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Abstract

Klaus Böcker and Claudia Klüppelberg investigate a simple loss distribution

model for operational risk. They show that, when loss data are heavy-tailed (which

in practice they are), a simple closed-form approximation for the OpVaR can be

obtained. They apply this approximation in particular to the Pareto severity model,

for which they obtain also a simple time scaling rule for the operational VaR.

1 Introduction

According to the final proposals of the Basel Committee [1], in addition to market

and credit risk, operational risk will also be a determinant of the new capital re-

quirements as from 2007. Then every bank has to calculate explicit capital charges

to cover operational risk by means of one of three approaches: the basic indica-

tor approach, the standardised approach, and the advanced measurement approach

(AMA). This “continuum of approaches” reflects different levels of sophistication

and risk sensitivity. AMA as the most flexible approach for operational risk quan-

tification allows the bank to build its own internal operational risk model and mea-

surement system, comparable to market risk standards. Instead of prescribing a

particular type of VaR model, the committee requires a set of quantitative and

qualitative standards to be fulfilled. The following two are most relevant for the

issues discussed in this paper:

(1) The operational-risk measure is a VaR at confidence level 99.9 % with a holding

period of one year (cf. § 667)

(2) The measurement approach must capture potentially severe tail loss events

(cf. § 667).

The most popular method in the industry to satisfy the AMA standards is the loss

distribution approach (LDA), which is based on modelling the probability distribu-

tion of operational losses using bank-internal and external data.

Despite the current vivid debate, operational risk is not a new phenomenon. We

all recall the operational risk event that happened on February 26, 1995, when the
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prestigious British merchant bank Barings had to declare bankruptcy. The reason

was an accumulated loss of £ 625 million in its Singapore division caused by a

trader, who was hiding loss-making positions in financial derivatives.

Obviously, the main objective of any financial institution is to manage and min-

imize operational risk. The only feasible way to manage risk is by identifying and

minimize it. This can only be done successfully by the development of adequate

quantification techniques. It seems to be worthwhile to consider the actuaries’ ap-

proach to similar problems. Dealing with randomly occurring insurance claims, they

have been at the very core of operational-risk-like issues for more than a hundred

years. Hence, it is not surprising that LDA models have their roots in insurance

risk theory, which goes back to the early work by Filip Lundberg in 1903. In this

respect, modelling and quantifying operational risk can be viewed as a 100 year old

science!

In this paper we suggest and investigate a model that indeed originates in in-

surance. We first introduce a Standard LDA, which contains the compound Poisson

and the negative binomial model as special cases. Exploiting the common wisdom

that severity distributions for operational risk are typically very heavy-tailed, we

derive a closed-form approximation for the operational VaR (OpVaR). Extending

the model from a static model to a dynamic one, we further show that such models

have an in-built α-root-of-time rule for some α > 0, which usually differs from the

well-known square-root law. Finally, we introduce a new simple OpVaR estimate,

which can be applied for scenario generation or for expert-based risk assessment.

2 The Loss Distribution Approach

In the context of LDA models, a widely accepted procedure consists of splitting

up the total loss amount over a certain period into a frequency component, i.e.

the number of losses, and a severity component, i.e. the individual loss amounts.

The total loss is then obtained by compounding the frequency and the severity

information. A prototypical model of this kind, which is currently best practise and

implemented in various commercial software packages, is the following.

Definition 2.1. (Standard LDA)

(1) The severity process:

The severities (Xk)k∈N are positive independent and identically distributed (iid) ran-

dom variables describing the magnitude of each loss event.

(2) The frequency process:

The number N(t) of loss events in the time interval [0, t] for t ≥ 0 is random. The

resulting counting process (N(t))t≥0, is generated by a sequence of points (Tn)n≥1
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of non-negative random variables satisfying

0 ≤ T1 ≤ T2 ≤ · · · a.s.

and

N(t) = sup{n ≥ 1 : Tn ≤ t} , t ≥ 0 .

(3) The severity process and the frequency process are assumed to be independent.

(4) The aggregate loss process:

The aggregate loss S(t) up to time t constitutes a process

S(t) =

N(t)
∑

i=1

Xi , t ≥ 0 .

Note that we do not require Xk to have finite mean and/or variance. This is in

accordance with empirical research: Moscadelli [4] showed very convincingly that

typical severity distributions for operational risk are very heavy-tailed such that

even moments of low order may not exist; see also Section 2.2.

Typical examples for LDA models are obtained by specifying the frequency pro-

cess in the following way:

Example 2.2. (a) The Poisson-LDA is a Standard LDA, where (N(t))t≥0 is a

homogenous Poisson process with intensity λ > 0, in particular,

P (N(t) = n) = pt(n) = e−λt (λt)n

n!
, n ∈ N0 .

(b) The negative-binomial-LDA is a Standard LDA, where (N(t))t≥0 is given by a

negative binomial process satisfying for β, γ > 0

P (N(t) = n) = pt(n) =

(

γ + n − 1

n

) (

β

β + t

)γ (

t

β + t

)n

, n ∈ N0 .

The negative binomial distribution is a gamma mixture of a Poisson distribution,

i.e. it can be viewed as a Poisson distribution whose parameter λ is a gamma dis-

tributed random variable. This allows for modelling over-dispersion, which means

that for all t > 0 the variance of N(t) is greater than its mean, whereas for the

Poisson-LDA var(N(t)) = EN(t) holds. However, we will see later that as far as the

OpVaR approximation is concerned, over-dispersion is of minor importance.

2.1 Subexponential Severity Distributions

Concerning the severity, we have to take—in accordance with Basel II—the heavy-

tail property of operational losses into account. Some popular distributions are given

in Table 1. All of them are heavy-tailed, more precisely, they belong to the class
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Name Distribution function Parameters

Lognormal F (x) = Φ

(

ln x − µ

σ

)

µ ∈ R, σ > 0

Weibull F (x) = 1 − e−(x/θ)τ

θ > 0, 0 < τ < 1

Pareto F (x) = 1 −
(

1 +
x

θ

)−α

α, θ > 0

Table 1: Popular severity distributions with support (0,∞). (Φ is the standard normal distribution func-

tion).

of so-called subexponential distributions, meaning that their tails decay slower than

any exponential tail.

The defining property of subexponential distributions is that the tail of the sum

of n subexponential random variables has the same order of magnitude as the tail

of the maximum variable among them, more precisely,

lim
x→∞

P (X1 + · · · + Xn > x)

P (max(X1, . . . , Xn) > x)
= 1 for some (all) n ≥ 2. (1)

This means that the sum of n iid severities is most likely to be large because of one

of the terms being large, or, with emphasis on operational risk, severe overall losses

are mainly due to a single big loss rather than the consequence of accumulated small

independent losses. Of course, this insight should have implications for operational

risk management.

The goal of every LDA model is to determine the aggregate loss distribution,

which for the Standard LDA can be written as

Gt(x) = P (S(t) ≤ x)

=
∞

∑

n=0

pt(n)P (S(t) ≤ x|N(t) = n)

=

∞
∑

n=0

pt(n)Fn∗(x), x ≥ 0, t ≥ 0 ,

where F (·) = P (Xk ≤ ·) is the distribution function of Xk, and Fn∗(·) = P (
∑n

i=1 Xi ≤ ·)
is the n-fold convolution of F with F 1∗ = F and F 0∗ = I[0,∞).

For most choices of severity and frequency distributions, Gt cannot be calculated

analytically. Approximation methods to overcome this problem include Panjer re-

cursion, Monte Carlo simulation, and FFT (fast Fourier transform) methods, see

Klugman, Panjer and Willmot [3] for an overview. The drawback of these methods

is, however, that their results remain a “black box”, and the interaction between
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different model parameters and their impact on the final result, i.e. the OpVaR is

only interpretable through extensive sensitivity analyses.

As both regulatory capital and economic capital are based on a very high quan-

tile of the aggregate loss distribution Gt, a natural estimation method for OpVaR is

via asymptotic tail and quantile estimation. Instead of considering the entire distri-

bution, it is sufficient to concentrate on the right tail P (S(t) > x) for very large x.

Now, in actuarial science, the tail behavior of Gt has been extensively studied both

for small claims and large claims models. For the latter, a key result states that

for a Standard LDA with subexponential severities one has under weak regularity

conditions (see Theorem A.1, equation (A.1)) for every fixed t > 0,

Gt(x) ∼ EN(t)F (x) , x → ∞ , (2)

where EN(t) is the expected frequency and F (·) = 1 − F (·) and Gt(·) = 1 −
Gt(·) are the tail distributions of severity and aggregrate loss, respectively. The

symbol ∼ means that the quotient of right hand and left hand side tends to 1; i.e.

limx→∞ Gt(x)/F (x) = EN(t) for every fixed t > 0.

It has been shown in Examples 1.3.10 and 1.3.11 of Embrechts, Klüppelberg and

Mikosch [2] that the tail estimate (2) holds for the Poisson-LDA and the negative-

binomial-LDA.

2.2 A Closed-Form Approximation for OpVar

Given relation (2) it is straightforward to obtain an expression for the OpVaR, valid

at very high confidence levels. Recall that VaR is just a quantile of a distribution

function.

Definition 2.3 (Value at Risk). Suppose Gt is the aggregate loss distribution.

Then the Value-at-Risk (VaR) up to time t at confidence level κ is defined as the

κ-quantile of the loss distribution:

VaRt(κ) = G←
t (κ) , κ ∈ (0, 1) ,

where G←
t (κ) = inf{x ∈ R : Gt(x) ≥ κ}, 0 < κ < 1, is the generalized inverse of

Gt. If Gt is strictly increasing and continuous, we may write VaRt(κ) = G−1
t (κ).

Using (2) we obtain an asymptotic formula for the OpVaR:

Theorem 2.4 (Analytical OpVaR). Consider the Standard LDA model for fixed

t > 0 and a subexponential severity with distribution function F . Assume, moreover,

that the tail estimate (2) holds. Then, the VaRt(κ) satisfies the approximation

VaRt(κ) = F←

(

1 − 1 − κ

EN(t)
(1 + o(1))

)

, κ → 1 . (3)
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Proof. Note first that κ → 1 is equivalent to x → ∞. Then recall that o(1) always

stands for a function, which tends to 0, if its argument tends to a boundary, in our

case if κ → 1 or x → ∞. With this notation relation (2) can be rewritten as

Gt(x) = 1 − EN(t)F (x)(1 + o(1)) , x → ∞ .

Setting the right hand side equal to κ gives an asymptotic solution

F (x) = 1 − 1 − κ

EN(t)
(1 + o(1)) , x → ∞ ,

and, finally,

x = G←
t (κ) = F←

(

1 − 1 − κ

EN(t)
(1 + o(1))

)

, κ → 1 . ¤

This result, which holds for a quite general class of LDA models, is remarkable for

two reasons. First, it says that the OpVaR at high confidence levels only depends

on the tail and not on the body of the severity distribution. Therefore, if one is

only interested in VaR calculations, modelling the whole distribution function F is

superfluous. Second, because the frequency enters in expression (3) only with its

expectation EN(t), it is also not necessary to calibrate a specific counting process;

estimating the sample mean of the frequency suffices. As a consequence thereof, over-

dispersion as modelled by the negative binomial distribution, has asymptotically no

impact on the OpVaR.

In order to obtain a first order approximation for the OpVaR for a specific

LDA model, it suffices to combine (3) with the tail of the (subexponential) severity

distribution F . Furthermore, even closed-form solutions for the (asymptotic) OpVaR

are available (see Table 2).

Finally, we want to emphasize that the problem of finding a severity distribution

that accurately describes empirical loss data is a non-trivial task, and that the

parameterization of appropriate severity and frequency distributions is an integral

part of every AMA model. A textbook treatment concerning such statistical issues

as data analysis, parameter estimation, and hypothesis testing in the context of

general loss models can be found in Klugman, Panjer and Willmot [3].

3 The Pareto Severity Model

Operational loss data are usually very heavy-tailed. Moscadelli [4] investigated em-

pirical loss data collected by the Basel Committee during the financial year 2001.

Motivated by extreme value methods, for a generalized Pareto distribution model
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Name VaRt(κ)

Lognormal exp

[

µ − σ Φ−1

(

1 − κ

EN(t)

)]

Weibull θ

[

ln

(

EN(t)

1 − κ

)]
1

τ

Pareto θ

[

(

EN(t)

1 − κ

)1/α

− 1

]

Table 2: First order approximations of the VaRt(κ) as κ → 1 for the aggregate loss distribution for

popular severity distributions. Set EN(t) = λ t for a Poisson distributed and EN(t) = γ t/β for a

negative binomially distributed severity.

(GPD model), he estimated 1/α in a range between approximately 0.6 and 1.5, cor-

responding to α roughly between 0.7 and 1.7. For all such α the severity distribution

has infinite variance and for α ≤ 1 even the mean value does not exist.

Recall that the GPD comprises distributions with compact support, exponential

distributions and Pareto distributions, corresponding to 1/α being negative, 0, and

positive, respectively. For such small positive values of α as observed by Moscadelli

above, it is quite clear that it suffices to consider the GPD family for positive finite

values of α, corresponding to a Pareto distribution.

The Pareto distribution has further properties, which we will exploit in this

section.

Example 3.1 (Pareto-LDA). The Pareto-LDA is a Standard LDA as given in

Definition 2.1, where the loss severities (Xk)k∈N are Pareto distributed; i.e. for

parameters α, θ > 0

F (x) =
(

1 +
x

θ

)−α
, x > 0 .

For simplicity we denote EN(t) = λt with the obvious understanding that for a

negative binomial process λ has to be replaced by γ/β. As a result of Theorem 2.4,

we obtain for the OpVaR

VaRt(κ) ∼ θ

(

λ t

1 − κ

)1/α

, κ → 1 . (4)

(Actually, any severity distribution satisfying F (x) ∼ (x/θ)−α as x → ∞ yields

approximation (4)).

Figure 1 compares the analytical VaR estimate (4) with the results of a Monte

Carlo simulation for the Pareto-LDA with different shape parameters α and θ = 1.

We see that the best approximation is obtained for extremely heavy-tailed data, i.e.
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Figure 1: Comparison of the approximted VaR given by (4) (dashed line) and the simulated VaR (solid

line) for the Pareto-Poisson LDA with θ = 1.

for small values of α. Consequently, for operational loss data, our approximation

should be very good.

3.1 Time Scaling in the Pareto Severity Model

A well-known formula in risk management is the square-root-of-time rule for deriving

multi-period VaR values from 1-period values. This scaling law is based on the well-

known property of the normal distribution, which says that the sum of n iid centered

normal random variables, when scaled by
√

n is again normally distributed. As a

generalisation, the central limit theorem guarantees that the sum of n iid random

variables with finite variance (with arbitrary distribution and centered by its mean)

converges for n → ∞, when scaled by
√

n, to a standard normal distribution. It can

be shown that the central limit theorem holds also for Pareto-LDA models, when

proper adjustments have been made for the random number N(t) of summands; see

Embrechts, Klüppelberg and Mikosch [2], Theorems 2.5.7 and 2.5.9. Note that for

α < 2 neither is scaling by
√

n correct nor does the normal distribution appear as a

limit for n → ∞. Instead scaling has to follow a 1/α-root and the limit is a so-called

stable distribution, which is much heavier-tailed than the normal law.

We are, however, not aiming at a limit law for n → ∞, respectively N(t) → ∞
(which means t → ∞), but for a simple multi-period VaR based on 1-period values.

Moreover, we consider approximations in the very far out tail of a heavy-tailed

distribution. Consequently, a central limit argument may be misleading, and scaling

with the square-root factor is even for a finite variance model not justified.

We may, however, infer from (4) that for all fixed t > 0,

VaRt(κ) ∼ t1/α VaR1(κ) , κ → 1 . (5)

Consequently, in the case of a Pareto-LDA model, we have an α-root-of-time rule for

the OpVaR. Inserting typical values for α, (5) implies that the threat of losses due to
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operational risk increases rapidly (and much faster than the outcome of the square-

root-rule) when considering future time horizons. To put it simply, operational risk

can be a long-term killer!

3.2 Maxima of Operational Losses

Consider a VaR at confidence level κ and time horizon t = 1 year, i.e. the potential

1-year loss that is exceeded only with small probability 1−κ. From the law of large

numbers we know that for large N an event with probability p occurs on average Np

times in a series of N observations. Therefore, in case of yearly data, for κ = 0.1%,

VaR can be heuristically interpreted as the once-in-a-thousand-year event. There

is, however, a different interpretation of VaR that is closely related to the sample

maxima among a sequence of N(t) iid loss variables Xi within a given time period

[0, t],

M(t) = max(X1, . . . , XN(t)), t ≥ 0.

For the Standard LDA from Definition 2.1, setting P (N(t) = n) = pt(n) and defining

Mn = max(X1, . . . , Xn) for n ∈ N, we can immediately calculate the distribution

function GM of M(t) for any fixed t > 0.

GM (x) = P (M(t) ≤ x) =
∞

∑

n=0

pt(n)P (Mn ≤ x) =
∞

∑

n=0

pt(n)Fn(x) , x ≥ 0 .

Example 3.2. (Poisson-Pareto-LDA)

If the frequency follows a Poisson process with intensity λ > 0, we obtain

GM (x) =

∞
∑

n=0

e−λt (λt)n

n!
Fn(x) = e−λ t F (x) , x ≥ 0 . (6)

We now ask for the most probable value xmp of the maximum, the mode of GM . If

F has a differentiable density f with derivative f ′, then also GM has a differentiable

density gM with derivative g′M . In this case, the mode of GM is determined as the

solution xmp to

g′M (x) = e−λt F (x) λ t
[

λ t f2(x) + f ′(x)
]

= 0

and, thus, xmp is the solution to

λ t f2(x) + f ′(x) = 0 .

For most realistic severity distributions xmp will be unique. In the important example

of a Pareto distribution we have

xmp = θ

[

(

α λ t

1 + α

)1/α

− 1

]

≈ θ

(

α λ t

1 + α

)1/α

. (7)
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κ
α

99.0 % 99.9 % 99.95 %

1.2 77 524 934

1.0 200 2 000 4 000

0.8 871 15 496 36 857

Table 3: The factor
(

1+1/α
1−κ

)1/α

of equation (8) for α and κ in a realistic range.

Note the similarity between the VaR formula (4) and the right hand side of (7). We

finally arrive at the following approximate relationship between the OpVaR at time

horizon t and the most probable value of the maximum loss event during that time

period for κ near 1,

VaRt(κ) ≈
(

1 + 1/α

1 − κ

)1/α

xmp . (8)

It is worth mentioning that this result does not depend on the frequency process, but

only on the shape parameter α and the confidence level κ. For any given xmp, Table 3

clearly shows the sensitivity of the corresponding OpVar of the shape parameter and

the confidence level.

The question arises, whether (8) can be used as an alternative approximation

for OpVar. Unfortunately, estimating xmp by a reliable empirical method would

require a vast amount of loss data, which are currently not available. The under-

lying data should consist of annual maximal losses for the last years, which define

a histogram, from which xmp can be read off. Therefore, a large amount of annual

maxima would have to be collected before xmp could be estimated, where presum-

ably the iid property would be violated simply by non-stationarity in a long time

series.

However, the right hand side of (8) can, for instance, be estimated by sce-

nario analyses and expert-based risk assessment. An experienced risk manager may

guesstimate the maximum-one-year loss caused by a single event within the next

year. Annual maximal losses of previous years may guide the way. Such estimates,

interpreted as the most probable value xmp, then yield an expert-approximation of

the OpVaR as it is required by the Basel Committee.

References

[1] Basel Committee on Banking Supervision (2004) International Convergence of

Capital Measurement and Capital Standards. Basel.

10
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Appendix: Tail Behaviour of the Aggregate Loss Distri-

bution

The following theorem covers the Standard LDA with the two frequency models of

Example 2.2.

Theorem A.1 (Embrechts, Klüppelberg and Mikosch [2], Theorem 1.3.9).

Consider the standard LDA S(t) =
∑N(t)

n=0 Xi, t ≥ 0, from Definition 2.1. Assume

that the severities Xi are subexponential with distribution function F . Fix t > 0 and

define the frequency distribution by P (N(t) = n) = pt(n) for n ∈ N0. Then, the

aggregate loss distribution is given by

Gt(x) =
∞

∑

n=0

pt(n)Fn∗(x) , x ≥ 0, t ≥ 0 .

Assume that for some ε > 0,

∞
∑

n=0

(1 + ε)npt(n) < ∞ . (A.1)

Then, Gt is subexponential with tail behaviour given by

Gt(x) ∼ EN(t)F (x) , x → ∞ .
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