
Maxima of stochastic processes driven by fractional

Brownian motion

Boris Buchmann ∗ Claudia Klüppelberg †
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Abstract

We study stationary processes given as solutions to SDEs driven by fractional Brow-
nian motion (FBM). This class includes the fractional Ornstein-Uhlenbeck process
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transformations of the FOUP. An explicit formula in terms of Euler’s Γ-function
describes the asymptotic behaviour of the covariance function of FOUP near zero,
which, by an application of Berman’s condition, guarantees that the FOUP is in the
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of attraction of solutions of FBM-driven SDEs.
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1 Introduction

Let (Ω,F , P ) be a complete probability space carrying a two-sided fractional Brownian

motion (BH
t )t∈R (FBM) with Hurst index H ∈ (0, 1), i.e., a centred Gaussian process with

covariance function

EBH
t B

H
s =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
s, t ∈ R . (1.1)

FBM has stationary increments and it is selfsimilar, i.e. for all c ∈ R,

(BH
ct )

d
= |c|H(BH

t ) , t ∈ R ,

in particular, BH
0 = 0. A Hurst index of H = 1/2 corresponds to standard Brownian

motion. Further properties can be found in Samorodnitsky and Taqqu [14].

Our goal is to investigate the asymptotic behaviour of partial maxima of stationary

solutions X given by a SDE of the form

Xt −Xs =

∫ t

s

µ(Xu) du+

∫ t

s

σ(Xu) dB
H
u , s ≤ t . (1.2)

The integrals are interpreted pathwisely as Riemann-Stieltjes integrals. For an analytic

treatment and conditions on µ and σ for the existence of such solutions we refer to

Buchmann and Klüppelberg [5].

A prominent example is the Ornstein-Uhlenbeck model, which corresponds to linear

µ and constant σ. More precisely, for γ, σ > 0 define the fractional Ornstein-Uhlenbeck

process (FOUP) by

OH,γ,σ
t = σ

∫ t

−∞
e−γ(t−s)dBH

s , t ∈ R . (1.3)

The process OH,γ,σ = (OH,γ,σ
t )t∈R is stationary and solves pathwisely the SDE

Ot −Os = −γ
∫ t

s

Oudu+ σ(BH
t −BH

s ) , s ≤ t . (1.4)

As OH,γ,σ is a Gaussian process classical results due to Pickands [11] and Berman [1] apply

giving a limit result for partial maxima. Standard references summarizing the extreme

value theory of Gaussian processes are Berman [2], Leadbetter, Lindgren and Rootzén [10]

and Piterbarg [12]. Explicit calculations concerning the FOUP are presented in Section 2

of the present paper.

As was shown in [5], under certain conditions on µ and σ, the solution X to (1.2) can

be represented as a state space transform of the FOUP. Consequently, in Section 3 we

investigate the full class of processes which can be obtained from FOUP by state space
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transforms. Necessary and sufficient conditions are given to characterize the maximum

domain of attraction for such processes.

In Section 4 we return to the original problem. In the framework of [5] we obtain

necessary and sufficient conditions to characterize the maximum domain of attraction

for stationary solutions of (1.2). These results are based on asymptotic inversion results,

whose proofs are found in Appendix C.

Our approach bears some similarity to Davis [8] and Borkovec and Klüppelberg [4],

who investigated the extremal behavior of diffusion processes given as solutions to SDEs

driven by Brownian motion. Whereas they used the classical OU process as a reference

process to obtain the extreme behaviour of other families of diffusion processes, we use

the fractional OU process instead. In that papers scale functions and time changes of the

classical Ornstein-Uhlenbeck process are the core arguments. As such methods do not

exist for processes driven by FBM we use some slightly different, but related approach.

2 Maxima of fractional Ornstein-Uhlenbeck processes

For any continuous time process X = (Xt)t≥0 we say it belongs to the domain of attraction

of some extreme value distribution G, and we write X ∈ MDA(G), if there exist norming

constants aT > 0 and bT ∈ R (T ≥ 0) such that

a−1
T

(
max

0≤t≤T
Xt − bT

)
d→ G ,

where throughout
d→ denotes convergence in distribution as T →∞.

Possible extreme value distributions are the Fréchet distribution Φα (α > 0), the

Gumbel distribution Λ and the Weibull distribution Ψα (α > 0). For details on standard

extreme value theory we refer to Embrechts, Klüppelberg and Mikosch [9] or Leadbetter

et al. [10].

In this section we derive the extreme behaviour of the FOUP given in (1.4). As it

is a Gaussian process we can apply the theory of Pickands [11] and Berman [1, 2]. The

behaviour of partial maxima of a Gaussian process can be related to the behaviour of the

covariance function in zero and infinity. We define for any t ∈ R the covariance function

ρH,γ,σ(h) = EOH,γ,σ
t OH,γ,σ

t+h , h ∈ R .

As FOUP is stationary the function ρH,γ,σ(·) does not depend on t. Throughout this

paper we write OH = OH,1,1 and ρH = ρH,1,1. In the following Lemma we summarize some

properties of ρ (see Appendix A for a proof).

Lemma 2.1. (a) Symmetry: ρH,γ,σ(h) = ρH,γ,σ(|h|).

3



(b) Scaling property: ρH,γ,σ(h) =
σ2

γ2H
ρH(γh).

(c) Asymptotic behaviour at infinity [Cheridito, Kawaguchi and Maejima [7]]:

ρH,γ,σ(h) =


1

2

σ2

γ
exp(−γ|h|) , H = 1/2 ,

O(h2H−2) , h→∞ , H 6= 1/2 .
(2.1)

(d) Asymptotic behaviour for h→ 0:

ρH,γ,σ(h) =



Γ(2H+1)

2

σ2

γ2H
− σ2

2
|h|2H + o(|h|) H < 1/2 ,

1

2

σ2

γ
e−γ|h| H = 1/2 ,

Γ(2H+1)

2

σ2

γ2H
− σ2

2
|h|2H +

Γ(2H+1)

4

σ2

γ2H−2
|h|2 + o(|h|2) H > 1/2 .

Now we can formulate a result for the partial maxima of a FOUP.

Theorem 2.2. Let γ, σ > 0. Then

(σ aH,γT )−1

{
max

0≤t≤T
OH,γ,σ
t − σ bH,γT

}
d→ Λ ,

where

aH,γT = γ−H
Γ(2H+1)1/2

2(log T )1/2
,

bH,γT = γ−H
Γ(2H+1)1/2

√
2(

2(log T )1/2 +
1−H

2H

log log T

(log T )1/2
+
C(H, γ)

(log T )1/2

)
,

C(H, γ) = log
(
γ Γ(2H+1)−1/(2H)H2H(2π)−1/22(1−H)/(2H)

)
,

and H2H is Pickands’ number.

Proof. We apply the following result on Gaussian processes due to Pickands [11] and

Berman [1]; see e.g. Theorem 12.3.5 of Leadbetter et al. [10]. For any normal process

(Xt)t≥0 such that Berman’s conditions hold, i.e.,

EXhX0 =

{
1− d|h|2H + o(|h|2H) h→ 0 ,

o((log h)−1) h→∞ .
(2.2)

for constants d > 0 and H ∈ (0, 1), we have

(2 log T )1/2

{
max

0≤t≤T
Xt − βT (H, d)

}
d→ Λ
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where

βT (H, d) = (2 log T )1/2 +
1−H

2H

log log T

(2 log T )1/2
+

ψ(H, d)

(2 log T )1/2
,

ψ(H, d) = log
(
d1/(2H)H2H (2π)−1/22(1−H)/(2H)

)
.

For t ∈ R define a normal process XH,γ,σ
t := (ρH,γ,σ(0))−1/2 OH,γ,σ

t . Condition (2.2) for

h→∞ is ensured by (2.1). From Lemma 2.1 (d) we obtain for d = γ2H/Γ(2H+ 1)

EXH,γ,σ
h XH,γ,σ

0 = 1− (ρH,γ,σ(0))−1 σ
2

2
|h|2H + o(|h|2H) = 1− d |h|2H + o(|h|2H)

Hence for this value d,

(2 log T )1/2

{
max

0≤t≤T
XH,γ,σ
t − βT (H, d)

}
d→ Λ

and, therefore, defining aH,γT as stated in the theorem, we obtain

(σaH,γT )−1

{
max

0≤t≤T
OH,γ,σ
t − σ

γH

(
Γ(2H+ 1)

2

)1/2

βT (H, d)

}
d→ Λ .

Choosing C(H, γ) = ψ(H, γ2H/Γ(2H+ 1)) this proves the result.

Remark 2.3. (a) We write from now on OH,γ
t = OH,γ,1

t . Setting MH,γ
T = max0≤t≤T O

H,γ
t

we see that
bH,γT

aH,γT

(
MH,γ

T

bH,γT

− 1

)
d→ Λ .

As bH,γT /aH,γT →∞ we conclude MH,γ
T /bH,γT

P→ 1, hence the distribution of MH,γ
T becomes

less spread around bH,γT as T gets large. Consequently, bH,γT describes the growth of the

partial maxima for large T quite precisely.

(b) Observe that aH,γT bH,γT → 1/δH,γ = Γ(2H+1)/(γ2H 21/2). The convergence to types

theorem (see Theorem A1.5 of Embrechts et al. [9]) allows for different scaling, namely,

δH,γ bH,γT (MH,γ
T − bH,γT )

d→ Λ .

(c) The constant H2H is Pickands’ number. For the definition of the constant we refer to

Leadbetter et al. [10]. The precise shape of the curve H 7→ H2H is unknown, a simulated

curve can be found in Burnecki and Michna [6]. �
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3 State space transforms and extremes

In this section we extend the maximum domain of attraction result for the FOUP to more

general processes. We will use the notations of Remark 2.3 throughout; in particular, we

set σ = 1.

In Buchmann and Klüppelberg [5] we denoted a function f : R → R a state space

transform (SST), if f is continuous and strictly increasing. A SST f maps R to an open

interval I = (l, r) = f(R) which is called the state space of f . Defining XH,γ,f
t := f(OH,γ

t ),

t ∈ R, this yields a rich class of stationary processes driven by FBM on arbitrary open

intervals I.

The next theorem gives necessary and sufficient conditions on the SST f for XH,γ,f ∈
MDA(Λ).

Theorem 3.1. Let f : R→ R be a SST with XH,γ,f
t := f(OH,γ

t ), t ∈ R, as above.

(a) Assume that

lim
y→∞

f(y + x/y)− f(y)

f(y + 1/y)− f(y)
= x for all x ∈ R . (3.1)

Then for δH,γ as in Remark 2.3 (b),

δH,γ

f(bH,γT + 1/bH,γT )− f(bH,γT )

{
max

0≤t≤T
XH,γ,f
t − f(bH,γT )

}
d→ Λ .

(b) Assume there exist norming constants ãT > 0 and b̃T ∈ R such that

ã−1
T

{
max

0≤t≤T
XH,γ,f
t − b̃T

}
d→ Λ ,

then (3.1) holds and possible choices of the norming constants are

ãT =
1

δH,γ

(
f
(
bH,γT + 1/bH,γT

)
− f(bH,γT )

)
, b̃T = f(bH,γT ) .

Proof. Let MT = MH,γ
T and M̃T = max0≤t≤T X

H,γ,f
t . As f is increasing, M̃T = f(MT ).

We abbreviate bT = bH,γT and δ = δH,γ and recall that bT →∞ for T →∞. Furthermore,

observe that T 7→ bT is strictly increasing for all sufficiently large T .

(a) For those T , gT : R→ R is well-defined, where

gT (x) = δ
f (bT + x/(δ bT ))− f(bT )

f (bT + 1/bT )− f(bT )
.

Assumption (3.1) implies limT→∞ gT (x) = x for all x ∈ R. Furthermore,

P

(
MT ≤ bT +

x

δ bT

)
= P

(
δ

f(bT +1/bT )− f(bT )

(
f(MT )− f(bT )

)
≤ gT (x)

)
= P

(
δ

f(bT +1/bT )− f(bT )

(
M̃T − f(bT )

)
≤ gT (x)

)
.
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In particular, by Remark 2.3 (b), the left-hand side converges to Λ(x) pointwisely. Thus,

Lemma B.1 (a) of the Appendix applies.

(b) As above we write P (MT ≤ bT + x
δ bT

) = P (ã−1
T (M̃T − b̃T ) ≤ g̃T (x)), where

g̃T (x) = ã−1
T

(
f (bT + x/(δ bT ))− b̃T

)
. (3.2)

By Lemma B.1 (b) we obtain g̃T (x)→ x for all x ∈ R. In particular,

f(bT )− b̃T
ãT

= g̃T (0)→ 0 ,

1

δ

f(bT +1/bT )− f(bT )

ãT
=

1

δ
(g̃T (δ)− gT (0)) → 1 .

By the convergence to types theorem we conclude that (f(bT+1/bT )−f(bT ))/δ and f(bT )

are a possible choice for ãT and b̃T , respectively. Plugging ãT = (f(bT +1/bT )−f(bT ))/δ

and b̃T = f(bT ) into (3.2) this yields(
f

(
bT +

x

bT

)
− f(bT )

) (
f

(
bT +

1

b T

)
−f(bT )

)−1

=
1

δ
g̃T (δx) ,

and the right-hand side converges to x for all x ∈ R; thus, (3.1) holds.

The following example illustrates condition (3.1).

Example 3.2. Let q ∈ (0, 2]. Let f : R→ R be a SST given by f(x) = exp(xq), x > 0.

(a) If q ∈ (0, 2) then for all x ∈ R

lim
y→∞

f(y + x/y)− f(y)

f(y + 1/y)− f(y)
= lim

y→∞

exp( yq [ (1 + x/y2)q − 1 ] ) − 1

exp( yq [ (1 + 1/y2)q − 1 ] ) − 1
= x ,

Therefore, XH,γ,f ∈ MDA(Λ).

(b) If q = 2, then for all x ∈ R

lim
y→∞

f(y + x/y)− f(y)

f(y + 1/y)− f(y)
= lim

y→∞

e2x+x2/y2 − 1

e2+1/y2 − 1
=

e2x − 1

e2 − 1
.

Thus, XH,γ,f /∈ MDA(Λ). More precisely, Theorem 3.6 below will show that XH,γ,f ∈
MDA(Φα). �

Under the additional hypothesis of differentiability the next corollary provides an

efficient method to calculate norming constants as is illustrated in Corollaries 3.4 and 3.5.
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Corollary 3.3. Let f be a SST, differentiable on (z0,∞) with f ′(z) > 0 for all z ∈
(z0,∞). Assume that

lim
z→∞

f ′(z + x/z)

f ′(z)
= 1 locally uniformly in x . (3.3)

Then
1

aH,γT f ′(bH,γT )

{
max

0≤t≤T
XH,γ,f
t − f(bH,γT )

}
d→ Λ . (3.4)

Proof. Let x ∈ R. For all y > 0 sufficiently large we find θy ∈ [0, 1] and θ̃y ∈ [0, 1] such

that

f(y + x/y)− f(y)

f(y + 1/y)− f(y)
= x

f ′(y + θyx/y)

f ′(y)

f ′(y)

f ′(y + θ̃y/y)
→ x , y →∞ .

Therefore, (3.1) follows from (3.3); consequently, XH,γ,f ∈ MDA(Λ).

Furthermore, for some θ̄T ∈ [0, 1] and the quantity δH,γ in Remark 2.3 (b),

1

δH,γ
f(bH,γT + 1/bH,γT )− f(bH,γT )

aH,γT f ′(bH,γT )
=

1

δH,γ
1

aH,γT bH,γT

f ′(bH,γT + θ̄T/b
H,γ
T )

f ′(bH,γT )
→ 1 ,

thus, (3.4) follows by the convergence to types theorem.

Corollary 3.4. Let ` be a slowly varying function on [x0,∞) for some x0 > 0; i.e.,

` : [x0,∞)→ R
+ measurable and limx→∞ `(tx)/`(x) = 1 for all t > 0.

If f is a SST with state space I = (l, r), differentiable on (x0,∞), such that for some

p ∈ R
f ′(x) = xp `(x) for all x > x0 ,

then XH,γ,f ∈ MDA(Λ).

Define

cH,γp = 2(p−2)/2 γ−H(p+1) Γ(2H+1)(p+1)/2, ãT = cH,γp (log T )
1
2

(p−1) `((log T )1/2) . (3.5)

Then ãT and b̃T = f(bH,γT ) are a possible choice of normalizing constants.

Proof. By Theorem 1.5.2 of Bingham et al. [3] convergence in regular variation is locally

uniform; thus, locally uniformly in x

lim
z→∞

f ′(z + x/z)

f ′(z)
= lim

z→∞

`(z(1 + x/z2))

`(z)
= 1 .

Consequently, XH,γ,h ∈ MDA(Λ) by Corollary 3.3.

According to (3.4) we find aH,γT f ′(bH,γT ) ∼ ãT as given in (3.5); thus, ãT and b̃T = f(bH,γT )

are a possible choice of normalizing constants by the convergence to types theorem.
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Corollary 3.5. Let ` be a slowly varying function on [x0,∞) for some x0 > 0.

If f is a SST with state space I = (l, r), differentiable on (x0,∞), such that for some

p ∈ R, q ∈ (0, 2) and κ 6= 0

f ′(x) = xp `(x) exp(κxq) for all x > x0 ,

then XH,γ,f ∈ MDA(Λ).

Let cH,γp be the quantity in (3.5) and define

c̃H,γq = 2q/2 γ−qH Γ(2H+1)q/2 ,

ãT = cH,γp (log T )
1
2

(p−1) `((log T )1/2) exp
(
κc̃H,γq (log T )q/2

)
.

(a) If κ > 0 then r =∞ and ãT and b̃T are a possible choice of the normalizing constants,

where

b̃T = (qκ)−1 (bH,γT )p−q+1 `(bH,γT ) exp(κ(bH,γT )q) .

(b) If κ < 0 then r <∞ and ãT and b̃T are a possible choice of the normalizing constants,

where

b̃T = r + (qκ)−1 (bH,γT )p−q+1 `(bH,γT ) exp(κ(bH,γT )q) .

Proof. In view of Corollary 3.4, in order to prove (3.3), it suffices that for 0 < q < 2,

locally uniformly in x

(z + x/z)q − zq = q x zq−2 + o(zq−2) = o(1) , z →∞ .

Hence Corollary 3.3 applies and XH,γ,f ∈ MDA(Λ). As q < 2, observe that

aH,γT f ′(bH,γT )/ãT ∼ exp
(
O
(
(log T )(q−2)/2 log log T

))
→ 1 .

If κ > 0 then f(x) → ∞ as x → ∞, hence r = ∞. Without loss of generality suppose

that x0 > 0. For x ≥ x0 substitute z = (log z̄)1/q; this yields

f(x)− f(x0) = q−1

∫ exp(xq)

exp(xq0)

z̄κ−1
(

log z̄
)(p−q+1)/q

`
(
(log z̄)1/q

)
dz̄ .

Karamata’s theorem applies to κ > 0 and for η := exp(xq)→∞,

q−1

∫ η

η0

z̄κ−1
(

log z̄
)(p−q+1)/q

`
(
(log z̄)1/q

)
dz̄ ∼ (qκ)−1 ηκ

(
log η

)(p−q+1)/q
`
(
(log η)1/q

)
.

Thus, for x→∞,

f(x)− f(x0) ∼ ψ(x) , ψ(x) = (qκ)−1 `(x) xp−q+1 exp(κxq) .
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Note that ãT →∞ and ã−1
T ψ(bH,γT ) = O((log T )(2−q)/2); thus,

lim
T→∞

ã−1
T

(
f(bH,γT )− ψ(bH,γT )

)
= 0 .

An application of the convergence to types theorem implies (a).

The proof of (b) is similar.

Now we want to derive an analogon of Theorem 3.1 for the domain of attraction of

the Fréchet distribution. To this end we use the fact that by a logarithmic transformation

â−1
T (H, γ) max

0≤t≤T
XH,γ,f
t

d→ Φα ,

for some α > 0 if and only if

α

{
max

0≤t≤T
logXH,γ,f

t − log âT

}
d→ Λ .

Using this result, we can translate Theorem 3.1.

Theorem 3.6. Let f : R→ R be a SST.

(a) Assume that there exist κ > 0 and z0 ∈ R such that for all z ≥ z0 both f(z) > 0 and

log f(z) =
1

2
κz2 + h(z) , (3.6)

where h : R→ R satisfies

lim
z→∞

h(z + x/z)− h(z) = 0 for all x ∈ R . (3.7)

Then for α = δH,γ/κ (δH,γ as in Remark 2.3 (b)),

1

f(bH,γT )
max

0≤t≤T
XH,γ,f
t

d→ Φα .

(b) Assume there exist norming constants âT > 0 such that

1

âT
max

0≤t≤T
XH,γ,f
t

d→ Φα ,

then a possible choice of normalizing constants are âT = f(bH,γT ).

Furthermore, there exist h : R → R satisfying (3.7) and z0 ∈ R such that both f(z) > 0

and log f(z) = 1
2
κz2 + h(z) hold for all z ≥ z0, where κ = δH,γ/α.
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Proof. (a) Let M̃T = max0≤t≤T X
H,γ,f
t and MT = MH,γ

T . We abbreviate bT = bH,γT and

δ = δH,γ. Set x = α log y for y > 0. Observe that,

Φα(y) = Λ(x) = lim
T→∞

P (MT ≤ bT + x/(δ bT ))

= lim
T→∞

P

(
1

f(bT )
M̃T ≤

f (bT + x/(δ bT ))

f(bT )

)
= lim

T→∞
P

(
1

f(bT )
M̃T ≤ y θT (α log y)

)
, (3.8)

where we have set

log θT (x) =
κ

2

(
x

δ bT

)2

+ h

(
bT +

x

δ bT

)
− h(bT ) .

Assumption (3.7) implies y θT (α log y)→ y for all y > 0. Thus, Lemma B.1 (a) applies to

the limit in (3.8) and gT : R+ → R, gT (y) := y θT (α log y).

(b) Let y > 0 and x = α log y. Replacing f(bT ) by âT in the proof of (a) we obtain

Φα(y) = Λ(x) = lim
T→∞

P

(
1

âT
M̃T ≤ g̃T (y)

)
,

where g̃T : R+ → R is defined by

g̃T (y) =
1

âT
f

(
bT +

α

δ

log y

bT

)
. (3.9)

Lemma B.1 (b) applies to gT , i.e., gT (y) → y for all y ∈ R+. Specializing to y = 1, this

yields f(bT ) ∼ âT ; thus, f(bT ) is a possible choice for âT by the convergence to types

theorem.

Plugging âT = f(bT ) and κ = δ/α into (3.9), this yields for T →∞ and y ∈ R+

1

f(bT )
f

(
bT +

1

κ

log y

bT

)
→ y .

Equivalently, for x ∈ R,

lim
z→∞

f(z + x/z)

f(z)
= exp(κx) .

As f(bT ) ∼ âT where âT > 0 there exists z0 such that f(z) > 0 for all z ≥ z0. Set

h(z) = log f(z)− 1
2
κz2 for z ≥ z0 and h(z) = 1 for z < z0. Observe

h(z + x/z)− h(z) = log
f(z + x/z)

f(z)
− κx− 1

2

x2

z2
, z, z + x/z ≥ z0 .

Thus, h is a function satisfying (3.7).
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Remark 3.7. (a) Boundedness of h in (3.6) does not imply (3.7). To see this, let h(x) =

sin(x2), then

h(z + x/z)− h(x) = 2 cos(z2 + x+ x2/(2z2)) sin(x+ x2/(2z2)) .

Thus, for all x ∈ R\(πZ) the limit in (3.7) for z →∞ does not exist.

(b) Observe that Theorem 3.6 covers Example 3.2 (b) with κ = 2 and h ≡ 0 in (3.6).

Furthermore, suppose that h satisfies (3.7) and, in addition, h(z) → 0 for z → ∞. Then

the scaling constants âT depend on κ and bH,γT only; i.e., we may choose

âT = exp

(
κ

2
(bH,γT )2

)
∼ f(bH,γT ) .

(c) In general, knowledge of κ alone is not sufficent to calculate the scaling constants

âT . Therefore, observe that (3.7) holds for h(x) = κpx
p, x > 0, even when p ∈ [0, 2) and

κp 6= 0. But, for any choice of âT we must have that âT ∼ exp
(

1
2
κ(bH,γT )2 + κp(b

H,γ
T )p

)
. As

bH,γT →∞ the scaling constants âT clearly depends on both κp and p. �

The following corollary complements Corollary 3.3.

Corollary 3.8. Let f be a SST, differentiable on (z0,∞) for some z0 ∈ R.

Assume that f(z) > 0 for all z > z0 and

lim
z→∞

(log f)′(z + x/z)

z
= κ ∈ (0,∞) , locally uniformly in x .

Then for α = δH,γ/κ,
1

f(bT )
max

0≤t≤T
XH,γ,f
t

d→ Φα .

Proof. Set h(z) = log f(z) − 1
2
κz2. Then h is absolutely continuous on [x0,∞) and we

obtain

h(z + x/z)− h(z) = x

∫ 1

0

(log f)′(z + αx/z)

z
dα− κx− 1

2
κx2/z2 ,

the right-hand side tends to zero for z → ∞ by dominated convergence. Theorem 3.6

applies.

For completeness we state the analogous results for the Weibull distribution.

Theorem 3.9. Let f : R→ R be a SST with state space I = (l, r) ⊆ R, where r <∞.

(a) Suppose that there exists κ > 0 and z0 ∈ R such that for all z ≥ z0 both r− f(z) > 0

and

log(r − f(z)) = −1

2
κz2 + h(z) ,

12



where h : R→ R satisfies (3.7). Then, for α = δH,γ/κ,

1

r − f(bH,γT )

(
max

0≤t≤T
XH,γ,f
t − r

)
d→ Ψα .

(b) Assume there exist norming constants āT > 0 such that

1

āT

(
max

0≤t≤T
XH,γ,f
t − r

)
d→ Ψα ,

then possible choices of norming constants are āT = r − f(bH,γT ).

Furthermore, there exist h : R→ R satisfying (3.7) and z0 ∈ R such that both r−f(z) > 0

and log(r − f(z)) = −1
2
κz2 + h(z) hold for all z ≥ z0, where κ = δH,γ/α.

Proof. Set x = −α log |z| for z < 0 and α = δH,γ/κ. Observe that Ψα(z) = Λ(x). The

result follows along the lines of the proof of Theorem 3.6.

We collect results analogous to Remark 3.7 and Corollary 3.8.

Remark 3.10. (a) If h satisfies (3.7) and in addition h(z)→ 0 for z →∞ then we may

choose

āT = exp

(
− 1

2
κ(bH,γT )2

)
∼ r − f(bH,γT ) .

(b) For p ∈ [0, 2) and κp 6= 0 and h(x) = κpx
p, x > 0, we obtain

āT ∼ exp

(
− 1

2
κ(bH,γT )2 + κp(b

H,γ
T )p

)
. �

Corollary 3.11. Let f be a SST with state space I = (l, r) ⊆ R, where r <∞.

Let f be differentiable on (z0,∞) for some z0 ∈ R.

Assume that f(z) > 0 for all z > z0 and locally uniformly in x

lim
z→∞

(log(r−f))′(z + x/z)

z
= −κ ∈ (−∞, 0) ,

then for α = δH,γ/κ,

1

r − f(bH,γT )

(
max

0≤t≤T
XH,γ,f
t − r

)
d→ Ψα .

Remark 3.12. We have here only considered SSTs of the FOUP. But, of course, SSTs

are more generally applicable to any stationary Gaussian process. �
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4 MDAs of solutions to fractional integral equations

In this section we return to the MDA problem for a family of processes defined as solutions

to SDEs (1.2). Therefore let I = (l, r) ⊆ R be an open non-empty interval and µ, σ : I → R

be some continuous functions, where σ is non-negative.

In [5] conditions on µ and σ were obtained such that a stationary solution X for (1.2)

exists and is of the form X = XH,γ,f for some γ > 0 and a SST f . Those conditions were

summarized into the concept of H-proper triples (I, µ, σ) (see Definition 3.4 in [5]). For

such triples the ratio µ/σ possesses a unique absolutely continuous extension ψ : I → R

which determines the SST f and the so-called friction coefficient (FC) γ by the relations

γ = −σψ′ Lebesgue-a.e. on I , f−1 = −ψ
γ
. (4.1)

The number ξ := f(0) is called the center of the H-proper triple (I, µ, σ).

For the reader’s convenience, we recall that for H-proper triples the function z 7→
1/σ(z) is necessarily locally integrable and the following formula holds for the inverse

function f−1 : I → R:

f−1(z) =

∫ z

ξ

dw

σ(w)
, z ∈ I . (4.2)

We start with a simple example.

Example 4.1. [Fractional Vasicek model]

For σ0, γ > 0 let µ(x) = −γ(x − ξ) and σ(x) ≡ σ0, x ∈ R. Define a SST f : R → R

by f(x) = ξ + σ0x. The triple (R, µ, σ) is H-proper for all H ∈ (0, 1) with FC γ, SST f

and center ξ. For this choice of µ and σ observe that X = XH,γ,f is a solution of (1.2)

and therefore serves as a natural extension of the usual Vasicek model driven by ordinary

Brownian motion to the fractional world. It is a mean reverting stationary Gaussian

process. Theorem 2.2 implies X ∈ MDA(Λ), more precisely,

(σ0a
H,γ
T )−1

{
max

0≤t≤T
Xt − (ξ + σ0b

H,γ
T )

}
d→ Λ . �

Although Example 4.1 shows that H-proper triples may exist for certain models for

all H ∈ (0, 1), they indeed only exist for the full range for Vasicek models (see Re-

mark 3.3 (vii) in [5]). When considering more general models we restrict ourselves to a

choice of H ∈ (1/2, 1), which is uncritical for most models.

Formulas (4.1) and (4.2) provide us with two different representations for f−1, the first

is based on the ratio µ/σ and the second on the integral representation (4.2). Using the

results of Section 3 and asymptotic inversion rules yield different characterizations of the

MDA.
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We start with the MDA of the Gumbel distribution. The proof of Theorem 4.2 is

found in Appendix C.1. The equivalence of the conditions (i), (ii) and (iii) is a direct

consequence of the formulas (4.1) and (4.2).

Theorem 4.2. Let H ∈ (1/2, 1). Suppose (I, µ, σ) to be H-proper with FC γ, SST f and

center ξ. Let ψ be the absolutely continuous extension of µ/σ to I.

The following assertions are equivalent.

(a) XH,γ,f ∈ MDA(Λ).

(b) There exist z0 ∈ I and g : (z0, r) → R
+ such that ∀x ∈ R ∃z1 ∈ (z0, r) satisfying

z + xg(z) ∈ I for all z ∈ (z1, r) and one of the following equivalent conditions holds

for all x ∈ R.

(i) lim
z↑r

f−1(z)
[
f−1
(
z+xg(z)

)
− f−1(z)

]
= x.

(ii) lim
z↑r

γ−2 ψ(z)
(
ψ(z+xg(z))− ψ(z)

)
= x.

(iii) lim
z↑r

∫ z

ξ

dw

σ(w)

∫ z+xg(z)

z

dw

σ(w)
= x.

Concerning r =∞ the proof of the following corollary illustrates a possible construc-

tion of g as in Theorem 4.2(b). Analogous results hold for r <∞.

Corollary 4.3. Let H ∈ (1/2, 1). Suppose (I, µ, σ) to be H-proper with FC γ, SST f

and center ξ. Suppose r = ∞ and there exists z0 ∈ I such that ` : (z0,∞) → R
+ is a

slowly varying function.

(a) If there exists p < 1 such that σ(z) = zp`(z) for all z > z0 > max{0, ξ}, then

XH,γ,f ∈ MDA(Λ).

(b) If there exists q < 1/2 such that σ(z) = z (log z)q`(log z) for all z > z0 > max{1, eξ},
then XH,γ,f ∈ MDA(Λ).

Proof. In both cases we check condition (iii) of Theorem 4.2 (b). (a) Define g : (z0,∞)→
R

+ by g(z) = σ(z)/
∫ z
ξ

dw
σ(w)

. Karamata’s theorem implies

lim
z→∞

g(z)

z
= (1−p) lim

z→∞
`2(z)z2p−2 = 0 .

Thus, for all x ∈ R, we find z1 > z0 such that z + g(z)x ⊆ (z0,∞) for all z > z1. In

particular, as ` is strictly positive and σ : I → R is continuous, also 1/σ is continuous on
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(z1,∞). Consequently, for z > z1 the mean value theorem provides a θ(z) ∈ [0, 1] such

that ∫ z+xg(z)

z

dw

σ(w)
=

xg(z)

σ(z + θ(z)xg(z))
.

On the other hand, by definition,∫ z

ξ

dw

σ(w)

∫ z+xg(z)

z

dw

σ(w)
=

xσ(z)

σ
(
z (1 + θ(z)xg(z)z−1)

) .
The right-hand side tends to x for z → ∞ as g(z)/z → 0 and convergence in regular

variation is locally uniformly on (0,∞) (c.f. Theorem 1.5.2 of Bingham et al. [3]).

(b) Define g : (z0,∞) → R
+ by g(z) = σ(z)/

∫ z
ξ
σ−1(w) dw as in (a). Substituting

y = logw yields
∫ z
z0
σ−1(w) dw =

∫ log z

log z0
1/(yq`(y)( dy; Karamata’s theorem implies

lim
z→∞

g(z)

z
= (1−q) lim

z→∞
`(log z)2 (log z)2q−1 = 0 .

Thus, for all x ∈ R, we find z1 > z0 such that z + g(z)x ⊆ (z0,∞) for all z > z1. The

remaining part of the proof follows the same lines as in (a).

Theorem 3.6 yields a characterization of MDA(Φα) in the following theorem; see Ap-

pendix C.2 for a proof. The equivalence of (i), (ii) and (iii) is a direct consequence of (4.1)

and (4.2).

Theorem 4.4. Let H ∈ (1/2, 1) and (I, µ, σ) be H-proper with FC γ, SST f and center

ξ. Let ψ be the absolutely continuous extension of µ/σ to I.

The following assertions are equivalent.

(a) There exists an α > 0 such that X ∈ MDA(Φα).

(b) r =∞ and there exist κ > 0 and h̃ : (max{1, l},∞)→ R such that

lim
z→∞

(log z)1/2
(
h̃(xz)− h̃(z)

)
= 0 for all x > 0 , (4.3)

and one of the following equivalent representions holds for all z > max{1, l}.

(i) f−1(z) = (2/κ)1/2 (log z)1/2 + h̃(z),

(ii) ψ(z) = −γ
(
(2/κ)1/2 (log z)1/2 + h̃(z)

)
,

(iii)

∫ z

ξ

dw

σ(w)
= (2/κ)1/2 (log z)1/2 + h̃(z).

If one of the conditions (a) or (b) is satisfied, then α = δH,γ/κ, where δH,γ is the quantity

in Remark 2.3 (b).
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As an application of Corollary 4.3 and Theorem 4.4 we present a family of models,

which belong to MDA(Λ) or MDA(Φα), depending on the choice of parameters.

Example 4.5. Let H ∈ (1/2, 1), q ∈ ((1−H), 1), σ0 > 0, a < 0 and b ≥ 0.

Calculations similar to those of Section 5 in [5] show that (I, µ, σ) is H-proper, where

I = R+ , µ(z) = az log z + bz| log z|q , σ(z) = σ0 z | log z|q .

Furthermore, formula (4.1) shows that γ = (1−q)|a|. We obtain two cases.

For q = 1
2

we observe

ψ(z) =
a

σ0

(log z)1/2 +
b

σ0

, z > 1 .

Set κ = 1
2
σ2

0 and h̃(z) ≡ b/σ0. Theorem 4.4 (b) applies to ψ; thus, XH,γ,f ∈ MDA(Φα) for

α = 2δH,γ/σ2
0.

For q < 1
2

Corollary 4.3 (b) implies XH,γ,f ∈ MDA(Λ).

As the SST f can be explicitly calculated as

f(z) = exp
(

sign(σ0(1−q) z − b/a)
∣∣σ0(1−q) z − b/a

∣∣1/(1−q)) , z ∈ R ,

we could also have argued with the theory given Section 3. In this case, Example 3.2

shows that XH,γ,f /∈ MDA(G) for any extreme value distribution G and any q ∈ (1/2, 1).

�

For completeness, we conclude the section with the corresponding results for MDA(Ψα).

The following theorem is based on Theorem 3.9; its proof can be found in Appendix C.3.

Theorem 4.6. Let H ∈ (1/2, 1) and (I, µ, σ) be H-proper with FC γ, SST f and center

ξ. Let ψ be the absolutely continuous extension of µ/σ to I.

The following assertions are equivalent.

(a) There exists an α > 0 such that X ∈ MDA(Ψα).

(b) r <∞ and there exist κ > 0 and h̄ : (0, r−l)→ R such that

lim
z↓0
| log z|1/2

(
h̄(xz)−h̄(z)

)
= 0 for all x > 0 , (4.4)

and one of the following equivalent representions holds for all 0 < z < min{1, r−l}.

(i) f−1(r − z) = (2/κ)1/2 | log z|1/2 + h̄(z)

(ii) ψ(r−z) = −γ (2/κ)1/2 | log z|1/2+h̄(z)
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(iii)

∫ r−z

ξ

dw

σ(w)
= (2/κ)1/2 | log z|1/2 + h̄(z)

If one of the conditions (a) or (b) is satisfied, then α = δH,γ/κ where δH,γ is the quantity

in Remark 2.3 (b).

Appendix

A Proof of Lemma 2.1

It remains to show (b) and (d).

(b) By selfsimilarity of FBM we obtain for h ∈ R

ρH,γ,σ(h) = σ2 E

∫ 0

−∞
eγsdBH

s

∫ h

−∞
e−γ(h−s)dBH

s

= σ2 e−γh E

∫ 0

−∞
esdBH

s/γ

∫ γh

−∞
esdBH

s/γ =
σ2

γ2H
ρH(γh).

(d) The closed formula stated for H = 1/2 is well-known (e.g. Cheridito et al. [7]). Thus,

by (a) and (b), it suffices to investigate the case γ = σ = 1, H 6= 1/2 and h ↓ 0.

By partial integration applied to (1.3), we observe∫ t

−∞
e−(t−s) dBH

s = BH
t −

∫ t

−∞
e−(t−s)BH

s ds , t ∈ R , (A.1)

where the integral on the right-hand side is interpreted as Lebesgue integral (c.f. Buch-

mann and Klüppelberg [5], Proposition 2.3).

By formula (A.1) and Fubini’s theorem we have

ρH(0) =

∫ 0

−∞

∫ 0

−∞
es1+s2E(BH

s1
BH
s2

) ds1 ds2

=
1

2

∫ 0

−∞

∫ 0

−∞
es1+s2

{
|s1|2H + |s2|2H − |s1 − s2|2H

}
ds1 ds2

= Γ(2H+1)− 1

2

∫ ∞
0

∫ ∞
0

e−(s1+s2)|s1 − s2|2H ds1ds2.

The second integral can be interpreted as multiple of the expectation E|S1−S2|2H where

S1 and S2 are independent standard exponential random variables. As S1 − S2 is a two-

sided exponential random variable we obtain∫ ∞
0

∫ ∞
0

e−(s1+s2)|s1 − s2|2H ds1ds2 =
1

2

∫ ∞
−∞

e−|s| |s|2H ds = Γ(2H+1).
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Hence

ρH(0) =
Γ(2H+1)

2
. (A.2)

Now let h ≥ 0. Set

φH(h) = Γ(2H+1)−
∫ ∞

0

e−s(h+ s)2H ds

ψH(h) =
1

2

{
Γ(2H+1)

∫ h

0

es ds+

∫ h

0

s2Hes ds−
∫ h

0

es1
∫ ∞

0

e−s2(s1 + s2)2H ds2 ds1

}
.

By Fubini’s theorem and (1.1),

EBH
h

∫ 0

−∞
esBH

s ds =
1

2

∫ 0

−∞
es
(
h2H−s2H−(h−s)2H

)
ds =

1

2

(
h2H + φH(h)

)
,

and, similarly, ψH(h) = E
∫ 0

−∞ e
sBH

s ds
∫ h

0
esBH

s ds.

By formula (A.1),

ρH(h)− ρH(0)

= −E
∫ 0

−∞
esBH

s ds

(
BH
h − e−h

∫ h

−∞
esBH

s ds+

∫ 0

−∞
esBH

s ds

)
= −EBH

h

∫ 0

−∞
esBH

s ds+ (e−h − 1)E

∫ h

−∞
esBH

s ds

∫ 0

−∞
esBH

s ds

+ E

∫ 0

−∞
esBH

s ds

∫ h

0

esBH
s ds

= −1

2

(
h2H+φH(h)

)
+ (e−h−1)

(
Γ(2H+1)

2
+ψH(h)

)
+ ψH(h) . (A.3)

For H < 1/2 we can differentiate both φH and ψH(h) under the integral sign by dominated

convergence. We obtain

φH(h) = φH(0) + φ′H(0+)h+ o(h) = −Γ(2H+1) h+ o(h) ,

ψH(h) = ψH(0) + ψ′H(0+) h+ o(h) = o(h) .

Equation (A.3) yields

ρH(h)− ρH(0) = −1

2
h2H +

Γ(2H+1)

2
h− Γ(2H+1)

2
h+ o(h) = −1

2
h2H + o(h).

By (A.2) and (b) we find

ρH,γ,σ(h) =
σ2

γ2H

(
ρH(0) + ρH(γh)− ρH(0)

)
=

Γ(2H+1)

2

σ2

γ2H
− 1

2
σ2 h2H + o(h).

For H > 1/2, both φH and ψH are twice differentiable under the integral sign, i.e.,

φH(h) = −Γ(2H+1) h− Γ(2H+1)
h2

2
+ o(h2) , ψH(h) = −Γ(2H+1)

4
h2 + o(h2) ,
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thus, as (e−h − 1) = −h+ 1
2
h2 + o(h2), (A.3) implies

ρH(h)− ρH(0) = −1

2
h2H +

Γ(2H+1)

4
h2 + o(h2).

With the same arguments as above,

ρH,γ,σ(h) =
Γ(2H+1)

2

σ2

γ2H
− 1

2
σ2 h2H +

Γ(2H+1)

4

σ2

γ2H−2
h2 + o(h2). �

B A general convergence to types lemma

In this section a result is stated which forms the core of section 3. For a probability

distribution function F : R→ [0, 1]

D<(F ) = {x ∈ R : ∀ε > 0 F (x−ε) < F (x) < F (x+ε) } .

Set xL := −∞ if F (x) > 0 for all x ∈ R; otherwise, set xL = sup{x ∈ R : F (x) = 0}. Set

xR :=∞ if F (x) < 1 for all x ∈ R; otherwise, set xR = inf{x ∈ R : F (x) = 1}.

Lemma B.1. Let F, Fn : R → [0, 1], n ∈ N, be probability distribution functions on R,

where F is continuous.

(a) Let M = (xL, xR) and gn : M → R, n ∈ N. Let Gn = Fn ◦ gn : M → [0, 1].

If limn→∞ gn(x) = x and limn→∞Gn(x) = F (x) for all x ∈M then limn→∞ Fn(x) = F (x)

for all x ∈ R.

(b) Let M = D<(F ), gn : M → R, n ∈ N. Let Gn = Fn ◦ gn : M → [0, 1].

If limn→∞ Fn(x) = limn→∞Gn(x) = F (x) for all x ∈M then gn(x)→ x for all x ∈M .

Proof. (a) It suffices to show limn→∞ Fn(x) = F (x) for all x ∈ M . Contradicting the

hypothesis, suppose that there exist x0 ∈ M and y0 ∈ [0, 1] and, as Fn(x) is bounded, a

subseqence n′ such that

lim
n′→∞

Fn′(x0) = y0 6= F (x0) . (B.1)

Without loss of generality suppose that n = n′. By Helly’s selection theorem we find a

subsequence n′ and a non-decreasing right-continuous function F̃ : R → [0, 1] such that

limn′→∞ Fn′(x) = F̃ (x) for all continuity points x of F̃ . Let C(F̃ ) be the set of continuity

points of F̃ and let x ∈ C(F̃ ) ∩ (xL, xR). Then for all x′ ∈ (x, xR) ∩ C(F̃ )

F (x) = lim
n′→∞

Gn′(x) = lim
n′→∞

Fn′(gn′(x)) ≤ lim
n′→∞

Fn′(x
′) = F̃ (x′)

and hence F (x) ≤ limx′↓x, x′∈C(F̃ ) F̃ (x′) = F̃ (x). Analogously, for all x′ ∈ (xL, x) ∩ C(F̃ )

F̃ (x′) = lim
n′→∞

Fn′(x
′) ≤ lim

n′→∞
Fn′(gn′(x)) = lim

n′→∞
Gn′(x) = F (x),
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Hence F̃ (x) = limx′↑x, x′∈C(F̃ ) F̃ (x′) ≤ F (x). Thus, F̃ (x) = F (x) for all x ∈ (xL, xR) ∩
C(F̃ ). As C(F̃ ) is dense in (xL, xR) and F is continuous we find x0 ∈ (xL, xR) ⊆ C(F̃ );

contradicting (B.1).

(b) Suppose the contrary is true. Then there exists x ∈ D<(F ) and a subsequence n′ such

that gn′(x)→ y ∈ R where y 6= x. Without loss of generality suppose that y ∈ [−∞, x). As

F is continuous, uniform convergence of Fn → F holds. Set F (y) = 0 whenever y = −∞.

Then

F (y) = lim
n′→∞

Fn′(gn′(x)) = lim
n′→∞

Gn′(x) = F (x) ,

contradicting x ∈ D<(F ).

C Results on asymptotic inversion

C.1 Proof of Theorem 4.2

Theorem 4.2 is a consequence of Theorem 3.1 and the following lemma.

Lemma C.1. Let f be a SST with state space I = (l, r). The following assertions are

equivalent.

(a) f satisfies (3.1).

(b) There exist z0 ∈ I and g : (z0, r)→ R
+ satisfying the following properties.

(i) For all x ∈ R there exists z1 ∈ (z0, r) with z + xg(z) ∈ I for all z ∈ (z1, r).

(ii) lim
z↑r

f−1(z)
[
f−1
(
z+xg(z)

)
− f−1(z)

]
= x for all x ∈ R.

Proof. (a) ⇒ (b) f has representation f(z) = v ◦ h(z) for all z > 0, where h(z) =

exp(z2/2). Combining Exercises 0.4.3.7 and 0.4.3.8 in Resnick [13], we find a function

a : (1,∞) → R
+ such that limz→∞[v(zx)−v(z)]/a(z) = log x for all x > 0. As both f

and h are strictly increasing, also v is; moreover, limz↑r v
−1(z) = ∞. Let z0 = f(0). By

Proposition 0.9 (b) in [13], we find g : (z0, r)→ R
+ satisfying (i) such that limz↑r[v

−1(z+

xg(z))]/v−1(z) = ex for all x ∈ R. Property (ii) follows from the following calculation: for

x ∈ R,

lim
z↑r

f−1(z)
[
f−1
(
z+xg(z)

)
− f−1(z)

]
= lim

z↑r
2

[
log v−1(z)

] [(
1 +

log[v−1(z + xg(z))/v−1(z)]

log v−1(z)

)1/2

− 1

]
.

Now a Taylor expansion of
√

1 + z yields assertion (b)(ii).
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(b) ⇒ (a) Observe that for all x ∈ R,

lim
z↑r

[f−1(z)]2

[
f−1
(
z+xg(z)

)
f−1(z)

− 1

]
= x .

Consequently, limz↑r f
−1
(
z+xg(z)

)
/f−1(z) = 1 as limz↑r f

−1(z) =∞. Now define u(z) =

exp[(f−1(z))2/2], z ∈ I. Then u is strictly increasing on (f(0), r) and a mapping from

(f(0), r) onto (u(f(0)),∞). For all x ∈ R, we get

lim
z↑r

u(z + g(z)x)

u(z)

= lim
z↑r

exp

[
1

2

f−1
(
z+xg(z)

)
+ f−1(z)

f−1(z)
f−1(z)

[
f−1
(
z+xg(z)

)
− f−1(z)

]]
= ex .

Proposition 0.9 (a) in [13] applies to u. There exist z1 > u(f(0)) and a function a :

(z1,∞)→ R
+ such that limz→∞(u−1(zx)− u−1(z))/a(z) = log x for all x > 0. By mono-

tonicity, the convergence holds locally uniformly in x on R+. In particular, for all x ∈ R

lim
z→∞

f(z + xz−1)− f(z)

a
(

exp[z2/2]
)

= lim
z→∞

u−1
(

exp[z2/2] exp[x+ x2/(2z2)]
)
− u−1(exp[z2/2])

a
(

exp[z2/2]
) = x .

Therefore, for all x ∈ R

lim
z→∞

f(z + xz−1)− f(z)

f(z + z−1)− f(z)
= lim

z→∞

f(z + xz−1)− f(z)

a
(

exp[z2/2]
) a

(
exp[z2/2]

)
f(z + z−1)− f(z)

= x . �

C.2 Proof of Theorem 4.4

We prepare the result with a technical lemma.

Lemma C.2. If h : (x0,∞)→ R with limz→∞ zα
[
h(z+xz−β)−h(z)

]
= 0 locally uniformly

in x ∈ R for some x0 ∈ R, α ∈ [0, 1) and β ≥ 0, then limz→∞ zα−1−βh(z) = 0.

Proof. We use the convention
∑l

k = 0 for l < k. Let ε > 0 and define a sequence (zn) as

follows. Choose z0 > max{1, x0} such that for all z ≥ z0 and x ∈ [0, 1]

|h(z+xz−β)−h(z)| < ε (z + z−β)−α .

For n ≥ 1 set zn = zn−1 + z−βn−1. Observe that zn = z0 +
∑n−1

l=0 z
−β
l ≥ nz−βn . Thus,

zn ≥ n1/(1+β). In particular, zn →∞ and |h(zn+1)−h(zn)| < ε (n+1)−α/(1+β) for all n ≥ 0.

22



Let z ≥ z0 arbitrary. Set n1 = max{n : zn ≤ z}, clearly, n1 ≤ z1+β. By choice of n1,

z ∈ [zn1 , zn1 +z−βn1
) and hence |h(z)−h(zn1)| < ε. Finally, summing and subtracting terms

|h(z)| ≤ ε+ |h(z0)|+ ε

n1−1∑
k=0

(1+k)−α/(1+β) ≤ ε+ |h(z0)|+ ε
[
1 +

1+β

1−α+β
z1−α+β] .

Thus, lim supz→∞ z
α−1−β|h(z)| ≤ ε.

Corollary C.3. (a) If x0 ∈ R and h : (x0,∞)→ R with limz→∞
[
h(z+xz−1)−h(z)

]
=

0 locally uniformly in x ∈ R then limz→∞ z
−2h(z) = 0.

(b) If x0 ∈ R and h : (x0,∞) → R with limz→∞ (log z)1/2
[
h(zx)−h(z)

]
= 0 locally

uniformly in x ∈ R+ then limz→∞(log z)−1/2h(z) = 0.

Proof. For the choice of β = 1 and α = 0 Lemma C.2 implies (a). To show (b) set

g = h ◦ exp. Then limz→∞ z
1/2(g(z+x)−g(z)) = 0 locally uniformly in x ∈ R; Lemma C.2

yields limz→∞ z
−1/2g(z) = 0; equivalently, limz→∞(log z)−1/2h(z) = 0.

Proof of Theorem 4.4 (a) ⇒ (b). Observe that for all x ∈ R

lim
z→∞

f(z+x/z)

f(z)
= exp(κx) . (C.1)

This convergence strengthens to locally uniform convergence by Proposition 3.10.2 in

Bingham et al. [3]. By Theorem 3.6 XH,γ,f ∈ MDA(Φα) for α > 0 is equivalent to the

existence of z0 ∈ R and κ > 0, h : (z0,∞) → R satisfying (3.7) such that both f(z) > 0

and log f(z) = κ
2
z2 + h(z) for all z > z0 holds. Consequently, h(z+x/z) − h(z) → 0 as

z →∞ locally uniformly in x ∈ R; thus, z−2h(z)→ 0 by Corollary C.3 (a). In particular,

f−1(z) ∼ (2/κ)1/2(log z)1/2 for z →∞.

By Theorem 3.10.4 in [3], (C.1) implies limz→∞ f
−1(z)

[
f−1(zx)− f−1(z)

]
= κ−1 log x

for all x > 0. Equivalently, limz→∞(log z)1/2
[
f−1(zx) − f−1(z)

]
→ (2κ)−1/2 log x for all

x > 0. Finally, set h̃(z) = f−1(z) − (2/κ)1/2(log z)1/2 for z > max{1, l}. Then h̃ is a

function satisfying (4.3).

(b)⇒ (a). Observe that limz→∞(log z)1/2
(
f−1(xz)−f−1(z)

)
= (2κ)−1/2 log x for all x > 0.

Now let x > 0 and x(z)→ x for z →∞. By monotonicity, for all 0 < ε < x,

(2κ)−1/2 log(x− ε) ≤ lim inf
z→∞

(log z)1/2
(
f−1(xz)− f−1(z)

)
≤ lim sup

z→∞
(log z)1/2

(
f−1(xz)− f−1(z)

)
≤ (2κ)−1/2 log(x+ ε) .

Consequently, limz→∞(log z)1/2
(
f−1(xz)−f−1(z)

)
= (2κ)−1/2 log x holds locally uniformly

in x > 0. This implies limz→∞(log z)1/2
(
h̃(xz)− h̃(z)

)
= 0 uniformly in x > 0. Corol-

lary C.3 (b) implies f−1(z)∼(2/κ)1/2(log z)1/2; thus, for all x > 0,

lim
z→∞

f−1(z)
[
f−1(xz)− f−1(z)

]
= κ−1 log x . (C.2)
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By Theorem 3.10.4 in [3], (C.2) implies limz→∞ f(z+x/z)/f(z) = exp(κz). Set h(z) =

log f(z)− κ
2
z2 for z ∈ R with f(z) > 0; then h extends to a function satisfying (3.7). �

C.3 Proof of Theorem 4.6

Proof of Theorem 4.6 To show the equivalence of (a) and (b) set f̃(z) = 1/(r − f(z)).

Then f̃ is a SST with state space J = ((r−l)−1,∞). By Theorem 3.9 XH,γ,f ∈ MDA(Ψα)

for some α > 0 is equivalent to the existence of z0 > max{1, l} and κ > 0, h : (z0, r)→ R

satisfying (3.6) such that both f̃(z) > 0 and log f̃(z) = κ
2
z2 + h(z) for all z > z0. As

in the proof of Theorem 4.4, this holds if and only if there exists h̃ satisfying (4.3) such

that f̃−1(z) = (2/κ)1/2(log z)1/2 + h̃(z). As f̃−1(1/z) = f−1(r−z), 0 < z < r− l this is

equivalent to (b) where h̄ = h̃(1/z) satisfies (4.4). �
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