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Abstract

This paper considers the problem of modeling migraine ggvassessments and
their dependence on weather and time characteristics. deotathe viewpoint of a
patient who is interested in an individual migraine managenstrategy. Since fac-
tors influencing migraine can differ between patients in bamand magnitude, we
show how a patient’'s headache calendar reporting the gevagasurements on an
ordinal scale can be used to determine the dominating faétorthis special patient.
One also has to account for dependencies among the meastserfer this the au-
toregressive ordinal probit (AOP) model of Miller and Cag@005) is utilized and
fitted to a single patient’s migraine data by a grouped movéigna Monte Carlo
(GM-MGMC) Gibbs sampler. Initially, covariates are seéttising proportional odds
models. Model fit and model comparison are discussed. A cosguawith propor-
tional odds specifications shows that the AOP models areipesf.

Keywords:Bayes factor; Deviance; Ordinal valued time series; Ma®bgin Monte Carlo
(MCMC); Proportional odds; Regression;

1 Introduction

According to Prince et al. (2004) forty-five million Ameritsseek medical attention for
head pain yearly causing an estimated labor cost of $1®millThey found in their study
that about half of their migraine patients are sensitive ¢ativer. However some studies
investigating the relationship between weather condstenmd headache have been negative
or inclusive (see Prince et al. (2004) and Cooke et al. (2@@03pecific references). In
these studies the frequency of headache occurrences addiphenaximum or total score

of an ordinal severity assessment have been the focus.

Here we focus directly on studying and modeling the obsesesdrity categories collected
using a headache calendar. In particular we want to invastitpe four daily ratings of the
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headache intensity obtained from a patient in study comdiay psychologist T. Kostecki-
Dillon, Toronto, Canada, resulting in an ordinal valueddiseries. We take on the view-
point of the patient who is interested in an individual miggamanagement strategy. Since
factors influencing migraine can differ between patientsumber and magnitude, we use
the patient’'s headache calendar to determine the domgnfaiohors for this patient.

Most studies ignore correlation among measurements orathe patient. We will show
that this correlation can be very high and should not be igthorFor example, Prince
et al. (2004) use daily maximum and total scores as resparsable relating to factors
obtained from a factor analysis of the weather data aloneeg@ssion setup ignoring this
correlation.

For studying headache occurrences Piorecky et al. (19@@)aigeneralized estimating ap-
proach (GEE) introduced by Zeger and Liang (1986) to adjusife dependency between
multiple measurements. While GEE could also be used fonatdialued time series (see
for example Liang et al. (1992), Heagerty and Zeger (199@) Fahrmeir and Pritscher

(1996)), we prefer a likelihood based regression time sexqpproach to investigate the in-
fluence of weather conditions on migraine severity. One maason for this preference

is to have a complete statistical model specification, wihaildbws the usage of standard
model comparison techniques and forecasts in dynamic rmodel

Kauermann (2000) also considered the problem of modelidipakvalued time series with
covariates. He used a nonparametric smoothing approacholareg for time varying co-
efficients in a proportional odds model. While Kauermanm®Quses local estimation,
Gieger (1997) and Fahrmeir et al. (1999) consider splinadittvithin the GEE frame-
work. Wild and Yee (1996) focus on smooth additive composievithile these approaches
are useful for fitting the data, a hierarchical time serigsrapch which we propose here
is easier to interpret and has the potential for forecastimgarticular, we will use an au-
toregressive ordered probit (AOP) model recently intr@alicy Muller and Czado (2005).
It is based on a threshold approach using a latent real vailonedseries. It is fitted and
validated in a Bayesian setting using Markov Chain MontddC@CMC) methods.

Since as already mentioned many studies investigatingetaianship between headache
and weather conditions have been inclusive, we believe geamant of migraine headaches
should be tailored to the individual migraine sufferer. ¢gmmigraine headaches are a
persistent problem such an individual analysis should s®da@n a headache calendar
of the individual. Such an individual approach was alsocietd by Schmitz and Otto
(1984). However they ignored the ordinal nature of the abergid response time series.
As an example for such a single patient analysis we investigta collected by a 35 year
old woman with chronic migraine who recorded her migraineegéy four times a day on

a scale from 0 to 5. To determine which weather conditiong laavmportant effect on the
migraine severity we used a proportional odds model comyngs#d for regression models
with independent ordinal responses as a starting modelfohAOP analysis. We will show
that for this data the first order autocorrelation in therateme series is high within the
AOP model & 0.8), demonstrating considerable dependence among the reezsuis.
We like to mention that for this patient headache severityes are not reached by first
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successively experiencing the lowest severity categomhaeonext higher category until
the highest is reached. Therefore a continuation ratio fitattion (Agresti 2002) is not
appropriate for this patient. A Bayesian analysis of a grotntinuation ratio formulation
is given by Dunson et al. (2003) in a joint model for clusteresand sub-unit specific
outcomes.

The paper is organized as follows. In Section 2 we review thpgrtional odds model to
motivate our AOP formulation. We address the problem ofaldé selection and model
comparison. In Section 3 we describe the data in more detdipeesent some results from
an exploratory analysis yielding three mean specificationthe proportional odds model
and two for the AOP model. In Section 4 we give the results efttodel fitting and model
comparison, demonstrating the superiority of the AOP modé@hally Section 5 gives a
summary and draws conclusions.

2 Models, predictions and model selection

2.1 Models

In the migraine data we model an ordinal valued time sdrigst = 1,..., 7'}, whereY; €
{0,..., K'} denotes the pain severity at timevith ordinal levels given by{0,--- , K'}.
Together with the respondé we observe further a vectar, of real-valued covariates for
eacht € {1,...,T} representing meteorological and time measurement infaoma

2.1.1 Proportional Odds Model

A common ordinal regression model for independent resaisgbe ordinal logistic model
first described by Walker and Duncan (1967) and later namegioptional odds model by
McCullagh (1980). To aid us with the identification of impamt covariates in the migraine
headache data we utilize the proportional odds model. Téetiiied covariate structure
will then be used in the autoregressive ordinal probit (A@f®del, which in contrast to
the proportional odds model does not ignore the dependemoyng the measurements.
The primary focus of this paper is the AOP model for which maxin likelihood es-
timation is not feasible and for which a Bayesian estimatapproach is therefore fol-
lowed. We now shortly review the proportional odds modenhfra threshold perspective,
which motivates the AOP model formulation. For this we assunat the covariate vector
x; = (vu,...,x1) is p-dimensional. To model th& + 1 different categories, an under-
lying unobserved real-valued time serigg*,t = 1,...,T} is used which produces the
discrete valued; by thresholding. In particular,

)/t:k <~ )/t*e(ak’—lvak’]v k:()v"'va (21)
Y =—x0+¢), t=1,...,T, (2.2)



where—co =: a1 < ag < a; < -+ < ag := oo are unknown cutpoints, and =

(b1, ..., Bp) is avector of unknown regression coefficients. The ertprare assumed to
be i.i.d. and follow a logistic distribution with distrikioh function F'(x) = % Itis

easy to see that (2.1)-(2.2) imply the more familiar repnéstéon given by

exp(ay + z;0)
1+ exp(oy + z18)

P(Y; < Klz,) = F(og + z;8) = (2.3)
fork =0,1,--- , K — 1. The properties of the proportional odds model are for examp
discussed in Harrell (2001) and Agresti (2002). Ket,t = 1,---,T} be the observed
responses and := (ayp,...,ax_1). Since the responses are assumed to be independent
the joint likelihood is given by

T
L(B,e0) == L(B,elyr, - ,yr) = [ 7o (2.4)
t=1

whereny, .= P(Y; = klz;) = F(ay + i8) — F(ag-1 +z;8) fork =0,--- | K — 1
andmr =1 — Zsz‘Ol . The unknown3 and a together with the ordering constraint
—00 = a1 < ayg < aq < -+ < ag := oo can be estimated by maximum likelihood
(ML) using the S-Plus Design Library by Frank Harrell.

2.1.2 Autoregressive Ordered Probit (AOP) Model

Since the migraine severity at timenay depend not only on the covariates at timbut
also on the migraine severity at time- 1, it may be adequate to use the autoregressive
ordered probit (AOP) model introduced by Muller and Czad005). Here, the latent
process of the common ordered probit model is extended bytanegressive component:

)/t:k <~ )/t*e(ak’—lvak’]v k:())"'va (25)
Y =x,8+ oY | + ¢}, t=1,...,T, (2.6)
where—co =: a_; < ag < a1 < -+ < ag = 00, &f ~ N(0,0%) i.id., andz; =

(1,z4,...,2y4)" is ap + 1-dimensional vector of real-valued covariates. Accortiing,

is the intercept for the latent process. For reasons ofiitkntity the cutpointay is fixed

to 0, and the varianc& to 1. For notational convenience we use= (ay,...,ax 1)

as for the proportional odds model, however, singés fixed here, the vectar has only
K —1 components in the AOP case. More details on this model andredMahain Monte
Carlo (MCMC) estimation procedure for the latent variatdad parameters can be found
in Muller and Czado (2005).

In particular, it is shown there that a standard Gibbs sarg@pproach is extremely ineffi-
cient and cannot be recommended in practice. This ineftigiefthe Gibbs sampler was
already noted by Albert and Chib (1993) for polychotomougession models and Chen
and Dey (2000) for correlated ordinal regression data ukigged covariates to account
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for correlation. Nandram and Chen (1996) proposed a scpiametrization for ordinal
regression models with three categories, which accetéthte Gibbs sampler in this sit-
uation sufficiently. The reason for the inefficiency in o@inesponse models is that the
updating scheme for the cutpointsallows only small movements from one iteration to
the next in larger data sets. To overcome this inefficiencyiédand Czado (2005) devel-
oped a specific grouped move multigrid Monte Carlo (GM-MGM&bbs sampler for the
AOP model with arbitrary number of categories. GM-MGMC Gildamplers have been
suggested by Liu and Sabatti (2000) as a general approadtétesate Gibbs sampling
schemes.

We emphasize that the right-hand side of Equation (2.2hded the term-x,3 whereas
the right-hand side of Equation (2.6) uses the tarj. To make the parameters in
model specifications (2.2) and (2.6) comparable we decmedmpute the posterior mean
estimates in the AOP model for the respon$e:= 5 — Y;. Therefore the worst migraine
severity is associated with categdryand no migraine is associated with categorhen
we fit the AOP model. Hence now in both the proportional odds iarthe AOP model
a negative value fof; means that an increasing value of the covarigteeads to a more
severe migraine.

2.2 Model Selection with the Deviance Criteria
2.2.1 Residual Deviance Test for the Proportional Odds Model

Here we use the deviance statishidefined as

Supﬁ,a L(ﬁa Oé)

D :=2log ,
Supph---,pT L(p17 e 7pT)

whereL(3, a) is defined in (2.4) and the supremum is taken ovecalthich satisfy the
ordering constraint. Further we denote bip,, - - - , py) for p, := (pw, - - - , pwe)’ the joint
likelihood of T independent discrete random variabtegaking on value$), - - - , K with
probabilitiesp,o, - - - , pix, respectively. We call.(p,, - - - , p;) the likelihood of the corre-
sponding unstructured model. Itis straight forward to stwatD := Zthl Ele log (),
wherery, := F(ay +x,8) — F(a,_; +=;3) and3 anda the joint MLE of 3 anda under
the ordering constraint faie. Note that the proportional odds model can be considered as
a special case of multi categorical models considered im @200). Here he shows that
the null hypothesis of model adequacy can be rejected dtdeNeD > X%.K_p,l_m where

T is the number of observation&, the number of categories minus one antthe number
of regression parameters to be estimated. Yhapproximation is most accurate when
covariates are categorical and the expected cell countsefibby the cross classification of
the responses and covariates are greater than 5. Altexrggiodness-of-fit tests in ordinal
regression models have been suggested in Lipsitz et al6)19& restrict our attention to
the residual deviance, since we want to use the deviancematmn criterion for the AOP
model, which is closely related to the deviance.
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2.2.2 Deviance Information Criterion for the AOP model

The Deviance Information Criterion (DIC) was suggestedesegal model selection cri-
terion by Spiegelhalter et al. (2002). Model fit is measurgdhe Bayesian deviance
defined asD(0) := —2log{f(y|0)} + 2log{f(y)}. The standardizing termlog{f(v)}
for the AOP model will be set to zero, which is consistent vatlunstructured model.
Model complexity is measured by the effective number of nhpdeameters defined as
pp = D(0) — D(0), whereD(0) := E(D(0)|y) andD(8) = D(E(8|y)). Spiegelhalter
et al. (2002) suggest to use

DIC := D() +2pp = D(8) +pp = 2D(6) — D(6).

as model selection criterion. A model with smaller DIC isfpreed. We note that the DIC
allows for an information theoretic interpretation in expatial family models (van der
Linde 2005) and might be less reliable in non exponentiailfamodels such as the AOP
model.

For the AOP model the parametincludes the cutpoint vectaer, the regression parame-
ter vector3, the autoregressive paramegetand all the latent variablés*. The Bayesian
deviance for the model is

D(#) = —2log f(y|0)

T
= —2) log [O(ax — B — ¢Y;" ) — D(au — 2B — ¢V )] (2.7)
t=1

To compute the DIC, the expressidn @) can be estimated by averaging the tefn®,),
where6; denotes the random sample thdrawn in iteration of the MCMC sampler. The
value of D(8) is given by inserting the corresponding posterior meameg#s in Equation
(2.7).

We mention that the DIC as defined above considers the laseaibles as the focus of the
analysis. However in our application this is not the casevotld be more appropriate to
consider a DIC measure based on the marginalized likelihaadhe likelihood where the
latent variables are integrated out. However this woulalve a very high dimensional
integration (in our application this dimension would 1#2), which is even numerically
intractable.

2.3 Bayes Factors

Since DIC might be unreliable for the AOP model we consideydddfactors based on the
marginal likelihood as an alternative method for model carrgon (see Kass and Raftery
(1995)). Muller and Czado (2005) provided an estimatiarcpdure for the marginal like-
lihood for the AOP model adapting the methods of Chib (199%) &hib and Jeliazkov
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(2001). In particular the Bayes factor of a modé] versus a model/, is given by

m(y| M)
7”(1‘/‘-7\42)7

wherem(y|M) := [ f(y|0, M)p(6|M)d6 is the marginal likelihood of model/. Here

p(0|M) and f(y|60, M) denote the prior of the parameté&sand the likelihood in model
M, respectively. Using the definition of the posterior diatition p(8|y, M) in Model M
the marginal likelihood of Model M can be estimated by
f(y|0°, M)p(6°| M)

p(0°ly, M)

for every value off°. For reasons of efficiency we s@t equal to the posterior mean
estimate off. Wherea(6°|M) can be computed exactly, the other two factors on the
right hand side of (2.8) have to be estimated. To this end ses & particle filter and the
output from reduced runs of the MCMC estimation procedureréviletails can be found

in Muller and Czado (2005). For the AOP models the modelmpatars are given by the
cutpoints, the regression parameters and the autoregrgssiameter.

B(y| M, M) =

m(y|M) = (2.8)

2.4 Pseudo-predictions

One intuitive and quite simple way to investigate the qyadita model fit is to compute
pseudo-predictions. In the proportional odds model thismsehat one predicts the re-
sponse at timeé using ML estimates for the regression parameters and cugpehich are
plugged into the model equations. This results in a forguaiability for each category.
One can use the category with highest forecast probabdifyrediction for the response at
time¢. However, when the ML estimates are based on the whole dateeszall these pre-
dictions more precisely pseudo-predictions. For the AOR@hone uses posterior mean
estimates instead of the ML estimates. Here, of course, Isoenaeds a posterior mean
estimate ofY}* ;.

2.4.1 Pseudo-predictions for the Proportional Odds Model

The fitted probabilities for the proportional odds model &arch category at timeare
defined by

exp (@ + z;0)
1+ exp(ap + x,8)’
exp(ay. + =;8) _exp(@p-1 + )
L+ exp(@x +28) 1+ exp(@1+x3)
k=1,....,K —1,
exp(@x_1 + x,8)
1 + exp(ag_1 + ;)

M = P(K:0|mtaa73):

T = PY,=k|z,a@B) =

Tk = p(YQZKVBt,a,B):l_
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wherea and3 denote maximum likelihood estimates @fand 3, respectively. The cor-
responding pseudo-prediction &f is therefore given by the categoky which has the
highest value among, . . . , Tk

2.4.2 Pseudo-predictions for the AOP model

The corresponding posterior probability estimates in t#PAnodel for each category at
timet are defined by

Ty = p(Yi =0|z, @, B,0,Y, ;) =2@ —z,8—0Y, ),
Tk = p(Yi =k |z, 8,0, ?:—1) = ®(a, —x8 — CbY:—l)
— P(ap —:ctﬁngt 1) k=1,..., K —1,
Tk = PV, =K|z,a,3,0Y,,)=1-0@x—z,8-¢Y, )

wherea, B, ¢, andY’,_, denote posterior mean estimates of the corresponding péeesn
and latent variables. The corresponding pseudo-predicfi®; are therefore given by the
category k which has the highest value amang- - - , Tk

2.4.3 Assessing Model fit based on Pseudo-predictions

Now we suggest to use the pseudo-predictions for model steses. For this we define
the variables”3>* which correspond to the 'observed’ probabilities for catgg: at timet
in contrast to the 'predicted’ probabilities, defined in the previous subsections:

obs .__ 1 if Y= ka
Pi” = { 0 else.

When category: is observed at time, it is clear that a good model fit leads to a high
probability 7, and to small probabilities;; for the other categories # k. A large
difference should be punished more than a small differefideerefore we compute the
verification score introduced by Brier (1950) defined by

1 K T

S:: Tkzz:z Pt%b _ﬁ-tk’

0 t=1

to get an idea of the model fit. Of course, the smaller the vafui# the better the model.
The Brier score has been heavily used to evaluate foreca#ite meteorological sciences
and has the attractive property of being a strictly prop@riag rule (see for example
Gneiting and Raftery (2004)).



3 Analysis of migraine severity data

3.1 Data description and exploratory analysis

We investigate the migraine headache diary of a 35 year ol who is working full-
time as a manager. She suffers from migraine without aurdZgrears. In this study she
recorded her headache four times a day on an ordinal scate@rtw 5, where 0 means
that she did not feel any migraine headache, and 5 the woggame headache she can
feel. For a precise definition of the migraine intensity gatéees see Table 1. The data is
part of a larger study on determinants of migraine headaobléscted by the psychologist
T. Kostecki-Dillon, York University, Toronto, Canada. The&graine headache diary was
completed between January 6, 1995, and September 30, 1985 i8 a period of 268
subsequent days. Therefore the length of the data detd68 = 1 072. In addition also
weather related information on a daily basis was collecldds includes information on
humidity, windchill, temperature and pressure changesdwlirection, and length of sun
shine on the previous day.

Table 1 contains also the frequencies for the six possilsigarese categories in the data
set. As can be seen from this table 150 observations are ahtecqgero which corresponds
to suffering from migraine headaches in about 14% of the .ti@e the one hand we use
covariates which reflect weather conditions, on the othedh=zovariates which contain
information about the measurement time points. A desomptf the covariates in our
analysis is also provided in Table 1. We point out that the iditgnindex is measured
only in the period from May to October and the windchill indexly in the period from
November to April. This means that always only one of theseates is contained in the
data set.

[Table 1 about here]

In the following we conduct a short exploratory analysis.d&scribed in Miller and Czado
(2005), the idea is to compute the average response for edeboty of a categorical

covariate and for intervals, when a continuous covariatemsidered. More precisely for
a continuous covariate,; which falls in an interval | withn; observations, the average
response is given as

Depending on the shape of the graph one can then decide to appeopriate transforma-
tion of the covariate or to use indicator variables, whiglofscourse, the most flexible way
of modeling.

PMND1P (mean pressure change from previous day, cf. Figure 1, toplpaNe group
the observed PMND1P values into six intervals with equal Ineimof observations and



compute the average response for each interval. A lineatioakhip seems to be sufficient,
since a possibly present quadratic part is obviously small.

[Figure 1 about here]

S1P(sunshine on previous day): This covariate has not beeeatel 120 times in the con-
sidered period. The remaining 952 observations are group@tervals. The relationship
is quite linear (not shown), and a sunny day seems to incteagaobability for headache
on the following day, since the average response increasesh& length of the sunshine.
The range of the average response 3.

HDXDD (humidity index): We computed the average response for edehval and de-
cided to use a quadratic transformation. The relative hagiye among these average re-
sponses 0§.83 is a first hint at the importance of this covariate.

WCD (windchill): We use an indicator for windchill. If windchils present, the patient
suffered from more intense migraine headaches.

WDAY (weekday): Because of the periodicity a polynomial or ladanic transformation

does not make sense. Perhaps a sine transformation coulgselde We use indicator
variables since this choice provides the most flexible waynfodeling the influence of
the weekdays. Weekdays were grouped together when theyeshawimilar behavior.
Indicator variables are abbreviated in a natural way. Fangde, the variable TUEWED
is 1 if the measurement was done on a Tuesday or Wednesdagvata O.

MESS (time of measurement, cf. Figure 1, bottom panel): In therafion the average
response is the highest witkb 1. The difference between the range of the average response
iIs0.51 — 0.26 = 0.25. The afternoon indicator HAMP.IND is used.

3.2 Proportional Odds Model Specifications

To determine reasonable mean specifications for the AOP Imgglggnore in an initial
analysis the dependency among the responses and utilizerapertional odds model.
For the proportional odds model we analyzed models witherffit sets of covariates.
As mentioned above, the covariate 'sunshine on previoustaesynot been collected 120
times in the period. We remove these measurements and redudata set to the length
1072 —120 = 952. The three models A, B, and C considered in the following atmé by

a forward selection procedure. In each steptivalues for each covariate were determined
by a Wald test. The covariate with the lowgstalue below the 5% level was included. The
p-values of already included variables were checked thgtrémaain below a 5% level and
otherwise removed. This means that the covariates of ModBl And C are all significant
on the 5% level.

Model A contains only main effects. For time of measuremestge only an indicator for
the afternoon measurement and an indicator for Tuesday dn¥gelay. In Model B and
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C we consider three weekday indicators following our exglory analysis. Furthermore,
in Model B we also allow for three interaction effects, wheseModel C contains nine
interaction components. The covariates which are useceareia Table 2. This table also
gives the ML estimators for the regression coefficients aecttitpoints.

[Table 2 about here]

3.3 AOP Model Specifications

For the AOP model with latent variables given by
Y =58+ oY + €

we investigate two models. For numerical stability we useadates which have been
standardized such that they have empirical mean 0 and ealprariance 1. We call these
standardized covariates; = (z§,, ..., z},;)’, where the components are given by

= :m’ — X,
\/%Z(xtz —1,)?
=1

with 7, = Exm Only indicator variables: ; (wherex,; € {0,1} forallt € {1,...,T})

(3.9)

are not standardlzed The proportional odds model spewtitsafrom above were used
as a starting point for the model specifications of the AOP etedonsidered. If the 95%
credible interval of a parameter contained zero, the cparding covariate was removed
from the model. In this way proportional odds model A and BlleaAOP model | and II,
respectively.

Table 3 shows the posterior mean estimates together withaed 2.5% and 97.5% quan-
tiles for all parameters based on 10 000 iterations with afouiof 1 000 iterations. For
Model I, the 95% credible interval for every main effect doescontain zero, so every co-
variate is significant. For Model II, the 95% credible int&lis/for PMND1P and WEDFR]
contain the value 0. However, these two covariates mustiremahe model since they
appear in an interaction term which is itself significant.céiing to Muller and Czado
(2005), the priors of all regression coefficients were ndnwith mean 0 and standard de-
viation 10, so that they are quite uniformative comparedh&orhagnitude of the estimates

in Table 3. The prior ofy was truncated normal with mean 0 and standard deviation 10,
therefore again quite uninformative ¢n1, 1).

[Table 3 about here]
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4 Results

Now we conduct a model comparison analysis for the five madeéstigated in Sections
3.2 and 3.3. First we consider the proportional odds modé&ts.decide which of the
proportional odds models fits the data best, we use the rdsitviance test of Section
2.2.1. As mentioned there a model does not describe the dataifvnD > x7. ..
Here we havel” = 952 and K = 5. We test on the 5% and 1% level and compute the
p-value. Table 2 shows the results of the deviance analysith&three models. For all
three models the deviande is not larger than the corresponding 99% quantiles of the
x2-distribution, therefore all considered models fit the dauie well. Next we compare
the AOP models using the DIC criterion. The values of the DdCModel | and Model

Il are given in Table 3. The posterior mean of the Bayesiariatee D () is smaller for
Model Il, however the complexity measupg is smaller for the more complex Model I,
which indicates that DIC might not be suitable for AOP modé&lterefore we prefer to
base our model selection on Bayes factors and Brier scoresse#/ from the likelihood
ordinate, that Model Il clearly fits the data better than Mdd@y the likelihood factor
exp(—407.8493 + 417.5238) = 15906.77). However, the prior and the posterior ordinate
punish Model 1l heavily, since it uses four covariates mbantModel I. Therefore, if one
uses the Bayes factor as model selection criterion, onddpoefer the simpler Model | to
describe the data, since following the Bayes factor scaléefffyeys (1961), the evidence
of Model | against Model Il is decisive.

Finally we compare all proportional odds models and AOP nwdsing the pseudo-
predictions defined in Section 2.4. The corresponding Bygarres are given in Table 2
and 3, respectively. We conclude that the two AOP modelsritesthe data better than all
the proportional odds models. The Brier scores chooses Maner all models, which
is consistent with the model selection based on Bayes facldrerefore we conclude that
Model I is the overall preferred model for this data set.

The signs of the regression parameters in Table 3 agreeyreaantywhere with the signs
in Table 2. This means that both the proportional odds madelshe AOP models lead to
the same conclusions, when asking which covariates hawgheaiid which a low value to
reduce the migraine severity. For example from the negaigres for S1P in all models we
conclude that a sunny day increases the headache sevetiity naxt day. This agrees with
our conjecture from the exploratory analysis. The indicipafternoon, HAPM.IND, also
has a coefficient with negative sign. Again this approvesammjecture: The afternoon
headache is usually worse than in the morning, at noon, andgitine night. Considering
the coefficients of the weekday indicators in Model Il we dest the headache is worse
between Wednesday and Saturday which might be a conseqgokandgover)exertion on
the job.

We provide now a quantitative interpretation of the covarieffects in the AOP models.
For this we match the first two moments of the standard normséiloution to the logistic
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distribution to give the approximation

exp <l2>
D(2) ~ v )
14+ exp (%z)

For the AOP model it follows that the cumulative log oddsa@tik|x;) for category k at
time t and covariate vectat; can be approximated by

. Fy(kle)) \ 0w ) .
lt(k‘wt> T lOg (1 _ Ft(k\wt) ~ \/g(ak mtﬁ ¢}/;—1)7 (410)
whereF,(k|xz,) := P(Y; < k|lxy, a0, B,0,Y," ;) = ®(ar, — 3 — ¢Y,* ;). Therefore the
scaled impact of covariate; defined as

V3

approximates the effect on the cumulative log odds rati@mthe remaining covariates are
set to zero. Note thaf;(k|x;) corresponds to the probability of experiencing a headache
of category k or worse at time t and covariate veatgrsince we us&,° = 5 — Y; in the
AOP models. Since we used standardized covariates a zemeastbized covariate value
corresponds to the average value of the unstandardizediatevaThe scaled impacts of
the unstandardized covariates HDXDD and S1P are given ir&i®. Recall that HDXDD
enters the model in a quadratic fashion. The correspond®g &edible intervals show
that the data provides much more evidence of a sunshind efiigbe previous day than a
humidity effect.

(Bo + Bjzj)

[Figure 2 about here]

Using 4.10 we can approximate the cumulative odds ratioghany

Ft(kz\w1) -
l—Ft(k":ln) /
e~ exP{—7= (22 — 1) 8},
Fi(k|e2)
l—zﬂ(kz\wg) \/g

when the covariate vector is changed fram = x; to x; = x5. Note that this quantity is
independent of category k,andY}* ;. Table 4 gives these cumulative odds ratio changes
when a single covariate is changed. The remaining covarates are held fixed. We see
that the presence of windchill has the largest impact on timeutative odds ratio change
followed by a PM measurement and exposure to sunshine orr¢veops day. The evi-
dence for a humidity effect on the cumulative odds ratio ¢gfeais marginal since the 95%
credible intervals contain 1. In particular this means thatodds of having a headache
of severity k or worse is 4.6 (2.93) times higher when windd#M measurement) is
present compared to being absent. Five hours more sunghithe @revious day changes
the cumulative odds ratio by a factor of 1.30.

13



[Table 4 about here]

Finally we note that the autoregressive component for ttemtdime seried’* is around
0.8 indicating large positive dependency among the ordirt@hsity measurements.

In summary we recommend to this patient to avoid windchidl Bong sunshine exposures.
The evidence for a humidity, workday and pressure changetef too small to warrant

specific recommendations with regard to these variablesth&uthe chance of experi-
encing a headache compared to no headache is about threehiigher in the afternoon

compared to other times of the day.

5 Conclusions

The importance of using time series models to evaluate mvjthtient migraine headache
diaries has also been recognized in a recent paper by Hoale é2005). As in Prince
et al. (2004) they study the daily total and maximum score éwar measurements of a
patient over one month. They recognized that this appro&dtdsyonly a time series of
length 28, which is considered too short to make significamictusions about the time
series properties. In contrast our approach uses nongaggredata and thus longer time
series. In addition we avoid information loss due to datareggfion. The analysis of
Houle et al. (2005) showed the presence of positive auteladions between successive
values of their daily outcome measures. They however dogrdider time series models
to account for this autocorrelation due to their short tirmees length. Further, they only
included a linear time trend as explanatory variable foirtheadache outcome variable.
Our approach overcomes these short comings - short timessguie to data aggregation,
no model based adjustment for autocorrelation and a verteldhset of explanatory factors
for headache activity.

For our approach we applied the autoregressive orderedi pA@P) model suggested by
Muller and Czado (2005) to an ordinal valued time seriesirgifrom headache intensity
assessments. Here the ordered categories are producedshhtblding a latent real-valued
time series with regression effects. To model the depeneemong the measurements
the latent time series includes not only regression compuisraut also an autoregressive
component. Parameter estimation is facilitated using apggd move multigrid Monte
Carlo (GM-MGMC) Gibbs sampler in a Bayesian setting. Modetse compared using
Bayes factors and the Brier score based on pseudo prediciigmalso show that the DIC
model selection criterion is problematic for AOP models.

For the migraine headache intensity data the latent timessshows a high first order
autocorrelation of around 0.8 demonstrating considerdblgendence among the ordi-
nal measurements. For this patient we were able to demtmsiwasiderable impact of
weather related variables such as the present of windctdllsanshine length. This sup-
ports the conclusions of Prince et al. (2004) who showeddbate patients are sensitive

14



to weather. Specific recommendations to this patient to ddive risk factors for severe
migraine headaches have been provided. Even though andudianalysis offers the op-
portunity to develop more precise migraine control mecérasi it is of interest to identify

common risk factors in groups of patients. This problem ésgtibject of current research.
For long individual patient diaries it would be intersting éxtend our first order AOP

models to higher orders and this will also be pursued in theéu
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Table 1: Description of response scales with observed &ecjes and weather and time
measurements related covariates

Response categories
intensity frequency condition

0 922 No headache

1 27 Mild headache: Aware of it only when attending to it

2 46 Moderate headache: Could be ignored at times

3 47 Painful headache: Continuously aware of it, but ablésid s
or continue daily activities as usual

4 24 Severe headache: Continuously aware of it. Difficult to
concentrate and able to perform only undemanding tasks

5 6 Intense headache: Continuously aware of it, incapauitat

Unable to start or continue activity.

weather conditions

PMND1P mean pressure change since previous day in 0.0lakitap

S1P length of sunshine on previous day in hours

HDXDD humidity index based on maximal temperature and hutyid
only in period May to October, 0 otherwise

WCD windchill index based on minimal temperature and winelesh
only in period November to April, O otherwise

WC.IND indicator for windchill: 1 if WCD unequal 0, O otherse

time of measurement

WDAY weekday, also coded by 1 (Monday) to 7 (Sunday)

MESS time of measurement. HAAM = morning (also coded by 1),
HANOON = noon (2), HAPM = afternoon (3),
HABED = late evening (4)

HAPM.IND indicator for afternoon: 1 if MESS=HAPM, 0 otherséa
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Table 2: Maximum likelihood estimates of regression patanseand cutpoint parameters,
residual deviances and Brier scores using the proportamad model ignoring dependency

Model A Model B Model C
weather conditions
HDXDD; -0.4592 -0.4513 -0.4011
HDXDD? 0.0109 0.0106 0.0097
S1R -0.1055 -0.1205 -0.0651
WC.IND; -4.6821 -4,7190 -4.3610
PMND1PR. 0.0035 -0.0149 -0.0147
time of measurement
HAPM.IND; -0.4719 -0.5051 -0.5433
TUEWED, 0.5298
TUESUN -0.2180 -1.0196
WEDFRJ, -0.2542 1.9105
THUSAT, -0.3935 -0.5628
interactions
PMNDI1R - TUESUN 0.0150 0.0174
PMND1PR - WEDFR}; 0.0284 0.0297
PMNDI1PR - THUSAT; 0.0185 0.0188
S1R - TUESUN 0.0703
S1R - WEDFRJ; -0.2218
S1R - THUSAT; -0.0413
WC.IND; - TUESUN 0.5248
WC.IND; - WEDFRJ, -0.9426
WC.IND; - THUSAT, 1.3245
cutpoints
oo 6.8128 7.3810 6.5040
o 7.0478 7.6272 6.7591
e 7.6310 8.2314 7.3874
a3 8.6903 9.3101 8.5073
oy 10.2024 10.8279 10.0509
residual deviance (df) 1106(4753) 1083(4748) 1056 (4742)
Brier score .2545 .2467 .2405
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Table 3: Posterior mean and quantile estimates for staimardegression parameters and
cutpoint parameters using the AOP model and their deviamimgnnation criterion and
Brier score

Model | Model Il

2.5% mean 97.5% 2.5% mean 97.5%
intercept 0.8817  1.2969 1.7624 1.0610 1.4764 1.9456
weather conditions
HDXDD; -2.3685 -1.2880 -0.3530 -2.3874  -1.3548 -0.4171
(HDXDD?)* 0.4096  1.1552 2.0173 0.4616 1.2054 2.0311
S1E -0.2368 -0.1322 -0.0314 -0.2688 -0.1619 -0.0569
WC.IND; -1.6215 -0.8410 -0.1464 -1.6499 -0.8959 -0.2006
PMND1F -0.1331 -0.0172 0.0937
time of measurement
HAPM.IND, -0.9163 -0.5924 -0.2612 -0.9194 -0.5769 -0.2469
WEDFRJ, -0.2672  -0.0079 0.2609
THUSAT, -0.5213 -0.2899 -0.0535
interactions
PMND1F
x WEDFRI; 0.0839 0.3077 0.5402
autoregressive parameter
10) 0.7404  0.8077 0.8718 0.7250 0.7932 0.8541
cutpoints
o 0.4706 0.7314 1.0221 0.4596 0.7383 1.1732
Q9 1.0821 1.3851 1.6962 1.1002 1.4021 1.8384
Qs 1.5870 1.8979 2.2151 1.6049 1.9250 2.3588
oy 1.8548 2.1704 2.5127 1.8644 2.2013 2.6321
deviance information criterion

D(9) PD DIC D(9) PD DIC

799.6967 97.8068 897.5035 787.8536 92.5850 880.4387
Bayes factor

log(f(y|0°, M)) -417.5238 -407.8493
log(p(6°|M)) -26.6353 -39.5151
log(p(6°|y, M)) 16.8070 22.7356
log(m(y|M)) -460.9661 -470.1000
Bayes Factor of Model | versus Model#H exp(—460.9661 + 470.1000) = 9 264.08
Brier score

0.1688 0.1724
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Figure 2: Scaled Impacts for humidex (solid) and sunshio&éd) with 95% CI’s

Table 4: Posterior mean and quantile estimates of the cuweiladds changes for AOP
Model |

cumulative odds change 2.5% mean 97.5%
humidex from 10to 20 0.08 0.66 5.31
humidex from20t0o 30 0.10 1.49 21.73
humidex from30to 40 0.14 3.34 88.99
humidex from40to 50 0.18 7.48 364.19
humidex from 20to 40 0.01 4.97 1934.80

2 hr more sunshine 1.02 1.11 1.21
5 hr more sunshine 1.06 1.30 1.60
10 hr more sunshine 1.13 1.69 2.54

Windchill from present
toabsent 1.30 4.60 18.94

PM measurement to
no PM measurement 1.60 2.93 5.27
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