocation according to Myers & Read and to Aumann & Shapley could not be
computed; the problem are the derivatives. The di�erences �(�1X1+ � � �+�nXn)��((�1+
�)X1 + � � � + �nXn) for the calculation of the derivatives are not stable for small �.
Similarly, numerical instabilities were to be expected for these cases. Here numerical
methods other than the brute force methods we used are called for. Our analysis can only
be considered as a �rst step to the practical implementation of sophisticated allocation
methods. The self-imposed restriction to simulation approaches with 30 000 iterations lead
to operability even for large portfolios consisting of more than 100 segments.

To investigate the quality of the estimators of the allocation coeÆcients given in Tables 4-
6 also the mean square errors (MSE) of the estimated allocation coeÆcients based on 50
simulation runs were computed. The results can be found in Urban [18]

4.2.2 Interpretation of Results

The allocation coeÆcients for the di�erent combinations of risk measures given in De�ni-
tion 2.2 and allocation methods as de�ned in De�nition 2.3 are given in Tables 4-6. We
have also visualized these results in Figures 1-3.

A �rst look at Figures 1-3 immediately draws attention to an outlier in the EQ model
point, which comes from the allocation according to Merton & Perold in combination
with �ES(0:01)). With its parameters the EQ-distribution has the heaviest tail and hence
for small � the expected shortfall ES(�) is much bigger than for any other distribution
of our model. For this method it is remarkable that �ES(0:01) concentrates more than half
of the risk capital to EQ, whereas �VaR(0:01) distributes the risk capital - even for large
risks - not in such an extreme way. In the context of �ES(�) and �VaR(�) the allocation
coeÆcients strongly depend on the quantile �. The impact of di�erent � in particular for
heavy tailed random variables can clearly be seen by the coeÆcients of EQ. This means
that ES can only be used if the tails of the distributions are well known and modelled,
which is usually not the case for all parts of an insurance portfolio.

Another observation is the small range of the allocation coeÆcients for E(BL). This is
due to the concentration of the distribution around 0 and so the risk of E(BL) is small,
independent of the risk measure or the allocation method.

In Theorem 3.2(i) it is shown that for uncorrelated random variables the proportional allo-
cation method with the variance as risk measure is equivalent to the covariance principle.
In this model, only three random variables are correlated; the other random variables
are uncorrelated. Thus the allocation coeÆcients of these two methods should be quite
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Table 4: Allocation coeÆcients for the proportional method

distri- allocation coeÆcients1) in % for
bution var sd svar VaR0:01 VaR0:05 VaR0:1 ES0:01 ES0:05 ES0:1
S 28.6 22.5 32.0 26.8 32.3 26.5 22.4 28.0 28.5
EQ 21.9 19.6 28.0 23.7 3.9 -1.2 32.1 19.5 14.2
GL(BL) 24.9 21.0 18.0 14.6 24.2 31.3 12.1 16.7 19.8
E(BL) 0.6 3.2 0.4 2.2 3.6 4.7 1.8 2.5 2.9
E(ML) 2.0 5.9 2.4 6.8 3.6 2.2 8.9 6.4 5.4
F(BL) 12.5 14.9 8.8 10.1 16.9 22.1 8.3 11.6 13.8
F(ML) 9.6 13.0 10.3 15.7 15.5 14.5 14.4 15.4 15.3

1) allocation coeÆcients are rounded to one decimal.

Table 5: Allocation coeÆcients according to Merton & Perold

distri- allocation coeÆcients1) in % for
bution var sd svar VaR0:01 VaR0:05 VaR0:1 ES0:01 ES0:05 ES0:1
S 25.2 25.5 28.9 38.2 40.7 29.2 19.3 36.5 35.9
EQ 19.3 19.1 26.7 33.4 13.6 7.0 64.1 32.8 24.1
GL(BL) 27.3 27.8 20.6 13.2 19.2 31.1 7.4 13.4 17.9
E(BL) 2.1 2.0 1.6 1.0 1.6 2.2 0.5 1.0 1.4
E(ML) 1.7 1.6 1.8 1.3 2.3 2.3 0.7 1.5 1.9
F(BL) 16.0 15.8 12.0 7.1 11.5 17.1 4.3 7.7 10.2
F(ML) 8.5 8.2 8.4 6.0 11.0 11.1 3.7 7.1 8.8

1) allocation coeÆcients are rounded to one decimal.

Table 6: Allocation coeÆcients according to Shapley

distri- allocation coeÆcients1) in % for

bution var3) sd svar2) VaR0:01 VaR0:05 VaR0:1 ES
2)
0:01 ES

2)
0:05 ES

2)
0:1

S 26.8 25.0 - 33.5 37.3 28.3 - - -
EQ 20.5 20.2 - 28.1 8.3 3.2 - - -
GL (BL) 26.2 24.3 - 13.2 22.7 31.8 - - -
E (BL) 1.4 1.9 - 1.2 1.8 2.5 - - -
E (ML) 1.8 3.3 - 4.0 2.9 2.3 - - -
F (BL) 14.4 14.7 - 7.9 13.6 18.9 - - -
F (ML) 9.0 10.6 - 12.2 13.4 12.9 - - -

1) allocation coeÆcients are rounded to one decimal;

2) could not be calculated due to memory restrictions;

3) allocation method according to Shapley with variance as risk measure is equivalent to the covariance

principle; see Theorem 3.2.
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Figure 1: Fluctuation margin of the allocation coeÆcients1) in %
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Figure 2: Allocation coeÆcients4) in % grouped by the allocation methods
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Figure 3: Allocation coeÆcients10) in % grouped by the risk measures
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similar. This is indeed the case.

On the other hand, we want to emphasize that the allocation method according to Merton
& Perold takes care of the dependency of the random variables, but the proportional allo-
cation method does not. Therefore for a \good" risk measure like the standard deviation
we would rather think that

�p;sd
i � �MP;sd

i 8i 2 J ;

if the random variables (Xi)i2J are pairwise positively correlated and uncorrelated other-
wise. But in Tables 4 and 5 we have

�MP;sd

E(BL) < �p;sd

E(BL) and �MP;sd
S > �p;sd

S ;

contradicting our expectations.

Looking for advise about which allocation method in combination with which risk measure
to use, seems to leave us at loss at �rst. A drawback to note in Figure 1 is that the
allocation coeÆcients are not concentrated around a special value instead they cover the
whole range uniformly. It is also not possible to distinguish the distributions by the range
of their allocation coeÆcients. For example E(BL) (lognormal) has the smallest range of
all distributions but GL(BL) (lognormal) has the second largest range.

However, a more thorough analysis of our results seems to indicate an interesting direction.
Given the large ranges of the allocation coeÆcients in Figure 1, we distinguished all
allocation coeÆcients by allocation method in Figure 2 and by risk measure in Figure 3.

Figure 2 indicates that the coeÆcients even for the same allocation method do not concen-
trate around a special value but again cover the whole range uniformly. Figure 3, however,
leads to new insight: the range of the allocation coeÆcients for a concrete combination of
a distribution and a risk measure is in the majority of cases small compared to the range
of all coeÆcients of the distribution.

This leads to the conjecture, that the allocation coeÆcients are in
uenced more strongly
by the chosen risk measure than by the allocation method. If this conjecture is true, then
insurance companies should choose their risk measure very accurately, but could choose
a simple allocation principle.
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