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Abstract: Poisson regression models for count variables have been utilized in many

applications. However, in many problems overdispersion and zero-inflation occur. In

this paper we study regression models associated with the generalized Poisson distri-

bution (Consul (1989)). These regression models which have been used for about 15

years do not belong to the class of generalized linear models considered by McCul-

lagh and Nelder (1989) for which an established asymptotic theory is available. We

prove consistency and asymptotic normality of the maximum likelihood estimators

in zero-inflated generalized Poisson regression models. Further the accuracy of the

asymptotic normality approximation is investigated through a simulation study. It

is also shown that a Wald test for detecting zero-inflation or zero-deflation based

on our results is considerable more powerful than the score test in zero-modified

Poisson regression models. The usefulness of the considered models is demonstrated

in two applications.
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1. INTRODUCTION

Poisson regression models are often used for an analysis of count data. However

count regression data often exhibit substantial overdispersion which is present

when the data has higher variability as it is allowed by the model. In partic-

ular, equality of mean and variance for count data analyzed under a Poisson

assumption is often violated. Various reasons, e.g. unobserved heterogene-

ity, missing covariates or correlation among the measurements, make counts

overdispersed (see Cameron and Trivedi (1998) or Winkelmann (2003)). Con-

sequently, a number of different regression models in the literature have been

proposed, which commonly handle overdispersion in two general approaches:

1) inclusion of random effects;

2) extension of the parametric model by extra parameters to allow for a

more general variance structure.

Using the first approach Dean and Lawless (1989) treated overdispersion in

the Poisson regression and investigated score tests for its detection. There are

also several papers using more general setups in this direction (see e.g. Dean

(1992), Lin (1997), Hall and Præstgaard (2001), Hall and Berenhaut (2002),

Deng and Paul (2000), Deng and Paul (2005)). However, it should be noted

here that there exists a confusion with regard to the limiting distribution of

the score test statistics in the literature. In particular the problem of testing

parameters on the boundary of the parameter space needs to be addressed

when one sided alternatives are considered. For insightful discussions on this

problem we would like to refer to Verbeke and Molenberghs (2003).

The second approach, which we follow in this paper, consists of considering

a distribution with a more flexible variance function. A negative binomial (NB)

and a generalized Poisson (GP) distributions are standard count distributions

used for this purpose. Lawless (1987) first systematically studied the NB
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regression model and showed asymptotic normality of its maximum likelihood

(ML) estimator. Consul and Famoye (1992) introduced the GP regression

model and applied it to several data sets. However asymptotic properties of

the ML estimator in the GP regression have not been investigated and this

has remained an open problem.

It became popular over the past decade to model count data with a large

frequency of zeros using a mixture of a count distribution with a degenerate

distribution supported at zero. This is another way to handle overdispersion

caused by a large amount of zeroes. Zero-inflated Poisson (ZIP) regression is

one of frequently used models for such count data. Here Lambert (1992) first

investigated the asymptotic properties of the ML estimator. Further Jansakul

and Hinde (2002) derived score tests for testing zero-inflation in ZIP models

and investigated their power in a simulation study.

Recently, several authors (see Famoye and Singh (2003), Gupta, Gupta, and

Tripathi (2004), Stekeler (2004)) have independently introduced zero-inflated

generalized Poisson (ZIGP) regression models which can now handle overdis-

persed count data with a high incidence of zero outcomes. Famoye and Singh

(2003) and Gupta, Gupta, and Tripathi (2004) also discussed score tests for

testing overdispersion or zero-inflation in this regression model. Again, asymp-

totic properties of the ML estimator in the ZIGP regression model have not

been investigated.

The objective of this paper is to derive the appropriate asymptotic the-

ory for ZIGP regression models and to examine the accuracy of the normal

approximation for the ML estimator. Our results also remain valid for GP

and ZIP regression models. The paper is organized as follows. In Section 2

we introduce a zero-inflated count distribution and the GP distribution and

discuss their basic properties. The ZIGP regression model will be defined in

Section 3. Section 4 gives the asymptotic existence, the consistency and the

asymptotic normality of the ML estimator in ZIGP regression model. The
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accuracy of the asymptotic distributional approximation in small samples is

investigated in a simulation study presented in Section 5. In Section 6 two ap-

plications are given, while in Section 7 we compare the score test for detecting

zero-inflation or zero-deflation in a zero-modified Poisson (ZMP) model ( see

Dietz and Böhning (2000)) to the Wald test based on our asymptotic results

in a simulation study. The paper closes with a discussion section. The Fisher

information matrix for ZIGP models and the proof of Theorem 1 are given in

Appendices 1 and 2, respectively.

2. ZERO-INFLATED COUNT DISTRIBUTIONS AND THE GP DISTRI-

BUTION

Suppose that we observe realizations of a count random variable Y and we

believe that Y has a specified discrete count distribution. Further suppose that

the observed data exhibits an excess of zeros which can not be modelled by the

assumed model. This means that we cannot rely anymore on our hypothesis.

But an assumption, that zeros arise from a mixture of a Bernoulli distribution

and the conjectured distribution, makes it possible for us to investigate our

conjecture. More precisely, we assume that the probability mass function of

the observed response Y is given by

P (Y = y) =











ω + (1 − ω)P (Ỹ = 0) y = 0,

(1 − ω)P (Ỹ = y) y = 1, 2, . . . , 0 ≤ ω ≤ 1,

where Ỹ is distributed according to the conjectured distribution with finite

second moment. Simple calculations show that mean and variance of the zero-

inflated random variable Y are given by

E(Y ) = (1 − ω)E(Ỹ ) (1)
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and

V ar(Y ) = (1 − ω)V ar(Ỹ ) + ω(1 − ω)
(

E(Ỹ )
)2

. (2)

Throughout this paper, we assume that the conjectured distribution of

the response variable Y , i.e. the distribution of Ỹ , is a GP distribution with

two parameters µ and ϕ denoted by GP (µ, ϕ). This distribution was first

introduced by Consul and Jain (1970) and subsequently studied in detail by

Consul (1989). The probability mass function of the GP distribution is given

by

Pµ,ϕ(y) :=











µ(µ + y(ϕ − 1))y−1ϕ−ye−(µ+y(ϕ−1))/ϕ/y! for y = 0, 1, . . .

0 for y > m, when ϕ < 1

(3)

and its real-valued parameters µ and ϕ satisfy the following constraints:

• µ > 0;

• ϕ ≥ max{1/2, 1 − µ/m}, where m (m ≥ 4) is a largest natural number

such that µ + m(ϕ − 1) > 0 when ϕ < 1.

If ϕ < 1 then (3) does not correspond to a probability distribution. However

the lower limit, imposed on ϕ in this case, guarantees us that the total error of

truncation is less than 0.5% (see Consul and Shoukri (1985)). Since all discrete

distributions are truncated under sampling procedures this is found to be a

quite reasonable condition.

One particular property of the GP distribution is that the variance of

this distribution is greater than, equal to or less than the mean according

to whether the second parameter ϕ is greater than, equal to or less than 1.

More precisely (for details see Consul (1989), page 12 ), if Y ∼ GP (µ, ϕ) then

mean and variance of Y are given by

E(Y ) = µ (4)
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and

V ar(Y ) = ϕ2µ. (5)

In contrast to the GP distribution, we have for the NB distribution with mean

µ and overdispersion parameter a (see Lawless (1987) for notation) that its

variance is equal to µ(1+aµ). Thus the overdispersion in the GP case is inde-

pendent of the mean while this is not the case for the NB case. This implies

for the NB case that overdispersion might be present even if the overdispersion

parameter a is small. Already Lawless (1987) remarked this fact. Czado and

Sikora (2002) also noted this and developed an approach based on p−value-

curves to quantify overdispersion effects more precisely. Another significant

difference between these two distributions is that the NB distribution belongs

to the exponential family whenever the overdispersion parameter a is known

while this does not hold for the GP distribution. A visual comparison of

GP and NB probability functions is given for example in Gschlößl and Czado

(2005).

3. ZIGP REGRESSION

A random variable Y is said to be distributed according to a ZIGP distribution

with parameters µ, ϕ and ω, denoted by ZIGP (µ, ϕ, ω), if its probability mass

function is given by

Pµ,ϕ,ω(y) := P (Y = y)

=



























ω + (1 − ω)Pµ,ϕ(0), if y = 0

(1 − ω)Pµ,ϕ(y), if y = 1, 2, . . . ,

0 for y > m when ϕ < 1,

(6)

and zero otherwise, where 0 ≤ ω ≤ 1, µ > 0, ϕ ≥ max{1/2, 1 − µ/m} and

m (m ≥ 4) is a largest natural number for which µ + m(ϕ − 1) > 0 when
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ϕ < 1. Thus, the ZIGP distribution is a mixture of a Bernoulli distribution

with parameter 1 − ω and the GP distribution with parameters µ and ϕ.

Equations (1), (2), (4) and (5) imply that mean and variance of the ZIGP

distribution are connected with its parameters as follows

E(Y ) = (1 − ω)µ (7)

and

V ar(Y ) = E(Y )
(

ϕ2 + µω
)

. (8)

One of the main benefits of considering a regression model based on the

ZIGP distribution is that it gives a large class of regression models for count

response data. In particular, it reduces to Poisson regression when ϕ = 1 and

ω = 0, to GP regression when ω = 0 and to the zero-inflated Poisson regression

when ϕ = 1. Moreover, by virtue of (7) and (8) this regression can be used to

fit count regression data exhibiting overdispersion or underdispersion.

Analogously to GLM, we now introduce a regression model with response

Yi and (known) explanatory variables xi = (xi0, xi1, . . . , xip)
t with xi0 = 1 for

i = 1, . . . , n:

1. Random components:

{Yi, 1 ≤ i ≤ n} are independent where Yi ∼ ZIGP (µi, ϕ, ω).

2. Systematic component:

The linear predictors ηi(β) = xt
iβ for i = 1, . . . , n influence the response

Yi. Here β = (β0, β1, . . . , βp)
t are unknown regression parameters. The

matrix X = (x1, . . . ,xn)t is called the design matrix.

3. Parametric link component:

The linear predictors ηi(β) are related to the parameter µi of Yi by

µi = exp(ηi(β)) for i = 1, . . . , n.
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Here and in the sequel, At and at denote the transpose of the matrix A

and the vector a, respectively. To stress the fact that the distribution of the

responses Yi’s does not belong to the exponential family, this regression will be

called the ZIGP regression model. Further, we denote the joint vector of the

regression parameters β and the parameters ϕ and ω of the ZIGP distribution

by δ, i.e. δ := (βt, ϕ, ω)t, and its ML estimator by δ̂.

The following abbreviations for i = 1, . . . , n will be used throughout in the

paper:

µi(β) := exp
(

xt
iβ
)

,

fi(β, ϕ) := exp (−µi(β)/ϕ) ,

gi(δ) := ω + (1 − ω)fi(β, ϕ) = Pµi(β),ϕ,ω(0).

For observations y1, . . . , yn, the log-likelihood l(δ) derived from the ZIGP re-

gression can be written as

ln(δ) =

n
∑

i=1

1l{yi=0} log (gi(δ))

+
n
∑

i=1

1l{yi>0}

(

log(1 − ω) + xt
iβ − 1

ϕ
µi(β) + (yi − 1) log [µi(β) + yi(ϕ − 1)]

−yi log ϕ − yi
1

ϕ
(ϕ − 1) − log(yi!)

)

.

Further the score vector, i.e. the vector of the first derivatives, has the

following representation:

sn(δ) = (s0(δ), . . . , sp(δ), sp+1(δ), sp+2(δ))t , (9)

where

sr(δ) :=
∂ln(δ)

∂βr
=

n
∑

i=1

sr,i(δ)

with

sr,i(δ) := −xir1l{yi=0}
(1 − ω)fi(β, ϕ)µi(β)

ϕgi(δ)

+ xir1l{yi>0}

(

1 +
µi(β)(yi − 1)

µi(β) + (ϕ − 1)yi
− µi(β)

ϕ

)

(10)
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for r = 0, . . . , p,

sp+1(δ) :=
∂ln(δ)

∂ϕ
=

n
∑

i=1

sp+1,i(δ)

with

sp+1,i(δ) := 1l{yi=0}
(1 − ω)fi(β, ϕ)µi(β)

ϕ2gi(δ)

+ 1l{yi>0}

(

yi(yi − 1)

µi(β) + (ϕ − 1)yi
− yi

ϕ
+

µi(β) − yi

ϕ2

)

, (11)

sp+2(δ) :=
∂ln(δ)

∂ω
=

n
∑

i=1

sp+2,i(δ)

with

sp+2,i(δ) := 1l{yi=0}
1 − fi(β, ϕ)

gi(δ)
− 1l{yi>0}

1

1 − ω
, (12)

for i = 1, . . . , n.

To compute the ML estimator δ̂, we solve simultaneously the equations

obtained by equating the score vector (9) to zero.

4. ASYMPTOTIC THEORY

Fahrmeir and Kaufmann (1985) proved consistency and asymptotic normal-

ity of the ML estimator in GLM for canonical as well as noncanonical link

functions under mild assumptions. Their method can be adapted for proving

similar results for the ZIGP regression.

Analogously to Fahrmeir and Kaufmann (1985), we use the Cholesky square

root matrix for normalizing the ML estimator. The left Cholesky square root

matrix A1/2 of a positive definite matrix A is the unique lower triangular ma-

trix with positive diagonal elements such that A1/2
(

A1/2
)t

= A (see Stewart
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(1998), p. 188). For convenience, set At/2 :=
(

A1/2
)t

, A−1/2 :=
(

A1/2
)−1

and A−t/2 :=
(

At/2
)−1

. In this paper we deal only with the spectral norm of

square matrices denoted by ‖ · ‖. The spectral norm of a real-valued matrix A

is given by

‖A‖ =
(

maximum eigenvalue of AtA
)1/2

= sup
‖u‖2=1

‖Au‖2 ,

where ‖ · ‖2 denotes the L2– norm of vectors. We drop subindex 2 in ‖ · ‖2

since the spectral norm is generated by the L2–norm of vectors and arguments

of considered norms are always clearly defined. The minimal eigenvalue of a

square matrix A will be further denoted by λmin(A) and the vector of true

parameter values of the ZIGP regression will be denoted as δ0. Further Fn(δ)

will stand for the Fisher information matrix in a ZIGP regression evaluated at

δ.

Now denote by

Nn(ε) = {δ : ‖Ft/2
n (δ0)(δ − δ0)‖ ≤ ε} (13)

a neighborhood of δ0 for ε > 0.

For convenience, we drop the arguments δ0, β0 and ϕ0 as well as the

subindex δ0 in µi(β0), fi(β0, ϕ0), gi(δ0), Pδ0 , Eδ0 etc. and write µi, fi, gi,

P , E etc. Constants will be further denoted by C and c, with subindexes or

without them. They may depend on δ0 but not on n. The same C’s and c’s

in different places denote different constants. Finally, the k-dimensional unit

matrix will be denoted by Ik and an admissible set for a regression parameter

β will be denoted by B.

In the paper we make the following assumptions.

(A1)
n

λmin(Fn)
≤ C1 ∀ n ≥ 1,

where C1 is a positive constant.
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(A2) {xn, n ≥ 1} ⊂ Kx, where Kx ⊂ R
p+1 is a compact set.

(A3) Assume that B ⊂ R
p+1 is an open set and δ0 is an interior point of the

set Kδ := B × Φ × Ω, where Φ := [1,∞) and Ω := [0, 1].

Now we state our main result which is the analogue to Theorem 4 of

Fahrmeir and Kaufmann (1985).

Theorem 1. Under the assumptions (A1)–(A3), there exists a sequence of

random variables δ̂n, such that

(i) P (sn(δ̂n) = 0) → 1 as n → ∞ (asymptotic existence),

(ii) δ̂n
P−→ δ0 as n → ∞ (weak consistency),

(iii) F
t/2
n (δ̂n − δ0)

D
=⇒ Np(0, Ip+3) as n → ∞ (asymptotic normality).

The proof is given in Appendix 2.

REMARKS

(i) Assumption (A1) is more restrictive than the corresponding condition

(D) of Fahrmeir and Kaufmann (1985).

(ii) Assumption (A2) simply means that we deal with compact regressors.

(iii) If δ0 lies on the boundary of parameter space Kδ, i.e. (A3) is violated,

then statements of Theorem 1 do not hold anymore. However, one may

investigate asymptotic properties of the ML estimator δ̂ using results of

Self and Liang (1987) and Moran (1971).

(iv) It is not difficult to see that the asymptotic results of Theorem 1 remain

valid in GP or ZIP regression models subject to appropriate changes

are performed in the log-likelihood, the ML equations and the Fisher

information matrix as well as in Assumption (A3).
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(v) A close look at the proof of Theorem 1 reveals that Ω := [0, 1] in As-

sumption (A3) can, in fact, be replaced by Ω1 := [−cω, 1], where cω > 0 is

a constant depending on Kx and δ0 such that Pµ,ϕ,ω(0) from (6) is a still

probability. But then we can not interpret ω as a probability anymore

(see e.g. Dietz and Böhning (2000)).

(vi) Looking at inequality (15) we see that an analogous upper bound can be

obtained when ϕ < 1 if the admissible set B for regression parameters

β is a compact set. This implies that the resulting µi’s are bounded

from below by a positive constant cµ for i = 1, . . . , n. Then an extension

of the parameter space for ϕ to Φ = [cϕ,∞] with cϕ < 1 may be also

accomplished.

5. SIMULATION STUDY

We investigated the accuracy of the normal approximation based on Theorem

1 by performing a small simulation study in S-PLUS for samples of size n =

50, 100 and 200. We used a similar simulation setup as Stekeler (2004). It

should be noted here that the first maximization routine has been written by

Stekeler (2004) and we further updated it. A simple model with intercept

and single covariate x was considered for the linear predictors ηi(β)’s, i.e.

ηi(β) = β0 + β1xi for i = 1, . . . , n. The values of the covariate x were chosen

equally spaced between −1 and 1. Further we examined two choices for β1

and set β0 = −1. In the first case we put β1 = 2 while β1 = 3 was set in

the second case, which will be in the sequel called Setting-1 and Setting-2,

respectively. This allows us to compare models with a small (Setting-1) and

large (Setting-2) range of the parameter µ of the ZIGP distribution. Since we

are mostly interested in the case when Poisson regression does not satisfactorily

fit the count regression data, the following values of ω and ϕ were considered:

ω = 0.1, 0.25 and ϕ = 1.25, 3. For each combination of sample size n, setting,

ω and ϕ we simulated 100 samples of responses Yi’s, i.e. Yi ∼ ZIGP (exp(β0 +
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β1xi), ϕ, ω) for i = 1, . . . , n.

We computed the average estimate and the estimated mean squared error

(MSE) of the ML estimators β̂0, β̂1, ϕ̂ and ω̂ in 100 replications for each

considered case. Simulation results for Setting-1 are a bit more accurate than

for Setting-2 but they demonstrate similar patterns. This is natural to expect

since µ has an influence on the range the of data. Here we present the results

only for Setting-2 given in Table 1. Standard errors of the average estimate

and estimated MSE are given in parentheses. From Table 1 we see as expected

that the bias and MSE always decrease as the sample size n increases. An

opposite pattern is observed with respect to ϕ. If ϕ increases, while n and ω

remain fixed, the accuracy of the estimates becomes worse. This is explained

by allowing for more dispersed data for larger ϕ. A similar pattern holds for

ω. If ω increases, while n and ϕ remain fixed, then the accuracy becomes

worse. Since a larger ω increases the overdispersion in the data this is to

be expected. Note that in our simulation study ϕ has a larger influence on

the accuracy of ML estimators than ω. This can be seen from the estimated

MSE’s. For instance, the estimated MSE of β̂1 is equal to 0.09 when ϕ = 1.25,

ω = 0.1 and n = 200. Now if ω is increased by 2.5 times then the estimated

MSE approximately increases 20% while if ϕ is increased by 2.4 times then the

estimated MSE approximately increases 110%.

To draw a normal quantile-quantile (QQ) plot for the empirical distribution

of each component of the random vector F
t/2
n (δ̂n−δ0) considered in Theorem 1

and the standard normal distribution, the ML estimators β̂0, β̂1, ϕ̂ and ω̂ were

centered by the corresponding true value and normalized by the correspond-

ing square root of diagonal element of the inverse of the Fisher information

matrix evaluated at the vector of true parameter values (ϕ, ω, β0, β1). The

normalized and centered ML estimators are further denoted by β̂st
0 , β̂st

1 , ϕ̂st

and ω̂st. Figures 1 (ω = 0.1) and 2 (ω = 0.25) display the QQ–plots for

Setting-2. For a better visualization we connected points of QQ–plots with
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Para- True n Estimate MSE Para- True n Estimate MSE

meter value meter value

ϕ 1.25 50 1.222 (0.214) 0.047 (0.009) ϕ 1.25 50 1.208 (0.213) 0.047 (0.007)
100 1.219 (0.148) 0.023 (0.003) 100 1.190 (0.151) 0.026 (0.004)
200 1.238 (0.122) 0.015 (0.002) 200 1.207 (0.126) 0.018 (0.002)

ω 0.1 50 0.112 (0.110) 0.012 (0.002) ω 0.25 50 0.259 (0.147) 0.022 (0.003)
100 0.104 (0.081) 0.007 (0.001) 100 0.264 (0.095) 0.009 (0.001)
200 0.096 (0.056) 0.003 (4 · 10−4) 200 0.250 (0.072) 0.005 (0.001)

β0 -1 50 -1.018 (0.438) 0.192 (0.029) β0 -1 50 -1.206 (0.591) 0.391 (0.058)
100 -1.044 (0.310) 0.098 (0.011) 100 -1.095 (0.357) 0.136 (0.023)
200 -1.064 (0.237) 0.060 (0.010) 200 -1.027 (0.264) 0.070 (0.013)

β1 3 50 2.976 (0.512) 0.263 (0.034) β1 3 50 3.228 (0.689) 0.526 (0.077)
100 3.083 (0.406) 0.172 (0.019) 100 3.122 (0.464) 0.230 (0.037)
200 3.065 (0.293) 0.090 (0.013) 200 3.022 (0.327) 0.107 (0.019)

Para- True n Estimate MSE Para- True n Estimate MSE

meter value meter value

ϕ 3 50 2.672 (1.404) 2.079 (0.324) ϕ 3 50 2.563 (1.255) 1.765 (0.214)
100 2.865 (0.914) 0.853 (0.143) 100 2.936 (0.957) 0.921 (0.113)
200 2.915 (0.514) 0.272 (0.037) 200 2.933 (0.648) 0.424 (0.061)

ω 0.1 50 0.165 (0.184) 0.038 (0.006) ω 0.25 50 0.258 (0.220) 0.048 (0.005)
100 0.117 (0.137) 0.019 (0.004) 100 0.227 (0.181) 0.033 (0.003)
200 0.090 (0.095) 0.009 (0.001) 200 0.251 (0.129) 0.017 (0.002)

β0 -1 50 1.382 (1.107) 1.372 (0.372) β0 -1 50 -1.423 (1.110) 1.412 (0.319)
100 1.137 (0.606) 0.386 (0.075) 100 -1.241 (0.674) 0.512 (0.082)
200 1.127 (0.388) 0.166 (0.029) 200 -1.095 (0.440) 0.203 (0.046)

β1 3 50 3.430 (1.256) 1.762 (0.534) β1 3 50 3.399 (1.275) 1.784 (0.430)
100 3.207 (0.720) 0.561 (0.116) 100 3.259 (0.748) 0.626 (0.103)
200 3.120 (0.414) 0.186 (0.031) 200 3.141 (0.537) 0.308 (0.086)
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Figure 1: Normal QQ-plots of centered and normalized ML estimators in Setting-2
for a ZIGP regression model with ω = 0.1 based on 100 replications
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Figure 2: Normal QQ-plots of centered and normalized ML estimators in Setting-2
for a ZIGP regression model with ω = 0.25 based on 100 replications
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different type of lines. The solid, dotted and dashed broken lines correspond

to sample sizes n = 50, n = 100 and n = 200, respectively. The straight line

corresponds to 450 degree line and indicates where the points of a standard

normal distribution in a normal QQ–plot would fall.

From these plots we see that the normal approximation for β̂st
0 and β̂st

1 is

quite satisfactory. This is only partially true for ϕ̂st and ω̂st since we observe

horizontal segments in the left bottom corner of the corresponding QQ-plot.

A reason of the above anomaly is the closeness of the true values of ϕ and ω to

their left boundary values 1 and 0, respectively. Therefore the log-likelihood

reaches its maximum at ϕ = 1+10−99 and ω = 10−99 which are the lower bound

for ϕ and ω in the maximization routine. The standard normal QQ-plots for

ϕ̂st in Figure 1 and ω̂st in Figure 2 illustrate this fact. Note that the normal

approximation for ω̂st in Figure 2 is worse for ϕ = 3 than for ϕ = 1.25. This

occurs since data becomes more dispersed for large ϕ. The above anomaly is

resolved when a higher sample size is used in these cases. This can be seen by

comparing the first column of QQ-plots in Figure 1 with the corresponding

QQ-plots in Figure 3 for n = 500. It should be noted here that the ML
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Figure 3: Normal QQ-plots of centered and normalized ML estimators in Setting-2
for a ZIGP regression model with n = 500, ω = 0.1 and ϕ = 1.25 based on 100
replications
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estimators in GP and ZIP regressions have exhibited analogous asymptotic

properties.

We also investigated the coverage of the true values of the parameters ϕ, ω,

β0 and β1 of asymptotic confidence intervals based on Theorem 1 for sample

size n = 500. Results of simulations showed good agreement with true values

of ϕ, ω, β0 and β1.

6. EXAMPLES

6.1. PATENT DATA

Using a negative binomial regression model Czado and Sikora (2002) analyzed

data on the number of patents of US high-tech firms in 1976 from Wang,

Cockburn, and Puterman (1998). Czado and Sikora (2002) rejected the Pois-

son regression model in favor of negative binomial model using a p–value curve

approach. We applied a ZIGP regression model to their model setup for the

patent data. Since [2.098, 3.263] and [−0.03, 0.06] were obtained as asymptotic

95% confidence intervals for ϕ and ω, respectively, we see that zero-inflation is

not present in this data set while there is overdispersion. Thus, the GP regres-

sion may be more appropriate than the ZIGP regression. An application of a

GP regression to the patent data also confirms this decision since it produces

[2.152, 3.342] as an asymptotic 95% confidence interval for ϕ. In order to com-

pare the NB model and the GP model we used Vuong’s test which is applicable

to nonnested models (see Vuong (1989)). It is based on the Kullback-Leibler

distance (see Kullback and Leibler (1951)) and uses the asymptotic theory of

the maximum likelihood estimator in misspecified models developed by White

(1982).

Let Pµi,ϕ(yi) denote the estimated probability that a random variables Y

equals yi under assumption that its distribution is GP (µi, ϕ). Analogously,

Qµi,a(yi) is the estimated probability under assumptions that a random variable

Y distributed according to the NB distribution with parameters (µi, a) (cf.
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Lawless (1987)). Then Vuong’s statistic V for testing the hypothesis of the

NB model versus the GP model is constructed as follows:

V =

√
nm

√

1
n

∑n
i=1(mi − m)2

,

where

mi = log

(

Qµi,a(yi)

Pµi,a(yi)

)

and m =
1

n

n
∑

i=1

mi.

The test statistic V for testing the NB regression model versus the GP re-

gression model in the patent data is equal to 0.426 with asymptotic p-value

0.670. Therefore we prefer neither the NB model nor the GP model, say, even

at 10%-level. It should be noted that Vuong’s statistic is bidirectional (see

Vuong (1989)). Here a large positive value of the statistic would favor the NB

model while a small negative value would favor the GP model.

6.2. APPLE SHOOT PROPAGATION DATA

Ridout, Demétrio, and Hinde (1998) analyzed data on the number of roots

produced by 270 shoots of a certain apple cultivar. The shoots had been

produced under an 8– and or 16– hour photoperiod (Factor ”P”) in culture

systems that utilized one of four different concentrations of cytokinin BAP

(Factor ”H”) in the culture medium (for more details see Marin, Jones, and

Hadlow (1993)). Since the data contains a large number of zero responses for

the 16 hour photoperiod the extension to allow for zero-inflation is natural

to consider. Ridout, Demétrio, and Hinde (1998) fitted Poisson and NB re-

gression models as well as their zero-inflated copies with various combinations

of covariate specifications to this data set. Here we consider specifically two

ZIGP models which will be compared with corresponding ZINB models fitted

by the the later authors. In the first model µ may take different values only

for two levels of Factor ”P”, while in the second model µ may take different

values for each of the eight treatment combination (”P∗H”). The choice of
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these models is dictated by the fact that there is a large effect of Factor ”P”

and significant interaction between Factors ”P” and ”H”. This follows from

considering ZIGP and ZINB regression specifications using a likelihood ratio

test. Overdispersion and zero-inflation parameters are taken to be a constant

in the both models.

For one factor case asymptotic 95% confidence intervals for ϕ and ω are

(1.143, 1.414) and (0.171, 0.273), respectively. Thus overdispersion and zero-

inflation are present and ZIGP regression approach would be appropriate here.

In the second case, asymptotic 95% confidence intervals for ϕ and ω are

(1.112, 1.373) and (0.172, 0.274), respectively. Again, we see that ZIGP re-

gression approach is suitable for these data. Moreover, Table 2 shows that

Vuong’s test would slightly favor the ZIGP model over the ZINB model for

two factor ”P∗H” mean specification.

Table 2: Vuong’s statistic and its p–value for data on shoots of a apple cultivar.

Compared models Vuong’s statistic V p-value

One Factor ”P”:
ZINB vs. ZIGP -1.391 0.164
Two Factors ”P∗H”:
ZINB vs. ZIGP -1.800 0.072

7. POWER COMPARISON OF SCORE AND WALD TESTS IN ZMP MOD-

ELS

Recently Jansakul and Hinde (2002) investigated performance of the score test

for zero-inflation in small and moderate sample sizes within the ZIP regression

model. As they noted, the score test, in fact, gives here a test of Poisson model

against ZMP model (see Dietz and Böhning (2000)) avoiding the problem of

testing on the boundary of zero-inflation.

By virtue of Theorem 1 and Remark (v), we can construct the Wald

test for testing zero-inflation or zero-deflation and then compare its perfor-
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mance with the performance of the corresponding score test simulated by

Jansakul and Hinde (2002). At the moment, this can be done only for mod-

els with constant zero-inflation parameter. In particular, they considered

models with ω = 0, 0.25, 0.45 and linear predictors ηi(β) = 0.25, 0.75 and

ηi(β) = 0.75 − 1.45xi for i = 1, . . . , n and n = 50, 100, 200. Covariates xi’s

were taken uniformly from (0, 1). Note that for each combination of sample

size and model they simulated 1000 sets of responses from the working model.

The Wald statistic for testing H0 : ω = 0 versus H1 : ω 6= 0 has the

following form

Wω =
ω̂2

σ̂2
ω

,

where ω̂ is the ML estimator of ω and σ̂2
ω is the estimated variance of ω̂ which

is nothing else as the corresponding diagonal element of the Fisher information

matrix evaluated at (ω̂, β̂). Estimated upper tail probabilities for an α size

test are computed by calculating the proportion of times when Wω is greater

than or equal to the critical value χ2
1,1−α, i.e.

#{j : W j
ω ≥ χ2

1,1−α, j = 1, . . . , 1000}
1000

.

Here χ2
1,1−α is the (1 − α)100% quantile of a χ2 distribution with 1 degree of

freedom and W j
ω denotes the value of Wω in the j−th sample. Note that when

samples are drawn from the Poisson distribution estimated upper tail prob-

abilities correspond to the estimated level of the test. For ZIP samples with

zero-inflation ω > 0 they give the estimated power function at ω. These values

are given in Table 3 for the Wald test and the score test for linear predictors

ηi(β)’s given by ηi(β) = 0.75 − 1.45xi, i = 1, . . . , n. The results for the score

test are reproduced from Jansakul and Hinde (2002). In general, the Wald

test showed a considerable better performance than the score test especially

in smaller samples n = 50, 100 and small α (α = 0.01).
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Table 3: Estimated upper tail probabilities for Wald (Wω) and score (Sω) statistics at
χ2

1,1−α
based on 1000 samples.

Level of the tests α = 0.05 α = 0.01

Wω Sω Wω Sω

n = 50 ω = 0.00 0.036 0.042 0.014 0.008
ω = 0.25 0.452 0.292 0.279 0.129
ω = 0.45 0.780 0.583 0.661 0.372

n = 100 ω = 0.00 0.035 0.056 0.010 0.012
ω = 0.25 0.786 0.551 0.608 0.324
ω = 0.45 0.964 0.911 0.918 0.782

n = 200 ω = 0.00 0.036 0.054 0.011 0.006
ω = 0.25 0.936 0.900 0.861 0.752
ω = 0.45 1.000 0.999 0.999 0.993

8. DISCUSSION

This paper shows that the ML estimators in ZIGP (GP, ZIP) regression models

possess analogous asymptotic properties as they do in GLM. General results

of Fahrmeir and Kaufmann (1985) for noncanonical links in GLM have been

adopted for this purpose. Simulation study illustrates that the normal approx-

imation is satisfactory for moderate and large sample sizes. In particular for

moderate overdispersion (ϕ = 1.25) and moderate zero-inflation (ω = 0.25)

sample sizes of n = 200 are sufficient.

In general score tests have a computational advantage over Wald tests

since they require fitting the model only under the null hypothesis. However

nowadays, given modern computing power, this point has lost importance in

many problems. Our investigations show that for small and moderate sample

sizes the Wald test for detecting zero-inflation or zero-deflation deflation in a

ZMP regression model is considerable more powerful than the score test.
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for helpful discussions.

APPENDIX 1: FISHER INFORMATION MATRIX FOR ZIGP REGRES-

SION

The Hessian matrix Hn(δ) in the ZIGP regression may be partitioned as

Hn(δ) =











∂ln(δ)
∂ββt

∂ln(δ)
∂βϕ

∂ln(δ)
∂βω

∂ln(δ)
∂ϕβt

∂ln(δ)
∂ϕϕ

∂ln(δ)
∂ϕω

∂ln(δ)
∂ωβt

∂ln(δ)
∂ωϕ

∂ln(δ)
∂ωω











,

where ∂ln(δ)
∂ββt , ∂ln(δ)

∂βϕ
, ∂ln(δ)

∂βω
are matrices of dimension (p+1)×(p+1), (p+1)×1,

(p + 1)× 1, respectively, and ∂ln(δ)
∂ϕϕ

, ∂ln(δ)
∂ϕω

, ∂ln(δ)
∂ωω

are scalars. Entries hrs(δ)’s

of Hn(δ) can be straightforward computed. For instance entries of the matrix

∂ln(δ)
∂ββt are given by

hrs(δ) :=
∂ln(δ)

∂βrβs

(14)

= −
n
∑

i=1

1l{yi=0}xirxis(1 − ω)µi(β)

× [1 − fi(β, ϕ)/ϕ] gi(δ) + (1 − ω) [fi(β, ϕ)]2 µi(β)/ϕ

ϕ [gi(δ)]2

−
n
∑

i=1

1l{yi>0}xirxisµi(β)

(

1

ϕ
− yi(yi − 1)(ϕ − 1)

[µi(β) + (ϕ − 1)yi]
2

)

for r, s = 0, . . . , p.

Now set Hn(δ) = −Hn(δ). It is well known (see for example Mardia,

Kent, and Bibby (1979), p.98) that under mild general regularity assumptions

which are satisfied here that the Fisher information matrix Fn(δ) is equal to

EδHn(δ). Thus entries of Fn(δ) can be straightforward computed and are
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given by

fr,s(δ) = fs,r(δ) =
n
∑

i=1

xirxis(1 − ω)µi(β)

× [1 − fi(β, ϕ)/ϕ] gi(δ) + (1 − ω) [fi(β, ϕ)]2 µi(β)/ϕ

ϕgi(δ)

+
n
∑

i=1

(1 − ω)xirxisµi(β)

(

µi(β) − 2ϕ + 2ϕ2

ϕ2(µi(β) − 2 + 2ϕ)
− 1

ϕ
fi(β, ϕ)

)

for r, s = 0, . . . , p ;

fp+1,r(δ) = fr,p+1(δ) =

n
∑

i=1

xir(1 − ω)fi(β, ϕ)µi(β)

× gi(δ) [µi(β)/ϕ − 1] − (1 − ω)fi(β, ϕ)µi(β)/ϕ

ϕ2gi(δ)

−
n
∑

i=1

(1 − ω)xirµi(β)

(

2(ϕ − 1)

ϕ2(µi(β) − 2 + 2ϕ)
− fi(β, ϕ)

ϕ2

)

for r = 0, . . . , p ;

fp+2,r(δ) = fr,p+2(δ) = −
n
∑

i=1

xirfi(β, ϕ)µi(β)

ϕgi(δ)

for r = 0, . . . , p ;

fp+1,p+1(δ) = −
n
∑

i=1

(1 − ω)fi(β, ϕ)µi(β)

×gi(δ) (µi(β) − 2ϕ) − (1 − ω)fi(β, ϕ)µi(β)

ϕ4gi(δ)

+
n
∑

i=1

2(1 − ω)µi(β)

(

1

ϕ2(µi(β) − 2 + 2ϕ)
− fi(β, ϕ)

ϕ3

)

;

fp+2,p+1(δ) = fp+1,p+2(δ) =

n
∑

i=1

fi(β, ϕ)µi(β)

ϕ2gi(δ)
;

fp+2,p+2(δ) =

n
∑

i=1

(

[1 − fi(β, ϕ)]2

gi(δ)
+

1 − fi(β, ϕ)

1 − ω

)

.
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APPENDIX 2: PROOF OF THEOREM 1

The proof of Theorem 1 follows the proof of Theorem 4 given in Fahrmeir and

Kaufmann (1985). In particular, we have to prove asymptotic normality of the

normalized score vectors F
t/2
n sn (Lemma 3) and show (Lemma 4) that

max
δ∈Nn(ε)

‖Vn(δ) − Ip+3‖ P−→ 0 for all ǫ > 0,

where Vn(δ) := F
−1/2
n Hn(δ)F

−t/2
n for n = 1, 2, . . .

We start the appendix with two preliminary lemmas. Recall that we drop

the dependency on δ0,β0, ϕ0 and use µi, Fn, E, etc.

Lemma 1. Let Ỹi ∼GP(µi, ϕ0) for i = 1, . . . , n be a sequence of random vari-

ables. Then under assumptions (A2) and (A3),

max
i=1,...,n

E

(

1

(µi + (ϕ0 − 1)Ỹi)k

)

≤ C1,

max
i=1,...,n

E(Ỹ k
i ) ≤ C2

for any finite integer k > 0, where C1 and C2 are positive constants depending

only on k and δ0 .

Proof. Let us show the first inequality of the Lemma. It is evident using (A3)

that

E

(

1

(µi + (ϕ0 − 1)Ỹi)k

)

≤ 1

µk
i

. (15)

Now it follows

max
i=1,...,n

1

µk
i

= max
i=1,...,n

1

exp (kxt
iβ0)

≤ max
x∈Kx

1

exp (kxtβ0)
≤ C1(β0, k),

since Kx is a compact and exp (kxtβ0) is a continuous function of x. It should

be noted that C1(β0, k) is continuous with respect to β0 and well defined for

all β0 ∈ B.
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Now we show the second inequality of the lemma. First, we reparameterize

the GP distribution by introducing new parameters θi := µi/ϕ0 and λ0 :=

(ϕ0 − 1)/ϕ0, i = 1, . . . , n. Consul and Shenton (1974) gave the following

recurrence formula for the noncentral moments of the GP (θi, λ0) distribution:

(1 − λ0)mi,k+1 = θimi,k + θi
∂mi,k

∂θi
+ λ0

∂mi,k

∂λ0
, k = 0, 1, 2, . . . ,

where mi,k := E(Ỹ k
i ).

Solving this recursion for fixed k shows that mi,k is a polynomial in θi, λ0

and 1/(1−λ0). Thus, mi,k is a continuous function with respect to (θi, λ0) and

consequently, it is also continuous with respect to (µi, ϕ0). It follows now that

max
i=1,...,n

E(Ỹ k
i ) = max

i=1,...,n
mi,k (θi, λ0)

= max
i=1,...,n

mi,k (µi/ϕ0, µi(ϕ0 − 1)/ϕ0)

≤ max
x∈Kx

mk

(

ex
tβ0/ϕ0, e

x
tβ0(ϕ0 − 1)/ϕ0

)

≤ C2(δ0),

where mk := E(Ỹ k) and Ỹ ∼ GP (exp(xtβ0), ϕ0). It is not difficult to see that

C2(δ0) is continuous with respect to δ0 and well defined for all δ0 ∈ Kδ.

Lemma 2. Let Qk(y) be a polynomial of a finite order k (k ∈ N) whose

coefficients are positive continuous functions of x, δ and δ0. Further, let

Yi ∼ ZIGP (exp(xt
iβ0), ϕ0, ω0) for i = 1, . . . , n. If (A1)–(A3) hold then

max
δ∈Nn(ε)

max
i=1,...,n

E
(

1l{Yi>0}Qk(Yi)
)

< C,

where C is a positive constant depending on k and δ0.

Proof. Note that under (A1) the neighborhood Nn(ε) is a compact for any

n ∈ N and shrinks to δ0 for any ε > 0 as n → ∞. Using Lemma 1 and the

continuity of the coefficients of Qk, it follows now that

max
δ∈Nn(ε)

max
i=1,...,n

E
(

1l{Yi>0}Qk(Yi)
)

≤ max
δ∈Nn(ε)

max
i=1,...,n

(1 − ω0)E
(

Qk(Ỹi)
)

≤ max
δ∈N1(ε)

max
x∈Kx

(1 − ω0)E
(

Qk(Ỹ )
)

≤ C,
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where Ỹi ∼ GP (exp(xt
iβ0), ϕ0) and Ỹ ∼ GP (exp(xtβ0), ϕ0).

Lemma 3. Under assumptions (A1)–(A3), F
−1/2
n sn

D⇒ Np+3(0, Ip+3) as n →
∞, where Np+3(0, Ip+3) is a (p+3)-dimensional normal distribution with mean

vector 0 and covariance matrix Ip+3.

Proof. According to the Cramer-Wald device, it is sufficient to show that a

linear combination atF
−1/2
n sn converges in distribution to N(0, ata) for any

vector a ∈ R
p+3 (a 6= 0). Without loss of generality, we set ‖a‖ = 1.

Now observe that sn can be written as a sum of independent random

vectors, namely sn =
∑n

i=1 sni, where sni = (s0,i, . . . , sp,i, sp+1,i, sp+2,i)
t with

sk,i := sk,i(δ0) defined in (10), (11) and (12) for k = 0, . . . , p + 2 and i =

1, . . . , n, respectively. Further, define independent random variables ξin by

ξin := atF
−1/2
n sni. Since E(ξin) = 0 and V ar (

∑n
i=1 ξin) = 1, it is enough to

show that the Lyapunov condition is satisfied, i.e.

Ls :=
n
∑

i=1

E|ξin|s n→∞−→ 0, for some s > 2,

say s = 3 (see for example Hoffmann-Jørgensen (1994), p. 393). Noticing that

‖F−1/2
n ‖2 = 1/λmin (Fn), it follows from (A1) that

L3 ≤
n
∑

i=1

E
(

∥

∥at
∥

∥

3 ∥
∥F−1/2

n

∥

∥

3 ‖sni‖3
)

≤ C

n3/2

n
∑

i=1

E ‖sni‖3 ≤ C√
n

max
i=1,...,n

E ‖sni‖3 .

Using an extension of the cr-inequality given by

E

∣

∣

∣

∣

∣

m
∑

i=1

ζi

∣

∣

∣

∣

∣

k

≤ mk−1
m
∑

i=1

E|ζi|k ( k > 1, k ∈ R), (16)

to m arbitrary random variables ζ1, . . . , ζm ( see, for example, Petrov (1995),

p.58) yields that

E ‖sni‖3 ≤ C
(

E |s0,i|3 + . . . + E |sp,i|3 + E |sp+1,i|3 + E |sp+2,i|3
)

.
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Thus, it remains to establish that maxi=1,...,n E |sr,i|3 is uniformly bounded

in n for r = 0, . . . , p + 2. This will be shown for case r = 0, . . . , p. The

remaining cases can be treated similarly. Without loss of generality, set r = p.

Using now (16) with m = 2, we have

max
i=1,...,n

E |sp,i|3 ≤ 22 max
i=1,...,n

E

∣

∣

∣

∣

xip1l{yi=0}
(1 − ω0)fiµi

ϕ0gi

∣

∣

∣

∣

3

+ 22 max
i=1,...,n

E

(

∣

∣

∣

∣

xip1l{yi>0}

(

1 +
µi(yi − 1)

µi + (ϕ0 − 1)yi
− µi

ϕ0

)∣

∣

∣

∣

3
)

=: 4Ap(δ0) + 4Bp(δ0).

The last step in the proof is now to show that

Ap(δ0) < C1 and Bp(δ0) < C3, (17)

where C1 and C3 are some constants depending on δ0.

For proving (17) we note that

Ap(δ0) ≤ max
x∈Kx

‖x‖3

∣

∣

∣

∣

(1 − ω0)fiµi

ϕ0gi

∣

∣

∣

∣

3

gi ≤ C1.

Let us now consider Bp(δ0). Simple arguments with Inequality (16), Cauchy-

Schwarz inequality and Lemma 1, respectively, give

Bp(δ0) ≤ max
i=1,...,n

E



(1 − ω0) |xir|3 ·
∣

∣

∣

∣

∣

1 +
µi(Ỹi − 1)

µi + (ϕ0 − 1)Ỹi

− µi

ϕ0

∣

∣

∣

∣

∣

3




≤ C max
x∈Kx

(1 − ω0)‖x‖3



13 + E

∣

∣

∣

∣

∣

µi(Ỹ − 1)

µi + (ϕ0 − 1)Ỹ

∣

∣

∣

∣

∣

3

+

(

µi

ϕ0

)3




≤ C1(δ0) + C2(δ0) max
x∈Kx

E
∣

∣

∣
Ỹ − 1

∣

∣

∣

3

≤ C1(δ0) + C2(δ0) max
x∈Kx

√

E
(

Ỹ − 1
)6

≤ C3(δ0),

where Ỹi ∼ GP (µi, ϕ0) for i = 1, . . . , n and Ỹ ∼ GP (exp(xtβ0), ϕ0).

Lemma 4. Under the assumptions (A1)–(A3),

max
δ∈Nn(ε)

‖Vn(δ) − Ip+3‖ P−→ 0 for all ǫ > 0. (18)

28



Proof. We have a.s.

‖Vn(δ) − Ip+3‖ =
∥

∥F−1/2
n [Hn(δ) − Fn]F−t/2

n

∥

∥

≤ 1

λmin(Fn)
‖Hn(δ) − Fn‖

≤ C

n
‖Hn(δ) − Fn‖

≤ C

∥

∥

∥

∥

1

n
(Hn(δ) − EHn(δ))

∥

∥

∥

∥

+ C

∥

∥

∥

∥

1

n
(EHn(δ) − Fn)

∥

∥

∥

∥

.

Thus, conditions

max
δ∈Nn(ε)

∥

∥

∥

∥

1

n
(Hn(δ) − EHn(δ))

∥

∥

∥

∥

P−→ 0 (19)

and

max
δ∈Nn(ε)

∥

∥

∥

∥

1

n
(EHn(δ) − Fn)

∥

∥

∥

∥

−→ 0 (20)

imply (18).

In order to show (19) it is enough to establish that the maximum over

δ ∈ Nn(ε) of the absolute value of the (r, s)-element of the random matrix

[Hn(δ) − EHn(δ)]/n converges to zero in probability, i.e.

max
δ∈Nn(ε)

|hrs(δ) − Ehrs(δ)|
n

P−→ 0.

Recall that the Hessian matrix has 6 different types of entries. We shall illus-

trate the above convergence for hrs(δ)’s defined in (14). The remaining cases

can be treated similarly. Without loss of generality, we show

max
δ∈Nn(ε)

∣

∣

∣

∣

1

n
(hp,p(δ) − Ehp,p(δ))

∣

∣

∣

∣

P−→ 0. (21)

Let Zi := 1l{Yi>0}Yi(Yi−1), Ui(β, ϕ) := µi(β)+(ϕ−1)Yi, qi,p(δ) := x2
ipµi(β)(ϕ−

1) and

vi,p(δ) := x2
ip(1−ω)fi(β, ϕ)µi(β)

[1 − µi(β)/ϕ] gi(δ) + (1 − ω)fi(β, ϕ)µi(β)/ϕ

ϕ [gi(δ)]2
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for i = 1, . . . , n. It easy to see that (21) will now follow from the next three

conditions:

max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

vi,p(δ)
(

1l{Yi=0} − E(1l{Yi=0})
)

∣

∣

∣

∣

∣

P−→ 0,

max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

qi,p(δ)

ϕ

(

1l{Yi>0} − E(1l{Yi>0})
)

∣

∣

∣

∣

∣

P−→ 0

max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

qi,p(δ)

[

Zi

[Ui(β, ϕ)]2
− E

(

Zi

[Ui(β, ϕ)]2

)]

∣

∣

∣

∣

∣

P−→ 0. (22)

Since they have a similar structure we only establish the validity of the last

relation. It is worth to recall that the dependency on δ0, β0 and ϕ0 is always

dropped.

Observe that the right hand side of (22) may be bounded by a sum of

An = max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

qi,p(δ)

(

Zi

[Ui(β, ϕ)]2
− Zi

U2
i

)

∣

∣

∣

∣

∣

,

Bn = max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

qi,p(δ)

[

E
Zi

[Ui(β, ϕ)]2
− E

(

Zi

U2
i

)]

∣

∣

∣

∣

∣

,

Dn = max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

qi,p(δ)

[

Zi

U2
i

− E

(

Zi

U2
i

)]

∣

∣

∣

∣

∣

.

For An we have the following bounds:

An ≤ max
δ∈Nn(ε)

1

n

n
∑

i=1

|qi,p(δ)Zi|
µ2

i (β)µ2
i

· |Ui(β, ϕ) + Ui| |µi(β) − µi + (ϕ − ϕ0)Yi|

≤ max
δ∈Nn(ε)

1

n

n
∑

i=1

|qi,p(δ)Zi|
µ2

i (β)µ2
i

· |(Yi + 1)(µi(β) + µi + ϕ + ϕ0 − 2)|

× |µi(β) − µi + (ϕ − ϕ0)Yi|

≤ C1

n

(

n
∑

i=1

Zi(Yi + 1)

)

max
δ∈Nn(ε)

max
x∈Kx

∣

∣exp(xtβ) − exp(xtβ0)
∣

∣

+
C1

n

(

n
∑

i=1

ZiYi(Yi + 1)

)

max
δ∈Nn(ε)

|ϕ − ϕ0|

=: ABn + ACn. (23)
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It is not difficult to see that

1

n

n
∑

i=1

Zi(Yi + 1)

converges in probability as n → ∞ to

lim
n→∞

1

n

n
∑

i=1

E (Zi(Yi + 1))

which is finite by Lemma 2.

These facts and the continuity in β of the function maxx∈Kx
|exp(xtβ) − exp(xtβ0)|

with value zero at β = β0 yield that ABn converges to 0 in probability as

n → ∞. Convergence of ACn to 0 in probability may be proven in the same

way.

Using similar arguments as above one can show that Bn converges to 0

in probability. To prove Dn → 0 in probability, observe that the function

maxi=1,...,n |qi,p(δ)− qi,p(δ0)| can be bounded from above by the following con-

tinuous function of δ

C max
x∈Kx

∣

∣exp(xtβ)(ϕ − 1) − exp(xtβ0)(ϕ0 − 1)
∣

∣

with zero at δ = δ0. The desired result now follows from the law of large

numbers and standard arguments.

It remains to show (20). We will show

max
δ∈Nn(ε)

∣

∣

∣

∣

[EHn(δ) − Fn]rs

n

∣

∣

∣

∣

→ 0 (24)

and again restrict ourself to the case r = s = p. It easy to see that condition

(24) will follow from the next three conditions :

max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(vi,p(δ) − vi,p) E(1l{Yi=0})

∣

∣

∣

∣

∣

→ 0, (25)

max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

qi,p(δ)

ϕ
− qi,p

ϕ0

)

E(1l{Yi>0})

∣

∣

∣

∣

∣

→ 0, (26)

max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

qi,p(δ)E

(

Zi

[Ui(β, ϕ)]2

)

− qi,pE

(

Zi

U2
i

))

∣

∣

∣

∣

∣

→ 0. (27)
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Now we see that the same technique used for deriving (22) can be employed

to establish the convergence results (25)–(27).
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