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I

Abstract

A new method is presented in this thesis for designing both full concrete and composite slab systems with

partially unprotected secondary steel beams in case of fire taking into account tensile membrane action.

Simplified finite element analyses are used for determining the internal forces in the structure. Cross-

section design procedures can be applied with these internal forces to calculate the required reinforce-

ment amount like under ambient temperature. The finite element model is simplified by replacing the

thermal analysis with a substitute thermal loading. Non-linear material behaviour is taken into account

by a reduced stiffness of the model which allows an efficient linear elastic calculation. The presented

method therefore enables a simple and efficient design of slab systems in case of fire.

Zusammenfassung

In dieser Arbeit wird eine neue Methode zur Bemessung von Vollbeton- und Verbunddeckensystemen mit

teilweise ungeschützten Stahl-Nebenträgern im Brandfall unter Berücksichtigung von Membrantragwir-

kung vorgestellt. Hierbei werden vereinfachte Finite Elemente Simulationen zur Schnittgrößenermittlung

verwendet. Mit diesen Schnittgrößen können Querschnittsnachweise zur Ermittlung der erforderlichen

Bewehrungsmengen wie unter Normaltemperatur geführt werden. Zur Vereinfachung des FE-Modells

wird die thermische Analyse durch eine Temperaturbelastung ersetzt. Nichtlineares Materialverhalten

wird durch eine vorab ermittelte Steifigkeitsreduzierung berücksichtigt was eine effiziente linear elasti-

sche Berechnung erlaubt. Das vorgestellte Verfahren ermöglicht somit eine einfache und effiziente Be-

messung von Deckensystemen im Brandfall.
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1 Introduction

1.1 Problem specification

Composite slab systems consist of a grid of primary and secondary steel beams which are connected to

thin concrete slabs or composite flooring systems. In this type of construction each material is optimally

used according to its best appropriate loading: tensile forces in the steel beams and compression in

the concrete. This enables bridging of long spans without distracting columns by having very small

construction depths. In case of fire, however, the steel beams rapidly lose their strength if they are not

protected against the heat. For that reason, in classical fire protection design every steel beam has to be

covered by gypsum boards, sprayed concrete, intumescent coatings or other costly measures that prevent

them from immoderate heating. It is not always necessary to protect every steel beam in order to prevent

collapse. At ambient temperature a slab mainly transfers load by bending. If unprotected secondary

beams within a slab field lose strength during a fire, large deformations occur which activate membrane

forces in the slab. The load can then be transferred by an alternative path and the unprotected beams

are no longer necessary. In the literature this kind of load transfer mechanism usually is called tensile

membrane action. At the centre of a slab panel tensile membrane forces occur and around the perimeter

compressive forces as shown in Figure 1.1.

protected primary beam

protected secondary
beam

unprotected secondary
beam

tensile membrane forces

compressive forces

Fig. 1.1: Tensile membrane action of a single slab panel

The horizontal forces are in equilibrium therefore no horizontal restraint of the slab panel is necessary.

Only the vertical forces have to be transferred into the columns. For that reason the edge beams have to

be protected. The application of membrane action in design procedures of slab systems for the case of

fire has huge economic potential since a large amount of the expensive fire protection measures can be

avoided.
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1.2 Objective and layout of the thesis

Several research projects and academic research works have been conducted to investigate membrane

action, however, none of the available approaches can satisfy all of the requirements for use in practice.

All fire tests, that were performed in these projects, could show that membrane action enhances the

load bearing capacity of composite beam slab systems in case of fire considerably. In some of the tests,

however, integrity failure occurred in terms of a gaping crack nearby an intermediate beam between two

slab panels. Approaches are available to avoid this kind of failure but they need to be improved. With the

method presented in this work, a required reinforcement amount can be calculated to solve this problem.

Different methods have been proposed so far that use membrane action for design. Advanced cal-

culation models using general finite element programs such as Abaqus and Ansys are the most exact

and unlimited options, but these are also complicated, fault-prone and time-consuming. The two main

reasons for these problems are: firstly two separate simulations (thermal and mechanical) have to be per-

formed, and secondly, complex non-linear material laws have to be included. Specialised software such

as Safir, Vulcan or SlabFem faces some of these problems by implementing the material laws as a general

preset, however, two separate simulations still have to be performed and the non-linearities still induce

enormous computing times. Significantly, the common design procedures for reinforced concrete under

a combination of internal bending moments, shear and normal forces cannot be used with non-linear

finite element analyses, and so the design process for a new structure is very time-consuming.

Simple calculation models can be applied faster and more efficiently, particularly if these are presented

as design tables such as those contained in design methods from the SCI and the FRACOF project, or are

implemented in specialised software such as TSLAB. The available models include assumptions which

clearly have to be revised, they neglect some important aspects and are very limited in their application

spectrum. Currently no really satisfactory approach is available to determine the maximum allowable

vertical deformation of a slab, although in all current simple calculation models this is vital in order to

predict the load-bearing capacity. The influence of the edge beams on the force distribution is not taken

into account in any of these methods, furthermore, the interaction with adjacent slab panels is neglected.

While this may be considered as an implicitly conservative assumption, it can lead to the formation of

large cracks, causing failure of integrity and eventually of structural resistance.
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Presently no procedure is available that satisfies the requirements of a safe and efficient design. Sim-

ple calculation models are too limited in their application spectrum and neglect important aspects and

advanced calculation models are too complicated, time-consuming and therefore expensive in applica-

tion. The objective of this thesis is to close this gap. The positioning of the work in the research field of

membrane action is visualised in Figure 1.2.

This thesis presents a new design procedure with following specifications:

• The assumptions in the method shall follow the Eurocodes where possible in order to ensure that

the method conforms to national regulations in every country that has adopted the Eurocodes.

• No thermal analysis is necessary by using the given tables and approximation functions. The

thermal expansion is taken into account by a substitute thermal loading.

• No material non-linear calculation is necessary. The material non-linearities are substituted by

reduced stiffness.

• A geometrically non-linear calculation is required in order to activate membrane forces.

• The internal forces can be calculated with ordinary finite element programs.

• The amount of reinforcement is designed in the same way as at ambient temperature with internal

forces and cross-section design procedures.

• No limitations are given in terms of geometry and material that are used in common constructions.

• Only the heating phase can be considered, no cooling phase.

In Chapter 2 of this thesis the research projects, that were conducted on the topic of membrane action

so far, are summarised and the currently available design methods are discussed. In Chapter 3 experi-

mental investigations are described. The data of these tests are used later on in this work. Chapter 4 deals

with the heat transfer into the considered structure and the effects of the heating. It will be explained

how the effects of the heating can be replaced by a substitute thermal loading. In Chapter 5 modelling

recommendations are given and it is described how material non-linearities can be avoided. Chapter 6

provides procedures which can be used for designing the structure with the results of the simulations that

are performed with the method of the previous chapters. In Chapter 7 the proposed method is validated

on the fire tests of Chapter 3. Chapter 8 contains a worked example that will illustrate the application of

the proposed method. In Chapter 9 the thesis is summarised and recommendations for further research

work are given.
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2 State of research

2.1 Research projects

The first findings on membrane action were made coincidentally. In 1990 a fire broke out at a construction

site of an office building in London. The steel structure and composite slabs were already erected but

no fire protection had yet been installed. The fire burned for four hours and temperatures reached more

than 1000° C but the building did not collapse. Only large deformations could be observed. A detailed

description of the observations is given in [44].

After this incident a series of research projects were launched including the Cardington-project. Inside

an abandoned zeppelin hangar in Cardington (GB) an eight-storey composite building was erected under

the lead of the British Building Research Establishment (BRE). Between 1995 and 2003 seven fire tests

were performed inside the building. In [44] a summary of the first six tests performed between 1995 to

1996 can be found. A more detailed description is given in the report of the Cardington-project [11]. Test

seven was conducted in 2003 and is documented in [12]. Structural collapse never occurred although in

most of the tests all of the steel beams were left unprotected. In this project it could be identified for the

first time that a considerable increase in load bearing capacity is caused by membrane action. The results

of the project finally led to a design guide [44] published by the British Steel Construction Institute (SCI).

The design tables in this guide are mainly based on the work of Colin Bailey who worked out a simplified

model to predict the load bearing capacity of the slabs. In the literature this model is called Bailey-BRE

method or simply Bailey method. The method is discussed in Section 2.3.1.

A further research project that is worth to mention was called Fire Resistance Assessment of Partially

Protected Composite Floors (FRACOF). The main objective of the project was to distribute the knowl-

edge of membrane action outside of Great Britain in Europe. One full scale fire test was performed within

this project in 2008. A single slab panel was exposed to a fire whose temperature-time curve followed

the standard fire curve according to ISO 834. After 105 minutes a large crack occurred at the slab centre

and the test was stopped shortly after. The test confirmed that composite slab systems do not collapse

even if some of the secondary beams are unprotected but the tested slab failed in terms of integrity. The

test will be described in more detail in Section 3.2 since the results are used later on in this thesis to

validate the approaches. A design guide was published [48] and the design procedure was implemented

in a design software. The engineering background with test details can be found in [49]. In this project

no significant new investigations were made. The content of the design guide largely corresponds with

the guide of the SCI [44]. No suggestions were made to avoid the integrity failure but the impact of the

project was considerable, especially in France and Switzerland. A Swiss design book in print refers to

the design tables of the FRACOF design guide [48].

In 2011 the federal research project Nutzung der Membranwirkung von Verbundträger-Decken-Syste-

men im Brandfall (Utilisation of membrane action for the design of composite beam-slab-systems in

fire) was completed by the Technische Universität München in cooperation with the Leibniz Universität
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Hannover. The main objective of this project was to enable the use of membrane action in Germany.

In addition, some details were investigated including the behaviour of protected intermediate beams

between two slab panels. As part of the project, two large scale fire tests were conducted in Munich

while numerical investigations were performed in Hannover. The author of this thesis did the research on

behalf of the TU Munich. The tests are described in detail in Section 3.1. Design tables were calculated

in the project and construction details were suggested. The design tables base on parameter studies made

by using the software Vulcan which is explained in Section 2.2.2. New tables were necessary due to

the fact that no satisfactory available design method could be found. The report of the research project

was published by the German steel construction association (DASt) [42]. One of the fire tests brought

up an entirely new issue that had not been considered in this field of research so far. A large crack

occurred nearby the intermediate beam only 19 minutes after the test started (see Fig. 2.1). The entire

reinforcement in the crack ruptured. The slab did not collapse but lost its integrity. A pragmatic solution

was suggested to face this problem which is discussed in Section 2.3.

Fig. 2.1: Gaping crack nearby the intermediate beam in first Munich test

Further large scale fire tests on membrane action were performed for example 2008 in Mokrsko (CZ)

[54], 2010 in Belfast (GB) [52] and 2011 in Veselí (CZ) [53]. Although the test in Veselí was not part of a

project dealing with membrane action, it nevertheless showed some interesting results in that respect. To

investigate the robustness of joints of composite beams in fire conditions, a test on a four bay composite

slab with unprotected steel beams was conducted. Nearby one intermediate beam a huge gaping crack

occurred in a similar location and crack pattern as in the first test in Munich. The structure did not

collapse but again a slab failed in terms of integrity. Small scale tests were performed for instance by

Colin Bailey [9], Samantha Foster [35] and Anthony Abu [1].
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2.2 Advanced calculation models

Since the processing power of personal computers has risen exponentially over the last decades, complex

and computationally intensive numerical simulations have become standard in all fields of structural

engineering. Material properties for steel and reinforced concrete are particularly well investigated. A

lot of research works has also been carried out to investigate how elevated temperature material behaviour

can be implemented in numerical simulations. With the adoption of the Eurocodes [24], [25], [27], [28],

[29], [30], [32], [33] for the first time regulations are available that allow to use advanced calculation

models including numerical simulations for the design of structures in case of fire.

2.2.1 General numerical simulations

In principle, a simulation of a structure for elevated temperatures is split into three parts: fire simulation,

thermal analysis and mechanical analysis. In the fire simulation the combustion of the flammable material

inside the building is simulated to predict the temperature time curve of the gas surrounding the structure.

Fire scenarios are usually simulated with so-called zone models or computational fluid dynamics (CFD),

not with finite elements (FE) like the other two parts. This part of the simulation is an entirely separate

field of research and is currently not fully developed to be used for practical application. Therefore the

internationally agreed ISO 834 standard fire curve is mostly used for the gas temperature in simulations

of structures in fire. This fire curve is usually called ISO fire. Detailed information on this topic can be

found for example in the book of Ulrich Schneider [46].

The thermal analysis simulates the heat transfer from the surrounding hot gas into the structure and

the distribution inside the structure. The heat transfer into the structure is carried out by convection and

radiation. The convection mainly depends on the fire scenario. The intensity is driven by gas movements

at the surface of the structure. The higher the gas movements are inside a fire compartment the greater

is the convective part of the heat transfer. The radiative part depends on the colour of the surface.

Absolutely black surfaces absorb radiation perfectly and absolutely white surfaces perfectly reflect it.

Inside the structure the heat is transferred by conduction. How much heat is transferred or absorbed

depends on the thermal conductivity, the mass and the specific heat of the material. More details on heat

transfer can be found in [45]. A summary that is more specific for structural engineering is given in [46].

The specifications of the Eurocodes and the assumptions used in this thesis are described in Section 4.1.

The mechanical analysis simulates the response of the structure on the heating combined with me-

chanical loads such as dead and live loads. The response appears in terms of deformations, stresses

and strains. In this part of the simulation the reduced stiffness and strength of the material has to be

considered as well as the thermal expansion. All material non-linearities have to be combined with geo-

metrical non-linearities in order to take into account the large deformations and membrane forces. The

Eurocodes contain specifications for material properties of steel and concrete under high temperatures.

Stress-strain curves are given for different temperature levels for both materials. The curves for steel

can be relatively easily implemented in finite element models. Steel shows a similar behaviour under

tension and compression. It behaves ideally elastic before it starts to yield. Yielding follows simple

plasticity rules under uni and multiaxial loading. The best known plasticity rule of steel is the von Mises

theory. The finite element software only has to interpolate between the curves of the input temperature

levels. The mechanical analysis is disproportionately more difficult for concrete. The behaviour under

compressive forces is completely different to under tension. For the compressive part stress-strain curves
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are given in the Eurocodes [27], [32]. For the tensile part DIN EN 1992-1-2, 3.2.2.2 [27] only says:

“The tensile strength of concrete should normally be ignored (conservative).” This would mean that in

numerical simulations the tensile stiffness of the concrete elements needs to be zero which may lead to

numerical instability. For the simulation of membrane action it is not conservative to neglect the tensile

strength and stiffness of concrete. Lower stiffness leads to higher load bearing capacities as explained in

Section 5.2.2. A big influence on the tensile stiffness is the reinforcement that acts compositely with the

cracked concrete under tension. The concrete does not crack completely but still provides stiffness be-

tween the cracks. This behaviour is generally called tension stiffening. Approaches are available which

implement tension stiffening in non-linear numerical simulations [51]. Usually, the descending branch

of the tensile part of the stress-strain curve is modified but the required parameters are only available for

ambient temperature and not for elevated temperatures. A further problem is the multiaxial behaviour

of concrete in plasticity. Concrete shows no linear elastic behaviour like steel from the very beginning

of loading. It also shows no real plasticity but brittle behaviour when the material strength is reached.

The behaviour in the considered direction of loading is dependent on the loading in perpendicular direc-

tions. For example, the compressive strength is much higher if compressive stresses act perpendicular

to it than if tensile stresses would do. A material model that is often used in numerical simulations is

the Mohr-Coulomb failure criterion as shown in Figure 2.2. Stress combinations that are located inside

of the shown body can be borne by concrete. The surface of the body forms the limit to cracking and

crushing of the concrete. This material model was developed for ambient temperature and has not been

proven for elevated temperatures.

Fig. 2.2: Mohr-Coulomb failure criterion [55]

The cracking of concrete is a challenge to be realistically taken into account in non-linear numerical

simulations. In reality, a crack appears as soon as the tensile strength of the concrete is reached. The

stiffness of the structure reduces at the location of the crack. If discrete cracks were to be modelled in

numerical simulations, it would mean that the finite elements need to be split at the location of the crack.

Since it is not known before the simulation where the cracks will occur, the calculation routine of the
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finite element software has to be able to automatically split elements. Such discrete crack models are

often called XFEM and are currently in development [47]. They are not yet implemented even in the

high-end finite element software packages like Abaqus and Ansys. So-called smeared crack models are

therefore most commonly used at the moment. In these models, only the stiffness of the finite element

is reduced as soon as the tensile strength is reached. A detailed description of these models is given in

[51].

Material non-linear numerical simulations are often not very useful for designing new structures. Ev-

ery cross-section, material strength, amount of reinforcement etc. has to be defined before the simulation.

The result of the simulation then is just convergence if every part of the input structure was defined suf-

ficiently strong or divergence if not. Obtaining an adequate structure is a time consuming process that

is not economically viable. For ambient temperature, the usual procedure to design a structure is much

more efficient: pre-choosing the cross-sections, determining the internal forces with linear calculations

and designing every cross-section for these forces. A further general problem is the complex load bear-

ing behaviour of a reinforced concrete cross-section under combined loading with bending moments,

normal and shear forces. For this behaviour cross-section design procedures have been developed which

are standard in every design code. This behaviour is very difficult to include in non-linear finite element

simulations, particularly the interaction with shear forces.

The descriptions above show that the requirements of the finite element software and of the ability of

its user are rather high. The input of the numerical model is complicated and fault-prone. The highly

non-linear temperature dependent material laws have to be combined with geometrical non-linearities,

resulting in huge computing times and convergence problems. Even with sophisticated processors and

relatively small models, computing times easily reach several days. Frequently after a couple of days

of computing the solver reports numerical instability. It might therefore take weeks or even months to

find and solve a problem and get one single result. The most common software packages in this high-

end area are Abaqus and Ansys. Both are general finite element programs that are used for research.

Commercial applications are mainly in the field of mechanical engineering. The pre and post processors

are therefore adjusted to their requirements. The programs only output stresses, strains and deformations.

Inputs and outputs that are common in structural engineering such as line loads, different load cases,

bending moments and supporting forces are not requested by mechanical engineers and therefore not

implemented in the software. Since all the design procedures in structural engineering, particularly for

reinforced concrete structures, are based on internal forces not on stresses, the user has to integrate the

stresses manually in order to get internal forces and to be able to use the design procedures.

2.2.2 Specialised software

To face at least some of the problems mentioned above, specialised software has been developed to

simulate composite slabs under elevated temperatures. The user shall not need to think about material

laws but only has to input the geometry of the structure. Everything else is preset in the software.

The most highly developed specialised software is called Vulcan ([40], [41]) which was developed at the

University of Sheffield and is continuously enhanced. It is primarily dedicated to model membrane action

of composite slabs but can also be used for general simulations of steel and composite structures in fire.

Presently, Vulcan only includes the mechanical analysis. The thermal analysis has to be performed with

other programs. The program generally includes the temperature dependent material properties of the

Eurocodes. Steel beams are taken into account with beam elements that are eccentrically connected to
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the concrete slab. The slab is modelled with layered shell elements. Each layer can be given a certain

temperature to model the temperature distribution inside the slab. Single layers can also be used as

reinforcement. A smeared crack model is used for the cracking behaviour. Multiaxial behaviour is

used with a model according to Kupfer. A description of this model and references can be found for

example in [40] and [51]. Some simplifications are made in Vulcan. The behaviour of concrete before

cracking or crushing is assumed to be linear elastic. After crushing the stiffness is assumed to be zero.

It cannot be found in the literature whether tension stiffening is included. Shear forces are not taken into

account. These simplifications were probably made to avoid numerical instabilities. Structures in fire

can be modelled very easily with Vulcan and reasonable results are obtained, however, it does not solve

the general problems of material non-linear simulations. It also requires long computing times, all the

material strengths and reinforcement amounts have to be set before the calculation and the cross-sections

cannot be designed with internal forces and a separate thermal analysis has to be done.

A recently developed specialised program is called SlabFem. It was written by Can Tesar in the course

of his dissertation [51]. Many of his approaches are similar to Vulcan. The slab is modelled with layered

shell elements and the steel beams as eccentrically connected beam elements. Most improvements were

made in the element formulations and solver strategies but also more obvious details were improved.

It includes the whole non-linear stress strain curves of concrete from the Eurocodes. Also the thermal

analysis can be done with SlabFem, however, it cannot be found in the literature if the software has been

commercialised. It is also not known if it includes a useful pre and post processor. The computing times

have not been tested by the author but they might be long since the non-linear material laws are included.

Shear forces are also not taken into account.

Another software in this field worth mentioning is called Safir [36]. It was developed at the University

of Liege for the general modelling of steel, concrete and composite structures in case of fire and can

be used for the simulation of membrane action. With some differences in details, it shows the same

advantages and disadvantages as Vulcan and SlabFem.

It can be summarised that specialised software simplifies the advanced calculation models consider-

ably but does not solve the problem of very long computing times. The design of a new structure is also

very time-consuming with these programs. They are therefore mainly used for research so far. Although

they can be used much more efficiently than general programs, the suitability for commercial application

is limited. The savings that are achieved by leaving some of the secondary beams unprotected might be

completely dissipated in the design process.

2.3 Simple calculation models

In order to avoid the problems of numerical simulations as described above and to enable a very simple

application of membrane action, several simple calculation models have been suggested since the Card-

ington project. Two of them are focused in more detail in this section. Further approaches were made

by Neil Cameron [15], [16], [17] and Anthony Abu [1] who tried to apply analytical approaches with

energy methods such as the Rayleigh-Ritz model. Internal forces of slabs can be determined with these

models but they are limited to the assumed boundary conditions. Cameron only considered horizontally

restrained and rotationally free boundary edges and Abu both horizontally and rotationally free edges.

The solution of these approaches does not lead to simple equations but has to be done by numerical

integration. Since complex numerical solving procedures need to be performed in the methods of Abu
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and Cameron, results can be achieved more easily with finite element simulations.

Ian Burgess and Anthony Abu [2] proposed an approach that takes into account the load bearing

capacity of the edge beams. They assume that a slab panel can be folded along yield lines with different

folding mechanisms. The mechanism with the lowest load bearing capacity is decisive. This approach

is suitable to check the load bearing capacity of the edge beams. This check is disregarded by most

available design methods but it is crucial. If the edge beams are not designed sufficiently strong, they

will fail before membrane action can be built up. A very simple approach for designing the edge beams

is provided in Section 6.2.

2.3.1 Bailey method

The best-known and most commonly used model for designing composite slabs in case of fire is the

method of Colin Bailey [4], [5], [6], [7], [8]. The Bailey method is based on the yield line theory which

has been developed for slabs under ambient temperature and small displacements. The yield line theory

assumes four rigid plates that are pin-jointed at their edges. The load bearing capacity in the classical

theory is reached as soon as plastic bending hinges form along the yield lines. In contrast to this theory,

Bailey assumes a failure mode with a crack in the centre of the slab along the short span as shown in

Figure 2.3. He explains this assumption by referring to his observations in fire tests. The assumed forces

along the yield lines and the crack are shown in Figure 2.3 on the right hand side. The force along the

crack is calculated with the yield strength of the reinforcement.

Fig. 2.3: Failure mode (left) and forces along yield lines (right) according to [5]

The load bearing capacity is calculated by multiplying these forces with a given vertical displace-

ment w. The maximum allowable displacement must be determined separately by other assumptions.

Bailey proposes the following equation:

w =
αc ·∆T · l2

ψ ·8 ·h
+L

√
3
8
·

0.5 fy

Es
(2.1)

where:

αc is the thermal expansion coefficient of concrete;
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∆T is the temperature difference between the bottom and the top of the slab;

ψ is a correction factor, suggested by Bailey with ψ = 2.4;

L is the length of the longer span of the slab;

l is the length of the shorter span of the slab;

h is the depth of the slab;

fy is the yield strength of the reinforcement at ambient temperature;

Es is the Young’s modulus of the reinforcement at ambient temperature.

The first part of Equation (2.1) is the vertical displacement of a simply supported beam with a length

of the shorter span of the slab and which is bowing due to a thermal curvature. It includes a correction

factor ψ . The second part is the vertical displacement of a rope with a length of the longer span of the

slab with a mechanical strain of 50 % of the yield strain of the reinforcement. From the mechanical point

of view, these two parts do not fit together. Two displacements of two different mechanical systems are

combined. Equation (2.1) was calibrated on a small number of tests with the correction factor and the

assumption of 50 % of the yield strain. This problem is mentioned in the literature but few alternative

approaches have been published so far. One alternative suggestion is given by Neil Cameron [16]:

w =
l
π

√
4(εu +αc∆T ) (2.2)

He slightly modified Bailey’s approach. Only one beam with the length of the shorter span of the slab l is

considered. The shape of the deformation is not parabolic like in Bailey’s approach but sinusoidal. The

thermal gradient has no correction factor and the mechanical strain is assumed with the ultimate strain

of the reinforcement εu. Cameron’s approach has not been validated by tests. The author doubts that

it is generally possible to find a simple equation to determine the maximum vertical displacement. It is

probably not sufficient to describe the complex behaviour of a two span slab by only considering a simple

beam. A variety of other influencing factors have to be taken into account, for instance geometry of the

slab panel, horizontal and rotational restraint of the edges, deformation of the edge beams, orthotropy of

the composite slab, tension stiffening etc. This complexity of the system is probably the reason why no

better approach has been found so far. Due to the lack of alternatives the approach of Bailey is used in

all design guides that are based on his model. For example, his method is included in the SCI guide in

Great Britain [44], the FRACOF design guide in France [48] and also in guides in Switzerland and New

Zealand.

The Bailey method neglects important aspects for a comprehensive design. The supports around the

edges are considered ideally rigid and are not restrained horizontally and rotationally. This means that

the influence of the steel beams at the edges is not taken into account. The deformation of these beams,

the thermal elongation and the interaction with adjacent slab panels have an effect on the distribution

of the forces in the slab as discussed in detail in Section 5.3. As seen at the first test in Munich and

the test in Veselí, gaping cracks at intermediate beams can occur in cases where the interaction with

adjacent slab panels is neglected. It is important to consider the deformation of the edge beams since

forces concentrate at the columns at the corners when the beams deflect. The thermal elongation has to

be taken into account since it is restrained by the concrete and therefore causes additional tensile forces

in the slab. In addition, it is not obvious where the largest stresses in the slab occur. Bailey’s assumption,

that the largest stresses are located along the yield lines and inside a crack at the centre of the slab, is

only valid for unrestrained slab panels with rigid supports.
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2.3.2 DASt design tables and construction details

Due to the uncertainties of the available methods, new design tables and construction details were worked

out in the the German DASt research project [42]. The tables are based on a parameter study with Vulcan

in which the edge beams were included. To avoid the gaping cracks at intermediate beams, it was

suggested to lay in a crack control reinforcement. According to the study, the crack could become that

large since not enough reinforcement was available. As soon as the tensile strength of the concrete was

reached in the test, the crack occurred and all the forces were transferred to the reinforcement. The

reinforcement was too weak to bear these forces and to distribute the cracks. Strains were concentrated

in a very small length along the reinforcement and it ruptured. The crack was then able to open without

any restraint. In general, if more reinforcement is available than required for the tensile strength of the

concrete, further cracks can be induced, the strains do not concentrate in the first crack and thus, much

larger deformations are possible without damage.

In the project it could not be found a way to determine the internal forces in the slab. These forces are

necessary in order to calculate the required reinforcement amount and the resulting crack widths. The

study suggests therefore to determine a minimum reinforcement for restraint with a maximum calculated

crack width of wk = 0.2 mm according to DIN EN 1992-1-1, 7.3 [26]. With the simplification that pure

tension is occurring, a minimum reinforcement area can be calculated as follows:

As,min =
fctm ·hc,e f f ·b

σs
(2.3)

Where:

fctm is the tensile strength of the concrete;

hc,e f f is the height of the effective tension area,

should be assumed at least with half of the slab depth;

b is the breadth of the effective tension area;

σs is the maximum allowable stress in the reinforcement

according to DIN EN 1992-1-1, Table 7.2N.

Calculating the reinforcement amount with Equation (2.3) ensures that all forces can be accommodated

when the tensile strength of the concrete is reached. The limitation to a bearable stress lower than the

yield stress is used to keep the strains and the crack widths small. This reinforcement shall prevent large

cracks and increase the rotational capacity of the concrete cross-section above the intermediate beams by

distributing the cracks. The combination of forces caused by mechanical loads and restraint, however,

cannot be taken into account with this approach and the design tables of the project are limited. Only

slab dimensions between 5.0 x 7.5 m2 and 7.5 x 10.0 m2 are covered. Two load cases are considered,

one with a small live load of 2.0 kN/m2 and one with a high load of 5.0 kN/m2. And like all available

simplified methods, it is limited to rectangular slab panels.

It can be summarised that simple calculation models are more efficient in application than advanced

calculation methods. The slabs can be designed with simple formulas or design tables and no complex

non-linear finite element analysis has to be performed. Models currently available are, however, limited

in their application spectrum and include assumptions that can lead to unsafe structures. A new method

is proposed in this thesis that offers a broader application spectrum and takes into account the important

aspects that are neglected by the available simple models.
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3 Experiments

The behaviour of structures can be investigated very cost-efficiently with finite element analyses. The

model can be changed easily and a lot of parameters can be considered. Experiments, however, have

remained indispensable. These are necessary, on the one hand, to investigate material properties which

are required for the simulations and, on the other hand, to calibrate numerical models and validate the

simulations. The complex behaviour of reinforced concrete in case of fire needs to be further investigated

with experiments in particular.

The data of three large scale fire tests are used in this work. Two of them were performed in Munich

by the author, one with a full concrete slab and the other with a composite slab with re-entrant trough

profile steel sheeting. In order to be able to investigate composite slabs with open trough profile steel

sheeting, the data of the test within the FRACOF project are also used in this work.

3.1 Munich fire tests

Two full scale fire tests on membrane action were performed within the DASt research project. The main

objective was generating data which can be used to calibrate numerical models and design methods. One

focus of the experiments was the behaviour of intermediate beams between two slab panels which was

not well-investigated so far. The tests were conducted at the fire testing laboratory of the Technische

Universität München in Dachau. The first test was performed on 7th July and the second test on 3rd

September 2010. Detailed descriptions and test results can be found in the report of the project [42]. The

details of interest for this work are summarised.

3.1.1 Test arrangement

A typical application of membrane action is in office buildings and similar multi storey structures. The

test arrangement was chosen to represent slabs in such buildings. The specimens both consisted of two

slab panels with overall dimensions of 5.0 m by 12.5 m and a total depth of 12 cm as shown in Figure 3.1.

These were supported by hot rolled I-beams and six columns at the corners of the panels. The edge beams

and the intermediate beam were protected by intumescent coating. The secondary beams inside each

panel were left unprotected. The columns were not part of the investigation and consisted of reinforced

concrete. The aspect ratios of the panels were chosen differently. The reason was to investigate the

influence of the aspect ratio on membrane action and to represent a typical arrangement in an office

building with a larger panel in the regular grid and a smaller panel at the ends.

Two tests with slightly different arrangements were performed. Only the orientation of the secondary

beams, the flooring system and the intumescent coating system were varied. The first specimen was

built with a 5 cm thick lattice girder precast slab with in-situ concrete topping, and the second one with

a composite slab type Holorib HR51 as shown in Figure 3.2. The cross-sections and reinforcement

amount were designed for ambient temperature according to DIN EN 1994-1-1 [31]. The mechanical
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loading was chosen for a typical office building with an additional dead load of 1.5 kN/m2 and a live

load category B1 of 2.0 kN/m2 according to DIN EN 1991-1-1 [23]. The load ratios were chosen very

close to 100 % to prevent the structure from resisting the fire due to oversizing.
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Fig. 3.1: Plan view of test 1 (above) and 2 (below) according to [42]

The top reinforcement of both slabs consisted of a welded mesh Q188 grade S500(A) which provided a

reinforcement area of 1.88 cm2/m in both directions. It resulted from the design of the hogging moments

in the slabs above the secondary beams. The top layer was placed 2.5 cm from the top surface of the slab.

The bottom reinforcement of specimen 1 consisted of bars diameter 8 mm with an area of 2.5 cm2/m in

longitudinal direction of the slab span and a transverse reinforcement area of 2.0 cm2/m. The connections

between the elements were bridged with rebars diameter 8 mm, spacing 20 cm. Specimen 2 was set up

with a composite slab system Holorib HR51 with a galvanized steel sheeting of 0.75 mm thickness. The

sheeting was continuous over the whole length. No bottom reinforcement was used in this test, also no

bars in the troughs, since they are not required for membrane action. U-bars of 8 mm diameter passing

around the shear studs were used along the edges to anchor the reinforcement and to avoid longitudinal

splitting according to DIN EN 1994-1-1, 6.6.5.3 [31].

An in-situ concrete C25/30 topping was added which was poured for both specimens on 30th April.
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Fig. 3.2: Slab cross-section of first (left) and second (right) Munich test

The actual material properties of the concrete on the day of the tests compared to the values from

DIN EN 1992-1-1, Table 3.1 [26] are shown in Table 3.1. The compressive strength was measured

on six cylindrical specimens and averaged to its mean value fcm. The tensile strength was determined

with the splitting tensile strength fct,sp on three cylinders. The mean value of the axial tensile strength

fctm can be converted approximately with an equation of DIN EN 1992-1-1, 3.1.2 (8) [26]:

fctm = 0.9 fct,sp (3.1)

The mean value of the Young’s modulus Ecm was measured on three cylinders. It can be seen that

the actual material properties of the first test compare well with the values of Eurocode 2. They are just

slightly higher. The values of the second test are all higher. The reason is that the concrete was already

19 weeks old on the day of the test. This is much more than the age of 28 days that is specified in testing

codes to determine the nominal strength.

Table 3.1: Measured concrete material properties in [N/mm2] of Munich tests

fcm fct,sp fctm Ecm

C25/30 EC2 33.0 - 2.6 31000
Test 1 33.1 3.02 2.72 32881
Test 2 39.4 3.99 3.59 36845

The primary and secondary beams in both tests consisted of IPE 160 or IPE 240 sections with steel

grade S235. Tensile tests delivered an actual strength of the IPE 160 beams of fy = 315N/mm2 and of the

IPE 240 beams of fy = 329N/mm2. The beams were connected to the slabs with shear studs of diameter

16 mm, length 100 mm. The spacing of the studs varied between 150 mm and 300 mm depending on the

required shear connection. The connections IPE 240 to IPE 240 were designed with long fin plates and

the IPE 160 to IPE 240 connections with end plates. All bolts were type M12, grade 8.8. The unprotected

secondary beams were coated with corrosion protection and finishing. The edge and intermediate beams

additionally got a layer of intumescent coating in between. The thickness of this layer was specified for

a fire resistance category R60. At the first test a water based coating system was used and at the second

test a solvent based system.

The slabs were placed on six reinforced concrete columns with a clear height of about 3.0 m as shown

in Figure 3.3. A furnace was constructed around the columns with 24 cm thick aerated concrete bricks.

At the first test the walls were protected by a layer of 12.5 mm gypsum boards. In one longitudinal wall

three openings with a width of 2.0 m and a height of 1.25 m were included in order to provide natural

ventilation to the fire. In the opposite wall a fan was installed to readjust the ventilation. The openings

were dimensioned with the intention that the gas temperature should closely follow the standard fire
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curve. The software OZone [13], [14] was used for designing the ventilation conditions. It became

evident in this project that OZone delivered useful results. A gate in one wall was closed shortly before

the start of each test.
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Fig. 3.3: Section A-A of Munich fire tests according to [42]

An additional mechanical load was placed onto the slabs. 15 bags, each filled with 875 kg sand,

were placed evenly to provide a uniform load of 2.1 kN/m2. This value results from an additional dead

load of 1.5 kN/m2 and a live load of 2.0 kN/m2 combined for the accidental design situation. In this

load combination the quasi-permanent value of the combination factor ψ2 = 0.3 is used as specified

in the German national annex of DIN EN 1990 [22]. For the fire load the German national annex of

DIN EN 1991-1-2 [25] specifies a fire load density of 584 MJ/m2 for office buildings. With a net calorific

value including moisture of spruce timber of Hu = 17.3MJ/kg according to DIN 18230-3 [18] a required

amount of timber of 33.8 kg/m2 was calculated. The actual fire load was provided by 21 wood cribs

inside the furnace. Each crib consisted of 94 spruce timber battens 5 x 5 x 100 cm3 which results in a

slightly higher timber amount of 35.7 kg/m2. The reason for the larger amount was that the net calorific

value and, hence, the fire load density depends on the moisture of the timber. The energy that is necessary

to boil away the water in the material is not available to heat up the furnace. A specific value of moisture

could not be guaranteed in the tests since the wood cribs had to be installed earlier and therefore had to

stay in the open furnace for several hours. To ensure that the required fire load density was reached, the

amount of timber was increased. The moisture of the timber in the first test was measured at 11.2 % and

in the second test at 12.0 %.

The temperature development in the members was measured by 70 type K thermocouples in the beams,

connections and over the slab depth on several locations. The gas temperature in the furnace was mea-

sured at 9 locations in the first test and 8 in the second test. The thermocouple lances were placed about

30 cm beneath the bottom surface of slab. A total of 20 measuring points for vertical and horizontal

deformations were installed. Sketches with the locations of the measuring points will be given in this

work when the test data is used. Detailed drawings can be found in the report of the research project

[42]. The data was recorded over a period of five hours in order to include the behaviour of the structure

in the cooling phase.
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3.1.2 Results test 1

After a short ignition phase the temperature time curve of the gas in the first test approximately followed

the standard fire curve as shown in Figure 3.4. After 40 minutes the mean temperatures reached a

maximum of about 900° C before these began to decrease again. The maximum temperatures in the

furnace were higher than 1000° C. Under the larger slab panel the fire developed slightly faster and

reached its maximum already after 30 minutes. After 40 minutes the temperature under the smaller panel

also reached more than 1000° C but under the larger one it had dropped already to 800° C at this time,

therefore, the average temperature remained lower.
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Fig. 3.4: Mean gas temperature of first Munich test according to [42]

In Figure 3.5 the temperature development in the slab is shown. On curve D11a can be seen that the

temperature at the bottom surface approximately followed the gas temperature at the beginning. After

about 12 minutes the temperature at the bottom reinforcement (D11b) reached 100° C and remained

constant until all of the uncombined water in the concrete had boiled away. Shortly after this time the
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Fig. 3.5: Temperatures in slab of first Munich test according to [42]
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temperature at the bottom surface (D11a) also dropped to 100° C. The steam streamed from inside the

slab to the surface and cooled the surface down. The concrete layer at the surface itself did not contain

uncombined water. This can be seen on curve D11a which does not show a temperature plateau when

the first time 100° C were reached. The top reinforcement (D11d) remained very cold. It barely reached

100° C after 90 minutes.

The temperatures in the unprotected secondary beam at the larger slab panel closely followed the

gas temperature. This can be seen in Figure 3.6, curves T6a to T6c. The temperatures reached their

maximum after 30 minutes like the gas temperature under the larger slab panel as described above. The

unprotected secondary beam at the smaller panel reached the maximum temperature after 40 minutes like

the gas temperature in that area. The top flange (T6c) remained colder with maximal 700° C. It had direct

contact to the slab and some of the heat was conducted into the concrete. The protected edge beams were

sufficiently protected and the temperatures remained below 300° C which can be seen on curves T10a to

T10c. Again the temperatures in the top flange (T10c) were lower than in the remaining section.
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Fig. 3.6: Temperatures in protected edge beam and unprotected secondary beam of first Munich test
according to [42]

At the intermediate beam between the two slab panels the intumescent coating partly detached from

the bottom flange after expansion. This process started after approximately 16 minutes as shown in

Figure 3.7. The temperatures in curve T16a suddenly rose much faster from this moment on, therefore,

the bottom flange almost reached the same temperature level as the surrounding hot gas. At the web the

protective foam was held by the bottom flange and could not detach. Temperatures remained lower in the

remaining parts which can be seen on curves T16b and T16c, however, these still reached almost 500° C

since the beam was exposed to the fire from three sides and a large amount of energy was conducted from

the bottom flange to the remaining section. The unsteadiness of curve T16b and T16c can be explained

by non-uniform foaming of the intumescent coating.

In Figure 3.8 the vertical deformations along a section in longitudinal direction in the middle of the

slab are shown. It can be seen that the larger panel (V6) reached a maximum deformation of about

260 mm after 60 minutes and the smaller panel 200 mm ten minutes later. The reason for the different

times is again that the gas temperature reached its maximum 10 minutes later under the smaller panel.

Not shown in Figure [42] is that the longer edge beam at the side of the furnace with the windows
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Fig. 3.7: Temperatures in protected intermediate beam of first Munich test according to [42]

(V2) had a maximum deformation of 110 mm. The beam on the opposite side (V11) reached 140 mm.

After complete cooling the deformations reduced by approximately 50 %. The measured horizontal

displacements did not deliver reasonable results in the first test.
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Fig. 3.8: Vertical displacements of first Munich test according to [42]

The construction did not collapse during the whole test period. The load bearing criterion “R” was

satisfied the whole time. After about 19 minutes gaping cracks occurred nearby the intermediate beam as

shown in Figure 3.9. Smoke streamed through crack 1 to the upper side of the slab. Therefore, the slab

failed in terms of the integrity criterion “E” and at this location also in terms of the thermal insulation

criterion “I”.

A top view of the whole crack pattern is shown in Figure 3.9. The cracks ran across the whole slab

width. These occurred, both, directly above the intermediate beam (crack 2 and 3) and about 30 cm to

one side, in the smaller slab panel (crack 1 and 4). At the window side, the cracks above the beam

(cracks 2) remained small. Crack 1 opened several centimetres over the whole slab depth as shown in

Figure 3.10. In contrast, on the opposite side of the slab the crack above the intermediate beam (crack 3)
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Fig. 3.9: Crack pattern of first Munich test according to [42]

opened and the crack inside of the slab panel (crack 4) remained small. Crack 4 was not visible on the

bottom surface of the slab. The cracks inside of the slab panel (crack 1 and 4) ran along the first lattice

girder. In the gaping crack 1 most of the bottom reinforcement broke by shear failure. The top layer

broke entirely. The ends of the bars in the crack were constricted which suggests that the reinforcement

failed due to a tensile force, not shear.

Fig. 3.10: View from below at gaping crack at first Munich test according to [42]

In the report of the DASt project [42] the reason for the gaping cracks is explained as follows and is

confirmed by further research work on this issue. Large hogging moments and tensile forces occurred

above the intermediate beam due to mechanical loads and restraint thermal elongation. These forces

caused a first crack in the concrete as soon as the tensile strength was reached. On the one hand, the



3.1 Munich fire tests 21

concrete cracked at the location with the highest bending moment directly above the intermediate beam.

On the other hand, it cracked at the first lattice girder which provided a weakening in the structure as

shown in Figure 3.11. The tensile forces were larger than the forces that could be carried by the top

reinforcement. No further cracks could develop due to the small amount of reinforcement and the first

cracks started gaping. The theoretical background of this issue will be explained in detail in Section 5.2.3.

Which of the cracks opened or remained closed was caused by statistical strength distribution. The whole

deformation had to be carried out by the first cracks. Therefore, the crack widths became very large. The

top reinforcement reached its ultimate strain in the crack and ruptured. The crack directly above the

intermediate beam (crack 3) could gape without causing integrity failure since the smoke was hindered

from streaming through the crack by the steel beam. At crack 1 the gaping caused a secondary failure

mode in the slab. Since the reinforcement was ruptured, the shear transferring mechanisms such as tensile

crack bridging, dowel action and friction due to aggregate interlock were not able to act any longer and

the slab failed due to shear forces.

1
2

3
4

Fig. 3.11: Section with cracks of first Munich test according to [42]

This kind of secondary failure is well-known at ambient temperature for punching shear at flat slabs.

In the field of membrane action it did not attract any interest so far. In all currently available simple

calculation models, it is assumed that the reinforcement around the boundaries of a slab panel indeed

ruptures and therefore the consideration of separated panels is justified, but it is also assumed that the

rupture does not cause failure. This has to be revised after the latest test results. One of the main

objectives of this work is therefore to provide a method for designing a required reinforcement amount

above intermediate beams in order to prevent failure at this location.
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3.1.3 Results test 2

In the second test the gas temperatures reached their maximum of about 900° C after 40 minutes as

shown in Figure 3.12. The temperature-time curve of the gas in the furnace barely reached the standard

fire curve. The reason was over-ventilation by the fan. In order to accelerate the temperature increase,

the ventilation rate was very high at the beginning of the test. The contrary effect was reached, however,

that more hot gas was pressed out through the windows, more cold air was led into the furnace and, as a

result, the temperatures increased slower. In future tests it possibly makes sense to use smaller windows

to be better able to regulate the ventilation by the fan. The temperature distribution in the furnace was

more homogeneous in this test. No appreciable differences could be noticed between the temperatures at

different locations in the furnace.
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Fig. 3.12: Mean gas temperature of second Munich test according to [42]

The temperature distribution in the slab at measuring point D6 is shown in Figure 3.13. It can be seen

that the temperature in the top flange (e) of the steel sheeting remained at less than 350° C considerably

colder than the bottom flange (a) which was directly exposed to the fire and reached more than 700° C.

A temperature plateau of 100° C for approximately 20 minutes can be seen in the trough (b) and at the

reinforcement above the top flange (f). No plateau can be found for the reinforcement above the trough

(c). There the boiling temperature was reached later when the whole uncombined water was already

evaporated. The reinforcement remained rather cold with temperatures less than 150° C.

The temperature development in the steel beams is shown in Figure 3.14. It can be seen that the edge

beams remained relatively cold. The bottom flange reached barely 350° C after 60 minutes. The web and

the top flange of the protected intermediate beam reached almost 500° C. The thermocouple at the bottom

flange fell out. The intumescent coating also detached partly from the bottom flange but less severely

than in the first test. The bottom flange presumably reached 600° to 700° C by comparing the data of

both tests. The temperatures in the unprotected beams again closely followed the gas temperature and

the top flange remained slightly colder than the remaining section. It is noticeable that the temperatures

in the protected beams reached their maximum after the gas temperature already started to decrease. In

later stages of the test the beam temperatures were even higher than the gas temperatures. The reasons

are that, on the one hand, heat was stored in the beams and, on the other hand, heat was conducted from
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Fig. 3.13: Temperatures in slab, measuring point D6, of second Munich test according to [42]

the slab to the beams when the gas in the furnace already cooled down. The foam of the intumescent

coating acted as an insulation, in this case hindering heat flow from the beams to the surrounding gas.
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Fig. 3.14: Temperatures in beams of second Munich test according to [42]

The larger slab panel reached a maximum vertical displacement of about 255 mm after 60 minutes

which can be seen from curve V6 in Figure 3.15. The smaller panel (V10) reached a maximum of

190 mm. In the cooling phase after about 150 minutes the intermediate beam (V8) had the same deforma-

tion as the smaller slab panel (V10). After the cooling phase the deformations reduced by approximately

50 % as in the first test. Not shown in Figure 3.15 is that the maximum deformation of the edge beams

of the larger panel (V4) reached 65 mm and the smaller panel (V11) 20 mm.

After redesigning the measuring system for the horizontal displacements more reasonable results were

delivered than in the first test. The data is shown in Figure 3.16. The results should be used carefully

nevertheless. The values show the relative displacement between the slab and the furnace wall since the

measuring devices were fixed on the walls. Possible wall deformations may have affected the measuring.
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Fig. 3.15: Vertical displacements of second Munich test according to [42]

For future tests a detached frame for the measuring system is recommended which is not connected to

the specimen or furnace and is protected against heating to avoid thermal deformation of the frame.

H1

H2

H3

protected

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

Time [min]

H
o
ri
z
o
n
ta

l
d
is

p
la

c
e
m

e
n
t
[m

m
]

H1

H2

H3

Fig. 3.16: Horizontal displacements of second Munich test according to [42]

In this test no unexpected incidents happened. Above the intermediate beam a single crack occurred

across the whole slab after about 20 minutes. This crack was expected and did not lead to any failure

although the crack width was several millimetres. A thermocouple on the top surface of the slab directly

at the crack recorded a maximum temperature of 135° C. This value is lower than the specified maximum

temperature rise at single locations of 180 K for the criterion “I” according to DIN EN 1994-1-2, 2.1.2

[32]. No smoke or flames could be seen coming through the crack, therefore, all three criteria “REI”

were satisfied for the whole test. A void between the steel sheeting and the concrete was detected after

the test. This indicates that the steel sheeting detached from the concrete during the test, but it did not

fall down. The zinc layer on the surface of the steel sheeting melted during the test.

Although no failure occurred, it cannot be generalised that failure can be excluded by using composite

slabs. It was fortuitous that the crack in the test occurred exactly above the intermediate beam and did not
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run into the slab panel. If there had been a weakening in the slab at any location nearby the intermediate

beam, the crack would have arisen there. In real structures, there are many possibilities of how a slab

could be weakened locally, for example through block-outs or non-uniform compacting of the concrete.

The crack width remained relatively small since the intermediate beam suffered large deformations and

so the rotations remained small in the slab above. The reinforcement in the crack did not rupture due to

the small crack width. If the intermediate beam had been stiffer however, the crack would have opened

wider, the reinforcement possibly would have ruptured and failure could have occurred. The orientation

of the steel sheeting can also influence the location of possible cracks as shown in Figure 3.17. If the ribs

of the sheeting run parallel to the intermediate beam, the slab will not break directly above the beam at

the location of the largest bending moment but a few centimetres aside where the cross-section is much

weaker. In this case the beam cannot hold the slab ends at the same level and cannot hinder the fire to

go through the crack. Even if a slab does not collapse when large cracks arise at the intermediate beams,

integrity failure can occur and the fire can spread to the storey above the slab. Measures therefore have

to be taken in order to avoid gaping cracks above intermediate beams, also if composite slabs are used.

Fig. 3.17: Possible crack location, steel sheeting parallel to intermediate beam

3.2 FRACOF test

On 16th January 2008 a full-scale fire test on membrane action was performed at the laboratory of the

Efectis fire testing company in Metz / France. This test was part of the FRACOF project which aimed to

distribute the knowledge of membrane action outside of Great Britain in Europe. Main project partners

were the French and British steel construction associations CTICM and SCI as well as the steel company

ArcelorMittal. The main differences to the British tests conducted so far were the use of European steel

sections and testing the slab with the standard fire. The results of the test are used in this work for two

reasons. On the one hand, the used Cofraplus 60 slab system is commonly used in Germany and open

trough profiles should be included in this work. On the other hand, slabs have to be tested or designed

with the standard fire curve according to fire protection regulations in Germany. A detailed description

of the test can be found in [49].

3.2.1 Test arrangement

A single composite slab panel in scale 1:1 was tested with a longer span of 8.735 m, a shorter span of

6.660 m and a total depth of 15.5 cm. A plan view of the specimen is shown in Figure 3.18 and the cross-

section of the slab in Figure 3.19. Two primary beams bridged the short span which consisted of IPE 400

hot-rolled sections, steel grade S355. Four secondary beams ran in longitudinal direction and consisted
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Fig. 3.18: Plan view of FRACOF test on the basis of [49]

of IPE 300 sections in S235. The beams were connected to short steel columns at all four corners which

provided a clear height below the slab of 80 cm. The primary beams were connected to the columns with

end plates. Double angle connections were used for the secondary beams. The edge beams, connections

and columns were protected against heating by two layers of 25 mm mineral fibre blankets. Such blankets

are often used in fire tests due to their flexibility. For real structures these are mostly too expensive. The

two secondary beams in the centre of the slab were unprotected. Headed shear studs diameter 19 mm

with a length of 125 mm were used with a spacing of 207 mm at the secondary beams and 100 mm at the

primary beams. A galvanised Cofraplus 60 profiled steel sheeting with a thickness of 0.75 mm spanned

in transversal direction of the slab panel. A top reinforcement was placed 50 mm below the top surface of

the slab. It consisted of a mesh of 7 mm diameter bars, at 150 mm spacing with a steel grade S500. This

mesh provided a reinforcement area of 2.57 cm2/m in both directions. It is not described in the report
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Fig. 3.19: Slab cross-section of FRACOF test

[49] whether the mesh was welded or bound. The only detail given was that a joint of the reinforcement at

the slab centre in longitudinal direction was welded. A bottom reinforcement was not used. Additional

10 mm diameter bars were placed around the columns. The reinforcement mesh was welded to steel

beams at two edges of the slab. This should simulate an interaction with adjacent slab panels. On the

longitudinal edge the reinforcement was coming out of the slab and was not covered by concrete for



3.2 FRACOF test 27

several centimetres before it was welded to the beam. This part of the reinforcement buckled during

the test and had therefore not the expected effect. A normal weight concrete class C30/37 was used

which had a measured compressive strength of fcm = 36.7N/mm2. The report [49] does not mention

whether this value was measured at the day of the test or after 28 days according to the testing codes.

The secondary beams offered an actual strength of fy = 311N/mm2, the primary beams fy = 423N/mm2

and the reinforcement fy = 594N/mm2.

The specimen was placed on top of an existing furnace, the slab forming the ceiling of the furnace.

15 sandbags were placed evenly on the slab. Each weighed 1500 kg which resulted in an additional

mechanical load of 3.87 kN/m2. The gas temperature in the furnace followed the standard fire curve

and was controlled by plate thermocouples. The furnace was heated by burners in the walls. It is not

documented in the report [49] whether these were gas or oil fuelled. The temperature distribution in the

members was measured by about 170 thermocouples. The vertical displacement was measured at seven

locations and the horizontal displacement at two locations. The heating phase lasted slightly more than

120 minutes. The test was stopped after 105 minutes as a large crack at the slab centre occurred.

3.2.2 Results

The gas temperature in the furnace closely followed the standard fire curve. The temperature distribution

in the slab is shown in Figure 3.20. Measuring points A and B in the steel sheeting failed very early in

the test and were not recorded. This data would have been interesting for numerical simulations. All

curves show a temperature plateau at 100° C when the uncombined water boiled away as at the Munich

tests. The concrete temperature in the troughs reached almost 700° C which can be seen from curve C.

The temperature in the reinforcement above the troughs (E) remained about 100° C lower than above the

top flange of the sheeting (F). The average temperature in the reinforcement reached about 300° C. Not

shown in Figure 3.20 is the temperature development at the top surface of the slab. This reached between

75° and 100° C after 105 minutes and between 80° and 110° C after 120 minutes.

C

D

E

F

Fig. 3.20: Temperatures in slab of FRACOF test according to [49]

Figure 3.21 shows the temperature development of a protected edge beam. It unclear from the report

[49] whether the shown curves belong to a primary or secondary beam. Since the primary beams were
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more compact, the temperatures were probably lower than in the secondary beams. The edge beams

remained relatively cold with a maximum temperature of the bottom flange of less than 300° C. In real

structures these will heat up considerably more with major effects on the load bearing behaviour. Not

shown in Figure 3.21 is the temperature development in the unprotected beams. These closely followed

the gas temperature as at the Munich tests and reached a maximum of slightly more than 1000° C until

the test was stopped. The top flange again remained approximately 50° C cooler than the remaining

section.

A

B

C

Fig. 3.21: Temperatures in protected edge beam of FRACOF test according to [49]

The development of vertical displacements is shown in Figure 3.22. The centre of the slab reached its

maximum displacement of about 470 mm after 135 minutes, after the heating of the furnace was already

stopped. The edge beams experienced relatively small deformations since their temperatures were not

high.

Fig. 3.22: Vertical deformations of FRACOF test according to [49]

Cracks have been observed on the top of the slab running diagonally across all corners. These cracks
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arose very early in the test but did not cause any failure. After 105 minutes a large crack at the centre

of the slab in a transversal direction occurred. The test was stopped shortly after since this crack spread

over the whole slab depth, opened widely and the hot gas from inside the furnace streamed up to the

top of the slab. The structure did not collapse and the criterion “R” was satisfied for more than two

hours. Due to the large gaping crack, the slab failed in terms of the integrity criterion “E” and insulation

criterion “I” after 105 minutes. The reason for the occurrence of the crack was explained in the report

[49] by welding of the reinforcement at this location. In Section 7.3 of this work it will be shown that

the available reinforcement amount was not sufficient. The reinforcement would have ruptured even if

it had been continuous at this location. This test shows again that the consideration of the load bearing

criterion “R” is not sufficient. With the design methods currently available gaping cracks that occurred at

the first Munich test and the FRACOF test cannot be prevented and cause at least integrity and insulation

failure. The method presented in this work deals with these problems.
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4 Thermal loading

In this chapter the determination of the temperature distribution in the slab and beams is explained. The

effects on the structure are discussed and suggestions are made as to how they can be simplified. The

temperature distribution depends on the temperature development of the surrounding gas. In many coun-

tries, the standard fire curve is generally used to describe this temperature development. The curve was

internationally agreed in ISO 834 and was taken over as a standard in the Eurocodes. It was established

to standardise fire tests and to be able to categorise products with fire safety requirements. The speci-

fications in building regulations are also usually based on the ISO fire. For example, if a fire wall has

to fulfil the standard R90, this means that it must not collapse for ninety minutes exposed to the ISO

fire. In the annexes of Eurocode 1 [24] some information is given about how natural fires can be consid-

ered. The use of natural fires, however, would mean that every part in the building has to be proved with

the considered fire curve. Every fire door, fire shutter, cable exit etc. would have to be tested in extra

fire tests. According to the German national annex of the Eurocode [25] the ISO fire has to be used in

general. The usage of the ISO fire also simplifies the numerical simulations considerably since at least

one-third of the simulation work drops out. If different natural fire scenarios and mechanical load cases

have to be considered, the effort is even exponentially higher since every load case has to be combined

with every fire scenario. For these reasons, the standard fire is used in this work. With a little more effort,

the presented method can, however, also be used for natural fire curves. Only the heating phase can be

considered, however, since permanent plastic deformations cannot be considered with the method.

4.1 Thermal analysis

In the Eurocodes several regulations can be found to determine the temperature distribution in cross-

sections. Regulations are available for general numerical simulations. Simple calculation methods can be

found only for steel cross-sections and composite slabs. The method in DIN EN 1994-1-2, Annex D [32]

for calculating temperatures in composite slabs is discussed in Section 4.1.2. For numerical simulations

the following regulations can be found in the Eurocodes and are used in this work:

• The thermal properties of steel and concrete are used according to DIN EN 1994-1-2, 3.3.

• For concrete the thermal properties for normal weight concrete with siliceous aggregates are used.

• For the specific heat a moisture of 3 % is assumed according to DIN EN 1994-1-2, 3.3.2 (8).

• For the thermal conductivity the upper limit is used as recommended in DIN EN 1994-1-2, 3.3.2 (9)

and adopted in the German national annex [33].

• The coefficient of heat transfer by convection is generally αc = 25 W/m2K for surfaces exposed to

the standard fire curve (DIN EN 1991-1-2, 3.2.1 (2)). This assumption has to be adjusted for parts

of the troughs as explained in Section 4.1.2.

• For the unexposed side the coefficient of heat transfer by convection is set to αc = 9 W/m2K

including effects of heat transfer by radiation (DIN EN 1991-1-2, 3.1 (5)).
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• The emissivity coefficient for steel and concrete related to the surface of the member is generally

set to εm = 0.7 according to DIN EN 1994-1-2, 2.2 (2).

• Shadow effects are allowed to be taken into account (DIN EN 1991-1-2, 3.1 (7)). These are

considered in this work for parts of the troughs as explained in Section 4.1.2.

These assumptions are used for the preparation of the tables and approximation formulas for the sub-

stitute temperature loading in Section 4.2. They have to be adjusted slightly for modelling the fire tests

in order to fit the simulations to the test data. For the thermal analysis in this work the finite element

software Ansys Workbench version 12.1.0 is used.

4.1.1 Full concrete slabs

The thermal analysis of full concrete slabs is relatively simple since the heat transfer is a one-dimen-

sional problem. Ansys only provides two and three-dimensional analyses, therefore, a two dimensional

system is chosen to determine the temperature distribution in the cross-section. In order to validate the

simulation, the results are compared with available data from the literature. In DIN EN 1994-1-2, D.5

[32] a table is given with temperatures of a 100 mm thick concrete slab for different time steps exposed to

the standard fire. These values are compared with a numerical simulation with the assumptions described

above. The results are shown in Figure 4.1. It can be seen that the numerical simulations are in good

agreement with the values from the Eurocode (EC).
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Fig. 4.1: Comparison of the temperature distributions from Eurocode data with FEA

Figure 4.2 shows a comparison between test data from the first Munich fire test with numerical sim-

ulations. In the experiment a precast slab with in-situ concrete topping with an overall depth of 12 cm

was tested. The gas temperature development in the test almost followed the standard fire curve. More

information about the test can be found in [42] and [50]. In the simulations the thermal properties and

heat transfer coefficients from the Eurocodes are used and the standard fire curve is used for the heat ex-

posure. It can be seen that the assumptions in the Eurocode lead to temperature distributions that fit well

to the test data. It can be confirmed that the parameters given in the Eurocode are suitable for simulating

temperature distributions in full concrete slabs exposed to the standard fire. No adjustments need to be
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made in order to use the parameters for further studies.
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Fig. 4.2: Comparison of temperatures from first Munich test with FEA

4.1.2 Composite slabs

The behaviour of composite slabs is investigated on two examples. For a re-entrant trough profiled

steel sheeting the Holorib HR51 profile is considered and for an open trough profiled steel sheeting the

Cofraplus 60 profile. The cross-sections can be seen in Figure 4.3. Both slab systems are very common in

Germany and other European countries and were therefore chosen for this work. A comparison is firstly

made between different assumptions in the Eurocodes for the calculation of temperatures in composite

slabs. Secondly, fire tests are modelled in order to be able to simulate temperature distributions for a

further mechanical analysis. Out of these comparisons a conclusion is drawn about which parameters

shall be chosen in the thermal analysis in order to derive the substitute temperature loading for the general

case.
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Fig. 4.3: Composite slab cross-sections with re-entrant (left) and open (right) trough profile steel sheeting

In DIN EN 1994-1-2, Annex D.2 [32] a simple method is given to calculate temperatures in composite

slabs that are subjected to the standard fire. The temperature prediction is included in a method to

calculate the hogging moment resistance of composite slabs. Temperatures can be determined for the

lower flange, the upper flange and the web of the steel decking as well as for reinforcement bars in the

ribs. In this method, the temperatures of the steel decking only depend on geometry and whether normal

or light weight concrete is used. The temperature of the reinforcement bar also depends on the location



4.1 Thermal analysis 33

in the rib. There is no dependency on the slab thickness, the moisture and the thermal conductivity of the

concrete like in numerical simulations.
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Fig. 4.4: Temperatures according to Eurocode compared with numerical simulations for Holorib slab
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Fig. 4.5: Temperatures according to Eurocode compared with numerical simulations for Cofraplus slab

In Figure 4.4 and 4.5 the solid lines show the temperatures of a Holorib slab and a Cofraplus slab

respectively, that can be found with this method. As an example, two points are considered: the web of

the steel sheeting and a reinforcement bar in the middle of a rib at the same hight as the upper flange.

This location is marked with “Point b” for the Holorib slab and “Point D” for the Cofraplus slab as

shown in Figure 4.3. The dotted lines in Figures 4.4 and 4.5 show a numerical simulation following the

regulations of the Eurocodes. Shadow effects for the upper flange and the web are taken into account by

multiplying the emissivity coefficient εm with a view factor. This factor Φ can be calculated by the Rule

of Hottel that is described in [37]. The proportionate amount of radiation that reaches Surface j coming
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through Surface i can be calculated by following equation:

Fi j =
AD+BC−AC−BD

2AB
(4.1)

The meanings of the variables can be seen in Figure 4.6. Equation (4.1) coincides with the configuration

or view factor that is given in DIN EN 1994-1-2, Annex D, Equation (D.3). The factor of the Eurocode is

only valid for the upper flange of composite slabs whereas the Rule of Hottel describes the general case.

B

C
D

Surface i

Surface j

A

Fig. 4.6: Rule of Hottel according to [37]

For the considered slab geometries the following view factors can be found:

Table 4.1: View factors for simulations according to the Eurocodes

Upper flange Web
Holorib 0.110 0.077
Cofraplus 0.728 0.556

In Figures 4.4 and 4.5 it can be seen that simulations with the regulations of the Eurocodes deliver

higher temperatures in most cases than the method of Annex D. The Eurocode is not consistent in this

case and needs to be corrected. The reason for the discrepancy probably lies in the fact that the method

in Annex D has been calibrated with experiments. There occur considerably lower temperatures than at

simulations according to the Eurocodes. This can be seen for example in Figure 4.5 on the dash-dot line.

The line shows the test data of Point D of the FRACOF test. Although the gas temperature followed

the standard fire curve, the temperatures in the slab are lower than predicted by the Eurocode. One of

the reasons is that not only the radiative part of the heat transfer reduces in the troughs but also the

convection can be significantly lower. The hot gas inside the troughs cannot move and be exchanged as

quickly as at directly exposed surfaces. Franssen [37] therefore suggests, also to reduce the coefficient

of heat transfer by convection αc by multiplying it with the view factors. The results of simulations

where this is included can be seen in Figures 4.4 and 4.5 on the dashed lines. In the Holorib slab the

temperatures are reduced considerably due to the re-entrant shape of the trough. In the Cofraplus slab

the effect is small.

The Holorib profile has been used in the second Munich fire test. Like in the first test the overall-

depth of the slab was 12 cm. The gas temperature development approximately followed the standard

fire curve but remained slightly below. Details about the test can be found in [42] and [50]. For the

report of the project [42] the test has already been modelled in Abaqus. In this model a temperature

dependent emissivity factor has been used, in order to take into account that the steel sheeting in the test

has been galvanised. At low temperatures the emissivity is very low with εm = 0.11 since the zinc surface

strongly reflects the radiation. At 420° C the zinc melts and the emissivity of the surface suddenly rises
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to εm = 0.7. View factors have also been used inside the troughs for the emissivity as described above.

The convection coefficient inside the troughs has been changed to αc = 10 W/m2K and outside to αc =

35 W/m2K. With these assumptions the temperature development could be satisfactorily reproduced.

A temperature dependent emissivity cannot be input in Ansys. The temperature development can

therefore not be reproduced over the whole test period as well as with Abaqus. For the requirements of

the method in this work, however, it is not essential that the development over the time is correct. The

right temperature distribution inside the cross-section at a certain time is important, since only selected

times are considered. The time that is chosen to validate the method on the Munich tests is forty minutes

after lighting. At this time in both tests the gas temperature in the furnace reached its highest level. For

the gas temperature in the simulation, the average temperature measured in the test is used. In order to

align the simulations to the test data, the heat transfer coefficients are adjusted. At the unexposed side

of the slab a change of the convection coefficient to αc = 45 W/m2K was necessary. The view factors

used for the simulation of the second Munich test and the FRACOF test, which are discussed later on,

are shown in Table 4.2. The factors are used both for the emissivity and the convection.

Table 4.2: View factors for simulation of fire tests

Upper flange Web Lower flange
Holorib: second Munich test 0.25 0.20 0.80
Cofraplus: FRACOF test 0.45 0.14 0.22
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Fig. 4.7: Comparison of temperatures from second Munich test with FEA

A comparison of single simulation results with data of the second Munich test can be seen in Fig-

ure 4.7. It is noticeable that the heat transfer coefficients had to be changed significantly. Possible

reasons for the big discrepancies are, on the one hand, the influence of the zinc surface as described

above and, on the other hand, debonding of the steel sheeting. The steam that develops in the concrete

is stopped from escaping by the sheeting. A gas pressure builds up which disconnects the sheeting from

the concrete. The void between the two materials acts like an insulation layer and slows down the heat

transfer. A further reason for the different results can be the moisture of the concrete. For the simulations

a general moisture of 3 % is assumed. The actual moistures of the test-specimens are not known. In
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the simulations the moisture is taken into account by a peak in the curve of the specific heat at 100° C.

This slows down the heating of the whole cross-section but does not reproduce a temperature plateau of

100° C at a certain location as seen in tests when the water in the concrete is boiling. All these effects

are difficult to include in a thermal analysis directly. Therefore they are taken into account by adjusting

the view factors.

A similar behaviour could be seen at the FRACOF test, where a Cofraplus 60 slab was used. The

cross-section of the tested slab and the location of the measuring points are shown in Figure 4.3. The

temperature-time curve of the gas in the furnace followed the standard fire curve. The time of the test

that is considered in this work is 105 minutes, since the large crack at the centre of the slab occurred at

this time. The standard fire curve is used in the simulation. The convection coefficient on the top surface

of the slab is set to αc = 50 W/m2K. The view factors which are used to multiply the radiation and

convection coefficients of the exposed surface are given in Table 4.2. A comparison of the simulation

results and the test data is shown in Table 4.3. Points A and B in the steel sheeting have not been

measured in the test since the thermocouples failed very early at these locations. As in the simulation

of the second Munich fire test it can be seen, that the simulation results can only be aligned to the test

data by large adjustments of the heat transfer coefficients. The reasons are again probably due to the zinc

surface, debonding of the steel sheeting and an unknown moisture rate of the concrete.

Table 4.3: Comparison of temperatures after 105 minutes from FRACOF test with FEA

Point Test data FEA
[°C] [°C]

A – 925
B – 927
C 650 653
D 420 460
E 195 207
F 290 276

Top side 90 87-102

In summary, it can be said that the simple calculation model of Eurocode Annex D, numerical simula-

tions according to the Eurocodes and fire tests deliver significantly different results for composite slabs.

Numerical simulations with parameters given in the Eurocode lead to the highest temperatures and fire

tests to the lowest. The Eurocode needs to be changed so that the simple method would deliver similar or

slightly higher temperatures than the numerical simulations. The main reasons for the different temper-

atures in the simulations are the unconsidered effects of the zinc surface, debonding of the steel sheeting

and reduced convection in the troughs. The first two effects should not generally be taken into account.

It cannot be assured that these occur in any case. Not every steel sheeting is necessarily galvanised and

holes in the sheeting can release steam and prevent debonding. However, the convection in the troughs

is always lower than at directly exposed surfaces. The proposal of Franssen [37] therefore is used in

this work; the coefficients of convection shall be reduced by the same view factors as the coefficients of

radiation at shadowed surfaces.
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4.2 Substitute thermal loading on slabs

This is the central section in this work. Here it is described how the thermal analyses can be avoided

and replaced by a substitute thermal loading. Tables are worked out for Holorib and Cofraplus 60 slabs

subjected to the standard fire and simple approximation formulas are given to calculate the substitute

thermal loading. The methods described in this section can be easily applied to any other cross-section

and fire scenario.

4.2.1 Derivation

A distribution of high temperatures θreal inside a cross-section has two effects as shown in Figure 4.8: It

causes thermal elongation which can be expressed by thermal strains ε(θ), and it reduces the stiffness

expressed by the Young’s modulus E(θ). If the elongation is restrained, stresses will occur in the cross-

section, which will be called non-linear thermal stresses σnonl(θ). These stresses can be calculated by

multiplying E(θ) with ε(θ). The stress distribution can be split into a linear part σθ ,lin and a part of self-

equilibrating stresses σθ ,sel f . The fictive linear stress distribution σθ ,lin causes the same deformations

in a beam as the real stress distribution σnonl(θ). σθ ,sel f does not cause any deformation. It only can

soften a cross-section if, for example, in a concrete cross-section σθ ,sel f reaches the tensile strength of

the concrete. σθ ,lin can again be split. At first, an arbitrary Young’s modulus Esubs is divided out. Then

the remaining strains are split into a constant part εθ ,subs and a linear part κθ ,subs with zero-crossing in the

neutral axis of the cross-section. The thermal strain εθ ,subs only causes elongation in a beam, no bending

whilst κθ ,subs only causes bending, no elongation or shortening of the neutral axis, and therefore will be

called thermal curvature.

qreal E(q) e(q) snonl(q)

sq,lin sq,self Esubs eq,subs kq,subs

Fig. 4.8: Derivation of the substitute thermal loading

If εθ ,subs and κθ ,subs are applied to any beam, they will cause the same deformations as a real tem-

perature distribution θreal would do to the originally considered beam. Height and stiffness of the beam

can be arbitrary, only the length must be the same. The reason is, that the overall elongation u caused

by εθ ,subs and the deflection in the middle of the beam wm caused by κθ ,subs only depend on the length

l of a beam as shown in Equations (4.2) and (4.3). This means, that the stiffness of a structure can be

determined separately from the deformations caused by temperature changes.

u = εθ ,subs · l (4.2)
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wm =
κθ ,subs · l2

8
(4.3)

For finite element programs where the thermal strain and curvature cannot be input directly, these can eas-

ily be transformed into temperature loadings. With an arbitrary chosen coefficient of thermal expansion

αT , the uniform temperature increase ∆θuni f can be calculated by Equation (4.4), and the temperature

gradient between the bottom and top surface of the slab ∆θgrad with the depth h is obtained by Equation

(4.5).

∆θuni f =
εθ ,subs

αT
(4.4)

∆θgrad =
κθ ,subs

αT
·h (4.5)

The temperature distribution θreal can be obtained by numerical simulations as described in Sec-

tion 4.1. Formulas for the thermal elongation ε(θ) of concrete as a function of the temperature are given

in DIN EN 1994-1-2, 3.3.2 [32] and used in this work. The temperature dependent Young’s modulus

of concrete is slightly more difficult. In the Eurocodes, Young’s moduli for concrete are only available

for ambient temperature. For elevated temperatures only stress-strain curves are given. These show no

linear character from the zero strain. In order to obtain the same results in numerical simulations with the

full stress-strain curves and the method in this work, the same stiffness needs to be used. The Young’s

modulus therefore needs to be derived from the non-linear stress-strain curves. For ambient temperature

an approach for that can be found in DIN EN 1992-1-1, 3.1.5 [26]. There the secant modulus is used,

where the secant intersects the stress-strain curve at 40 % of the compressive strength. This approach is

adopted in this work as shown in Figure 4.9.

s

e

fc,q

0.4 fc,q

ec1,q ecu1,q

a

tan = Ea c,q

Fig. 4.9: Young’s modulus of concrete under elevated temperatures (adopted from [26])

The compression part of the stress-strain curve of concrete under elevated temperatures is given in

DIN EN 1992-1-2, 3.2.2.1 [27] with following equation:

σ =
3ε fc,θ

εc1,θ

[
2+
(

ε

εc1,θ

)3
] (4.6)
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The stress is set to 40 % of the concrete strength. An equation can then be found to derive the corre-

sponding strain ε0.4 f cθ of the intersection point of the Young’s modulus.

σ = 0.4 fc,θ (4.7)
3 ε0.4 f cθ · fc,θ

εc1,θ

[
2+
(

ε0.4 f cθ

εc1,θ

)3
] = 0.4 fc,θ (4.8)

3 ε0.4 f cθ

εc1,θ

[
2+
(

ε0.4 f cθ

εc1,θ

)3
] −0.4 = 0 (4.9)

In Equation (4.9) it can be seen that the strain of the intersection point is independent of the concrete

strength. It only depends on the temperature, expressed by the value εc1,θ . This value is tabulated as a

function of temperature in DIN EN 1992-1-2, Table 3.1 [27].

With:

Ec,θ =
0.4 fc,θ

ε0.4 f cθ

(4.10)

kE,θ Ec,20 =
0.4 kc,θ · fc,20

ε0.4 f cθ

(4.11)

and:

Ec,20 =
0.4 fc,20

ε0.4 f c20
(4.12)

follows:

kE,θ =
kc,θ · ε0.4 f c20

ε0.4 f cθ

(4.13)

With Equation (4.13) a reduction factor for the Young’s modulus of concrete under elevated temperatures

is found. It only depends on the temperature, not on the strength of the concrete. In Table 4.4 the

derived Young’s moduli under 20° C for some concrete strength classes are prepared, and in Table 4.5

the reduction factors for different temperatures. The values in both tables are only valid for normal

weight concrete with siliceous aggregates.

Table 4.4: Young’s moduli of concrete under 20° C according to the non-linear stress-strain curves of
Eurocode 2 [27]

fc,20 [N/mm2] 20 25 30 35 40
Ec,20 [N/mm2] 11884 14855 17826 20797 23768

Table 4.5: Reduction factors for the Young’s modulus of concrete under elevated temperatures

θc [°C] 20 100 200 300 400 500
kE,θ = Ec,θ/Ec,20 [-] 1.000 0.625 0.432 0.304 0.188 0.100
θc [°C] 600 700 800 900 1000 1100
kE,θ = Ec,θ/Ec,20 [-] 0.045 0.030 0.015 0.008 0.004 0.001
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4.2.2 Full concrete slabs

For full concrete slabs the determination of the substitute thermal strains εθ ,subs and curvatures κθ ,subs

of Figure 4.8 is relatively simple. It is solely a one-dimensional problem. Temperatures along a linear

section through the depth of a full concrete slab are similar in each direction and are independent of the

location of the section. Integrations can easily be done along this line, for example with the trapezoidal

rule. The other two dimensions of a slab are simply included by considering a rectangular cross-section

with unit width.

The thermal strains and curvature can be integrated over this cross-section and a thermal normal force

Nθ and a thermal bending moment Mθ are obtained with Equations (4.15) and (4.17). Where h is the

depth of the slab and zn is the distance from the neutral axis of the hot cross-section.

N =
∫
(A)

σ dA (4.14)

Nθ =
∫
(A)

σnonl(θ ,z) dA =

h/2∫
−h/2

E(θ ,z) · ε(θ ,z) dz (4.15)

M =
∫
(A)

σ · zn dA (4.16)

Mθ =
∫
(A)

σnonl(θ ,z) · zn dA =

h/2∫
−h/2

E(θ ,z) · ε(θ ,z) · zn dz (4.17)

These forces would occur in a beam whose deformations are restrained against both elongation and

bowing. Both forces act on the neutral axis of the cross-section, as it is commonly defined in engineering

mechanics. The neutral axis of a rectangular cross-section with uniform stiffness lies in the centre of

the cross-section. If the Young’s modulus changes non-uniformly, like is in heated slabs, the stiffness

becomes non-uniform and the neutral axis moves. The distance of the neutral axis from an arbitrary

location can be calculated by Equation (4.20). This location is chosen usefully at the bottom of the slab.

EA =
∫
(A)

E dA (4.18)

ESy =
∫
(A)

E · z dA (4.19)

azn =
ESy

EA
=

h/2∫
−h/2

E(θ ,z) · z dz

h/2∫
−h/2

E(θ ,z) dz

(4.20)

With the thermal normal force and bending moment, the substitute thermal strain and curvature can be

determined. For the determination of the required bending stiffness EIy, it is important that zn again is

the distance from the neutral axis of the hot cross-section.

εθ ,subs =
Nθ

EA
(4.21)
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κθ ,subs =
Mθ

EIy
(4.22)

With:

EIy =
∫
(A)

E · z2
n dA =

h/2∫
−h/2

E(θ ,z) · z2
n dz (4.23)

The substitute thermal strain and curvature only depend on the depth and the temperature distribution

in the cross-section. They are, first of all, independent of concrete strength classes. The temperature

distribution only depends on the depth of the slab and the fire scenario. If for the fire scenario the

standard fire is used, it will mean that the only remaining parameter is the slab depth. This can be proved

as follows:

εθ ,subs =
Nθ

EA
=

h/2∫
−h/2

E(θ ,z) · ε(θ ,z) dz

h/2∫
−h/2

E(θ ,z) dz

=

h/2∫
−h/2

kE,θ (z) ·Ec,20 · ε(θ ,z) dz

h/2∫
−h/2

kE,θ (z) ·Ec,20 dz

=

h/2∫
−h/2

kE,θ (z) · ε(θ ,z) dz

h/2∫
−h/2

kE,θ (z) dz

(4.24)

The only remaining variables are h, kE,θ and εθ . They are all independent of the concrete strength class

as described above. The same is true for the curvature:

κθ ,subs =
Mθ

EIy
=

h/2∫
−h/2

kE,θ (z) · ε(θ ,z) · zn dz

h/2∫
−h/2

kE,θ (z) · z2
n dz

(4.25)

This correlation allows very simple tables and diagrams for εθ ,subs and κθ ,subs to be determined. Such

a table is worked out for common slab depths and fire resistant classes as shown in Table 4.6 and, as

an example, a diagram for κθ ,subs is shown in Figure 4.10. In Appendix A one detailed example for

h = 12 cm and R30 is shown.

Table 4.6: Substitute thermal loading on full concrete slabs

Slab depth R30 R60 R90
h εθ ,subs κθ ,subs εθ ,subs κθ ,subs εθ ,subs κθ ,subs

[cm] [‰] [1/km] [‰] [1/km] [‰] [1/km]
10 1.062 45.25 2.069 71.31 3.169 87.41
12 0.791 32.65 1.576 50.58 2.255 65.19
14 0.624 24.47 1.213 38.09 1.796 49.22
16 0.514 18.84 0.966 29.90 1.446 38.53
18 0.437 14.85 0.796 24.02 1.188 31.47
20 0.379 11.92 0.678 19.80 1.004 26.49
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Fig. 4.10: Substitute thermal curvature κθ ,subs on full concrete slabs

The values of εθ ,subs and κθ ,subs can also be expressed by following equations with the slab depth h

in cm and the coefficients b1 to b4 given in Table 4.7. These equations are only valid for slab depths

between 10 cm and 20 cm.

εθ ,subs = b1 hb2 [‰] (4.26)

κθ ,subs = b3 hb4 [1/km] (4.27)

10cm ≤ h ≤ 20cm (4.28)

Table 4.7: Coefficients for the determination of the substitute thermal loading

b1 b2 b3 b4

R30 31.91 -1.485 3867 -1.924
R60 89.09 -1.630 4976 -1.845
R90 136.3 -1.641 4889 -1.744
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4.2.3 Composite slabs

The problem is more difficult for composite slabs. First of all, the thermal expansion is orthotropic

due to different cross-sections in longitudinal and transverse direction. The substitute thermal strains

and curvature therefore need to be determined separately for both directions. The thermal deformation

furthermore is a two-dimensional problem. The temperature distribution in a transverse cross-section

as shown in Figure 4.11 is the same in every cross-section along the slab but within the cross-section

the temperature is different at any location. In order to determine the thermal forces Nθ and Mθ and

the cross-section properties EA, ESy and EIy, a two-dimensional integration over the cross-section area

has to be performed. The integration over a polyangular area can only be done by numerical methods.

The area has to be split into sub-areas, like finite elements, with constant temperatures. These sub-areas

can be summed up to approximate the integration. The more sub-areas are considered, the more exact

the result will be. The cross-section already needs to be modelled with finite elements to determine

the temperature distribution. The mesh of the model can be input as fine as required and integration

procedures are always included in finite element procedures. It is reasonable to also use the FE-program

for the integrations, instead of reading out the temperatures and integrating with a spreadsheet software.

A longitudinal cross-section as marked in Figure 4.11 is rectangular at any location. The thermal forces

and cross-section properties can be determined with a one-dimensional integration as described for full

concrete slabs. Every cross-section has a different temperature distribution, depending on the location of

the section. This means a beam has to be considered whose cross-section changes continuously, like a

beam in shape of Figure 4.11. On such a system, it is difficult to analytically determine the location of

the resulting neutral axis and the resulting bending stiffness EIy.

Fig. 4.11: Transverse section through composite slab with schematic isolines for temperature distribution

For these reasons, the substitute thermal loading for composite slabs is determined with finite element

models in this work. The procedure will be explained on a Holorib slab in transverse direction. A

two-dimensional beam with unit width in the y-direction as shown in Figure 4.12 is considered. It is

clamped on one end in order to get a system with large deflections compared to its length. The larger the

deflections are, the more exact are the results for the thermal curvature. In a first step, a thermal analysis

is performed to get the temperature distribution in the beam as described in Section 4.1.2. The FE-model

is changed from thermal to mechanical and the temperature field from the thermal analysis is applied to

the mechanical model. In a second step, the location of the resulting neutral axis is identified as shown

in Figure 4.12 above. For this calculation, the material in the model only has a temperature dependent

Young’s modulus, no thermal elongations. A force F is applied at the end of the beam with a variable

distance az from the bottom of the slab. The distance az is varied iteratively until no vertical deformation

w occurs. This distance azn is then the location of the resulting neutral axis. For this procedure the fact

is used, that a normal force, which acts in the neutral axis of a beam, causes no bending moments and
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therefore no deflection. In a third step, the force is removed and thermal elongation is included in the

material model. With the resulting elongation u and vertical deformation w of the beam in the neutral

axis as shown in Figure 4.12 below, the substitute thermal loadings can be calculated with following

equations:

εθ ,subs =
u
l

(4.29)

κθ ,subs =
8w
(2l)2 (4.30)

L

real neutral axis resulting neutral axis
F

a
z
n

a
z
n

u

wx

z

y

h

Fig. 4.12: Determination of location of neutral axis and thermal deformations in transverse direction

In the longitudinal direction, a system as shown in Figure 4.13 is used. Since the cross-section is not

rectangular in the y-direction, no uniform width can be used and the model has to be three-dimensional.

In order to reduce computing times, the symmetry of the system is used and only half of a rib is modelled.

The horizontal displacements in the y-direction are fixed as shown in the cross-section in Figure 4.13 to

ensure the same deformations as in a non-reduced system.
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Fig. 4.13: System in longitudinal direction

The method described in this section allows the substitute thermal loading for any kind of cross-section

to be determined. In order to demonstrate the method in this work, tables have been calculated for two

common composite slabs: Holorib HR51 and Cofraplus 60. The three most important fire resistance

classes R30 to R90, coming out of the standard fire curve, are chosen as for full concrete slabs. In Tables

4.8 and 4.9, h is the overall slab depth. Intermediate values can be interpolated.
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Table 4.8: Substitute thermal loading on composite slabs Holorib HR51

Slab depth R30 R60 R90
h εθ ,subs κθ ,subs εθ ,subs κθ ,subs εθ ,subs κθ ,subs

[cm] [‰] [1/km] [‰] [1/km] [‰] [1/km]
longitudinal

10 1.180 50.94 2.323 82.22 3.828 101.8
12 0.857 36.50 1.708 57.75 2.546 74.82
14 0.661 27.12 1.303 42.07 1.916 55.50
16 0.536 20.72 1.023 32.29 1.539 41.97
18 0.447 16.21 0.831 25.50 1.236 32.88
20 0.383 12.95 0.692 20.56 1.019 26.54

transversal
10 0.883 28.55 1.744 58.86 3.298 82.82
12 0.607 20.11 1.311 40.05 2.166 59.72
14 0.450 14.77 1.005 29.21 1.649 44.08
16 0.348 11.17 0.781 22.66 1.322 33.19
18 0.279 8.655 0.626 18.09 1.061 26.25
20 0.229 6.854 0.516 14.71 0.868 21.39

Table 4.9: Substitute thermal loading on composite slabs Cofraplus 60

Slab depth R30 R60 R90
h εθ ,subs κθ ,subs εθ ,subs κθ ,subs εθ ,subs κθ ,subs

[cm] [‰] [1/km] [‰] [1/km] [‰] [1/km]
longitudinal

10 2.238 67.23 5.035 108.4 7.569 135.0
12 1.511 52.25 3.078 88.83 4.831 110.5
14 1.072 39.66 2.091 67.53 3.209 84.73
16 0.808 30.46 1.595 49.85 2.259 64.83
18 0.639 23.70 1.226 38.08 1.788 49.10
20 0.526 18.71 0.974 29.98 1.433 38.01

transversal
10 2.391 113.4 5.774 185.7 8.672 223.9
12 1.452 67.48 3.329 112.1 5.290 143.0
14 1.007 43.97 2.101 75.56 3.454 95.45
16 0.729 31.29 1.578 52.51 2.335 69.18
18 0.561 23.21 1.204 38.47 1.798 51.17
20 0.449 17.74 0.943 29.65 1.444 38.70

The substitute thermal loading of composite slabs depends on the geometry of the steel sheeting which

can be described by five parameters l1 to l3, h1 and h2 as shown in Figure 4.14. The total depth h= h1+h2

is the governing parameter. A formula for calculating the substitute thermal loading must include the five

parameters. A composite cross-section can be replaced by an equivalent rectangular cross-section with

an effective thickness he f f according to DIN EN 1994-1-2, Annex D.4 [32]. The equation for calculating

he f f includes all five geometric parameters:

he f f = h1 +0.5 h2

(
l1 + l2
l1 + l3

)
for h2/h1 ≤ 1.5 and h1 > 40mm (4.31)
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Fig. 4.14: Geometrical notation of steel deckings according to [32]

The area of a rectangular cross-section with the depth he f f is equal to the area of the original cross-

section. If a composite slab is replaced by a full concrete slab with the depth he f f , the formulas de-

termined in the previous section are a good approximation for the substitute thermal loading. As an

example, the substitute thermal curvature κθ ,subs of Holorib and Cofraplus 60 slabs in longitudinal di-

rection are compared with full concrete slabs in Figure 4.15. It can be seen that the curves are in good

agreement. In Equation (4.26) and (4.27) the slab depth h simply has to be replaced by the effective

thickness he f f for calculating the substitute thermal loading of composite slabs in longitudinal direction.
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Fig. 4.15: Substitute thermal curvature in longitudinal direction κθ ,subs of composite slabs as a function
of the effective slab thickness he f f

In transversal direction, the substitute thermal loading for Holorib slabs is slightly lower than the

loading determined with the effective thickness, and for Cofraplus slabs it is slightly higher. In this case,

a correction factor β is included in Equation (4.26) and (4.27) which depends on the fire resistance class.

εθ ,subs = β b1 hb2
e f f [‰] (4.32)

κθ ,subs = β b3 hb4
e f f [1/km] (4.33)

10cm ≤ he f f ≤ 20cm (4.34)
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Where:

β = 1.0 in longitudinal direction;

= c1 t + c2 in transversal direction;

t is the considered time in [min] of the fire resistance class;

b1 to b4 are the coefficients given in Table 4.7;

c1 and c2 are the coefficients given in Table 4.10;

Table 4.10: Coefficients for the determination of the substitute thermal loading in transversal direction

Profile type c1 c2

Re-entrant trough 0.0038 0.47
Open trough 0.0019 0.96

In Figure 4.16 the substitute thermal curvatures κθ ,subs of Holorib and Cofraplus 60 slabs of Table 4.8

and 4.9 are adjusted with the factor β . The curves are in good agreement with the curves of full concrete

slabs. The coefficients c1 and c2 are determined with data of Holorib and Cofraplus 60 slabs. These

could slightly vary for other profile types. A conservative simple assumption is therefore suggested

that for slabs with re-entrant trough profile steel sheeting the substitute thermal loading in transversal

direction is reduced by 20 % and for open trough profile steel sheeting it is increased by 20 %.
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Fig. 4.16: Substitute thermal curvature in transversal direction κθ ,subs of composite slabs as a function of
the effective slab thickness he f f

To summarise, the substitute thermal loading of composite slabs can be calculated in good approxima-

tion with the formulas for full concrete slabs using the effective thickness. The values for the transversal

direction need to be corrected by a factor β . Equation (4.32) and (4.33) for full concrete slabs can be

used with the coefficients of Table 4.7.
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4.2.4 Validation

The approaches of the previous two Sections 4.2.2 and 4.2.3 can be used to validate each other. In the

first example, a 1.50 m long beam is considered that is clamped at one end. It offers a rectangular cross-

section with a depth of 12 cm and a unit width of 1.00 m. The system and cross-section can be seen in

Figure 4.17. The beam consists of concrete C25/30 with material properties according to DIN EN 1992-

1-2 [27]. The values derived in Section 4.2.1 are used for the temperature dependent Young’s modulus.

The slab is exposed to the standard fire and the thermal analysis is performed with the heat transfer

coefficients according to the Eurocodes as described in Section 4.1.
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Fig. 4.17: System (left) and cross-section (right) of Example 4-1

The results are shown in Table 4.11. In a first FE-calculation, a force F is applied to the beam without

thermal strains. The force acts at the neutral axis whose distance from the bottom of the slab azn,ana

was determined analytically. The simulated deformations in the z-direction wFEA,F are very small. This

confirms the right location of the neutral axis. In a second analysis, no force is applied but thermal

strains are taken into account. The deformations at the end of the slab uFEA and wFEA are measured in

the neutral axis. They are compared with the deformations uana and wana which are determined from

the analytically calculated substitute thermal strains εθ ,subs,ana and curvatures κθ ,subs,ana with following

equations:

uana = εθ ,subs,ana · l (4.35)

wana =
κθ ,subs,ana · (2l)2

8
(4.36)

The results are in good agreement. The differences are due to numerical tolerances. This confirms that

both methods deliver the same results and both can be applied as required.

Table 4.11: Comparison of analytical method of Section 4.2.2 and FE-method of Section 4.2.3

R30 R60 R90
azn,ana [m] 0.0763 0.0798 0.0826
wFEA,F [m] 2.86 ·10−8 1.28 ·10−7 1.74 ·10−7

εθ ,subs,ana [-] 0.000791 0.001576 0.002255
κθ ,subs,ana [1/m] 0.03265 0.05058 0.06519
uana [mm] 1.187 2.364 3.383
uFEA [mm] 1.141 2.304 3.266
wana [mm] 36.73 56.90 73.34
wFEA [mm] 37.09 56.70 72.15

In Example 4-2 the Systems shown in Figure 4.18 are considered. A combined thermal-mechanical-
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analysis is performed on a very short beam. The software Ansys APDL, Release 12.1 is used for this

example. The input file can be found in Annex B.1. The material properties and heat transfer coefficients

are again chosen according to the Eurocodes. Thermal strains are taken into account. The beam is heated

on the bottom surface by the standard fire for thirty minutes. In Example 4-2a, it is clamped at both

ends in order to provide horizontal restraint. The stresses in the longitudinal direction in the central

cross-section are shown in Figure 4.19 on the left. These are non-linear thermal stresses σnonl(θ) that

have been introduced in Section 4.2.1, Figure 4.8. In Example 4-2b, the beam is only clamped on one

end as shown in Figure 4.18 on the right hand side. Here the beam can deform freely and no restraint

occurs. The stresses in the central cross-section can be seen in Figure 4.19 on the right. These are

the self-equilibrating stresses σθ ,sel f that have been explained in Section 4.2.1, as well. This example

confirms qualitatively the assumptions of Section 4.2.1.
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Fig. 4.18: Systems of Example 4-2a (left) and b (right)

Fig. 4.19: Stresses in longitudinal direction in central cross-section of Example 4-2a (left) and b (right)

4.3 Substitute thermal loading on beams

The temperature distribution in the steel section of composite beams can be determined, like in slabs, by

advanced calculation models using finite element analysis. In Eurocode 4 [32] there are also simplified

calculation models for unprotected and insulated steel beams which deliver reasonable results. These are

much faster in application and, therefore, no numerical simulations are required for the thermal analysis

of the steel beams. The method in the Eurocode enables the user to calculate a different temperature in

the flanges and the web of beams. Within these parts the temperature is assumed to be uniform. With the

temperature dependent thermal strain of steel according to DIN EN 1994-1-2, 3.3.1 [32] the elongation of

every part can be determined. This would mean, however, that every flange and web had to be modelled

separately in a finite element simulation when a mechanical analysis was performed. The following
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simplifications are therefore made in this work. A uniform mean temperature is used for the whole steel

section. This allows the whole steel beam to be modelled with beam elements. For the simulations of

the fire tests, where different temperatures are measured in the flanges and the web, a mean temperature

θm is calculated by using following equation:

θm =
∑Aiθi

∑Ai
(4.37)

For the design procedure of new structures the methods in DIN EN 1993-1-2, 4.2.5 [29] are used. With

the formulas given there, a uniform temperature of a steel section can be calculated which is exposed to

a fire on three sides and protected by a concrete slab on the fourth side.

The following Example 4-3 shall justify the simplifications. A composite beam is considered as shown

in Figure 4.20. It is subjected to the standard fire from below for thirty minutes. The steel beam is

unprotected. For the mechanical analysis the finite element software Sofistik, Version 11.17 is used.

It has been developed particularly for the requirements of structural engineering and is chosen for this

work due to its useful post-processor. The input file of this example can be found in Annex B.2. The

concrete slab is modelled with four shell elements in the cross-section and the steel beam with five

shell elements. Two additional nodes are input at the intersection of the beam and the slab. Each of

the two nodes is rigidly coupled with the slab above or the beam below. At the two nodes themselves

only the displacements are coupled to each other, no rotations. Linear elastic material is used for both,

concrete and steel. The Young’s modulus of the concrete slab is simplified set uniformly according to

DIN EN 1992-1-1 [26] since the stiffness of the slab is irrelevant at this example. The Young’s modulus

of the steel is set according to its temperature. The slab is loaded with a substitute thermal loading of

εθ ,subs = 0.791 ‰ and κθ ,subs = 32.65 km−1 out of Table 4.6.
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Fig. 4.20: System (left) and cross-section (right) of Example 4-3: composite beam

In Example 4-3a the temperatures in the flanges and the web are calculated with the simplified method

of DIN EN 1994-1-2, 4.3.4.2.2 [32]. The resulting temperatures θ , Young’s moduli Eθ and thermal

strains εθ for each part are shown in Table 4.12. It can be seen that the temperatures and, hence, the

thermal strains are very close together. In Example 4-3b a mean temperature is used, calculated with

Equation (4.37).

θm =
∑Aiθi

∑Ai
=

1176(741+814)+1366 ·831
2 ·1176+1366

= 797° C (4.38)

Example 4-3c is performed with the simplified method of Eurocode 3 [29] where a uniform temper-
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Table 4.12: Material properties of steel beam in Example 4-3

θ Eθ εθ

[°C] [MPa] [‰]
Example 4-3a

Upper flange 741 23940 10.85
Web 831 17430 11.00
Lower flange 814 18270 11.00

Example 4-3b
Uniform 797 19150 11.00

Example 4-3c
Uniform 808 18520 11.00

ature is calculated directly for the whole beam. In Table 4.12 it can be seen that the temperatures of

Example 4-3b and c are very close together. The resulting deflection w at midspan and the elongation u

of all three examples are compared in Table 4.13. The differences are negligible. This confirms that a

uniform temperature in the steel beams can be assumed.

Table 4.13: Comparison of results of Example 4-3

Example w u
[mm] [mm]

4-3a 249.5 6.31
4-3b 248.3 6.27
4-3c 247.9 6.26

The determination of the temperature in protected beams is not always possible. For some protection

systems, like intumescent coatings, no simplified calculation models are available so far. First approaches

have been made to simulate the behaviour of reactive coatings and to perform a thermal analysis with

finite elements, for example in [42]. These approaches are at the beginning of research however and no

reliable results can be produced at the moment. Fire protection systems usually have to confirm their

applicability with fire tests. In Germany tests on reactive coatings have to follow DIN EN 13381-8 [20].

Beams and columns are mechanically loaded and exposed to the standard fire curve. The temperatures

at different locations in the steel sections are recorded continuously. Results of the tests are published in

separate tables for different fire resistance classes (R30, R60 etc.) that contain a required coat thickness

for different section factors and critical temperatures. The critical temperature is not specified further in

DIN EN 13381-8 [20]. It just says that the determined critical temperatures can be used for the design of

steel members according to DIN EN 1993-1-2 and DIN EN 1994-1-2. The critical temperature in these

codes depends on the load applied to the member. It varies from 1100° C for unloaded members and can

be up to 20° C when stability has to be taken into account. This means that the critical temperature has to

be determined for every beam and a corresponding coat thickness has to be applied. For manufacturing

reasons the coat thickness is usually not varied too much within one building. The true temperatures can

therefore not be reliably predicted.

The worst case of the standard fire that leads to the highest temperatures in the beams is not necessarily

the worst case for the slab. This is in contrast to the slabs. There the standard fire induces very large

temperature gradients. The larger the gradients are, the larger are the restraint forces in the slab. If the
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temperature in a beam is very high, it becomes very soft and provides a very soft support for the slab. A

softer support reduces the hogging moments in the slab above the beam. Whereas, if the beam stays cold

and stiff, the hogging moments in the slab above the beam are larger. The softer beam in turn increases

the forces in the middle of the slab. To summarise, it is not obvious which temperature in the beams

leads to the worst case for the slab.

The behaviour of the beams is therefore considered at limiting temperatures in the design method of

this work. One calculation is performed with the lower limit of the beam temperature of 20° C. This

leads to the largest hogging moments in the slab above the beam. For a second calculation the highest

possible temperature is used in order to get the highest forces in the middle of the slab. The upper limit

can either be the critical temperature of the beam or the predicted maximum temperature that will be

reached with the applied coat thickness. If both values are not known, the following simplification can

be used for the upper limit. It originates from DIN 4102-4 [19] where a simplified critical temperature

of 500° C was given. This temperature resulted from a maximum possible load level of 58 % of beams

where stability failure is excluded. This can be adopted to the regulations in the Eurocodes. A simplified

maximum utilization factor of µ0 = 0.65 is given in DIN EN 1993-1-2, 4.2.4 [29]. It is valid if both

partial factors for ambient temperature γM0 and for the fire situation γM, f i are set to 1.0 in the national

annex of the Eurocode. With this utilization factor a critical temperature of 540° C can be determined

with the equation of DIN EN 1993-1-2, 4.2.4 [29]:

θa,cr = 39.19ln
[

1
0.9674µ3.833

0
−1
]
+482 = 540°C (4.39)

With the design method of this work it is not very time consuming to consider different temperature

levels since they are applied to the system as a load case. It is very easy to consider different load cases in

order to find out the worst load scenario for each part of the structure. This method enables a procedure

for designing slabs for the fire case which is standard for ambient temperature and engineers are used to.
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5 Mechanical analysis

The objective of this chapter is to simplify the mechanical analysis and to give recommendations for

setting up the finite element model. Simplifications are primarily made to the material laws. These non-

linearities are the main reasons for the large computing times and convergence problems of advanced

finite element models. The non-linear materials are replaced by linear material laws with reduced stiff-

ness. Geometrical non-linearities cannot be replaced. Large deformations need to be taken into account

in order to activate membrane forces.

5.1 Material non-linearities

In this section the way in which material non-linearities are generally included in finite element rou-

tines, analytical models and simplified calculation methods is explained. This theoretical background is

necessary in order to understand how the material laws can be simplified.

5.1.1 Finite element formulations

Can Tesar developed the finite element program SlabFem within his dissertation [51] which is specialised

for simulating membrane action. He describes in detail how a finite element routine and in particular his

software takes the material non-linearities into account. Here a brief summary will be given. Generally,

a finite element problem is solved with following equation:

F = K u (5.1)

Where F is a vector of the forces on the nodes, u is a vector of the node displacements and K is the

stiffness matrix. The stiffness matrix can be written in more detail as follows:

K =

[
kuu kuw

kwu kww

]
(5.2)

For a finite element which includes membrane forces, the sub-matrices ki j can be written as:

kuu =
∫

EA bubT
u dx (5.3)

kuw = kwu =
∫

EA bT
wwbubw +ES bucT dx (5.4)

kww =
∫

(EI ccT +EA (bT
ww)2 +N)bwbT

w +ES(bT
ww)(bwcT + cbT

w) dx (5.5)

The vectors b contain shape functions, c derivation operators and w displacements. They are not impor-

tant for explaining the context here and will be not focused in more detail. The important point is that

Equations (5.3) to (5.5) include the cross-section stiffness EA, ES and EI. These values are determined
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in SlabFem and Vulcan on a layered cross-section as shown in Figure 5.1 with following equations:

EA =
∫

E(z) dA≈∑Eixi∆zi (5.6)

ES =
∫

E(z)z dA≈∑Eixi∆zizi (5.7)

EI =
∫

E(z)z2 dA≈∑Eixi∆ziz2
i (5.8)
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Fig. 5.1: Layered element according to Tesar [51]

These cross-section properties are determined in a similar way to in Section 4.2.2. Each layer i has

a certain stiffness Ei. This stiffness can be compared with the tangent modulus of the related non-

linear stress-strain curve. It depends on two factors: the temperature of the layer θi and the strain rate

εi. The higher the temperature and strain are, the lower is the stiffness as shown in Figure 5.2. As a

result, the material non-linearities have only one effect on a finite element formulation: they reduce the

stiffness of the element expressed through its stiffness matrix. If the resulting stiffness is known before

the simulation, it can be reduced simply by reducing the Young’s modulus when the model is set up.
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Fig. 5.2: Stiffness as a function of temperature and strain rate
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5.1.2 Analytical models for ambient temperature

Analytical models are hand calculation methods which are commonly used at ambient temperature. In

these models only the time just before failure of a structure is considered, the so-called ultimate limit state

(ULS). The times in between, from the beginning of the loading until failure, are not usually considered

contrary to advanced numerical simulations. A structure is split into a system of several members, the

internal forces are determined on this system and the load bearing resistance is calculated with cross-

section design methods on every member. In these analytical models material non-linearities are taken

into account in two ways; plastic resistance of the cross-sections and plastic global analysis to determine

the internal forces. For a cross-section design, where no material non-linearities are taken into account,

a cross-section reaches its load-bearing capacity when the yield strength of the material is reached any-

where in the section. The cross-section stiffness properties EA, ES and EI do not change in this method.

This method is traditionally called elastic-elastic in Germany. It means that both the internal forces and

the cross-section resistance are determined elastically.

Plastic cross-section design assumes that parts in the section which have reached the material strength

start to yield and stress remains constant while strains continue to rise. The forces are distributed to

parts of the section which can still bear forces. The ultimate limit state is reached when every part in the

section reaches the material strength. The stiffness of the cross-section reduces as soon as the first part

reaches yield strength. A so-called plastic hinge forms at this location of the structure. This means that

no further forces can be borne and the structure can deform without resistance like a hinge. The load-

bearing capacity of the whole structure is reached in this method when the first plastic hinge develops

at any location. This method is called elastic-plastic. It means that the internal forces are determined

elastically and the cross-section resistance plastically.

For a plastic global analysis which is called plastic-plastic, both the internal forces and the cross-

section resistance are determined plastically. When a cross-section forms a plastic hinge somewhere

in the structure, the loads are distributed to parts of the structure which still can bear more load. The

load-bearing capacity of the whole structure is reached when as many plastic hinges have formed as that

the structure becomes kinematic. This plastic global analysis is – in a slightly different way – generally

used in hand calculation models. Many connections are considered as perfect hinges although these can

always transfer a certain bending moment. This assumption is appropriate since at the ultimate limit state

plastic hinges occur at these connections and the load is transferred to less loaded parts of the structure.

In this method it is conservatively assumed that the plastic hinges at the connections have entirely no

stiffness.

During the design of reinforced concrete and composite structures the complex material behaviour

of concrete and plastic global analysis is taken into account as follows. Parts of the structure, where

the concrete is expected to crack, are considered with a lower stiffness than the uncracked parts. This

is mainly at intermediate supports where hogging moments occur. The hogging moments are reduced

and the load is transferred to parts of the structure which are able to bear more loads. In Eurocode 2

[26] and 4 [31] a simplified form of this procedure can be found. It is called limited redistribution and

allows reducing the hogging moments by an arbitrary chosen amount of up to 30 %. This means that the

stiffness of the structure is chosen relatively arbitrarily in order to distribute the forces in a way that the

required reinforcement is optimised at the ultimate limit state.

These explanations show that it is very common in classical design methods for ambient temperature

to consider only the ultimate limit state of a structure. The stiffness is estimated more or less arbitrarily,
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the internal forces are determined with linear elastic material laws and every cross-section is designed for

its forces. Unlike current fire case design it is unusual for ambient temperature that advanced calculation

methods with complex finite element models and non-linear material laws are used which consider every

load step from the beginning of the loading until failure. The design procedure presented in this work

therefore adopts the ambient temperature approaches for composite slab systems in case of fire. A

stiffness of the structure is determined that allows a linear elastic analysis and a simple cross-section

design at the ultimate limit state.

5.2 Modelling of the slabs

5.2.1 Geometry and elements

Different options are available for the modelling of slabs with finite elements. The internal forces of a

plate under large deformations can be seen in Figure 5.3. The simplest option is setting up a grid of

beams in longitudinal and transversal direction and coupling the deformations at the intersection points.

With this approach an orthotropic behaviour of a slab is easy to model since different cross-sections of

the beams can be chosen in both directions. Important aspects are neglected, however, including Poisson

effects which cannot be taken into account with beam grids as well as in-plane shear since the shear

forces nxy = nyx in Figure 5.3 cannot occur.
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Fig. 5.3: Internal forces in a plate under large deformations

Slabs with small deformations under ambient temperature are usually modelled with plate elements.

These can take into account all forces of the left hand side of Figure 5.3, the in-plane shear forces

nxy = nyx of the right hand side and Poisson effects. Plate elements follow two different theories: Kirch-

hoff theory for thin plates or Reissner-Mindlin theory for thick plates. The limit between a thick and a

thin plate lies about at 10 % of the shorter span of the slab [3]. The Reissner-Mindlin theory is based

on the Kirchhoff theory but in addition takes into account the shear deformation of the slab. Plate ele-

ments deliver reasonable results as long as the deformations remain smaller than about 20 % of the plate

thickness [3].

If larger deformations occur, shell elements need to be used. These include membrane forces nxx and

nyy in addition to the bending moments of Figure 5.3. Shell elements can also follow either the Kirchhoff

or the Reissner-Mindlin theory.

If a slab is modelled with any of these elements above at elevated temperatures, there is always the

problem that only the mechanical analysis can be performed with this model but not the thermal analysis.

Ordinary shell elements, furthermore, can only include a uniform material, temperature and stiffness. In
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order to get a temperature distribution over the slab depth in a thermal analysis, at least two or more ele-

ments are required over the depth. This means that, in a sense, for a coupled thermal mechanical analysis

a slab needs to be modelled three-dimensionally with volume elements. The computing time of a finite

element solution, however, increases quadratically with every additional dimension, and transferring the

node forces of the results into bending moments, shear and membrane forces is very time-consuming.

The simplified programs Vulcan and SlabFem therefore use a so-called layered shell element. A shell

element is divided into several layers as shown in Figure 5.1. Each layer can be given a certain tem-

perature and the element determines a resulting stiffness as explained in Section 5.1.1. These layered

shell elements allow a slab to be modelled two-dimensionally. The temperature distribution over the slab

depth, however, has to be determined in a separate thermal analysis and the temperature field has to be

transferred manually from the thermal to the mechanical model.

In the method of this thesis simple shell elements are used. In the software Sofistik, which is used in this

work, only elements which follow the Reissner-Mindlin theory are implemented. This is the more exact

theory but the Kirchhoff theory would also be sufficient since the depth of composite slabs is generally

very small. The temperature distribution is taken into account in two ways. The thermal expansion is

considered with a substitute thermal loading as derived in Chapter 4 and the reduced stiffness due to

elevated temperatures with a resulting stiffness as explained in the following sections.

The geometry of slabs to be modelled with the presented method does not need to be limited. Every

aspect ratio of slab panels can be modelled as well as non-rectangular slabs. This method is therefore

not limited in its application spectrum in terms of geometrical issues.

5.2.2 Influence of stiffness

In the previous sections it was highlighted that material non-linearities only influence the stiffness of

the slab, and that in classical design methods for ambient temperature the stiffness is chosen relatively

arbitrarily. The influence that the stiffness has on composite slab systems under elevated temperatures is

shown in Example 5-1. A single full concrete slab panel with a depth of 10 cm is considered as shown

in Figure 5.4. The slab is modelled with simple shell elements. It is supported by protected edge beams

which are modelled with beam elements and coupled eccentrically to the slab. The modelling of the

beams is discussed in Section 5.3. The unprotected secondary beams are not modelled in this example.

The slab is simply supported with supports on all four corners.
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Fig. 5.4: Plan view (left) and cross-section (right) of Example 5-1
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The slab is loaded with a substitute thermal loading for R90 of εθ ,subs = 3.169 ‰ and κθ ,subs =

87.41 km−1 according to Table 4.6. The temperature in the beams is assumed to reach 540° C as ex-

plained in Section 4.3. This is taken into account with a substitute thermal loading on the beams of

εθ ,subs = 7.405 ‰ and a reduced Young’s modulus of Eθ = 101640 N/mm2 according to Eurocode 3

[29] or 4 [32]. A mechanical distributed load of 5.34 kN/m2 is applied. This loading consists of the self-

weight of the slab, an additional dead load of 2.0 kN/m2, a live load of 2.0 kN/m2 and an additional load

for movable partitions of 0.80 kN/m2. These loads are combined with the combination of actions for ac-

cidental design situations according to DIN EN 1990, 6.4.3.3 [21] with a factor for the quasi-permanent

value of a variable action ψ2 = 0.3. This value is taken from the German national annex of DIN EN 1990

[22].

qEd, f i = gk +ψ2qk = 25 ·0.10+2.0+0.3(2.0+0.8) = 5.34 kN/m2 (5.9)

Linear elastic material laws are assumed. Geometrical non-linearities are taken into account to be able

to activate membrane forces. This example is modelled with the software Sofistik. The input file can be

found in Appendix B.3. Although a geometrically non-linear system has to be solved, the computing

time of this example remains below one minute. This very short computing time illustrates one of the

advantages of the presented method.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0

100

200

300

400

500

E/Ec,20 [-]

V
er

tic
al

 d
is

pl
ac

em
en

t s
la

b 
ce

nt
re

 [m
m

]

total
mech. load
temp. slab
temp. beams

Fig. 5.5: Influence of the stiffness of the slab on displacement at slab centre

A parameter study is performed with this system in order to investigate the influence of the stiffness of

the slab on the deformations and internal forces. The study starts with a Young’s modulus of a concrete

class C20/25 under 20° C of Ec,20 = 11884 N/mm2 as determined in Table 4.4. This value is set to

100 %. It is reduced in several steps up to 1 % of the initial stiffness. Lower stiffness leads to a instable

system. The vertical deformation w at the centre of the slab is shown in Figure 5.5. The total deformation

is shown as well as the deformation caused by separate parts of the loading. The sum of the separate

parts does not deliver the total deformation. These cannot be superposed since every load case has been

solved as geometrically non-linear. It can be seen that the total deformation is relatively constant in

a range between 5 % and 100 % of the initial stiffness. It is noticeable that the total deformations are
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smaller at lower than at higher stiffness. At a very low stiffness the deformations increase exponentially.

With a high stiffness the deformation is mainly caused by the thermal elongation of the slab and beams

whereas with a low stiffness the mechanical load governs the deformation. There the thermal elongation

of the slab and beams even reduce the total displacement. This can be seen on the deformation only

caused by the mechanical load which is higher than the total deformation.

The resulting bending moments mxx and myy and membrane forces nxx and nyy in longitudinal and

transversal direction at the slab centre are shown in Figure 5.6 and 5.7. It can be seen that all forces

decrease considerably if the stiffness becomes lower. This is mainly due to the fact that a softer slab

provides lower restraint to the thermal elongation and therefore, the restraint forces are lower with lower

stiffness.
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Fig. 5.6: Influence of the stiffness of the slab on membrane forces at centre of slab
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Fig. 5.7: Influence of the stiffness of the slab on bending moments at centre of slab
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It is noticeable that the bending moments have negative values which means that they are hogging

moments and induce tension at the top surface of the slab. This can be explained with the following

example which was published by the author in [43]. A beam as shown in Figure 5.8 is considered. It

is heated non-uniformly with a higher temperature at the bottom than at the top surface. In a first step

the beam is simply supported. Due to the thermal curvature the beam bows and the ends move together.

In a statically determinate system this deformation causes no internal forces. If in a second step the

horizontal deformations are restrained, like in the case of two-dimensional slab systems, the temperature

change causes restraint forces. These forces are tensile normal forces and hogging moments. This can be

illustrated by considering that the support of the beam in Figure 5.8 above is shifted to its initial position

after the beam is heated.
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Fig. 5.8: Internal forces in restraint beam with non-uniform heating

The assumption, which is used in most simple calculation models, that the slab acts like an ideal mem-

brane without bending stiffness and therefore the membrane forces are lower, the larger the deformations

become, is only valid for a very small stiffness. At a stiffness range of about 5 % to 100 % the membrane

forces are lower at a small stiffness although the deformations are higher at a large stiffness. Neverthe-

less the internal forces and, hence, the required reinforcement amount are always lower, the lower the

stiffness of the slab is. The problem here is the limit of the lowest stiffness that is possible at the ultimate

limit state. This problem is solved in the following sections.

5.2.3 Tension stiffening

Under ambient temperature the stiffness decrease of a reinforced concrete member under tension is

caused by cracking of the concrete, however, the concrete cannot crack completely. Some parts of

the concrete remain uncracked and increase the stiffness of the slab. This issue is usually called tension

stiffening. A detailed description can be found in [55] for example. Here a brief summary is given. A

reinforced concrete bar will be considered as shown in Figure 5.9. The bar is tensioned due to restraint

forces, which occur for example in a horizontally restrained slab with temperature change. As long as

the bar is uncracked, the strain of the concrete and the reinforcing bar (rebar) are similar everywhere.

Once the tensile strength fct and the relating cracking strain εcr is reached at any location, the first crack

occurs. The whole load has to be taken by the rebar which leads to a strain peak in the rebar in the crack.

The strain of the concrete is zero in the crack. Further tensile forces are transferred from the rebar in

the crack to the uncracked concrete by the bond between them. As soon as the bond reaches the tensile

strength of the concrete, the next crack occurs. The bond needs a certain length to fully develop. This
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length lt is called transfer length. In addition to the tensile strength of the concrete, the transfer length

governs the crack spacing. It depends on the one hand on the quality of the bond. Ribbed rebar provide

a better bond than plain rebar. On the other hand it depends on the available surface of the rebar. A

larger amount of reinforcement with smaller diameters provide a larger surface than a smaller amount

with larger diameters. The cracking of the bar is finished when in no further uncracked part the bond can

reach the tensile strength of the concrete.
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Fig. 5.9: Crack development on the basis of [55]

The cracking behaviour decisively depends on the available reinforcement in the slab. Beside the

bond strength as described above, it is mainly influenced by the reinforcement ratio. This can be seen in

Figure 5.10. A reinforced concrete bar is again tensioned due to restraint forces. The elongation causes

an induced normal force Nind . The diagrams show this force as a function of the total elongation u.

The dashed lines show how a pure reinforcement bar would behave if no concrete was available. At the

upper part of Figure 5.10 the bar has a high reinforcement ratio. The first crack occurs when the tensile

strength of the concrete fct is reached. The bar is further tensioned and all cracks develop as described

above. The end of the cracking is marked in the diagram in Figure 5.10 above by the end of the serrated
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Fig. 5.10: Simplified cracking behaviour of a reinforced concrete bar with high (above) and low (below)
reinforcement ratio on the basis of [55]
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line. Now every part of the bar is tensioned further including the rebar in the cracks and the uncracked

parts. The stress-strain curve runs parallel to the line of the pure rebar until the yield strength fy of the

reinforcement is reached. The total deformation of the whole bar is smaller, it behaves stiffer. This is the

origin of the expression tension stiffening. After reaching the yield strength, the reinforcement starts to

yield in the cracks until it ruptures at its ultimate strength fu. This rupture occurs at a much lower total

deformation than at a pure rebar since the strains concentrate in the cracks and the ultimate strain in the

cracks is reached sooner.

The lower part of Figure 5.10 shows a slightly reinforced concrete bar. There the first crack also

occurs when the tensile strength of the concrete is reached. Again, in the crack the whole force has to be

taken by the reinforcement, however, the bearable force of the reinforcement Ns = As fy is smaller than

the force that is required to induce the first crack Ncr = Ac fct . Therefore, the induced force Nind drops

to Ns. The reinforcement in the crack is not able to transfer enough force into the concrete in order to

induce a second crack since Ns is smaller than Ncr. If the bar is tensioned further, the reinforcement in

the crack yields and finally ruptures at its ultimate strength fu. If the force, that is required to induce

the first crack Ncr, is even higher than the ultimate strength of the rebar As fu, the reinforcement may

rupture as soon as the first crack occurs. This can happen not only if the deformation is induced by an

external load but also by deformations due to restraint. This kind of brittle failure is usually supposed

to be avoided since it happens suddenly and unheralded. All design methods for calculating minimum

reinforcement amounts to avoid brittle failure in the Eurocode and other design codes are therefore based

on the described assumptions. The same is true for design methods for crack control reinforcement. All

these methods require to cover at least the tensile strength of the concrete with reinforcement in order to

enable that several cracks can arise and prevent the first crack from gaping.

5.2.4 Stiffness at the ultimate limit state

For concrete and composite slabs in case of fire with partly unprotected secondary beams it can be as-

sumed that the stiffness of the slab is governed by the tensile stiffness. The bending stiffness is very

small since the depth of the slabs is very small compared to the spans, and the concrete cracks. Further-

more, the large deformations generate a membrane system whose tensile stiffness is much higher than

the bending stiffness. In addition, almost the whole slab is under tension due to tensile membrane action

at the slab centre and restrained thermal elongation of the edge beams and unprotected secondary beams.
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Fig. 5.11: Membrane forces of a single slab panel
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This can be seen in Figure 5.11. It shows a slab of Example 5-1 with a resulting stiffness of 10 % of the

stiffness at ambient temperature. Apart from some comressive zones across the corners the whole slab is

in tension.
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Fig. 5.12: Reduction of stiffness due to softening of concrete

In case of fire the stiffness reduction of a slab is caused by two effects: softening of the concrete due

to heating and cracking of the concrete. The softening is quantified for three times of the standard fire

R30 to R90 as shown in Figure 5.12. The values of the solid lines are calculated by the resulting tensile

stiffness EA of heated full concrete slabs with Equation (4.18) as described in Section 4.2.2 divided

by the stiffness at 20° C. These values show the reduction rate of the uncracked stiffness of a heated

cross-section compared to its stiffness under ambient temperature. It can be seen that the higher the

temperatures in the cross-section are, the more the stiffness is reduced. Thinner and longer heated slabs

become hotter than thicker and shorter heated slabs. The values of the dashed lines are the reduction

factors of the Young’s modulus kE,θ , derived in Section 4.2.1 Table 4.5, for a concrete temperature at the

centre of the cross-section. These temperatures are taken from DIN EN 1994-1-2, Table D.5 [32] where

temperature distributions of a 100 mm thick slab are given for several times of the standard fire curve. It

can be seen that the curves show good comparison.

Table 5.1: Reduction factor kE,θ ,mean for cross-section softening

R30 R60 R90
h or he f f kE,θ ,mean

[cm] [-]
10 0.548 0.368 0.252
12 0.606 0.480 0.341
14 0.648 0.513 0.372
16 0.719 0.548 0.404
18 0.766 0.586 0.449
20 0.813 0.625 0.509

The effect of concrete softening on the stiffness reduction can be taken into account simply by a



64 5 Mechanical analysis

reduction factor kE,θ ,mean. No explicit thermal analysis is required to determine this factor since the

temperatures of the table in the Eurocode can be used. For composite slabs the slab depth h has to be

replaced by the effective depth he f f calculated according to DIN EN 1994-1-2, Annex D [32]. Some

values of kE,θ ,mean are prepared in Table 5.1. Intermediate values can be interpolated.

Tension stiffening effects are taken into account in the presented method with the following assump-

tions:

• The whole slab is under tension as described above.

• Only the top reinforcement is considered for the determination of the resulting stiffness. The bot-

tom reinforcement in full concrete slabs becomes very soft since it reaches a very high temperature.

The contribution on the stiffness can therefore be neglected.

• The steel sheeting of composite slabs also becomes very soft due to high temperatures and it

possibly debonds from the concrete. Its contribution on the stiffness can also be neglected.

• The concrete around the top reinforcement remains very cool. Therefore, tension stiffening can be

taken into account with assumptions for ambient temperature.

• The amount of available reinforcement is enough that it does not yield due to the determined

internal forces.

• The amount of available reinforcement is enough that the cracking force caused by the tensile

strength of the concrete can be transferred and a distributed crack pattern can develop as described

in Section 5.2.3.

• For determining the resulting stiffness with tension stiffening it is assumed that the reinforcement

just reaches the yield strength.

With these assumptions available tension stiffening approaches for ambient temperature can be used.

The following approaches are based on the book of Zilch and Zehetmaier [55], Section 10.3.3 and the

DIN-Fachbericht 102 [34], Annex 2 which is a collection of codes and regulations for the design of

concrete bridges in Germany on the base of the Eurocodes. In Figure 5.13 the stress-strain curves and

the meaning of the used symbols are shown. The dash-dot line shows the stress-strain curve of a pure

reinforcement bar. The thin solid line is a plot of the stresses of a reinforcement bar embedded in concrete

as a function of its strain. The thick solid line shows the resulting stiffness of the reinforced concrete bar

relating to the reinforcement area.
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Fig. 5.13: Tension stiffening on the base of [55]

The symbols in Figure 5.13 and in the following equations mean:

εsr1 Steel strain in uncracked bar under cracking normal force when fct,e f f is reached.
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εsr2 Steel strain in crack under cracking normal force.

εsmy Mean value of steel strain under yielding normal force when fy is reached.

εsy Steel strain in cracks under yielding normal force.

εsmu Mean value of steel strain under ultimate normal force when fu is reached.

εsu Steel strain in cracks under ultimate normal force.

σsr Stress in reinforcement bar in the first crack under cracking normal force.

fy Yield strength of reinforcement bar.

fu Ultimate strength of reinforcement bar.

fct,e f f Effective tensile strength of the concrete.

= fctm according to DIN EN 1992-1-1, Table 3.1 [26] but fct,e f f ≥ 3.0 N/mm2

βt = 0.25. Coefficient taking into account the duration of loading.

Es Young’s modulus of the reinforcement steel.

Esmy Mean value of Young’s modulus of steel under yielding normal force.

Ec,e f f Effective Young’s modulus of concrete.

= Ecm according to DIN EN 1992-1-1, Table 3.1 [26] but Ec,e f f ≥ 33000 N/mm2

E II
cm Mean value of Young’s modulus of cracked concrete.

ρc Reinforcement ratio relating to the whole concrete area Ac

ρc,e f f Reinforcement ratio relating to the effective tension area Act,e f f .

h Total slab depth

he f f Effective slab depth, for full concrete slabs he f f = h,

for composite slabs see DIN EN 1994-1-2, Annex D [32].

hct,e f f Height of the effective tension area.

= 2.5 d1 ≥ he f f /2 ≤ he f f

The tensile strength of concrete varies statistically in a broad range. Therefore, usually a mean value

fctm is used, for example in Eurocode 2 for determining a minimum reinforcement area for brittle failure.

In the German national annex of DIN EN 1992-1-1 [28] it is specified that the effective tensile strength

fct,e f f should be at least 3.0 N/mm2. This value corresponds roughly to a concrete class C30/37 and

takes into account that particularly lower concrete classes often have a higher strength in reality than

required. This argumentation is adopted in this work. The same is true for the effective Young’s modulus

of concrete Ec,e f f . For this a minimum value should also be used. In this work the value of a concrete

class C30/37 is proposed. The coefficient βt , which takes into account the duration of the loading, is set

to 0.25 in this work since no values for the case of fire are available. The values explained above can be

determined as follows:

εsr1 =
fct,e f f

Ec,e f f
(5.10)

σsr = fct,e f f

(
1

ρc,e f f
+

Es

Ec,e f f
−1
)

(5.11)

εsr2 =
σsr

Es
(5.12)

εsmy = εsy−βt (εsr2− εsr1) (5.13)

εsy =
fy

Es
(5.14)
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Esmy =
fy

εsmy
(5.15)

(EA)sm = EsmyAs (5.16)

E II
cm =

(EA)sm

Ac
(5.17)

With Equations (5.10) to (5.17) the resulting Young’s modulus of slabs in case of fire E II
cm,θ can be

determined. In Equation (5.18) the reduction factor for cross-section softening kE,θ ,mean of Table 5.1 is

included.

E II
cm,θ = kE,θ ,mean E II

cm = kE,θ ,mean
fy ρc

fy
Es
−βt

[
fct,e f f

Es

(
1

ρc,e f f
+ Es

Ec,e f f
−1
)
− fct,e f f

Ec,e f f

] (5.18)

Where:

ρc =
As

Ac
=

As

b ·he f f
(5.19)

ρc,e f f =
As

Act,e f f
=

As

b ·hct,e f f
(5.20)

The effective tension area Act,e f f is assumed on the base of Eurocode 2 [26] as shown in Figure 5.14.

The origin is explained in detail in [55]. Generally the height of the tension area is 2.5 times the distance

of the reinforcement from the tensioned surface d1. This value has been adopted in the Eurocode since

the experts agree about it. For membrane action it needs to be enhanced. For example if the upper

reinforcement is placed very close to the top surface of the slab, the effective tension area would be very

small. The larger the effective tension area is, however, the higher are the resulting stiffness of the slab

and the resulting internal forces. The worst case is therefore a tension area as large as possible. This area

should at least cover half of the slab depth at full concrete slabs or half of the effective depth at composite

slabs hct,e f f ≥ he f f /2, but it cannot be larger than the slab depth or effective depth hct,e f f ≤ he f f .
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Fig. 5.14: Effective tension area on the base of [26]

The assumptions above for determining the resulting Young’s modulus are only valid if the amount

of available reinforcement is great enough, that the cracking force caused by the tensile strength of the

concrete can be transferred and a distributed crack pattern can develop as described in Section 5.2.3.

In order to ensure this, a minimum reinforcement area As,min is required. An equation for As,min can be

determined as follows using Equation (5.11) and the fact that the available reinforcement has to be able

to bear at least the cracking force. The steel stress in the crack is limited to the yield strength fy.

σsr ≤ fy (5.21)

fct,e f f

(
1

ρc,e f f
+

Es

Ec,e f f
−1
)
≤ fy (5.22)
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ρc,e f f ≥
1

fy
fct,e f f
− Es

Ec,e f f
+1

(5.23)

ρc,e f f =
As

Act,e f f
(5.24)

As,min =
Act,e f f

fy
fct,e f f
− Es

Ec,e f f
+1

(5.25)

The orthotropy of composite slabs can be neglected during the determination of the resulting stiff-

ness. The different cross-sections in longitudinal and transversal direction mainly influence the bending

stiffness. The bending stiffness only plays a minor role at membrane action as described above. The

resulting stiffness is governed by the tensile stiffness which is determined on the effective tension area

around the upper reinforcement. The largest part of this area is above the troughs of the steel sheeting

and is therefore hardly influenced by the troughs. For these reasons a similar stiffness in both directions

can be assumed for composite slabs. A different stiffness only has to be taken into account if a differ-

ent amount of reinforcement is used in longitudinal and transversal directions. This is true for both full

concrete and composite slabs.

With Equation (5.18) a very simple method is provided to calculate the minimum possible stiffness at

the ultimate limit state. A minimum reinforcement area has to be used which can be determined with

Equation (5.25). During the design of concrete and composite slab systems in practice, a calculation

should firstly be performed with a stiffness of the slab determined by the minimum reinforcement area.

If the required amount of reinforcement for the internal forces is larger than the minimum reinforcement,

a second calculation with higher stiffness needs to be performed.

5.3 Modelling of the beams

Different options are possible to model the composite beams. The simplest option is to replace the steel

beams by rigid supports. This is assumed in most simple calculation models. However, important aspects

are neglected with this assumption as discussed later on. At ambient temperature whole composite beams

are often modelled with one beam element which includes the whole cross-section with the steel beam

and concrete flange. The biggest advantage of this option is that the resulting internal forces in the

composite beam can be determined directly. These are not split into parts like if the steel beam and

concrete flange are modelled separately. With these resulting forces the cross-section can be designed

with simple calculation methods. In the case of fire however the temperature distribution is difficult

to take into account. For every combination of steel section, slab system and slab depth a separate

substitute thermal loading would be necessary. Furthermore, large deformations and membrane forces

perpendicular to the beam span cannot be taken into account. It is therefore useful to model the steel

section and the slab separately. The design of the composite beam is more difficult in this case but the

modelling is much easier and the behaviour of the whole beam slab system is considered more exactly.

This approach is used in Vulcan and SlabFem and also in this work.

The steel beams can be modelled with two types of finite elements: shell elements or beam elements.

With shell elements different temperatures in the single flanges and the web can be taken into account.

These differences can be neglected as described in Section 4.3. In order to model an I-beam with shell

elements, at least five elements are necessary over the cross-section. This can be seen in Figure 5.15 a).
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The effort is therefore relatively high with these elements. Since a uniform temperature distribution in

the steel section is exact enough, beam elements are the most useful option.

A further issue is the connection of the beam elements and the slab. In Figure 5.15 three possibilities

are shown. The most exact option is b) which is the same as a). Two additional nodes are input at the

intersection of the beam and the slab. Each of the two nodes are rigidly coupled with the slab above

or the below beam. At the two additional nodes only the displacements are coupled, no rotations. The

coupling of the two additional nodes in the direction of the beam axis can be replaced by springs in

order to take into account the stiffness of shear studs or slip in the shear connection. In this work the

shear studs and connection are assumed to be rigid since it delivers reasonable results compared to test

data and no research results are available on this topic for the fire case. Four lines of nodes have to

be modelled at every beam with this option. In Figure 5.15 c) the beam elements are rigidly coupled

directly with the slab. With this option only two lines of nodes have to be modelled. The option with the

smallest modelling effort is shown in Figure 5.15 d). There the same nodes are used for the slab and the

beam. This option is only possible if the finite element software includes beam elements which can be

connected eccentrically to the nodes.

Couplings
Shell
elements

Beam
element

Same node
for beam
and slab

Shell
element

Eccentrically
connected
beam element

Shell
elementCoupling

Beam
element

a) b)

c) d)

1.875

1
2

IPE 240
S235

Couplings

Node

Shell
elements

Fig. 5.15: Example 5-2: Options for beam modelling

For concrete and composite slab systems in case of fire all three options can be used which can be

proved as follows. A composite beam is considered in Example 5-2 with the same system and cross-

section as Example 4-3. The beam is simply supported with a length of 7.5 m and exposed to the standard

fire for thirty minutes from below. The system can be seen in Figure 4.20 and the cross-section in

Figure 5.15. The slab is loaded with a substitute thermal loading of εθ ,subs = 0.791 ‰ and κθ ,subs =

32.65km−1 from Table 4.6. The steel section is assumed to reach 808° C uniformly like in Example 4-

3c. The temperature is taken into account with a substitute thermal loading of εθ ,subs = 11.0 ‰ and a

reduced Young’s modulus of Eθ = 18520MPa, both according to DIN EN 1994-1-2 [32]. The resulting

deflection w at midspan and the elongation u of Example 4-3c which corresponds to Example 5-2a and the

three examples with beam elements 5-2b to d are compared in Table 5.2. The differences are negligible.
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This confirms that all of the modelling options can be used. Although d) is the simplest option, c) is used

further in this work since plastic hinges in the steel beams can be included. With Sofistik option c) leads

to numerically more stable systems. The input file of Example 5-2c can be found in Annex B.4.

Table 5.2: Comparison of results of Example 5-2

Example w u
[mm] [mm]

5-2a 247.9 6.26
5-2b 248.7 6.30
5-2c 249.1 6.37
5-2d 249.1 6.38

The material of the steal beams can be considered to be linear-elastic. Material non-linearities are

taken into account with a reduced Young’s modulus and plastic hinges. The Young’s modulus is reduced

due to the steel temperature according to DIN EN 1993-1-2 [29] or DIN EN 1994-1-2 [32]. Bending

hinges should be modelled at the ends of every steel beam as shown in Figure 5.16. This assumption

is possible if only the ultimate limit state is considered. Due to the large rotations of the beam, a large

bending moment occurs at the supports, the cross-section yields and a bending hinge arises. As described

in Section 5.1.2 the forces in the plastic hinges can be conservatively neglected and perfect hinges can

be assumed. The resulting static system is a simply supported beam. The load bearing capacity of this

beam is reached when the loads reach the plastic bending resistance of the hot composite cross-section

at midspan. Catenary action due to large deformations is conservatively neglected.

Plastic hinges Plastic hinges

Fig. 5.16: Plastic hinges in steel beams and resulting static system of the edge beams

It is very important to model the steel beams since these highly influence the forces in the slabs above.

This shall be discussed in the following example. The edge beams of the slab of Example 5-1 are replaced

by rigid supports as assumed in the current available simple calculation models. The distribution of the

membrane forces is shown in Figure 5.17. A classical compression ring and tensile forces in the slab

centre can be found. If the edge beams are included in the model however, the force distribution changes

dramatically as shown in Figure 5.11. No clear compression ring occurs in this model. In fact the

tensile forces are in equilibrium with compressive forces in the edge beams. Depending on the thermal

elongation and stiffness of the edge beams, there are either tensile forces in the concrete slab around

the perimeter or maybe very small compressive forces. In Example 5-1 the edge beams in longitudinal

direction are stiffer than in transversal direction since these have a larger cross-section area. Larger
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restraint forces will therefore occur in the longitudinal beams. These restraint forces are compressive

forces in the beams which induce tension in the slab. The restraint forces in the transversal edge beams

are not large enough to relieve the compression ring in the slab entirely and so small compressive forces

still occur in the concrete. In addition, a part of the forces in the slab around the edges is the compressive

component of the composite edge beams. These forces are overlaid with the compression ring and the

restraint forces. The assumption that a pure compression ring forms in the concrete is only valid if the

edge beams are neglected and replaced by rigid supports.
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Fig. 5.17: Membrane forces of a single slab panel with rigid supports

In order to quantify the impact of the steel beams, the slab of Example 5-1 is modelled with different

beam arrangements. At the centre of the slab, as shown in Figure 5.4, the vertical deformation w, the

bending moments mx in longitudinal direction and my in transversal direction as well as the membrane

forces nx and ny in both directions are calculated. One slab is modelled with rigid supports, the other

three include edge beams (EB). The temperature of the edge beams in the second slab is assumed with

20° C. These beams are relatively stiff and no thermal elongation occurs. In the third slab the edge beams

reach 540° C. In the fourth slab two unprotected secondary beams (UB) IPE 200 in transversal direction

are also modelled with a temperature of 1000° C. The results are compared in Table 5.3.

Table 5.3: Comparison of results of a single slab panel with different support conditions

w mx my nx ny

[mm] [kNm/m] [kNm/m] [kN/m] [kN/m]
rigid supports 280 -6.39 -0.90 205 37.6
EB 20° C 284 -6.38 -0.21 124 46.7
EB 540° C 263 -6.99 -4.45 217 83.7
EB + UB 263 -7.34 -4.07 217 102

It can be seen that the deformations do not differ very much. With heated beams these are slightly

smaller since the thermal elongation in the beams stretches the slab. This can be compared with a

stretched canvas which sags less the higher the frame is prestressed. The bending moments are larger if

heated beams are taken into account, particularly in transversal direction my. This also can be explained

by thermal elongation. As described in Section 5.2.2 the hogging moments develop due to horizontal

restraint. If heated beams stretch the slab, the horizontal restraint of the slab becomes stiffer. The largest

differences can be seen in the membrane forces which are much higher in the systems with heated steel
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beams. This can again be explained by the thermal elongation of the beams. It is remarkable that the

membrane forces in the longitudinal direction nx of the system with 20° C edge beams are much smaller

than in the system with rigid supports. The reason is that more load is transferred in transversal direction

with edge beams, as seen on ny, since these not only provide vertical support but also some horizontal

restraint. It becomes clear that the force distribution in a slab depends heavily on the vertical deformation

of the beams. It could also be seen that the horizontal restraint plays a major role, therefore, considering

only single slab panels and neglecting the interaction with adjacent panels, as it is assumed in simple

calculation models, clearly leads to wrong force distributions and failure modes. The part with the

highest forces is not necessarily the centre of the slab in longitudinal direction. The location depends on

the whole system.

This can be further proved by following example. The slab of Example 5-1 is expanded by a second

panel connected at the longitudinal edge. All edge beams are assumed to reach 540° C. The distribution

of the membrane forces is shown in Figure 5.18. Again no clear compression ring can be found. The

compressive forces above the intermediate beam are mainly the compressive part of the composite beam.

In Figure 5.18 a section across the short spans at the slab centre shows the membrane forces in x-direction

nx. The highest forces do not occur at the slab centre but in the first third of the short span.
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Fig. 5.18: Membrane forces of two adjacent slab panels

The influence of the edge beam stiffness on the slab becomes even clearer with the following example.

On the one hand, the edge beams (EB) of the system above are modelled with 540° C and on the other

hand with 20° C. The results are assembled in Table 5.4. The deformation at the slab centre is similar

with hot or cold edge beams. These are both much smaller than if only a single slab panel is considered.

The deformation of the intermediate beam differs dramatically: 177 mm with a heated beam compared

to 0 mm with rigid supports. The membrane forces at the slab centre are higher if the beams are hotter

and softer. On the other hand, the forces above the intermediate beam are higher if the beams are colder

and stiffer. The membrane force perpendicular to the intermediate beam ny and the bending moment my

are particularly higher with stiffer beams.
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Table 5.4: Comparison of results of two adjacent slab panels with different support conditions

Slab centre Intermediate beam
w nx ny w ny my

[mm] [kN/m] [kN/m] [mm] [kN/m] [kNm/m]
EB 20° C 240 23.6 26.1 40 107 -30.1
EB 540° C 244 151 70.8 177 86.4 -17.6

To summarise, the edge beams must be included in a numerical model and cannot be neglected or

replaced by rigid supports. Beam elements with uniform temperature distribution, thermal elongation

and linear elastic material can be used. Bending hinges should be modelled at the ends of every beam.

Two limiting cases should be considered: cold edge beams in order to get the highest forces at the

intermediate beams and hot beams for the highest forces at the slab centre.
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Previous chapters explain how concrete and composite slab systems in case of fire can be modelled very

simply, taking into account membrane effects. The internal forces in the slabs are determined directly

from the finite element model. In this chapter the determination of internal forces in the beams and

member design will be explained. Generally, the available cross-section design methods given in the

Eurocodes can be used. Full concrete slabs are designed according to DIN EN 1992-1-2 [27] and com-

posite slabs and beams according to DIN EN 1994-1-2 [32]. The relevant sections of the Eurocodes will

be explained and the parts of the structure which require special attention will be described. Additionally,

some simplifications are made which follow the specifications of the Eurocodes but simplify the design

procedure considerably.

6.1 Design of the slabs

Generally, each cross-section in the slab has to be designed for its corresponding internal forces. Finite

element programs that are used for designing concrete slabs in practice such as Sofistik often include

design routines which deliver required reinforcement amounts at each location. These routines mostly

work only for ambient temperature design however. The design methods in this chapter are therefore

chosen and modified such that ambient temperature design methods can be applied. If the required

reinforcement is designed manually, it is sufficient to consider some locations with the highest stresses.

These locations are usually the centre of the slab in both directions, above the intermediate beams and

above the columns in both directions. They depend on many factors however, such as the geometry of

the structure or non-uniform loading, so a general rule cannot be followed for all cross-section designs.

6.1.1 Design of full concrete slabs

In Annex B of DIN EN 1992-1-2 [27], two different simplified methods are given for designing rein-

forced concrete beams and slabs in case of fire. One of the methods, the 500° C isotherm method, must

not be applied in Germany according to the national annex [28] and is therefore not used in this work.

Annex B.2 provides the so called zone method which can be traced back to Kristian Hertz [38]. This

method can only be applied for the standard fire curve. A cross-section is divided into several zones as

shown in Figure 6.1. For each zone the mean temperature θi and the corresponding reduction coefficient

for the concrete strength kc(θi) are determined. A mean reduction coefficient kc,m and the depth of a

damaged zone az can be calculated as follows:

kc,m =
1−0.2/n

n

n

∑
i=1

kc(θi) (6.1)

az = w
[

1− kc,m

kc(θM)

]
(6.2)
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Where:

n is the number of parallel zones in w;

w is in case of a slab the depth h;

kc(θM) is the reduction coefficient at point M which is at the top surface in case of a slab.

A cross-section with a reduced depth h−az and a reduced compressive strength kc(θM) · fc,20 is assumed

and used for design. The strength of the reinforcement has to be reduced according to its temperature. All

design methods that are available for ambient temperature can be applied to this reduced cross-section.
a

z

h
 =

 w

z

k ( )c Mq

k ( )c q

k ( )c 1q k ( )c 2q

M

Fig. 6.1: Zone method

It is not clearly explained in the Eurocode [27] which concrete strength for the compression zone has

to be used if the compression zone is at the heated surface. In [38] and [39] a more detailed description

of the method and examples can be found where it is explained that the concrete strength at point M at

the top surface of the slab as shown in Figure 6.1 must always be used. This becomes clear if az is not

considered as a damaged zone where the concrete cannot bear any stresses. As shown in Figure 6.1, the

cross-section with a non-linear strength distribution (bold line) is replaced by an equivalent cross-section

with the uniform strength at point M (dash-dot line). az is determined such that the bearable stresses,

that are missing for a uniform strength in the reduced cross-section, are the same amount as the bearable

stresses within the area in az. The shaded areas in Figure 6.1 are equal in size. These assumptions are

conservative for cross-sections with hogging moments. The resulting bearable force has a larger lever

arm in the area az than in the equivalent cross-section. The bending resistance of the real cross-section

is therefore higher than the resistance of the equivalent cross-section.

In Figure B.5 of DIN EN 1992-1-2 [27] there are diagrams given for az and kc(θM) for different values

of w and times of the standard fire curve. These diagrams do however not agree with the equations given

in the Eurocode. It is specified in the Eurocode that the cross-section shall be divided into at least three

layers (n ≥ 3). Equation (6.2), that corresponds to Equation B.12 in DIN-EN-1992-1-2 [27] however,

delivers different results for az if a different number of layers n in Equation (6.1) is used. As shown in

Figure 6.2, the values for az are higher than the values of Figure B.5 if five layers are used (n = 5) and

are even more higher with three layers, which is not shown in Figure 6.2. With nine layers (n = 9) the

values calculated with the equations are lower than the values of Figure B.5. Even if very many layers
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Fig. 6.2: Comparison of damaged zone az according to DIN EN 1992-1-2, Annex B, Figure B.5 and
Equation B.12 [27]

are used (n = 50), the values of Figure B.5 cannot be reproduced. The reason is presumably that different

temperature profiles were used for creating Figure B.5 than in this work. The profiles used in this work,

however, are in agreement with Figure A.2 of DIN-EN-1992-1-2 [27] and are therefore assumed to be

correct according to the latest regulations. Possibly the profiles used for Figure B.5 were calculated

according to an older version of the Eurocode. Since the values vary in a certain range, simplified the

even values shown in Table 6.1 are suggested to be used.

Table 6.1: Damaged zone az and minimum distance of the top reinforcement from bottom surface zb

az zb

[mm] [mm]
R30 10 16
R60 20 31
R90 30 43

A further simplification is given in this table. If the reinforcement in the slab is placed at a distance of

at least zb from the bottom surface of the slab, it remains lower than 400° C and its full strength can be

assumed. This is mostly the case for the top reinforcement. If a bottom reinforcement is required, which

is mostly not the case, the steel temperature can be found for instance with Figure A.2 of DIN-EN-1992-

1-2 [27] or Table D.5 of DIN EN 1994-1-2 [32] and the steel strength has to be reduced by the coefficients

given in Table 3.2 of DIN-EN-1992-1-2 [27]. The bottom reinforcement is assumed to be at its original

location, even if this is outside of the reduced cross-section. The concrete strength for the cross-section

design is in most cases the full strength at 20° C fc,20. Only in the cases given in Table 6.2, the top surface

of the slab reaches temperatures, which are high enough, that the concrete strength has to be reduced by

the factor kc(θM). These values are in good agreement with Figure B.5 of DIN-EN-1992-1-2 [27].

To summarise, the design of full concrete slabs only requires a check that the distance of the reinforce-

ment from the bottom surface is sufficient according to Table 6.1 and if the concrete strength has to be
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Table 6.2: Reduction coefficient kc(θM) for concrete at point M

h kc(θM)

[cm] [-]
R60 10 0.994
R90 10 0.956
R90 12 0.990

reduced according to Table 6.2. The cross-section depth is reduced by the values of Table 6.1 and all

cross-section design methods for ambient temperature can be used with the remaining cross-section.

6.1.2 Design of composite slabs

Methods for calculating the load bearing capacity of composite slabs in case of fire can be found in Annex

D of DIN EN 1994-1-2 [32]. These methods are again only valid for the standard fire curve and only

for fire resistance classes above R60. They can be traced back to Cornelis Both [10]. Only methods for

sagging and hogging moments are given but none for combined loading with axial and shear forces. The

method for the hogging moment resistance however is very similar to the zone method described in the

previous section and can therefore be adopted for combined loading, particularly against the background

that mainly tensile membrane forces and hogging moments occur in the slabs considered in this work.

Like for the zone method for full concrete slabs, the cross-section is reduced, as shown in Figure 6.3

with the dashed lines, and design methods for ambient temperatures are used for the remaining parts.

The contribution of the steel decking to the load bearing capacity is neglected.
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Fig. 6.3: Reduced cross-section according to DIN EN 1994-1-2, Annex D [32] and equivalent rectangular
cross-section

The areas that are neglected are specified by the points I to IV. Equations are given in DIN EN 1994-

1-2, Annex D [32] for determining the coordinates x and y of these points. It should be remarked that for

a re-entrant trough profile steel sheeting the angle α generally must be assumed as shown in Figure 6.3.

The angle calculated with Equation (D.10) in the Eurocode leads to the wrong coordinates of the points I

to IV for this kind of steel sheeting. The problem with the method in the Eurocode is that the remaining

cross-section is not rectangular and therefore cannot be used in design routines that are implemented in

ordinary finite element programs such as Sofistik. The non-rectangular cross-section is therefore replaced
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by an equivalent rectangular cross-section as shown in Figure 6.3 with the dash-dot line. The distance a1

is chosen such that the areas of the equivalent and the original cross-section are equal. This assumption is

conservative since the section modulus is lower at the equivalent cross-section. The distances as shown

in Figure 6.3 a2 to a7 can be determined as follows:

a2 = xII−
a1

a3
(xII− xIII) (6.3)

a3 = yIII− yI (6.4)

a4 = xII−
yIV − yII

a3
(xII− xIII) (6.5)

a5 = xIV −a2 (6.6)

a6 = xIV −a4 (6.7)

a7 = yIV − yII−a1 (6.8)

It will be assumed that the shaded areas in Figure 6.3 are equal in size:

xII +a2

2
a1 =

a5 +a6

2
a7 (6.9)

Equation (6.9) leads to a long quadratic equation or can be solved numerically in order to determine a1.

The total distance from the bottom of the composite slab to the bottom of the equivalent cross-section

will be called equivalent damaged zone and denoted by az,eq like the damaged zone in the zone method

for full concrete slabs.

az,eq = yI +a1 (6.10)

In contrast to the zone method, the negligible parts are not determined by homogenising the bearable

stresses as explained in the previous section. The hogging moment resistance of the real cross-section

is equal to the resistance of a reduced cross-section of uniform concrete strength. This means that the

shape of the reduced composite slab cross-section does not depend on the slab depth but on the available

reinforcement. The depth of the damaged zone az,eq of an equivalent rectangular cross-section is charted

in Figure 6.4 with the bold lines as a function of the reinforcement amount on the example of a Holorib

HR51 slab. It can be seen that the damaged zone is smaller if less reinforcement is available. This

fact complicates the design procedure in practice considerably. It means that the required reinforcement

amount has to be determined iteratively. A reinforcement amount has to be estimated, the corresponding

reduced cross-section has to be determined and it has to be checked if the estimated cross-section can

bear the internal forces determined by the finite element analysis. This procedure has to be repeated until

the right reinforcement amount is found. Furthermore, it has to be performed for every cross-section in

a slab since the internal forces vary and the required reinforcement amount is higher above intermediate

beams and columns than at the slab centre. The method therefore needs to be simplified further in order

to achieve a more useful approach.

The slab cross-section is assumed to be rectangular with an effective depth according to DIN EN 1994-

1-2, Annex D.4 [32] as shown in Figure 6.5. This effective depth is reduced by a damaged zone az for full

concrete slabs as derived in the previous section. The effective depth depends only on the geometry of

the steel sheeting and the damaged zone depends only on the fire resistance class. This means that for the
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Fig. 6.4: Damaged zone of a Holorib HR51 slab with equivalent cross-section az,eq and effective depth
method az,e f f

whole slab only one thickness needs to be used and the required reinforcement amount can be designed

for the same cross-section at every location. This method can also be applied for a fire resistance class

R30. For the Holorib profile the resulting damaged zone az,e f f for the effective thickness method is

shown in Figure 6.4 with the dashed lines. It can be seen that both methods deliver the same results for

a reinforcement amount of about 3 cm2/m. For a Cofraplus 60 profile, this intersection point lies even

above 6 cm2/m. Since the equivalent rectangular cross-section method already contains conservative

assumptions and the reinforcement amounts will mostly not be much higher than 3 cm2/m, the effective

thickness method can be safely applied on the slabs considered in this work and does not disagree with the

regulations in the Eurocode. The values for the damaged zone az,e f f of Holorib HR51 and Cofraplus 60

slabs determined with the effective thickness method are shown in Table 6.3.
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Fig. 6.5: Damaged zone of effective thickness method

If sagging moments occur, the method of DIN EN 1994-1-2, D.2 [32] can generally be used. The

contribution of the steel sheeting should not be taken into account since it could debond in a fire. In the

German national annex [33] it is only allowed to be taken into account if the bonding can be proved.

If any sagging moments should occur, these will be very small and it will presumably be sufficient
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considering a cross-section with the top reinforcement and the concrete above.

In the transversal direction, only the concrete above the steel decking should be taken into account

since the weakest cross-section is above the ribs. No approaches to determine the damaged zone in

transversal direction az,trans are currently available. This zone is very small, as shown in Figure 6.5 since

the temperatures in the slab above the top flange of the steel decking are much lower than above the

bottom flange. This is true particularly for a re-entrant trough profile steel sheeting. The same values for

the damaged zone az could be used as for full concrete slabs but this assumption is very conservative. A

pragmatic approach is suggested that the damaged zone in transversal direction az,trans is 50 % of az for

full concrete slabs. In order to be able to provide more scientifically based approaches, further research

work including experimental validation is necessary. For the application in this work, the suggested

assumtions are sufficient.

Table 6.3: Damaged zone in longitudinal az,e f f and transversal az,trans direction of Holorib HR51 and
Cofraplus 60 slabs for the effective thickness method

HR51 Cof. 60 Trans.
az,e f f az,e f f az,trans

[mm] [mm] [mm]
R30 18 45 5
R60 28 55 10
R90 38 65 15

To summarise, for the design of composite slabs in longitudinal direction, a full concrete slab with an

effective thickness according to DIN EN 1994-1-2, D.4 [32] shall be considered. With this cross-section

the method for full concrete slabs as described in Section 6.1.1 can be used. In transversal direction only

the concrete above the ribs should be taken into account. This cross-section is reduced by 50 % of the

damaged zone az of full conrete slabs and again the method of Section 6.1.1 can be used.

6.2 Design of the beams

The beams are modelled in this work with a linear-elastic material as described in Section 5.3. This

approach was chosen in order to avoid material non-linear analyses which require very long computing

times. As a consequence, the model delivers correct internal forces in the slab but not in the beams. These

need to be determined separately. The approach, where geometrical non-linearities need to be taken into

account but no material non-linearities, can be justified by following Example 6-1. A composite beam

is considered as shown in Figure 6.6. The beam offers a length of 7.5 m and is exposed to the standard

fire for sixty minutes from below. It is horizontally fixed at both ends by the nodes of the concrete

flange but not at the nodes of the steel beam as explained in Section 5.3. The steel section consists

of an IPE 240 profile in S235 and is protected against heating for a fire resistance class R60 which

leads to a temperature in the steel of 540° C. The temperature is assumed to be uniform which reduces

the Young’s modulus of the steel to Eθ = 101640MPa and the yield strength to fy,θ = 154N/mm2 and

implies a substitute thermal loading of εθ ,subs = 7.40 ‰. The concrete flange consists of a full concrete

slab C20/25 with a depth of 12 cm and an effective width of 1.875 m. The temperature distribution in the

concrete leads to a substitute thermal loading of εθ ,subs = 1.576 ‰ and κθ ,subs = 50.58km−1 from Table

4.6. Since the concrete is under compression in this example, the Young’s modulus is only reduced by the



80 6 Design

7.50

1.875

1
2

IPE 240
S235

C20/25

w
Shell
elementCoupling

Beam
element

q=19.9 kN/m

Fire protection
R60

Fig. 6.6: System (left) and cross-section (right) of Example 6-1: load bearing characteristics of composite
beam

factor for cross-section softening kE,θ ,mean = 0.480 from Table 5.1. The sagging moment resistance of

the composite beam can be calculated with the method in DIN EN 1994-1-2, Annex E.1 [32]. The plastic

resistance of the steel section Npl,a,Rd, f i = 602kN is simplified by assuming a uniform temperature. This

leads to a bending resistance of M+
f i,Rd = 140kNm and a maximum bearable uniform load of a simply

supported beam of qRd, f i = 19.9kN/m which is applied to the system. The input file can be found in

Annex B.5.

In Example 6-1a only the mechanical load is applied. The material strength and stiffness are reduced

due to heating but no thermal elongation is taken into account. A simplified bi-linear stress-strain re-

lationship is used for the steel section with a horizontal yielding part. In this calculation only material

non-linearities are taken into account, no geometrical non-linearities. The load level η of the steel sec-

tion is close to 100 % as shown in Table 6.4. It is calculated by a plastic cross-section design according

to DIN EN 1993-1-2 [29]. This example shows that the model delivers correct results for the plastic

calculation of composite beams.

Table 6.4: Comparison of results of Example 6-1

non-linear w η

Example εθ +κθ mat geo [mm] [-]
6-1a - + - 46.1 0.95
6-1b + + + 201 0.99
6-1c + - + 199 2.28

In Example 6-1b both mechanical and thermal loading are applied. Material non-linearities are taken

into account in addition to geometrical non-linearities. This model best represents the real behaviour of

the beam. In Table 6.4 it can be seen that the load level η of the steel section is again very close to

100 %. The restraint forces, which occur due to the different thermal elongation of the steel beam and

the concrete flange, yield out at the ultimate limit state. The load bearing capacity of the composite beam

is the same if restraint forces are taken into account or are neglected. For the same reason, shrinkage

does not need to be considered when determining the load bearing capacity of composite beams under

ambient temperature, although it causes restraint forces like the thermal elongation. It only influences the

deformation of the beams. This can also be seen in Example 6-1b. The vertical displacement at midspan

w is considerably larger than in Example 6-1a without thermal elongation but the load bearing capacity

is the same.
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The model for Example 6-1c is set up as suggested in Section 5.3. Again both mechanical and thermal

loadings are taken into account. The material is assumed to be linear-elastic, only geometrical non-

linearities are considered. The load level of the steel section η is 228 %, much higher than theoretically

bearable since no material non-linearities are taken into account and thus no load transfer occurs. The

vertical deformation at midspan w is the same as in Example 6-1b however where material non-linearities

are included.

This example shows that it is sufficient to consider only geometrical non-linearities. Beam deforma-

tions, which largely influence the internal forces in the slabs as discussed in Section 5.3, are taken into

account realistically. This approach enables the use of a linear-elastic material which ensures small com-

puting times. The design of the beams at the ultimate limit state has to be performed separately. Since

the composite beams can be considered to be simply supported as described in Section 5.3, the design is

relatively simple. DIN EN 1994-1-2 [32] provides cross-section design methods for all required cases:

bending resistance including partial shear connection, vertical shear resistance, resistance of shear studs

etc.

The only question is how the loads are distributed to the beams in case of fire. For two-way spanning

slabs under ambient temperature, the load distribution is generally assumed as shown in Figure 6.7. The

angles of the assumed areas depend on whether the considered edge can rotate freely or is clamped due to

the continuity of the slab. This approach is justified if a slab is rigidly supported at the edges or the edge
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Fig. 6.7: Load distribution to edge beams according to [42]

beams are relatively stiff and only offer small deformations. Figure 6.8 illustrates such load distributions

on a beam. The beam is a longitudinal edge beam of a single slab panel like in Example 5-1 as shown in

Figure 5.4. The arrows in the upper part of Figure 6.8 show the coupling forces in the vertical direction

between the concrete slab and the steel beam. These qualitatively represent the load transferred to the

beam. On the left hand side of Figure 6.8 the steel beam has a temperature of 20° C and the slab is only

loaded with a uniform mechanical load. It can be seen that the load distribution shows the trapezoidal

shape according to the assumption in Figure 6.7.
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Fig. 6.8: Load distribution on longitudinal edge beam at 20° C (left) and 540° C (right)

The right hand side of Figure 6.8 shows the load distribution if the slab is exposed to the standard fire

from below for ninety minutes and the steel beam reaches 540° C. It can be seen that the load distribution

changes considerably. The forces almost disappear at midspan and concentrate at the ends of the beam.

The shape of the load distribution can be assumed triangular in this case. The reason for this load

redistribution can be seen in Figure 6.9. It shows the membrane forces in the considered slab. It can be

seen that large tensile forces run diagonally from the centre of the slab to the corners. This means that

the loads are transferred directly from the slab to the columns which provide a much stiffer support than

the beams.

Tension
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Fig. 6.9: Membrane forces with edge beams 540° C, load transfer to columns

It has been shown that the trapezoidal load distribution is a good assumption if the supporting edge

beams remain cold and stiff. If these become hot and lose stiffness, a triangular load distribution can

be assumed. Generally, both cases have to be considered when designing the beams since it is unknown

whether the steel beams reach the maximum temperature. The height of the loading for the hot case is

difficult to quantify. It changes considerably with the stiffness of the beams. The conservative approach

is therefore proposed that the trapezoidal load distribution should be used on the hot beams with reduced

strength.

In the report of the DASt project [42] a simplified method for designing the edge beams is provided.

The primary edge beams are usually sufficiently strong since the load that these have to carry in case of

fire is much smaller than under ambient temperature. On the one hand, the safety factors for the loading

are much smaller in case of fire. On the other hand, the load on the slab is transferred more directly to

the secondary edge beams in case of fire, contrary to ambient temperature where the loads are transferred

over the unprotected secondary beams to the primary edge beams. The secondary edge beams have to

carry a larger part of the uniform load on the slab in case of fire than under ambient temperature. The
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load level of the bending moments in case of fire at midspan must be equal to or smaller than 100 %:

MEd, f i

MRd, f i
≤ 1.0 (6.11)

The moments in case of fire can be expressed by the moments under ambient temperature [42]:

MEd, f i = α η f i MEd (6.12)

MRd, f i = γ MRd (6.13)

Where:

α =
MEd, f i

η f i MEd
≈ b

b1
(6.14)

η f i =
qEd, f i

qEd
≤ 0.65 (6.15)

γ =
MRd, f i

MRd
≈ γM0

γM, f i
ky,θ ≈ 0.656 if θa = 540° C (6.16)

With Equation (6.11) to (6.16) the maximum allowable load level for the secondary edge beams under

ambient temperature can be found:

MEd

MRd
≤ γ

α η f i
(6.17)

The reduction factor η f i is the ratio of the design values of the applied uniform load on the slab under

ambient temperature qEd to the load in the fire case qEd, f i. A conservative simplified value η f i = 0.65

is proposed in DIN EN 1993-1-2, 2.4.2 [29]. The coefficient γ is the ratio of the design values of the

bending resistance in case of fire MRd, f i to the bending resistance under ambient temperature MRd . If

both partial safety factors γM0 and γM, f i are equal to 1.0 and the plastic neutral axis of the composite

cross-section lies within the concrete slab, γ is approximately equal to the reduction factor for the steel

strength ky,θ . The coefficient γ equals 0.656 if the steel beam reaches 540° C. The coefficient α is the

ratio of the design values of the bending moments in case of fire MEd, f i to the bending moment under

ambient temperature MEd multiplied with the factor η f i for the reduced loading in case of fire. It shows

the difference between the bending moments in the secondary edge beam with and without unprotected

secondary beams if in both cases the loading in case of fire qEd, f i is applied. If it is assumed that the
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Fig. 6.10: Notation of coefficients b and b1 for simplified edge beam design according to [42]
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loading conservatively acts on the beams as a uniform line load, α can be replaced by the ratio of the

primary beam length b to the spacing of the secondary beams b1 as shown in Figure 6.10.

The advantage of this approach is that the design of the secondary edge beams can be performed simply

by considering the load level under ambient temperature. With the simplifications in Equations (6.14)

to (6.16), Equation (6.17) leads to very simple values. For one secondary beam inside the slab panel it

becomes:

α =
b

b/2
= 2 (6.18)

MEd

MRd
≤ γ

α η f i
=

0.656
2 ·0.65

= 0.50 (6.19)

And for two secondary beams:

α =
b

b/3
= 3 (6.20)

MEd

MRd
≤ γ

α η f i
=

0.656
3 ·0.65

= 0.34 (6.21)

These values are very conservative as can be seen in Figure 6.10. The larger shaded areas show the areas

of the load which is assumed to be transferred to the secondary edge beams. These areas are much larger

than they were in reality as shown in Figure 6.7. The load level of the secondary beams under ambient

temperature however is often very small since deformation limits often govern the design. The values in

Equation (6.19) and (6.21) can often be satisfied and no further calculation is therefore necessary.

Regulations for the design of connections between protected composite beams and columns are given

in DIN EN 1994-1-2, 5.4 [32]. Basically, a connection is sufficiently protected if the same fire protection

is applied as that of the member transmitting the actions, and the connection load ratio is less than or equal

to that of the beam. Since the protected edge beams of membrane action slabs are ordinary composite

beams, no adjustments to the regulations in the Eurocode are necessary. The connections between the

unprotected secondary beams and the protected primary beams do not need to transfer loads and can

therefore be left unprotected for load bearing reasons. Heat can be conducted from the unprotected into

the protected beams however and the temperature in the protected beams can therefore become higher and

the load bearing capacity lower than expected. The former fire protection norm in Germany DIN 4102-4

[19] demands in this case that fire protection shall be applied to a length of 30 cm on the unprotected

members. The SCI design guide [44] proposes that the whole connection can be left unprotected. This

proposal was adopted in the FRACOF design guide [48]. The investigations on which this proposal was

based were not specified. As long as no investigations on this issue are available, it is proposed that the

regulation of DIN 4102-4 [19] should be applied.

To summarise, for the design of the edge beams it is sufficient for only the mechanical loading to

be taken into account. The restraint forces due to heating can be neglected since these have no effect

on the load bearing capacity at the ultimate limit state. The load distribution on the beams can be

assumed in the same way as under ambient temperature considering the slab panels without unprotected

secondary beams as shown in Figure 6.7. With Equation (6.17) the design can be performed by simply

considering the load level under ambient temperature. Conservative values for this allowable load level

were provided.
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7 Validation on fire tests

In the previous chapters, a method was proposed which allows a very simple design of concrete and

composite slab systems for the fire case. In this chapter, the method will be validated on experimental

data. Validating the method on fire tests is partly difficult. The proposed method considers the ultimate

limit state just before the structure collapses, however, this state is not reached in most large scale tests.

Since the available furnaces for fire tests with oil or gas burners are usually too small for testing complete

slab systems, temporary furnaces have to be erected and wooden cribs need to be used for the fire loading.

The tests stop automatically as soon as the available fire load is exhausted and cannot be extended until

the specimen collapses. Only the FRACOF test could be run until the slab failed since the furnace in this

test was heated by burners. The mechanical loading also cannot be increased until failure during a large

scale test since mostly dead loads such as sand bags have to be used. The test arrangements are usually

too large for testing frames with adjustable hydraulic cylinders. Even if structural collapse occurs, such

as at the test in Mokrsko (CZ) in 2008, the reason for the failure is difficult to reconstruct when the entire

structure is destroyed.

The results of large scale tests furthermore include many uncertainties which complicate the valida-

tion of simulations or design methods. Non-uniform combustion of the fire load or uneven foaming of

the intumescent coating can lead to non-uniform temperature development in the structural members for

instance. This uncertainty can be reduced by evenly distributed thermocouples but the amount of mea-

suring points is limited. Other uncertainties include measuring inaccuracies, statistical distribution of

material properties or effects that cannot be measured during a fire test such as cracking of the concrete

or slip in the shear connection between the steel beams and the slabs.

These explanations shall clarify that data of large scale fire tests should be used for validating numer-

ical models and design methods with caution. Test results cannot necessarily be reproduced exactly due

to many uncertainties in the test data. This cannot be avoided but it is nonetheless indispensable to vali-

date design methods on test data in order to be sure that the assumptions are correct. Three tests are used

for validation in this work: the two tests performed in Munich in 2010 and the test within the FRACOF

project that was conducted in 2008. The test arrangements and most important results were described in

Chapter 3. In this chapter the modelling of the tests is explained and the results of the simulations are

compared with the test data.

7.1 First Munich fire test

The slab at the first Munich test did not collapse and the ultimate limit state was not reached, therefore,

another time needs to be chosen to validate the proposed method. 40 minutes after test start will be

considered since the system was most heavily loaded at this time. The gas temperatures in the furnace

increased until about 40 minutes and started to fall again afterwards as shown in Figure 3.4. The boiling

away of the uncombined water in the concrete was finished at this time and an even temperature distri-
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bution was reached, which can be seen in Figure 3.5. The temperatures in the steel beams reached their

maximum after 40 minutes as shown in Figure 3.6 and Figure 3.7. Afterwards these started to cool down

and the steel regained strength. For this reason, the system was weakest at this time although the largest

deformations occurred later.

Fig. 7.1: Model of first munich test

The system is generally modelled according to Chapter 5. The dimensions of the specimen are given

in Section 3.1.1. The model is shown in Figure 7.1 and the input file can be found in Appendix B.6. The

cross-sections of the edge beams include the angles L 120x80x8, which were used as formwork around

the slab edges, since these provided considerable stiffness. A spring element is used at the connection

of the unprotected secondary beams to the intermediate beam in order to take into account a certain

stiffness of the joints. The assumption made in Section 5.3, that the connections can be modelled as

perfectly hinged, is conservative for designing new structures but it is inappropriate for reproducing test

results. The cracks above the intermediate beam can be modelled discretely since the actual location is

known. Two rows of nodes are modelled where the cracks occurred and the elements are separated at

this location. Only the displacements of the nodes are coupled but not the rotations. The yielding of the

reinforcement is taken into account by spring elements between the double nodes with a plastic moment

per node of:

Mpl = as fy d/n = 1.88 ·50.0 ·0.08/4 = 1.9kNm (7.1)

Where as is the amount of the top reinforcement, fy the yield strength, d the internal lever arm in the hot

cross-section and n is the number of nodes per meter. The discrete modelling of the cracks is necessary

for modelling the fire test since these have large effects on the stiffness and force distribution. If the

method of this work is used for designing new structures, enough reinforcement will be assumed above

the intermediate beams that this will not yield and no bending hinge will occur. In this case the slab can

be assumed continuously without cracks above the intermediate beams which simplifies the modelling

effort considerably.

The temperatures in the beams, measured in the top and bottom flanges and in the webs, are shown in

Table 7.1. A mean temperature θm is calculated with Equation (4.37). The Young’s modulus Eθ of each
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beam is reduced according to DIN EN 1994-1-2, Table 3.2 [32] and the thermal strain εθ is determined

according to DIN EN 1994-1-2, 3.3.1 [32].

Table 7.1: Temperatures and material properties of the beams of Munich test 1 after 40 minutes

Beam Profile θ f l,top θweb θ f l,bot θm Eθ εθ

[°C] [°C] [°C] [°C] [MPa] [‰]
Edge left IPE240 243 316 503 352 157000 4.479
Intermediate IPE240 307 369 590 419 143000 5.493
Edge right IPE240 177 235 220 212 186500 2.481
Edge top left IPE160 239 275 294 270 174000 3.285
Secondary left IPE240 665 819 819 770 21400 11.00
Edge bottom left IPE160 194 259 257 238 181000 2.842
Edge top right IPE160 200 270 260 245 180000 2.938
Secondary right IPE160 721 964 926 876 18900 11.00
Edge bottom right IPE160 135 181 180 166 196000 1.865

Since the temperature development in the furnace was slightly non-homogeneous, the temperatures in

the slab were also not homogeneous. Two different temperature profiles are therefore used in the model

as shown in Table 7.2. The location of the measuring points can be seen in Figure 3.5. The substitute

thermal loadings εθ ,subs and κθ ,subs in Table 7.2 are determined analytically with Equation (4.21) and

Equation (4.22).

Table 7.2: Temperatures in slab and substitute thermal load of Munich test 1 after 40 minutes

Measuring point a b c d e εθ ,subs κθ ,subs

[°C] [°C] [°C] [°C] [°C] [‰] [1/km]
11 larger panel 700 302 171 60 38 1.161 44.20
14 smaller panel 722 302 100 74 54 1.101 41.84

The stiffness of the slab at the ultimate limit state E II
cm,θ is determined as follows. The top reinforce-

ment of 1.88 cm2/m in both directions has a distance d1 from the top surface of the slab of 2.5 cm. This

leads to a height of the effective tension area of:

hct,e f f = 2.5 d1 = 2.5 ·2.5 = 6.25cm > h/2 = 6cm < h = 12cm (7.2)

The reinforcement ratio ρc and the effective reinforcement ratio ρc,e f f can be calculated with Equa-

tion (5.19) and Equation (5.20).

ρc =
As

Ac
=

1.88
100 ·12

= 0.001567 (7.3)

ρc,e f f =
As

Act,e f f
=

1.88
100 ·6.25

= 0.003008 (7.4)

The cross-section centre of the larger slab panel reached a temperature of θm = 171° C and the smaller

panel θm = 100° C. The outcome of this is a reduction factor for cross-section softening of kE,θ ,mean =

0.488 for the larger panel and kE,θ ,mean = 0.625 for the smaller panel which can be found in Table 4.5.

With a measured concrete tensile strength of fctm = 2.72N/mm2 and a measured Young’s modulus Ecm =
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32881N/mm2 as shown in Table 3.1, the stiffness of the larger slab panel at the ultimate limit state can

be calculated with Equation (5.18) as:

E II
cm,θ = kE,θ ,mean EII

cm = kE,θ ,mean
fy ρc

fy
Es
−βt

[
fct,e f f

Es

(
1

ρc,e f f
+ Es

Ec,e f f
−1
)
− fct,e f f

Ec,e f f

] (7.5)

= 0.488
500 ·0.001567

500
200000 −0.25

[ 2.72
200000

( 1
0.003008 +

200000
32881 −1

)
− 2.72

32881

] = 278N/mm2 (7.6)

The stiffness of the smaller slab panel results in a slightly higher value of EII
cm,θ = 357N/mm2 since the

mean temperature remained lower.

The mechanical loading is applied to the model using a uniformly distributed load on the slab. The self

weight of the structure and the load of the sand bags result in a total loading of 5.1 kN/m2. The vertical

deformations obtained with the finite element model are compared in Figure 7.2 with the deformations

measured in the test. The results are in good agreement within the limits of the uncertainties as described

above. Only the deformations of the edge beams are smaller in the simulation. The reason is that the

shear connection between the I-beams and the L-profiles is modelled rigidly. In fact the L-profiles were

only welded at a few spots to the I-beams. The connection was therefore much softer in the test but this

is difficult to take into account at the numerical model. Without the L-profiles the deformations of the

edge beams are about 20 % larger in the simulation compared to the test.
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Fig. 7.2: Vertical deformations in [mm] after 40 minutes, FEA results (above) and test data (below) at
Munich test 1

Figure 7.3 shows the principal stresses at the top surface of the slab. It can be seen that these are

largely smaller than the tensile strength of the concrete which was measured with fctm = 2.72N/mm2.

The tensile strength is only exceeded at the corners. The reason for that is the coarse element mesh

and that the supports are modelled by fixing single nodes, which leads to singularities in the numerical

model and to stress peaks. Since the tensile strength of the concrete is not reached, the reinforcement is

unloaded and the mechanical load is transferred purely by tensile stresses in the concrete. Determining

a required reinforcement amount with the design procedure described in Section 6.1 and comparing it
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Fig. 7.3: Principal stresses I in [N/mm2] at top surface, Munich test 1

with the available reinforcement in the test is therefore not meaningful.

The design of the beams is illustrated on the most heavily loaded edge beam which is one of the

secondary beams of the larger slab panel in longitudinal direction. Only the I-section is taken into

account for calculating the bending resistance of the beam. The static system and cross-section is shown

in Figure 7.4.

7.50

b = 1.05 meff

q = 12.75 kN/mEd,fi

1
2

IPE160

L120x80x8

11.1

Fig. 7.4: System (left) and cross-section (right) of edge beam Munich test 1

The loading is assumed to be trapezoidal as described in Section 6.2:

qEd, f i = 5.1kN/m2 ·2.5m = 12.75kN/m (7.7)

This loading leads to a bending moment at midspan of MEd, f i = 76.4kNm. The effective width be f f is

determined according to DIN EN 1994-1-1, 5.4.1.2 [31]:

be f f = b0 +
Le

8
= 0.111+

7.50
8

= 1.05m (7.8)

The temperature of the steel beam remained lower than 300° C as shown in Figure 3.6 and the steel kept

its full yield strength which was measured with fy = 315N/mm2. This results in a plastic resistance of

the steel section of:

Npl,a,Rd, f i = Aa fy = 20.1 ·31.5 = 633kN (7.9)

With a measured compressive strength of the concrete of fcm = 33.1N/mm2, the depth of the compres-
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sion zone can be calculated as follows:

xpl =
Npl,a,Rd, f i

fcm be f f
=

633
3.31 ·105

= 1.8cm (7.10)

This results in a bending resistance of:

M+
f i,Rd = Npl,a,Rd, f i

(
ha

2
+hc−

xpl

2

)
= 633

(
0.16

2
+0.12− 0.018

2

)
= 121kNm (7.11)

The bending resistance is larger than the bending moment at midspan in spite of the conservative as-

sumptions in the design method.

It could be shown that the behaviour of the first Munich test can be simulated with the proposed

method of this work. The most remarkable result is that the stresses at the slab centres did not reach the

tensile strength. No cracks occurred within the slab panels and the loads were transferred purely through

tensile stresses in the concrete. If the fire had lasted longer, the tensile strength of the concrete could

possibly have been exceeded and large cracks at the slab centre or even collapse of the whole structure

could have occurred.

7.2 Second Munich fire test

The slab in the second Munich test did also not collapse. The time 40 minutes after test start will be

considered as for the first test. The temperatures in the furnace, in the unprotected secondary beams

and in the steel sheeting reached their maximum at this time as shown in Figure 3.12 to Figure 3.14.

The slab was therefore most heavily loaded after 40 minutes. The dimensions of the specimen are given

in Section 3.1.1. The finite element model is shown in Figure 7.5 and the input file can be found in

Fig. 7.5: Model of second munich test

Annex B.7. The slab is modelled with an effective thickness of he f f = 11.2cm in both directions as

described in Section 5.2. The angles L 120x80x8, that were used as formwork, are taken into account

at the edge beams. The crack above the intermediate beam is modelled with two rows of nodes whose

displacements are coupled. The rotations are coupled by the use of springs with a plastic moment per
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node of:

Mpl = as fy d/n = 1.88 ·50.0 ·0.07/4 = 1.6kNm (7.12)

The temperatures in the flanges and the webs of the steel beams, that were measured after 40 minutes,

are assembled in Table 7.3. With the average temperature θm, the reduced Young’s modulus Eθ is calcu-

lated according to DIN EN 1994-1-2, Table 3.2 [32] and the thermal strain εθ is determined according to

DIN EN 1994-1-2, 3.3.1 [32]. These values are also shown in Table 7.3 for every beam of the model.

Table 7.3: Temperatures and material properties of the beams of Munich test 2 after 40 minutes

Beam Profile θ f l,top θweb θ f l,bot θm Eθ εθ

[°C] [°C] [°C] [°C] [MPa] [‰]
Edge left IPE160 244 284 306 278 172550 3.408
Intermediate IPE160 311 317 389 338 168000 4.265
Edge right IPE160 233 270 291 265 175381 3.217
Edge top left IPE240 176 234 257 223 184175 2.633
Unpr. 2nd very left IPE160 670 809 809 766 21797 11.00
Edge bottom left IPE240 192 255 280 243 180000 2.908
Edge top right IPE240 234 311 342 296 168743 3.667
Unpr. 2nd right IPE160 684 826 826 782 20453 11.00
Edge bottom right IPE240 179 237 261 226 183500 2.677
Unpr. 2nd left IPE160 683 825 825 780 20549 11.00

The substitute thermal loading on the slab is determined by finite element models with the method

described in Section 4.2.3. The thermal analysis is performed as explained in Section 4.1.2 using the

average gas temperature in the furnace for the temperature-time curve and the view factors as shown

in Table 4.2. The resulting substitute thermal strain and curvature in the longitudinal and transversal

direction are shown in Table 7.4.

Table 7.4: Substitute thermal loading on slab of Munich test 2 after 40 minutes

εθ ,subs [‰] κθ ,subs [1/km]
Longitudinal 1.045 43.0
Transversal 0.655 29.6

The effective tension area has the same height as in test 1 since the reinforcement mesh was placed at

the same distance d1 from the top surface of the slab.

hct,e f f = 2.5 d1 = 2.5 ·2.5 = 6.25cm > he f f /2 = 5.6cm < he f f = 11.2cm (7.13)

With an available reinforcement area of 1.88 cm2/m in both directions, the reinforcement ratios become:

ρc =
As

Ac
=

1.88
100 ·11.2

= 0.001679 (7.14)

ρc,e f f =
As

Act,e f f
=

1.88
100 ·6.25

= 0.003008 (7.15)

The temperature at the centre of the slab cross-section is determined with the finite element model as
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θm = 128° C. This leads to a reduction factor for cross-section softening of kE,θ ,mean = 0.571 which can

be found in Table 4.5. The actual tensile strength of the concrete was measured to fctm = 3.59N/mm2

and the Young’s modulus to Ecm = 36845N/mm2 as shown in Table 3.1. The stiffness at the ultimate

limit state can then be calculated as:

E II
cm,θ = kE,θ ,mean E II

cm = kE,θ ,mean
fy ρc

fy
Es
−βt

[
fct,e f f

Es

(
1

ρc,e f f
+ Es

Ec,e f f
−1
)
− fct,e f f

Ec,e f f

] (7.16)

= 0.571
500 ·0.001679

500
200000 −0.25

[ 3.59
200000

( 1
0.003008 +

200000
36845 −1

)
− 3.59

36845

] = 473N/mm2 (7.17)

The total mechanical loading is again 5.1 kN/m2 as in test 1 and is applied as a distributed load on the

slab. The vertical deformations obtained with the finite element model are compared in Figure 7.6 with

the deformations measured in the test. The results are in good agreement. Like in the first test, the

deformations of the edge beams are simulated smaller due to the rigid connection of the L-profiles.
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Fig. 7.6: Vertical deformations in [mm] after 40 minutes, FEA results (above) and test data (below) at
Munich test 2

The stresses at the top surface of the slab are again largely smaller than the tensile strength of the

concrete like in test 1. This can be seen in Figure 7.7. For this reason no cracks occurred at the centre of

the slab panels. This shows that the loads were transferred purely by tensile stresses in the concrete like

in test 1. The design procedure of the beams is similar to test 1. Since it provides no new information,

the design will not be shown here.

To summarise, the simulation results of the second Munich fire test are in good agreement with the

test data. This shows that the proposed method of this work includes realistic assumptions and can be

used safely for the design of composite slab systems in fire.
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Fig. 7.7: Principal stresses I in [N/mm2] at top surface, Munich test 2

7.3 FRACOF test

The time considered in the FRACOF test is 105 minutes after test start. The ultimate limit state was

reached as a large crack occurred at this time at the slab centre in the transversal direction. The experi-

ment was stopped shortly after this incident. The dimensions of the specimen are given in Section 3.2.1.

The numerical model is shown in Figure 7.8 and the input file can be found in Annex B.8. The slab is

modelled with an effective thickness of he f f = 12.0cm in both directions as described in Section 5.2. The

Fig. 7.8: Model of FRACOF test

steel beam at one shorter edge, which was attached in order to simulate continuity, is taken into account

in the model by horizontal supports along this edge. The steel beam for continuity at the longer edge is

neglected in the model since it had no effect in the test due to buckling of the uncovered reinforcement.

A small rotational restraint at the connections between the edge beams and the columns is taken into

account with rotational spring elements.

The mechanical loading consists of a self-weight of g = 3.254kN/m2 and an additional load from the

sand bags of q = 3.87kN/m2. The resulting load of 7.124kN/m2 is applied to the model as a distributed

load. The unprotected beams reached a temperature of about 1000° C which leads to a reduced Young’s

modulus of Eθ = 9450N/mm2 according to DIN EN 1994-1-2, Table 3.2 [32] and a thermal strain of

εθ = 13.8 ‰ according to DIN EN 1994-1-2, 3.3.1 [32]. The temperatures of the protected edge beams
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are shown in Figure 3.21. After 105 minutes the top flange reached about θ f l,top = 115° C, the web

θweb = 160° C and the bottom flange θ f l,bot = 240° C. The FRACOF project report [49] does not describe

whether these temperatures were measured in the primary or secondary edge beams. For this reason, the

temperatures are assumed similarly in all edge beams. The average temperature can be calculated as

θm = 170° C which leads to a reduced Young’s modulus of Eθ = 195300N/mm2 and a thermal strain of

εθ = 1.914 ‰.

The substitute thermal loading on the slab is determined by finite element models with the method de-

scribed in Section 4.2.3. The thermal analysis is performed as explained in Section 4.1.2 using the stan-

dard fire curve for the temperature development of the gas in the furnace and the view factors as shown

in Table 4.2. The resulting substitute thermal strain and curvature in the longitudinal and transversal

direction are shown in Table 7.5. The directions in Table 7.5 refer to the direction of the steel sheeting,

not to the direction of the slab panel.

Table 7.5: Substitute thermal loading on slab of FRACOF test after 105 minutes

Direction of sheeting εθ ,subs [‰] κθ ,subs [1/km]
Longitudinal 1.20 77.3
Transversal 2.11 73.0

A top reinforcement with an area of 2.57 cm2/m in both directions was placed in the specimen with

a distance from the top surface of the slab of d1 = 5.0cm. The effective tension area is calculated as

follows:

hct,e f f = 2.5 d1 ≥ he f f /2≤ he f f (7.18)

hct,e f f = he f f = 12cm (7.19)

The reinforcement ratio ρc and the effective reinforcement ratio ρc,e f f offer the same value in this case

since the effective tension area covers the entire cross-section.

ρc =
As

Ac
=

2.57
100 ·12

= 0.002142 (7.20)

ρc,e f f = ρc = 0.002142 (7.21)

The temperature at the centre of the slab cross-section is determined with the finite element model that

was used for determining the substitute thermal loading of the slab. With θm = 340° C the reduction

factor for cross-section softening becomes kE,θ ,mean = 0.258 which can be found in Table 4.5. The

compressive strength of the concrete was measured as fcm = 36.7N/mm2. The tensile strength and the

Young’s modulus were not measured. These will be interpolated in Table 3.1 of DIN EN 1992-1-1 [26]

to fctm = 2.82N/mm2 and Ecm = 32480N/mm2. The stiffness at the ultimate limit state can then be

calculated as:

E II
cm,θ = kE,θ ,mean EII

cm = kE,θ ,mean
fy ρc

fy
Es
−βt

[
fct,e f f

Es

(
1

ρc,e f f
+ Es

Ec,e f f
−1
)
− fct,e f f

Ec,e f f

] (7.22)

= 0.258
500 ·0.002142

500
200000 −0.25

[ 2.82
200000

( 1
0.002142 +

200000
32480 −1

)
− 2.82

32480

] = 322N/mm2 (7.23)
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A comparison between the vertical deformations is shown in Figure 7.9. The values of the test data are

read from Figure 3.22. Two values are given for the beams since two curves are available in Figure 3.22

and it is not clear exactly which curve belongs to which beam. The simulation results are shown in

brackets. Only one value is obtained for every beam since the model is symmetric. It can be seen that

the results are in good agreement.
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Fig. 7.9: Comparison of vertical deformations in [mm] at FRACOF test after 105 minutes

At the considered time of 105 minutes after test start a large crack occurred at the slab centre and

the reinforcement in longitudinal direction ruptured in the crack. This can be explained as follows.

A membrane force in longitudinal direction of nx = 142kN/m and a corresponding bending moment

of mxx = −1.52kNm/m at the centre of the slab can be determined with the numerical model. The

design procedure with the effective thickness method, which was explained in Section 6.1.2, is applied

on a cross-section as shown in Figure 7.10. The depth of the damaged zone in transversal direction is

interpolated for a time of 105 minutes on the standard fire curve to az,trans = 17mm. The remaining

rectangular cross-section above the ribs offers a depth of 80mm.
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Fig. 7.10: Cross-section for design at slab centre

The internal forces cause a tensile stress at the top surface of the slab of:

σtop =
nx

Ac
+

mxx

W
=

142
100 ·8.0

+
152

100·8.02

6

= 0.32kN/cm2 =̂ 3.2N/mm2 (7.24)

This stress is larger than the average tensile strength of the concrete of fctm = 2.82N/mm2 and a first

crack occurred. The entire load was transferred to the reinforcement which could not bear it as explained

in the following.

The required reinforcement amount will be designed here with the method of non-dimensional moment
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parameters according to [55]. It should be noticed that both the compressive zone and the reinforcement

lie below the neutral axis since the bending moment causes tension at the top surface of the slab and the

reinforcement was placed at a relatively large distance from the top surface. The bending moment about

the axis of the tensioned reinforcement is:

mEd,s = mEd−nEd zs1 =−1.52−142(0.050−0.080/2) =−2.94kNm/m (7.25)

The non-dimensional moment parameter can then be calculated as:

µEd,s =
mEd,s

b d2 fcd
=

0.00294
1.0 ·0.0302 ·36.7

= 0.089 (7.26)

The value for the compressive strength, that was measured in the test, is used and the safety factor is set

to 1.0 for the fire case. A mechanical reinforcement ratio of ω = 0.0935 can be obtained with Table 6.3

of [55]. The required reinforcement amount with an actual yield strength of fy = 594N/mm2 is then

calculated as:

as,req =
1
fy
(ω b d fcd +nEd) =

1
59.4

(0.0935 ·100 ·3.0 ·3.67+142) = 4.12cm2/m (7.27)

The required amount is larger than the available amount of as,available = 2.57cm2/m. This shows that the

available reinforcement could not bear the forces in the slab as soon as the crack occurred. As a result it

ruptured and the crack could open unhindered.

To summarise, the results of the fire tests can be simulated in good agreement with the proposed

method of this work. The method is thus validated and can be safely used for designing concrete and

composite slab systems in case of fire.
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8 Worked example

In this chapter the way in which the proposed method can be applied for designing new structures will

be summarised and illustrated. For this purpose, the worked example from the report of the DASt project

[42] will be calculated with the method of this work. Figure 8.1 shows the plan view and cross-section

of the considered slab system. The slab is part of a small office building. The cross-sections were

dimensioned for ambient temperature which is not shown here. The structure shall fulfil a fire resistance

class of R90.
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Fig. 8.1: Plan view (above) and cross-section (below) of worked example on the base of [42]

The slab system consists of a grid of primary beams IPE 400 and secondary beams IPE 240 in steel

grade S235. It is supported by steel columns and horizontally braced. Both the columns and the bracing

are protected against the fire and will be not further considered. The slab can be divided into several

panels with a column at every corner. The larger panels have dimensions of 5.0 m by 7.5 m and the

smaller panels of 5.0 m by 5.0 m. A composite slab system type Superholorib SHR51 is used with a
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thickness of the steel sheeting of 0.88 mm. It is finished to a total depth of 140 mm with concrete class

C20/25. A top reinforcement, steel grade S500, is placed at a distance of 25 mm from the top surface

of the slab. The required amount of this reinforcement is determined by the method of this work. The

edge beams around the perimeter of each slab panel, that are shown in Figure 8.1 with bold lines, are

protected against the fire. The protection system ensures that the maximum temperature in the beams

does not exceed 540° C. The secondary beams within the slab panels are left unprotected. These can be

seen in Figure 8.1 on the dashed lines. The mechanical loading on the slab consists of following parts:

self-weight gk = 3.5kN/m2

additional dead load gk = 2.0kN/m2

live load category B1 qk = 2.0kN/m2

movable partitions qk = 0.8kN/m2

In case of fire, these loads are combined for the accidental design situation. The quasi-permanent value

ψ2 is used for the combination factor as it is proposed in DIN EN 1991-1-2, 4.3.1 [24] and specified in

the German national annex [25].

qEd, f i = gk +ψ2 qk = 3.5+2.0+0.3 (2.0+0.8) = 6.34kN/m2 (8.1)

8.1 Modelling and results

The structure is modelled according to Chapter 5. The static system is shown in Figure 8.2 and the input

file can be found in Annex B.9. Only a part of the structure will be modelled since the single sections of

the slab are similar. Two adjacent slab sections are considered in order to take into account the effects

due to continuity. The composite slab is modelled with shell elements with a size of 0.25 m in both
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Fig. 8.2: Static system and considered points for design

directions and an effective thickness according to DIN EN 1994-1-2, Annex D.4 [32]:

h2/h1 = 51/89 = 0.57 < 1.5 (8.2)
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h1 = 89mm > 40mm (8.3)

he f f = h1 +0.5 h2

(
l1 + l2
l1 + l3

)
= 89+0.5 ·51

(
114+138
114+36

)
= 132mm (8.4)

The protected steel beams are modelled with beam elements with an additional row of nodes that are

coupled rigidly to the nodes of the slab. A bending hinge in all directions is included at both ends of each

beam. The unprotected beams are neglected since these only have a minor effect but could be included

if necessary. The columns are replaced by rigid supports in the vertical direction. In the horizontal

direction, the system is simply supported.

The stiffness of the slab is determined according to Section 5.2.4. The reduction factor for cross-

section softening is interpolated in Table 5.1 to kE,θ ,mean = 0.360. The top reinforcement is placed at a

distance from the top surface of the slab of d1 = 2.5cm. The effective tension area can then be calculated

as:

hct,e f f = 2.5 d1 ≥ he f f /2≤ he f f (8.5)

hct,e f f = he f f /2 = 6.6cm (8.6)

The concrete class C20/25 provides an average Young’s modulus of Ecm = 30000N/mm2 and tensile

strength of fctm = 2.2N/mm2, both according to DIN EN 1992-1-1, Table 3.1 [26]. Both values are

smaller than the minimum values that should be used for lower concrete classes that often have a higher

strength in reality than required. The effective Young’s modulus and tensile strength are therefore as-

sumed as:

Ec,e f f = 33000N/mm2 (8.7)

fct,e f f = 3.0N/mm2 (8.8)

To ensure that a distributed crack pattern can develop and to avoid only a single crack occurring, rein-

forcement rupture in this single crack and slab failure in terms of integrity, a minimum reinforcement

should be used. The required amount can be calculated with Equation (5.25):

As,min =
Act,e f f

fy
fct,e f f
− Es

Ec,e f f
+1

=
100 ·6.6

500
3.0 −

200000
33000 +1

= 4.08cm2/m (8.9)

A reinforcement mesh Q424 is chosen that provides a steel area of As = 4.24cm2/m in both directions.

With this value, the reinforcement ratio ρc and the effective reinforcement ratio ρc,e f f can be calculated

using Equation (5.19) and Equation (5.20):

ρc =
As

Ac
=

4.24
100 ·13.2

= 0.003212 (8.10)

ρc,e f f =
As

Act,e f f
=

4.24
100 ·6.6

= 0.006424 (8.11)

The stiffness at the ultimate limit state can then be determined with Equation (5.18) as:

E II
cm,θ = kE,θ ,mean EII

cm = kE,θ ,mean
fy ρc

fy
Es
−βt

[
fct,e f f

Es

(
1

ρc,e f f
+ Es

Ec,e f f
−1
)
− fct,e f f

Ec,e f f

] (8.12)
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= 0.360
500 ·0.003212

500
200000 −0.25

[ 3.0
200000

( 1
0.006424 +

200000
33000 −1

)
− 3.0

33000

] = 301N/mm2 (8.13)

This value is used for the Young’s modulus of the slab in the finite element model. Two limiting values

are considered for the stiffness of the steel beams. In load case 1, the beams reach their maximum temper-

ature of 540° C. This leads to a Young’s modulus of Eθ = 101640N/mm2 according to DIN EN 1994-

1-2, Table 3.2 [32] and a substitute thermal loading on the steel beams of εθ = 7.405 ‰ according to

DIN EN 1994-1-2, 3.3.1 [32]. In load case 2, the beams remain cold with 20° C, the full stiffness of

Ea = 210000N/mm2 is used and no thermal loading is applied on the steel profiles. The substitute

thermal loading on the slab can be found in Section 4.2.3, Table 4.8. The values for this example are

assembled in Table 8.1.

Table 8.1: Substitute thermal loading on slab of worked example

Direction of sheeting εθ ,subs [‰] κθ ,subs [1/km]
Longitudinal 1.916 55.50
Transversal 1.649 44.08

The numerical system is solved as geometrically non-linear to take into account membrane forces that

arise due to large deformations. Material non-linearities are already included in the system and do not

need to be considered further in the solving procedure. Basically, every cross-section in the slab system

has to be designed for its internal forces. Specialised finite element software packages for structural

engineering, such as Sofistik, often include routines that perform the designing automatically and the

required reinforcement amount is determined at every point in the structure. In order to demonstrate the

design procedure and to illustrate the results of this example, the results at the points marked in Figure 8.2

are determined. The vertical deformations w, bending moments m, membrane forces n, shear forces v

and the resulting required reinforcement amount as,req are assembled for load case 1 in Table 8.2 and for

load case 2 in Table 8.3.

Table 8.2: Vertical deformations, internal forces and required top reinforcement, LC1 hot beams

Point Direction w m n v as,req

[mm] [kNm/m] [kN/m] [kN/m] [cm2/m]

1 y 154 -2.42 175 - 2.77
2 x 154 -0.71 90.4 - 1.29
3 x 49 -10.7 101 10.3 6.08
4 y 43 -9.26 171 8.36 4.82
5 y - -5.47 633 3.58 8.09
6 x - -9.10 702 12.3 12.7
7 y 93 -2.54 144 - 2.53
8 x 93 -1.21 141 - 2.10
9 x 11 -10.1 144 10.0 6.35

The decisive results are marked in bold. It can be seen that it is not obvious which load case leads to

the largest forces. It is notable that the deformations at the slab centres are larger if the beams remain

cold. The reason for this is that the slab is stretched by the restrained thermal elongation of the beams.



8.2 Design of the slab 101

Table 8.3: Vertical deformations, internal forces and required top reinforcement, LC2 cold beams

Point Direction w m n v as,req

[mm] [kNm/m] [kN/m] [kN/m] [cm2/m]

1 y 225 -2.14 25.7 - 0.82
2 x 225 3.36 40.4 - 0.23
3 x 22 -17.0 52.3 17.4 9.46
4 y 17 -14.7 -29.6 14.5 4.05
5 y - -5.60 132 1.71 2.74
6 x - -6.19 188 4.05 5.05
7 y 150 -0.73 -19.6 - 0.39
8 x 150 1.52 19.4 - 0.21
9 x 3 -14.2 -7.90 14.9 7.19

8.2 Design of the slab

The design procedure shall be demonstrated at two points: point 4 for a cross-section in longitudinal

direction and point 3 in transversal direction. The used cross-section at point 4 is shown in Figure 8.3.
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Fig. 8.3: Cross-section for design in longitudinal direction of steel sheeting

As described in Section 6.1.2, a rectangular cross-section is considered with a depth of:

hdesi = h−az,e f f = 140−38 = 102mm (8.14)

The thickness of the damaged zone az,e f f can be found in Table 6.3. The required reinforcement amount

will be designed with the method of non-dimensional moment parameters according to [55]. The bending

moment about the axis of the tensioned reinforcement is:

mEd,s = mEd−nEd zs1 = 9.26−171(0.102/2−0.025) = 4.81kNm/m (8.15)

Since the reinforcement lies on the tensioned side of the neutral axis, the bending moment is assumed

positively. The non-dimensional moment parameter is calculated as follows:

µEd,s =
mEd,s

b d2 fcd
=

0.00481
1.0 ·0.0772 ·20

= 0.0406 (8.16)

A mechanical reinforcement ratio of ω = 0.0416 can be obtained with Table 6.3 of [55]. The required

reinforcement amount is then calculated as:

as,req =
1
fy
(ω b d fcd +nEd) =

1
50.0

(0.0416 ·100 ·7.7 ·2.0+171) = 4.70cm2/m (8.17)
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This value differs slightly from the value shown in Table 8.2 due to rounding differences.

The shear resistance is determined according to DIN EN 1992-1-1, 6.2.2 [26]. The values CRd,c and

k1 are used as specified in the German national annex to DIN EN 1992-1-1.

d < 200mm ⇒ k = 2.0 (8.18)

ρl =
Asl

bw d
=

4.70
100 ·7.7

= 0.00610 (8.19)

σcp =
NEd

Ac
=
−0.171

1.0 ·0.102
=−1.676N/mm2 (8.20)

< 0.2 fcd = 0.2 ·20 = 4.0N/mm2 (8.21)

vRd,c =
[
CRd,c k (100 ρl fck)

1
3 + k1 σcp

]
bw d = (8.22)

=
[
0.15 ·2.0 (100 ·0.00610 ·20)

1
3 +0.12 · (−1.676)

]
·1.0 ·0.077 = 0.0377MN/m (8.23)

=̂ 37.7kN/m > vEd = 8.36kN/m (8.24)

The shear resistance is larger than the available shear force.

In the transversal direction, the weakest part of the slab is above the ribs. The cross-section shown

in Figure 8.4 is used for design. The thickness of the damaged zone az,trans is given in Table 6.3. The

resulting rectangular cross-section has a remaining depth of hdesi = 74mm.
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Fig. 8.4: Cross-section for design in transversal direction of steel sheeting

The required amount of reinforcement due to tension and bending at point 3 in Figure 8.2 with the

internal forces shown in Table 8.3 is determined as follows:

mEd,s = mEd−nEd zs1 = 17.0−52.3(0.074/2−0.025) = 16.4kNm/m (8.25)

µEd,s =
mEd,s

b d2 fcd
=

0.0164
1.0 ·0.0492 ·20

= 0.3415 (8.26)

⇒ ω = 0.442 (8.27)

as,req =
1
fy
(ω b d fcd +nEd) =

1
50.0

(0.442 ·100 ·4.9 ·2.0+52.3) = 9.71cm2/m (8.28)

The difference from the value in Table 8.3 is again due to rounding differences. The shear resistance is

again sufficient with the available reinforcement from the design for bending:

d < 200mm ⇒ k = 2.0 (8.29)

ρl =
Asl

bw d
=

9.71
100 ·4.9

= 0.0198 (8.30)
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σcp =
NEd

Ac
=
−0.0523

1.0 ·0.074
=−0.707N/mm2 (8.31)

< 0.2 fcd = 0.2 ·20 = 4.0N/mm2 (8.32)

vRd,c =
[
CRd,c k (100 ρl fck)

1
3 + k1 σcp

]
bw d = (8.33)

=
[
0.15 ·2.0 (100 ·0.0198 ·20)

1
3 +0.12 · (−0.707)

]
·1.0 ·0.049 = 0.0459MN/m (8.34)

=̂ 45.9kN/m > vEd = 17.4kN/m (8.35)

It should be noted that the points, which are considered in this example, are not necessarily decisive

for determining the required reinforcement amount. The points with the largest forces can lie away from

the slab centre or midspan of the intermediate beams.

8.3 Design of the beams

The beams are designed according to Section 6.2. Only the protected secondary beams need to be

considered since the loading on the primary beams is much smaller in case of fire than under ambient

temperature. These are usually sufficiently dimensioned. The intermediate beam at axis B/1-2 will be

considered since it suffers the largest loading which can be seen in Figure 8.5.
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Fig. 8.5: Load distributions on edge beams according to [42]

The bending resistance can be verified through the load ratio under ambient temperature with Equa-

tion (6.17):

MEd

MRd
≤ γ

α η f i
(8.36)

This equation is fulfilled for two secondary beams within one slab panel, as is the case in this example,

if the load ratio does not exceed 0.34. The bending resistance under ambient temperature is determined

according to DIN EN 1994-1-1 [31]. With a partial shear connection of 50 %, the bending resistance
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becomes:

MRd = 159kNm (8.37)

The detailed calculation is not shown here. The distributed load on the slab under ambient temperature

is determined as follows:

qEd = γg gk + γq qk = 1.35 (3.5+2.0)+1.5 (2.0+0.8) = 11.625kN/m2 (8.38)

The bending moment at midspan and the load ratio is then:

MEd =
qEd l2

8
=

2.5 ·11.625 ·5.02

8
= 90.8kNm (8.39)

MEd

MRd
=

90.8
159

= 0.57 (8.40)

The load ratio is higher than the simplified limiting value of 0.34, therefore, the verification needs to be

performed more exactly in this case. The bending moment in case of fire at midspan with the triangular

load as shown in Figure 8.5 can be calculated as:

qEd, f i = 2 ·6.34 ·3.17 = 40.2kN/m (8.41)

⇒MEd, f i = 81.9kNm (8.42)

The bending resistance in case of fire is approximately the resistance under ambient temperature multi-

plied by the reduction factor for the material strength of the steel section according to DIN EN 1993-1-2,

Table 3.2 [32]. For a steel temperature of 540° C follows:

MRd, f i ≈ ky,θ MRd = 0.656 ·159 = 104kNm > MEd, f i = 81.9kNm (8.43)

The bending resistance is larger than the bending moment. The beam can bear the load. All other beams

have to carry less load and do not need to be verified further. This detailed example has shown that the

proposed method of this work can be applied easily for designing new structures in case of fire.
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9 Summary and recommendations

In this thesis, a new method has been developed for designing concrete and composite slab systems with

partially unprotected secondary beams in case of fire using membrane action. The method is positioned

in the research field of membrane action between advanced and simple calculation models. It is based

on finite element analyses in order to provide a broad application spectrum but includes radical simplifi-

cations for fast and efficient application. The simplifications enable the method to be used with ordinary

finite element programs. The amount of reinforcement is designed in the same way as at ambient tem-

perature with internal forces and cross-section design procedures. This thesis makes contribution to the

safe and efficient use of membrane action for the design of concrete and composite slab systems in case

of fire.

Two full scale fire tests were performed by the author within a research project which formed the

basis of this thesis. The main objective of the tests was to generate data to validate design methods

and investigating the behaviour of intermediate beams between two slab panels. Both tests confirmed

that membrane action enhances the load bearing capacity of concrete and composite slab systems in fire

considerably if the secondary beams within a slab panel are unprotected against heating. The first of the

two tests revealed an entirely new aspect in the research field of membrane action. A large gaping crack

arose nearby the intermediate beam and the slab failed in terms of integrity. The results of another fire

test, conducted within the FRACOF project, are used in this thesis in order to cover further construction

systems. Like the two tests performed by the author, this slab did not collapse but it also failed in terms

of integrity since a large gaping crack occurred at the slab centre. The method proposed in this thesis

prevents gaping cracks and this kind of integrity failure by providing sufficient reinforcement.

The thermal analysis is replaced by a substitute thermal loading which can be applied to a simple

finite element model. Ordinary shell elements can be used for the slab and simple beam elements for the

steel sections. The heating during a fire has two effects in a structure: thermal elongation and material

weakening. The substitute thermal loading causes the same thermal elongation as the real temperature

distribution in a structure. The material weakening is taken into account by reducing the stiffness of the

structure. Thermal analyses on full concrete and composite slabs were performed, compared with test

data and simple calculation methods from the literature and used later on for determining the substitute

thermal loading. It was shown that the results are in good agreement for full concrete slabs. For com-

posite slabs conservative assumptions were made since the results differ considerably depending on the

calculation method and assumptions in the simulation. Two methods were developed for determining the

substitute thermal loading: an analytical method that can be used for full concrete slabs and a solution

using finite element simulations that can be used generally. Both methods lead to the same results and

were validated with an example. Tables were worked out for full concrete slabs and two common com-

posite slab systems that allow a simple application. Cases which are not covered by the tables can be

calculated by the proposed simple functions. The substitute thermal loading on the steel beams can be

determined with the specifications in the Eurocodes.
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The effects of the heating on the material behaviour are modelled by assuming a reduced stiffness of

the finite element model. The stiffness at the ultimate limit state is determined before simulation and

a linear elastic material is used. This procedure enables non-linear material calculations to be avoided

which are the main reason for excessive computing times and numerical instabilities. The stiffness of

the slabs is reduced in two ways: cross-section softening due to reduction of the Young’s modulus of

the concrete and stiffness reduction due to concrete cracking. It could be shown that the cross-section

softening can be taken into account with a simple reduction factor depending on the temperature at

the slab centre. The concrete cracking is considered with tension stiffening assumptions which were

adopted from ambient temperature approaches. The stiffness reduction of the beams can, like the thermal

elongation, be determined with specifications in the Eurocodes.

The finite element model with the reduced stiffness and applied substitute thermal loading is solved

as geometrically non-linear but with linear material laws. Internal forces can be determined with this

model that are further used to design the required reinforcement amount in the slabs. Design procedures

from the Eurocodes were discussed in this thesis and simplified for the requirements of the new method.

The cross-section design methods for concrete slabs under ambient temperature can be used to determine

the required reinforcement amount for a force combination of bending, axial and shear forces. A very

simple method was adopted from the DASt project for verifying the load bearing capacity of the edge

beams considering the load level under ambient temperature.

The new method was validated on fire tests. Both the tests performed by the author and the test

conducted in the FRACOF project were used. The modelled vertical displacements of the slab were in

good agreement for all three tests. At the FRACOF test the simulated displacements also matched the test

data for the edge beams. At the two Munich fire tests these displacements are slightly smaller since the

stiffness of the shear connections between the edge beams and the L-profiles used as formwork around

the edges were difficult to model exactly. Such additional parts as the L-profiles would be conservatively

neglected when designing new structures. It is therefore not important to reproduce these results exactly

and the correctness of the new method could be confirmed.

A worked example was included to illustrate the simple application of the new method. It was shown

that particularly above intermediate beams and around columns considerably more reinforcement is re-

quired than predicted with the design methods currently available. This confirms that not enough re-

inforcement was available in the first Munich fire test which caused the large crack at the intermediate

beam to occur. If the reinforcement amount is placed in a slab which is determined by the method of this

thesis, the occurrence of such cracks is prevented.

Some assumptions were made in this thesis which require further research. Tension stiffening effects

were taken into account using the approaches for ambient temperature since no research results are

available for elevated temperatures. The validation of the proposed method on the fire tests indicates

that the tension stiffening assumptions are correct but this should be confirmed further. Furthermore, the

cross-sections above intermediate beams with the large amount of reinforcement must be proven with

experiments to provide enough rotational capacity to perform the large rotations. Finally, the bending

resistance of composite slabs in the transversal direction was assumed conservatively in this thesis which

should be revised. Despite these conservative assumptions, the presented method enables a simple and

efficient design of slab systems in case of fire.
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A Worked example for the substitute thermal
loading of a full concrete slab

h=12 cm, R30, Indication and equations see Section 4.2.2.

zb θ
Eθ

Ec,20

Eθ

Ec,20
· zb zn

Eθ

Ec,20
· z2

n εθ

σnonl,θ
Ec,20

σnonl,θ
Ec,20

zn

[m] [°C] [-] [m] [m] [m2] [-] [-] [m]

0.0000 733.6 0.0250 0.0000 0.0763 1.45E-4 0.01400 3.49E-4 2.67E-5

0.0024 669.0 0.0347 0.0001 0.0739 1.89E-4 0.01273 4.41E-4 3.26E-5

0.0048 606.9 0.0440 0.0002 0.0715 2.25E-4 0.01042 4.58E-4 3.28E-5

0.0072 554.9 0.0698 0.0005 0.0691 3.33E-4 0.00874 6.10E-4 4.22E-5

0.0096 505.8 0.0968 0.0009 0.0667 4.30E-4 0.00735 7.11E-4 4.74E-5

0.0120 463.5 0.1322 0.0016 0.0643 5.46E-4 0.00628 8.30E-4 5.33E-5

0.0144 424.0 0.1669 0.0024 0.0619 6.39E-4 0.00539 8.99E-4 5.56E-5

0.0168 389.1 0.2006 0.0034 0.0595 7.10E-4 0.00468 9.38E-4 5.58E-5

0.0192 356.8 0.2381 0.0046 0.0571 7.75E-4 0.00408 9.71E-4 5.54E-5

0.0216 327.8 0.2717 0.0059 0.0547 8.12E-4 0.00358 9.73E-4 5.32E-5

0.0240 301.1 0.3028 0.0073 0.0523 8.27E-4 0.00316 9.56E-4 5.00E-5
...

0.0960 42.3 0.8956 0.0860 -0.0197 3.49E-4 0.00020 1.81E-4 -3.6E-6

0.0984 40.8 0.9027 0.0888 -0.0221 4.42E-4 0.00019 1.70E-4 -3.8E-6

0.1008 39.4 0.9090 0.0916 -0.0245 5.47E-4 0.00018 1.60E-4 -3.9E-6

0.1032 38.2 0.9146 0.0944 -0.0269 6.63E-4 0.00017 1.51E-4 -4.1E-6

0.1056 37.2 0.9194 0.0971 -0.0293 7.91E-4 0.00016 1.43E-4 -4.2E-6

0.1080 36.3 0.9236 0.0997 -0.0317 9.30E-4 0.00015 1.36E-4 -4.3E-6

0.1104 35.6 0.9271 0.1024 -0.0341 1.08E-3 0.00014 1.31E-4 -4.5E-6

0.1128 34.9 0.9300 0.1049 -0.0365 1.24E-3 0.00014 1.26E-4 -4.6E-6

0.1152 34.5 0.9322 0.1074 -0.0389 1.41E-3 0.00013 1.22E-4 -4.8E-6

0.1176 34.1 0.9338 0.1098 -0.0413 1.59E-3 0.00013 1.20E-4 -4.9E-6

0.1200 33.9 0.9348 0.1122 -0.0437 1.79E-3 0.00013 1.18E-4 -5.2E-6
EA

Ec,20

ESy
Ec,20

azn
EIy

Ec,20

Nθ

Ec,20

Mθ

Ec,20

[m2] [m3] [m] [m4] [m2] [m3]

0.0722 0.00551 0.0763 5.94E-5 5.71E-5 1.94E-6

εθ ,subst κθ ,subst

[‰] [1/km]

0.0791 32.65
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B Input files

B.1 Example 4-2: Short beam

See Section 4.2.4.

/prep7

et,1,182 !plane182 plane element

!therm. strain of concrete according to DIN EN 1994-1-2,3.3.2

mptemp,,20,25,40,60,80,100,

mptemp,,120,140,150,160,180,200,

mptemp,,220,240,250,260,280,300,

mptemp,,320,340,360,380,400,420,

mptemp,,440,460,480,500,520,540,

mptemp,,560,580,600,620,640,660,

mptemp,,680,700,720,1200

mpdata,thsx,1,,0.000000,0.000045,0.000181,0.000365,0.000552,0.000743,

mpdata,thsx,1,,0.000940,0.001143,0.001248,0.001354,0.001574,0.001804,

mpdata,thsx,1,,0.002045,0.002298,0.002429,0.002564,0.002845,0.003141,

mpdata,thsx,1,,0.003454,0.003784,0.004133,0.004502,0.004892,0.005304,

mpdata,thsx,1,,0.005739,0.006199,0.006684,0.007195,0.007734,0.008302,

mpdata,thsx,1,,0.008899,0.009528,0.010188,0.010882,0.011609,0.012372,

mpdata,thsx,1,,0.013172,0.014009,0.014000,0.014000

E0 = 14855e6 !Young’s modulus in N/m^2 at 20 C

mptemp !delete table content

mptemp,1,20,100,200,300,400,500,600,

mptemp,,700,800,900,1000,1100,1200

mpdata,ex,1,,E0,0.625*E0,0.432*E0,0.304*E0,0.188*E0,0.1000*E0,

mpdata,ex,1,,0.045*E0,0.030*E0,0.015*E0,0.008*E0,0.004*E0,0,001*E0,0

mp,prxy,1,0 !poisson ration 0

! nodes

H = 0.12

L = 0.2

nh = 80 !number of elements horizontally

nv = 50 !number of elements vertically

x = 0

*do,a,1,(nh+1),1

y = 0

*do,b,0,nv*1000,1000
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n,a+b,x,y

y = y+H/nv

*enddo

x = x+L/nh

*enddo

! lements

*do,a,1,nh,1

*do,b,0,(nv-1)*1000,1000

e,a+b,a+1+b,a+1+b+1000,a+b+1000

*enddo

*enddo

!supports

!left

seltol,1e-3 !tolerance for selection

nsel,s,loc,x,0 !select all nodes with x=0

d,all,ux !fix displacement x of selection

nsel,all !deselect all

seltol

d,1,uy !fix displacement x of node 1

!loads

tref,20 !reference temperature

!temperatures from bottom to top

*dim,t,array,51

t(1) = 733.6

t(2) = 669.0

t(3) = 606.9

t(4) = 554.9

t(5) = 505.8

t(6) = 463.5

t(7) = 424.0

t(8) = 389.1

t(9) = 356.8

t(10) = 327.8

t(11) = 301.1

t(12) = 276.7

t(13) = 254.3

t(14) = 233.6

t(15) = 214.7

t(16) = 197.1

t(17) = 181.0

t(18) = 166.2

t(19) = 153.0
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t(20) = 140.9

t(21) = 130.4

t(22) = 120.9

t(23) = 112.7

t(24) = 105.5

t(25) = 99.1

t(26) = 93.0

t(27) = 87.5

t(28) = 82.3

t(29) = 77.5

t(30) = 73.1

t(31) = 69.0

t(32) = 65.1

t(33) = 61.6

t(34) = 58.4

t(35) = 55.4

t(36) = 52.7

t(37) = 50.2

t(38) = 47.9

t(39) = 45.8

t(40) = 44.0

t(41) = 42.3

t(42) = 40.8

t(43) = 39.4

t(44) = 38.2

t(45) = 37.2

t(46) = 36.3

t(47) = 35.6

t(48) = 34.9

t(49) = 34.5

t(50) = 34.1

t(51) = 33.9

*do,ny,0,50,1

nsel,s,node,,ny*1000+1,ny*1000+1+nh,1

bf,all,temp,t(ny+1)

nsel,all

*enddo

finish !finish pre-processor

/solu

! nonlinear

antype,static ! static analysis

nlgeom,off
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solve

finish

/post1

! set stress distribution in middle of beam on path

path,schnitt,2,,50 !define path called "schnitt"

ppath,1,,L/2,0 !define points of path

ppath,2,,L/2,H

PDEF,,S,x,NOAVG !put stress SX on path

PDEF,,epel,x,NOAVG !put elastic strain on path

B.2 Example 4-3: Composite beam with shell elements

See Section 4.3.

+prog aqua

norm en 1994-2004

$ Slab

beto 20 c 25

stah 21 s 500 scm 1.0

$ Upper flange

stah 1 s 235 fy 42.5 es 23940 scm 1.0

$ Web

stah 2 s 235 fy 22.3 es 17430 scm 1.0

$ Lower flange

stah 3 s 235 fy 24.2 es 18270 scm 1.0

ende

+prog sofimsha

syst raum gdiv 1000

let#nx 20 $ number of elements in x-direction

let#x 0

loop#n #nx+1

knot nr x y z

$ connection nodes

#n*100+1 #x 0.000 0.000

#n*100+2 #x 0.000 0.000

$ upper flange

#n*100+3 #x 0.060 0.0049

#n*100+4 #x 0.000 0.0049

#n*100+5 #x -0.060 0.0049

$ lower flange

#n*100+6 #x 0.060 0.2351

#n*100+7 #x 0.000 0.2351
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#n*100+8 #x -0.060 0.2351

$ slab

#n*100+10 #x 0.9375 -0.060

#n*100+11 #x 0.9375/2 -0.060

#n*100+12 #x 0.0000 -0.060

#n*100+13 #x -0.9375/2 -0.060

#n*100+14 #x -0.9375 -0.060

$ connect nodes

knot nr nr1

#n*100+4 #n*100+1 fix kf

#n*100+12 #n*100+2 fix kf

#n*100+1 #n*100+2 fix kp

let#x #x+7.50/#nx

endloop

loop#n #nx

$ upper flange

quad nr k1 k2 k3 k4 mnr=1 t=0.0098

#n*100+1 #n*100+3 #n*100+4 #n*100+104 #n*100+103

#n*100+2 #n*100+4 #n*100+5 #n*100+105 #n*100+104

$ web

quad nr k1 k2 k3 k4 mnr=2 t=0.0062

#n*100+3 #n*100+4 #n*100+7 #n*100+107 #n*100+104

$ lower flange

quad nr k1 k2 k3 k4 mnr=3 t=0.0098

#n*100+4 #n*100+6 #n*100+7 #n*100+107 #n*100+106

#n*100+5 #n*100+7 #n*100+8 #n*100+108 #n*100+107

$ slab

quad nr k1 k2 k3 k4 mnr=20 mbw=21 t=0.120

#n*100+10 #n*100+10 #n*100+11 #n*100+111 #n*100+110

#n*100+11 #n*100+11 #n*100+12 #n*100+112 #n*100+111

#n*100+12 #n*100+12 #n*100+13 #n*100+113 #n*100+112

#n*100+13 #n*100+13 #n*100+14 #n*100+114 #n*100+113

endloop

$ supports

knot (10 14 1) fix pz

knot (2010 2014 1) fix pz

knot 12 fix pp

knot 2012 fix pypz

knot 7,2007 fix py

ende

+prog sofiload

lf 1 bez ’Temperature slab’
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let#e 0.791

let#k -32.65

area qgrp typ ex #e 0 0.9375 -0.060 #e 0 -0.9375 -0.060

#e 7.5 -0.9375 -0.060 #e 7.5 0.9375 -0.060

area qgrp typ kx #k 0 0.9375 -0.060 #k 0 -0.9375 -0.060

#k 7.5 -0.9375 -0.060 #k 7.5 0.9375 -0.060

lf 2 bez ’Temperature beams’

$ upper flange

let#eof 0.01085e3

area qgrp typ ex #eof 0 0.060 0.0049 #eof 0 -0.060 0.0049

#eof 7.5 -0.060 0.0049 #eof 7.5 0.060 0.0049

$ web

let#es 0.011e3

area qgrp typ ex #es 0 0 0.0049 #es 0 0 0.2351

#es 7.5 0 0.2351 #es 7.5 0 0.0049

$ lower flange

let#euf 0.011e3

area qgrp typ ex #euf 0 0.060 0.2351 #euf 0 -0.060 0.2351

#euf 7.5 -0.060 0.2351 #euf 7.5 0.060 0.2351

ende

+prog ase

syst prob line

lf 1,2

lf 101

lc 1,2

ende

B.3 Example 5-1: Influence of slab stiffness

See Section 5.2.2.

+prog aqua

kopf Influence of stiffness slab

norm en 1994-2004

sto#h1 0.200 $ beam depth transversal [m]

sto#h2 0.300 $ beam depth longitudinal [m]

sto#h 0.100 $ slab depth [m]

sto#l 7.5 $ slab length longitudinal

sto#b 5.00 $ slab length transversal

$ slab

beto 20 c 20 mue 0 scm 1.0 ec 11884*1.0

stah 21 s 500 scm 1.0

$ beams
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stah 1 s 235 fy 154 ft 154 es 101640 scm 1.0

prof 1 ipe #h1*1000 mnr 1

prof 2 ipe #h2*1000 mnr 1

ende

+prog sofimsha

syst raum gdiv 10000

knot nr x y z

$ longitudinal

(1101 1131 1) (0 #l/30) 0 0

(1201 1231 1) (0 #l/30) #b 0

(11101 11131 1) (0 #l/30) 0 (#h2+#h)/2

(11201 11231 1) (0 #l/30) #b (#h2+#h)/2

$ transversal

knot nr x y z

(2101 2121 1) 0 (0 #b/20) 0

(2201 2221 1) #l (0 #b/20) 0

(12101 12121 1) 0 (0 #b/20) (#h1+#h)/2

(12201 12221 1) #l (0 #b/20) (#h1+#h)/2

$ couple nodes

knot nr nr1 fix=kf

(11101 11131 1) (1101 1)

(11201 11231 1) (1201 1)

(12101 12121 1) (2101 1)

(12201 12221 1) (2201 1)

2101 1101

2201 1131

2121 1201

2221 1231

$ supports

knot 1101,1131,1201,1231 fix pz

knot 1101 fix pp

knot 1201 fix pxpz

$ beams longitudinal

stab nr ka ke qnr=2

11101 11101 11102

(11102 11129 1) (11102 1) (11103 1)

11130 11130 11131

11201 11201 11202

(11202 11229 1) (11202 1) (11203 1)

11230 11230 11231

$ beams transversal

stab nr ka ke qnr=1
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12101 12101 12102

(12102 12119 1) (12102 1) (12103 1)

12120 12120 12121

12201 12201 12202

(12202 12219 1) (12202 1) (12203 1)

12220 12220 12221

$ slab

quad fit k1 1101 1201 1231 1131

mnr 20 mbw 21 nra 7 lage mitt t #h m 20 n 30

ende

+prog sofiload

lf 1 bez q

let#q 5.34

area typ pzz #q 0 0 0 #q 0 #b 0 #q #l #b 0 #q #l 0 0

lf 2 bez ’Temperature slab’

let#e 3.169 $ substitute thermal loading R90

let#k 87.41

area qgrp typ ex #e 0 0 0 #e 0 #b 0 #e #l #b 0 #e #l 0 0

area qgrp typ kx #k 0 0 0 #k 0 #b 0 #k #l #b 0 #k #l 0 0

area qgrp typ ey #e 0 0 0 #e 0 #b 0 #e #l #b 0 #e #l 0 0

area qgrp typ ky #k 0 0 0 #k 0 #b 0 #k #l #b 0 #k #l 0 0

lf 3 bez ’Temperature beams’

stab 11101 12220 1 ex 7.405

ende

+prog ase

syst prob line

lf 1

lf 2

lf 3

ende

+prog ase

steu iter 2 w2 1

syst prob th3 iter -50

lf 101 bez ’q+T_slab+T_beams’

lc 1

lc 2

lc 3

ende

+prog ase
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steu iter 2 w2 1

syst prob th3 iter -30

lf 1001 bez ’q_nonl’

lc 1

ende

+prog ase

steu iter 2 w2 1

syst prob th3 iter -30

lf 1002 bez ’T_slab,nonl’

lc 2

ende

+prog ase

steu iter 2 w2 1

syst prob th3 iter -30

lf 1003 bez ’T_beams,nonl’

lc 3

ende

B.4 Example 5-2: Composite beam with beam elements

See Section 5.3.

+prog aqua

norm en 1994-2004

$ Slab

beto 20 c 25

stah 21 s 500 scm 1.0

$ Steel beam

stah 1 s 235 es 18520 scm 1.0

prof 1 ipe 240 mnr 1

ende

+prog sofimsha

syst raum gdiv 1000

let#nx 20 $ number of elements in x-direction

let#x 0

loop#n #nx+1

knot nr x y z

$ Steel beam

#n*100+3 #x 0.000 0.120

$ Slab

#n*100+10 #x 0.9375 -0.060
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#n*100+11 #x 0.9375/2 -0.060

#n*100+12 #x 0.0000 -0.060

#n*100+13 #x -0.9375/2 -0.060

#n*100+14 #x -0.9375 -0.060

$ connect nodes

knot nr nr1

#n*100+3 #n*100+12 fix kf

let#x #x+7.50/#nx

endloop

loop#n #nx

$ Slab

quad nr k1 k2 k3 k4 mnr=20 mbw=21 t=0.120

#n*100+10 #n*100+10 #n*100+11 #n*100+111 #n*100+110

#n*100+11 #n*100+11 #n*100+12 #n*100+112 #n*100+111

#n*100+12 #n*100+12 #n*100+13 #n*100+113 #n*100+112

#n*100+13 #n*100+13 #n*100+14 #n*100+114 #n*100+113

endloop

$ Beam

stab (1 20 1) (3 100) (103 100) qnr 1

$ Supports

knot (10 14 1) fix pz

knot (2010 2014 1) fix pz

knot 12 fix pp

knot 2012 fix pypz

knot 3,2003 fix py

ende

+prog sofiload

lf 1 bez ’Temperature slab’

let#e 0.791

let#k -32.65

area qgrp typ ex #e 0 0.9375 -0.060 #e 0 -0.9375 -0.060

#e 7.5 -0.9375 -0.060 #e 7.5 0.9375 -0.060

area qgrp typ kx #k 0 0.9375 -0.060 #k 0 -0.9375 -0.060

#k 7.5 -0.9375 -0.060 #k 7.5 0.9375 -0.060

lf 2 bez ’Temperature beam’

stab 1 20 1 ex 11.0

ende

+prog ase

syst prob line

lf 1,2

lf 101
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lc 1,2

ende

B.5 Example 6-1: Load bearing characteristics of composite beam

See Section 6.2.

+prog aqua

norm en 1994-2004

$ Slab

beto 20 c 20 fc 20 mue 0 scm 1.0 ec 14400

stah 21 s 500 scm 1.0

$ Beam

stah 1 s 235 fy 154 ft 154 fp 154 es 101640 scm 1.0 $ 540°C

prof 1 ipe 240 mnr 1

ende

+prog sofimsha

syst raum gdiv 1000

let#nx 20 $ number of elements in x-direction

let#x 0

loop#n #nx+1

knot nr x y z

$ Beam

#n*100+3 #x 0.000 0.120

$ Slab

#n*100+10 #x 0.9375 -0.060

#n*100+11 #x 0.9375/2 -0.060

#n*100+12 #x 0.0000 -0.060

#n*100+13 #x -0.9375/2 -0.060

#n*100+14 #x -0.9375 -0.060

$ Connect nodes

knot nr nr1

#n*100+3 #n*100+12 fix kf

let#x #x+7.50/#nx

endloop

loop#n #nx

$ Slab

quad nr k1 k2 k3 k4 mnr=20 mbw=21 t=0.120

#n*100+10 #n*100+10 #n*100+11 #n*100+111 #n*100+110

#n*100+11 #n*100+11 #n*100+12 #n*100+112 #n*100+111

#n*100+12 #n*100+12 #n*100+13 #n*100+113 #n*100+112

#n*100+13 #n*100+13 #n*100+14 #n*100+114 #n*100+113

endloop
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$ Beam

$ Supports

knot (10 14 1) fix pxpz

knot (2010 2014 1) fix pxpz

knot 12 fix pp

knot 2012 fix pp

ende

+prog sofiload

lf 1 bez q

let#q 10.6

area typ pzz #q 0 0.9375 -0.060 #q 0 -0.9375 -0.060

#q 7.5 -0.9375 -0.060 #q 7.5 0.9375 -0.060

lf 2 bez ’Temperature slab’

let#e 1.576

let#k -50.58

area qgrp typ ex #e 0 0.9375 -0.060 #e 0 -0.9375 -0.060

#e 7.5 -0.9375 -0.060 #e 7.5 0.9375 -0.060

area qgrp typ kx #k 0 0.9375 -0.060 #k 0 -0.9375 -0.060

#k 7.5 -0.9375 -0.060 #k 7.5 0.9375 -0.060

lf 3 bez ’Temperature Beam’

stab 1 20 1 ex 7.40

ende

+prog ase

syst prob nonl iter 100 tol 0.001

lf 101 bez ’q_nonl,mat’

lc 1

dehn k1 ksv ul

ende

+prog ase

steu iter 2 w2 1

syst prob th3 iter -30

lf 102 bez ’q+temp_nonl,geom’

lc 1

lc 2

lc 3

ende

+prog ase

steu iter 2 w2 1

syst prob th3 iter -100 tol 0.001
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lf 103 bez ’q+temp_nonl,geom+mat’

lc 1

lc 2

lc 3

dehn k1 ksv ul

ende

+prog aqb

lf 102

span c $ cross-section verification el-pl

ende

B.6 Validation on first Munich test

See Section 7.1.

+prog aqua

norm en 1994-2004

$ Slab

beto 20 c 25 ec 278 mue 0 scm 1.0 $ larger panel

beto 22 c 25 ec 357 mue 0 scm 1.0 $ smaller panel

stah 21 s 500 scm 1.0

$ Edge beam left

stah 1 s 235 es 157000 scm 1.0

qnr 1 mnr 1

prof 1 ipe 240 zm 120

prof 2 l 120 80 8 alph 0 ym 80+50

$ Intermediate beam

stah 2 s 235 es 143000 scm 1.0

qnr 2 mnr 2

prof 1 ipe 240

$ Edge beam right

stah 3 s 235 es 186498 scm 1.0

qnr 3 mnr 3

prof 1 ipe 240 zm 120

prof 2 l 120 80 8 alph 0 ym 80+50

$ Edge beam above left

stah 4 s 235 es 174000 scm 1.0

qnr 4 mnr 4

prof 1 ipe 160 zm 80

prof 2 l 120 80 8 alph 0 ym 80+31

$ Unprotected secondary beam left

stah 5 s 235 es 21000 scm 1.0
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qnr 5 mnr 5

prof 1 ipe 240

$ Edge beam below left

stah 6 s 235 es 181000 scm 1.0

qnr 6 mnr 6

prof 1 ipe 160 zm 80

prof 2 l 120 80 8 alph 0 ym 80+31

$ Edge beam above right

stah 7 s 235 es 180000 scm 1.0

qnr 7 mnr 7

prof 1 ipe 160 zm 80

prof 2 l 120 80 8 alph 0 ym 80+31

$ Unprotected secondary beam right

stah 8 s 235 es 18900 scm 1.0

qnr 8 mnr 8

prof 1 ipe 160

$ Edge beam below right

stah 9 s 235 es 196000 scm 1.0

qnr 9 mnr 9

prof 1 ipe 160 zm 80

prof 2 l 120 80 8 alph 0 ym 80+31

ende

+prog sofimsha

syst raum gdiv 1000

$ Nodes for beams

knot (101 121 1) 0 (0 0.25) 0.12

(201 221 1) 7.5 (0 0.25) 0.12

(301 321 1) 12.5 (0 0.25) 0.12

(401 431 1) (0 0.25) 0 0.08

(501 531 1) (0 0.25) 2.5 0.12

(601 631 1) (0 0.25) 5 0.08

(701 721 1) (7.5 0.25) 0 0.08

(801 821 1) (7.5 0.25) 2.5 0.08

(901 921 1) (7.5 0.25) 5 0.08

knot 101,121,301,321 fix pz

201 fix pxpz

221 fix pp

let#h 0.120 $ Slab depth

let#hy 0.120 $ Slab depth transversal

$ Nodes for slab

knot (1101 1121 1) 0 (0 0.25) -#h/2

(1201 1221 1) 7.499 (0 0.25) -#h/2
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$ Additional nodes for crack above intermediate beam

(1251 1271 1) 7.501 (0 0.25) -#h/2

(1301 1321 1) 12.5 (0 0.25) -#h/2

$ Additional nodes for crack aside intermediate beam

(1331 1351 1) 7.749 (0 0.25) -#h/2

(1361 1381 1) 7.751 (0 0.25) -#h/2

(1401 1431 1) (0 0.25) 0 -#h/2

(1501 1531 1) (0 0.25) 2.5 -#h/2

(1601 1631 1) (0 0.25) 5 -#h/2

(1701 1721 1) (7.5 0.25) 0 -#h/2

(1801 1821 1) (7.5 0.25) 2.5 -#h/2

(1901 1921 1) (7.5 0.25) 5 -#h/2

$ Connect beams

knot nr nr1 fix=kf

401 101

501 111

601 121

431 201

631 221

701 201

801 211

801 211

901 221

721 301

821 311

921 321

$ Connect slab to beams

knot nr nr1 fix=kf

(1101 1121 1) (101 1)

(1301 1321 1) (301 1)

(1401 1431 1) (401 1)

(1501 1531 1) (501 1)

(1601 1631 1) (601 1)

(1701 1721 1) (701 1)

(1801 1821 1) (801 1)

(1901 1921 1) (901 1)

$ Connect left slab to intermediate beam

knot nr nr1 fix=kp

(1202 1220 1) (202 1)

fede (1201 1221 1) (1201 1) (201 1) dy 1 cm 1e1 flie 1.9

knot 1201 fix kf 201

knot 1221 fix kf 221

$ Connect right slab to intermediate beam
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knot nr nr1 fix=kp

(1251 1271 1) (1201 1)

fede (4251 4271 1) (1251 1) (201 1) dy 1 cm 1e1 flie 1.9

$ Connect crack

knot nr nr1 fix=kf $ Wall side

(1371 1381 1) (1341 1)

1331 702

knot nr nr1 fix=kp $ Window side

(1362 1370 1) (1332 1)

$ Connect left secondary beam with intermediate beam

let#c 1e5

fede 1 531 211 dx 1 cp #c 0 0

grup 0 bez Beams

$ Edge beam left

stab nr ka ke qnr=1 drot=0 xa=-0.032 xe=-0.032 za=-0.0449 ze=-0.0449

101 101 102 anfa mymzmt

(102 119 1) (102 1) (103 1)

120 120 121 ende mymzmt

$ Intermediate beam

stab nr ka ke qnr=2

201 201 202 anfa mymzmt

(202 219 1) (202 1) (203 1)

220 220 221 ende mymzmt

$ Edge beam right

stab nr ka ke qnr=3 drot=0 xa=0.032 xe=0.032 za=-0.0449 ze=-0.0449

320 321 320 anfa mymzmt

(319 302 -1) (320 -1) (319 -1)

301 302 301 ende mymzmt

$ Edge beam above left

stab nr ka ke qnr=4 drot=0 ya=-0.040 ye=-0.040 za=-0.0515 ze=-0.0515

430 431 430 anfa mymzmt

(429 402 -1) (430 -1) (429 -1)

401 402 401 ende mymzmt

$ Unprotected secondary beam left

stab nr ka ke qnr=5

501 501 502 anfa mymzmt

(502 529 1) (502 1) (503 1)

530 530 531

$ Edge beam below left

stab nr ka ke qnr=6 drot=0 ya=0.040 ye=0.040 za=-0.0515 ze=-0.0515

601 601 602 anfa mymzmt

(602 629 1) (602 1) (603 1)

630 630 631 ende mymzmt
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$ Edge beam above right

stab nr ka ke qnr=7 drot=0 ya=-0.040 ye=-0.040 za=-0.0515 ze=-0.0515

720 721 720 anfa mymzmt

(719 702 -1) (720 -1) (719 -1)

701 702 701 ende mymzmt

$ Unprotected secondary beam right

stab nr ka ke qnr=8

801 801 802 anfa mymzmt

(802 819 1) (802 1) (803 1)

820 820 821 ende mymzmt

$ Edge beam below right

stab nr ka ke qnr=9 drot=0 ya=0.040 ye=0.040 za=-0.0515 ze=-0.0515

901 901 902 anfa mymzmt

(902 919 1) (902 1) (903 1)

920 920 921 ende mymzmt

$ Slab

steu gtol 0.001

grup 1 bez ’Slab left’

quad fit k1 1101 1121 1221 1201 mnr 20 mbw 21

nra 7 lage mitt t #h ty #hy m 20 n 30

grup 2 bez ’Smaller panel left of crack’

quad fit k1 1251 1271 1351 1331 mnr 22 mbw 21

nra 7 lage mitt t #h ty #hy m 20 n 1

grup 3 bez ’Smaller panel right of crack’

quad fit k1 1361 1381 1321 1301 mnr 22 mbw 21

nra 7 lage mitt t #h ty #hy m 20 n 19

ende

+prog sofiload

lf 1 bez q

let#q 5.1

area typ pzz #q 0 0 -0.1 #q 0 5 -0.1 #q 12.5 5 -0.1 #q 12.5 0 -0.1

lf 2 bez ’Temperature Slab’

$ Larger slab

let#e 1.161 $ from test data 40 min

let#k 44.202

area qgrp typ ex #e 0 0 0 #e 0 5 0 #e 7.5 5 0 #e 7.5 0 0

area qgrp typ ey #e 0 0 0 #e 0 5 0 #e 7.5 5 0 #e 7.5 0 0

area qgrp typ kx #k 0 0 0 #k 0 5 0 #k 7.5 5 0 #k 7.5 0 0

area qgrp typ ky #k 0 0 0 #k 0 5 0 #k 7.5 5 0 #k 7.5 0 0

$ Smaller slab

let#e 1.101 $ from test data 40 min

let#k 41.838
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area qgrp typ ex #e 7.5 0 0 #e 7.5 5 0 #e 12.5 5 0 #e 12.5 0 0

area qgrp typ ey #e 7.5 0 0 #e 7.5 5 0 #e 12.5 5 0 #e 12.5 0 0

area qgrp typ kx #k 7.5 0 0 #k 7.5 5 0 #k 12.5 5 0 #k 12.5 0 0

area qgrp typ ky #k 7.5 0 0 #k 7.5 5 0 #k 12.5 5 0 #k 12.5 0 0

lf 3 bez ’Temperature beams’

stab 101 120 1 ex 4.479

stab 201 220 1 ex 5.493

stab 301 320 1 ex 2.481

stab 401 430 1 ex 3.285

stab 501 530 1 ex 11.000

stab 601 630 1 ex 2.842

stab 701 720 1 ex 2.938

stab 801 820 1 ex 11.000

stab 901 920 1 ex 1.865

ende

+prog ase

syst prob line

lf 1

lf 2

lf 3

ende

+prog ase

steu iter 2 w2 1

syst prob th3 iter -30

lf 101 bez ’q+T_slab+T_beams’

lc 1

lc 2

lc 3

ende

B.7 Validation on second Munich test

See Section 7.2.

+prog aqua

norm en 1994-2004

$ Slab

beto 20 c 25 ec 473 mue 0 scm 1.0

stah 21 s 500 scm 1.0

$ Edge beam left

stah 1 s 235 es 172550 scm 1.0

qnr 1 mnr 1
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prof 1 ipe 160 zm 80

prof 2 l 120 80 8 alph 0 ym 80+31

$ Intermediate beam

stah 2 s 235 es 168000 scm 1.0

qnr 2 mnr 2

prof 1 ipe 160

$ Edge beam right

stah 3 s 235 es 175381 scm 1.0

qnr 3 mnr 3

prof 1 ipe 160 zm 80

prof 2 l 120 80 8 alph 0 ym 80+31

$ Edge beam top left

stah 4 s 235 es 184175 scm 1.0

qnr 4 mnr 4

prof 1 ipe 240 zm 120

prof 2 l 120 80 8 alph 0 ym 80+50

$ Unprotected secondary beam on the very left

stah 5 s 235 es 21797 scm 1.0

qnr 5 mnr 5

prof 1 ipe 160

$ Edge beam bottom left

stah 6 s 235 es 180000 scm 1.0

qnr 6 mnr 6

prof 1 ipe 240 zm 120

prof 2 l 120 80 8 alph 0 ym 80+50

$ Edge beam top right

stah 7 s 235 es 168743 scm 1.0

qnr 7 mnr 7

prof 1 ipe 240 zm 120

prof 2 l 120 80 8 alph 0 ym 80+50

$ Unprotected secondary beam right

stah 8 s 235 es 20453 scm 1.0

qnr 8 mnr 8

prof 1 ipe 160

$ Edge beam bottom right

stah 9 s 235 es 183500 scm 1.0

qnr 9 mnr 9

prof 1 ipe 240 zm 120

prof 2 l 120 80 8 alph 0 ym 80+50

$ Unprotected secondary beam left of intermediate beam

stah 10 s 235 es 20549 scm 1.0

qnr 10 mnr 10

prof 1 ipe 160
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ende

+prog sofimsha

syst raum gdiv 1000

$ Nodes for beams

knot (101 121 1) 0 (0 0.25) 0.08

(201 221 1) 7.5 (0 0.25) 0.08

(301 321 1) 12.5 (0 0.25) 0.08

(401 431 1) (0 0.25) 0 0.12

(501 521 1) 2.5 (0 0.25) 0.08

(601 631 1) (0 0.25) 5 0.12

(701 721 1) (7.5 0.25) 0 0.12

(801 821 1) 10 (0 0.25) 0.08

(901 921 1) (7.5 0.25) 5 0.12

(1001 1021 1) 5 (0 0.25) 0.08

knot 101,121,301,321 fix pz

201 fix pxpz

221 fix pp

$ Effective slab thickness according to DIN EN 1994-1-2,D.4

let#h 0.112

$ Slab depth transversal

let#hy 0.112

$ Nodes for slab

knot (1101 1121 1) 0 (0 0.25) -#h/2

(1201 1221 1) 7.499 (0 0.25) -#h/2

$ Crack above intermediate beam

(1251 1271 1) 7.501 (0 0.25) -#h/2

(1301 1321 1) 12.5 (0 0.25) -#h/2

(1401 1431 1) (0 0.25) 0 -#h/2

(1501 1521 1) 2.5 (0 0.25) -#h/2

(1601 1631 1) (0 0.25) 5 -#h/2

(1701 1721 1) (7.5 0.25) 0 -#h/2

(1801 1821 1) 10 (0 0.25) -#h/2

(1901 1921 1) (7.5 0.25) 5 -#h/2

(2001 2021 1) 5 (0 0.25) -#h/2

$ Connect beams

knot nr nr1 fix=kf

$ top

401 101

501 411

1001 421

431 201

701 431
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801 711

721 301

$ bottom

601 121

521 611

1021 621

631 221

901 631

821 911

921 321

$ Connect slab to beams

knot nr nr1 fix=kf

(1101 1121 1) (101 1)

(1301 1321 1) (301 1)

(1401 1431 1) (401 1)

(1501 1521 1) (501 1)

(1601 1631 1) (601 1)

(1701 1721 1) (701 1)

(1801 1821 1) (801 1)

(1901 1921 1) (901 1)

(2001 2021 1) (1001 1)

$ Connect left slab to intermediate beam

knot nr nr1 fix=kp

(1202 1220 1) (202 1)

fede (1201 1221 1) (1201 1) (201 1) dy 1 cm 1e1 flie 1.6

knot 1201 fix kf 201

knot 1221 fix kf 221

$ Connect right slab to intermediate beam

knot nr nr1 fix=kp

(1251 1271 1) (1201 1)

fede (4251 4271 1) (1251 1) (201 1) dy 1 cm 1e1 flie 1.6

grup 0 bez Beams

$ Edge beam left

stab nr ka ke qnr=1 drot=0 xa=-0.040 xe=-0.040 za=-0.0515 ze=-0.0515

101 101 102 anfa mymzmt

(102 119 1) (102 1) (103 1)

120 120 121 ende mymzmt

$ Intermediate beam

stab nr ka ke qnr=2

201 201 202 anfa mymzmt

(202 219 1) (202 1) (203 1)

220 220 221 ende mymzmt

$ Edge beam right
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stab nr ka ke qnr=3 drot=0 xa=0.040 xe=0.040 za=-0.0515 ze=-0.0515

320 321 320 anfa mymzmt

(319 302 -1) (320 -1) (319 -1)

301 302 301 ende mymzmt

$ Edge beam top left

stab nr ka ke qnr=4 drot=0 ya=-0.032 ye=-0.032 za=-0.0449 ze=-0.0449

430 431 430 anfa mymzmt

(429 402 -1) (430 -1) (429 -1)

401 402 401 ende mymzmt

$ Unprotected secondary beam on the very left

stab nr ka ke qnr=5

501 501 502 anfa mymzmt

(502 519 1) (502 1) (503 1)

520 520 521 ende mymzmt

$ Edge beam bottom left

stab nr ka ke qnr=6 drot=0 ya=0.032 ye=0.032 za=-0.0449 ze=-0.0449

601 601 602 anfa mymzmt

(602 629 1) (602 1) (603 1)

630 630 631 ende mymzmt

$ Edge beam top right

stab nr ka ke qnr=7 drot=0 ya=-0.032 ye=-0.032 za=-0.0449 ze=-0.0449

720 721 720 anfa mymzmt

(719 702 -1) (720 -1) (719 -1)

701 702 701 ende mymzmt

$ Unprotected secondary beam right

stab nr ka ke qnr=8

801 801 802 anfa mymzmt

(802 819 1) (802 1) (803 1)

820 820 821 ende mymzmt

$ Edge beam bottom right

stab nr ka ke qnr=9 drot=0 ya=0.032 ye=0.032 za=-0.0449 ze=-0.0449

901 901 902 anfa mymzmt

(902 919 1) (902 1) (903 1)

920 920 921 ende mymzmt

$ Unprotected secondary beam left of intermediate beam

stab nr ka ke qnr=8

1 1001 1002 anfa mymzmt

(2 19 1) (1002 1) (1003 1)

20 1020 1021 ende mymzmt

$ slab

steu gtol 0.001

grup 1 bez ’Larger slab’

quad fit k1 1101 1121 1221 1201 mnr 20 mbw 21 nra 7
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lage mitt t #h m 20 n 30 ty #hy

grup 2 bez ’Smaller slab’

quad fit k1 1251 1271 1321 1301 mnr 20 mbw 21 nra 7

lage mitt t #h m 20 n 20 ty #hy

ende

+prog sofiload

lf 1 bez q

let#q 5.1

area typ pzz #q 0 0 -0.1 #q 0 5 -0.1 #q 12.5 5 -0.1 #q 12.5 0 -0.1

lf 2 bez ’Temperature slab’

$ from test data 40 min

let#ex 1.045 $ longitudinal

let#ey 0.655 $ transversal

let#kx 43.0

let#ky 29.6

area qgrp typ ex #ex 0 0 0 #ex 0 5 0 #ex 12.5 5 0 #ex 12.5 0 0

area qgrp typ ey #ey 0 0 0 #ey 0 5 0 #ey 12.5 5 0 #ey 12.5 0 0

area qgrp typ kx #kx 0 0 0 #kx 0 5 0 #kx 12.5 5 0 #kx 12.5 0 0

area qgrp typ ky #ky 0 0 0 #ky 0 5 0 #ky 12.5 5 0 #ky 12.5 0 0

lf 3 bez ’Temperature beams’

stab 101 120 1 ex 3.408

stab 201 220 1 ex 4.265

stab 301 320 1 ex 3.217

stab 401 430 1 ex 2.633

stab 501 520 1 ex 11.000

stab 601 630 1 ex 2.908

stab 701 720 1 ex 3.667

stab 801 820 1 ex 11.000

stab 901 920 1 ex 2.677

stab 1 20 1 ex 11.000

ende

+prog ase

syst prob line

lf 1

lf 2

lf 3

ende

+prog ase

steu iter 2 w2 1

syst prob th3 iter -30
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lf 101 bez ’q+T_slab+T_beams’

lc 1

lc 2

lc 3

ende

B.8 Validation on FRACOF test

See Section 7.3.

+prog aqua

norm en 1994-2004

sto#h1 0.400 $ Beam height transversal [m]

sto#h2 0.300 $ Beam height longitudinal [m]

sto#h 0.120 $ Effective slab depth [m]

sto#l 8.735 $ Length longitudinal

sto#b 6.660 $ Length transversal

$ Slab

beto 20 c 35 mue 0 scm 1.0 ec 322

stah 21 s 500 scm 1.0

$ Primary beams

stah 1 s 235 scm 1.0 es 195300

prof 1 ipe #h1*1000 mnr 1

$ Secondary beams protected

stah 2 s 235 scm 1.0 es 195300

prof 2 ipe #h2*1000 mnr 2

$ Secondary beams unprotected

stah 3 s 235 es 9450 scm 1.0

prof 3 ipe #h2*1000 mnr 3

ende

+prog sofimsha

syst raum gdiv 10000

knot nr x y z

$ Nodes longitudinal

(1101 1141 1) (0 #l/40) 0 0

(1201 1241 1) (0 #l/40) #b 0

(1301 1341 1) (0 #l/40) #b/3 0

(1401 1441 1) (0 #l/40) #b*2/3 0

(11101 11141 1) (0 #l/40) 0 (#h2+#h)/2

(11201 11241 1) (0 #l/40) #b (#h2+#h)/2

(11301 11341 1) (0 #l/40) #b/3 (#h2+#h)/2

(11401 11441 1) (0 #l/40) #b*2/3 (#h2+#h)/2

$ Nodes transversal
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knot nr x y z

(2101 2131 1) 0 (0 #b/30) 0

(2201 2231 1) #l (0 #b/30) 0

(12101 12131 1) 0 (0 #b/30) (#h1+#h)/2

(12201 12231 1) #l (0 #b/30) (#h1+#h)/2

$ Node couplings

knot nr nr1 fix=kf

(11101 11141 1) (1101 1)

(11201 11241 1) (1201 1)

(11301 11341 1) (1301 1)

(11401 11441 1) (1401 1)

(12101 12131 1) (2101 1)

(12201 12231 1) (2201 1)

2101 1101

2201 1141

2131 1201

2231 1241

1301 2111

1401 2121

1341 2211

1441 2221

knot 1101,1141,1201,1241 fix pz

knot 1101 fix pp

knot 1201 fix pxpz

fede nr ka dx dy dz cp cq cm

1101 1101 0 1 0 0 0 2e3

1141 1141 0 1 0 0 0 2e3

1201 1201 0 1 0 0 0 2e3

1241 1241 0 1 0 0 0 2e3

$ Beams longitudinal

stab nr ka ke qnr=2

11101 11101 11102

(11102 11139 1) (11102 1) (11103 1)

11140 11140 11141

11201 11201 11202

(11202 11239 1) (11202 1) (11203 1)

11240 11240 11241

$ Secondary beams unprotected

stab nr ka ke qnr=3

11301 11301 11302 anfa mymzmt

(11302 11339 1) (11302 1) (11303 1)

11340 11340 11341 ende mymzmt

11401 11401 11402 anfa mymzmt
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(11402 11439 1) (11402 1) (11403 1)

11440 11440 11441 ende mymzmt

stab nr ka ke qnr=1

12101 12101 12102

(12102 12129 1) (12102 1) (12103 1)

12130 12130 12131

12201 12201 12202

(12202 12229 1) (12202 1) (12203 1)

12230 12230 12231

$ Slab

quad fit k1 1101 1201 1241 1141 mnr 20 mbw 21

nra 7 lage mitt t #h m 30 n 40

$ Horizontal restraint

knot (12201 12231 1) fix px

ende

+prog sofiload

lf 1 bez q

let#q 7.124

area typ pzz #q 0 0 0 #q 0 #b 0 #q #l #b 0 #q #l 0 0

lf 2 bez ’Temperature slab’

$ from test data 105 min

$ Longitudinal direction of panel, transversal to span of sheeting

let#ex 2.11

$ Transversal direction

let#ey 1.20

let#kx 73.0

let#ky 77.3

area qgrp typ ex #ex 0 0 0 #ex 0 #b 0 #ex #l #b 0 #ex #l 0 0

area qgrp typ kx #kx 0 0 0 #kx 0 #b 0 #kx #l #b 0 #kx #l 0 0

area qgrp typ ey #ey 0 0 0 #ey 0 #b 0 #ey #l #b 0 #ey #l 0 0

area qgrp typ ky #ky 0 0 0 #ky 0 #b 0 #ky #l #b 0 #ky #l 0 0

lf 3 bez ’Temperature beams’

$ Protected secondary beams

stab 11101 11240 1 ex 1.914

$ Protected primary beams

stab 12101 12230 1 ex 1.914

$ Unprotected secondary beams

stab 11301 11440 1 ex 13.8

ende

+prog ase

syst prob line
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lf 1

lf 2

lf 3

ende

+prog ase

steu iter 2 w2 1

syst prob th3 iter -50

lf 101 bez ’q+T_slab+T_beams’

lc 1

lc 2

lc 3

ende

B.9 Worked example

See Chapter 8.

+prog aqua

norm en 1994-2004

sto#h1 0.400 $ Height primary beams [m]

sto#h2 0.240 $ Height secondary beams [m]

sto#h 0.132 $ Effective slab depth [m]

$ Slab

beto 20 c 25 ec 301 mue 0 scm 1.0

stah 21 s 500 scm 1.0

$ Beams

$stah 1 s 235 es 210000 scm 1.0 $ 20°C

stah 1 s 235 es 101640 scm 1.0 $ 540°C

prof 1 ipe #h2*1000 mnr 1 $ Secondary beams

prof 2 ipe #h1*1000 mnr 1 $ Primary beams

ende

+prog sofimsha

syst raum gdiv 10000

let#h 0.132 $ Slab depth

knot nr x y z=0

$ x-direction secondary beams

(1101 1141 1) (0 0.25) 0

(1201 1241 1) (0 0.25) 2.5

(1301 1341 1) (0 0.25) 5

(1401 1441 1) (0 0.25) 7.5

(1501 1541 1) (0 0.25) 10

(1601 1641 1) (0 0.25) 12.5
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$ y-direction primary beams

(2101 2151 1) 0 (0 0.25)

(2201 2251 1) 5 (0 0.25)

(2301 2351 1) 10 (0 0.25)

tran knot 1101 1141 1 dz #h/2+#h2/2 dnr 10000

tran knot 1301 1341 1 dz #h/2+#h2/2 dnr 10000

tran knot 1601 1641 1 dz #h/2+#h2/2 dnr 10000

tran knot 2101 2151 1 dz #h/2+#h1/2 dnr 10000

tran knot 2201 2251 1 dz #h/2+#h1/2 dnr 10000

tran knot 2301 2351 1 dz #h/2+#h1/2 dnr 10000

$ Connect double nodes

knot nr nr1 fix=kf

(11101 11141 1) (1101 1)

(11301 11341 1) (1301 1)

(11601 11641 1) (1601 1)

(12101 12151 1) (2101 1)

(12201 12251 1) (2201 1)

(12301 12351 1) (2301 1)

(2101 2151 10) (1101 100)

(2201 2251 10) (1121 100)

(2301 2351 10) (1141 100)

knot 11101,11121,11141,11301,11321,11341,11601,11621,11641 fix pz

knot 12101,12121,12151,12201,12221,12251,12301,12321,12351 fix pz

knot 1101 fix pxpy

knot 1601 fix px

$ Secondary beams

stab nr ka ke qnr=1

1101 11101 11102 anfa mymzmt

(1102 1119 1) (11102 1) (11103 1)

1120 11120 11121 ende mymzmt

1121 11121 11122 anfa mymzmt

(1122 1139 1) (11122 1) (11123 1)

1140 11140 11141 ende mymzmt

1301 11301 11302 anfa mymzmt

(1302 1319 1) (11302 1) (11303 1)

1320 11320 11321 ende mymzmt

1321 11321 11322 anfa mymzmt

(1322 1339 1) (11322 1) (11323 1)

1340 11340 11341 ende mymzmt

1601 11601 11602 anfa mymzmt

(1602 1619 1) (11602 1) (11603 1)

1620 11620 11621 ende mymzmt

1621 11621 11622 anfa mymzmt



136 B Input files

(1622 1639 1) (11622 1) (11623 1)

1640 11640 11641 ende mymzmt

$ Primary beams

stab nr ka ke qnr=2

2201 12201 12202 anfa mymzmt

(2202 2219 1) (12202 1) (12203 1)

2220 12220 12221 ende mymzmt

2221 12221 12222 anfa mymzmt

(2222 2249 1) (12222 1) (12223 1)

2250 12250 12251 ende mymzmt

stab nr ka ke qnr=2

2101 12101 12102 anfa mymzmt

(2102 2119 1) (12102 1) (12103 1)

2120 12120 12121 ende mymzmt

2121 12121 12122 anfa mymzmt

(2122 2149 1) (12122 1) (12123 1)

2150 12150 12151 ende mymzmt

2301 12301 12302 anfa mymzmt

(2302 2319 1) (12302 1) (12303 1)

2320 12320 12321 ende mymzmt

2321 12321 12322 anfa mymzmt

(2322 2349 1) (12322 1) (12323 1)

2350 12350 12351 ende mymzmt

$ Slab

quad fit k1 1101 1601 1641 1141 mnr 20 mbw 21 nra 7

lage mitt t #h m 50 n 40

ende

+prog sofiload

lf 1 bez q

let#q 6.34

area typ pzz #q 0 0 0 #q 0 12.5 0 #q 10 12.5 0 #q 10 0 0

lf 2 bez ’Temperature slab R90’

let#ex 1.649 $ R90

let#kx 44.08

let#ey 1.916 $ R90

let#ky 55.50

area qgrp typ ex #ex 0 0 0 #ex 0 12.5 0 #ex 10 12.5 0 #ex 10 0 0

area qgrp typ kx #kx 0 0 0 #kx 0 12.5 0 #kx 10 12.5 0 #kx 10 0 0

area qgrp typ ey #ey 0 0 0 #ey 0 12.5 0 #ey 10 12.5 0 #ey 10 0 0

area qgrp typ ky #ky 0 0 0 #ky 0 12.5 0 #ky 10 12.5 0 #ky 10 0 0

lf 3 bez ’Temperature Beams’

stab 1101 2350 1 ex 7.405
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ende

+prog ase

syst prob line

lf 1

lf 2

lf 3

ende

+prog ase

steu iter 2 w2 1

syst prob th3 iter -30

lf 101 bez ’q+T_slab+T_beams’

lc 1

lc 2

lc 3

ende

+prog bemess

$ Longitudinal

steu acci watr nein

steu quer 0

mat fc 20 fy 500 sc1 1.0 1.0 ss1 1.0 1.0

geom d 102 ho 25 dho 1 hu 10

lf 101

ende

-prog bemess

$ Transversal

steu acci watr nein

steu quer 0

steu warn 471

mat fc 20 fy 500 sc1 1.0 1.0 ss1 1.0 1.0

geom d 74 ho 25 dho 1 hu 10

lf 101

ende
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